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Introduction

We have been working on the development of high performance numerical solvers for magnetic
confinement fusion. The solvers improve on existing codes by drawing from advanced algorithms
developed by the applied mathematics community, addressing specific needs stressed by the physi-
cists. Conversely, the particular challenges encountered in fusion applications led us to design
solvers with unique features and based on unusual algorithms which triggered interest for further
study and development in the applied mathematics community.

A major portion of our research work has concerned the development of integral equation based
formulations and solvers for the solution of elliptic partial differential equations describing plasma
equilibrium in toroidal configurations. Integral equations have the advantages that they often lead
to a reduction in the dimensionality of the problem, and yield high accuracy for derivatives of the
solution, which are usually as significant physical quantities as the solution itself. However, special
care must be given to the evaluation of the numerical quadratures of integrands which are often
singular in order to have a fast solver with the desired accuracy.

A second part of our work has focused on numerical schemes for kinetic equations, which may
be hyperbolic or parabolic partial differential equations. A central challenge of kinetic equations is
their high dimensionality, requiring efficient representations for the unknowns for computationally
tractable simulations. We will discuss new approaches we considered for such simulations.

This document highlights some of the most important numerical schemes we developed, as well
as some of my most significant physics results, with a stronger focus on the numerical schemes
than the physics results we obtained with these new solvers. The work presented here was done in
collaboration with four post-doctoral researchers and a PhD student in our research group, as well
as colleagues at the Courant Institute and in the magnetic fusion community.

1 Fast, high order solvers for integrated simulations of magneti-
cally confined plasmas

Modern magnetic confinement fusion experiments have shown that in toroidally axisymmetric de-
vices the transport of particles and energy is mostly mediated by plasma turbulence. This type
of transport, often called “anomalous” transport, leads to energy and particle losses above the
acceptable limits for an economically relevant magnetic fusion power plant. One of the grand chal-
lenges of fusion energy science is to understand and control the complex mechanisms responsible
for turbulent transport in magnetic confinement devices in order to minimize anomalous transport.

From a theoretical point of view, this is a challenging task. The transport mechanisms are
highly nonlinear, and one must find ways computationally to treat the interaction between the
vastly separate temporal and spatial scales to properly capture the close coupling between the slow
(∼ 1 s) evolution of large scale (∼ 1 m) variations in density, temperature, and flow profiles, and
the rapid (∼ 1 MHz) fluctuations of small-scale (∼ 10−5 m) plasma turbulence.

A natural way to deal with this difficulty is to exploit the space and time scale separation
between mean and fluctuation dynamics by first solving for the microturbulence on a fine space-
time mesh, and then using the microturbulent fluxes to self-consistently evolve the mean plasma
density, flow, and pressure on a coarser space-time grid. Such an approach has been tested recently,
and promising results were obtained [1, 2]. Even if so, the applicability of these numerical solvers
to understand and predict experimental results remains limited, for several reasons. First, the
multi-scale codes do not yet incorporate all the physical mechanisms occuring at the various spatial
and temporal scales in fusion plasmas. Second, there is a partial lack of self-consistency in the
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sense that the background magnetic field is not allowed to evolve in the simulations, even though
the macroscopic profiles change. Third, the computation of the microturbulent fluxes through the
numerical solution of nonlinear five-dimensional equations remains expensive computationally.

We spent a large part of the award period developing numerical solvers to address the last two
points. In this section, we will present our work on the development of high-performance MHD
equilibrium solvers designed to compute the background magnetic configuration consistent with
the pressure and velocity profiles obtained from the transport codes at each slow-scale time step.
In Section 2, we will discuss numerical methods we designed to accelerate the computation of the
turbulent transport fluxes using continuum schemes.

1.1 High performance equilibrium solvers

The need for high performance equilibrium solvers for integrated transport simulations can be
understood as follows. First, transport in a tokamak core does not only depend on the magnetic
flux function, but also on its derivatives, up to second order. We therefore need a solver able to
compute these second derivatives with high accuracy. Second, plasma profiles are not uniform, and
regions of strong gradients need to be resolved with more accuracy than regions with flatter profiles.
Adaptive refinement is a powerful method in such a case, but unfortunately often leads to numerical
ill-conditioning in finite element (FEM) and finite difference (FD) solvers. Third, the equilibrium
solvers need to have flexibility in order to accommodate all the different reactor cross-sections that
will be studied. They need to work in a robust manner for up-down asymmetric and/or reverse
D shaped tokamaks. Finally, the interplay between plasma rotation and turbulent transport in
axisymmetric devices is known to have crucial consequences on particle and energy confinement [3]
and has triggered much interest in the transport community. There is an ongoing effort to include
the physics terms associated with strong flows in the most advanced microturbulence codes, and
MHD equilibrium solvers that are to be coupled with these codes have to be able to handle flows
in a robust way.

The Grad-Shafranov equation as a nonlinear Poisson problem

The magnetic configuration of static equilibria in axisymmetric devices is determined by solving
the Grad-Shafranov equation for the poloidal magnetic flux function ψ:
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where R measures the major radius, Z the vertical distance from the midplane, p(ψ) is the plasma
pressure profile, and 2πg(ψ) = −Ip(ψ) is the net poloidal current flowing in the plasma and the
toroidal field coils. Ω is the computational domain, and ∂Ω is the boundary of Ω. In general in
magnetic fusion experiments the profile p(ψ) and g(ψ) are such that the right-hand side of the Grad-
Shafranov equation is a nonlinear function of the unknown ψ. This means that the Grad-Shafranov
equation has to be solved iteratively, independently of the choice of the numerical method. Since
iterations are required, we can replace with no additional computational cost the unknown function
ψ with another unknown function U defined by

√
RU(R,Z) = ψ(R,Z). Under this transformation,

the Grad-Shafranov equation can be rewritten as
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U in Ω , U = 0 on ∂Ω (2)

where ∆ := ∂2/∂R2 + ∂2/∂Z2 is the Cartesian Laplacian operator. In other words, the Grad-
Shafranov equation can be seen as a nonlinear Poisson problem, and advanced numerical methods

2



for Poisson’s equation can be advantageously applied in plasma physics. This is the basis for the
three numerical schemes we describe in the next sections.

