
SANDIA REPORT
SAND2022-3406
Printed March 23, 2022

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Sierra/SD – Theory Manual – 5.6
Sierra Structural Dynamics Development Team

Latest Software Release:
5.6-Release 2022-03-29

SAND2022-3406

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any
agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ABSTRACT
Sierra/SD provides a massively parallel implementation of structural dynamics finite element
analysis, required for high fidelity, validated models used in modal, vibration, static and shock
analysis of structural systems. This manual describes the theory behind many of the constructs in
Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to
User’s Manual.
Many of the constructs in Sierra/SD are pulled directly from published material. Where
possible, these materials are referenced herein. However, certain functions in Sierra/SD are
specific to our implementation. We try to be far more complete in those areas.
The theory manual was developed from several sources including general notes, a
programmer_notes manual, the user’s notes and of course the material in the open literature.

3

This page intentionally left blank.

4

CONTENTS

1. Introduction . 2
1.1. Solution Spaces . 2
1.2. Matrix Dimensions: Terminology . 4

1.2.1. Revised Set definition Example . 5
1.3. Rotational Degrees of Freedom . 6

1.3.1. Euler Angles . 6
1.3.2. Infinitesimal Rotational Angles . 7
1.3.3. Quaternions . 7
1.3.4. Implementations . 8
1.3.5. Consequence for Linear Elements in nonlinear solutions 8

1.4. Interpolation within an Element . 9
1.5. Mass Properties . 10

1.5.1. Calculations . 10
1.5.2. Acoustic and Superelements . 11

1.6. Coordinate Systems . 12
2. Structural Solution Procedures . 13

2.1. Linear transient analysis . 14
2.1.1. Predictor Corrector Adjustment . 15
2.1.2. Prescribed Accelerations . 16

2.2. Nonlinear transient analysis . 17
2.2.1. Nonlinear Transient Analysis with Constraints 19
2.2.2. Damping in Nonlinear Solutions . 20
2.2.3. Damping of Flexible Modes Only . 21

2.3. Random Vibration . 23
2.3.1. Algorithm . 23
2.3.2. Power Spectral Density . 24
2.3.3. Tensor Transformations of PSD . 24
2.3.4. RMS Output . 25
2.3.5. RMS Stress . 26
2.3.6. Matrix properties for RMS stress . 26

2.4. Modal Frequency Response Methods . 27
2.4.1. No Rigid Body Modes . 27
2.4.2. Rigid Body Modes . 28
2.4.3. Example . 30

2.5. Fast Modal Solutions . 30
2.5.1. Modal Solution Summary . 31
2.5.2. Parallel Fast Modal . 32
2.5.3. Determination of Modal Force . 34

2.6. Eigenvalue Problems . 34
2.7. Complex Eigen Analysis - Modal Analysis of Damped Structures 35

2.7.1. Modal Analysis of Damped Structures . 35

i

2.7.2. Input File Specification . 36
2.7.3. Output File Format . 36
2.7.4. Some Back Ground . 37
2.7.5. Viscoelasticity . 37
2.7.6. Viscofreq . 37
2.7.7. Trust Regions and Real Modes . 38
2.7.8. ViscoFreq - Approximate Viscoelastic Response 38

2.8. Linear Buckling . 40
2.8.1. Eigen Problem Methods for Buckling . 41
2.8.2. Buckling with Constraints . 42
2.8.3. Geometric Stiffness . 44

2.9. Component Mode Synthesis . 45
2.9.1. Reduction of superelement matrices . 45
2.9.2. Craig-Bampton sensitivity analysis . 51

2.10. Eigenvalue Sensitivity Analysis . 52
2.11. A posteriori error estimation for eigen analysis . 53

2.11.1. Preliminaries . 53
2.11.2. An explicit error estimator . 54
2.11.3. Error estimates for elasticity . 55
2.11.4. Explicit Estimator - Multiple Materials . 57
2.11.5. Explicit Estimator Summary . 62
2.11.6. Approach II - quantity of interest estimator . 63

2.12. Nonlinear Distributed Damping . 66
2.12.1. Subsystem Distributed Damping with Iwan . 66
2.12.2. Subsystem Damping with Linear Damper . 68
2.12.3. Reduced Model . 68
2.12.4. Full System Model . 68

2.13. Shock Response Spectra . 69
2.14. Superposition for superelement recovery . 69
2.15. Coupled Electro-Mechanical Physics . 69
2.16. High Cycle Fatigue and Damage . 70

2.16.1. Sensitivity to Stress . 71
2.16.2. Competing Damage Models . 71

3. Acoustics Solution Methods . 72
3.1. Derivation of Acoustic Wave Equation . 72
3.2. Coupled Structural Acoustics . 75

3.2.1. Discussion of Matching vs Non-Matching Meshes on Wet Surface . . 75
3.2.2. The Coupled Equations and Their Discretizations 76

3.3. Acoustic Scattering . 85
3.4. Nonlinear Acoustics . 88

3.4.1. Weak Formulations . 91
3.4.2. Spatial and Temporal Discretization . 92
3.4.3. Structural Coupling . 95

3.5. SA_eigen . 97
3.5.1. Quadratic Modal Superposition . 99
3.5.2. Diagonalization and Modal Superposition . 100
3.5.3. Theory for modal superposition with sa_eigen 103
3.5.4. Discussion of Eigenvectors and Superposition . 104

ii

3.5.5. Notes on Implementation . 104
3.5.6. Complex Eigenvector Orthogonalization . 107

3.6. Waterline Determination . 107
3.6.1. Reference Frames . 108
3.6.2. Pressure at a Node . 109
3.6.3. Waterline Plane Specification . 110
3.6.4. Net Force and Moment Calculation . 110
3.6.5. Algorithms . 111

3.7. Wet Modes or Added Mass . 112
3.7.1. Case I - matching meshes at wet interface . 112
3.7.2. Modal Solution of Acoustic Domain . 114
3.7.3. Case II - mismatched meshes at wet interface . 115
3.7.4. Element Matrix Approximations . 115

3.8. Fluid Coupling through the Lighthill Tensor . 115
3.8.1. Pressure formulation . 116
3.8.2. Lighthill tensor . 116

3.9. Fluid Structure Interaction . 116
3.9.1. One way FSI coupling . 117
3.9.2. Two Way FSI coupling . 119

3.10. Two-way Coupled FSI Implementation . 121
4. Material . 122

4.1. Anisotropic Materials . 122
4.1.1. Stress Vectors . 122
4.1.2. Strain Energy and Orientation . 123

4.2. Viscoelastic Materials . 126
4.2.1. Equations of motion . 126
4.2.2. Constitutive equations . 126
4.2.3. Linear Representation of Velocity . 129
4.2.4. Midpoint Representation of Velocity . 129

5. Elements . 130
5.1. Selective integration . 130

5.1.1. Derivation . 130
5.2. Implementation . 131
5.3. Integration of Isoparametric Solids . 132
5.4. Mean Quadrature with Selective Deviatoric Control . 134
5.5. Bubble Functions . 135

5.5.1. Nonlinear analysis of bubble functions . 136
5.6. Quadratic isoparametric solids . 139

5.6.1. Shape functions and integration points . 139
5.7. Wedge Shape Functions . 141
5.8. Tet10 . 142
5.9. Hex20 shape functions and gradients . 142
5.10. 6 noded Triangle . 144
5.11. 3 noded Triangle . 145
5.12. Beam2. 146
5.13. Nbeam . 146
5.14. Navy quadrilateral . 149
5.15. Truss . 152

iii

5.16. Spring . 152
5.17. Superelements . 152
5.18. Gap . 153
5.19. Rigid Elements . 153

5.19.1. Rrod . 154
5.19.2. RBar . 154
5.19.3. RBE3 . 156

5.20. MSC documentation of Nastran’s RBE3 element . 158
5.20.1. Generation of unit weighting functions . 159
5.20.2. Selection of dependent dofs (Optional) . 161
5.20.3. Features for dimension independence . 161
5.20.4. Upward compatibility . 163
5.20.5. RBE3 element changes in Version 70.7 . 163

5.21. Shell Offset . 165
5.22. Hexshell usage and limitations . 166
5.23. Membrane . 167
5.24. Corrections to Element Matrices . 170
5.25. Mass lumping . 170

6. Boundary conditions and initial conditions . 170
6.1. Acoustic and Structural Acoustic . 170

6.1.1. Absorbing Boundaries . 171
6.1.2. Infinite Elements for Acoustics . 172
6.1.3. Computation of solution at far-field points . 178
6.1.4. Point sources . 179

6.2. Perfectly Matched Layers . 181
6.2.1. Cartesian PML . 182
6.2.2. Rotated Cartesian Coordinates . 185
6.2.3. Spherical Coordinates . 185
6.2.4. Ellipsoidal Coordinates . 186
6.2.5. Ellipsoidal Coordinates with X axis as Major axis 187
6.2.6. Relations Between the PML Formulations . 188

6.3. Matrices from Applied Forces . 189
6.4. Analysis of Rotating Structures . 190

6.4.1. Static Analysis . 195
6.4.2. Modal Analysis . 195
6.4.3. Transient Analysis . 195

6.5. Alternative Derivation Based on Lagrange’s Equations . 195
6.6. Random Pressure Loading . 197

6.6.1. Specialization for Hypersonic Vehicles . 197
6.7. Removing Net Torques from Applied Loads . 201

6.7.1. Introduction . 201
6.7.2. Use of Mass Matrix . 202

6.8. Traction Loads . 204
6.9. Consistent Loads Calculations . 205

6.9.1. Elements with consistent loads . 206
6.9.2. Pressure Loading . 206
6.9.3. Shape Functions for Calculating Consistent Loads 207
6.9.4. Shell Elements - consistent loads . 207

iv

6.10. Solution of Singular Linear Systems . 208
7. Contact . 210

7.1. Multipoint Constraints . 210
7.2. Constraint Transformations in General Coordinate Systems 211

7.2.1. Decoupling Constraint Equations . 211
7.2.2. Transformation of Stiffness Matrix . 212
7.2.3. Application to single point constraints . 213
7.2.4. Multi Point Constraints . 214
7.2.5. Transformation of Power Spectral Densities . 214

7.3. Orthogonality of MPC to Rigid Body Vectors . 215
7.3.1. Beam Example . 215
7.3.2. Offset Example . 216
7.3.3. Correct MPC Equations . 217
7.3.4. Orthogonalization of Incorrect MPCs . 218
7.3.5. Adding the same dof of new nodes . 219
7.3.6. Lofted node face constraints . 220

7.4. Constraints and infinite eigenvalues . 221
7.5. Sparsepak Contact Enforcement . 223
7.6. GDSW Contact Enforcement . 224
7.7. Tied Friction . 225
7.8. Mortar Methods . 225

7.8.1. Background . 225
7.8.2. Treatment of Interface Boundary . 228
7.8.3. Nodal Coordinate Adjustments . 228

7.9. Correction For Dynamic Constraint Equilibrium . 228

Bibliography 231
Index . 239

v

LIST OF FIGURES

Figure 1-1. Example for Set Definition. 5
Figure 1-2. Original and rotated coordinate frames . 13
Figure 2-3. Comparison of Modal Displacement, Acceleration and DFRF 30
Figure 2-4. Standard Modal Transient Algorithm . 31
Figure 2-5. Fast Modal Transient Algorithm. 33
Figure 2-6. Fast Modal Frequency Response Algorithm . 33
Figure 2-7. Eigenvalue and Eigenvector corrections of CB models . 50
Figure 3-8. Interacting Acoustic Domains . 80
Figure 3-9. A node-face interaction on the structural acoustic interface. 81
Figure 3-10. Nonconformal Structural Acoustic Tying . 84
Figure 3-11. Nonconformal Structural Acoustic Tying for Double Wetted Shell 84
Figure 3-12. Complex EigenVector orthogonalization . 107
Figure 3-13. Sketch showing ship, origin O of waterline frame, coordinate z, and angle θ2. . . . 109
Figure 3-14. One-Way Coupling Algorithm for CFD and Sierra/SD . 118
Figure 5-15. Nbeam Element Stiffness Matrix . 147
Figure 5-16. Nbeam mass matrix . 148
Figure 5-17. Rigid Element Geometry . 154
Figure 5-18. Equilibration of loads . 157
Figure 6-19. Domains and interface for the exterior acoustic problem . 173
Figure 6-20. Infinite Element Radial Mapping . 176
Figure 6-21. Methods of Locating Source Point . 176
Figure 6-22. Domains Ωi and Ωe and interface Γ for the exterior acoustic problem. 181
Figure 6-23. Structure in Rotating Frame . 190
Figure 6-24. Coordinate Frame Projection for Tractions . 205
Figure 7-25. Node Constrained Directly to Beam. 215
Figure 7-26. Example Node on Face Constraint on Cylinder . 216
Figure 7-27. Node Constrained Offset to Beam. 216
Figure 7-28. Constraint Projection . 217
Figure 7-29. Additional Nodes in the MPC. Unimplemented. 219
Figure 7-30. Equilibration from uA = 100 uB = 500 . 230
Figure 7-31. Equilibration from uA = 200 uB = 700 u̇A =−200 u̇B = 1600 üA =−1000 üB = 400230

vi

LIST OF TABLES

Table 1-1. Sierra/SD solution spaces. 4
Table 1-2. Pascal Shape functions for 3D elements of order 2 . 9
Table 2-3. Sources of Damping in the Solution. 21
Table 3-4. Acoustic Formulations . 77
Table 3-5. Potential Basis Functions for Subdomain Reduction . 99
Table 5-6. Hex20 Gauss Point Locations . 140
Table 5-7. Shape functions and coefficients . 141
Table 5-8. Wedge element integration rules . 142
Table 5-9. Comparison of deflections at Node 2. 145
Table 5-10. Comparison of deflections at Node 3. 145
Table 5-11. Nbeam Parameters . 148

vii

This page intentionally left blank.

viii

Acknowledgments

The Sierra/SD software package is the collective effort of many individuals and teams. A core
Sandia National Laboratories based Sierra/SD development team is responsible for maintenance
of documentation and support of code capabilities. This team includes Dagny Beale, Gregory
Bunting, Mark Chen, Nathan Crane, David Day, Clark Dohrmann, Sidharth Joshi, Payton
Lindsay, Julia Plews, Brian Stevens, and Johnathan Vo.

The Sierra/SD team also works closely with the Sierra Inverse and Plato teams to jointly
enhance and maintain several capabilities. This includes contributions from Wilkins Aquino,
Brett Clark, Murthy Guddati, Sean Hardesty, Chandler Smith, Benjamin Treweek, and Timothy
Walsh.

The Sierra/SD team works closely with other Sierra teams on core libraries and shared tools.
This includes the DevOps, Sierra Toolkit, Solid Mechanics, Fluid Thermal Teams. Additionally,
analysts regularly provide code capabilities as well as help review and verify code capabilities and
documentation. Other individuals not already mentioned directly contributing to the Sierra/SD
documentation or code base during the last year include Ryan Alberdi, Samuel Browne, Victor
Brunini, Mike Glass, Cameron McCormick, Scott Miller, Tolu Okusanya, Heather Pacella,
Kendall Pierson, Clay Sanders, Tim Shelton, Greg Sjaardema, Jeremy Trageser, Mike Tupek, and
Alan Williams.

Historically dozens of other Sandia staff, students, and external collaborators have also
contributed to the Sierra/SD product its documentation.

Many other individuals groups have contributed either directly or indirectly to the success of the
Sierra/SD product. These include but are not limited to;

• Garth Reese implemented the original Sierra/SD code base. He served as principal
investigator and product owner for Sierra/SD for over twenty years. His efforts and
contributions led to much of the current success of Sierra/SD.

• The ASC program at the DOE which funded the initial Sierra/SD (Salinas) development
as well as the ASC program which still provides the bulk of ongoing development support.

• Line managers at Sandia Labs who supported this effort. Special recognition is extended to
David Martinez who helped establish the effort.

• Charbel Farhat and the University of Colorado at Boulder. They have provided incredible
support in the area of finite elements, and especially in development of linear solvers.

• Carlos Felippa of U. Colorado at Boulder. His consultation has been invaluable, and includes
the summer of 2001 where he visited at Sandia and developed the HexShell element for us.

• Danny Sorensen, Rich Lehoucq and other developers of ARPACK, which is used for
eigenvalue problems.

• Esmond Ng who wrote sparspak for us. This sparse solver package is responsible for much of
the performance in Sierra/SD linear solvers.

• The metis team at the university of Minnesota. Metis is an important part of the graph
partitioning schemes used by several of our linear solvers. These are copyright 1997 from
the University of Minnesota.

1

• Padma Raghaven for development of a parallel direct solver that is a part of the linear
solvers.

• The developers of the SuperLU Dist parallel sparse direct linear solver. It is used through
GDSW for a variety of problems.

• Leszek Demkowicz at the University of Texas at Austin who provided the HP3D74 library
and has worked with the Sierra/SD team on several initiatives. The HP3D library is used
to calculate shape functions for higher order elements.

