

Submission to *Ecosystems* (Revised manuscript)

Article type: Research Article

Title: Whole-ecosystem warming increases plant-available nitrogen and phosphorus in an ombrotrophic bog

Running title: Warming increases bog nutrient availability

List of Authors:

Colleen M. Iversen^{1,2*} | John Latimer³ | Deanne J. Brice^{1,2} | Joanne Childs^{1,2} | Holly M. Vander Stel⁴ | Camille E. Defrenne⁵ | Jake Graham⁶ | Natalie A. Griffiths^{1,2} | Avni Malhotra⁷ | Richard J. Norby⁸ | Keith C. Oleheiser^{1,2} | Jana R. Phillips^{1,2} | Verity G. Salmon^{1,2} | Stephen D. Sebestyen⁹ | Xiaojuan Yang^{1,2} | Paul J. Hanson^{1,2}

Institutional affiliations:

¹Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA;

²Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA;

³XCEL Engineering, Oak Ridge, TN, USA;

⁴Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA;

⁵College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA;

⁶School of Civil & Environmental Engineering, Boise State University, Boise, Idaho, USA;

⁷Department of Geography, University of Zurich, Switzerland;

⁸University of Tennessee, Knoxville, TN, USA;

⁹Northern Research Station, USDA Forest Service, Grand Rapids, MN, USA

Contact Information:

Colleen M. Iversen, Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States

Email: iversencm@ornl.gov

Telephone: [\(865\) 332 – 8816](tel:(865)332-8816)

DR. COLLEEN M. IVERSEN (Orcid ID: 0000-0001-8293-3450)

JOHN LATIMER (No Orcid ID)

DEANNE J. BRICE (No Orcid ID)

JOANNE CHILDS (Orcid ID: 0000-0002-2002-7337)

HOLLY M. VANDER STEL (Orcid ID: 0000-0003-0077-3858)

DR. CAMILLE E. DEFRENNE (Orcid ID: 0000-0003-2767-4892)

DR. JAKE GRAHAM (No Orcid ID)

DR. NATALIE A. GRIFFITHS (Orcid ID: 0000-0003-0068-7714)

DR. AVNI MALHOTRA (Orcid ID: 0000-0002-7850-6402)

DR. RICHARD J. NORBY (Orcid ID: 0000-0002-0238-9828)

KEITH C. OLEHIESER (Orcid ID: 0000-0002-0875-2720)

JANA R. PHILLIPS (Orcid ID: 0000-0001-9319-2336)

DR. VERITY G. SALMON (Orcid ID: 0000-0002-2188-551X)

DR. STEPHEN D. SEBESTYEN (Orcid ID: 0000-0002-6315-0108)

DR. XIAOJUAN YANG (Orcid ID: 0000-0002-2686-745X)

DR. PAUL J. HANSON (Orcid ID: 0000-0001-7293-3561)

1 **Funding information**

2 United States Department of Energy, Office of Science, Biological and Environmental Research
3 program

4 *This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-
5 00OR22725 with the US Department of Energy (DOE). The publisher acknowledges the US
6 government license to provide public access under the DOE Public Access Plan
7 (<http://energy.gov/downloads/doe-public-access-plan>).*

8

9 **Author contributions**

10 CMI designed and implemented the ion-exchange resin study, analyzed the data, and wrote the
11 manuscript; JL collected, cleaned, and replaced ion-exchange resins from SPRUCE experimental
12 enclosures; DB, JC, JP, and HVS extracted analyzed ion-exchange resin capsules and/or
13 analyzed extracts for NH₄-N, NO₃-N, and PO₄-P; NAG, SDS, and KCO designed and
14 implemented the porewater study, and KCO collected porewater and analyzed for nutrient
15 concentrations; AM and JG collected information on resin elevation and depth to water table
16 level; RJD and JC collected data on *Sphagnum* N and P requirement; VGS and CED assisted
17 with the statistical framework and contextualization of available nutrients with plant-nutrient
18 dynamics; XY ran the ELM-SPRUCE model to assess nutrient dynamics; PJH oversees and
19 implements the SPRUCE experimental treatments, as well as the environmental data, above- and
20 belowground. All co-authors read and commented on previous versions of the manuscript.

21

22 **Data Archiving**

23 Data presented in this manuscript have been appended to:

24 Iversen CM, Latimer J, Burnham A, Brice DJ, Childs J, Vander Stel HM. 2017. SPRUCE plant-
25 available nutrients assessed with ion-exchange resins in experimental plots, beginning in 2013.
26 Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department
27 of Energy, Oak Ridge, Tennessee, U.S.A. Data set accessed at
28 <http://dx.doi.org/10.3334/CDIAC/spruce.036>.

29 **Abstract**

30 Warming is expected to increase the net release of carbon from peatland soils, contributing to
31 future warming. This positive feedback may be moderated by the response of peatland vegetation
32 to rising atmospheric [CO₂] or to increased soil nutrient availability. We asked whether a
33 gradient of whole-ecosystem warming (from +0°C to +9°C) would increase plant-available
34 nitrogen and phosphorus in an ombrotrophic bog in northern Minnesota, USA, and whether
35 elevated [CO₂] would modify the nutrient response. We tracked changes in plant-available
36 nutrients across space and through time and in comparison with other nutrient pools, and
37 assessed whether nutrient warming responses were captured by a point version of the land-
38 surface model, ELM-SPRUCE. We found that warming exponentially increased plant-available
39 ammonium and phosphate, but that nutrient dynamics were unaffected by elevated [CO₂]. The
40 warming response increased by an order of magnitude between the first and fourth year of the
41 experimental manipulation, perhaps because of dramatic mortality of *Sphagnum* mosses in the
42 surface peat of the warmest treatments. However, neither the magnitude nor the temporal
43 dynamics of the responses were captured by ELM-SPRUCE. Relative increases in plant-
44 available ammonium and phosphate with warming were similar, but the response varied across
45 raised hummocks and depressed hollows and with peat depth. Plant-available nutrient dynamics
46 were only loosely correlated with inorganic and organic porewater nutrients, likely representing
47 different processes. Future predictions of peatland nutrient availability under climate change
48 scenarios must account for dynamic changes in nutrient acquisition by plants and microbes, as
49 well as microtopography and peat depth.

50 **Keywords**

51 warming, elevated [CO₂], nutrient availability, ombrotrophic bog, SPRUCE, peat depth,
52 microtopography, *Sphagnum* moss, nitrogen, phosphorus

53

54 **Highlights:**

- 55 • We investigated the nutrient dynamics underpinning peatland responses to changing
56 environmental conditions within the framework of a large-scale warming × CO₂-
57 enrichment experiment in a nutrient-limited ombrotrophic bog at the southern end of the
58 boreal peatland range. Whole-ecosystem warming exponentially increased plant-available
59 ammonium and phosphate, but nutrient dynamics were unaffected by elevated [CO₂].
- 60 • The nutrient warming response increased by an order of magnitude between the first and
61 fourth years of warming, perhaps because of dramatic mortality of *Sphagnum* mosses in
62 the surface peat of the warmest treatments. However, this response was not captured by a
63 land surface model parameterized to simulate ecosystem dynamics within the experiment.
- 64 • Relative increases in plant-available ammonium and phosphate with warming were
65 similar, but the warming response varied across raised hummocks and depressed hollows
66 and with peat depth.

67 **Introduction**

68 Peatlands store at least one-third of global soil organic carbon (C) in deep deposits of peat
69 accumulated over millennia due to an imbalance between production and decomposition
70 (Bridgman and others 2006; Gorham, 1991; Nichols and others 2019). Warming is expected to
71 increase the net release of C from peatland soils, potentially leading to a positive feedback to
72 future warming (Bridgman and others 2008), though these responses could be moderated by
73 elevated [CO₂] or increased peat nutrient availability (Hedwall and others 2017; Milla and others
74 2006; van der Heijden and others 2000). Here we investigated the nutrient dynamics
75 underpinning peatland responses to changing environmental conditions within the framework of
76 a large-scale warming × CO₂-enrichment experiment in a nutrient-limited ombrotrophic bog at
77 the southern end of the boreal peatland range (i.e., the Spruce and Peatland Responses Under
78 Changing Environments, or ‘SPRUCE’ experiment; Hanson and others 2017).

79 Warming has been shown to increase nutrient mineralization rates across a range of upland
80 ecosystems (Rustad and others 2001), and in ecosystems underlain by organic soil (Aerts and
81 others 2006; Munir and others 2017; Salazar and others 2020; Weedon and others 2012).
82 Increased nutrient availability has been found to increase (Bragazza and others 2006; Mack and
83 others 2004) or inhibit (Keller and others 2006; Malhotra and others 2018; Olid and others 2014)
84 peat decomposition rates due to complex interactions among microbial physiology, plant species
85 composition and litter chemistry, and edaphic conditions. Increasing nutrient availability can also
86 change the balance among the fractional cover and biomass of vascular overstory plants and
87 *Sphagnum* mosses, as *Sphagnum* is less competitive at higher levels of nutrient availability
88 (Berendse and others 2001; Vitt and others 1990). Microbial and vegetation responses to

89 increased nutrient availability could be moderated by potential declines in soil moisture and
90 water table levels associated with warming (Weltzin and others 2003).

91 Nitrogen (N) and phosphorus (P) have different rates of mineralization and immobilization,
92 which are controlled by differing microbial communities, plant-rhizosphere interactions, and
93 edaphic and environmental factors (Richardson and others 2009; Spohn and others 2013;
94 Vitousek and others 1991; Walker and others 1976). Nitrogen and P cycling rates and have been
95 shown to respond differently to warming in boreal peatlands (Munir and others 2017) and to
96 freeze-thaw or heatwave events in uplands (Mooshammer and others 2017), with potential
97 implications for shifting plant and microbial communities (Hill and others 2014; Iversen and
98 others 2010; Koerselman and others 1996; Wang and others 2014).

99 Peatlands are also characterized by small-scale environmental gradients – from undulating
100 surface microtopography, which encompasses raised hummocks and depressed hollows within
101 the span of 1 m (Eppinga and others 2010) – to changes in peat and porewater characteristics,
102 soil moisture and oxygenation, and microbial community abundance and composition with peat
103 depth (Griffiths and others 2017; Griffiths & Sebestyen, 2016; Griffiths and others 2019; Tfaily
104 and others 2018; Wang and others 2015; Wilson and others 2021a,b). Microtopographic
105 positions have been shown to have different nutrient availabilities under ambient conditions
106 (Eppinga and others 2010) and to respond differently to small-scale experimental warming
107 (Munir and others 2017). However, how nutrient availability will change with depth throughout
108 the peat profile in response to warming remains an open question, as prior investigations of
109 nutrient response to warming in peatlands have focused on surface peat (Munir and others 2017;
110 Weedon and others 2012). Nutrient availability in ecosystems underlain by organic soils is
111 generally greater within deep peat layers located beyond the reach of plant roots that are often

112 constrained to surface aerobic horizons (Iversen and others 2018; Keuper and others 2012;
113 Murphy and others 2010). Warming in peatlands could therefore lead to increased availability of
114 nutrients in the shallow rooting zone, and in turn, warming-induced drying could also allow roots
115 to access deeper nutrients.

116 Increases in global mean surface air temperature are projected to be as much as 3.3 to 5.7°C by
117 2100, following the rise in atmospheric carbon dioxide concentrations ($[CO_2]$) and other
118 greenhouse gases due to anthropogenic activities (IPCC, 2021). Thus any impacts of warming on
119 peatland nutrient cycling must be considered in the context of elevated $[CO_2]$, which might
120 stimulate plant growth and rhizosphere C availability (Walker and others 2021), potentially
121 leading to increased nutrient immobilization in vegetation and microbial communities (de Graaff
122 and others 2006; Finzi and others 2007). However, evidence for changes in ecosystem C and
123 nutrient cycling in response to elevated $[CO_2]$ is generally based on upland ecosystems (but see
124 Berendse and others 2001; Fenner and others 2007; Milla and others 2006; Toet and others 2006;
125 van der Heijden and others 2000).

126 Terrestrial biosphere models are a tool that can be used to encode hypotheses about ecosystem
127 responses to changing environmental conditions but must be compared with and validated
128 against observations of changes in ecosystem C and nutrient cycling in response to a range of
129 possible futures (Medlyn and others 2015). ELM-SPRUCE, a point version of the land
130 component of the Energy Exascale Earth System Model (E3SM), has been specifically designed
131 to simulate ecosystem responses to warming and elevated $[CO_2]$ at SPRUCE. ELM-SPRUCE
132 includes coupled C, N and P cycle dynamics (Burrows and others 2020; Yang and others 2019)
133 as well as ombrotrophic bog hydrology, hummock and hollow microtopography, and *Sphagnum*

134 moss as a unique plant functional type (Griffiths and others 2017; Shi and others 2021; Shi and
135 others 2015).

136 Here we asked whether a gradient of whole-ecosystem warming would increase plant-available
137 nitrogen and phosphorus in an ombrotrophic bog in northern Minnesota, USA, and whether
138 elevated [CO₂] would modify the nutrient response. We further considered whether nutrient
139 responses to warming varied across space and through time, focusing in particular on the rooting
140 zone (and the surface zone where non-vascular mosses have access to nutrients). We used ion-
141 exchange resins to assess inorganic plant-available nutrients across hummock-hollow
142 microtopography and throughout the peat profile at monthly and cumulative annual time steps
143 (and henceforth refer to these fluxes as ‘resin-available nutrients’). Because bogs are unique
144 ecosystems where vegetation has access to near-surface porewater as a potential source of
145 nutrients, we also compared responses inferred from ion-exchange resins to the dynamics of
146 inorganic and organic nutrients observed in porewater. We compared observed resin-available
147 nutrient dynamics to ELM-SPRUCE model predictions of net nutrient mineralization in the
148 SPRUCE experiment.

149 **Materials and Methods**

150 ***The SPRUCE experiment***

151 The Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment is
152 located in the ombrotrophic S1 Bog on the Marcell Experimental Forest in northern Minnesota,
153 USA (47°30.476' N; 93°27.162' W; 418 m above mean sea level; Sebestyen and others 2011).
154 SPRUCE is located at the southern end of the range of boreal peatlands and is therefore expected
155 to be especially vulnerable to warming conditions. The S1 Bog, similar to other bog basins in the
156 area and region, has accumulated from 2 m to 11 m of C-rich peat over the last 11,000 years

157 (McFarlane and others 2018; Parsekian and others 2012). The overstory is dominated by the
158 trees *Picea mariana* (black spruce) and *Larix laricina* (larch), with an understory dominated by
159 ericaceous shrubs (McPartland and others 2020). The bog surface is carpeted by *Sphagnum*
160 mosses, with a minor presence of other mosses (for more information on mosses within the
161 SPRUCE experiment, see Norby and others 2019). The effects of above- and belowground
162 warming and elevated [CO₂] on peatland processes are being assessed in 12.8-m wide by 7-m tall
163 enclosures underlain by belowground corrals (see Figure 1 for enclosure layout and description
164 of treatments and see Hanson and others (2017) and Sebestyen & Griffiths (2016, data citation)
165 for more details). The SPRUCE experimental design is regression-based; two series of five
166 enclosures are warmed at set point levels of either +0°C, +2.25°C, +4.5°C, +6.75°C, or +9°C
167 above ambient conditions. Aboveground warming is accomplished by introducing warm air
168 generated from propane-fired heat exchangers into the enclosures via forced-air heating
169 distributed around the base of the enclosure. Half of the enclosures also receive elevated [CO₂]
170 via the injection of pure CO₂ into the air circulation ducts to attain a target level of +500 ppm to
171 replicate conditions predicted for the end of the 21st century (Hanson and others 2017). SPRUCE
172 is unique in that it exposes large experimental enclosures to ‘whole-ecosystem’ warming;
173 belowground warming is accomplished with 3-m deep heating rods that encircle and intersperse
174 each enclosure. The encircling heating rods provide heat from 0-3 m depth, while rods within the
175 enclosures only heat from 2-3 m depth to avoid hot spots of direct heating within the rooting
176 zone. This system provides a uniformly warmed volume of peat belowground (Barbier and
177 others 2013).
178 Beneath each enclosure, the belowground peat volume is encircled by a corral constructed from
179 interlocking piles that reach beneath the peat horizons to the subtending mineral soils. The corral

180 isolates the biogeochemical and hydrological system associated with each enclosure so that each
181 enclosure can be conceptualized as a ‘miniature bog’ exposed to a future climate. The
182 belowground corals also allow quantification of outflow, the shallow lateral flow analogous to
183 runoff via natural passive drainage (data citation: Sebestyen & Griffiths 2016). SPRUCE
184 treatments began with deep-peat warming in 2014 and installation of the corals in winter 2014 –
185 2015; aboveground warming began in August 2015, and elevated [CO₂] additions began in early
186 June 2016 during the first full year of whole-ecosystem warming (Hanson and others 2017).
187 Although the SPRUCE treatments are applied as differential levels of warming and CO₂
188 additions, because biological systems respond to actual temperatures we express and evaluate
189 nutrient responses to warming by comparisons to measured peat temperatures at the depth of
190 resin incubations rather than the nominal temperature treatments.