Achieving accurate calculations of derivatives with any FEM solver

There has recently been preliminary work investigating the self-consistent coupling between existing
FEM based equilibrium solvers and transport codes. Conventional FEM solvers have the disadvan-
tage that once the solution U is computed, derivatives of U are evaluated numerically, and an order
of convergence is lost for each derivative that is evaluated in this way. A typical FEM solver for the
Grad-Shafranov equation with 4th order convergence for U [4] only has second order convergence
for the second derivatives of U . Yet despite this weakness, computational plasma physicists who
have spent time coding the challenging interfaces between the transport codes and these FEM codes
may not be eager to change the equilibrium solver at the heart of their codes. This is the reason
why we developed a new numerical method based on integral equations that allows us, using the
same FEM solver, to calculate all derivatives of U with the same order of convergence as U . The
basic idea is to not calculate the derivatives of U from the output of the FEM solver, but instead
to use the FEM solver to solve a new linear partial differential equation for the derivatives of U .

More specifically, consider the nonlinear Poisson problem

∆U = F (U) in Ω , U = 0 on ∂Ω

which is the general form for Eq. (2), and imagine one has an FEM solver for this problem.
Straightforward differentiation of this equation leads to elliptic equations for the derivatives of U .
For example, for the partial derivative with respect to R, we have

∆UR = F ′(U)UR

With U known, this equation is linear in UR, and easy to solve with the same FEM solver as U .
One might then think that using the same elements as the ones used to compute U , one can achieve
the same order of accuracy for UR as for U . This is obviously not true in general because one needs
a boundary condition for UR on ∂Ω, which requires taking numerical derivatives. This can lead to
significant accuracy loss if one takes derivatives normal to the surface.

However, using an integral equation formulation, we are able to calculate the boundary condi-
tions on the derivatives of U without ever taking derivatives normal to the boundary. The method
relies on considering the conjugate gradient V of U and on using Green’s second identity to derive
an integral equation of the second kind for V on ∂Ω. After solving this integral equation for V with
high-order quadrature rules, we can compute spectrally accurate tangential derivatives of V on the
boundary. Indeed, since V is periodic along the boundary, simple Fourier methods are fast and
spectrally accurate. And since V is the conjugate gradient of U , this is equivalent to computing
normal derivatives of U with spectral accuracy, which is precisely what is needed!

We tested our new method for nonlinear Poisson problems on arbitrary smooth domains, which
we solved with the same cubic Hermite polynomials as in the popular code CHEASE [4]. We
successfully demonstrated that the first and second derivatives could indeed be calculated with the
same order of accuracy as the solution itself, as shown in Figure 1.

The details and results of this work are presented in the following article:

L.F. Ricketson, A.J. Cerfon, M. Racch, and J.P. Freidberg, Accurate Derivative Evaluation for any
Grad-Shafranov Solver, Journal of Computational Physics 305, 744 (2016)
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Figure 1: Error in the first and second derivatives of U as a function of the number N of grid
points, using two different methods: 1) direct differentiation as usually done in FEM formulations
(labeled “old” in the figures), 2) the integral equation formulation we recently developed (labeled
“new” in the figures). Observe the significant improvement in the numerical error obtained with
our new method.

ECOM: a conformal mapping based fast and spectrally accurate solver for toroidal
axisymmetric MHD equilibria

It is our intention to develop in the near future our own code coupling an MHD equilibrium solver
with a turbulent transport solver. Since this will not be done starting from an existing framework
but instead from scratch, we are free to build our own equilibrium solvers for that purpose, with the
idea that they may have improved performance as compared to existing FEM-based solvers, both
in terms of speed and accuracy, at least regarding the first and second derivatives of the solution.
This is precisely what we did, with the results described below.

The first idea we pursued was to use a spectrally accurate conformal mapping scheme based on
the Kerzman-Stein integral equation to map the Poisson equation (2) on the plasma domain Ω to
a Poisson equation on the unit disk. We could then solve the Poisson equation on the unit disk
by combining a Fourier representation in the polar angle θ with a Green’s function solution to the
resulting radial ordinary differential equation for each angle θ. By using a piecewise Chebyshev
grid for the radial variable and a high-order quadrature rule to evaluate the Green’s function
convolutions, we achieve spectral convergence for the solutions, as can be seen in Figure 2. Another
advantage of combining Fourier and integral equation methods is that derivatives of the solution are
not computed by differentiating the solution numerically, and instead evaluated from closed form
expressions that can be analytically derived in the integral formulation. As a result, we obtain the
same order of convergence for the solution of the Poisson problem as for its derivatives, as can also
be seen in Figure 2.

When we compare the performance of our equilibrium solver based on conformal mapping,
called ECOM, with the popular finite element solver CHEASE [4], we find that ECOM is much
faster than CHEASE for the same number of grid points. This is due to a run-time complexity that
is more favorable in ECOM than in CHEASE: unlike CHEASE, ECOM is in the category of fast
solvers, with a run time complexity O(N logN), where N is the number of discretization points.
However, because of the crowding effect that is inherent to the conformal mapping technique, the
angular grid resulting from the inverse map of the equispaced θ grid on the unit disk typically
underresolves certain regions of Ω and requires us to use more grid points than CHEASE to achieve
a certain level of accuracy. Despite this limitation, we find that for fusion relevant domains Ω and
medium to large grids, ECOM is significantly more accurate than CHEASE for a given run time [5].
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Figure 2: Maximum error between the numerical solution and the known solution for a Solov’ev
MHD equilibrium [6]. Observe the geometric convergence for all the physical quantities.

