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Abstract—Sites with limited compute cluster capacity aimed
at supporting large-scale applications of scientific and parallel
computing must deal with the additional demand for small-
scale jobs—in many cases, single-node and coming in large
volumes—that help further develop the capabilities of large-
scale applications as well as run simple data analysis tasks.
Many of these analysis tasks and other small-scale jobs are run
on High Performance Computing (HPC) systems because they
offer familiar environments, making future scaling convenient,
or because the proximity to the input or output data sets is
important. When these small-scale jobs explode in count and
create significant competition for resources, ensuring that the
most effective use of the cluster resources is achieved requires
either non-trivial scheduler tuning for better management of job
mixes or adoption of entirely different models for management of
computing environments. We claim that a hybrid “on-site HPC
+ cloud” model can offer the best of both worlds. Thus, small
jobs should target cloud resources in cases where they can be
offloaded to clouds without significant penalties on performance,
and, at the same time, large-scale application runs can better
utilize HPC clusters, achieving lower wait times and increasing
job throughput. This is not without challenges.

Index Terms—HPC, Cloud, cloud bursting, job scheduling

I. INTRODUCTION

Organizations with large-scale computing needs constantly
have to balance two different workloads on their computing
infrastructures. Some target workloads include large-scale,
scale-up jobs that often use extra hardware. For exmaple,
(Graphic Processing Units) GPUs offer extreme parallel pro-
cessing at lower power usage, but with limitations on accessing
resources outside the GPU package or potentially even other
processes on the GPU. Field Programmable Gate Arrays,
FPGAs, offer a way to program hardware enabling very
low power processing with a highly customized processing
structure. These kinds of speciality tools are becoming more
common as ways to achieve more compute efficiency at
large scale. At the same time, workloads with small-scale
jobs need to co-exist on these systems with large-scale jobs.
These workloads include much smaller jobs for development,
analysis, and initial exploration that need tiny fractions of
the available resources and may not be optimized to take
advantage of the specialized hardware. Supporting both types
of workloads and achieving good balance between them are
important components of computing missions within many
organizations, in academic, research, and commercial sectors.
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For example, Sandia National Laboratories (Sandia) has
workloads that match these patterns. At Sandia, we field a
large machine (Trinity [1]) in cooperation with Los Alamos
National Lab as well as smaller but still decently sized
machines (e.g., Astra [2]) on our own. In spite of this compute
capability, Sandia still fields numerous additional clusters to
handle capacity needs. The intent is for the capacity machines
to serve for development and small scale runs prompting
scheduler priorities to focus on first fit rather than job age
or size related priorities. Part of the challenge for Sandia
is the presence of export controlled or classified computing
jobs prompting on site computing resources expansion. Us-
ing a public, shared resource may not be possible due to
the security restrictions. Some of the concerns with running
specific workloads related to export control or sensitive or
classified data or processing have special requirements of the
cloud platform and the connection with it. Certification [3] can
allow workloads and data for some workloads while higher
consequence and more sensitive information still cannot use
these infrastructures.

Even with this generous compute capacity on site, Sandia
still has computing demands that could best be served in a
cloud environment based on tool requirements or data locality,
such as work on a cloud hosted, shared data set. Integrating
these systems, particularly considering the security concerns,
is problematic.

Smaller HPC systems, such as, for instances, university
clusters and machines at smaller research laboratories, have
similar usage demands but not as much computing capacity
available. Unlike Sandia, many of these systems do not have
strong security requirements, which allows their users to freely
leverage public cloud resources as overflow capacity. However,
even in the organizations where cloud transition is acceptable
and supported by the internal cloud teams, not all users migrate
their smaller jobs to the cloud resources. Such migration has
much potential for on-site resources to be better serving the
workloads that depend on their availability, yet this potential
is primarily unrealized within the organization.

One hurdle to integrating multiple platforms is the lack
of effective cross platform schedulers and job build and
deployment resources. During the grid era, numerous efforts
attempted to make a single front-end for various grid back-
end systems [4]. They all suffered from complexity of differ-
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ent back-end system features and architectures, among other
limitations.

In this context, the question of tools to address this from a
policy and technology infrastructure basis need to be explored
to inform effectively addressing workload balancing.