191 ***Plant-available nutrients assessed using ion-exchange resins***

192 Plant-available nutrients were assessed using mixed-bed ion-exchange resin capsules (i.e.,
193 containing both anion, OH⁻, and cation, H⁺, resins). Ion-exchange resins have been shown to
194 accurately integrate and represent plant-available ammonium (NH₄-N) and phosphate (PO₄-P)
195 across space and through time, including in ecosystems underlain by organic soils (Bridgman
196 and others 2001; Giblin and others 1994; Gu and others 2020), and have been tested at soil
197 temperatures up to 30°C (Yang and others 1991). The resin capsules at SPRUCE were inserted,
198 incubated, and extracted serially beginning in 2013 and the collections are on-going (data
199 citation: Iversen and others 2017). Data presented here span the full years of 2014 to 2018 and
200 therefore include periods of belowground warming only (2014), above- and belowground
201 warming (2015) and above- and belowground warming with elevated [CO₂] (2016-2018). PVC
202 resin-access tubes (WeCSA, Inc., LLC) allowed removal and replacement of the resin capsule

203 without disturbing the peat profile. Access tubes consisted of a 3.2-cm diameter outer tube with a
204 1.9-cm diameter inner access tube with a resin capsule attached to the base (see Figure S1; as in
205 Iversen and others 2018). Resin-access tubes were installed in June 2013 at a 30° angle from
206 vertical across hummock and hollow microtopography and throughout the shallow peat profile to
207 a depth of 60 cm in hummocks and 30 cm in hollows. Hummock-hollow access-tube arrays were
208 installed in two locations in each of the ten SPRUCE experimental enclosures, as well as two
209 locations in each of two ambient, unenclosed plots (Figure 1).

210 Locations and elevations of each access-tube array were estimated by terrestrial laser scanning
211 (TLS) using a Riegl VZ-1000 terrestrial laser scanner (Riegl Laser Measurement Systems, Riegl
212 USA, Inc., Winter Garden, FL, USA) as in Graham and others (2020). Briefly, 50-cm tall dowels
213 that had reflectors on their tops were inserted at the peat surface in May 2018, before the TLS
214 scan. The location of the dowel was optimized to reflect the average elevation of the resin-access
215 tube arrays. Elevation was then calculated by subtracting 50 cm. On average, hummocks were
216 ~15 cm higher in elevation than adjacent hollows, with a few exceptions (Table S1).

217 UNIBEST resin capsules (UNIBEST, Inc., Walla Walla, WA, USA) were placed into contact
218 with the soil at the base of the inner resin-access tube (11.4 cm² of the rounded capsule surface
219 protruded from the base of the tube; Figure S1f) and incubated *in situ* for approximately 28 days
220 before collection and replacement with a new resin capsule. In cases where resins were frozen
221 into the bog during winter months and unable to be removed, we assumed that the unfrozen time-
222 period was no longer than 28 days (we refer to this collection timeframe as *monthly* below, to
223 differentiate from *annual* nutrient availability). Peat was cleaned from the removed capsules by
224 rinsing with distilled water, and the capsules were air-dried prior to shipment to Oak Ridge
225 National Laboratory (ORNL). At ORNL, the air-dried capsules were serially extracted with 2 M

226 potassium chloride, and the extractant was frozen at -20°C until analysis for nutrient
227 concentrations on a Lachat QuikChem 8500 flow injection analysis autoanalyzer (Hach
228 Company, Loveland, CO, USA) as in Iversen and others (2017, data citation). Nutrient
229 adsorption was blank-corrected based on unincubated resins, standardized per unit of resin
230 capsule surface area, and either standardized per 28 days or summed over a calendar year as a
231 cumulative annual total. Previous studies with these resin capsules indicate they continue to
232 accumulate nutrients over time without saturation (Skogley and others 1996; Yang and others
233 1991). In the few cases where an observation was lost during sampling or processing, the value
234 from the second resin array in the same enclosure, at the same microtopographic position and
235 peat depth, was substituted to derive annual cumulative totals. Given that $\text{NO}_3\text{-N}$ adsorbed to
236 resins was negligible and often below detection limits (as might be expected in a saturated, acidic
237 bog ecosystem, Bridgham and others 2001), we focus on resin-available $\text{NH}_4\text{-N}$ and $\text{PO}_4\text{-P}$ for
238 the purposes of this paper.

239 Resins mimic a plant root, exchanging ions with the surrounding soil system, allowing us to
240 quantify the *in situ* availability of nutrients for plant acquisition. However, we note that resin-
241 accumulated nutrients are the balance of production (gross nutrient mineralization) and
242 consumption (nutrient immobilization) by surrounding plants, microbes, and soil surfaces. While
243 this is similar to the competitive environment experienced by plant roots, these competing
244 processes must be kept in mind when interpreting observed patterns in resin-available nutrient
245 dynamics. We further compared responses inferred from ion-exchange resins to the dynamics of
246 inorganic nutrients observed in porewater because vegetation has access to near-surface
247 porewater as a potential source of nutrients and porewater is frequently measured across
248 saturated peatland ecosystems (Bourbonniere 2009).

249 We focused on inorganic nutrient availability given that we were able to capture its accumulation
250 over time and with peat depth using non-destructive ion-exchange resin sampling. However,
251 vegetation in boreal systems has been shown to acquire organic nutrients (Kielland and others
252 2006), so we also compared the patterns observed in resin-available nutrients to organic nutrients
253 in porewater to gain a broader view of plant-available N and P.

254 ***Porewater nutrients***

255 A nest of six depth-specific (10-cm screened sections) piezometers per enclosure allowed
256 collection of porewater throughout the peat profile (0-3 m) in hollow microtopography. Water
257 samples were collected every 2 weeks using a peristaltic pump and analyzed for nutrients (NH_4^+ -
258 N, NO_3^- -N, and soluble reactive phosphorus, SRP), as well as total N (TN) and total P (TP) at the
259 United States Forest Service laboratory in Grand Rapids, MN, USA. Soluble reactive P
260 concentration (SRP) is largely equivalent to phosphate concentration (PO_4^{3-}) in water, though
261 some condensed phosphate may be measured along with orthophosphate in the colorimetric
262 method that we used to determine SRP (APHA, 2017). Ammonium, NO_3^- -N, SRP, TN, and TP
263 concentrations were quantified via analysis on a Lachat QuikChem autoanalyzer as described in
264 Griffiths and others (2016b, data citation). We focused on the porewater nutrient concentrations
265 at 0-10 cm and 30-40 cm depths to facilitate direct comparison with ion-exchange resins
266 incubated at those depths in adjacent hollows. We averaged the nutrient concentrations for
267 porewater samples that were collected within the dates of the approximately monthly resin
268 incubations, beginning in 2015 and extending through 2018. We calculated 'organic N' and
269 'organic P' as the difference between total N and inorganic N and total P and inorganic P,
270 respectively (where organic N was equal to '0' if the difference resulted in a slightly negative
271 number). When porewater nutrients were below detection limits, we used half the detection value

272 as the value for that collection date (the detection limit varied according to methodology
273 described in data citation: Griffiths and others 2016b).

274 ***Potential nutrient competition***

275 In order to understand the surface dynamics of resin-available nutrients over time, we compared
276 patterns in resin-available NH₄-N and PO₄-P to patterns in the nutrient requirements of
277 *Sphagnum* mosses given its mortality in response to warming at SPRUCE in later treatment years
278 (Norby and others 2019). *Sphagnum* nutrient requirement was calculated using growth and N and
279 P concentration estimates from each of the dominant *Sphagnum* species measured annually in
280 October 2016, 2017, and 2018 in each experimental enclosure (methods described in Norby and
281 others 2019, and data citations: Norby and others 2018 and 2020). The enclosure-scale N or P
282 requirement for new growth is the concentration of the element in species-specific new growth
283 times the dry matter increment, scaled by fractional cover of each *Sphagnum* species (g N/m² or
284 g P/m²).

285 While mineral surfaces can immobilize PO₄-P (Richardson, 1985), the peat in the S1 Bog where
286 the SPRUCE experimental enclosures are located has limited mineral content to a depth of at
287 least 2 m (data citation: Iversen and others 2014). The S1 Bog also has limited bulk and
288 extractable Al and Fe content throughout (Herndon and others 2019; Tfaily and others 2014),
289 though the relationship between P and Fe in surface peat appears to be increasing with warming
290 (Curtinrich and others 2021).

291 ***Edaphic and environmental conditions in the SPRUCE enclosures***

292 *Peat temperature.* We investigated the temperature response of resin-available nutrients, both
293 during the 28-day periods of resin deployment and over the course of each year, using peat

294 temperature measurements collected from multipoint thermistor probes (W.H. Cooke & Co. Inc,
295 Hanover, PA, USA). The probes were installed in each SPRUCE experimental enclosure in 2014
296 in zone B (i.e., the zone in the middle of the SPRUCE experimental enclosures; for more
297 information about probe locations, installation, and calibration, see data citation: Hanson and
298 others 2016). The depth of interest for each soil temperature probe was chosen to most closely
299 match the targeted incubation depth of ion-exchange resin capsules (i.e., probes installed in
300 hummocks at ~20 cm and ~ 0 cm above the hollow surface, and probes installed in hollows at
301 ~10 cm and ~30 cm below hollow surface; see Table S2).

302 *Water table.* Automated water table elevation measurements and normalization for each
303 enclosure with respect to hollow heights are explained in detail in Hanson and others (2020b,
304 data citation). Briefly, water table elevation measurements collected beginning in 2015 were
305 obtained in stainless steel well casings (Drillers Services, Inc.) centered within each SPRUCE
306 enclosure. The water height within each well was measured with automated sensors (Model WT-
307 VO 2000; TruTrack, Christchurch, New Zealand). Water table absolute elevations in meters
308 were referenced to surveyed elevations of the tops of all wells (data citation: Griffiths and others
309 2016a), and water level with respect to the mean hollow elevation of an enclosure were
310 normalized to the water height in the well during a uniform post-rainfall, post-drainage period
311 when water tables were just at or below the peat hollows. We only include a water table
312 comparison when the average peat temperature at the depth of each incubated resin was above
313 0°C for each incubation period.

314 ***Simulated nutrient availability responses to warming using ELM-SPRUCE***

315 We used ELM-SPRUCE, a version of the Energy Exascale Earth System Model (E3SM) land
316 model (version 1, ELM v1), to simulate nutrient responses to warming and elevated [CO₂] at

317 SPRUCE. Building on the Community Land Model version 4.5 (CLM4.5), ELM v1 has
318 undergone several major developments in recent years. These new developments include the
319 coupling of C, N and P cycle dynamics, the introduction of dynamic storage pools for C, N and
320 P, the improved representation of the effects of nutrient limitation on plant growth, improved
321 phenology for deciduous forests, and various improvements in model parameterization (Burrows
322 and others 2020; Yang and others 2019). Compared to ELM v1, ELM-SPRUCE includes
323 additional processes and plant functional types that are specific to peatland ecosystems (Griffiths
324 and others 2017; Shi and others 2021; Shi and others 2015). Observational data from the S1 Bog
325 used for model parameterization included leaf- and fine-root N and P concentrations (Salmon
326 and others 2021) and rooting depth for fine roots (Iversen and others 2018). Model evaluation
327 using pretreatment observations of vegetation biomass, growth, and nutrient requirements
328 suggests that ELM-SPRUCE is generally able to capture the observed C and nutrient pools and
329 fluxes (Griffiths and others 2017; Salmon and others 2021).

330 Model simulations for the current study included three steps: (1) Model spin-up to generate pre-
331 industrial steady-state for C, N and P pools in vegetation and soils, (2) Transient simulations
332 from 1850-2014 in which historical atmospheric CO₂ concentrations and N deposition were used
333 as driving data, and (3) Simulations of treatment responses between 2015-2018, in which
334 treatment-specific air temperature and atmospheric CO₂ concentrations were used as driving
335 data. In total, there were 11 simulations corresponding to 10 experimental treatments and 1
336 ambient plot at SPRUCE. We focused here on the outputs of annual cumulative net N and P
337 mineralization from treatment simulations between 2016-2018. Net nutrient mineralization per
338 unit peat volume is an imperfect comparison to annual resin-available nutrient accumulation but
339 was the closest nutrient flux available from among the model outputs and integrates similar

340 processes of nutrient mineralization and immobilization (e.g., Bridgham and others 2001). Here
341 we compare resin-available nutrients with ELM-SPRUCE simulated net nutrient mineralization
342 responses in a qualitative way with the goal of identifying important gaps in model
343 representation of nutrient cycle dynamics in peatland ecosystems. Gross nutrient mineralization
344 in ELM-SPRUCE is modeled using a Q_{10} approach (where $Q_{10} = 1.5$) and resulting net nutrient
345 mineralization is the remainder after microbial nutrient immobilization.

346 ***Statistical analyses***

347 *Resin-available nutrient responses to warming and elevated [CO₂]*

348 We used R version 4.0.3 in our statistical analyses (R Core Team, 2021) to examine resin-
349 available nutrient responses to warming and elevated [CO₂] in the SPRUCE experimental
350 enclosures from 2014 to 2018. We do not include data from unenclosed, ambient plots in our
351 statistical models (as in Hanson and others 2020a). However, ambient plots were measured to
352 quantify potential experimental artifacts and the data are summarized in Table 1. Peat
353 temperature and the availability of NH₄-N and PO₄-P differed somewhat between the +0°C
354 enclosures and the unenclosed, ambient plots, though differences varied by peat depth and
355 among plots (see *Supplementary Statistical Methods* and Table 1).

356 We assessed responses of resin-available nutrients to warming in the enclosures in two ways:
357 first, we examined the variation in the cumulative annual availability of NH₄-N and PO₄-P, as
358 well as the ratio of the two. We expected that the N/P ratio would provide an assessment of
359 whether resin-available NH₄-N and PO₄-P differed in their response to warming, and also what
360 the implications might be for vegetation N or P limitation (Koerselman & Arthur, 1996). To
361 assess these *annual responses*, we compared several potential linear mixed-effect models to
362 consider the effects of warming, elevated [CO₂], microtopography, peat depth, and year on

363 nutrient dynamics using the *lmer* function in the *lme4* package in R (see additional detail in
364 *Supplementary Statistical Methods*; Harrison and others 2018). In these models, both warming
365 and elevated [CO₂] were treated as fixed effects, where warming was a numerical vector of the
366 average annual peat temperature measured at the peat depth closest to that of the resin depth and
367 CO₂ was a discrete variable (e.g., ‘ambient’ or ‘elevated’). Peat depth and microtopographic
368 position were combined into a discrete, fixed effect in the models called ‘topodepth’ (e.g.,
369 hummock at 10 cm, hummock at 30 cm, hollow at 10 cm, etc.). We assumed that year was an
370 important factor given the progression in SPRUCE treatment application, and year was treated as
371 a discrete, fixed effect in the models. In turn, we included enclosure as a random effect in the
372 models (with both a random intercept and a random slope) to account for random differences
373 among enclosures and repeated sampling of enclosures that were not explained by our fixed
374 effects. Cumulative annual resin-available nutrients and nutrient ratios were log-transformed
375 prior to statistical analyses to meet model assumptions. We selected a final model based on AIC
376 criteria, as well as standard model selection processes (see *Supplementary Statistical Methods* for
377 more information; Harrison and others 2018). We made pairwise comparisons by topodepth and
378 year using the *pairwise* function in the *emmeans* package in R (Table S3).