For quantities that depend on the second derivatives of the solution to the equilibrium equation,
this is even true for any grid size.

The interplay between plasma rotation and turbulent transport in axisymmetric devices is
known to have important consequences on particle and energy confinement [3]. When the macro-
scopic flows in the plasma are purely in the toroidal direction, the MHD equilibrium is described
by a close variant of Eq.(1). We have included an option in ECOM that allows it to compute
numerical equilibria with arbitrary toroidal flow.

The details of this work are described in two published articles:

• A.Pataki, A.J. Cerfon, J.P. Freidberg, L.Greengard, M. O’Neil, A fast, high-order solver for
the Grad-Shafranov equation, Journal of Computational Physics 243, 28 (2013) – Supported
by other DOE award

• J.P. Lee and A.J. Cerfon, ECOM: a fast and accurate solver for toroidal axisymmetric MHD
equilibria, Computer Physics Communications 190, 72 (2015) – Supported by other DOE
award

ECOM has recently been used as the equilibrium solver for MHD stability and transport studies
in tokamaks. Specifically, it was used to determine the maximum elongation of the plasma cross
section that could be stably controlled by feedback systems, following a theoretical framework we
developed with J.P. Freidberg (MIT) under this award. Thanks to the speed of ECOM and of
our framework, we were able to conduct multiple scans leading to analytic scaling relations for
the maximum elongation as a function of the key dimensionless parameters in the problem. These
stability studies are presented in:

• J.P. Freidberg, A.J. Cerfon, and J.P. Lee, Tokamak elongation: how much is too much? Part
1. Theory, Journal of Plasma Physics 81, 515810607 (2015)
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• J.P. Lee, A.J. Cerfon, J.P. Freidberg, and M. Greenwald , Tokamak elongation: how much is
too much? Part 2. Numerical Results, Journal of Plasma Physics 81, 515810608 (2015)

• J.P. Lee, J.P. Freidberg, A.J. Cerfon, and M. Greenwald, An analytic scaling relation for the
maximum tokamak elongation against n=0 MHD resistive wall modes, Nuclear Fusion 57,
066051 (2017)

ECOM was also used by turbulence specialists to determine how the shape of the plasma
boundary influences the equilibrium magnetic configuration, which in turn influences the nature of
the plasma turbulence, and the corresponding transport of momentum. Details of this work, also
partially supported by this award, can be found in:

J. Ball, F.I. Parra, J.P. Lee, and A.J. Cerfon, Effect of the Shafranov shift and the gradient of β on
intrinsic momentum transport in up-down asymmetric tokamaks, Plasma Physics and Controlled
Fusion 58, 125015 (2016)

As mentioned previously, we are now working toward integrating ECOM within a whole device,
multi-scale modeling framework for use in optimization and transport studies.

An adaptive fast multipole accelerated Poisson solver for complex geometries

While satisfactory in a wide range of situations, ECOM has weaknesses. Its main disadvantage is
that the mesh is not adaptive in the angle variable θ and that the crowding effect for the angular
discretization due to the conformal mapping limits the accuracy and speed of the solver as the
region Ω becomes too distorted or elongated. While this problem is not significant when simulating
existing high aspect ratio tokamak experiments or ITER, it leads to suboptimal performance for low
aspect ratio devices or theoretical studies of innovative devices with unusually distorded domains Ω
that may have improved transport and/or stability properties [7]. More importantly, the conformal
mapping technique is ill-suited numerically for domains that have a corner, a situation that is
quite common in magnetic confinement fusion devices and which corresponds to a separatrix of the
magnetic field, also known as a magnetic X-point.

To address these challenges, we developed another solver, based on a different integral equation
formulation. Consider a given source function f on the domain Ω and the generic Poisson problem

∆U = f in Ω , U = 0 on ∂Ω (3)

We solve Eq.(3) as follows. We decompose the solution into a particular solution Up that solves
the differential equation but not for the desired boundary condition, and a homogeneous solution
Uh that solves Laplace’s equation for the corrected boundary conditions:

U = Up + Uh

where Up is given by

Up(x) =
1

2π

∫
Ω
f(y)ln(|x− y|)dy (4)

and Uh solves

∆Uh = 0 in Ω (5)

Uh = −Up
∣∣
∂Ω

on ∂Ω (6)
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In our solver, we express Uh in terms of the following integral formulation:

Uh =
1

2π

∫
∂Ω
µ(y)ln(|x− y|)dy +

1

2π

∫
∂Ω
µ(y)

∂

∂νy
ln(|x− y|)dy (7)

1

2
µ(x0)− 1

2π

∫
∂Ω
µ(y)ln(|x0 − y|)dy − 1

2π

∫
∂Ω
µ(y)

∂

∂νy
ln(|x0 − y|)dy = −Up(x0) (8)

where ∂νy represents the partial derivative in the direction normal to the boundary. Once again,
the advantage of a formulation based on Eqs. (4), (7), and(8) is that derivatives can be expressed
explicitly by differentiating under the integral signs.

There exists several high performance codes to compute µ in (8). We used generalized Gaussian
quadrature [8, 9] to approximate the integrals and a fast direct solver [10] to compute the density
µ. Uh is then computed from Eq.(7), relying on the Quadrature By Explansion (QBX) scheme [12]
to obtain high accuracy for the singular integrals, which we accelerated with the Fast Multipole
Method [11].