The rest of this paper is structured as follows. First, in
Section II, we discuss the state of the art for job schedulers
in HPC and cloud computing as well as the challenges that
arise in integration of resources from different sources. Next,
in Section III, we describe the cloud-related challenges and
opportunities as they have been explored in various hybrid
and multi-cloud studies. Next, Section IV presents a survey
of related work. A discussion of recommendations on how to
approach solving the hybrid bursting problem is discussed in
Section V. Finally, Section VI offers takeaway requirements
and challenges we need to address as a community to achieve
seamless on site HPC and public cloud resources, whether the
cloud has high security instances or not.

II. JOB SCHEDULING

Task scheduling system generally fall into one of three
categories with some newer systems attempting to bridge
either the categories, platforms supported, or both.

A. Scale Up Task Scheduling

The predominant scheduler in use in HPC centers today is
Slurm [5]. As an open source tool with strong community
support, it has grown to handle most HPC compute manage-
ment needs. In particular, it has recently been enhanced to
offer support for multi-resource scheduling [6]. This enables
heterogeneous node types to be effectively scheduled ensuring
that jobs that require special hardware will only run on nodes
that can support them while ensuring that jobs that do not need
that special hardware do not overly delay the special jobs.

While Slurm is certainly not the only scheduler available,
it is dominant at the USA’s Federally Funded Research and
Development Centers as it reduces costs and better supports
building affordable infrastructure for the private sector to use.
Other schedulers are discussed briefly in the related work in
Section IV.

A next generation HPC scheduler, Flux [7] offers these
features and is intending to extend into supporting integrated
cloud infrastructures. However, Flux is just starting to explore
how to incorporate cloud resources and has only scratched
the surface of the vast complexities involved. It will take
considerable time and effort for Flux to successfully integrate
a single cloud platform. In the meantime, recommendations
and policy changes that can be implemented quickly will offer
relief.

HPC oriented schedulers focus on a single task or small
number of tasks per job with each task potentially using
10000 nodes or more for each task. The priority is to gather
sufficient resources according to the scheduler policy settings
to successfully run each queued job at the right time. In these
cases, task scheduling throughput in the 100s of jobs/tasks per
second is sufficient to address the workload needs.

B. Scale Out Task Scheduling

At the other extreme are scale out workloads. These tend
into two categories. First are the many data analytics tasks or
other job types that add additional compute to reduce compute
time. They use independent processing and can just divide
the workload into more parts to achieve faster throughput.
Genomics processing is one example with a massive data
set that can be divided into many independent pieces for
exploring matching against another genetic sequence. These
tasks tend to be smaller, maybe 10s of nodes at most, and can
be restarted independently if one should fail without affecting
the other tasks. The other category is rapidly running tasks that
collectively perform a more complex operation. If a task runs
for 1 second or less, the scheduler must be able to schedule
many thousands per second across a large machine to keep
the scheduler from being the throughput bottleneck. Some
modern software engineering architectures, such as function-
as-a-service [8], embrace this kind of short task execution
model as a central feature.

The need to handle scheduling a large number of short
running tasks prompted the creation of Sparrow [9] and similar
systems. This shift from the traditional very large single task
with a long run time demanded these new tools to better handle
resource use.

With large scale task oriented systems, task scheduling
throughput more on the order of 10000s is required to en-
sure the compute is the bottleneck rather than the scheduler.
Different job schedulers oriented for this environment, such
as for Spark [10], offer better throughput using different base
assumptions. For example, a single tasks can be scheduled
either on a single node or a single core making resource
selection a far easier task. Considerations about interference
effects from interconnect network traffic are not important.
Other interference effects, such as those from cache sharing,
are typically not a top priority. Mesos [11] with systems like
Aurora [12] and Yarn [13] offer examples of high throughput
task oriented schedulers.

Other systems like Omega [14] were built in frustration
of the need to support heterogeneous clusters that evolved as
new hardware was added over time with broken and obsolete
hardware decommissioned. The priority for a system like this
is to support a wide variety of hardware features and enable a
reasonably efficient mapping from job requirements onto the
available hardware balancing needs against availability.

C. Container Orchestration

The alternative approach for job scheduling has shifted
more to container management rather than task management.
Systems like Kubernetes [15] and Docker Swarm [16] offer
increasingly rich and complex environments for deploying
long-lived services that can dynamically scale on demand.
This is a fundamentally different kind of workload making
it a poor match for either scale out or scale up workloads
without rethinking their architectures.



D. Discussion

The kinds of workloads each of these system classes
addresses is different and difficult to address with a single
scheduler and resource management system. This has led to
the fragmentation of platform development efforts, where each
platform is essentially treated as an independent direction for
research and development and optimized to best address its
own, particular subset of the workloads.