379 After considering the annual accumulation of resin-available nutrients, we examined the
380 variation in accumulated NH₄-N and PO₄-P over the ~28-day timeframe (i.e., the *monthly*
381 responses). Examining the monthly patterns in resin-available nutrients allowed us to consider
382 the additional factor of depth to the water table, which varied seasonally within a year and
383 therefore could not be analyzed on an annual basis. Given the correlation between peat
384 temperature and depth to water table, we used a principal components analysis to obtain a
385 continuous variable representing the combination of peat temperature and distance to water table

386 and used this variable in a new set of linear mixed-effects models (see details in *Supplementary*
387 *Statistical Methods*). However, these monthly models were similar to the annual models, and
388 further investigation showed that that water table level – which had not yet changed substantially
389 in response to warming – had little power to explain (less than 10%) observed changes in resin-
390 available nutrients (see *Supplementary Statistical Methods*, Figures WT1 and WT2). Thus we do
391 not discuss water table results further here.

392 We did disentangle peat temperature from depth to water table to further explore the temperature
393 sensitivity of monthly nutrient availability. We fit Q_{10} relationships to the monthly accumulation
394 of resin-available nutrients at a given peat temperature (Lloyd and others 1994). Curves were fit
395 in Sigma Plot (version 14.5, Systat Software, Inpixon HQ, USA) using the equation: Resin-
396 Available Nutrient ($\mu\text{g cm}^{-2} 28 \text{ days}^{-1}$) = $R_{12} \times Q_{10}^{((\text{Peat Temperature}-12)/10)}$, where R_{12} is the baseline
397 resin-available nutrient flux during incubation period (targeted at 28 days) at 12°C, a temperature
398 near the midpoint of the range of peat temperatures across warming treatments, peat depths, and
399 microtopographic positions. To obtain a warming response for model comparison, we fit Q_{10}
400 relationships to observations from all enclosures at a given topodepth across all years as well as
401 for the most recent observation year of 2018. For comparison, we also fit Q_{10} response functions
402 to model projections of cumulative annual net N and P mineralization.

403 *Comparisons among resin-available nutrients and other nutrient pools*

404 We examined the relationship between *Sphagnum* annual N and P requirement (g nutrient m^{-2}
405 year^{-1}) and surface resin-available $\text{NH}_4\text{-N}$ and $\text{PO}_4\text{-P}$ at 10-cm depth in hummocks and hollows
406 using log-linear regressions. Furthermore, we examined whether resin-available nutrients were
407 correlated with porewater inorganic, organic, and total nutrients. Given that log-transformation

408 did not result in normally-distributed data, we used a non-parametric correlation for the
409 porewater comparisons (Spearman's Rho; *stats* package in R).

410 **Results**

411 ***Cumulative annual resin-available nutrients increased with warming but varied with peat***
412 ***depth and microtopography***

413 NH₄-N was by far the most available N source, with NO₃-N making up a negligible fraction; PO₄
414 availability was intermediate between NH₄-N and NO₃-N. Warming increased cumulative annual
415 resin-available NH₄-N and PO₄-P, but the magnitude of the response varied across
416 microtopographic positions and with peat depth and increased over time. There were no
417 significant effects of elevated [CO₂] on resin-available nutrients (Table 1). Neither warming nor
418 elevated [CO₂] had a significant effect on the cumulative annual ratio of resin-available N/P,
419 though resin-available N/P ratio increased with peat depth (Table 1 and Table S3).

420 The best overall model fit to explain the variability in NH₄-N and PO₄-P and their ratio (i.e., the
421 model with the lowest AIC) included the average annual peat temperature at the depth closest to
422 that of the resin, as well as combined hummock-hollow microtopographic position and depth
423 (i.e., the 'topodepth' term), and year, with enclosure as a random factor (conditional R² = 0.77,
424 0.71, and 0.43 for NH₄-N, PO₄-P, and N/P ratio models, respectively; Figure 2). A model
425 including elevated [CO₂] did not provide a better fit to any of the resin-available nutrient data
426 (See *Supplementary Statistical Methods*). Within the best-fit model for NH₄-N and PO₄-P, we
427 also observed significant interactions between warming and topodepth, as well as warming and
428 year, and we observed an increase in the strength of the warming × year interaction over time
429 (Figure 2, *Supplementary Statistical Methods*). In turn, the best-fit linear mixed-effect model for

430 cumulative annual N/P ratio also included a significant interaction between topodepth and year
431 (Figure S2, *Supplementary Statistical Methods*).

432 Given the significant interactions with warming, we also fit separate log-linear models to average
433 annual peat temperature at a given topodepth and log-transformed cumulative available NH₄-N,
434 PO₄-P, and the ratio of the two at each microtopographic position and peat depth, across all years
435 (Figure 3) and within a single year (Table S4). The only significant log-linear models between
436 peat temperature and resin-available NH₄-N or PO₄-P indicated an exponential increase in resin-
437 available nutrients with increasing peat temperature at deeper peat depths (Figure 3) and in more
438 recent years (Table S4). We saw no significant relationships between annual N/P ratio and
439 warming at any topodepth position either within or across years (Table S4, with the exception of
440 an extremely weak relationship at 60-cm peat depth).

441 Within a given treatment year, resin-available NH₄-N and PO₄-P tended to be least in shallow
442 peat and less in raised hummocks compared with depressed hollows (Tables 1 and S3, Figure 3).
443 Averaged across all enclosures, resin-available NH₄-N to PO₄-P were significantly greater in
444 2018 than in previous years (Figure 2; Table S3). In turn, the ratio of cumulative annual available
445 NH₄-N to PO₄-P ranged from ~1:1 to 175:1 across all years, microtopographic positions, and
446 peat depths (Table 1).

447 ***ELM-SPRUCE predicted increases in annual net nutrient mineralization with warming***

448 Across all topodepths, ELM-SPRUCE predicted increases in annual cumulative net N and P
449 mineralization with warming (Figure 4), but the magnitudes of the warming responses in model
450 simulations (assessed by Q₁₀ response functions) were much lower than the warming responses
451 observed in the resin-available nutrient data, especially in surface soils (Table S5). As with
452 observed resin-available nutrient dynamics (Table 1), model prediction of net N and P

453 mineralization was greater in the hollows than in the hummocks, but in contrast to the
454 observations, model-predicted net nutrient mineralization tended to decrease with peat depth
455 (Figure 4).

456 ***Large increases in shallow peat resin-available nutrients were correlated with mortality of***
457 ***Sphagnum mosses in warmest enclosures***

458 The increase in cumulative annual resin-available nutrients with warming had initially been
459 much greater below the rooting zone (i.e., at 60- and 30-cm depths in hummocks and hollows,
460 respectively, Table 1, Figures 2, 3), but this changed in later treatment years, where we saw large
461 increases in both NH₄-N and PO₄-P at 10-cm peat depth in both hummocks and hollows (Table
462 1, Figure 3). During the same time period (i.e., between 2016 and 2018), we observed a steep
463 decline in *Sphagnum* N and P requirement (i.e., the N or P content of new tissue in g nutrient per
464 m² per year; Figure S3), in conjunction with *Sphagnum* mortality in the warmest treatments
465 (Norby and others 2019). The observed increase in shallow resin-available nutrients was related
466 (R² = 0.24 for NH₄-N and 0.09 for PO₄-P) to the decline in *Sphagnum* nutrient requirements in
467 the warmest treatments (Figure 5).

468 ***Monthly resin-available NH₄-N and PO₄-P increased exponentially in response to warming***

469 Given that nutrient response to warming was most notable in later treatment years, we
470 individually examined the Q₁₀ dynamics in the last year of available data (2018, after 4 years of
471 whole-ecosystem warming, Figures 6 and S4, as well as across all treatment years, Table S5; see
472 Figures S5 and S6 for all data across all years). We found that a Q₁₀ function explained the
473 warming response of NH₄-N and PO₄-P to increasing peat temperatures when observations from
474 across all warming and [CO₂] treatments were examined within a given microtopography and
475 peat depth, especially in deeper soil (Figures 6 and S4, respectively; observations from 2018

476 only). Significant Q_{10} values for increases in monthly resin-available nutrients with peat
477 temperature across all treatments ranged from ~3 to as much as ~9 in 2018, and higher when all
478 years were combined (Table S5); in turn, R_{12} values – the baseline amount of resin-available
479 nutrient at 12°C – tended to increase with peat depth (Table S5). While the ratio between
480 monthly resin-available N and P did not change significantly in response to warming, it did tend
481 to increase with peat depth (Figure 7).

482 ***Monthly resin-available nutrients and porewater nutrients were only somewhat correlated***

483 Cumulative monthly resin-available inorganic nutrients in hollows were somewhat correlated
484 with porewater inorganic nutrients in hollows across all enclosures and years 2015 – 2018 in
485 both shallower (Spearman's Rho = 0.30 and 0.32, for N and P, respectively, $P < 0.001$ for each)
486 and deeper peat (Spearman's Rho = 0.69 and 0.52 for N and P, respectively, $P < 0.0001$ for both
487 N and P; Figures 8, S7). Resin-available inorganic nutrients were somewhat correlated with
488 porewater organic nutrients (i.e., the difference between total N or P and inorganic N or P) in
489 shallower peat (Spearman's Rho = 0.34 and 0.30 for ON and OP respectively, $P < 0.0001$, for
490 both N and P) and in deeper peat (Spearman's Rho = 0.38 and 0.18, $P < 0.0001$ and $P = 0.004$,
491 for N and P, respectively; Figures 8, S7). Resin-available inorganic nutrients and total porewater
492 nutrients were also somewhat correlated, both in shallower peat (Spearman's Rho = 0.42 and
493 0.38 for TN and TP respectively, $P < 0.0001$, for both N and P) as well as in deeper peat
494 (Spearman's Rho = 0.66 and 0.52, $P < 0.0001$ for both N and P; Figures 8, S7).

495 **Discussion**

496 The controls over peatland C balance range from the environmental constraints of cold, acidic,
497 waterlogged peat to the interplay between C production and decomposition as mediated by
498 nutrient-limited plants and microbes (Bridgham and others 1998; Limpens and others 2008).

499 Many of these responses are underpinned by, or will affect, nutrient dynamics throughout the
500 peat profile. Here we found that after 4 years of whole-ecosystem warming and elevated [CO₂]
501 treatments: (1) Warming exponentially increased resin-available NH₄-N and PO₄-P, and the
502 magnitude of the response increased over time and varied across the microtopography of the bog
503 surface and with peat depth; (2) these dynamics were generally unaffected by elevated [CO₂];
504 and (3) relative increases in resin-available NH₄-N and PO₄-P with warming were similar,
505 though resin-available N/P ratios increased with peat depth.

506 ***Warming increased resin-available nutrients, but responses depended on microtopography
507 and peat depth***

508 Warming exponentially increased resin-available NH₄-N and PO₄-P. The strength of this
509 response increased by an order of magnitude between the first and fourth years of whole-
510 ecosystem warming, and the increase in resin-available nutrients with warming was greatest in
511 deeper peat, at least early in the progression of experimental warming (Tables 1, Figures 2 and
512 3). However, we did not observe any significant effects of elevated [CO₂] on resin-available
513 NH₄-N or PO₄-P (Table 1; Figure 3). While evidence for peatland responses to elevated [CO₂] is
514 mixed, others have shown previously that elevated [CO₂] may not necessarily increase plant
515 production in nutrient-limited and *Sphagnum*-dominated bogs (Berendse and others 2001),
516 including the SPRUCE experimental enclosures (McPartland and others 2020, but see Norby and
517 others 2019). Thus, we may not expect an impact of elevated [CO₂] on nutrient cycling, or in
518 turn, nutrient responses may be weak or delayed. And while depth to water table almost certainly
519 plays a role in controlling resin-available nutrient dynamics throughout the peat profile,
520 especially given controls over rooting depth distribution and microbial activity, we saw little

521 warming-induced effects of water table level on resin-available nutrients (see *Supplementary*
522 *Statistical Methods*).

523 Diminished competition at depth from shallowly-rooted vascular plant species, microbial
524 communities, and *Sphagnum* mosses could explain the relatively stronger initial increases in
525 resin-available nutrients with warming at deeper peat depths relative to shallower peat depths
526 (Table 1; Figures 3, S5, S6). For example, prior to the initiation of warming, we found that the
527 fine roots of the ericaceous shrubs and tree species in the S1 Bog were extremely shallowly
528 distributed above the average summer water table level (Iversen and others 2018). And given
529 that vertical transport of dissolved organic matter has been observed in the S1 Bog and in the
530 SPRUCE experimental enclosures (Tfaily and others 2014; Tfaily and others 2018; Wilson and
531 others 2021b), nutrients not acquired by plants in surface peat could accumulate at deeper peat
532 depths (Griffiths & Sebestyen, 2016; Griffiths and others 2019). In turn, warming may lead to
533 the destabilization and subsequent decomposition of organic matter at depth (e.g., Tfaily and
534 others 2018; Wilson and others 2021a; AminiTabrizi and others 2022). Perhaps most
535 importantly, prior to warming, the surface of the S1 Bog was carpeted by a layer of *Sphagnum*
536 mosses (Norby and others 2019) which compete for and intercept nutrients at the peat surface
537 from microbial mineralization, throughfall, and precipitation (Bähring and others 2017; Wang
538 and others 2014).

539 ***Dynamics of resin-available nutrients in response to other nutrient pools***

540 We saw a marked increase in NH₄-N and PO₄-P in the surface peat of the warmest treatments in
541 recent years – especially in 2018 (Table 1, Figures 2, 3). This was unexpected given observed
542 increases in above- and belowground production of ericaceous shrubs as well as in
543 ectomycorrhizal fungal rhizomorphs in response to warming that would ostensibly increase

544 nutrient acquisition by bog vascular plant species (Defrenne and others 2021; Malhotra and
545 others 2020; McPartland and others 2020).

546 We hypothesize that the increase in nutrient availability in surface peat in the warmest plots in
547 later treatment years was linked to the mortality of *Sphagnum* mosses with warming at SPRUCE.
548 By 2018, the mosses were essentially decimated in the warmest enclosures from either peat
549 drying or shading from the strong growth response of ericaceous shrubs (Norby and others
550 2019). In particular, the largest increases in resin-available nutrients we observed were in the
551 warmest enclosures with the least *Sphagnum* nutrient demand (Figure 5). Furthermore, this large
552 increase in resin-available nutrients could also be related to the loss of *Sphagnum* capture of
553 atmospherically-derived nutrients (e.g., van der Heijden and others 2000; Wang and others
554 2017), which could explain the relatively greater relationship with resin-available N, which has
555 higher deposition rates than P (Salmon and others 2021). In turn, there may have been an
556 increase in nutrients released from dead and decaying *Sphagnum* necromass (Gerdol and others
557 2007). While not significant in the overall statistical model, there is some evidence that the
558 strong increase in surface nutrients with warming in more recent years was suppressed under
559 elevated [CO₂] (Table 1). We continue to monitor whether this pattern develops over time.

560 The relationship between nutrient availability and *Sphagnum* growth is bi-directional; while the
561 increase in inorganic nutrient availability in the surface peat of the warmest SPRUCE treatments
562 could be driven by the loss of *Sphagnum*, it could also be contributing to and potentially
563 accelerating *Sphagnum* loss. The detrimental impacts of increased nutrient availability on
564 *Sphagnum* growth and ground cover have been observed in a number of long-term nutrient
565 fertilization or nutrient deposition experiments in nutrient-poor peatlands (e.g., Limpens and
566 others 2011; Larmola and others 2013; Juutinen and others 2016; Levy and others 2018).