This work was supported by the Laboratory Directed Research and Development (LDRD)
program.

1. Introduction

1.1. Solution Spaces

Sierra uses nodal discretizations exclusively. All the degrees of freedom, or DOFs, are defined at
the nodes. The active dofs depend on the physics and the boundary conditions. NASTRAN
developed terminology 1.2 for the different sets of dofs. Sierra/SD uses simplified terminology.

Converting data between different sets is sometimes necessary. Understanding the dimensions of
different sets of dofs is necessary for data manipulations such as maintaining an interface with
MATLAB.

As an example, I consider a modal analysis of a structure run in serial. Shell elements are mixed
with solid elements. No boundary conditions are applied. There are 9938 nodes and 9 MPCs.

To output the required maps and other m-files, in the input deck add to the outputs both mfile
and ASetMap. To output the eigenvectors to the Exodus file, also add disp to outputs.

For this model, we have the following dimensions.

1. #nodes=9938

2. full set= #nodes * 9 dofs/node = 89442

3. structural set= #nodes * 6 dofs/node = 59628

4. G-set = # active dofs before boundary conditions = 42708

5. A-set = analysis set = # equations to be solved = 42699

There are 3 dofs/node for solid elements. Shells and beams have 6. Acoustic, themal, and
electrical DOFs are also included in the G-set. In aggregate, the total number of active dofs is
42708 before boundary conditions and MPCs are applied. There are no BCs in the model, but
there are 9 MPC equations, each of which eliminates 1 dof, so the Aset is reduced to 42699.

_Disp.m files are written in a reduced structural set which may or may not contain the full
solution vector, depending on the specifics of the model. These m-files use a legacy format
which is not well understood by our current development team. Our most robust and
user-friendly output is available in exodus format.

2

The matrices Mssr and Kssr contain the mass and stiffness matrices in the A-set. They are
symmetric matrices and only one half of the off diagonal is stored. To get the complete matrix
within MATLAB,

K = Kssr + tril(Kssr,-1)’;

The full eigenvectors (in the structural set) are available in the output exodus file. To get them
use the seacas command exo2mat.

> exo2mat example-out.exo

Within MATLAB, the data can be converted to a properly shaped matrix.

>>> load example-out
>>> phi = zeros(nnodes*6,nsteps);
>>> tmp = (0:nnodes-1)*6;
>>> phi(tmp+1,:)=nvar01;
>>> phi(tmp+2,:)=nvar02;
>>> phi(tmp+3,:)=nvar03;
>>> phi(tmp+4,:)=nvar04;
>>> phi(tmp+5,:)=nvar05;
>>> phi(tmp+6,:)=nvar06;

We now have phi as a matrix with each column corresponding to an eigenvector. However, phi is
dimensioned at 59628 x 10 for this example. Note that 59628 is the number of nodes times 6. We
can’t multiply phi by K for example - the dimensions don’t match. To do this we need a map.

We have one map in our directory. ASetMap_a.m is the map from the structural set to the A set.
Thus, we can reduce phi to the A-set by combining it with ASetMap_a. Generally the G-set map
is not output, but is used internally.

>>> p2=zeros(max(max(ASetMap_a)),nsteps);
>>> for j=1:nnodes*8
>>> i=ASetMap_a(j);
>>> if (i > 0)
>>> p2(i,:)=phi(j,:);
>>> end
>>> end

This is slow. A faster, but less straightforward method is shown here.

>>> mapp1=ASetMap_a+1;
>>> tmp=zeros(max(max(mapp1)),nsteps);
>>> tmp(mapp1,:)=phi;
>>> p2=tmp(2:max(max(mapp1)),:);

3

We can do all the neat things like p2’*K*p2.

To get back to the structural set, we again use this map. For example, if we have a vector of
dimension 42699,

>>> x=1:42699’;
>>> XX = zeros(59628,1);
>>> for i=1:59628
>>> if (ASetMap_a(i)>0)
>>> XX(i)=x(ASetMap_a(i));
>>> end
>>> end

An optimization is to do instead

>>> xtmp=[0 x’];
>>> X2=xtmp(mapp1);

1.2. Matrix Dimensions: Terminology

The previous section is complicated enough to stand out from other documentation. This section
defines some terminology used in the previous section. The various spaces are listed in Table 1-1.
A discussion of each follows.

Space Description
Full-set biggest possible set. 9 * number of nodes

Structural-set 6 * number of nodes
This is the space that is typically written to exodus.

Assembly-set This is the space to which we assemble matrices. It represents
those dofs that have been “touched” by elements.

S-set degrees of freedom eliminated by SPC
Common-set Assembly minus S-set

M-set degrees of freedom eliminated by MPC
Analysis-set dimension of matrices sent to solvers.

Table 1-1. – Sierra/SD solution spaces.

Full-set This space is referenced by many of our solvers. We then provide a map from this space
to the Analysis-set using ASetMap. Every node has 9 degrees of freedom (3 translations, 3
rotations, acoustic, voltage, and thermal). Virtual nodes may have been added to handle
generalized dofs.

Structural-set This is identical to the full-set except that it contains only structural degrees of
freedom (translations and rotations). It and contains all the structural dofs of the model
including virtual nodes.

4

Assembly-set The assembly set is the space to which matrices are assembled. It includes dofs
that may later be eliminated by SPCs or MPCs. It includes all dofs that are touched.

Assembly-set = Analysis-set∪S-set∪M-set

Currently, the only map to the assembly set is found in the NodeArray. However, there is
no user interface to the NodeArray.

S-set This is the list of degrees of freedom that are eliminated by single point constraints (SPC).

Common-set The “Common” set includes the Assembly set, with the S-set removed. This set is
common to all solvers, in contrast to the analysis set which may have different dimensions
for serial and parallel solvers.

M-set This is the list of degrees of freedom that are eliminated using multipoint constraints (or
MPCs). When using constraint elimination in serial, the dimension of the problem is
reduced by the number of MPC constraints. In contrast, in solvers that use Lagrange
multipliers, the stiffness matrix is unchanged by introduction of the constraints. Note
however, that the solution vector will include extra Lagrange multipliers.

Analysis-set The analysis set is the matrix dimension that will be sent to the solver. Note that it
may depend on the solver. With constraint elimination, the M-set may not be empty, while
solvers that use Lagrange multipliers will always have an empty M-set.

Solution-set As noted above, in parallel solutions with Lagrange multipliers, we pass a LHS
matrix of dimension equal to the Analysis set. However, the solution vector returned is of
length Analysis-set plus the number of Lagrange multipliers. This is the solution-set length.

G-set Unfortunately, while the sets above are well-defined, the G-set is not. At various times it
has been used to refer to the Full, Structural or assembly set. This confusion spreads
throughout the documentation and the comments in the notes.

1.2.1. Revised Set definition Example

Consider the problem in Figure 1-1. The model consists of 4 real nodes, one MPC, one
superelement (with one generalized dof), and single point constraints sufficient to clamp the
left-hand side, and keep the rest of the model in one dimension.

1 2 3

MPC SE (1 generalized dof)

4

Figure 1-1. – Example for Set Definition.

Full-set There are 4 real nodes, plus 1 virtual node (generated for the generalized dof). Thus,

size(Full) = (4 + 1)9 = 45

5

Assembly-set The two elements are beams, with 6 dofs per node. The superelement touches the
generalized dof on the virtual node.

size(Assembly) = (4)6 + 1 = 25

S-set Degrees of freedom are eliminated by clamping 6 dofs on node 1, and by eliminating 5 dofs
each on the 3 remaining nodes.

size(S) = 6 + 15 = 21

Common-set After elimination of the S-set, the common set is,

size(Common) = 25−21 = 4

All solvers use this space initially. The following cases are different for each solver.

M-set The size of the M-set is one, but what that means to the analysis depends on the solver.
For serial solvers with constraint elimination, the matrix size is reduced by one. For
Lagrange multiplier solvers, we keep our matrices at the same size, but augment the
solution space by one Lagrange multiplier.

Analysis-set For serial, constraint elimination solvers, the analysis set is 3. For Lagrange
multiplier problems, the LHS matrix stays at the Common-set dimension, but constraint
equations are passed in separately, and Lagrange multipliers are part of the solution vector.

Solution-set For serial solvers, the Solution-set is always equal to the analysis-set (which is 3 in
this example). For Lagrange multiplier solvers, the solution-set in this example is 5.

1.3. Rotational Degrees of Freedom

Beams, shells and some other specialty elements use rotational degrees of freedom (DOF) in
addition to the three translational DOF. Rotational DOF permit direct application of moments
and allow efficient computations of structural element response such as bending. Rotational DOF
are also important for management of rigid bodies. In our applications two methods are used to
manage rotational DOF. Full rotation tensors are used for large deformation nonlinear response,
while infinitesimal rotations angles are typically used for small strain, linear response such as
eigen analysis.

1.3.1. Euler Angles

The rotation of a rigid body is often described using a rotation tensor with for example Euler
angles. Note that there are several of definitions of these angles, and that the order of application
does matter.

Euler angles are a means of representing the spatial orientation of any frame of the
space as a composition of rotations from a reference frame. In the following the fixed
system is denoted in lowercase (x,y,z) and the rotated system is denoted in upper
case letters (X,Y,Z).

The definition is Static. The intersection of the xy and the XY coordinate planes is
called the line of nodes (N).

6

α is the angle between the x-axis and the line of nodes.

β is the angle between the z-axis and the Z-axis.

γ is the angle between the line of nodes and the X-axis.

This previous definition is called z x z convention and is one of several common
conventions; others are x y z and z y x. Unfortunately the order in which the angles
are given and even the axes about which they are applied has never been “agreed”
upon. When using Euler angles the order and the axes about which the rotations are
applied should be supplied.

Euler angles are one of several ways of specifying the relative orientation of two such
coordinate systems. Moreover, different authors may use different sets of angles to
describe these orientations, or different names for the same angles. Therefore, a
discussion employing Euler angles should always be preceded by their
definition. (Wikipedia)

In each definition Euler angles use a series of 3 rotations about 3 different axis to represent the
orientation of a body in space. For example, in the case of the z x z convention, these angle
define the following rotation matrix.

R =

cosα −sinα 0
sinα cosα 0

0 0 1


1 0 0

0 cosβ −sinβ
0 sinβ cosβ


cosγ −sinγ 0

sinγ cosγ 0
0 0 1


Because matrix multiplication is not commutative, the solution depends on the order of rotation.
Rotation of a vector by this angle is a tensor product with this matrix. i.e. v′ =Rv.

1.3.2. Infinitesimal Rotational Angles

Most linear, small deformation FE applications apply the small angle approximation. We expand
all trigonometric functions as polynomials of their arguments and retain only first order terms in
the angles. Thus, sin(θ)∼ θ, and cross terms are eliminated. With these approximations, the
order of rotation becomes unimportant, and the component contributions to the rotation matrix
are commutable. For a rotation about x,y, z of α,β,γ we have:

R =

 1 −γ β
γ 1 −α
−β α 1


The coordinates are independent of each other. There are obvious limitations, as the approach
does not conserve length for larger rotations. This is often apparent in animation of mode shapes;
the modes are computed under a small angle approximation, but are often displayed with a finite
deformation.

1.3.3. Quaternions

Euler angles and full rotation tensors define the rotations of a body. Computational efficiency is
optimized using mathematically equivalent quaternion algebra. Sierra/SD uses the full rotation
tensor, and Sierra/SM uses quaternions.

7

1.3.4. Implementations

Linear vs. Nonlinear Solutions. Linear solutions use the infinitesimal rotation angle
formulations. All nonlinear solutions maintain a large rotation capability and use the full rotation
tensor. Nonlinear solutions using linear elements (or linearized tangent stiffness matrix terms)
require conversion between these forms.

Mixed Variable Solutions. Many linear element have been constructed which are for use in
some parts of nonlinear applications. For example, a large ship may be include a linearized model
of an engine as part of the model. As long as the engine is undergoing small deformations, it is
reasonable to employ such a linearized model, even if another part of the ship is subject to large
strain and large rotation. In general, Sierra/SD allows the user to specify that certain material
blocks in a model are linear, even in a nonlinear analysis. This also necessitates translation
between these alternate (and non-equivalent) forms.

Incremental Angular Update. Update of the rotation tensor following an incremental solution
of a small deformation is accomplished as follows. Let us call the initial rotation tensor, Rinit. We
compute a small rotation increment expressed in terms of its small rotation angles, < α,β,γ > .
From the rotation increment, we compute a rotation increment quaternion as follows.

1. θ =
√

(α2 +β2 +γ2)

2. q1 = cos(θ/2)

3. c= sin(θ/2)/θ

4. q2 = cα

5. q3 = cβ

6. q4 = cγ

7. The quaternion is normalized.

The quaternion is then converted to a rotation tensor,

R∇ =

 2(q2
1 + q2

2)−1 2(q2q3− q4q1) 2(q2q4 + q3q1)
2(q2q3 + q4q1) 2(q2

1 + q2
3)−1 2(q3q4− q2q1)

2(q2q4 +−q3q1) 2(q3q4 + q2q1) 2(q2
1 + q2

4)−1


The updated rotation tensor is,

Rupdate =R∇Rinit

Thus, the rotation increment is treated as a full angle update.

1.3.5. Consequence for Linear Elements in nonlinear solutions

The consequence of this update is that there may be significant differences between a nonlinear
solution and a linear solution, even when both are applied to a linear element. The
approximations applied for infinitesimal rotations are significant, and are not reciprocal, i.e.
information is lost in that approximation. Nonlinear solutions should permit large rotations with
most elements. Linear solutions are valid only in the range of small deformations.

8

1.4. Interpolation within an Element

It can be useful to sample a field within an element. This is necessary for verification of the input
for temperature fields applied at integration points, as in a X-ray deposition. If the fields are
known at a variety of points inside an element, we can use that information to determine the
fields at an arbitrary location. In the case of infinite elements, the fields “interior” to the element
project to the entire space beyond the element surface. Several means may be used to perform
this interpolation. In Sierra/SD we use a least squares projection onto a Pascal space, and then
apply the Pascal shape functions to generate the interpolated function. The least squares solution
requires that there be more sample points than there are shape functions.

As an example, consider temperatures applied at the Gauss integration points of a Hex20. The
coordinates of the 27 integration points are defined in Table 5-6. For a quadratic fit of the data,
we can complete the Pascal triangle to obtain the shape functions listed in Table 1-2. We
generate a shape matrix, A, for which each entry in the matrix is given as follows.

Aij = Pj(ξi)

Here, ξi is the element coordinate of the ith integration point.

index Function, Pi
1 1
2 η1
3 η2
4 η3
5 η2

1
6 η1η2
7 η1η3
8 η2

2
9 η2η3
10 η2

3

Table 1-2. – Pascal Shape functions for 3D elements of order 2

The coefficients of the Pascal shape functions, b, are given by the solution to the least squares
minimization problem.

minimize||x−Ab||

where x is the vector of known temperature values at the 27 integration points in the element, A
is the shape matrix defined above and b the vector of coefficients to determine. This problem is
solved using the LAPACK function dgels in Sierra/SD.

Once the coefficient vector is known, the solution at any location within the element may be
determined by expansion of the shape functions at the location of interest.

T (η1,η2,η3) =
∑
i

biPi(η1,η2,η3)

where Pi are the shape functions of Table 1-2.

9

1.5. Mass Properties

Mass properties are computed using the method of Baruch and Zemel.20 The total mass, location
of the center-of-gravity, and the moment of inertia tensor are all calculated for most element types
using the mass matrix and a set of rigid-body vectors. However, acoustic elements and
superelements use a different procedure. Both methods are discussed below.

1.5.1. Calculations for General Elements

The mass properties are computed using rigid-body vectors. At a node, the translational
rigid-body vectors are

Rx =



1
0
0
0
0
0


Ry =



0
1
0
0
0
0


Rz =



0
0
1
0
0
0


(1.1)

and the rotational rigid-body vectors are

Rrx =



0
−z
y
1
0
0


Rry =



z
0
−x
0
1
0


Rrz =



−y
x
0
0
0
1


(1.2)

where x, y, and z are the location of the node in the global coordinate system. These vectors are
assembled on an element level. As an example, for a three-node triangle element, Rrx takes the
form

RTrx ={
0 −z1 y1 1 0 0 0 −z2 y2 1 0 0 0 −z3 y3 1 0 0

}
.

(1.3)

The total mass for an element can be computed as

Melement =RTx [Me]Rx (1.4)
=RTy [Me]Ry (1.5)
=RTz [Me]Rz (1.6)

where [Me] is the mass matrix for the element. The total mass for the model is computed by
summing over all the elements

Mtotal =
Nel∑
i=1

RTx [Me]Rx. (1.7)

Note that the x, y, and z-direction equations produce the same result. Sierra/SD uses the
x-direction equation.