The real challenge being faced by large scale compute
centers today is that the various tools used in each of these
different environments are starting to be demanded within
others. For example, machine learning tools are now being in-
corporated into scientific simulations. For example, in climate
simulations [17], [18], machine learning models are substitut-
ing for parts of the model that may have too many parameters
or the physics is not fully understood. Using models generated
from observational data, reasonable estimates of these effects
improve the simulation model quality overall.

Other examples of cross platform tool usage include data
analytics tools for use on simulation generated data sets. Being
able to run the analytics tools with the simulation would
accelerate insight discovery by shortening the exploration time.
How to best handle these hybrid workloads further complicates
the scheduling picture.

III. CLOUD CHALLENGES AND OPPORTUNITIES

Public cloud systems are essentially walled gardens offering
data storage, compute capacity, and often, many tools and
services that make application development fast and easy. This
is quite attractive for many different disciplines enabling less
costly tech company startup costs (i.e., outsource all of the
compute infrastructure needed to an on-demand cloud service
eliminating the need for hardware purchases for peak usage
times and hiring system administrators). Fueling innovation is
not the only advantage. Other institutions that need a relatively
large amount of computing power for a short period of time
find cloud services a cost effective approach to meeting their
computing needs.

In spite of the advantages offered, trying to combine a
single cloud environment with either a second cloud or another
platform is far from an easy or inexpensive endeavour.

A. Performance

A large number of studies reported performance limitations
and downsides of cloud computing environments [19]—[21].
These studies pointed out the lack of low-latency networks,
high virtualization overheads, significant performance variabil-
ity due to resource sharing, among other concerns. However,
one common fact about these studies is that it has been
nearly a decade since they have been published and, therefore,
the results they include essentially relate to the clouds of
previous generations. On the contrary, the offerings from
today’s clouds provide access to resources with impressive
processor performance, increased memory sizes, and highly
optimized networks in isolation from other user’s traffic.
Additionally, a recent comprehensive study [22] indicates that

the performance gap between HPC and clouds is essentially
closed, at least at small and moderate scales. In fact, it is
shown that a cloud system offers higher bandwidth and lower
latency than a production HPC system, deployed as recently
as several years ago.

B. Data Movement

One of the most serious concerns with cloud-based process-
ing is the data movement. Cloud systems, such as Amazon
Web Services, offer free data ingress as an enticement for
moving a data set onto the service and to use their compute
resources. However, while data movement onto the platform
is free, moving data out frequently incurs a charge. Also, data
storage on the platform usually involves charges as well. With
limited ingress bandwidth, storing large datasets for repeated
processing becomes the only reasonable option forcing recur-
ring costs. A related challenge may be the security of data
migraion between platforms [23].

C. Spot Pricing

In many cases, cloud pricing is not fixed, but varies
dynamically based on supply and demand. In these cases,
trying to control compute job costs by migrating between
clouds or moving from an HPC resource to a cloud is further
complicated. Effectively managing these costs variances has
led to management systems [24]. It is a far from simple task
to achieve the lowest costs compute, particularly when data
movement delays and costs are incorporated.

D. Job Requirements

The way applications are packaged for use on an HPC
resource compared to each different cloud is different. In
some cases, it is a container. In others, it is virtual machines.
Others still require that you build your application in the cloud
environment and it is stored using an internal format, typically
something similar to a virtual machine. With an HPC job that
uses Slurm or any of the other HPC-oriented schedulers, the
applications and job scripts have been written and optimized
for a particular platform with specific dynamic library versions
available and access to particular storage systems with specific
interfaces. For example, the S3 interface on AWS has a
completely different interface than the typical POSIX API of
an HPC scratch space or one of the database (SQL or NoSQL
both) systems. Key-value stores have yet another interface,
although it is most similar to S3. This variety of tools required
for processing makes deploying an application automatically
from and HPC to cloud or vice versa a difficult proposition.

E. Discussion

While the cloud environment is best (cheapest) when it
can be used with small, transient data on a single cloud data
center, the above research demonstrates the potential benefits
and deep challenges with effectively combining one cloud data
center with some other compute resource, be it another cloud
or an onsite HPC or cloud platform. The challenges are not
insurmountable, but are difficult.



The different deployment and job scheduling interfaces are
serious challenges that are not a simple matter of money.
Instead they require significant research and development
effort to construct a reasonable approach that considers many
of the challenges identified above and the others not listed
here.