The main challenge in our formulation is to find an efficient method to evaluate the particular
solution in (4) accurately and in optimal time. The Fast Multipole Method is known to be specifi-
cally designed to calculate convolutions of the type given in Eq. (4) accurately and in optimal time,
but the most efficient 2D FMM codes require the knowledge of f on a scaled unit square, and we
are only given f in the plasma domain Ω. One therefore needs a strategy to extend f beyond Ω to
the boundaries of the unit square domain ΩB. A naive extension consists in setting f = 0 in ΩB \Ω.
Such an approach is however not satisfying, for two reasons: 1) it limits the order of convergence
of the solver if f 6= 0 on ∂Ω; 2) high accuracy can only be reached by adaptively discretizing the
neighborhood of the boundary ∂Ω with a large number of leaf boxes, which is computationally
costly and inefficient (See figure 4).

We proposed a new strategy to tackle this problem: we construct a global C0 extension fe of f
outside of the domain Ω by solving the following harmonic problem in the exterior of Ω:

∆w = 0 in R2 \ Ω (9)

w = f on ∂Ω (10)

The function fe defined by

fe(x) = f(x) for x ∈ Ω

fe(x) = w(x) for x ∈ ΩB \ Ω

is globally continuous, as smooth as f on Ω, and smooth on ΩB \ Ω. We thus use fe in place of f
in Eq.(4). While this may at first seem like a computationally expensive way to extrapolate f , the
analytical and numerical tools required to solve this problem are in fact the same as those required
to solve the harmonic problem (7)–(8), which we described above, and therefore have the same
run-time complexity [11].

The numerical scheme we propose here for the Poisson problem (3) may be classified as an
embedded boundary method. This approach is desirable for a “black box” Poisson solver, i.e. a
Poisson solver designed to be flexible and robust when used by external users in a variety of
applications (such as plasma physics, our main motivation): it guarantees domain flexibility and
ease of use, in the sense that all the user has to provide to obtain an accurate answer is a parametric
description of the boundary and a method for evaluating f accurately in the domain. As always
with an embedded boundary approach, the ease of use has a cost in terms of convergence order.
However, adaptive refinement improves the accuracy we achieve per degree of freedom, particularly
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Figure 3: Extended density fe using extension by zero (left) and continuous extension (right)
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Figure 4: Quad trees used for the FMM accelerated evaluation of the volume potential Up for the
source function fe shown in Figure 3. The computational domain Ω is the region between the two
blue curves. For the example on the left, we extended f by 0 outside of Ω, while for the example on
the right, we extended f using our new scheme for continuous extension. Observe the dramatically
smaller number of boxes required to discretize the edge of Ω, leading to a much faster and efficient
evaluation of Up for a desired accuracy.

for the gradient. And since we rely on the FMM for the evaluation of (4), the amount of work
still scales linearly with the number of degrees of freedom in the computational domain and is
competitive with classical FFT-based solvers in terms of work per grid point, despite the flexibility
of adaptive mesh refinement. The numerical tests we ran for irregular domains Ω which are multiply
connected (see Figures 3 and 4) numerically confirmed the flexibility, accuracy, and efficiency of
our scheme [11].

The details of this work can be found in the following published article:

T. Askham and A.J. Cerfon, An adaptive fast multipole accelerated Poisson solver for complex
geometries, Journal of Computational Physics 344, 1 (2017)

Adaptive Hybridizable Discontinuous Galerkin discretization of the Grad-Shafranov
equation

There are strong mathematical reasons suggesting that integral equation formulations indeed lead
to the most robust and efficient codes for magnetic equilibrium calculations in fusion devices.
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However, this field of numerical mathematics is not as mature as other fields, and certain situations
can therefore not yet be easily treated with integral equations. This is in particular the case when
the plasma boundary has an X-point, corresponding to a divertor.

In order to have an efficient and robust solver for these cases, and waiting for readily available
approaches with integral equations, we proposed a scheme based on the hybridizable discontinuous
Galerkin (HDG) method. Our approach has the originality of sidestepping the usual need for
geometry-conforming triangulations, thanks to a transfer technique that allows to approximate the
solution using only a polygonal subset as computational domain. Moreover, the solver features
automatic mesh refinement driven by a residual-based a posteriori error estimator. As the mesh is
locally refined, the computational domain is automatically updated in order to always maintain the
distance between the actual boundary and the computational boundary of the order of the local
mesh diameter. We demonstrated extensive numerical evidence of the suitability and efficiency of
our method for physically relevant equilibria with pressure pedestals, internal transport barriers,
and current holes on realistic geometries. An example with a current hole is shown in Figure 5,
where the adaptive refinement in the vicinity of the plasma edge is clearly visible.

Figure 5: Source term for an equilibrium with a current hole (first and top-second panels). This
gives rise to mesa-like magnetic flux function (second- bottom and third panels). The refinement
is automatically driven towards the boundary (fourth panel). The solution is updown symmetric
and only cross sections for the upper half are plotted.

The details of this work can be found in:

T. Sanchez-Vizuet, M.E. Solano, and A.J. Cerfon, Adaptive Hybridizable Discontinuous Galerkin
discretization of the Grad-Shafranov equation by extension from polygonal subdomains, Computer
Physics Communications 255, 107239 (2020)

1.2 Fast integral equation based Beltrami solvers for the computation of three-
dimensional MHD equilibria

The differential equations for the trajectory of magnetic field lines in any toroidal geometry can
be written in the form of canonical equations for a one-and-a-half-degree-of-freedom Hamiltonian,
where the toroidal angle ζ plays the role of time [14]. In devices with toroidal axisymmetry, any
equilibrium quantity is independent of ζ, and so is the Hamiltonian. This makes the Hamilto-
nian system integrable, and guarantees the existence, throughout the plasma, of nested toroidal
surfaces corresponding to contours of constant magnetic flux. These contours are given by the
Grad-Shafranov equation (1), which was the focus of section 1.1. In contrast, if toroidal axisym-
metry is lost, the Poincaré map of magnetic field lines, computed for example by recording the
location of magnetic field lines as they cross the plane ζ = 0, may show chaotic regions and reso-
nant island chains along with regular trajectories [14, 15]. This makes the design of robust MHD
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solvers for general three-dimensional equilibria remarkably difficult, and complicates the analysis
of experimental equilibria.