567 Shifting peatland vegetation composition with increased nutrient availability has implications for
568 peatland ecosystem function, including increased peat subsidence and decreased capacity for
569 peatland carbon storage (Franzén 2006; Limpens and others 2011; Larmola and others 2013;
570 Kiheri and others 2020), and we are beginning to observe some of these impacts in the SPRUCE
571 experimental treatments (Norby and others 2019; Hanson et al. 2020a).

572 Given that bogs are water-saturated ecosystems where much of the belowground peat
573 environment tends to be perennially inundated with porewater, we compared resin-available
574 nutrient dynamics to porewater nutrient dynamics. We found that resin-available $\text{NH}_4\text{-N}$ and
575 $\text{PO}_4\text{-P}$ were only somewhat correlated with porewater inorganic N and P (Figures 8 and S7,
576 respectively), likely indicating that these metrics of nutrient dynamics represent different spatial
577 and temporal components of the bog nutrient cycles. In contrast to the ‘root-like’ acquisition of
578 ion-exchange resins, porewater, similar to one-time soil extractions, represents a snapshot, or
579 pool, of residual nutrients that are not currently immobilized in plant or microbial biomass
580 (Bourbonniere, 2009; Bridgman and others 2001; Griffiths and others 2019). Furthermore,
581 previous work has shown that ion-exchange resins may be good integrators of nutrient ‘hot
582 moments’ that occur over time (Darrouzet-Nardi and Bowman 2011), while these dynamic
583 fluxes could either be missed with periodic sampling or assigned outsized importance. On the
584 other hand, lateral outflow could be a good integrator of nutrient ‘hot spots’ across the plot (e.g.,
585 Sebestyen and Griffiths 2016; Curtinrich and others 2021). We did observe stronger correlations
586 between resin-available and porewater nutrients in deeper peat (Figures 8, S7), potentially due to
587 the accumulation of nutrients transported downward through the peat profile (e.g., Griffiths &
588 Sebestyen, 2016) or the destabilization of organic matter at depth with warmer temperatures
589 (e.g., Tfaily and others 2018; Wilson and others 2021a; AminiTabrizi and others 2022).

590 Organic nutrients have been hypothesized to be a potential nutrient source in cold, nutrient-
591 limited ecosystems (Kielland, 1994; Kielland and others 2006; Raab and others 1999; Schimel
592 and others 2004), including in the S1 Bog (Salmon and others 2021). However, ion-exchange
593 resins do not allow us to make any conclusions with regard to plant-available organic nutrients,
594 as inorganic resin-available nutrients were not well-correlated with porewater organic N and P
595 (Figure 8). While porewater organic N and P were a large fraction of the total dissolved nutrient
596 pools ($\sim 81\% \pm 19$ SD for N and $46\% \pm 29$ SD for P across all collection dates and depths), much
597 of this porewater organic nutrient pool likely represents polymers too large for plants to directly
598 uptake (Schimel & Bennett, 2004). Furthermore, increasing mineral N can lead to decreasing
599 preference for organic N acquisition (Cott and others 2020), though mycorrhizal partnerships can
600 change this dynamic (Defrenne and others 2021).

601 In addition to N and P, other macronutrients limit plant growth in peatlands (e.g., Hoosbeek and
602 others 2002; Larmola and others 2013; Wang and others 2017; Levy and others 2018), and the
603 dynamics of multiple nutrient cations in porewater are being quantified over space and time at
604 the S1 Bog as well as in the SPRUCE experimental enclosures (e.g., Griffiths and Sebestyen
605 2016; Griffiths and others 2019). Preliminary evidence indicates that the outflow of nutrients
606 such as Ca and Fe have increased with warming in the SPRUCE experimental treatments
607 (Curtinrich and others 2021).

608 ***Warming increased the availability of NH₄-N and PO₄-P at similar rates***

609 We did not find any significant differences in the relative responses of resin-available NH₄-N
610 and PO₄-P to warming (Table 1; Figures 2, 3, and 7). The ratio of cumulative annual available
611 NH₄-N to PO₄-P was highly variable, but averaged 12.6 (± 17.2 SD) across all depths and years,
612 close to the average N/P ratio of plant biomass at the S1 Bog (~ 12 ; Salmon and others 2021).

613 The cumulative annual resin-available N/P ratio tended to be slightly lower than the average N/P
614 ratio of peat measured in the S1 Bog (0 to 30 cm peat depth, averaged across hummocks and
615 hollows, 18 ± 4 SD; Salmon and others 2021) and in a recent review spanning a range of boreal
616 bogs (0 – 50 cm peat depth, 24.5 ± 0.8 ; Wang and others 2015). This could indicate that there
617 was a relatively more limited $\text{NH}_4\text{-N}$ supply compared to $\text{PO}_4\text{-P}$ in the pool of nutrients that were
618 mineralized from peat and became resin-available between 2014 and 2018 (potentially due to
619 low activation energy of N-acquiring enzymes compared to P observed in the S1 Bog; Steinweg
620 and others 2018). In turn, it could be that $\text{NH}_4\text{-N}$ tended to be more limiting for plant and
621 microbial growth in the SPRUCE enclosures (Cleveland and others 2007; Salmon and others
622 2021), and thus there was more competition from plants and microbes with the ion-exchange
623 resins for $\text{NH}_4\text{-N}$ compared to $\text{PO}_4\text{-P}$. While the cumulative annual resin-available N/P ratio did
624 not change significantly in response to warming, resin-available N/P ratio did tend to increase
625 with peat depth (Tables 1 and S3; Figure 7), indicating an increase in P limitation in deeper peat.
626 This increasing N/P ratio with depth has been observed in the peat profile in the SPRUCE bog
627 (Salmon and others 2021) as well as in other bogs (Wang and others 2015). One theory regarding
628 these depth dynamics is that P is strongly limiting to microbial growth in peatlands and is tightly
629 cycled at the peat surface, whereas N is buried and accumulates with peat depth (Bridgman and
630 others 1998; Hill and others 2014; Steinweg and others 2018; Tfaily and others 2014; Wang and
631 others 2015).

632 ***Nutrient availability increased exponentially with peat temperature***

633 In addition to examining the response of $\text{NH}_4\text{-N}$ and $\text{PO}_4\text{-P}$ to warming and elevated $[\text{CO}_2]$ at an
634 annual level, we were also able to look at the more highly-resolved resin-available nutrient
635 dynamics at an ~monthly (28-day) timestep. We fit Q_{10} temperature response functions to

636 consider the temperature cues of monthly nutrient availability (similar to soil CO₂ efflux, as in
637 Hanson and others 2000) and to provide an important model parameter that may be used to
638 simulate or benchmark nutrient availability in land surface models (e.g., Shi and others 2021). A
639 Q₁₀ function explained a large fraction of variation in resin-available NH₄-N and PO₄-P with
640 increasing peat temperature in deeper peat, where the Q₁₀ parameter was quite large (ranging
641 from 2.5 to 51.4 across all years, microtopographic positions, and peat depths; Figures 6 and S4,
642 Table S5). However, the Q₁₀ function was a poor fit in surface soils, potentially due to the
643 influence of competition from plants and microbes on nutrient accumulation on ion-exchange
644 resins or potential loss of nutrients to deeper peat.

645 ***Implications for understanding and modeling peatland responses to warming***

646 A hypothesized indirect response of ecosystems to warming is an increase in microbial nutrient
647 mineralization, and therefore plant-available nutrients, that leads to increased plant growth and
648 changing plant community composition, with follow-on impacts on ecosystem C storage
649 (Bragazza and others 2013; Liu and others 2020; Rustad and others 2001; Salazar and others
650 2020). We use terrestrial biosphere models such as ELM-SPRUCE to conceptualize and test
651 these hypotheses – along with other mechanisms such as plant physiology and nutrient
652 requirements – but models must be compared with and validated against experimental
653 observations. Annual cumulative net nutrient mineralization predicted by ELM-SPRUCE reflects
654 nutrient availability on an annual time scale and is a foundation for modeled plant and soil
655 responses to warming. We compared model-predicted net nutrient mineralization with our long-
656 term and highly-resolved observations of resin-available nutrient dynamics; these fluxes have
657 been qualitatively compared previously across a number of peatland ecosystems to inform
658 understanding of peatland nutrient dynamics (as in Bridgham and others 2001).

659 Similar to the patterns observed in resin-available nutrients, ELM-SPRUCE projected a sustained
660 and exponential increase in net N and P mineralization in response to warming, with no
661 discernable effects of elevated $[CO_2]$ (Figure 4). However, the magnitudes of the modeled
662 increases in net N and P mineralization with increasing peat temperature were much lower than
663 the responses observed in resin-available nutrients (e.g., the calculated Q_{10} responses for model
664 output of net nutrient mineralization ranged between ~1.5 and 5 across peat depths and
665 microtopographic positions, compared to the much higher observed Q_{10} responses in resin-
666 available nutrients; Figures 6 and S4, Table S5). This could be because the Q_{10} warming
667 response of microbial decomposition is underestimated by the model, or in turn because models
668 do not incorporate potential ‘hot moments’ that are integrated by ion-exchange resins over time
669 (e.g., Darrouzet-Nardi and Bowman 2011).

670 Model predictions of increases in annual cumulative net N and P mineralization with warming
671 were greater in depressed hollows, likely due to model-predicted drying in the hollows with
672 warming (a response not observed at SPRUCE between 2014 and 2018), which increases organic
673 matter decomposition. ELM-SPRUCE also predicted greater net nutrient mineralization in
674 hollows on average, similar to the observed patterns in resin-available nutrients, though the
675 mechanism for this was less clear and may be related to relatively less root activity in the
676 hollows than hummocks (e.g., Iversen and others 2018).

677 ELM-SPRUCE predicted a decrease in net N and P mineralization with depth (Figure 4), in
678 contrast to observations of increasing resin-available nutrients with depth, across all treatments
679 (Table 1, Figure 3). ELM-SPRUCE encodes a decline in microbial activity with peat depth, but
680 we hypothesize that the model is either not capturing the potential transport of dissolved organic
681 matter (and associated nutrients) downward through the peat profile (e.g., Griffiths & Sebestyen,

682 2016) or not capturing the destabilization and subsequent decomposition of organic matter at
683 depth with warmer temperatures (e.g., Tfaily and others 2018; Wilson and others 2021a;
684 AminiTabrizi and others 2022). The absence of either mechanism could explain why the model
685 does not predict an accumulation of nutrients in deeper peat. Continued iteration between
686 experimental observations and model predictions, which are based on underlying model
687 parameterization and process conceptualization, can help to improve our projections of peatland
688 responses to climate change across the world.

689 **Conclusions**

690 The SPRUCE experimental warming by elevated [CO₂] manipulation is the largest of its kind,
691 allowing us to examine the whole-ecosystem impacts of a gradient of warming and potential
692 interaction with rising atmospheric [CO₂] in a peatland ecosystem. We found that warming
693 exponentially increased plant-available nutrients, but that the magnitude of the response varied
694 over time and across the microtopography of the bog surface and with peat depth. To-date these
695 patterns remained generally unaffected by elevated [CO₂]. Furthermore, complex interactions are
696 suggested by the simultaneous long-term loss of the *Sphagnum* community and the relatively
697 sudden increase in the availability of nutrients in surface peat, likely driven by both biotic and
698 abiotic factors. Predictions of peatland nutrient availability in land surface models under climate
699 change scenarios must account for dynamic changes in nutrient acquisition by plants and
700 microbes, as well as microtopography and peat depth.

701 **Acknowledgements**

702 The SPRUCE experiment is supported by the Biological and Environmental Research program
703 in the United States Department of Energy's Office of Science. Oak Ridge National Laboratory

704 is managed by UT-Battelle, LLC, for the United States Department of Energy under contract
705 DE-AC05-00OR22725. We thank Sarah Bellaire, Alana Burnham, Kelsey Carter, Ingrid Slette,
706 and Nathan Stenson for their help in the field or laboratory. We also thank the editorial staff and
707 anonymous reviewers for their helpful feedback. The contributions of SDS and funding for the
708 Marcell Experimental Forest and laboratory analysis by the Forest Service were provided by the
709 Northern Research Station of the United States Department of Agriculture Forest Service.

710 **Conflicts of Interest**

711 The authors declare no competing interest.

712

References

Aerts R, Cornelissen JHC, Dorrepaal E. 2006. Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events. *Plant Ecology* 182: 65-77.

AminiTabrizi R, Dontsovaa K, Graf Gracheta N, Tfaily MM. 2022. Elevated temperatures drive abiotic and biotic degradation of organic matter in a peat bog under oxic conditions. *Science of The Total Environment* 804: 150045.

APHA. 2017. Standard methods for the examination of water and wastewater, 23rd ed. Washington, DC.

Bähring A, Fichtner A, Friedrich U, von Oheimb G, Härdtle W. 2017. Bryophytes and organic layers control uptake of airborne nitrogen in low-N environments. *Frontiers in Plant Science* 8: 2080.

Barbier C, Hanson PJ, Todd DE, Belcher D, Jekabson EW, Thomas WK, Riggs J. 2013. Air flow and heat transfer in a temperature-controlled open top enclosure. *American Society of Mechanical Engineers* 7: 9780791845233.

Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallén B. 2001. Raised atmospheric CO₂ levels and increased N deposition cause shifts in plant species composition and production in *Sphagnum* bogs. *Global Change Biology* 7: 591-598.

Bourbonniere RA. 2009. Review of water chemistry research in natural and disturbed peatlands. *Canadian Water Resources Journal* 34: 393-414.

Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H. 2006. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. *Proceedings of the National Academy of Sciences of the United States of America* 103: 19386-19389.

Bragazza L, Parisod J, Buttler A, Bardgett RD. 2013. Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands. *Nature Climate Change* 3: 273-277.

Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C. 2006. The carbon balance of North American wetlands. *Wetlands* 26: 889-916.

Bridgham SD, Pastor J, Dewey B, Weltzin JF, Updegraff K. 2008. Rapid carbon response of peatlands to climate change. *Ecology* 89: 3041-3048.

Bridgham SD, Updegraff K, Pastor J. 1998. Carbon, nitrogen, and phosphorus mineralization in northern wetlands. *Ecology* 79: 1545-1561.

Bridgman SD, Updegraff K, Pastor J. 2001. A comparison of nutrient availability indices along an ombrotrophic-minerotrophic gradient in Minnesota wetlands. *Soil Science Society of America Journal* 65: 259-269.

Burrows SM, Maltrud M, Yang X, Zhu Q, Jeffery N, Shi X, Ricciuto D, Wang S, Bisht G, Tang J, Wolfe J, Harrop BE, Singh B, Brent S, Baldwin S, Zhou T, Cameron-Smith P, Keen N, Collier N, Xu M, Hunke EC, Elliott SM, Turner AK, Li H, Wang H, Golaz J-C, Bond-Lamberty B, Hoffman FM, Riley WJ, Thornton PE, Calvin K, Leung LR. 2020. The DOE E3SM v1.1 Biogeochemistry configuration: Description and simulated ecosystem-climate responses to historical changes in forcing. *Journal of Advances in Modeling Earth Systems* 12: e2019MS001766.

Cleveland CC, Liptzin D. 2007. C:N:P stoichiometry in soil: is there a "Redfield ratio" for the microbial biomass? *Biogeochemistry* 85: 235-252.

Cott GM, Jansen MAK, Megonigal JP. 2020. Uptake of organic nitrogen by coastal wetland plants under elevated CO₂. *Plant and Soil* 450: 521-535.

Curtinrich HJ, Sebestyen SD, Griffiths NA, Hall SJ. 2021. Warming stimulates iron-mediated carbon and nutrient cycling in mineral-poor peatlands. *Ecosystems*.