10

In a similar manner, the location of the center-of-gravity can be found by

xcg = 1
Mtotal

Nel∑
i=1

RTrz[Me]Ry, (1.8)

ycg = 1
Mtotal

Nel∑
i=1

RTrx[Me]Rz, (1.9)

zcg = 1
Mtotal

Nel∑
i=1

RTry[Me]Rx. (1.10)

The components of the inertia tensor are computed as

Ixx =
Nel∑
i=1

RTrx[Me]Rrx, (1.11)

Iyy =
Nel∑
i=1

RTry[Me]Rry, (1.12)

Izz =
Nel∑
i=1

RTrz[Me]Rrz, (1.13)

Ixy =
Nel∑
i=1

RTrx[Me]Rry, (1.14)

Ixz =
Nel∑
i=1

RTrx[Me]Rrz, (1.15)

Iyz =
Nel∑
i=1

RTry[Me]Rrz. (1.16)

This procedure for computing mass properties applies to hex8, hex20, wedge6, wedge15, tet4,
tet10, beam2, TiBeam, Nbeam, truss, tri3, tri6, tria, quad4, quad8, quadM, and conmass
elements.

1.5.2. Mass property calculations for acoustic and superelements

Although acoustic element blocks are made up of element types listed above, acoustic elements
only have 1 degree-of-freedom per node. Thus, the rigid-body vectors presented above cannot be
used without modification. Similarly, superelement can have any number of degrees-of-freedom
depending on how the element was formed. Because of this, a different method is used to
compute mass properties for superelements and acoustic elements.

The mass properties for these elements can be computed with somewhat less accuracy than the
method presented above by lumping the mass matrix of each element, then summing the
contribution from each node. This is the method implemented in Sierra/SD.

11

The total mass is

Mtotal =
Nnode∑
i=1

Mi (1.17)

where Mi is the mass at node i. The center-of-gravity is

xcg = 1
Mtotal

Nnode∑
i=1

Mixi, (1.18)

ycg = 1
Mtotal

Nnode∑
i=1

Miyi, (1.19)

zcg = 1
Mtotal

Nnode∑
i=1

Mizi (1.20)

where xi, yi, and zi, are the global coordinates of node i. The components of the inertia tensor
are

Ixx =
Nnode∑
i=1

Mi(y2
i +z2

i), (1.21)

Iyy =
Nnode∑
i=1

Mi(x2
i +z2

i), (1.22)

Izz =
Nnode∑
i=1

Mi(x2
i +y2

i), (1.23)

Ixy =−
Nnode∑
i=1

Mixiyi, (1.24)

Ixz =−
Nnode∑
i=1

Mixizi, (1.25)

Iyz =−
Nnode∑
i=1

Miyizi. (1.26)

1.6. Coordinate Systems

Coordinate systems are provided for a number of applications including:

1. specification of boundary constraints (SPCs)

2. specification of multi-point constraints (MPCs)

3. specification of material property rotations for anisotropic materials.

4. specification of spring directions (see subsection 5.16).

5. specification of output coordinate systems (in history files only).

Coordinate systems are not supported for other applications including

1. specification of nodal locations,

12

X

Y

X ′Y ′

θ

Figure 1-2. – Original and rotated coordinate frames

2. specification of new coordinate systems in any but the basic system.

Coordinate systems for cartesian, cylindrical and spherical coordinates may be defined. In the case
of non-cartesian systems, the XZ plane is used for defining the origin of the θ direction only.

Each new coordinate system X ′ carries with it a rotation matrix, R, that rotates to the basic
coordinate system X to the new coordinate system

X ′ =RX.

R is a function of the current spatial location except in the cartesian system, in which case R is
constant.

The usual identity on rotation matrices applies, namely:

X =RTX ′ (1.27)

and
RTR=RRT = I

For example consider the cartesian system as shown in Figure 1-2. The new system (marked by
primes) is rotated by θ from the old system with the new X ′ axis in the first quadrant of the old
system. The rotation matrix is,

R=

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



2. Structural Solution Procedures

Among the mechanics codes developed at Sandia National LabsSierra/SD has the unique ability
to combine a variety of different solution procedures. These range from modal superposition
based solutions to nonlinear transient. As described in the User’s Manual, these solutions can be
combined (or chained) in solution cases. This section describes the theory behind individual
procedures. Details about particular finite elements are provides in Section 5.

13

2.1. Linear transient analysis

For linear and nonlinear transient dynamics, the time integrator in Sierra/SD is either the
Newmark-Beta method or the generalized alpha method. 1

Linear structural analysis finite element discretization of the momentum equation, with external
load F ext, leads to the differential equation

Ma(t) + Ĉv(t) +Kd(t) = F ext(t), v = ḋ, a= d̈,

where damping matrix Ĉ = C+αM +βK is the is the sum of the standard damping matrix C
(say from a dashpot) and proportional damping terms. In the generalized alpha method the state
at the n+ 1st time step is determined from

M [(1−αm)an+1 +αman] + Ĉ [(1−αf)vn+1 +αfvn]+
K [(1−αf)dn+1 +αfdn] = (1−αf)F ext(tn+1) +αfF

ext(tn) (2.1)

The parameters αf and αm are constrained to achieve second-order accuracy and maintain
unconditional stability,

αm < αf ≤ 1
2

γn = 1
2 −αm+αf

βn ≥ 1
4 + 1

2(αf −αm)
By specifying the input parameter 0≤ ρ≤ 1, the user selects parameters satisfying these
constraints

αf = ρ/(1 +ρ)
αm = (2ρ−1)/(1 +ρ)
βn = (1−αm+αf) · (1−αm+αf)/4
γn = 1/2−αm+αf

In the maximally damped, ρ= 0, note that αf = 0 and αm =−1. The undamped case is ρ= 1, at
which αf = αm = 1

2 , which yields βn = 1
4 , and γn = 1

2 as in the undamped Newmark-beta method.
For later use, we also define

F extn+1+αf = (1−αf)F ext(tn+1) +αfF
ext(tn) (2.2)

There are two options for evaluating F extn+1+αf . More will be given on this in Section 2.1.2.

While the displacements and velocities resulting from the generalized alpha method are
second-order accurate, accelerations are only first order accurate. 2 Fortunately, second-order
accuracy can be obtained for accelerations through an observation that,

αfa
post
n + (1−αf)apostn+1 = αman+ (1−αm)an+1, (2.3)

where apost is the second-order accurate post processed acceleration. The above equation is
implemented by storing the additional vector apostn so that the updated apostn+1 can be computed
and output by the code.

Sierra/SD uses the undamped Newmark-beta method if no damping parameter is specified (in
the input file),

αf = αm = 0, β = 1
4 ,γ = 1

2 , Man+1 + Ĉvn+1 +Kdn+1 = F ext(tn+1).

1The Hilbert-Hughes-Taylor (HHT) method is a subset of the generalized alpha method.
2see AlphaStudy.doc in Sierra/SD documentation, for details on convergence and post processing discussed here.

14

In terms of the Newmark parameters βn and γn, the time integration scheme is

dn+1 = dn+ ∆tvn+ ∆t2
2 [(1−2βn)an+ 2βnan+1]

vn+1 = vn+ ∆t [(1−γn)an+γnan+1]
(2.4)

To derive the displacement-based implementation, first solve these equations for the acceleration
and velocity in terms of displacement,

an+1 = 1
βn∆t2 [dn+1−dn−vn∆t]− 1−2βn

2βn an
vn+1 = vn+ ∆t [(1−γn)an+γnan+1]

= vn+ ∆t
[
(1−γn)an+ γn

βn∆t2 [dn+1−dn−vn∆t]−γn 1−2βn
2βn an

] (2.5)

Substitute equation (2.5) into equation (2.1) and collect terms to obtain for the undamped
Newmark-beta method[

M 1
βn∆t2 + Ĉ γn

βn∆t +K
]
dn+1 = F extn+1+

−Ĉ
[
vn+ ∆t(1−γn)an− γn

βn∆t [dn+ ∆tvn]− γn∆t(1−2βn)
2βn an

]
+

+M
[

1
βn∆t2 [dn+vn∆t] + 1−2βn

2βn an
]

or for the generalized alpha method,[
M (1−αm)

βn∆t2 + Ĉ(1−αf) γn
βn∆t +K(1−αf)

]
dn+1 =

F extn+1+αf −Kαfdn
−Ĉ

[
αfvn+ (1−αf)

[
vn+ ∆t(1−γn)an+ γn

βn∆t [−dn−∆tvn]− γn∆t(1−2βn)
2βn an

]]
+M

[
−αman+ 1−αm

βn∆t2 [dn+vn∆t] + (1−αm)1−2βn
2βn an

] (2.6)

There are three matrix-vector products on the right-hand side of this equation, one for each of the
system matrices M , K, and C.

2.1.1. Predictor Corrector Adjustment

The linear system in 2.6 can be solved using high-performance linear iterative solvers such as
GDSW. In this context, it would be beneficial to take the initial iterate closer to the expected
solution to increase the efficiency of the solver. Thus, the system, which is of the form
Adn+1 = rn+1, can be solved using the following steps:

dext = dn+ ∆tvn+ ∆t2
2 an,

r̄ = rn+1−Adext,
Ad̄ = r̄,

dn+1 = d̄+dext.

(2.7)

In the above dext is the initial estimate of dn+1, obtained using Taylor series extrapolation
(essentially assuming that the acceleration remains unchanged in the current time step). We
noticed that the above predictor-corrector implementation 2.7 is crucial to ensure that accurate
results are obtained for realistic relative solver tolerances (direct implementation of 2.6 could
result in high-frequency oscillations that can pollute the solution even after applying filters).

15

Naturally, the approach 2.7 also results in accelerated convergence of the GDSW solver resulting
in computational savings.

Unfortunately, the predictor-corrector implementation in 2.7 resulted in an undesirable side effect,
namely growth in error in the constraint equations. The relative error for displacement
constraints appear to grow as n1.5, where n is the number of time steps, but the reason is not
clear at this time. However, a simple modification of the predictor expression by eliminating the
velocity and acceleration terms appear to make the growth milder, proportional to

√
n, and is

thus employed in the code:
dext = dn

r̄ = rn+1−Adext,
Ad̄ = r̄,

dn+1 = d̄+dext.

(2.8)

2.1.2. Prescribed Accelerations

Prescribed accelerations can be applied in Sierra/SD to nodesets or sidesets, as described in
User’s Manual. Here we give a brief description of the theory behind the implementation.

To simplify matters, we consider the case when the acceleration of a single degree of freedom is
prescribed as aof(t), where ao is the amplitude, and f(t) is the function describing the time
dependence. The extension to multiply prescribed degrees of freedom is a matter of an external
loop.

Given f(t), we compute two numerical integrals as follows.

a(t) = aof(t)

v(t) = v0 +
∫ t

0
a(t) = v0 +

∫ t

0
aof(t)dt= v0 +ao(if(t))

d(t) = d0 +
∫ t

0
v(t)dt= d0 +v0t+

∫ t

0

∫ t

0
aof(t)dt= d0 +v0t+ao(iif(t))

(2.9)

where we have defined if(t) and iif(t) to denote the first and second integrals of the function
f(t), and d0 and v0 denote the initial displacement and velocity. if(t) and iif(t) are computed
numerically in Sierra/SD.

Given these functions, we can statically condense the prescribed degrees of freedom, and bring the
resulting terms to the right-hand side. First, we define mi to be the column of the mass matrix
associated with the prescribed dof, and ci and ki are similarly defined for the damping and
stiffness matrices. We first write the Gset version of equation 2.1. We put subscripts of g on the
system matrices and right hand side to denote that they do not yet have prescribed BCs
condensed out (hence are Gset).

Mg [(1−αm)an+1 +αman] + Ĉg [(1−αf)vn+1 +αfvn] +
Kg [(1−αf)dn+1 +αfdn] = (1−αf)F extg (tn+1) +αfF

ext
g (tn)

(2.10)

Next, we condense out the prescribed degrees of freedom and move the contributions to the
right-hand side. We note that degrees of freedom that are fixed do not contribute to the

16

right-hand side. After this process, we remove the subscripts from the system matrices, since they
are in Aset form. We also condense the right-hand side terms, so that everything is Aset.

M [(1−αm)an+1 +αman] + Ĉ [(1−αf)vn+1 +αfvn] +
K [(1−αf)dn+1 +αfdn]

= (1−αf)F ext(tn+1) +αfF
ext(tn)

− (1−αf)ao [f(tn+1)mi+ if(tn+1)ci+ iif(tn+1)ki]
− αfao [f(tn)mi+ if(tn)ci+ iif(tn)ki]

(2.11)

This shows that prescribed accelerations result in a contribution to the right-hand side that
consists of products of the time function f(t) with the column from the mass matrix
corresponding to the prescribed dof, and products of the first and second integrals of f(t) with
the corresponding columns from the damping and stiffness matrices. For statics problems, this
procedure reduces to only a contribution from the stiffness matrix, and this is also included in
Sierra/SD.

2.2. Nonlinear transient analysis

This section follows closely the nonlinear transient procedure given by Belytschko et al,22 with the
modification of using the generalized alpha integrator rather than the Newmark-beta approach.
In the case of a nonlinear transient analysis, the equation of motion is

M [(1−αm)an+1 +αman] + Ĉ [(1−αf)vn+1 +αfvn] +
(1−αf)F intn+1 +αfF

int
n = (1−αf)F ext(dn+1) +αfF

ext(dn)
(2.12)

where F intn+1 and F intn are the internal forces at the current and previous time steps, respectively.
Note that we have written the external loads as functions of displacement, since in the most
general case they could be follower loads.

Before proceeding, we note that there are two possible approaches for implementing the
generalized alpha method, and in equation 2.12 we have taken one of these approaches. The
difference lies in the treatment of the internal and external forces. The first approach is to
evaluate them as follows

F intn+1+αf = F int((1−αf)dn+1 +αfdn)
F extn+1+αf = F ext((1−αf)dn+1 +αfdn)

(2.13)

and the second is to evaluate two separate terms

F intn+1+αf = (1−αf)F int(dn+1) +αfF
int(dn)

F extn+1+αf = (1−αf)F ext(dn+1) +αfF
ext(dn)

(2.14)

When both F ext and F int are linear functions, the two approaches are identical. For nonlinear
problems, both F ext and F int could be nonlinear functions, and thus the two procedures are

17

different. In the limit of very small time steps, these nonlinear functions effectively linearize and
the two approaches again become the same. Thus, the limiting behavior of the two approaches is
the same.

We note that in most cases, the external load F ext is treated as a piece-wise linear function of
time, and in those cases the two approaches yield the same result for the external load, though a
couple of exceptions are worth mentioning. First, if two consecutive time steps lie within two
different linear segments, then the two approaches above yield different loads. Second, although
they are seldom used, polynomial and loglog interpolation functions are available in Sierra/SD
in addition to the commonly used linear interpolation, and in those cases different load vectors
result from the above procedures. For problems with very large time steps and involving
polynomial interpolation, different results are to be expected.

In Sierra/SD we have chosen the second option, which evaluates both the internal force and
external force at both times of interest, and forms a linear combination of the two. Comparisons
have shown little difference in the results on simple test problems.

Using the tangent stiffness method, we replace F intn+1 as

F intn+1 = F intn +Kt∆d (2.15)

where Kt is the tangent stiffness matrix, defined as Kt = ∂F int/∂u, and ∆d= dn+1−dn. Also, we
use equations 2.5, which are the same as in the linear case.

First, we substitute equations 2.5 and 2.15 into equation 2.12. This results in the following
equations, which are almost identical to the ones from the linear case[

M
(1−αm)
βn∆t2 + Ĉ(1−αf) γn

βn∆t +Kt(1−αf)
]
dn+1 =

F extn+1+αf −αfF
int
n − (1−αf)

[
F intn −Ktdn

]

−Ĉ
[
αfvn+ (1−αf)

[
vn+ ∆t(1−γn)an+ γn

βn∆t [−dn−∆tvn]− γn∆t(1−2βn)
2βn

an

]]

+M
[
−αman+ 1−αm

βn∆t2 [dn+vn∆t] + (1−αm)1−2βn
2βn

an

]

Finally, we want the unknown to be ∆d= dn+1− d̂, where d̂ is the current iterate of displacement.
To accomplish this, we subtract the appropriate terms from both sides, which yields, after
collecting terms[

M
(1−αm)
βn∆t2 + Ĉ(1−αf) γn

βn∆t +Kt(1−αf)
]

∆d=

F extn+1+αf − (1−αf)F̂ int−αfF intn −C [(1−αf)v̂+αfvn]
−M [(1−αm)â+αman] (2.16)

where again hats denote current iterates of acceleration, velocity, etc. Note that we have
re-defined ∆d= dn+1− d̂, which is different than the previous definition that was given. Also, we
note that F̂ int = F intn +Kt(d̂−dn).