In spite of these challenges and costs involved, cloud can
also be a better option to manage on site inter-group conflicts.
For example, at the 2017 University of California, Santa Cruz
CROSS Symposium [25], the genomics institute talked about
why they used AWS for their workloads even though they had
sufficient infrastructure on site to handle their workloads. The
challenge came down to having a third party arbiter for who
should pay for what and how much they use. For example,
if a researcher is using “paid for” on campus compute, they
may demand to keep 10 PiB of data because it is all precious.
That same researcher, when presented with a US$20,000 bill
for storing that data, they may suddenly decide that more than
90% of it was not that critical after all. Further, by using
the third party arbiter, deciding who gets to use the compute
and when is more a matter of just allocating budget rather
than arguments over whose turn it is to use the machines.
Even though the costs can be significantly higher than on site
resources, having the direct costs and third party arbiter proved
to be a significant advantage for managing multiple research
groups using a shared resource.

IV. RELATED WORK

Two commercial job schedulers for HPC workloads include
the Cray scheduler (ALPS) [26] and IBM Cobalt Sched-
uler [27]. Both of these systems offer full features and ex-
cellent performance optimized for their proprietary platform
environment, but are limited to the vendor platforms. With
the strong emphasis on open source for HPC through efforts
like OpenHPC [28], these systems offer a difficult value
proposition. Users can get the same tools across a variety
of platforms, but have to switch their job scripts and other
management infrastructure for every user if adopting one of
the proprietary platforms.

The literature that discusses HPC systems at national labo-
ratories [29]-[31] provides rich information about HPC usage
trends, resource utilization metrics, evolution of supercomput-
ers over time, among many other user- and system-centered
topics. Most of the existing studies on HPC environments—
both historic and also recent—pay little attention to cloud
computing and its benefits, considering integration with clouds
to be secondary or optional in nature. With the shifting work-
load demands, revisiting these investigations is an important
priority.

Among the counterexamples, a study of computing re-
sources at the Texas Advanced Computing Center (TACC) [32]
stands out as it describes a considerable number of cloud-
style jobs being processed as a result of integration of TACC
facilities with Jetstream [33], a cloud computing facility spon-
sored and managed by the USA’s National Science Foundation
(NSF).

Chameleon Cloud [34] offers a bare-metal-as-a-service
cloud option. While this is an NSF supported effort focused
on supporting both research and education, the resources are
not as extreme as leadership computing facilities. Instead, the
focus is on supporting smaller scale efforts with a strong
tie to educational environments rather than production-style
workloads.

CloudLab [35] and other cloud testbeds offer a different
take on the cloud environment by incorporating new hardware
and software to test out how to use these new tools in a cloud
environment. These systems, while looking at experimental
system design, do not have the strong ties to a production
HPC environment nor the capacity to handle offload for a
heavy workload.

With traditional HPC requiring more specialized system
administration capabilities and more expert friendly compute
management interfaces, the cloud oriented environment en-
ables running scale out workloads or even scale up workloads
with friendlier tools. Academic institutions trying to address
their entire user base focus on the majority users with a cloud-
friendly configuration that can also support, albiet without
fully optimized configurations, scale up computing workloads
to some degree. This has been discussed in good detail by
Hwang, et al. [36].

The final part of the related work concerns cloud burst-
ing. These systems look at how to use a cloud resource as
“overflow” for an onsite or just another large scale compute
resource. Work on these bursting approaches [19], [37], [38]
show the challenges and potential for making these systems
work. Microsoft, with the Azure platform, offer this as a
fundamental part of their cloud strategy. They encourage users
to install an Azure instance at their premises and to use
Microsoft’s private cloud instances as bursting capacity. This
enables customers to right size their on site compute resources
to control costs while not hitting limits for transient peak
workloads. Achieving this kind of balance for HPC and Cloud
would offer an excellent balance by deploying jobs that do
not need the HPC platform characteristics onto the associated
cloud when there is demand for the HPC platform specific
characteristics by jobs. However, these capabilities still do not
exist.

V. RECOMMENDATIONS

As with most things in life, you get what you measure and
what you reward. In this case, using incentives can change
behavior prompting users to move workload most compatible
with cloud infrastructures off the on-site HPC resources. Re-
warding “good behavior” while monitoring systems to detect
“bad beahvior”, these goals can be achieved quickly.

We were unable to find any publications about these kinds
of management strategies prompting our work to formalize the
understanding of the problem space and start investigating and
measuring solution effectiveness. This paper is the first step
in that process.