Darrouzet-Nardi A, Bowman WD. 2011. Hot spots of inorganic nitrogen availability in an alpine-subalpine ecosystem, Colorado Front Range. *Ecosystems* 14: 848-863.

de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C. 2006. Interactions between plant growth and soil nutrient cycling under elevated CO₂: a meta-analysis. *Global Change Biology* 12: 2077-2091.

Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles WR, Allen MF, Hanson PJ, Iversen CM. 2021. High-resolution minirhizotrons advance our understanding of root-fungal dynamics in an experimentally warmed peatland. *Plants, People, Planet* 3: 640-652.

Eppinga MB, Rietkerk M, Belyea LR, Nilsson MB, De Ruiter PC, Wassen MJ. 2010. Resource contrast in patterned peatlands increases along a climatic gradient. *Ecology* 91: 2344-2355.

Fenner N, Ostle NJ, McNamara N, Sparks T, Harmens H, Reynolds B, Freeman C. 2007. Elevated CO₂ effects on peatland plant community carbon dynamics and DOC production. *Ecosystems* 10: 635-647.

Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO₂. *Proceedings of the National Academy of Sciences* 104: 14014-14019.

Franzén LG. 2006. Increased decomposition of subsurface peat in Swedish raised bogs: Are temperate peatlands still net sinks of carbon? *Mires and Peat* 1: 03.

Gerdol R, Petraglia A, Bragazza L, Iacumin P, Brancaleoni L. 2007. Nitrogen deposition interacts with climate in affecting production and decomposition rates in *Sphagnum* mosses. *Global Change Biology* 13: 1810-1821.

Giblin AE, Laundre JA, Nadelhoffer KJ, Shaver GR. 1994. Measuring nutrient availability in arctic soils using ion exchange resins: A field test. *Soil Science Society of America Journal* 58: 1154-1162.

Gorham E. 1991. Northern peatlands: Role in the carbon cycle and probably responses to climatic warming. *Ecological Applications* 1: 182-195.

Graham JD, Glenn NF, Spaete LP, Hanson PJ. 2020. Characterizing peatland microtopography using gradient and microform-based approaches. *Ecosystems* 23: 1464-1480.

Griffiths NA, Sebestyen SD. 2016. Dynamic vertical profiles of peat porewater chemistry in a northern peatland. *Wetlands* 36: 1119-1130.

Griffiths NA, Hanson PJ, Ricciuto DM, Iversen CM, Jensen AM, Malhotra A, McFarlane KJ, Norby RJ, Sargsyan K, Sebestyen SD, Shi X, Walker AP, Ward EJ, Warren JM, Weston DJ. 2017. Temporal and spatial variation in peatland carbon cycling and implications for interpreting responses of an ecosystem-scale warming experiment. *Soil Science Society of America Journal* 81: 1668-1688.

Griffiths NA, Hook LA, Hanson PJ. 2016a. SPRUCE S1 Bog and SPRUCE experiment location survey results, 2015 and 2020. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. <https://doi.org/10.3334/CDIAC/spruce.015>

Griffiths NA, Sebestyen SD, Oleheiser KC. 2019. Variation in peatland porewater chemistry over time and space along a bog to fen gradient. *Science of the Total Environment* 697: 14.

Griffiths NA, Sebestyen SD, Oleheiser KC, Stelling JM, Pierce CE, Nater EA, Toner BM, Kolka RK. 2016b. SPRUCE Porewater Chemistry Data for Experimental Plots Beginning in 2013, 3rd edition. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. <https://doi.org/10.3334/CDIAC/spruce.028>

Gu Q, Grogan P. 2020. Nutrient availability measurement techniques in arctic tundra soils: in situ ion exchange membranes compared to direct extraction. *Plant and Soil* 454: 359-378.

Hanson PJ, Edwards NT, Garten CT, Andrews JA. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. *Biogeochemistry* 48: 115-146.

Hanson PJ, Griffiths NA, Iversen CM, Norby RJ, Sebestyen SD, Phillips JR, Chanton JP, Kolka RK, Malhotra A, Oleheiser KC, Warren JM, Shi X, Yang X, Mao J, Ricciuto DM. 2020a. Rapid net carbon loss from a whole-ecosystem warmed peatland. *AGU Advances* 1: e2020AV000163.

Hanson PJ, Phillips JR, Nettles WR, Pearson KJ, Hook LA. 2020b. SPRUCE plot-level water table data assessments for absolute elevations and height with respect to mean hollows beginning in 2015. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. <https://doi.org/10.25581/spruce.079/1608615>

Hanson PJ, Riggs JS, Nettles WR, Krassovski MB, Hook LA. 2016. SPRUCE whole ecosystems warming (WEW) environmental data beginning August 2015. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. <https://doi.org/10.3334/CDIAC/spruce.032>

Hanson PJ, Riggs JS, Nettles WR, Phillips JR, Krassovski MB, Hook LA, Gu L, Richardson AD, Aubrecht DM, Ricciuto DM, Warren JM, Barbier C. 2017. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO₂ atmosphere. *Biogeosciences* 14: 861-883.

Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CED, Robinson BS, Hodgson DJ, Inger R. 2018. A brief introduction to mixed effects modelling and multi-model inference in ecology. *PeerJ* 6: e4794.

Hedwall P-O, Brunet J, Rydin H. 2017. Peatland plant communities under global change: negative feedback loops counteract shifts in species composition. *Ecology* 98: 150-161.

Herndon EM, Kinsman-Costello L, Duroe KA, Mills J, Kane ES, Sebestyen SD, Thompson AA, Wullschleger SD. 2019. Iron (Oxyhydr)Oxides serve as phosphate traps in tundra and boreal peat soils. *Journal of Geophysical Research: Biogeosciences* 124: 227-246.

Hill BH, Elonen CM, Jicha TM, Kolka RK, Lehto LLP, Sebestyen SD, Seifert-Monson LR. 2014. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types. *Biogeochemistry* 120: 203-224.

Hoosbeek MR, Van Breemen N, Vasander H, Buttler A, Berendse F. 2002. Potassium limits potential growth of bog vegetation under elevated atmospheric CO₂ and N deposition. *Global Change Biology* 8: 1130-1138.

IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V, P Zhai, A Pirani, SL Connors, C Péan, S Berger, N Caud, Y Chen, L Goldfarb, MI Gomis, M Huang, K Leitzell, E Lonnoy, JBR Matthews, TK Maycock, T Waterfield, O Yelekçi, R Yu, B Zhou (eds.)]. Cambridge University Press. In Press.

Iversen CM, Bridgman SD, Kellogg LE. 2010. Scaling plant nitrogen use and uptake efficiencies in response to nutrient addition in peatlands. *Ecology* 91: 693-707.

Iversen CM, Childs J, Norby RJ, Ontl TA, Kolka RK, Brice DJ, McFarlane K, Hanson PJ. 2018. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat. *Plant and Soil* 424: 123-143.

Iversen CM, Hanson PJ, Brice DJ, Phillips JR, McFarlane KJ, Hobbie EA, Kolka RK. 2014. SPRUCE peat physical and chemical characteristics from experimental plot cores, 2012. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. <https://doi.org/10.3334/CDIAC/spruce.005>

Iversen CM, Latimer J, Burnham A, Brice DJ, Childs J, Vander Stel HM. 2017. SPRUCE Plant-Available Nutrients Assessed with Ion-Exchange Resins in Experimental Plots, Beginning in 2013. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. <http://dx.doi.org/10.3334/CDIAC/spruce.036>.

Juutinen S, Moore TR, Laine AM, Bubier JL, Tuittila E-S, De Young A, Chong M. 2016. Responses of the mosses *Sphagnum capillifolium* and *Polytrichum strictum* to nitrogen deposition in a bog: Growth, ground cover, and CO₂ exchange. *Botany* 94: 127-138.

Keller JK, Bauers AK, Bridgman SD, Kellogg LE, Iversen CM. 2006. Nutrient control of microbial carbon cycling along an ombrotrophic-minerotrophic peatland gradient. *Journal of Geophysical Research: Biogeosciences*, 111: G3.

Keuper F, van Bodegom PM, Dorrepaal E, Weedon JT, van Hal J, van Logtestijn RSP, Aerts R. 2012. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. *Global Change Biology* 18: 1998-2007.

Kielland K. 1994. Amino-acid absorption by arctic plants – Implications for plant nutrition and nitrogen cycling. *Ecology* 75: 2373-2383.

Kielland K, McFarland J, Olson K. 2006. Amino acid uptake in deciduous and coniferous taiga ecosystems. *Plant and Soil* 288: 297-307.

Kiheri H, Velmala S, Pennanen T, Timonen S, Sietiö O-M, Fritze H, Heinonsalo J, van Dijk N, Dise N, Larmola T. 2020. Fungal colonization patterns and enzymatic activities of peatland ericaceous plants following long-term nutrient addition. *Soil Biology and Biochemistry* 147: 107833.

Koerselman W, Arthur FMM. 1996. The Vegetation N:P Ratio: a new tool to detect the nature of nutrient limitation. *Journal of Applied Ecology* 33: 1441-1450.

Larmola T, Bubier JL, Kobyljanec C, Basiliko N, Juutinen S, Humphreys E, Preston M, Moore TR. 2013. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. *Global Change Biology* 19: 3729-3739.

Levy P, van Dijk N, Gray A, Sutton M, Jones M, Leeson S, Dise N, Leith I, Sheppard L. 2019. Response of a peat bog vegetation community to long-term experimental addition of nitrogen. *Journal of Ecology* 107: 1167-1186.

Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaeppman-Strub G. 2008. Peatlands and the carbon cycle: from local processes to global implications – a synthesis. *Biogeosciences* 5: 1475-1491.

Limpens J, Granath G, Gunnarsson U, Aerts R, Bayley S, Bragazza L, Bubier J, Buttler A, van den Ber L JL, Francez A-J, Gerdol R, Grosvernier P, Heijmans MMPD, Hoosbeek MR, Hotes S, Ilomets M, Leith I, Mitchell EAD, Moore T, Nilsson MB, Nordbakken J-F, Rochefort L, Rydin H, Sheppard LJ, Thormann M, Wiedermann MM, Williams BL, Xu B. 2011. Climatic modifiers of the response to N deposition in peat-forming *Sphagnum* mosses: a meta-analysis. *New Phytologist* 191: 496-507.

Liu H, Xu X, Zhou C, Zhao J, Li B, Nie M. 2020. Geographic linkages of root traits to salt marsh productivity. *Ecosystems*.

Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. *Functional Ecology* 8: 315-323.

Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. *Nature* 431: 440-443.

Malhotra A, Brice DJ, Childs J, Graham JD, Hobbie EA, Vander Stel H, Feron SC, Hanson PJ, Iversen CM. 2020. Peatland warming strongly increases fine-root growth. *Proceedings of the National Academy of Sciences* 117: 17627-17634.

Malhotra A, Moore TR, Limpens J, Roulet NT. 2018. Post-thaw variability in litter decomposition best explained by microtopography at an ice-rich permafrost peatland. *Arctic, Antarctic, and Alpine Research* 50: e1415622.

McFarlane KJ, Hanson PJ, Iversen CM, Phillips JR, Brice DJ. 2018. Local spatial heterogeneity of Holocene carbon accumulation throughout the peat profile of an ombrotrophic northern Minnesota bog. *Radiocarbon* 60: 941-962.

McPartland MY, Montgomery RA, Hanson PJ, Phillips JR, Kolka R, Palik B. 2020. Vascular plant species response to warming and elevated carbon dioxide in a boreal peatland. *Environmental Research Letters* 15: 12.

Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler R, Jain AK, Luo Y, Parton W, Prentice IC, Thornton PE, Wang S, Wang Y-P, Weng E, Iversen CM, McCarthy HR, Warren JM, Oren R, Norby RJ. 2015. Using ecosystem experiments to improve vegetation models. *Nature Climate Change* 5: 528-534.

Millar R, Cornelissen JHC, van Logtestijn RSP, Toet S, Aerts R. 2006. Vascular plant responses to elevated CO₂ in a temperate lowland *Sphagnum* peatland. *Plant Ecology* 182: 13-24.

Mooshammer M, Hofhansl F, Frank AH, Wanek, W, Häammerle I, Leitner S, Schnecker J, Wild B, Watzka M, Keiblunger KM, Zechmeister-Boltenstern S, Richter A. 2017. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events. *Science Advances* 3: e1602781.

Munir TM, Khadka B, Xu B, Strack M. 2017. Mineral nitrogen and phosphorus pools affected by water table lowering and warming in a boreal forested peatland. *Ecohydrology* 10: 15.

Murphy MT, Moore TR. 2010. Linking root production to aboveground plant characteristics and water table in a temperate bog. *Plant and Soil* 336: 219-231.

Nichols JE, Peteet DM. 2019. Rapid expansion of northern peatlands and doubled estimate of carbon storage. *Nature Geoscience* 12: 917-921.

Norby RJ, Childs J. 2018. SPRUCE: Sphagnum productivity and community composition in the SPRUCE experimental Plots. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
<https://doi.org/10.25581/spruce.049/1426474>

Norby RJ, Childs J, Brice DJ. 2020. SPRUCE: Sphagnum carbon, nitrogen and phosphorus concentrations in the SPRUCE experimental plots. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
<https://doi.org/10.25581/spruce.084/1647361>

Norby RJ, Childs J, Hanson PJ, Warren JM. 2019. Rapid loss of an ecosystem engineer: *Sphagnum* decline in an experimentally warmed bog. *Ecology and Evolution* 9: 12571-12585.

Olid C, Nilsson MB, Eriksson T, Klaminder J. 2014. The effects of temperature and nitrogen and sulfur additions on carbon accumulation in a nutrient-poor boreal mire: Decadal effects assessed using 210Pb peat chronologies. *Journal of Geophysical Research: Biogeosciences* 119: 392-403.

Parsekian AD, Slater L, Ntarlagiannis D, Nolan J, Sebesteyen SD, Kolka RK, Hanson PJ. 2012. Uncertainty in peat volume and soil carbon estimated using ground-penetrating radar and probing. *Soil Science Society of America Journal* 76: 1911-1918.

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

Raab TK, Lipson DA, Monson RK. 1999. Soil amino acid utilization among species of the Cyperaceae: Plant and soil processes. *Ecology* 80: 2408-2419.

Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. *Plant and Soil* 321: 305-339.

Richardson CJ. 1985. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. *Science* 228: 1424-1427.

Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen J, Gurevitch J, GCTE-NEWS. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. *Oecologia* 126: 543-562.

Salazar A, Rousk K, Jónsdóttir IS, Bellenger J-P, Andrésson ÓS. 2020. Faster nitrogen cycling and more fungal and root biomass in cold ecosystems under experimental warming: a meta-analysis. *Ecology* 101: e02938.

Salmon VG, Brice DJ, Brigham S, Childs J, Graham JD, Griffiths NA, Hofmockel K, Iversen CM, Jicha TM, Kolka RK, Kostka JE, Malhotra A, Norby RJ, Phillips JR, Ricciuto D, Schadt CW, Sebestyen SD, Shi X, Walker AP, Warren JM, Weston DJ, Yang X, Hanson PJ. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: A benchmark for assessing change. *Plant and Soil* 466: 649–674.

Schimel JP, Bennett J. 2004. Nitrogen mineralization: Challenges of a changing paradigm. *Ecology* 85: 591-602.

Seay S. 2018. Peatlands hold carbon even in warming environment. *Oak Ridge National Laboratory Review* 51: 20-23.

Sebestyen SD, Dorrance C, Olson DM, Verry ES, Kolka RK, Elling AE, Kyllander R. 2011. Long-term monitoring sites and trends at the Marcell Experimental Forest. In R. K. Kolka, S. D. Sebestyen, a. E. S. Verry, & K. N. Brooks (Eds.), *Peatland Biogeochemistry and Watershed Hydrology at the Marcell Experimental Forest* (pp. 15-72). New York, NY: CRC Press, Inc.