18

Upon using the Newmark-beta time integrator (γn = 1
2 , βn = 1

4 , αf = αm = 0, equation 2.16
reduces to [

M
4

∆t2 + Ĉ
2

∆t +Kt

]
∆d= F extn+1− F̂ int−Cv̂−Mâ (2.17)

which is the same equation given by Belytschko et al.22

We note that equation 2.16 can be written as

A∆d= res (2.18)

where A is the dynamic matrix, ∆d is the change in displacement from the previous Newton
iteration to the current Newton iteration, and res is the residual, i.e. the amount by which the
equations of motion (equation 2.12) are not satisfied by the current iterate. The residual can be
written from the previous equations as

res= F extn+1− F̂ int−Cv̂−Mâ (2.19)

2.2.1. Nonlinear Transient Analysis with Constraints

In the previous section, the assumption was made that there were no multi-point constraint
equations. These extra equations introduce Lagrange multipliers that need to be included in the
nonlinear equations. In this section, we will describe how to include constraint equations into the
nonlinear solution method based on Newton’s method.

Equation 2.18 is correct if there are no constraint equations in the problem. When constraint
equations are involved, we will show that this generalizes to the following[

A GT

G 0

][
∆d
∆λ

]
=
[
res
0

]
(2.20)

where the residual is defined with an additional term due to the constraints

res= F extn+1− F̂ int−Cv̂−Mâ−GT λ̂ (2.21)

where G is the matrix representation of the constraint equations, λ̂ is the current Newton iterate
of the Lagrange multipliers, and GT λ̂ represents a force due to constraints. Note that when the
problem has no constraint equations, equations 2.20 and 2.21 reduce to equations 2.18 and 2.19.

We can arrive at equations 2.20 through some simple arguments similar to the unconstrained
case. The second equation

G∆d=Gdn+1−Gd̂= 0 (2.22)

is a simple argument that the linear solver always returns solutions that satisfy Gd= 0, and thus
the difference Gdn+1−Gd̂ must also be zero.

The first equation can be deduced by including an additional constraint force term into the
residual equation. We will work with the Newmark method, i.e. γn = 1

2 , βn = 1
4 , αf = αm = 0 in

order to keep the discussion simple. The case with the generalized alpha method is a simple
extension of what follows. We write the total internal force, including constraint force terms, as

Ftot(d̂, λ̂) = F int(d̂) +Mâ+Cv̂+GT λ̂ (2.23)

19

The incremented total force is given by

Ftot(dn+1,λn+1) = Ftot(d̂, λ̂) + ∂Ftot

∂d̂
∆d+ ∂Ftot

∂λ̂
∆λ (2.24)

= Ftot(d̂, λ̂) +A∆d+GT∆λ (2.25)
(2.26)

The force balance says that

F extn+1 = Ftot(dn+1,λn+1) (2.27)

Simplifying, we obtain

A∆d+GT∆λ= F extn+1− F̂ int−Cv̂−Mâ−GT λ̂ (2.28)

which corresponds to the first equation in the system of equations given by equation 2.20.

2.2.2. Damping in Nonlinear Solutions

A number of sources of damping in the solution of linear and nonlinear solutions have been
identified. It is useful to list them for comparison, as in Table 2-3. Note in particular, that
proportional damping, common in linear systems, requires a different definition in nonlinear
systems, and will also require explicit formation of a damping matrix.

20

Damping Source Discussion

linear dashpots Contributes directly to the C matrix described in equa-
tion 2.1. The matrix is constant.

proportional damping Also, known as Rayleigh damping,

αMo+βKo

The damping is proportional to velocity. Note that the
effective damping matrix is constant. Damping is not
proportional to the tangent matrix, Kt.

linear viscoelasticity Determined by material parameters.

nonlinear energy loss Many nonlinear elements contribute to this form of
damping. It does not generate a damping matrix term,
and often moves energy from lower frequencies to higher
frequencies. An example is the Iwan element.

nonlinear material Similar to nonlinear elements.

numerical damping No damping matrix is generated. Most of the energy loss
is at frequencies above the Nyquist frequency. Controlled
by parameter RHO.

Table 2-3. – Sources of Damping in the Solution.

2.2.3. Damping of Flexible Modes Only

Here we outline the method used in Sierra/SD to ensure that various damping models do not
affect the rigid body response of a structure. 3. A more detailed explanation of the theory which
involves less restrictive assumptions and describes connections with the present approach can be
found in the document dampFlexMode.tex, which appears in the Sierra/SD documents
repository. The sensitivity of this approach to errors in the K is discussed in
filterrbm_error.tex.

Consider the standard equilibrium equations given by

Mẍ+Cẋ+Kx= f, (2.29)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, x is the response
vector, and f is the applied force vector. Let the columns of the matrix Φr span the rigid body
modes of the structure. That is,

KΦr = 0. (2.30)

Typically, there are six rigid body modes (3 translational and 3 rotational), and it is assumed this
is the case. Consider next a proportional damping model in which

C = αK+βM, (2.31)

3The technique is also known as filtering the rigid body modes, hence the name filterRBM

21

where α and β are non-negative constants. Since the mass matrix M is nonsingular, we will have
CΦr 6= 0 for mass proportional damping when β > 0. Thus, the damping model will dissipate the
energy of the rigid body modes. Some analysts would like to include mass proportional damping,
but only have it damp the flexible modes.

We may express the response vector x as

x= Φrqr + Φfqf , (2.32)

where qr and qf are vectors of generalized coordinates associated with the rigid body and flexible
modes, respectively. Further,

ΦT
fMΦr = 0. (2.33)

Substituting (2.32) into (2.29), using (2.30), and setting

CΦr = 0 (2.34)

gives us
M(Φr q̈r + Φf q̈f) +CΦf q̇f +KΦfqf = f. (2.35)

First assume that C and K are symmetric. We then find from (2.30) and (2.34) that

ΦT
r C = 0, ΦT

r K = 0, (2.36)

Premultiplying (2.35) by ΦT
r and substitution of (2.33) and (2.36) gives us

ΦT
rMΦr q̈r = ΦT

r f. (2.37)

If the rigid body modes are M -orthonormal, i.e. ΦT
rMΦr = I, we then obtain

q̈r = ΦT
r f. (2.38)

Substituting (2.38) into (2.35) and using the notation xf = Φfqf gives us

Mẍf +Cẋf +Kxf = (I−MΦrΦT
r)f. (2.39)

From (2.32) we see that the total response is given by

x= Φrqr +xf , (2.40)

where the dynamics associated with qr and xf are governed by (2.38) and (2.39).

Notice that the dynamics for the flexible part of the response, i.e. (2.39), is the original
equilibrium equations in (2.29) with a modified force vector. This modified for vector can be
calculated efficiently as

(I−MΦrΦT
r)f = f −M(Φr(ΦT

r f)). (2.41)

The rigid body response governed by (2.38) can be numerically integrated using the same scheme
as for the flexible response.

If f is a known force vector that does not depend on the response, then we do not need to concern
ourselves with stability issues since all we’ve done is modified the force vector in a stable manner.
If, however, the force vector depends on the response, then stability issues could arise. It should

22

be mentioned though that these potential issues could arise even in our existing capabilities for
coupling Sierra/SD to other simulation codes that do not use the present damping approach.

Usability Question Certain expedient spatial discretizations of floating structures lead to a
stiffness matrix K̃ with the nonphysical property K̃Φ 6= 0. Given M , C and K̃, f determines x̃.
If, moreover, the rigid body modes Φ are undamped, we get a solution y. Is y “better" than x̃? A
cumbersome discretization determines K such that

ΦT
r K = 0, KΦr = 0. (2.42)

In practice K = K̃−V V T the matrices differ by a symmetric low rank perturbation, and V V T is
sparse.

Our fundamental tool is
P = I−ΦrΦT

rM.

In general neither P T K̃ nor K̃P satisfies equation (2). If there exists H such that K̃Φ =MΦH,
then (not obvious) P T K̃ = K̃P . Using filterrbm is like transforming K̃ to
P T K̃P =K+P TV V TP . This has the advantage of projecting out the rigid body modes from V .

2.3. Random Vibration

Details of random vibration analysis are presented in several papers4. These few paragraphs
document what was implemented.

2.3.1. Algorithm

Initially a model decomposition is determined, KΦ =MΦΩ2 normalized so that ΦTMΦ = I. For
j =
√
−1, the modal frequency response is,

qi(f) = 1
ω2
i −ω2 + 2jωωiγi

, f = ω

2π .

Note that if other damping (such as mass and stiffness proportional damping) is used, then the
effective γi is used here. For the ath load and the ith mode shape, define

Zia =
∑
k

φikF
a
k = 〈φi,F a〉.

Z = ΦTF contains the spatial contributions from the mode shapes and is also frequency
independent. The number of rows in Z is the number of modes, and the number of columns in Z
is the number of loads.

Sa,b(f) is the (a,b) entry of the Hermitian cross-correlation matrix between loads. Letting Zi
denote row i of Z,

Γij = q∗i (ZiS(f)ZTj)qjδf,

or
Γ = diag(q∗)ZS(f)ZTdiag(q)δf

4see for example, reference.126

23

For each mode shape,φ, each element, there is a displacement with a corresponding element
stress, ψ. The (i, j) pair of modes contributes ψTi AψjΓij to the von Mises stress. The velocity and
acceleration contributes similar terms to the second and fourth moments of von Mises stress,
respectively.

2.3.2. Power Spectral Density

The displacement power spectral output may also be written as follows,

Gmn(f) =
∑
i,j

∑
a,a′

q∗i (f)qj(f)φimφjnZiaSa,a
′(f)Zja′ (2.43)

Note that there is no δf coefficient here.

If the output displacement degrees of freedom are restricted to a single node, the subscripts m
and n are applicable to the 3 degrees of freedom at a single location. Because the response
directions may not be independent, the matrix may not be diagonal.

By summing over the loads we may reduce the power spectral expression to a sum on modal
contributions.

Gmn(f) =
∑
i,j

φimφjnGij(f) (2.44)

where
Gij(f) = q∗i (f)qj(f)

∑
a,a′

ZiaZ
j
a′S

a,a′(f) (2.45)

Note that, with the exception of the Zia (which only needs to be computed once), all the terms in
equation 2.45 are known on each subdomain.

At each frequency, f , there is a 3 by 3 complex Hermitian output displacement spectral density
matrix G and an output acceleration spectral density matrix, Gω4.

2.3.3. Tensor Transformations of PSD

The output PSD is a Hermitian tensor, AT =A∗. The output PSD is defined as the correlation of
the acceleration, i.e.

APSD(ω) = a(ω)a(ω)†, (2.46)
where a(ω) is the complex acceleration vector. On a single node, A is a 3 x 3 complex tensor. The
tensor rotation can be derived from the rotation of the vectors. Let ā=Ra be the acceleration
expressed in a new coordinate frame and computed from the acceleration in the basic frame
multiplied by an orthogonal transformation matrix R. Because R−1 =RT , we have a=RT ā. See
section 1.6 for a discussion of coordinate systems and vector transformations.

APSD = aa† (2.47)
= RT ā(RT ā)† (2.48)
= RT āā†R (2.49)
= RT ĀPSDR (2.50)

Therefore, ĀPSD =R APSDR
T .

24

2.3.4. RMS Output

The RMS output for degree of freedom m is given by,

Xrms =
√∫

Gmm(f)df

=
√√√√∫ ∑

i,j

φimφjmGij(f)df

=
√∑

i,j

φimφjmΓij (2.51)

where Γij =
∫
Gij(f)df .

2.3.4.1. Truncation. Note that equation 2.51 involves a summation over modes weighted by Γij .
This summation is an order N2 operation which can retard performance if there are many modes.
Often many of the terms in Γ are very small. Rows and columns of the sum may be eliminated
with no impact on the overall solution of Xrms.5

2.3.4.2. Parallelization. The parallel result can be arrived at by computing Zia on each
subdomain, and then summing the contributions of each subdomain. Note that Zia contains the
spatial contribution of the input force. At boundaries that interface force must be properly
normalized like an applied force is normalized for statics or transient dynamics by dividing by the
cardinality of the node. Once Z has been summed, Γij may be computed redundantly on each
subdomain. The only communication required is the sum on Z (a matrix dimensioned at the
number of loads by the number of modes).

The acceleration power spectral density is Gmm(ω)ω4. Subsection 7.2.5 provides details about
transforming power spectra to an output coordinate system.

2.3.4.3. Displacement Interference (Relative_Disp) A common requirement is understanding
the probability of interference of two nodes. The difference displacement spectrum of a degree of
freedom on two different points is a similar expression.

X2
KL(f) = (XK(f)−XL(f))(XK(f)−XL(f))∗ (2.52)

= XK(f)X∗K(f) +XL(f)X∗L(f)−XK(f)X∗L(f)−XL(f)X∗K(f) (2.53)
= GKK(f) +GLL(f)−GKL(f)−GLK(f) (2.54)

Likewise, the RMS value may be computed.

(XKL)rms =
√∫

X2
KLdf (2.55)

=
√∑

i,j

(φiKφjK +φiLφjL−φiKφjL−φiLφjK)Γij (2.56)

5A similar truncation can be performed if the quantity of interest is acceleration rather than displacement. In that
case, truncation may be performed on Γijω

2
i ω

2
j .

25

As with the displacement spectrum, when the different coordinate directions are not independent,
off diagonal contributions can be very important. This development must be extended to all the
dependent degrees of freedom.

This information can be computed between two points using the output keyword Relative_Disp
and a Joint2G element.

2.3.5. RMS Stress

A description of the algorithm for computation of the von Mises RMS stress is included in the
reference at the beginning of this chapter. Two methods are available, but both use the integrated
modal contribution Γij as the basis for their computation. The more complete method relies on a
singular value decomposition. Portions of that method are touched on below

2.3.6. Matrix properties for RMS stress

Since S(f) is Hermitian, it follows that Γqq is also necessarily Hermitian. It will not in general be
real. The complex valued singular value decomposition (SVD) is computed using the LAPACK
zgesvd routine. The results from the SVD of an Hermitian matrix are real eigenvalues (stored in
X), and complex vectors, stored in Q. The LAPACK routines for Hermitian eigenvalue problems
(zhetrd,zsteqr) would be more efficient.

At the element level another SVD is computed. In this case we are computing the singular values
of the matrix C.

C =XQ†BQX

where,
B = ΨTAΨ

B is symmetric. It can be shown that Q†BQ is Hermitian. If we examine a single element of C
we can see that it contains the sum over all the terms in an Hermitian matrix. That sum is
necessarily real, since it can be computed by adding the lower half with its transpose and then
summing the diagonal. Let,

Aij =
∑
m,n

Q∗miBmnQnj =
∑
m,n

aij

But,
A∗ji =

∑
m,n

Qm,j ∗BmnQ∗ni =
∑
m,n

QnjBmnQ
∗
mi =

∑
m,n

a∗ij

We therefore only need use the real svd routines to compute the results at each output location.

The svd calculations provide the information needed to truncate or reduce the model. As the size
of the model grows, the number of modes required for an analysis tends also to grow. However,
the computational time for computing the svd is proportional to matrix dimension cubed. On the
other hand, the svd(Γ) is only computed once. However, the computation of each decomposition
of C occurs at each output location and can significantly affect performance. In the model
problem where the dimension of C was allowed to remain the same as the number of modes,
increasing the number of modes from 20 to 100 changed the time for the analysis by factor of
more than 100 (close to the predicted 53). Unfortunately the desired models may have many
hundreds of modes.

26

The svd(Γ) provides important information about the number of independent processes. Note
that C includes the svd values from this calculation. We truncate by computing all the nmodes x
nmodes terms in B, but only retaining Cdim columns of Q, where Cdim is chosen so the values of
X are not too small. Thus, X[(Cdim)]/X[0]> 10−14. This restricts the dimension of C to a small
number, while retaining all components that contribute significantly to its value. As a result, the
entire calculation appears to scale approximately linearly with the number of modes.

2.4. Modal Frequency Response Methods

The Sierra/SD implementation of the modal acceleration method is described in this section.
Separate cases are considered when the structure does and does not have rigid body modes.

2.4.1. No Rigid Body Modes

We first consider the frequency domain version of the equations of motion.

(−ω2M + jωC+K)û= f̂ (2.57)

Consider the modal approximation

û≈
N∑
i=1

φiqi (2.58)

where N is the number of retained modes, φi is the i’th mode shape, and qi is the i’th modal dof.
For modal damping, one obtains the uncoupled equations

(−ω2mi+ jωci+ki)qi = φTi f̂ (2.59)

for i= 1, . . . ,N where

mi = φTi Mφi (2.60)
ci = φTi Cφi (2.61)
ki = φTi Kφi (2.62)

(2.63)

are the modal mass, modal damping, and modal stiffness of the i’th mode. Solving equation 2.59
for qi leads to

qi = (φTi f̂)/(−ω2mi+ jωci+ki) (2.64)
Replacing (−ω2M + jωC)û in equation 2.57 with the modal approximation

(−ω2M + jωC)
N∑
i=1

φiqi (2.65)

leads to

Kû= f̂ + (ω2M − jωC)
N∑
i=1

φiqi (2.66)

Recall that the mode shapes satisfy the eigenvalue problem

Kφi = ω2
iMφi (2.67)

27

where ωi is the circular frequency of the i’th mode. Provided ωi 6= 0, one obtains

K−1Mφi = φi/ω
2
i (2.68)

In addition, see Eq. (18.14) of Craig, the damping matrix C can be expressed as

C =
N∑
i=1

(2ζiωi
mi

)
(Mφi)(Mφi)T (2.69)

where ζi is the damping ratio of the i’th mode. Substituting equations 2.68 and 2.69 into equation
2.66 and solving for û leads to

û=K−1f̂ +
N∑
i=1

(ω2/ω2
i −2ζijω/ωi)φiqi (2.70)

The acceleration frequency response, â, can be obtained by multiplying equation 2.70 by −ω2.