A recent, promising approach to capture many of the intricacies of plasma equilibria in three-
dimensional devices is to subdivide the plasma into separate regions assumed to have undergone
Taylor relaxation [16] to a minimum energy state subject to conserved fluxes and magnetic helicity,
and separated by ideal MHD barriers [17, 18, 19]. The numerical code based on this formulation,
called SPEC [20], is able to reproduce several of the key features of three dimensional equilibria,
and has given very promising results thus far.

As a result of Taylor relaxation, the magnetic field in SPEC is force-free in each region Ω and
satisfies

∇×B = λB in Ω , B · n = 0 on ∂Ω (11)

where λ is a constant in each region, and n is the outward unit normal vector to the boundary
∂Ω. For uniqueness of the solution, Eq.(11) has to be supplemented with flux conditions: one flux
condition if the genus of Ω is one, two flux conditions if the genus of Ω is two. Fields satisfying
Eq.(11) are often called linear Beltrami fields. We have developed a new solver for linear Beltrami
fields in toroidal geometries, with the magnetic fluxes given as constraints and λ specified as an
input. The solver relies on an integral formulation for the force-free fields that is based on the
generalized Debye source representation for electromagnetic fields [21].

In order to understand the link between the generalized Debye source representation and
Eq.(11), observe that if a magnetic field B satisfies (11), then the pair {E,H} defined by

E := iB , H := B

satisfies the time-harmonic Maxwell’s equations in vacuum, with λ playing the role of the wave
number k. Furthermore, the boundary condition B·n = 0 translates to the two boundary conditions
E · n = 0 and H · n = 0 on ∂Ω. In other words, we can apply the generalized Debye source
representation originally developed for electromagnetic scattering from perfect conductors for the
computation of linear Beltrami fields. Specifically, we represent B as

B = iλQ−∇v + i∇×Q (12)

where Q and v are generalized Debye potentials [21], which themselves can be expressed as layer
potentials m and σ along ∂Ω:

Q(x) =

∫
∂Ω

eiλ|x−x
′|

4π|x− x′|
m(x′)dA′ v(x) =

∫
∂Ω

eiλ|x−x
′|

4π|x− x′|
σ(x′)dA′

This representation leads to a well-conditioned (away from physical resonances) second-kind integral
equation for σ which can be numerically inverted to high-precision [22]. Once σ is known, m, and
thus Q and v can be computed by direct numerical evaluation.

This formulation has the following advantages:

• The solver has low memory requirements, since the unknowns in the integral equation are
defined on the boundary of the domain only

• Since the interior of the domain does not need to be discretized, high accuracy is reached
with a modest number of unknowns, even with highly distorted or low aspect ratio, highly
elongated domains (see domain considered in Figure 6)
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• In the context of SPEC, in which the locations of the ideal interfaces of each force-free region
are iteratively updated until force balance is satisfied at each boundary, our formulation gives
the possibility to apply the entire iterative procedure by discretizing the ideal interfaces only,
and the converged global magnetic field would only be evaluated in the entire domain at the
very end, once global force balance has been reached

We have tested our solver for toroidally axisymmetric boundaries ∂Ω, comparing the numerical
results with exact equilibria computed for complex geometries (see Figure 6) [23]. We numerically
demonstrated that one obtains high accuracy with a modest number of unknowns and small run
time.

(a) Br (b) Bθ (c) Bz

Figure 6: Components of the Beltrami field B in cylindrical coordinates, for a toroidal shell with
very low aspect ratio.

The following two articles discuss this work in more detail:

• A.J. Cerfon and M. O’Neil, Exact axisymmetric Taylor states for shaped plasmas, Physics of
Plasmas 21, 064501 (2014) – Supported by other DOE award

• M. O’Neil and A.J. Cerfon, An integral equation-based numerical solver for Taylor states in
toroidal geometries, Journal of Computational Physics 359, 263 (2018)

After testing our solver in axisymmetric domains, we extended it in order to solve equilibria with
nonaxisymmetric boundaries. This enabled us to incorporate our code in the SPEC framework.

Our results initially showed much improved performance as compared to the SPEC solver, in
terms of accuracy and robustness. These results motivated the SPEC developer to further optimize
their solver, which now is faster than our solver. We plan to continue the development of our codes
in parallel, to provide the community with two competitive solvers, which each have advantages
and disadvantages. An example Beltrami magnetic field computed with our approach in a general
non-axisymmetric domain can be found in Figure 7. Further details can be found in:

D. Malhotra, A.J. Cerfon, L.-M. Imbert-Gérard, and M. O’Neil, Taylor States in Stellarators: A
Fast High-order Boundary Integral Solver, Journal of Computational Physics 397, 108791 (2019)
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Figure 7: An example of a Taylor state computed in a toroidal-shell domain. Using our boundary
integral method, we only need to discretize the domain boundary. This reduces the dimensionality
of the of unknowns needed, and leads to significant savings in computational work. Once the
boundary integral equations is solved, the magnetic field B can be evaluated at off-surface points
very efficiently. On the right, we show the magnitude of B in different cross-sections of the domain
as well as Poincar plots of the field in each cross section, generated by tracing the field lines.