Sebestyen SD, Griffiths NA. 2016. SPRUCE enclosure corral and sump system: Description, operation, and calibration. Climate Change Science Institute, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. <http://dx.doi.org/10.3334/CDIAC/spruce.030>

Shi X, Ricciuto DM, Thornton PE, Xu X, Yuan F, Norby RJ, Walker AP, Warren JM, Mao J, Hanson PJ, Meng L, Weston D, Griffiths NA. 2021. Extending a land-surface model with Sphagnum moss to simulate responses of a northern temperate bog to whole ecosystem warming and elevated CO₂. *Biogeosciences* 18: 467-486.

Shi X, Thornton PE, Ricciuto DM, Hanson PJ, Mao J, Sebestyen SD, Griffiths NA, Bisht G. 2015. Representing northern peatland microtopography and hydrology within the Community Land Model. *Biogeosciences* 12: 6463-6477.

Skogley EO, Dobermann A. 1996. Synthetic ion-exchange resins: Soil and environmental studies. *Journal of Environmental Quality* 25: 13-24.

Spohn M, Kuzyakov Y. 2013. Phosphorus mineralization can be driven by microbial need for carbon. *Soil Biology and Biochemistry* 61: 69-75.

Steinweg JM, Kostka JE, Hanson PJ, Schadt CW. 2018. Temperature sensitivity of extracellular enzymes differs with peat depth but not with season in an ombrotrophic bog. *Soil Biology and Biochemistry* 125: 244-250.

Tfaily MM, Cooper WT, Kostka JE, Chanton PR, Schadt CW, Hanson PJ, Iversen CM, Chanton JP. 2014. Organic matter transformation in the peat column at Marcell Experimental Forest: Humification and vertical stratification. *Journal of Geophysical Research-Biogeosciences* 119: 661-675.

Tfaily MM, Wilson RM, Cooper WT, Kostka JE, Hanson P, Chanton JP. 2018. Vertical stratification of peat pore water dissolved organic matter composition in a peat bog in northern Minnesota. *Journal of Geophysical Research: Biogeosciences* 123: 479-494.

Toet S, Cornelissen JHC, Aerts R, van Logtestijn RSP, de Beus M, Stoevelaar R. 2006. Moss responses to elevated CO₂ and variation in hydrology in a temperate lowland peatland. *Plant Ecology* 182: 27-40.

van der Heijden E, Verbeek SK, Kuiper PJC. 2000. Elevated atmospheric CO₂ and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss *Sphagnum recurvum* P. Beauv. var. *mucronatum* (Russ.) Warnst. *Global Change Biology* 6: 201-212.

Vitousek PM, Howarth RW. 1991. Nitrogen limitation on land and in the sea: How can it occur? *Biogeochemistry* 13: 87-115.

Vitt DH, Chee, W-L. 1990. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. *Vegetatio* 89: 87-106.

Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF . . . Zuidema PA. 2021. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO₂. *New Phytologist* 229: 2413-2445.

Walker TW, Syers JK. 1976. The fate of phosphorus during pedogenesis. *Geoderma* 15: 1-19.

Wang J, Shi F, Xu B, Wang Q, Wu Y, Wu N. 2014. Uptake and recovery of soil nitrogen by bryophytes and vascular plants in an alpine meadow. *Journal of Mountain Science* 11: 475-484.

Wang M, Moore TR. 2014. Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. *Ecosystems* 17: 673-684.

Wang M, Moore TR, Talbot J, Riley JL. 2015. The stoichiometry of carbon and nutrients in peat formation. *Global Biogeochemical Cycles* 29: 113-121.

Wang M, Talbot J, Moore TR. 2018. Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland. *Science of the Total Environment* 621: 1255-1263.

Weedon JT, Kowalchuk GA, Aerts R, van Hal J, van Logtestijn R, Taş N, Röling WFM, van Bodegom PM. 2012. Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. *Global Change Biology* 18: 138-150.

Weltzin JF, Bridgham SD, Pastor J, Chen J, Harth C. 2003. Potential effects of warming and drying on peatland plant community composition. *Global Change Biology* 9: 141-151.

Wilson RM, Griffiths NA, Visser A, McFarlane KJ, Sebestyen SD, Oleheiser KC, Bosman S, Hopple AM, Tfaily MM, Kolka RK, Hanson PJ, Kostka JE, Bridgham SD, Keller JK, Chanton JP. 2021a. Radiocarbon analyses quantify peat carbon losses with increasing temperature in a whole ecosystem warming experiment, *Journal of Geophysical Research: Biogeosciences* 126: e2021JG006511.

Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CA, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, Eder EK, Purvine SO, Kolka RK, Sebestyen SD, Griffiths NA, Schadt CW, Keller JK, Bridgham SD, Chanton JP, Kostka JE. 2021b. Soil metabolome response to whole-ecosystem warming at the Spruce and Peatland Responses under Changing Environments experiment, *Proceedings of the National Academy of Sciences* 118: e2004192118.

Yang JE, Skogley EO, Georgitis SJ, Schaff BE, Ferguson AH. 1991. Phytoavailability soil test: Development and verification of theory. *Soil Science Society of America Journal* 55: 1358-1365.

Yang X, Ricciuto DM, Thornton PE, Shi X, Xu M, Hoffman F, Norby RJ. 2019. The effects of phosphorus cycle dynamics on carbon sources and sinks in the Amazon region: A modeling study using ELM v1. *Journal of Geophysical Research: Biogeosciences* 124: 3686-3698.

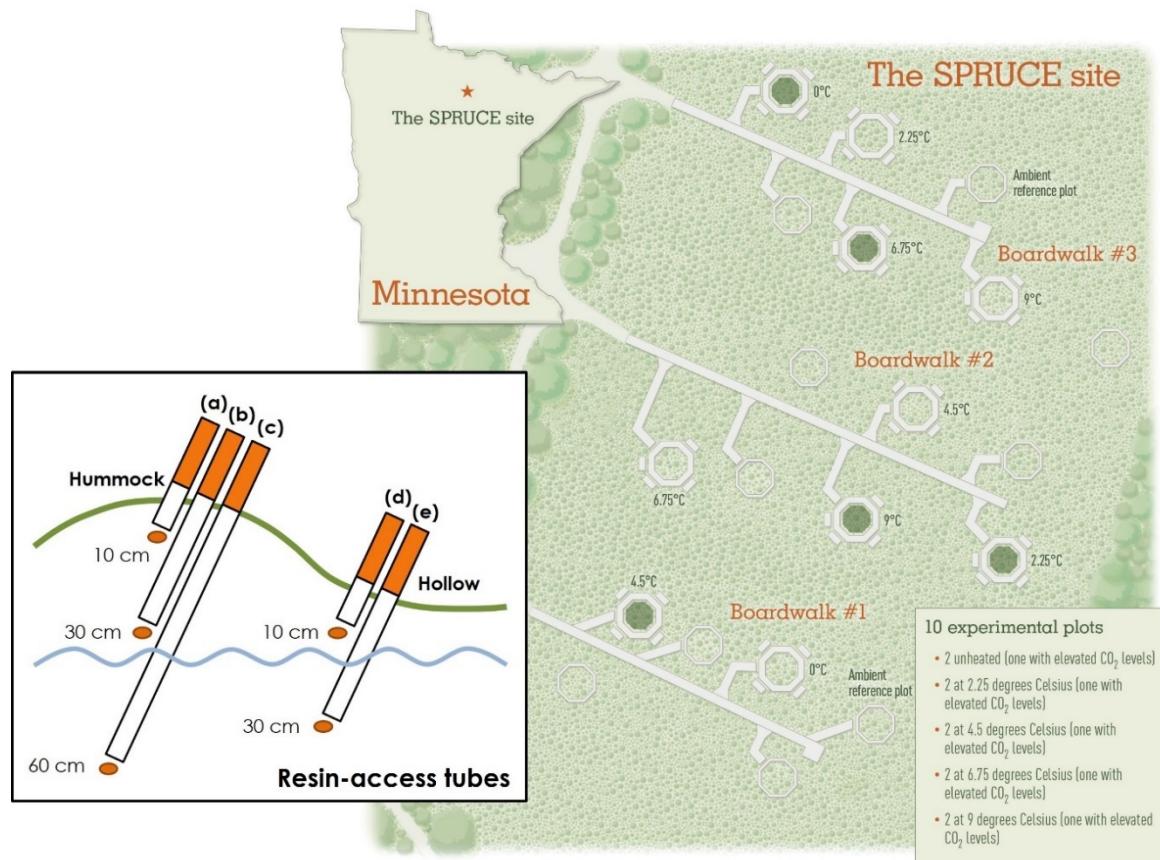
Supporting information

The supporting information is incorporated into one document that includes: (1) *Supplementary Statistical Methods*, including linear, mixed-effects model selection for both annual and monthly models, as well as (2) *Supplementary Tables* (Tables S1 – S5), and (3) *Supplementary Figures* (Figures S1 – S7).

713 **Tables**714 **Table 1.** Cumulative annual resin-available NH₄-N and PO₄-P, and their annual ratio, across experimental treatments,

715 microtopographic positions, and peat depths from 2014 to 2018.

Year	Atmospheric [CO ₂]	Micro- topography	Depth (cm)	Cumulative annual available NH ₄ -N ($\mu\text{g N cm}^{-2}\text{year}^{-1}$)					Cumulative annual available PO ₄ -P ($\mu\text{g P cm}^{-2}\text{year}^{-1}$)					Cumulative annual N/P ratio							
				Amb.	0°C	2.25°C	4.5°C	6.75°C	9°C	Amb.	0°C	2.25°C	4.5°C	6.75°C	9°C	Amb.	0°C	2.25°C	4.5°C	6.75°C	9°C
2014	Ambient	Hummock	10	6 ± 2	12	15	11	7	15	1.0 ± 1.3	0.7	3.5	1.3	0.6	2.3	31 ± 12	113	4	67	26	8
			30	38 ± 17	11	35	20	13	18	6.1 ± 2.8	1.3	3.2	6.1	4.3	2.3	7 ± 0	8	25	3	4	8
			60	115 ± 51	25	140	143	152	90	10.8 ± 1.3	3.9	9.3	25.0	24.1	15.4	11 ± 6	7	17	5	8	6
		Hollow	10	20 ± 8	20	23	13	13	31	3.3 ± 1.0	1.9	6.9	3.0	3.1	6.6	6 ± 1	11	3	4	44	5
			30	24 ± 14	12	84	49	26	32	2.8 ± 2.8	1.7	13.1	9.1	3.9	4.6	37 ± 42	8	6	6	6	7
	Elevated	Hummock	10	--	11	10	11	4	4	--	3.3	0.1	1.3	2.6	0.2	--	8	175	52	2	28
			30	--	17	21	23	43	17	--	3.3	2.5	5.0	12.2	2.2	--	5	10	6	4	105
			60	--	115	49	31	347	33	--	25.3	7.9	4.7	56.1	9.8	--	5	6	8	6	6
		Hollow	10	--	26	13	29	56	18	--	5.5	6.9	4.6	10.7	1.9	--	5	3	6	4	83
			30	--	77	33	28	179	37	--	7.0	2.6	2.7	36.1	5.9	--	11	13	39	5	7
2015	Ambient	Hummock	10	7 ± 4	6	7	10	11	17	1.5 ± 1.2	1.3	0.9	1.4	3.3	3.2	5 ± 1	5	7	8	3	6
			30	25 ± 6	10	23	15	16	16	1.6 ± 0.0	1.1	0.9	3.4	9.0	2.2	16 ± 4	9	27	4	2	9
			60	73 ± 24	16	178	106	174	116	3.0 ± 1.7	1.4	10.1	8.7	4.6	4.3	33 ± 29	11	23	10	41	25
		Hollow	10	16 ± 9	18	13	14	20	28	1.5 ± 0.7	5.3	0.9	2.3	11.0	5.4	11 ± 2	4	14	6	2	5
			30	17 ± 4	10	70	32	42	69	1.8 ± 1.3	1.1	1.9	4.7	3.4	3.5	12 ± 5	9	38	6	12	19
	Elevated	Hummock	10	--	1	7	7	5	15	--	0.6	0.7	2.2	1.4	2.2	--	2	9	5	4	7
			30	--	21	16	11	32	20	--	1.1	1.3	1.9	6.6	3.0	--	19	13	7	5	6
			60	--	50	35	27	407	59	--	3.7	2.1	2.3	54.1	4.5	--	13	14	12	9	13
		Hollow	10	--	19	17	11	77	24	--	4.5	2.5	1.8	31.2	4.2	--	8	7	6	2	6
			30	--	27	23	26	227	34	--	2.6	1.7	2.6	32.5	3.2	--	10	15	8	9	11
2016	Ambient	Hummock	10	3 ± 0	8	13	5	2	20	0.4 ± 0.1	1.1	1.9	0.7	2.3	4.4	13 ± 2	9	7	11	1	5
			30	22 ± 3	22	31	37	42	31	1.1 ± 0.1	2.9	4.3	6.5	29.3	4.7	24 ± 12	12	15	6	2	8
			60	78 ± 30	16	157	170	209	173	1.9 ± 0.1	0.7	11.2	15.3	12.1	16.0	41 ± 11	43	16	16	28	14
		Hollow	10	16 ± 5	23	27	12	11	33	1.1 ± 0.2	11.1	4.1	1.9	9.1	4.0	21 ± 9	3	7	8	4	9
			30	17 ± 6	9	78	52	100	122	0.8 ± 0.2	1.2	7.8	8.5	8.8	13.9	44 ± 32	7	13	7	10	8
	Elevated	Hummock	10	--	8	6	4	4	9	--	1.7	0.7	1.4	1.7	1.8	--	24	9	3	6	10
			30	--	15	7	63	99	17	--	3.0	1.3	6.8	20.7	2.9	--	5	9	5	6	6
			60	--	30	19	54	492	165	--	3.2	1.9	2.5	46.0	15.4	--	9	9	20	11	11
		Hollow	10	--	38	18	44	207	8	--	11.4	2.8	3.9	33.4	4.4	--	3	6	11	5	3
			30	--	25	30	44	428	97	--	5.8	7.1	3.0	40.3	7.4	--	5	4	16	10	14
2017	Ambient	Hummock	10	8 ± 5	2	5	10	7	10	1.0 ± 0.7	0.3	0.6	1.7	6.0	2.9	9 ± 2	8	7	6	6	3
			30	14 ± 2	23	20	98	19	34	1.0 ± 0.3	1.4	1.9	22.7	4.6	2.2	31 ± 9	17	18	6	18	22
		Hollow	10	14 ± 4	9	16	20	14	25	0.7 ± 0.0	1.1	1.5	2.6	6.9	7.8	22 ± 5	23	11	8	18	4
			30	15 ± 4	9	64	75	127	136	0.5 ± 0.2	0.5	7.1	11.8	4.8	17.7	37 ± 15	19	13	16	20	12
	Elevated	Hummock	10	--	3	6	8	9	9	--	0.5	0.8	2.7	1.8	1.3	--	8	8	3	9	11
			30	--	30	10	31	142	49	--	7.7	0.8	2.1	23.1	5.2	--	4	11	16	6	10
		Hollow	10	--	23	20	85	577	281	--	2.5	2.1	4.9	60.3	23.6	--	36	8	14	9	12
			30	--	22	13	25	191	7	--	7.6	2.1	3.3	31.1	0.6	--	3	10	10	5	15


2018	Ambient	Hummock	10	6 ± 3	6	13	16	69	330	1.4 ± 0.8	0.7	6.0	9.1	34.7	78.0	6 ± 0	9	2	2	2	4
			30	13 ± 0	17	21	35	85	259	1.8 ± 1.8	0.7	8.3	9.8	41.5	30.0	16 ± 16	28	3	4	3	8
			60	63 ± 33	19	159	181	290	409	2.9 ± 2.3	0.6	14.0	14.6	18.0	42.7	24 ± 8	31	13	15	32	14
		Hollow	10	18 ± 0	9	39	16	108	414	2.1 ± 1.3	2.7	10.7	5.3	33.5	75.6	11 ± 6	3	5	5	3	6
			30	9 ± 3	6	118	67	152	501	1.7 ± 0.1	0.6	5.4	9.9	14.7	73.2	9 ± 4	10	21	8	16	7
	Elevated	Hummock	10	--	6	6	61	23	14	--	10.3	0.8	25.1	33.4	3.2	--	1	8	2	1	3
			30	--	45	10	49	243	36	--	16.5	1.8	6.7	51.3	5.3	--	3	5	8	5	7
			60	--	44	21	109	501	286	--	8.8	1.8	4.6	72.9	13.9	--	5	11	19	7	22
		Hollow	10	--	19	28	113	367	14	--	17.0	14.9	20.0	85.9	2.2	--	1	2	7	4	7
			30	--	35	24	53	411	104	--	17.0	8.4	7.6	66.9	2.9	--	2	4	12	7	34

716 Notes: We sampled the SPRUCE experimental plots in 2013, but do not include the annual totals here. We sampled only three months
 717 in the summer, directly after installation in June 2013, and we expected some disturbance associated with access-tube installation
 718 along with a shortened collection timeframe that precluded a full assessment of annual nutrient accumulation. Note that 'cm²' was the
 719 surface area of the half of the resin capsule that was in contact with the surrounding peat (i.e., Figure S1f). Where an 'A' or 'B' sub-
 720 replicate sample was (rarely) missing or lost at a given sampling date, we inserted the value for the other sub-replicate in order to
 721 calculate an annual sum; data for each year, depth, and topographic position are averaged across the annual accumulated resin-
 722 available nutrients at the A and B location in each enclosure. Note that the NH₄-N and PO₄-P cumulative annual data can also be
 723 found in Figure 3, but given the wide range across orders of magnitude of the data, we also include the data here. We also include the
 724 data from the ambient plots (i.e., 'Amb.', plots without an enclosure that receive no warming or elevated [CO₂]); ambient data for each
 725 year, depth, and topographic position are averaged across the annual accumulated resin-available nutrients at the A and B location in
 726 each of two ambient plots, which were then averaged ± 1 SD.