2.4.2. Rigid Body Modes

The procedure outlined here describes how the modal acceleration method can be used in the case
when the structure has rigid body modes. The main difference between the approach presented
here and Craig’s method46 (pp. 368-371) is in the way that the flexible response is computed
using the singular stiffness matrix. Craig removes the rigid body modes from the stiffness matrix
using constraints. In our approach, we first orthogonalize the right-hand side with respect to the
rigid body modes, and then use an iterative solver to solve the singular system directly. Although
the two methods are equivalent the latter is much more convenient from the implementation point
of view. Note, however, that the implementation is likely to fail on a single processor since the
direct solvers in Sierra/SD are unable to manage a singular stiffness matrix.

The equations of interest are the frequency domain equations of motion

−ω2Mu+ jωCu+Ku= f (2.71)

Since the stiffness matrix may be singular, we first split the solution into a rigid body part and a
flexible part.

u(ω) = uR(ω) +uE(ω) (2.72)
= ΦRqR(ω) + ΦEqE(ω) (2.73)

where the subscript R refers to rigid body mode contributions, and E refers to contributions from
flexible modes. We define N as the total number of degrees of freedom, NR as the number of rigid
body modes and NE the number of flexible modes, where N =NR+NE . Then, ΦR is an NxNR

matrix of rigid body eigenvectors, ΦE is an NxNE matrix of flexible eigenvectors, qR is a vector of
dimension NR, and qE is a vector of dimension NE . We assume mass normalized eigenvectors.

We substitute equation 2.73 into equation 2.71, and premultiply both sides by ΦT
R and ΦT

E . This
yields two sets of equations, after using orthogonality and the fact that KΦR = 0.

−ω2qR+ jωCRqR = ΦT
Rf (2.74)

−ω2qE + jωCEqE +KEqE = ΦT
Ef (2.75)

28

where CR,CE are diagonal matrices containing the modal damping contributions, and KE is a
diagonal matrix containing the eigenvalues. In particular, the ith diagonal entry of CE is 2ωiζEi ,
and the ith diagonal entry of CR is 2ωiζRi . For most applications, CR is null. Solving these
equations we obtain the component-wise values of the coefficients

qRi =
ΦT
Ri
f

−ω2 + jωCRi
(2.76)

qEi =
ΦT
Ei
f

−ω2 + jωCEi +ω2
Ei

(2.77)

Equation 2.75 can be solved for qE , and substituting this into equation 2.73, we obtain

u= ΦRqR+ ΦEK
−1
E ΦT

Ef +ω2ΦEK
−1
E qE− jωΦEK

−1
E CEqE (2.78)

The first term in equation 2.78 is known. The third and fourth terms of equation 2.78 can be
computed by modal truncation, and in fact these are the same as the second and third terms of
equation 2.70. The second term in equation 2.78 is the static correction, and is not readily
computable in the present form since all of the flexible modes would have to be known to
compute it.

In order to compute the second term in equation 2.78, we note that the matrix aE = ΦEK
−1
E ΦT

E is
the inverse of the elastic stiffness matrix, that is, the stiffness matrix without the rigid body
components. Craig gives a procedure of constraining the rigid body modes in the stiffness matrix
in order to compute the product aEf . This procedure would require re-sizing the global stiffness
matrix midway through the modalfrf solution procedure, and this is tedious from the code
development standpoint.

A more convenient approach is to use GDSW to solve the system Ku= fE , where fE is obtained
by orthogonalizing the right-hand side f with respect to the rigid body modes, via Gram
Schmidt. If K is singular and f is orthogonal to the rigid body modes, then GDSW can be
applied to Ku= f

Though in theory u is already orthogonal to the rigid body modes after the GDSW solve,
numerical round-off may result in a small loss of orthogonality (especially if the solver tolerance is
large). The resulting solution we denote by uE . Then,

uE = ΦEK
−1
E ΦT

Ef (2.79)

and thus all of the terms in equation 2.78 are known. Thus the modal frequency response can be
computed using equation 2.78.

We note that the orthogonalizations referred to above involve only the standard dot products.
That is, in order to make f orthogonal to one rigid body mode φi, the Gram Schmidt factor is

α= φTi f

φTi φi
(2.80)

and then
fE = f −αφ (2.81)

These dot products do not involve the mass matrix. They are the standard dot products.

29

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
100

101

102

103

104

105

106

Frequency

A
m

pl
itu

de
Comparison of frf methods with rigid body modes

directfrf
modal disp
modal accel

Figure 2-3. – A comparison of the modal displacement, modal acceleration, and direct frequency re-
sponse approaches. The modal acceleration method gives a better approximation to the direct approach
than the modal displacement method.

2.4.3. Example

Finally, we present an example of the performance of this method as compared to the standard
modal displacement method. The example is a beam composed of 320 hex8 elements. The beam
is free-free, so that all rigid body modes are present. The frequency response is computed up to
9000 Hz, and 15 modes are used in the modal expansions. The 15th mode had a frequency of
11362 Hz. In Figure 2-3, the two methods are compared with the direct frequency response
approach. It is seen that the modal acceleration method gives a significantly improved
performance over the modal displacement method.

2.5. Fast Modal Solutions

Because modal based solutions such as modal transient do not require a linear solve, they can
hasten the solution of linear problems. However, in the standard approach, these solutions may
not show the performance that could be achieved. This is because the standard approach

30

1. Compute the full eigen problem, (K−λM)Φ = 0

2. Compute the applied load (in modal coordinates) at each time.
f i =∑

kΦkiF
ext
k

3. Compute the modal system response from equation 2.85.

4. Expand from modal to full physical space.

Xk
n+1 =

Nmodes∑
i

qin+1Φki

5. Collapse the physical space to the output degrees of freedom.

x̃= subset(X)

The parallel data (matrices
and vectors Φ and X) are par-
titioned by processor.

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
���

��
}
}

}

}

proc n

proc 0

proc 1

proc 2

Nmodes

N
um

 D
O

FS

Figure 2-4. – Standard Modal Transient Algorithm. Note that while the output is required on only a
small part of the model, a calculation of data on all degrees of freedom is performed first, and results
are then collapsed to the reduced model.

manipulates a lot of data when the model size is large, see Figure 2-4. We here address a method
for much higher performance provided that output is required on a very limited data set and that
the force is simple.

2.5.1. Modal Solution Summary

Using the trapezoidal rule, Newmark-Beta integrator6 equation 2.6 may be condensed to,[4
∆t2M + 2

∆t Ĉ+K

]
dn+1 = F extn+1 + Ĉ

[
vn+ 2

∆tdn
]

+M

[4
∆t2dn+ 4

∆tvn+an

]
(2.82)

Also,

vn+1 = −vn+ 2
∆t(dn+1−dn) (2.83)

an+1 = −an+ 4
∆t2 (dn+1−dn)− 4

∆tvn (2.84)

6This implies that αm = αf = 0, βn = 1/4, and γn = 1/2.

31

With the usual modal transformation, dk =∑
iΦkiq, λi = ΦT

i KΦi, and ΦTMΦ = I, we may write
the equivalent modal equations.

aiq
i
n+1 = qin+f in+1 + f̃ i (2.85)

where

ai = 4
∆t2 + 2

∆tγi+λi

f in+1 =
∑
k

ΦkiF
ext
k

f̃ i = q̈n+
(4

∆t q̇n+ 4
∆t2 qn

)
+γi

(
q̇n+ 2

∆tqn
)

and,
γi is the modal damping

These are uncoupled equations. The solution for each modal coordinate is independent of any
other.

2.5.2. Parallel Fast Modal

In many cases the analyst is interested only in the data in a very reduced set (such as data in the
history file). In these cases, large amounts of data are processed, only to reduce the data at each
time step to a the reduced system. The parallel computer processing is being expended to process
large vectors that are not needed, and for which no useful output is provided. If the reduced set
may easily fit on a single processor, and if the modal force may be adequately determined, then a
streamlined algorithm may be used.

The fast algorithm is illustrated in Figure 2-5 for transient dynamics, and in Figure 2-6 for modal
frequency response. The same set of equations are now solved, but since the entire physical model
exists on all processors, we can compute the sum of terms in parallel.

32

1. Begin with eigenvalues, λ, and reduced eigenvectors, φ. We also need
the generalized components of modal force, ζsi (ω) =∑

kΦkiF̂
s
k (ω).

2. Compute the time response of the modal system response in parallel.
Each processor gets only a subset of modes, and solves equation 2.85
independently.

3. Compute the response on the physical space using the sum of modes
as a sum across processors. NOTE: this is restricted to the reduced
physical space.

x̃k =
Nproc∑
p

Nmodesproc∑
i

φkiqi

Figure 2-5. – Fast Modal Transient Algorithm

1. Begin with eigenvalues, λ, and reduced eigenvectors, φ. We also need
the generalized components of modal force, ζsi (ω) =∑

kΦkiF̂
s
k (ω).

2. Compute the frequency response of the modal system response in par-
allel. Each processor gets only a subset of modes, and solves the fol-
lowing equation independently.

qi(ω) = f qi (ω)
ω2−ω2

i −2jγiωωi

where ω =
√
λi and j =

√
−1.

3. Compute the response on the physical space using the sum of modes
as a sum across processors. NOTE: this is restricted to the reduced
physical space.

x̃k =
Nproc∑
p

Nmodesproc∑
i

φkiqi

Alternatively, each processor may be assigned the computation of a fre-
quency range, and compute all the modal contributions to that range.
A processor sum would gather all the results for output.

Figure 2-6. – Fast Modal Frequency Response Algorithm

33

2.5.3. Determination of Modal Force

The fast algorithm outlined in the previous section depends on determination of the modal force
vector, f i(t). But, the physical loads may be applied to degrees of freedom other than those in
the limited output set, so that the eigenvector, Φ of the full system would be required.

However, in most cases,7 the force in the physical coordinates is computed as a sum of spatial and
temporal terms.8

F ext(x,t) =
Nsets∑
s

F̂ s(x)δs(t)

Typically, each spatial function F̂ s is determined by a nodeset, sideset or body load input, while
the temporal term, δs(t), is a multiplier defined in a FUNCTION section. We may thus write,

f i(t) =
∑
k

ΦkiF
ext(xk, t) (2.86)

=
∑
k

Φki

Nsets∑
s

F̂s(x)δs(t)

=
Nsets∑
s

ζisδ
s(t) (2.87)

where,
ζis =

∑
k

ΦkiF̂
s
k (2.88)

Thus, a necessary part of the preparation for a fast modal solution includes calculation of the
generalized components of force, ζis.

2.6. Eigenvalue Problems

The eigen solution method computes a user-specified number of the lowest-frequency modes of

(K−ω2M)φ= 0. (2.89)

The eigenvalue (or mode) ω2 and eigenvector (or mode shape) φ correspond to the solution
u(t) = φeiωt with frequency ω/(2π). The frequency and the mode shape are reported to the user.
The mode shapes are mass orthogonal, i.e., φTi Mφj = δij . The default diagnostic output,
including the residual norms ‖(K−ω2M)φ‖, are labeled by eigenvalue ω2.

A number of approaches can be used to solve this system, and their relative merits are
understood (see8). For very large systems, direct (or dense) methods such as the QR algorithm or
Jacobi transformations are tremendously more expensive than the methods used in Sierra/SD.
In Sierra/SD, we rely on the shifted and inverted Lanczos algorithm as implemented in
ARPACK99 . A detailed scalability study is available in SAND 2019-1217.33

7If user defined functions of space are included, this situation is violated, and the fast algorithm cannot be used.
8What is described here for the time domain also applies in the frequency domain. They are products of spatial
and frequency components.

34

Different solution methods are available for many of the different eigenvalue problems. Note that
Rayleigh damping, C = αM +βK, does not change the mode shapes and changes the mode
frequencies as in a single-degree-of-freedom problem.

The shift (σ) and invert transform leads to a problem whose largest modes are the modes of
interest. The result of subtracting σMφ from both sides of equation (2.89) is

(K−σM)φ=Mφ(ω2−σ). (2.90)

The eigenvalue problem exposed to ARPACK emerges by multiplying both sides of (2.90) by
(K−σM)−1(ω2−σ)−1:

(K−σM)−1Mφ= (ω2−σ)−1φ. (2.91)
For example, users are expected to understand that the shift corresponding to the frequency f is
4π2f2.

The linear solvers available with the eigen solution case all require positive-definite systems. For
this reason, the shift must be negative. Generally speaking, increasing the magnitude of the shift
makes solving the linear systems easier and solving the eigenvalue problem harder. In theory,
using the Helmholtz linear solver, the capability could be implemented to determine the modes
nearest to an arbitrary positive user-specified shift. The demand for this capability has never
justified the risk and expense of implementation.

Structural dynamics eigenvalue problems have some unique features all revolving around the
challenging nature of the corresponding linear systems. Results are typically insensitive to the
linear solver relative residual norm threshold (the default is 10−6). One exception is the case of
computing many (thousands) of modes, in which case it is necessary to start out with a smaller
tolerance (say 10−12) to avoid convergence problems at the higher frequencies. P

2.7. Complex Eigen Analysis - Modal Analysis of Damped Structures

2.7.1. Modal Analysis of Damped Structures

Sierra/SD will solve the eigenvalue problems for structures with some types of damping. The
algorithms are designed for internally damped structures such as from viscoelastic materials. The
package is called Ceigen, and the parameters to be aware of are eig_tol, nmodes, and
viscofreq. The first two parameters, eig_tol and nmodes will be familiar to Sierra/SD users
that solve eigenvalue problem for undamped structures. eig_tol is the convergence tolerance for
the eigenvalues, and nmodes is the number of requested eigenvalues. viscofreq approximates the
first flexible mode of the structure. The default value for eig_tol is 1.e−8.

The complex eigenvalue problem which we solve is also known as the quadratic eigenvalue
equation. [

K+λD+λ2M
]
φ= 0 (2.92)

where,

K = the stiffness matrix
D = the damping matrix
M = the mass matrix
λ = the complex frequency.

35

All of the matrices are independent of frequency. Note that we are solving for λ= iω+γ, not
ω2.

2.7.2. Input File Specification

The Sierra/SD input file specification is similar to the specification for transient simulations. To
change a working Sierra/SD input file for a transient problem into a Sierra/SD input file for
Ceigen, change the Solution and Parameters blocks. The example below illustrates how the
Solution and Parameter blocks are modified for modal analyses.

SOLUTION
case ceig
ceigen nmodes 20
viscofreq=1.e+4
END
PARAMETERS
eig_tol 1.E-5
wtmass=0.00259
END

The parameter wtmass is an example of a parameter that was needed for the transient simulation,
and is still needed for modal analyses.

2.7.3. Output File Format

The output is very similar to the output for the undamped eigenvalue problem. The results file
contains any requested data. Supplemental information is written to the screen that is useful for
algorithm development.

The Results file foo.rslt tabulates the values λ/(2π) for (λi) that solve equation (2.93). Pure
real eigenvalues are not written to the Results file.9 If λi has been found with i in the range,
1≤ i≤ 24,27≤ i≤ 34, then the missing eigenvalues (λi)25≤i≤26 are real eigenvalues that are
omitted. The number of eigenvalues written in the Results file is nmodes at most.

As is the case with the undamped eigenvalue problem, Sierra/SD will print a table to the screen.
The table is titled “Ritz values (Real, Imag) and direct residuals", and has four columns of real
numbers. The number of eigenvalues that are computed may be larger or smaller than the
number requested. Some real eigenvalues may appear among the converged eigenvalues. The
table will contain any converged real eigenvalues (zero in column two). Columns three and four
are two different residual norms for each eigenvalue. Eigenvalues with large residual norms are
not converged. The residual norm in the third column is less sensitive to the linear system
relative residual norm bound than the residual norm in the fourth column is After each implicit
restart, all the approximate eigenvalues are printed to the screen.

9Real modes correspond to an overdamped mode with no oscillatory component. These are not physical as discussed
below.

36

2.7.4. Some Back Ground

The eigenvalue problem for an undamped structure

KΦ = MΦΩ2, ΦTMΦ = I,

Ω =⊕iωi, has been discussed elsewhere in this document. Sierra/SD returns the frequencies
ω/(2π). Ceigen solves a similar problem. Ceigen solves the quadratic eigenvalue problem

[Mλ2 +Dλ+K]u= 0, uTu= 1. (2.93)

In the undamped case, D = 0, λ= iω.

A second order linear differential equation is the same as a first order system. Similarly a
quadratic eigenvalue problem is the same as a matrix eigenvalue problem of twice the size.