By-product: Efficient high-order singular quadrature schemes in magnetic fusion

Our integral formulation for the computation of Beltrami fields requires the numerical evaluation
of integrals with singular kernels. It turns out that such integrals occur in several other fusion
applications, such as the Virtual Casing Principle [24, 25]. The quadrature scheme we implemented
in our Beltrami solver for these integrals is significantly more accurate than quadrature schemes
proposed by the fusion community for these other applications, which we demonstrated in the
following article:

D. Malhotra, A.J. Cerfon, M. O’Neil, and E. Toler, Efficient high-order singular quadrature schemes
in magnetic fusion, Plasma Physics and Controlled Fusion 62, 024004 (2020) (Special Issue on 3D
MHD Equilibria: Flux Surfaces, Islands and Chaotic Fields)

Our quadrature scheme is currently implemented for all these applications in the new stellarator
optimization code Simsopt.

2 Discretization scheme for the speed variable in kinetic solvers

Solving the kinetic equations describing plasma microturbulence numerically is computationally
intensive, so an important aspect of the theoretical effort in this field is to find new optimized dis-
cretization schemes. While high order accurate discretization schemes for the spatial variables have
been successfully used for many years, finding an ideal discretization method remains challenging
for the discretization of velocity space in situations involving Fokker-Planck collisions [26]. Since
the Fokker-Planck collision operator has terms involving first and second order derivatives with re-
spect to the velocity variables, the discretization method must allow accurate differentiation. The
scheme must also allow accurate integration since physical quantities such as the number density,
the mean fluid velocity and the pressure depend on velocity moments of the distribution function.

Recently, promising new approaches based on spectral and pseudo-spectral representations have
been investigated [27] and [28]. It was shown in [27] that a Hermite representation for the parallel
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velocity has advantages over the more common finite difference schemes used in numerical simula-
tions. In [28], different representations for the speed coordinate are explored for some important
steady-state equations in plasma physics. It is found that because the variable has values in [0,∞)
instead of the entire real axis, a little-known family of non-classical polynomials called Maxwell
polynomials [29, 30, 31] which are orthogonal with respect to the weight function x2e−x

2
on the

half-line gives much better performance than finite difference schemes and schemes based on classi-
cal orthogonal polynomials. High accuracy is obtained on very coarse grids for both differentiation
and integration of Maxwell-Boltzmann like functions, which are the functions of interest in many
applications of interest in plasma physics [28].

We decided to look at the suitability of Maxwell polynomials for initial-value calculations of
turbulent transport in the presence of collisions. To do so, we considered a model one-dimensional
problem describing energy diffusion due to FokkerPlanck collisions given by

∂f

∂t
=

1

v2

∂

∂v

[
Ψ(v)v2e−v

2 ∂

∂v

(
ev

2
f
)]

, v > 0, t > 0 (13)

with

Ψ(v) =
1

2v3

[
erf(v)− 2√

π
ve−v

2

]
, erf(v) =

2√
π

∫ v

0
e−u

2
du

We chose this model problem because the right-hand side of Eq.(13) is the speed variable piece of
the energy diffusion operator in the Landau-Fokker-Planck operator for same-species collisions [32].
It it therefore directly relevant to plasma microturbulence simulations.

Our work on Eq.(13) was split in two parts. First, we constructed an exact solution to Eq.(13)
in order to be able to assess the absolute accuracy of the numerical discretization schemes we will
propose to solve that equation. Analytic solutions to Eq.(13) for physically relevant initial con-
ditions are not known. We thus developed a highly accurate but expensive method to compute
solutions to this equation and serve as a reference point for less accurate but faster numerical
schemes. The method is based on representing the solution as a discrete and continuous superposi-
tion of normalizable and nonnormalizable eigenfunctions via the spectral transform of the singular
Sturm–Liouville operator associated with Eq.(13). The spectral density function of the operator is
computed with a new algorithm that uses Chebyshev polynomials to extrapolate the value of the
Titchmarsh–Weyl m-function from the complex upper half-plane to the real axis.

More details of this work can be found in:

J. Wilkening and A.J. Cerfon, A Spectral Transform Method for Singular Sturm–Liouville
Problems with Applications to Energy Diffusion in Plasma Physics, SIAM Journal of Applied
Mathematics 75, 350 (2015) – Supported by other DOE award

In the second step, we solved Eq.(13) through direct numerical discretization of the equation. We
considered two approaches. The first approach aimed at better understanding the approximation
properties of Maxwell polynomials for time-dependent problems, and relied on a Galerkin spectral
representation for the variable v. We integrated the resulting ordinary differential equations exactly
in time in order to focus on spatial discretization. We demonstrated that much higher accuracy is
obtained with Maxwell polynomials than with Hermite polynomials or the finite difference scheme
currently used in the popular plasma microturbulence code GS2 [33] and AstroGK [34], even for
very coarse grids, and provided mathematical explanations for this behavior.

Since spectral approaches and exact time integration can be challenging to implement in the
frameworks currently used for the simulation of the nonlinear five-dimensional equations describing
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Figure 8: Convergence plots in the L∞ norm for the solution of Equation (13) with explicit time
stepping and initial condition fi(x, 0) = x2e−x

2
. We observe that Maxwell polynomials lead to

much higher accuracy than all other schemes considered, and high accuracy even for small numbers
of grid points.

turbulence in plasmas, we also considered a second approach which is usually preferred in these
frameworks, namely a velocity discretization scheme based on a pseudo-spectral collocation, and
advancing the solution in time with standard time stepping schemes. Doing so, we confirmed that
Maxwell polynomials lead to better performance than all other discretization schemes traditionally
considered, as shown in Figure 8. We also highlighted two numerical instabilities – an exponential
instability and a nonmodal instability – which constrain the form of the pseudospectral differentia-
tion operators which should be used for satisfying performance, and proposed a formulation which
is not subject to these instabilities.