727

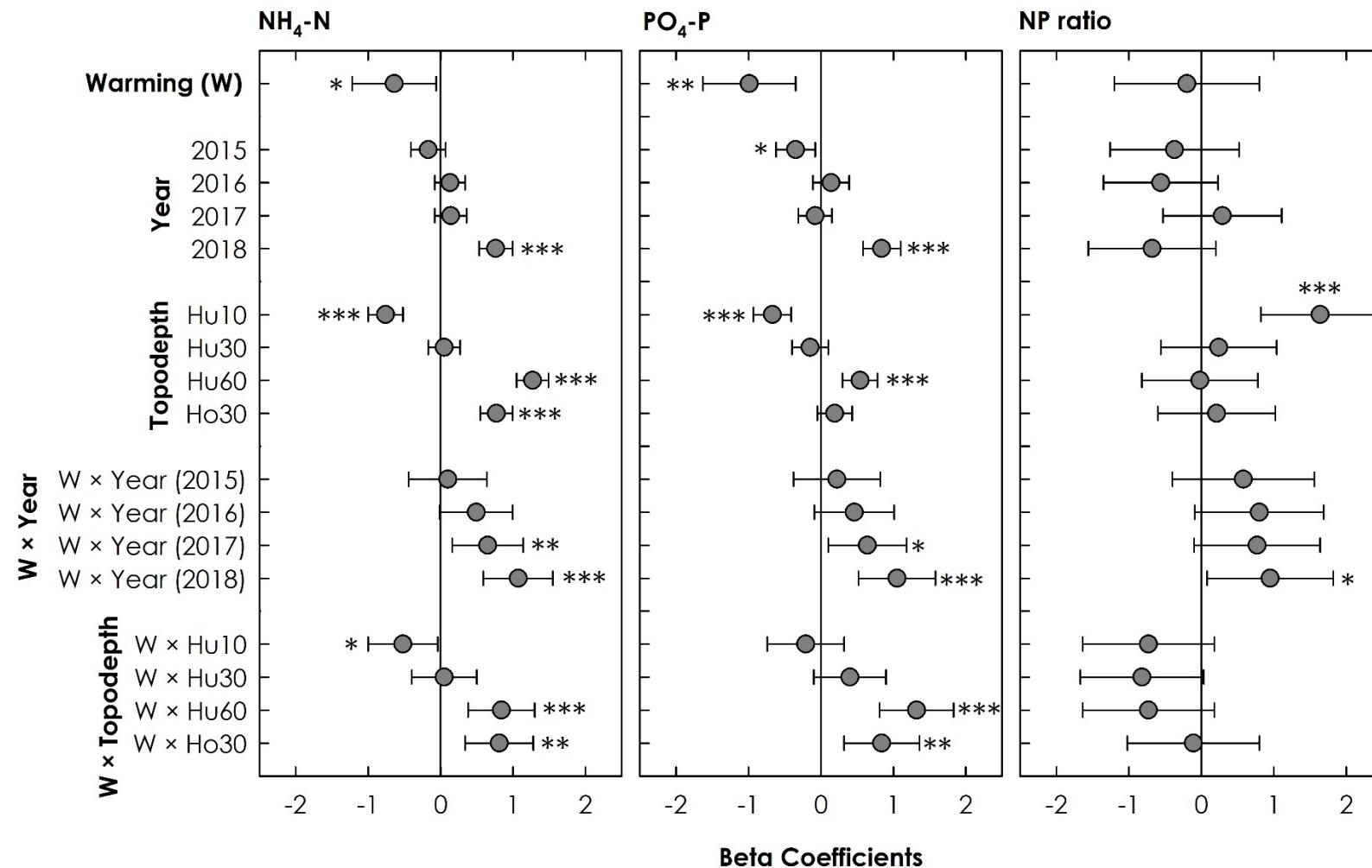

Figures

Figure 1 A pictogram of the layout of the SPRUCE experimental enclosures and their associated treatments. The SPRUCE experimental enclosures were warmed above- and belowground in a regression design spanning $+0^{\circ}\text{C}$ to $+9^{\circ}\text{C}$; half of the enclosures also received $+500 \text{ ppm CO}_2$ (highlighted in this pictogram with green octagons). There are also two fully-instrumented ambient reference plots without enclosures. Resin-access tubes were installed at multiple depths at two locations (A and B) in each enclosure or ambient plot in paired hummock-hollow microtopography at each location (see inset diagram). SPRUCE site pictogram courtesy of Brett Hopwood, ORNL Graphics, as in Seay (2018).

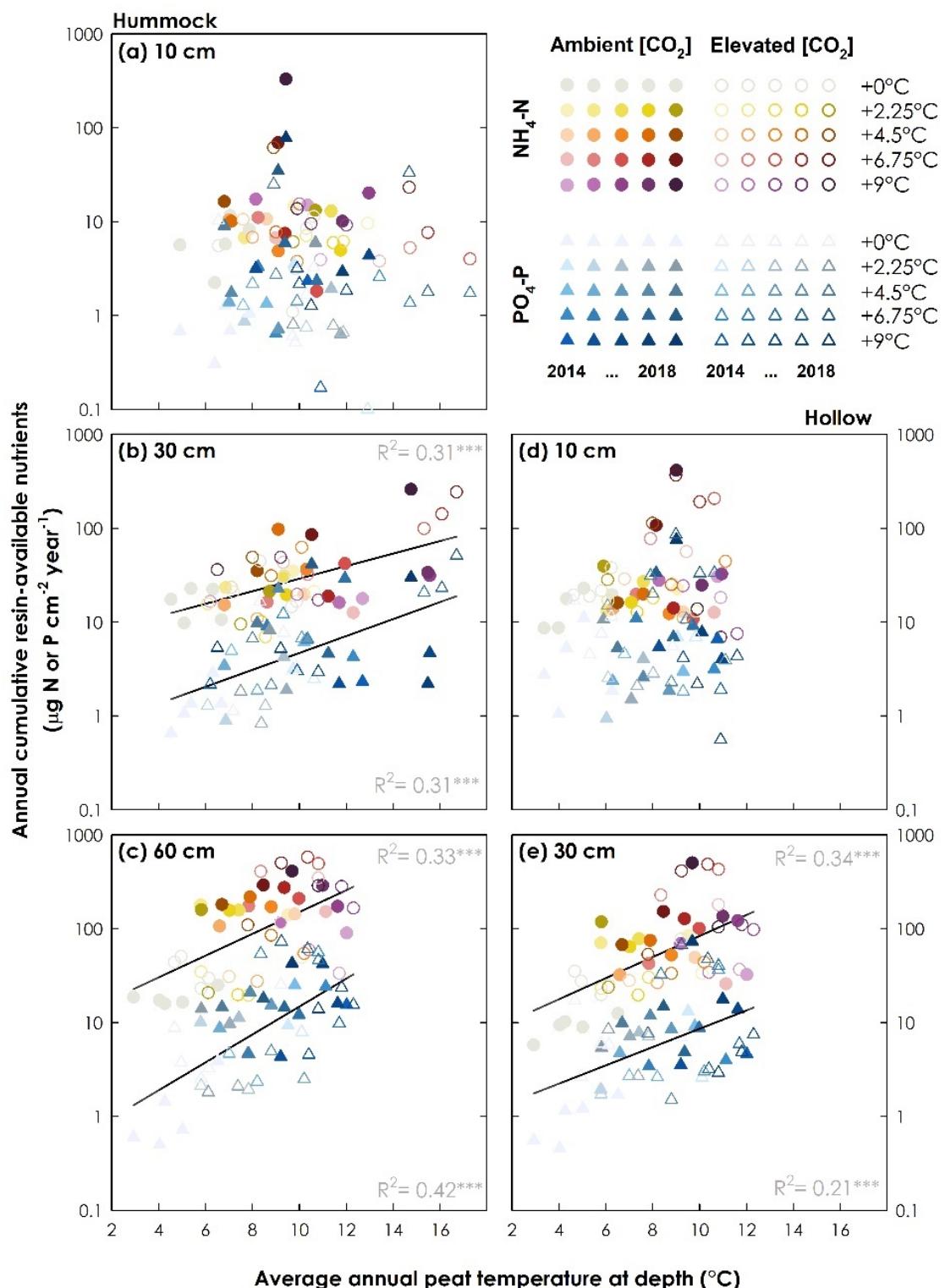

Figure 2 Linear mixed-effects model beta coefficients and their 95% confidence intervals. The coefficients correspond to the factors in the final linear mixed-effect models for the effects of warming, microtopography and depth (as ‘topodepth’, which treats each microtopographic position and depth as discrete locations), and year, and the interactive effects of warming \times topodepth and warming \times year on resin-available NH₄-N, PO₄-P and the ratio of NH₄-N to PO₄-P (see *Supplementary Statistical Methods* for selection of final models). The beta coefficients for warming, year, and topodepth were added for reference but cannot be interpreted in isolation because of significant interactions. For each factor and interaction, the beta coefficients represent the difference between a baseline (alphabetically or numerically the first level) and the other levels of each factor or interactions. For example, for years, the baseline is the year 2014 and for topodepth, the baseline is Ho10 (‘hollow, 10 cm peat depth’). The final model was different for the N/P ratio, as it included an additional topodepth \times year interaction term; the full range of beta coefficients for all of the interactions in the N/P ratio model are included in Figure S2. Asterisks indicate level of significance at $P < 0.001^{***}$; $P < 0.01^{**}$ and $P < 0.05^*$.

Figure 2

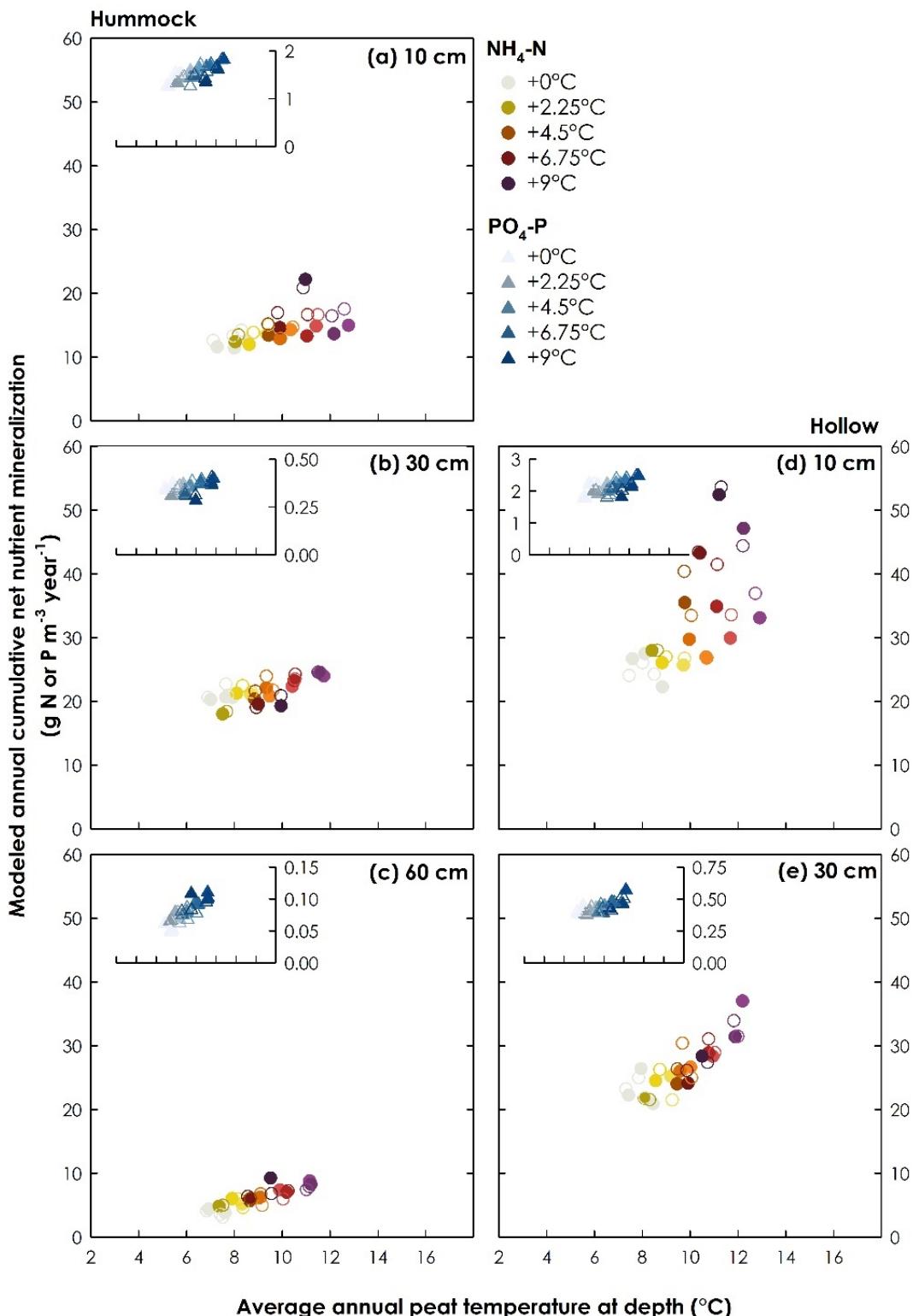

Figure 3 Annual, cumulative NH₄-N or PO₄-P adsorbed to ion-exchange resins regressed against annual average peat temperature at a depth closest to the depth of resin incubation. The panels represent multiple peat depths in hummock and hollow microtopography, and the observations span a gradient of whole-ecosystem warming and warming combined with elevated [CO₂]. Each data point is one enclosure, in years 2014 to 2018. Closed symbols are ambient [CO₂] while open symbols are elevated [CO₂]; all data shown were included in log-linear regressions. More intense colors correspond with more recent years. The full range of colors and symbols are listed here; henceforth figure legends include colors for 2018 only. Letter insets correspond to depth of resin incubation (a, b, and c are 10, 30, and 60-cm depths in hummocks and d and e are 10 and 30-cm depths in hollows, respectively, see inset in Figure 1). Asterisks indicate level of significance corresponding to log-linear regression at $P < 0.001^{***}$; $P < 0.01^{**}$ and $P < 0.05^*$, and R² is the adjusted R² of NH₄-N regression (upper right of each panel) or PO₄-P regression (lower right of each panel); note the log-scale of the y-axis. See Table S4 for regression parameters (predicted resin-available nutrients were back-transformed for the purposes of the lines presented in this figure).