Linear problems such as matrix eigenvalue problems are solvable in that it is possible to find all of
the solutions. For matrix eigenvalue problems the key idea is deflation. One big subspace is used
to compute all of the eigenvalues. Small eigenvalues tend to be computed early and are deflated
from the problem. The reward for deflation is that the gravest remaining eigenvalues are much
more likely to be computed next. For general nonlinear eigenvalue problems on the other hand,
no robust algorithms are known to the author.

2.7.5. Viscoelasticity

The eigenvalue problem for viscoelastic problems47 in the most simple case (one term Prony
series) has the form

[Ms2 +D(s)s+K]u= 0. (2.94)

K = BE∞, D(s)s= B(Eg−E∞)f(s),

f(s) = s/(s+a) = 1− (s/a+ 1)−1.

Prony series damping in the time domain creates a frequency domain problem with real
eigenvalues that are not physical.47 Some care is needed to avoid the real eigenvalues in
computations.

Here is a sketch of justification that the Prony series problem has real eigenvalues. The eigenvalue
problem has a closed form solution in terms of the eigenvalues of the undamped problem. The
one term Prony series damping increases the degree of the characteristic equation from two to
three, and the third root must be real.

2.7.6. Viscofreq

The eigenvalue problem in equation (2.94) is not a quadratic eigenvalue problem (M,D,K). The
obvious approximation is to evaluate D(s) at some fixed so near to the wanted eigenvalues. The
user parameter viscofreq= ω is a real number such that so = iω. In a later release so = r+ iω for
some internally computed value r.

Using a value of viscofreq that is much too small may degrade performance. As viscofreq
increases, the eigenvalues do change, and Sierra/SD converges more quickly. The cluster of real

37

eigenvalues moves left, away from zero, and it becomes possible to compute more of the complex
eigenvalues. Over-estimates of viscofreq are safer than underestimates.

Suppose that so = r+ iω. A different quadratic eigenvalue problem is used.47 Both D and K are
modified. The approximation is more accurate for problems in which r is much more accurate
than ω. Also, (M,D,K) are all real matrices. The eigenvalues and eigenvectors come in complex
conjugate pairs.

Important to be aware that no constant damping matrix inherits the property of D(s) that

lim
s→∞

D(s) = 0.

Physically, this means that the eigenvalues in equation (2.93) that are far from viscofreq are
over-damped. If for a given mode shape, so is closer to the real eigenvalue of equation (2.94) than
either complex conjugate pair, then Ceigen may return the real eigenvalue. For example
equation (2.94) has many real eigenvalues clustered left of −a.

2.7.7. Trust Regions and Real Modes

The eigenvalue problem is solved using ARPACK. The convergence criteria in the ARPACK
package use a trust region. CEigen will compute the right-most eigenvalues of the eigenvalue
problem in equation (eq:qep). If the k-th mode does not satisfy the convergence tolerance, and
k ≤nmodes, then ARPACK is not converged, no matter how many other eigenvalues are
converged.

The authors have gone to great lengths to filter out real eigenvalues. Nonetheless in problems
with a cluster of real eigenvalues among the right-most eigenvalues, it is very difficult to compute
eigenvalues high into the frequency range. If such a problem arises, increase eig_tol (multiply by
ten), increase nmodes (add ten), and most importantly increase viscofreq (double).

2.7.8. ViscoFreq - Approximating the Response of Viscoelastics

The viscoelastic mass matrix can be considered to be independent of frequency. However, the
damping and stiffness matrices can be functions of frequency, depending on the formulation.
There are two possible formulations. The first one results in a complex, frequency dependent
damping matrix, and a real-valued, frequency independent stiffness matrix. The second results in
a frequency- dependent, real-valued damping matrix and a frequency-dependent, real valued
stiffness matrix. We chose the second formulation to avoid having to deal with a complex-valued
damping matrix. The two formulations are the same up to the order of the linearization error.

Consider the simplest possible viscoelastic material, characterized by a single term of the Prony
series. The equation of motion for a 1D system with this material is given below. The full 3D case
is similar, except that it has separate terms for the bulk and shear components.

[
K∞+sD(s)−s2M

]
u= f(s) (2.95)

38

Here, s is the Laplace transform frequency, f(s) is the frequency dependent force, and the
damping matrix is now a function of frequency.

D(s) = (EG−E∞) 1
s+ 1/τ B (2.96)

with E∞, the Young’s modulus for high frequencies, EG the modulus for low (or glassy)
frequencies, τ is the Prony series relaxation time, and K∞ = E∞B is the stiffness at high
frequencies.

We now return to equation 2.95, and consider different ways of linearizing the relation, since for
the quadratic eigenvalue problem, we may only solve equations of the form in equation 2.92, i.e.
quadratic in λ or s.

2.7.8.1. User Specified frequency of linearization We define viscofreq, ω and sω = r+ iω,
which is the complex number about which the linearization takes place. In the current
methodology, r is zero.

First, we split D(sω) into its real and imaginary components by multiplying by (r+1)−iωτ
(r+1)−iωτ .

D(s) = (EG−E∞) 1
s+ 1/τ B (2.97)

= (EG−E∞) τ

iωτ + (rτ + 1)B (2.98)

= τ((rτ + 1)− iωτ)
(rτ + 1)2 +ω2τ2 (EG−E∞)B (2.99)

Then we also temporarily replace the s in front of sD(s) with sω. This gives,

sD(s) = (iω+ r)D(iω+ r) (2.100)

= τ(iω+ r) +ω2τ2 + r2τ2

(r+ 1)2 +ω2τ2 (EG−E∞)B (2.101)

Finally, we replace iω+ r with s to go to the quadratic eigenvalue problem. This results in a
contribution to the stiffness matrix, and a real damping matrix.[(

E∞+ (EG−E∞) ω2τ2 + r2τ2

(r+ 1)2 +ω2τ2

)
B+s

(
τ

(r+ 1)2 +ω2τ2

)
(EG−E∞)B+s2M

]
φ= 0 (2.102)

Thus, we see that the damping matrix is real, but the stiffness matrix gets an additional
(positive) real contribution.

Practically of course, the systems are far more complex. Typically, there is more than one
material, and that material has a number of Prony terms. Equation 2.102 is modified, but the
overall effect is the same, i.e. the stiffness matrix is increased by a viscoelastic term, and the
damping term is also modified. Effectively we have the following.

K̃(r+ iω) =
∑
elem

K̃elem(r+ iω) (2.103)

39

where K̃elem is the modified stiffness matrix.

K̃elem(r+ iω) =Kelem+imag(Delem(r+ iω))

Likewise,
D̃elem(r+ iω) = real(D(r+ iω)) (2.104)

We now solve the linearized eigenvalue equation for λ,

[
K̃(r+ iω) + iλD̃(r+ iω)−λ2M

]
φ= 0 (2.105)

2.7.8.2. A Simple Error Estimate The accuracy of the eigenvalues of equation 2.102 as
eigenvalues of equation 2.95 may be estimated.

First, we define the distance from a given computed eigenvalue, sc, to the point of linearization,
sω as δ.

δ = sc−sω (2.106)

Note that δ is a complex-valued quantity.

Next, we define the residual as the vector resulting from inserting sc and the corresponding
computed eigenvalue, φc, into equation 2.95.(

s2
cM +scD(sc) +K

)
φc = res (2.107)

The residual, as defined in equation 2.107, is a computable quantity. If the residual is large, then
the error in the computed eigenvalue and eigenvector is large. However, the more interesting
question from the analyst’s perspective is how large may δ be for one to expect accurate
eigenvalues.

2.8. Linear Buckling

Buckling is the catastrophic failure of a structure under a specific load. Linear buckling is an
approximation to that solution which is accurate in many load environments. Texts on the
subject include Cook.43

In linear buckling analysis, a sample load is applied to the structure. The material and geometric
stiffness matrices are computed, and an eigenvalue problem is used to determine under what load
the total stiffness becomes singular. More specifically,

Kt =Kmat +Kgeom,

and
(Kmat−λKgeom)ψ = 0 (2.108)

Determination of the eigenvalue λ provides the scale factor that multiplies the sample load to
determine the buckling load. The eigenvector ψ is an arbitrarily-normalized shape of the buckling
deformation.

40

2.8.1. Eigen Problem Methods for Buckling

Note that (2.108) has the same form as equation (2.89) for the vibrational eigenvalue problem,
with M being replaced by Kgeom. For this reason, the numerical methods used to solve these
problems are closely related, and it is recommended that the reader begin by reviewing Section
2.6.

The buckling problem is solved using a shift/invert strategy similar to that used in dynamics.
The operator solved for buckling is,

(Kmat−σKgeom)−1Kmat; (2.109)

c.f. (2.91). The main issue for the user is how to select an appropriate shift σ.

Some challenges arise in computing the solution because, unlike M , the matrix Kgeom typically is
not positive definite:

1. Because Kgeom is not positive definite, we orthogonalize and normalize the vectors with
respect to Kmat.

2. When Kmat is singular, the solution method can fail or give unexpected results. Most
buckling problems clamp one end of the structure, so that is rarely a problem.

3. There are solutions possible when Kmat is singular, such as a piano wire that is singular
until tensioned. We don’t address these problems with our software, but encourage the
analyst to explore that space.

4. Selection of an appropriate value for the shift becomes important. Some principles may be
applied.

a) The matrix A=Kmat−σKgeom is key.

b) Formulation of (2.109) requires that σ 6= 0.

c) σ should scale Kgeom so it is large enough to modify Kmat.

d) The eigenvalue solver will find solutions σ.

e) Convergence is rapid if σ is chosen such that A is nearly singular. However, if A is
singular, our linear solvers will fail.

f) The sign of σ is important. Typically, loads that put the structure in compression
should apply a positive value for σ.

5. For buckling, a negative or a positive shift σ may be appropriate depending upon the sign of
the load. It is easy to get this wrong and converge to a mode other than the first buckling
mode, or not to converge at all.

41

2.8.2. Buckling with Constraints

In this section, we derive the buckling equation (2.109) with constraints. Consider a structure
with mass matrix M and stiffness matrix K. Our first problem of interest is to solve an
eigenvalue problem in which the displacements u are subject to the constraints Cu= 0. Here, the
rows of the constraint matrix C are assumed to be linearly independent.

As a starting point, let’s first develop the unforced equations of motion using Lagrange’s
equations. The Lagrangian L can be defined as

L= T −U −λTCu,

where the kinetic energy T and potential energy U are given by

T = u̇TMu̇/2, U = uTKu/2,

and λ is a vector of Lagrange multipliers. Lagrange’s equations of motion are

d

dt

(
∂L

∂u̇

)
− ∂L
∂u

= 0,

−∂L
∂λ

= 0,

which can be expressed concisely as[
M 0
0 0

][
ü

λ̈

]
+
[
K CT

C 0

][
u
λ

]
=
[

0
0

]
.

Assuming a solution of the form u= ûeiωt and λ= λ̂eiωt leads to the eigenvalue problem(
K CT

C 0

)
︸ ︷︷ ︸

≡K̃

(
û

λ̂

)
= ω2

(
M 0
0 0

)
︸ ︷︷ ︸
≡M̃

(
û

λ̂

)
(2.110)

Thus, we can write the system as

K̃x= ω2M̃x,

where xT =
(
ûT λ̂T

)
. Following the discussion in Section 2.6, this problem can be transformed

as follows:
K̃x−σM̃x= ω2M̃x−σM̃x,

implying that
(K̃−σM̃)−1M̃x= (ω2−σ)−1x. (2.111)

Solution of this transformed eigenvalue problem (2.111) can be done with the shift-invert mode in
ARPACK. The linear system to be solved involves the matrix

K̃−σM̃ =
(
K−σM CT

C 0

)
, (2.112)

which has exactly the same constraint requirements as for a statics solve. The solver still needs to
handle the constraints in exactly the same manner despite the subtraction of σM . Note that the

42

matrix M̃ appearing after the matrix inverse in (2.111) does not include the constraint matrix
C.

The buckling problem:

min
û s.t.
Cû=0

1
2 û

T (K−µKg)û

has Lagrangian
L(û,ν) = 1

2 û
T (K−µKg)û+νTCû,

with partial derivatives

0 = ∂L

∂û
=(K−µKg)û+CT ν

0 = ∂L

∂ν
=Cû,

implying the eigenvalue problem(
K CT

C 0

)
︸ ︷︷ ︸

=K̃

(
û
ν

)
= µ

(
Kg 0
0 0

)
︸ ︷︷ ︸
≡K̃g

(
û
ν

)
, (2.113)

directly analogous to (2.110), with xT =
(
ûT νT

)
.

The transformations used to solve the ARPACK buckling mode problem are somewhat different.
Begin with multiplication of both sides by σ 6= 0:

σK̃x= σµK̃gx,

and subtract µK̃x from both sides, leading to

σK̃x−µK̃x= σµK̃gx−µK̃x,

implying that
(µ−σ)K̃x= µ(K̃−σK̃g)x

which can be rearranged to the form

(K̃−σK̃g)−1K̃x= µ

µ−σ
x. (2.114)

The matrix required for the linear solves in this transformed problem has the same form as in
(2.112), i.e.,

K̃−σK̃g =
(
K−σKg CT

C 0

)
, (2.115)

which implies that the constraint handling required by the linear solver itself is exactly the same
in both cases.

43

A critical difference between (2.111) and (2.114) is the form of the matrix that appears after the
matrix inverse: M̃ vs K̃. Explicitly, these are:

K̃ =
(
K CT

C 0

)

M̃ =
(
M 0
0 0

)
.

The matrix K̃ is a semi-inner-product only for vectors xT =
(
ûT νT

)
such that Cu= 0. Thus,

we must ensure that the vectors generated by the Arnoldi iteration always satisfy the constraint
equations. In the code, it was necessary to implement an extra reorthogonalization step to
accomplish this.

2.8.3. Geometric Stiffness

The geometric stiffness matrix, Kgeom, may be computed in one of two ways.

Stress: The Sierra transfer process uses stress as the variable to compute the tangent stiffness
matrix. Stress is ideal in this case because the Sierra transfer also modifies the base
coordinates of the nodes to match the deformed location. The stress is the only remaining
variable in this formulation. It is important because we don’t need the stress history (which
could involve plasticity or other nonlinearities) to compute that tangent matrix.

Displacement: When Sierra/SD does its own nonlinear update, the tangent matrices are
computed from the existing displacement variables. Element stress is not used at all.

These two methods of computation are equivalent in the small strain, small displacement world
that is appropriate for a linear buckling calculation. The stress method is utilized for
isoparametric solids. However, this method is not available for shells and beams. With these
elements the geometric stiffness matrix uses a displacement based method.

2.8.3.1. Isosolid Elements. The family of isogeometric continuum elements apply the following
algorithms.

Kgeom =
∫

elem
(σ : T)JdV (2.116)

where,

Tij = dNi

dx

′dNj

dx
− sym

(
dNj

dx

)
sym

(
dNi

dx

)
Here sym(y) is the symmetric part of the matrix, the : represents a tensor product, dN/dx is the
spatial derivative of the element shape function, and J is the Jacobian.

2.8.3.2. Corotational Shells. The geometric stiffness contributions for corotational shells uses a
formulation by Bjørn Haugen (80). Details are needed.

44

2.9. Component Mode Synthesis

Component mode synthesis (CMS) in Sierra/SD follows the Craig-Bampton method. In this
method the model is reduced using fixed interface modes and constraint modes. The method is
outlined in some detail in Craig (reference46 Chapter 19). It is summarized below. Note that in
Sierra/SD we do not permit any flexibility in the interface boundary options. Only fixed
interface modes are supported.

CMS is typically applied to eigenvalue analysis, but it may be used in other analyses. Here we
describe only the eigen analysis application. Within Sierra/SD only a subset of the standard
CMS method is available. Sierra/SD may reduce an entire model to a set of interface degrees of
freedom with the corresponding system matrices and transformed matrices. Sierra/SD may also
read in a reduced system for solution within its framework.

CMS by these methods is always a linear model, with support for linear elasticity only. The
reduction is based on an eigen reduction and linear superposition.

2.9.1. Reduction of superelement matrices

The entire model of a structure may be reduced to the interface degrees of freedom and
generalized degrees of freedom associated with internal modes of vibration. Consider the general
eigenvalue problem, with the system matrices partitioned into interface degrees of freedom, C,
and the complement, the vibration modes, V .

([
Kvv Kvc

Kcv Kcc

]
−λ

[
Mvv Mvc

Mcv Mcc

])[
uv
uc

]
= 0 (2.117)

Within Sierra/SD we consider only the cases where Kvv is nonsingular (i.e. positive definite).
For the Craig-Bampton method clamping the interface degrees of freedom must remove all of the
zero energy modes of the structure.