This work is summarized in the following articles:

• J. Wilkening, A.J. Cerfon and M. Landreman, Accurate spectral numerical schemes for kinetic
equations with energy diffusion, Journal of Computational Physics 294, 58 (2015)

• T. Sanchez-Vizuet and A.J. Cerfon, Pseudo-spectral collocation with Maxwell polynomials for
kinetic equations with energy diffusion, submitted to Plasma Physics and Controlled Fusion,
preprint: arXiv:1708.09031

3 Reduced model for the study of the drift wave - zonal flow
paradigm, and of the Dimits shift

The high level of energy transport towards the edge observed in magnetic fusion experiments is
responsible for the unsatisfying power balance and insufficient gain factors measured in current
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fusion devices. As explained in the introduction, it has been found experimentally and confirmed
computationally that the strong transport is due to complex turbulent processes driven by plasma
microinstabilities. A quantitatively accurate description of turbulence driven transport requires
extremely expensive kinetic simulations, with simulation times measured in weeks when they are
run on the largest supercomputers. The high computational cost of the kinetic simulations makes it
challenging to conduct parametric studies, to quantify uncertainty and sensitivities, and to investi-
gate innovative methods to improve the energy confinement time in magnetically confined plasmas.
In that context, reduced fluid models can play a major role, as effective tools to qualitatively un-
derstand the fundamental nonlinear processes regulating the turbulence, determine the dependence
of energy transport on the key experimental parameters, and identify strategies to reduce the level
of transport. In particular Hasegawa-Mima [37] and Hasegawa-Wakatani [38, 39] models have been
two very popular simple models to study the interplay between drift wave driven turbulence and
zonal flows. Nevertheless, these models remain far from accurately matching the nonlinear pro-
cesses seen in actual fusion experiments and in expensive simulations based on first principles. We
proposed a new reduced fluid model, in the same family as the Hasegawa-Wakatani models [38, 39],
which has a better match with experiments, in the sense that it better reproduces the nonlinear
upshift away from the linear stability threshold for the onset of significant turbulence driven trans-
port. This upshift is known as the Dimits shift [40], and is thought to play a major role in tokamak
transport. Figure 9 shows the difference between the critical linear stability gradient and the onset
of significant turbulence driven transport in our balanced Hasegawa-Wakatani (BHW) model.

Figure 9: Total radial particle flux Γ in the BHW model as a function of the background density
gradient κ for two different values of the collisional diffusion parameter µ. The value of the critical
linear stability κ is called κcr and shown for each curve. Our BHW model has a clear nonlinear
upshift of the density gradient corresponding to strong turbulence driven transport, similar to the
Dimits shift.

Our model is also capable of reproducing several key features of zonal flows observed in more
complete models, as well as the existence of solitary propagating structures. A typical time evolution
of the zonally averaged mean flow in our model is shown in Figure 10, where we see sparse bursts
also observed in more complex models. All these results are presented in the following series of
articles:

• D. Qi, A. J. Majda, and A. J. Cerfon, Dimits shift, avalanche-like bursts, and solitary prop-
agating structures in the two-field flux-balanced HasegawaWakatani model for plasma edge
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turbulence, Physics of Plasmas 27, 102304 (2020) – Selected as Featured article by Physics
of Plasmas

• D. Qi, A.J. Majda and A.J. Cerfon, A Flux-Balanced Fluid Model for Collisional Plasma
Edge Turbulence: Numerical Simulations with Different Aspect Ratios, Physics of Plasmas
26, 082303 108791 (2019)

• A.J. Majda, D. Qi and A.J. Cerfon, A flux-balanced fluid model for collisional plasma edge
turbulence: model derivation and basic physical features, Physics of Plasmas 25,102307
(2018)

Figure 10: Time evolution of the zonal mean velocity in the BHW model. Relatively infrequent
bursts are observed.

4 Elimination of MHD current sheets by modifications to the
plasma wall in a fixed boundary model

Models of magnetohydrodynamic (MHD) equilibria that for computational convenience assume the
existence of a system of nested magnetic flux surfaces tend to exhibit singular current sheets for
non-axisymmetric equilibria. These sheets are located on resonant flux surfaces that are associ-
ated with rational values of the rotational transform. We studied the possibility of eliminating
these singularities by suitable modifications of the plasma boundary, which we prescribed in a fixed
boundary setting. We found that relatively straightforward iterative procedures can be used to
eliminate weak current sheets that are generated at resonant flux surfaces by the nonlinear inter-
actions of resonating wall harmonics. These types of procedures may prove useful in the design of
fusion devices with configurations that enjoy improved stability and transport properties.

More details can be found in:

E. Kim, G.B. McFadden, and A.J. Cerfon, Elimination of MHD current sheets by modifications
to the plasma wall in a fixed boundary model, Plasma Physics and Controlled Fusion 62, 044002
(2020) (Special Issue on 3D MHD Equilibria: Flux Surfaces, Islands and Chaotic Fields)

5 Reactor studies to compare pulsed and steady-state tokamaks

We have carried out a detailed analysis that compares steady state versus pulsed tokamak reactors.
The motivations are as follows. Steady state current drive has turned out to be more difficult than
expected it takes too many watts to drive an ampere, which has a negative effect on power balance
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and economics. This is partially compensated by the recent development of high temperature
REBCO superconductors, which offers the promise of more compact, lower cost tokamak reactors,
both steady state and pulsed. Of renewed interest is the reduction in size of pulsed reactors because
of the possibility of higher field Ohmic transformers for a given required pulse length. Our main
conclusion is that pulsed reactors may indeed be competitive with steady state reactors and this
issue should be re-examined with more detailed engineering level studies.