A. Long Term

Long term, using a scheduler like Flux, once it has fully
incorporated cloud capabilities, will be the “correct” choice
for managing multi-platform resources with varying workload
characteristics. By “correct”, we mean that it will offer a
general, simple, least cost way to bridge between the platforms
with low user involvement. Other approaches will likely still
be better for specific use cases. In the mean time, some simpler
approaches can be used to encourage users to reconsider which
platform they run their workloads on.

Also long term, adopting a Kubernetes-like environment
with virtual machines and containers, deploying different
workloads may be easier at a performance and complexity
cost. Versioning these artifacts makes reproducibility and repli-
cability of computational science easier as a side effect and
worth considering for simply that reason. Further discussion
about this topic is beyond the scope of this paper.

B. Short Term

Short term approaches focus on the encouragement via
measurement and reward approaches. Below are a selection
of ideas to explore in this space.

First, judicially use time-based priority based on job size
and resource requirement. For tiny jobs, impose something
like a 1 year age penalty for scheduling priority. For large
jobs, give a bonus. Then the scheduler can automatically adjust
which jobs get run. While this seems simplistic, it can offer a
basic metric to shift the workload balance. Gaming the system
by allocating more resources than needed is likely prompting
other approaches in combination (see below).

Second, adjust allocations and priority based on how the
compute resources are used. For example, if nodes have GPUs,
ensuring that jobs significantly use the GPUs, can improve
effective usage. In this case, monitoring system characteristics,
such as power and heat on different system components, can
yield a better measure of what kind of work a particular job
actually performs. This can offer bonuses or penalties for
future compute use based on the past job characteristics. This
is not a perfect measure since a user could incorporate a GPU
benchmark running in the background while their simple CPU-
only workload runs, the additional effort to incorporate such
cheating is not worth the effort. With policy that could ban
users for such behavior and user support to use alternative
resources, such as cloud systems, the chances are reduced
considerably. For special cases, a user could apply for an
exemption for a special project enabling exceptional cases
while automating a strong policy. In combination with the time
priority, the instances of cheating can be greatly curtailed.

Third, consider offering HPC allocation bonuses based on
cloud usage. If a user makes an effort to run their smaller
jobs on the cloud, rewarding them with additional large run
compute allocations can make achieving their scientific goals
easier and faster. Once the learning curve of using the cloud
is mastered, the user becomes bi-lingual and can deploy
on whatever platform makes the most sense. This is not
an easy goal to achieve, but possible with minimal system

interventions and offering training and user support that is
likely currently supported within the organization.

Overall, any attempt to encourage users to take advantage of
a second platform needs to consider the added complexity for
the user. What benefit (or avoided penalty) is the user gaining
by spending the distraction time to learn how to use a new
platform? Also, these need to consider that the approach may
work too well causing a mass migration to the cloud leaving
an expensive HPC resource underused. While this latter case
is less likely, it is a consideration if the penalties are too harsh.

These are but three approaches under evaluation. Others are
certainly possible and left as future work.

VI. CONCLUSIONS

Throughout the paper, we have presented a series of re-
quirements and challenges with integrating cloud with on site
HPC. A highlight of these requirements and challenges are
presented below.

For requirements, first, in all cases, training will be critical
to help users understand how to use a new computing platform
with different interfaces and software packing requirements.
Second, proper incentives can help encourage users that are
in the best interest of the overall user community. Third,
considering the full cost of moving compute from one platform
to another needs to be considered. Data movement in particular
can incur long delays and significant costs.

For challenges, first, offering strong enough incentives that
users are willing to consider using a very different platform
without them moving all of their use is a delicate balance. Too
little and the on site HPC still is dominated by jobs that could
be offloaded. Too harsh and users will just use the cloud for
everything even though the on site HPC may sit mostly idle.
Second, offering a seamless interface that deploys on either
platform is the ideal goal. However, the numerous challenges
related to application deployment, data movement, and job
submission differences have proven challenging for scientific
computing system interfaces. Significant investment in these
areas is required for a usable system. Third, managing costs on
spot priced clouds makes deploying jobs an activity potentially
fraught with danger for budgets.

This paper presents a discussion of the challenges of hybrid
environments and attempting to use multiple kinds of plat-
forms for a single workload. With broad knowledge of what
traditional HPC workloads and environments look like, what
cloud workloads and environments look like, and what pieces
of each are most important and problematic, we believe we
can take HPC to the Clouds Above!
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