The Craig-Bampton method reduces the physical degrees of freedom, u, to generalized
coordinates, p, using a set of preselected component modes, Ψ.

u= Ψp (2.118)

The component modes, Ψ = [Φ,ψ], are the eigen-modes Φ, the fixed interface problem,

KvvΦ =MvvΦΛvv

and the constraint modes ψ. In the fixed interface eigenvalue problem homogeneous Dirichlet
boundary conditions are imposed on the interface, i.e. Φc = 0 . We retain only a (user specified)
subset of the modes in the fixed interface problem. Additionally, the constraint modes, ψ, are the
static condensation of the problem. Each column of ψ is the solution of the static problem where
one interface degree of freedom has unit displacement, and all other interface degrees of freedom
are fixed. As shown in the reference Craig (46),

ψ =−K−1
vv Kvc (2.119)

Note that our requirement that Kvv is positive definite implies that these solutions are
well-defined.

45

Reduced System

In terms of the transformation matrix

T =
[

Φ ψ
0 I

]
(2.120)

the reduced system is µ= T TMT and κ= T TKT . The reduced system matrices can be written
as follows.

µ =
[
µkk µkc
µck µcc

]
(2.121)

and,

κ =
[
κkk κkc
κck κcc

]
(2.122)

where,

µkk = Ikk

µkc = µTck = φT (Mvvψ+Mvc) (2.123)
= φTMvvψ+ (Mcvφ)T

µcc = ψT (Mvvψ+Mvc) +Mcvψ+Mcc

= ψTMvvψ+ (Mcvψ)T +Mcvψ+Mcc

and,
κkk = Λkk
κkc = κck = 0 (2.124)
κcc = Kcc−KcvK

−1
vv Kvc

= Kcc+Kcvψ

Note that the coupling between the modal and interface portion of the system matrix occurs only
in the mass matrix.

Parallelization Issues

The discussion above applies for direct solvers for which a system matrix is generated.
Parallelization issues are straightforward, and cover 3 main areas 1) computation of fixed
interface modes, 2) computation of constraint modes, and 3) matrix vector products.

1. Fixed Interface Modes. Since the process of computation of the eigenvalues is
independent of the particular solver, there are no parallelization issues with respect to the
eigenvalue problem. It is easily shown that parallel solvers result in the same eigen pairs as
serial solvers. There is no reason to expect that any finite precision issues would be more
important here than in other modal based solutions.

46

2. Constraint Modes. The constraint modes are different, in that we do not currently have a
capability to compute enforced displacement in parallel. Recall that the constraint mode is
the displacement on space “V” that is computed when a unit displacement is applied to a
single degree of freedom on the interface. The serial equations are as follows.[

Kvv Kvc

Kcv Kcc

][
uv
uc

]
=
[

0
R

]
(2.125)

Equation 2.119 uses the first of these only to solve for uv = ψ. For a domain decomposition
problem, the system matrices are written differently. We examine a two subdomain problem
for clarity. 

K1vv K1vc 0 0 CT1v
K1cv K1cc 0 0 CT1c

0 0 K2vv K2vc CT2v
0 0 K2cv K2cc CT2c
C1v C1c C2v C2c 0




u1v
u1c
u2v
u2c
µ

=


0
0
0
0
R

 (2.126)

We extract only the first and third rows to arrive at,

[
K1vv 0 CT1v

0 K2vv CT2v

] u1v
u2v
µ

=
[
f1
f2

]
(2.127)

Here fi =Kivcuic. This system is the standard system of equations that is solved by the
domain decomposition solver. The RHS is the sum of the individual subdomain terms.

3. Matrix Vector Products. There are two primary issues involved in the matrix vector
products computed in parallel. First, there is the issue of duplication of some nodal
quantities on the subdomain interfaces. Second, there is the issue of multipoint constraint
handling.

The products required in computing the reduced matrices of equations 2.121 through 2.124
are all of the form, aTBc, where a and c are vectors and B is a matrix. These are equivalent
to element by element summations like those used in computing the total energy. Thus, the
quantities must be summed on the interface. There is no need to divide by the number of
shared interface degrees of freedom.

The issue of multipoint constraints is trickier. The system is now divided using Lagrange
multipliers, χ. Equation 2.117 may be so expressed.

 Kvv Kvc CTv
Kcv Kcc CTc
Cv Cc 0

−λ
 Mvv Mvc 0
Mcv Mcc 0

0 0



 uv
uc
χ

= 0 (2.128)

where χ are the Lagrange multipliers. But, we want these multipliers to be reduced out of
the system (i.e. they should be in the “V” space), so it is useful to reorder the rows and
columns of this equation.([

K̃vv K̃vc

K̃cv Kcc

]
−λ

[
M̃vv M̃vc

M̃cv Mcc

])[
ũv
uc

]
= 0 (2.129)

47

where,

K̃vv =
[
Kvv CTv
Cv 0

]
,

K̃vc =
[
Kvc

CTc

]
,

M̃vv =
[
Mvv 0

0 0

]
and,

ũv =
[
uv
χ

]

The matrix products are readily computed.

M̃vvũv = Mvvuv

M̃cvũv = Mcvuv

K̃cvũv = Kcvuv +CTc χ

Thus, all of the mass products are simple – they do not require any special Lagrange
multiplier treatment, but the stiffness product may require some such contribution. Note
that if Cc is zero (as occurs if there is no constraint tied to the superelement interface) then
the stiffness terms are likewise unchanged.

4. Reduced transient problems and the inertia tensor. CMS methods are often applied
to the differential equation Ku+Mü= f . Ideally the problem has a solution of the form
u(t) = Tq(t), using the transformation matrix defined in equation (2.120). These solutions
are be computed from the reduced problem κq+µq̈ = T T f . For a discretization of a floating
structure, with rigid body modes R such that KR= 0, the solution satisfies the consistency
condition RTMü=RT f .

One way to impose the consistency condition uses the inertia matrix Ivv = T TR. Suppose
that there exists an S such that R= TS+E has a solution, and the error E is negligible.
Then the reduced consistency condition is STµq̈ =RT f . We use the solution S minimizing
the norm of the error, E, and characterized by T TE = 0. If T has full rank, then
S = (T TT)−1Ivv. It is worthwhile to check that T is full rank and that κ and µ do not have
common null spaces.

5. Accuracy Issues. The accuracy of the null space is determined by the sum of two large
quantities (see equation 2.124). With iterative solvers, this may not be determined
accurately enough to ensure stability of subsequent time history integration. Even
unconditionally stable integration schemes like the trapezoidal Newmark-beta methods can
become unstable if the stiffness matrix is indefinite.

In our experience inaccurate solves decrease the accuracy of the rigid body energy modes
with little impact on the remaining flexible modes. A post processing step corrects the rigid
body modes. Two methods are used. The simpler method removes negative modes from the
reduced matrix without affecting the eigenvector basis of the matrix. However, if the
eigenvectors can be accurately determined using geometric means, then a better approach

48

uses these known eigenvectors to correct both the eigenvalues and eigenvectors of the
reduced matrix.

To correct eigenvalues alone, we use the following algorithm, which is also detailed in
Section 5.24.

a) We extract the interface portion of the reduced system matrix, κcc. Note that the
portion of the matrix associated with generalized degrees of freedom (i.e. the fixed
interface modes) should be positive definite.

b) We perform an eigen analysis of this matrix.

κcc = V∆V T

where Vji is the eigenvector, and ∆i is the eigenvalue of mode i.

c) We determine a corrected matrix,

κ̃cc = κcc−
negativemodes∑

j

Vj∆jV
T
j

To correct both eigenvalues and eigenvectors of the corrupted null space, the algorithm is
more involved. Details of the algorithm are presented in Figure 2-7. Most of the operations
in the algorithm operate on matrices of order 12 or smaller, so the computational cost is
minimal. The method does require very accurate determination of the zero energy modes.

49

1. Determine rigid body modes, R, of the interface. This is done geometri-
cally. These are normalized so that RTR = I. Typically there are 6 such
vectors.

2. Let, A=RTκccR.

3. Compute a error vector, U = κccR−RA. Note that RTU = 0

4. Perform a QR factorization of the error vector. U = SB. Matrix S has
orthonormal columns.

5. Define Q= [R S]

6. Compute the norm of the matrix composed of A and B.

µ=
∥∥∥∥∥
[
A
B

]∥∥∥∥∥
7. Compute the eigenvalues of A.

(A−λI)φa = 0

8. Compute G= µ2I−λ2.

9. W = φa
√
GφTa

10. D =−BW−1AW−1BT

11. define,

H =
(
A BT

B D

)
note that ||H||= µ.

12. Compute the correction,

κ̃cc = κcc−QHQT

Figure 2-7. – Eigenvalue and Eigenvector corrections of Craig-Bampton reduced models

50

2.9.2. Craig-Bampton sensitivity analysis

Sierra/SD may compute the sensitivity of the reduced mass and stiffness matrices to design
variables. In term of the transformation matrix (see equation (2.120))

κ= T TKT (2.130)

Sensitivity of the matrix to variations in a parameter may be obtained by differentiating this
equation. There are several approaches to that operation.

Constant Vector The transformation matrix T , is treated as a constant. Thus, the original
model and its derivative are transformed into the modal space of the original structure. If
there are sufficient modes to span the space, this operation is exact. We designate To as the
transformation matrix for that original modal space, and use forward differences to write
the derivative.

dκ

dp
≈ T To (K(p+ ∆p)−K(p))To

∆p (2.131)

In the limit as ∆p approaches zero, this should approach the exact solution provided that To
spans the space.

However, practically we truncate the modal space spanned by To. In many real world cases,
that truncation is unable to accurately represent the derivatives.

Finite Difference In this approach, we recompute the entire model, including the transformation
matrix, at both the nominal and perturbed state. Thus, K1 =K(p+ ∆p) and
T1 = T (p+ ∆p). Using forward differences,

dκ

dp
≈ T T1 K(p+ ∆p)T1−T To K(p)To

∆p (2.132)

The finite difference method accurately represents the state at both the nominal and
perturbed states. In the limit as ∆p approaches zero, the method converges to the true
solution.

However, problems will be encountered if there are closely spaced (or repeated) modes.58,92

Consider the reduced matrices, which have both physical and generalized degrees of
freedom. If a closely spaced mode changes sort order in the matrix, the derivative is
meaningless. With repeated modes, the issue is even more difficult as the eigenvectors of
repeated modes may be linearly combined. Also, any eigenvector has an arbitrary sign. To
help diagnose these problems, we output the mass cross orthogonality matrix.

Aij = φTj Mφi (2.133)

Product Rule The finite difference method is treated like an exact method. However, in the case
of CB reduction, the changes in eigenvectors make the method complicated. Another
approach would be to differentiate equation 2.130 using the product rule.

dκ

dp
= dT T

dp
KT +T T

dK

dp
T +T TK

dT

dp
(2.134)

Several means73,116,144 are available to determine the derivatives of the fixed interface
modes, φ, and constraint modes, ψ, which are the components of the transformation matrix.

51

This approach blends the best features of both previous methods, but is more complex to
develop.

This method is currently unimplemented.

2.10. Eigenvalue Sensitivity Analysis

Within Sierra/SD semi-analytic sensitivities may be computed for eigenvalues and eigenvectors.
A rudimentary capability for sensitivity to linear transient response is also available, but has not
found much practical value because the cost of the analysis is not significantly better than the
cost of computing the response using finite differences. For details of the transient analysis
formulation, see Alvin’s paper,.4

For eigenvalue sensitivity, we begin with linear eigenvalue equation.

(K−λM)φ= 0 (2.135)

The equation is differentiated with respect to a sensitivity parameter, p, and we consider the
solution for a single eigen pair.

(dK−dλiM −λidM)φi+ (K−λiM)dφi = 0 (2.136)
φTi (dK−dλiM −λdM)φi = 0 (2.137)

where we use the fact that φTi (K−λiM) is zero. We note that φTMφ is the identity to solve for
the sensitivity.

dλi = φTi dKφi−λiφTi dMφi (2.138)

The method is “semi-analytic” in that the matrices dK and dM are found by finite differences
but then are applied to the analytic expression above. Because there are no linear solves required,
the solution is straightforward and accurate.

The algorithm used for the solution of eigenvalue sensitivity is as follows.

1. Perform nominal eigenvalue solution.

2. Loop through parameters P, and modify as needed.

3. On an element by element basis compute,

κ = (K+dK)φ
µ = (M +dM)φ

4. compute the sensitivity, dλ= φTκ−λφTµ.

This element by element method conserves memory and is efficient. It has been implemented
successfully for all parallel solvers. It has not been implemented for the sparsepak solver when
MPCs are included in the model. The transformations required for multipoint constraints
complicate the element by element calculation.

Eigenvector sensitivity is more involved, and several approaches can be used. Nelson’s method has
been applied for years (see116). In this approach, the eigenvector sensitivity may be written,

(K−λiM)dφi = fi (2.139)

52

where,
fi =−(dK−λidM −dλiM) (2.140)

Nelson’s method requires one linear solve per eigenvector sensitivity. It also suffers from
singularity issues with redundant modes and from accuracy limitations when only part of the
modes are extracted. Other methods (such as Fox73) can also be employed.

To obtain the best iterative performance, we consistently apply a preconditioned conjugate
gradient algorithm (PCG) to solve,

(K−λiM)wi = fi− (K−λiM)Φci (2.141)

Because this operator is indefinite, we redefine the problem as,

(ΨT (K−λiM)Ψ)xi = ψT (fi− (K−λiM)Φci) (2.142)

where wi = Ψxi. The operator (ΨT (K−λiM)Ψ) is positive definite as long as mode i and all
modes below mode i are contained in Φ.

Sensitivity of linear transient dynamics solutions was performed, but not found very useful. For
details on sensitivity on the reduction of superelements see Section 2.9.2.

2.11. A posteriori error estimation for eigen analysis

The purpose of this section is to summarize two different approaches for a posteriori error
estimation of eigen analysis. The first is an explicit error estimator,96,81 and the second is a
quantity of interest approach.118 The explicit approaches are described in chapter 2 of,1 and the
quantity of interest approaches are described in chapter 8 of the same book. However, since we
are interested in the eigenvalue problem, the methodologies are somewhat different than the
approaches described in,1 though there are many similarities. Both the explicit and the quantity
of interest approaches have the same goal - to use the computed solution to compute upper and
lower bounds on the discretization error for the eigenvalues and eigenvectors. A drawback to the
explicit approach is that unknown constants are present in the bounds, making final
determination of the error more difficult. Because of this, an explicit estimator is more frequently
used as an element indicators to drive adaptivity algorithms, rather than as an error estimator.
The quantity of interest approach avoids the unknown constants, but is more work in terms of
implementation.

2.11.1. Preliminaries

We seek a posteriori bounds on the error of the finite element solution of the eigenvalue problem
for elasticity

−ρλu= (Λ +µ)∇(∇·u) +µ∇2u=∇·σ(u) (2.143)

or
A1(u) =−λA2(u) (2.144)

where A1(u) and A2(u) are the partial differential operators implied by equation 2.143, λ and u
are the unknown eigenvector and eigenvalue, and Λ and µ are the Lamé elasticity constants. We
note that the right-hand side of equation 2.143 can be written either in terms of displacement, as

53

in the first representation, or in terms of stress, as in the second representation of the right-hand
side of the equation. The weak formulation of equation 2.143 is constructed by multiplying by a
test function, and integrating by parts, with homogeneous boundary conditions. This leads to the
weak formulation: Find (λ,u) ∈ V ×R such that

B(u,v) = λM(u,v) ∀v ∈ V (2.145)

where
B(u,v) =

∫
Ω
σ(u)ε(v)dx (2.146)

and
M(u,v) =

∫
Ω
ρuvdx (2.147)

After defining a finite element discretization, this reduces to: Find (uh,λh) such that

Ku= λMu (2.148)

where (uh,λh) are the finite element approximations of the eigenvector and eigenvalue, and K, M ,
are the assembled stiffness and mass matrices.

2.11.2. An explicit error estimator

In Larsen96 and Rannacher,81 two independently derived error estimates are presented for the
Laplace equation. While the two estimates differ, both incorporate an unknown constant, C, an
element diameter term, he, and an element residual function, ρ̄. In what follows we extend these
estimates to the elasticity problem. The following two error estimates are given in96 and81

respectively. In what follows we use Larsen’s results (equation 2.149) exclusively. 10

|λ−λh| ≤ cλCe,0

(
Ne∑
e=1

h4
eρ̄(uh,λh)2

) 1
2

(2.149)

|λ−λh| ≤ C2

Ne∑
e=1

h2
eρ̄(uh,λh)2 (2.150)

where he is the element diameter, and

ρ̄(uh,λh)2 =
∫

Ωe
(|A1uh+λhA2uh|+Rflux)2 dΩe (2.151)

The first term on the right-hand side is the interior element residual, which is the differential
stiffness operator A1, defined in equation 2.144, applied to the computed element displacement
combined with the computed eigenvalue times the differential mass operator A2, also defined in
equation 2.144, applied to the computed element displacement. This term is computed by
representing the eigenvector as a summation

uh(x) =
N∑
i=1

aiNi(x) (2.152)

10Equation 2.149 applies to elements with linear shape functions. The more general expression may be found in
equation 2.199 or the reference.