The details of this work can be found in:

D.J. Segal, A.J. Cerfon, and J.P. Freidberg, Steady state versus pulsed tokamak reactors, Nuclear
Fusion 61 045001 (2021)
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[12] A. Klöckner, A. Barnett, L. Greengard, and M. O’Neil, “Quadrature by expansion: a new
method for the evaluation of layer potentials”, Journal of Computational Physics 252, 332
(2013)

[13] F. Ethridge and L. Greengard, “A New Fast-Multipole Accelerated Poisson Solver in Two
Dimensions”, SIAM Journal on Scientific Computing 23, 741 (2001)

18



[14] A.H. Boozer, “Physics of magnetically confined plasmas”, Reviews of Modern Physics 76, 1071
(2004)

[15] S.R. Hudson and N. Nakajima, “Pressure, chaotic magnetic fields, and magnetohydrodynamics
equilibria”, Physics of Plasmas 17, 052511 (2010)

[16] J.B. Taylor, “Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields”,
Physical Review Letters, 33, 1139

[17] M. Hole, S. Hudson, and R. Dewar, “Equilibria and stability in partially relaxed plasmavacuum
systems”, Nuclear Fusion 47, 746 (2007)

[18] M.J. Hole, S. R. Hudson, and R. L. Dewar, “Stepped pressure profile equilibria in cylindrical
plasmas via partial taylor relaxation”, Journal of Plasma Physics 72, 1167 (2006)

[19] S.R. Hudson, M.J. Hole, and R.L. Dewar, “Eigenvalue problems for beltrami fields arising in
a three-dimensional toroidal magnetohydrodynamic equilibrium problem”, Physics of Plasmas
14, 052505 (2007).

[20] S.R. Hudson, R.L. Dewar, G. Dennis, M.J. Hole, M. McGann, G. von Nessi, and S. Lazerson,
“Computation of multi-region relaxed magnetohydrodynamic equilibria”, Physics of Plasmas
19, 112502 (2012)

[21] C.L. Epstein, L. Greengard and M. O’Neil, “Debye Sources, Beltrami Fields, and a Complex
Structure on Maxwell Fields”, Communications in Pure and Applied Mathematics 68, 2237
(2016)

[22] M. O’Neil and A.J. Cerfon, “An integral equation-based numerical solver for Taylor states in
toroidal geometries”, Journal of Computational Physics 359, 263 (2018)

[23] A.J. Cerfon and M. O’Neil, “Exact axisymmetric Taylor states for shaped plasmas”, Physics
of Plasmas 21, 064501 (2014)

[24] V. Shafranov and L. Zakharov, “Use of the virtual-casing principle in calculating the containing
magnetic field in toroidal plasma systems”, Nuclear Fusion 12 599 (1972)

[25] J.D. Hanson, “The virtual-casing principle and Helmholtz’s theorem”, Plasma Physics and
Controlled Fusion 57 115006 (2015)

[26] P. Helander, D. Sigmar, Collisional Transport in Magnetized Plasmas, Cambridge University
Press, Cambridge (2002)

[27] V. Bratanov, F. Jenko, D. Hatch, S. Brunner, “Aspects of linear Landau damping in discretized
systems”, Physics of Plasmas, 20 022108 (2013)

[28] M. Landreman, D. Ernst, “New velocity-space discretization for continuum kinetic calculations
and Fokker-Planck collisions”, Journal of Computational Physics, 243, 130 (2013)

[29] B. Shizgal, “A Gaussian quadrature procedure for use in the solution of the Boltzmann equation
and related problems” Journal of Computational Physics 41, 309 (1981)

[30] J.S. Ball, “Half-range generalized Hermite polynomials and the related Gaussian quadratures”,
SIAM Journal on Numerical Analysis 40, 2311 (2003)

19



[31] G.P. Ghiroldi, L. Gibelli, “A direct method for the Boltzmann equation based on a pseudo-
spectral velocity space discretization” Journal of Computational Physics 258, 568 (2014)

[32] I. Abel, M. Barnes, S. Cowley, W. Dorland, A. Schekochihin, “Linearized model FokkerPlanck
collision operators for gyrokinetic simulations. I. Theory”, Physics of Plasmas 15, 122509 (2008)

[33] M. Kotschenreuther, G. Rewoldt, W.M. Tang, “Comparison of initial value and eigenvalue
codes for kinetic toroidal plasma instabilities”, Computer Physics Communications 88, 128
(1995)

[34] R. Numata, G.G. Howes, T. Tatsuno, M. Barnes, and W. Dorland, AstroGK: Astrophysical
gyrokinetics code, Journal of Computational Physics 229 9347 9372 (2010)

[35] Y. Chen and S.E. Parker, Electromagnetic gyrokinetic δf particle-in-cell turbulence simulation
with realistic equilibrium profiles and geometry, Journal of Computational Physics 220, 839
(2007)

[36] B.J. Sturdevant, Y. Chen, and S. E. Parker, Low frequency fully kinetic simulation of the
toroidal ion temperature gradient instability, Physics of Plasmas 24, 081207 (2017)

[37] A. Hasegawa and K. Mima, “Pseudo-three-dimensional turbulence in magnetized nonuniform
plasma”, Physics of Fluids 21, 87 (1978)

[38] A. Hasegawa and M. Wakatani, “Plasma edge turbulence”, Physical Review Letters 50, 682
(1983)

[39] R. Numata, R. Ball, and R. L. Dewar, Bifurcation in electrostatic resistive drift wave turbu-
lence, Physics of Plasmas 14, 102312 (2007)

[40] A. M. Dimits, G. Bateman, M. Beer, B. Cohen, W. Dorland, G. Hammett, C. Kim, J. Kinsey,
M. Kotschenreuther, A. Kritz et al., “Comparisons and physics basis of tokamak transport
models and turbulence simulations”, Physics of Plasmas 7, 969 (2000)

20