Figure 3

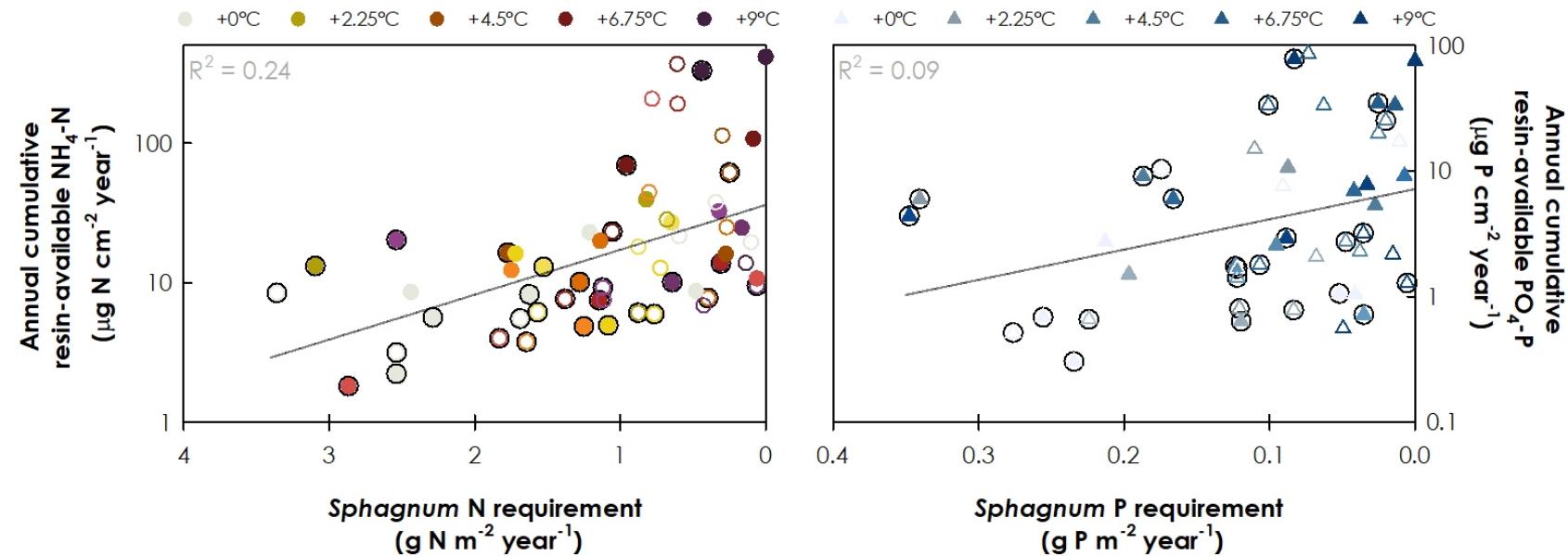

Figure 4 ELM-SPRUCE model prediction of net N mineralization and net P mineralization (inset). Each data point is one SPRUCE enclosure, in years 2016 to 2018. More intense colors correspond with more recent years (see full year-color array in Figure 3); closed symbols are ambient [CO₂] while open symbols are elevated [CO₂]. Letter insets correspond to depth of resin incubation (a, b, and c are 10, 30, and 60-cm depths in hummocks and d and e are 10 and 30-cm depths in hollows, see inset in Figure 1). Note that model output data are in units of g nutrient per unit soil volume per year; also note the differences in the y-axis for the net P mineralization figures, as model-predicted net P mineralization was quite low at some peat depths.

Figure 4

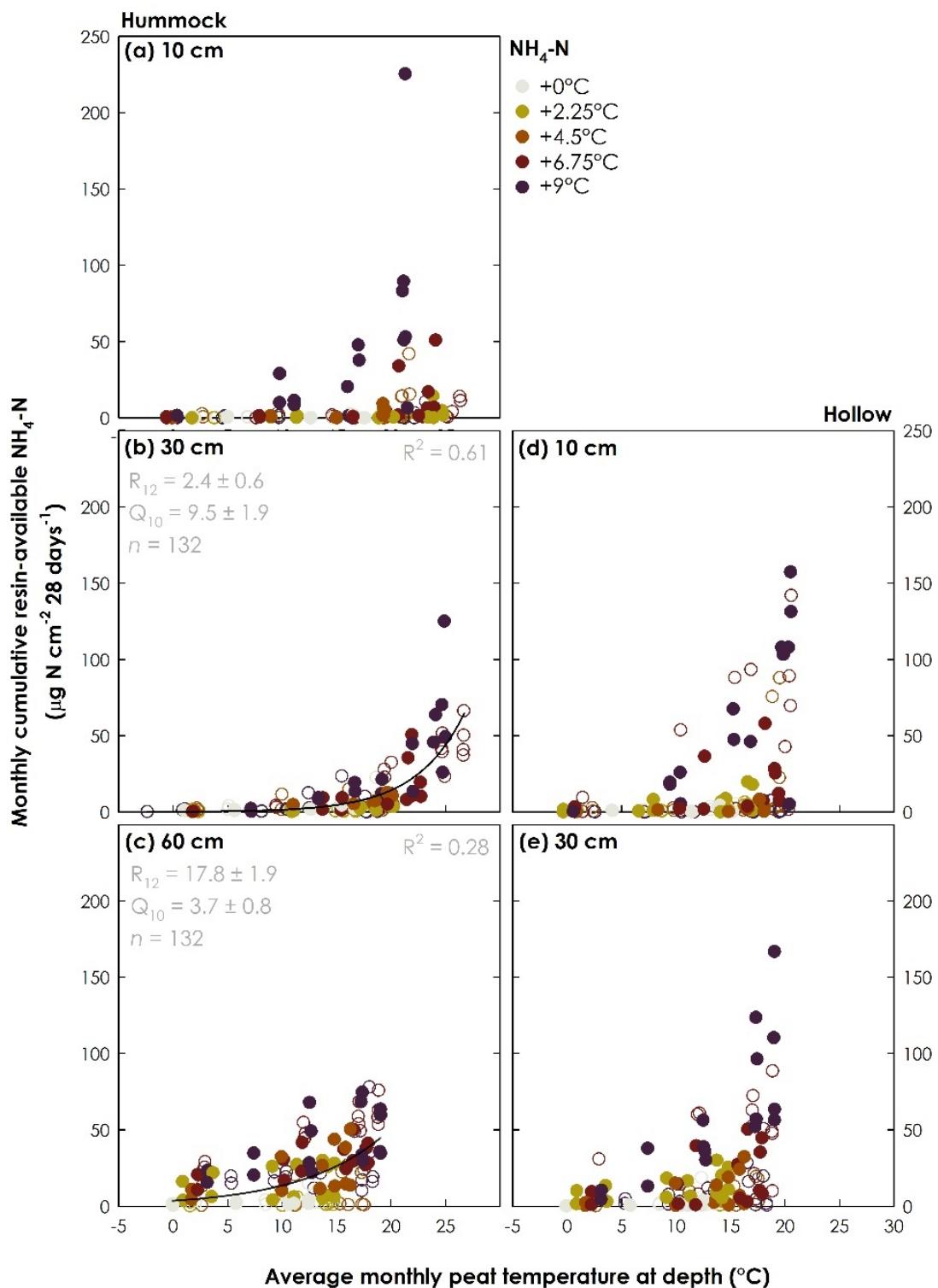

Figure 5 Relationship between *Sphagnum* moss N and P requirements and annual cumulative resin-available NH₄-N and PO₄-P. Declining *Sphagnum* N and P requirement with warming from 2016 to 2018 (see Figure S3) could have been a causal factor in the large increases in resin-available NH₄-N and PO₄-P at 10-cm peat depth in more recent years in both hummocks and hollows (hummock microtopography is designated with black circle outline in both panels; note differences in y-axes between NH₄-N and PO₄-P). Cumulative annual nutrient predictions were back-transformed to fit to data on graph; R² shown are adjusted R². More intense colors represent more recent years (see full year-color array in Figure 3); closed symbols are ambient [CO₂] while open symbols are elevated [CO₂]. Note that the x-axis is plotted from greatest to least *Sphagnum* N and P requirement to highlight the relationship between declining *Sphagnum* nutrient requirement and increasing resin-available N and P. The log-linear relationships between log-transformed cumulative annual NH₄-N and PO₄-P and *Sphagnum* N or P requirement over the years 2016 – 2018 were as follows: $\log_{10}(\text{NH}_4\text{-N}) = -0.32^{***} (\pm 0.07 \text{ SE}) \times \text{Sphagnum N}_{\text{req}} + 1.56^{***} (\pm 0.10 \text{ SE})$ and $\log_{10}(\text{PO}_4\text{-P}) = -2.46^* (\pm 1.04 \text{ SE}) \times \text{Sphagnum P}_{\text{req}} + 0.86^{***} (\pm 0.14 \text{ SE})$, respectively (asterisks indicate level of significance for intercept and slope, where * is $P < 0.05$ and *** is $P < 0.0001$).

Figure 5

Figure 6 Temperature response functions for NH₄-N for approximately 28-day resin collections in 2018. Grey text indicates parameters from a significant Q₁₀ response function ± 1 SE ($P \leq 0.05$), where R₁₂ is the baseline amount of NH₄-N available at 12°C ± 1 SE, n is the number of observations from monthly NH₄-N accumulation on resins sampled for ~28 days across all enclosures over 9 sampling periods in 2018 for A and B subplots within each enclosure, and R² is the adjusted R². Peat temperature at depth was the average temperature at the depth at which the resin was incubated (see Table S2) during the incubation period. PO₄-P data from 2018 only are in Figure S4 and all resin-available nutrient data for both NH₄-N and PO₄-P from 2014 to 2018 are in Figures S5 and S6, respectively, and have been appended to Iversen and others (2017, data citation). Closed symbols are ambient [CO₂] while open symbols are elevated [CO₂]. Letter insets correspond to depth of resin incubation (a, b, and c are 10, 30, and 60-cm depths in hummocks and d and e are 10 and 30-cm depths in hollows, see inset in Figure 1).

Figure 6

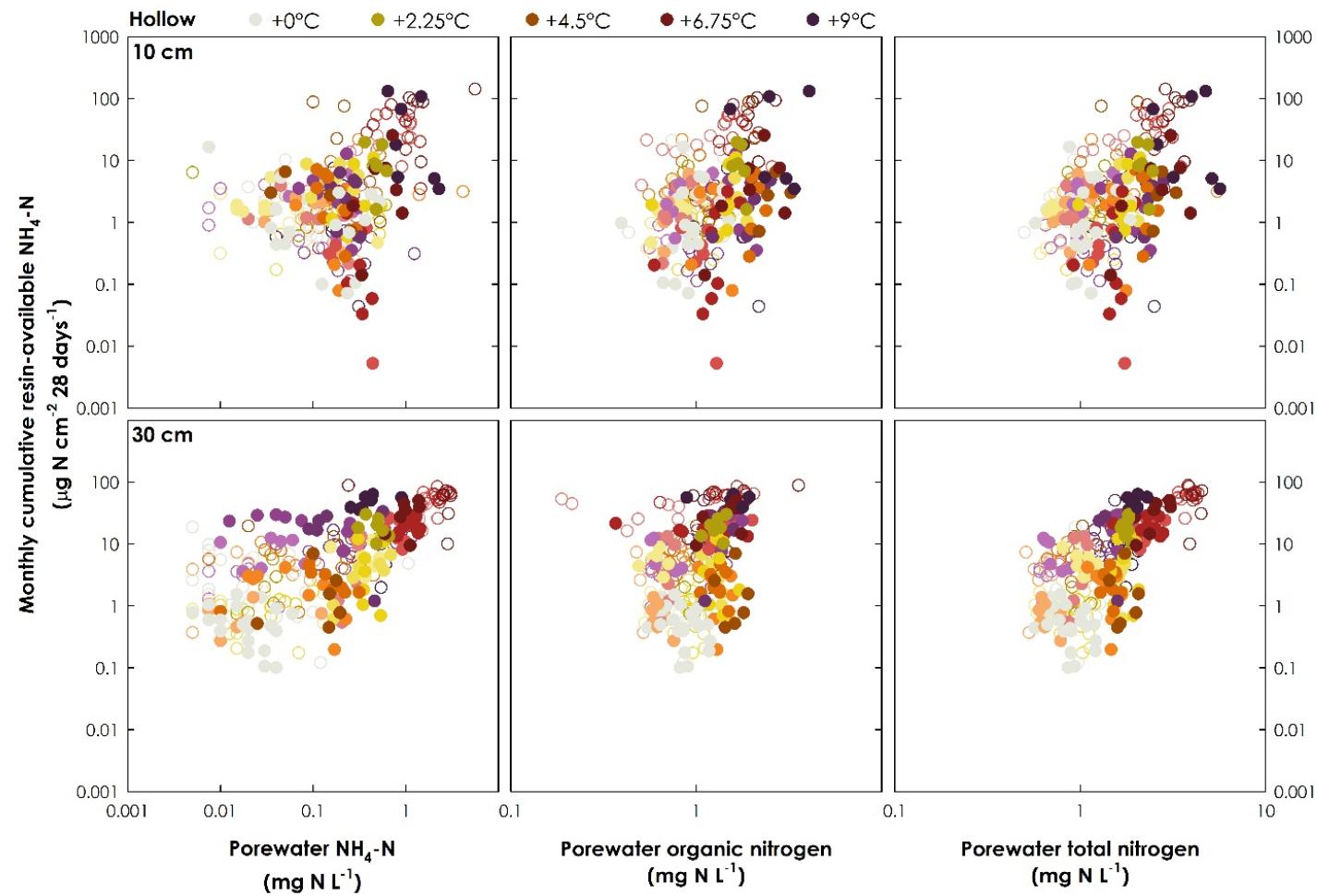

Figure 7. The relationship between resin-available $\text{PO}_4\text{-P}$ and $\text{NH}_4\text{-N}$ (i.e., the N/P ratio) across SPRUCE experimental treatments. The data span all enclosures, sub-replicates, peat depths, and sampling dates from 2014 to 2018, standardized to a 28-day sampling interval; the dashed lines are the 1:1 line. Given the log scale, any $\text{NH}_4\text{-N}$ and $\text{PO}_4\text{-P}$ observations that were determined to be '0' after blank correction are not shown. More intense colors represent more recent years (see full year-color array in Figure 3); closed symbols are ambient $[\text{CO}_2]$ while open symbols are elevated $[\text{CO}_2]$ (note that the color scheme has been used previously for $\text{NH}_4\text{-N}$ data only, but we also use here for the N/P ratio to avoid introducing yet another color array). Letter insets correspond to depth of resin incubation (a, b, and c are 10, 30, and 60-cm depths in hummocks and d and e are 10 and 30-cm depths in hollows, respectively, see inset in Figure 1).

Figure 7

Figure 8. Comparisons of resin-available $\text{NH}_4\text{-N}$ with inorganic, organic, and total N concentrations in porewater. Data span 2015 – 2018, at 10 cm or 30 cm depth in the hollows only, and nutrient data from discrete ~biweekly porewater collections were averaged within the dates of the ~monthly resin incubations. More intense colors represent more recent years (see full year-color array in Figure 3); closed symbols are ambient $[\text{CO}_2]$ while open symbols are elevated $[\text{CO}_2]$. For the purposes of this analysis, we focused on the porewater nutrient concentrations at 0-10 cm and 30-40 cm piezometer depths to facilitate direct comparison with ion-exchange resins incubated at those depths in adjacent hollows (i.e., from only one, adjacent resin array per enclosure). Note that the units for porewater nutrients are g nutrient per L of porewater, while the units for resin-available nutrients have been standardized to the resin surface area. Comparisons of resin-available $\text{PO}_4\text{-P}$ with porewater P concentrations are in Figure S7.

Figure 8