54

where ai is the ith entry in the eigenvector, and Ni(x) is the ith shape function, and then applying
the gradient and divergence operators from equation 2.143 to the summation in equation 2.152.

We note that the quantity A1uh+λhA2uh is expressed in the strong form, and thus is not the
same as Kuh−λhMuh, though both expressions are on the element level. The difference can be
seen by observing the first term A1uh

A1uh =∇·σ(uh) (2.153)

That is, A1uh is the divergence of the stress (which is computed from the finite element
displacement uh). This is not the same as Kuh, since Kuh is in the weak form, and has been
evaluated by integrating over the element against a test function. For example, if we consider
linear elements, we have A1uh =∇·σ(uh) = 0, since the stress is constant over the element. On
the other hand, Kuh is not zero.

The second term is the boundary or flux residual.

Rflux = (hevol(e))−1/2
[∫

Γe
R2dΓe

]1/2
(2.154)

It has two different integrands depending on whether the face in question lies on a part of the
boundary where traction or pressure boundary conditions are applied, or whether it is an interior
face. When it lies on a boundary loaded face,

R= g−σijnj (2.155)

where g is the applied traction or pressure load. Note that g = 0 for eigen problems. When the
face is an interior face,

R= [σijnj] = σaijnj−σbijnj (2.156)

where σa and σb are the stress tensors in the two adjacent elements, element ’a’ and element ’b’.
Note that because the integrand is squared, computing the flux residual in parallel requires
parallel communication.

We note the intuitive nature of the upper bound in equation 2.149. As the element size he tends
to zero, the right-hand sides of the estimate goes to zero, due to the multiplication by the element
sizes he. Keep in mind also that the ρ̄ term includes an integral over a volume and that∑Ne
e=1 ‖const‖ is a constant.

There are two important issues in applying the results in Larsen’s reference to general elasticity
problems. The first of these is the extension to elasticity. The second is the extension to multiple
materials. These are covered in the following sections.

2.11.3. Error estimates for elasticity

This section was provided by Ulrich Hetmaniuk to help us with problems in scaling the Laplace
equation to the elasticity problem. It addresses issues of both mass and stiffness scaling. A
similar development was provided by Clark Dohrmann. The development herein builds upon
Larsen’s development,96 and uses quantities defined there.

55

We consider the eigenvalue problem

−µ∆u− (Λ +µ)∇(∇·u) =−∇·σ(u) = θρu in Ω (2.157)
u = 0 on ∂Ω (2.158)

where the Lamé constants Λ and µ satisfy

Λ = νE

(1 +ν)(1−2ν) , µ= E

2(1 +ν) (2.159)

We define also a weak formulation: find (u,θ) ∈ V×R

a(u,v) = θb(u,v), ∀ v ∈ V (2.160)
b(u,u) = 1 (2.161)

where
a(u,v) =

∫
Ω
σ(u) · ε(v)dx (2.162)

and
b(u,v) =

∫
Ω
ρu ·vdx (2.163)

We follow the approach in the paper by M. Larson to derive an a posteriori error estimator. We
use most of his notation.

Residual

The definition (3.7) for the residual becomes, on a triangle τ ,

R(uh,θh)|τ = 1
√
ρ
|∇ ·σ(uh) +θhρuh|+

√√√√ 1
h vol(τ)

∫
∂τ\∂Ω

(
n ·
[
σ(uh)
2√ρ

])2

(2.164)

Note that we have
R(uh,θh)≡R(uh,θh,ρ,E,ν) (2.165)

and that R satisfies the following scaling properties

R(uh√
α
,
θh
α
,αρ,E,ν) = 1

α
R(uh,θh,ρ,E,ν) (2.166)

R(uh,αθh,ρ,αE,ν) = αR(uh,θh,ρ,E,ν) (2.167)

Stability estimates

The equation (3.10) becomes

||D2+sv|| ≤ Ce,s

√√√√b((−1
ρ
∇·σ

)1+s/2
(v),

(−1
ρ
∇·σ

)1+s/2
(v)
)

(2.168)

Note that
Λ +µ= E

2(1 +ν)(1−2ν) ,
µ

Λ +µ
= 1−2ν (2.169)

56

Then, we get

Ce,s = c
ρ(1+s)/2

(Λ +µ)(2+s)/2 (2.170)

Note that we have
Ce,s ≡ Ce,s(ρ,E,ν) (2.171)

and that Ce,s satisfies the following scaling properties

Ce,s(αρ,E,ν) = α(1+s)/2Ce,s(ρ,E,ν) (2.172)

Ce,s(ρ,αE,ν) = 1
α(2+s)/2Ce,s(ρ,E,ν) (2.173)

A posteriori estimates

We make also the assumption (2.6) : there are 0≤ δ < 1 and h0 > 0 such that

max
θi 6∈Θ

∣∣∣∣θh−θθi−θ

∣∣∣∣≤ δ , ||QΘuh||2 ≤ δ (2.174)

for all meshes such that maxh(x)≤ h0. Using p= 1, k = 2, β0 = 0, and β1 = 1, the final estimate
on the eigenvalues becomes

θh−θ
θ
≤ c

1− δCe,0
√
ρ||h2R(uh,θh)|| (2.175)

The estimates on the error in the discrete eigenvector are now√
b(eΘ,eΘ) ≤ c

1− δCe,0(1 + max
θi 6∈Θ

θ

|θi−θ|
)√ρ||h2R(uh,θh)|| (2.176)

√
a(eΘ,eΘ) ≤

c
√
ρ

1− δ (Cc+Ce,0 max
θi 6∈Θ

θθ
1/2
i

|θi−θ|
hmax)||hR(uh,θh)|| (2.177)

where Cc is related to the coercivity constant

||Dv|| ≤ Cc
√
a(v,v) (2.178)

In Ciarlet’s book (“The finite element method for elliptic problems”), the coercivity constant is
given

a(v,v)≥ 2µ||Dv|| ⇒ Cc = c√
2µ (2.179)

2.11.4. Explicit Estimator - Multiple Materials

To date, we have not seen any publication which extends the explicit error estimator to multiple
materials. We don’t believe that there are significant issues, and present the approach used in
Sierra/SD here. There are two main constraints from the explicit error estimator formulations
that must be maintained.

1. The eigenvectors, uh must be unit normalized, i.e.‖uh‖= 1. This is important for mass
scaling so that a change of units does not change the fractional error in the solution. It is an
essential part of both Larsen’s development and Ulrich’s extension to elasticity. See
equation 2.161.

57

2. The extensions must maintain finite element consistency so that as h goes to zero there is
no inconsistency.

The second of these can be evaluated by examination of the residuals (as in equation 2.151). Both
the internal and the flux terms of the residuals are unchanged by most scaling operations
provided that materials remain constant within an element. Note that the evaluation of the flux
jump (equation 2.154) is insensitive to multiple materials since the normal component of stress
discontinuity should go to zero even for disparate materials.

Eigenvector normalization could be addressed in several ways. The eigenvectors computed in
Sierra/SD are mass normalized, i.e. uTMu= I. We renormalize for error estimation in the
following manner.

1. A dimensionless mass matrix, M̄ is computed using unit density material.

2. We compute a scale factor
mα = uT M̄u (2.180)

3. The eigenvectors are renormalized as u← u/
√
mα.

In addition to eigenvector renormalization, we move the evaluation of the scaling constant, Ce,s,
from equation 2.170 inside the summation of equation 2.149. This maintains the proper scaling
with respect the element stiffness terms.

A recent paper by Bernardi and Verfurth26 has shown that an explicit estimator can be used in
the presence of multiple materials. For static Laplace equation, he derived multiplicative
constants for the interior and flux contributions that make the multiplicative constant in front of
the estimator independent of jumps in material properties. In what follows we extend this
approach to the eigenvalue problem, and to elasticity problems. We will follow the same approach
as in that paper, i.e. first constructing the lower bound, and then the upper bound. The proper
choices for the coefficients will result from the upper and lower bound estimates.

First, we note a commonly used form for an explicit estimator.

‖uh−u‖α ≤ c
∑
K

(
h‖Ri(uh,θh)‖2L2(K) +

√
h‖ [σn(uh)]

2 ‖2L2(∂K)

) 1
2

(2.181)

where Ri(uh,θh) = |∇ ·σ(uh)+θhρuh|, [σn(uh)] is the jump in stress across the element boundary
∂K, and ‖ · ‖α is the energy norm. This estimator can be shown to give both an upper and a
lower bound on the error. As written, this estimator does not account for discontinuities in
material properties, since the constant c in front of the estimator would depend on the jumps in
material properties.

We note that the estimator, written in this form, is essentially the same as the one proposed by
Larson. For example, by writing the boundary term as an integral of a constant function, scaled
by the volume of the element, then we can write equation 2.181 in the form

‖uh−u‖α ≤ c
∑
K

(
‖hRi(uh,θh) +

√
h

V ol(K)
[σn(uh)]

2 ‖2L2(K)

) 1
2

(2.182)

58

which is the same expression given by Larson in the case of linear elements. We note that this
estimator is in terms of the energy norm, whereas Larson gives his results in terms of the L2

norm. This results in the difference of one power of h in equation 2.182.

The approach in Bernardi is to replace the estimator in equation 2.181 by

‖uh−u‖α ≤ c
∑
K

(
µK

2‖Ri(uh,θh)‖2L2(K) +µe‖
[σn(uh)]

2 ‖2L2(∂K)

) 1
2

(2.183)

where µK and µe are chosen in such a way that the resulting estimator is both an upper and lower
bound on the error, and the constant c is independent of the jumps in material properties.

Before beginning, we redefine the original PDE as follows

−∇·σ
ρ

= θu (2.184)

the corresponding bilinear forms as

a(u,v) =
∫

Ω

1
ρ
σ(u) · ε(v)dx

b(u,v) =
∫

Ω
u ·vdx

and the corresponding interior residual as

Ri(uh,θh) = |∇ ·σ(uh)
ρ

+θhuh| (2.185)

By dividing through by ρ, we include the density in the energy norm. This will be important later
on when the coefficients in equation 2.183 are selected.

As in Bernardi, we need the following identities, which follow from equation 2.145

a(u−uh,v) = θb(u,v)−a(uh,v) (2.186)

θb(u,v)−a(uh,v) =
∑
K

∫
K

(
θu+ 1

ρ
∇·σ(uh)

)
vdx−

∑
e

∫
e

[1
ρ
σn(uh)

]
·vdτ (2.187)

where the summation ∑e is over all edges (in 2D) or over all faces (in 3D). We also use equations
2.11 in Bernardi’s paper.

The lower bound will be considered first. We set wK = ΨKRi(uh,θh), where ΨK comes from
equation 2.11 in Bernardi’s paper. We will also make use of the following inequality for the
bilinear form

a(u,v)K ≤ ‖u‖α‖v‖α (2.188)
≤ αK‖u‖1‖v‖1 (2.189)

59

where αK = CK
ρK

, and CK is the maximum eigenvalue of the material property matrix, and ρK is
the density of the element.

For the interior part of the residual, we have

‖Ri(uh,θh)‖2L2(K) ≤ γ2
1

∫
K

[1
ρ
∇·σ(uh) +θhuh

]
·wKdx

= −γ2
1

∫
K

1
ρ
σ(uh) · ε(wK)dx+γ2

1

∫
K
θhuh ·wK

= γ2
1a(u−uh,wK)K −γ2

1θ

∫
K

u ·wKdx+γ2
1θh

∫
K

uh ·wKdx

≤ γ2
1

[
‖u−uh‖α(K)γ2h

−1
K α

1
2
K +‖θhuh−uθ‖L2(K)

]
× ‖Ri(uh,θh)‖L2(K) (2.190)

where we note that, since ΨK is a bubble function, the boundary terms vanish in the integration
by parts on the second line of the above equation.

This implies that

‖Ri(uh,θh)‖α(K) ≤ γ2
1

[
‖u−uh‖α(K)γ2h

−1
K α

1
2
K +‖θhuh−uθ‖L2(K)

]
or, multiplying through by µK ,

µK‖Ri(uh,θh)‖α(K) ≤ γ2
1

[
‖u−uh‖α(K)µKγ2h

−1
K α

1
2
K +µK‖θhuh−uθ‖L2(K)

]

We assume that the computed eigenpair θh and uh are closer to the exact solution θ and u than
any other exact eigenpair. This assumption is also made by Larson, in equation 2.6. With this
assumption, the term ‖θhuh−uθ‖L2(K) is a higher order term compared with ‖u−uh‖α(K), and
thus will decay to zero at a faster rate. This was also shown in the paper by Duran.57 Thus, we
select µK based on the term ‖u−uh‖L2(K) only. If we select µK = hKα

− 1
2

K then the right-hand
side is independent of the jumps in material properties.

For the boundary term, we first choose we = Ψe

[
1
ρσn(uh)

]
, where again Ψe comes from equation

2.11 in Bernardi. Then, using equation 2.190 we have

60

‖
[1
ρ
σn(uh)

]
‖2L2(e) ≤ γ2

3

∫
e

[1
ρ
σn(uh)

]
·wedτ

= γ2
3
∑
K

∫
K

(
∇· 1

ρ
σ(uh) +θhuh

)
·we−γ2

3
∑
K

a(u−uh,we)

+ γ2
3
∑
K

∫
K

(θu−θhuh) ·we

≤ cγ2
3

(∑
K

γ5h
1
2
e ‖Ri(uh,θh)‖L2(K) +

∑
K

γ4h
− 1

2
e α

1
2
K‖u−uh‖α

+ γ5h
1
2
e

∑
K

‖uθ−uhθh‖L2(K)

)
‖
[1
ρ
σn(uh)

]
‖L2(e)

≤ cγ2
3

[∑
K

h
− 1

2
e α

1
2
K‖u−uh‖α+

∑
K

h
1
2
e ‖θhuh−θu‖L2(K)

]

× ‖
[1
ρ
σn(uh)

]
‖L2(e) (2.191)

where in the above equation, ∑K denotes a summation over elements, but only those elements
that border the edge e. Also, in the previous estimate we collected constants involving γ and
combine with the constant c, where possible.

This implies that

µ
1
2
e ‖
[1
ρ
σn(uh)

]
‖L2(e) ≤ cγ2

3µ
1
2
e

[∑
K

h
− 1

2
e α

1
2
K‖u−uh‖α+

∑
K

h
1
2
e ‖θhuh−θu‖L2(K)

]

We see that if we choose µe = hemax(αK1,αK2)−1, where subscripts 1 and 2 denotes the two
neighboring elements that contain the edge or face e, then the right-hand side (neglecting the
higher order term) is independent of the jumps in material properties.

Now we construct the upper bound. We start with a few identities that will be needed along the
way. ∫

Ω

(1
ρ
∇·σ(uh) +θu

)
· (w−wh) =−a(uh,w−wh) +∑

e

[1
ρ
σn(uh)

]
· (w−wh) +

∫
Ω
θu(w−wh)

(2.192)

This implies that

a(uh,w−wh) =
∑
e

[1
ρ
σn(uh)

]
· (w−wh)

+
∫

Ω
θu · (w−wh)−

∫
Ω

(1
ρ
∇·σ(uh) +θρu

)
· (w−wh) (2.193)

We will use the previous result in the upper bound on the energy norm of the error. Let
w = u−uh. Then

‖u−uh‖2α = a(u−uh,w) = a(u−uh,w−wh) (2.194)

61

where the last equality follows from Galerkin orthogonality. Breaking the previous expression into
element-wise quantities, and using equation 2.193, we obtain

‖u−uh‖2α =
∑
K

a(u−uh,w−wh) (2.195)

=
∑
K

a(u,w−wh)−
∑
e

[1
ρ
σn(uh)

]
· (w−wh)

−
∑
K

∫
K
θu · (w−wh) +

∑
K

∫
K

(
∇· 1

ρ
σ(uh) +θu

)
· (w−wh)

=
∑
K

∫
K

(
∇· 1

ρ
σ(uh) +θu

)
·w−wh−

∑
e

[1
ρ
σn(uh)

]
· (w−wh)

≤
∑
K

µK‖∇·
1
ρ
σ(uh) +θu‖L2(K)µ

−1
K ‖w−wh‖L2(K)

+
∑
e

µ
1
2
e ‖
[1
ρ
σn(uh)

]
‖L2(e)µ

1
2
e ‖w−wh‖L2(e)

≤
[∑
K

µ2
K‖∇·

1
ρ
σ(uh) +θu‖2L2(K) +

∑
e

µe‖
[1
ρ
σn(uh)

]
‖2L2(e)

] 1
2

×
[∑
K

µ−2
K ‖w−wh‖2L2(K) +

∑
e

µ−1
e ‖w−wh‖2L2(e)

] 1
2

We now use equation 2.16 in Bernardi’s paper, which shows that[∑
K

µ−2
K ‖w−wh‖2L2(K) +

∑
e

µ−1
e ‖w−wh‖2L2(e)

] 1
2

≤ c‖w‖α (2.196)

With this result, we have

‖u−uh‖α ≤ c
[∑
K

µ2
K‖∇·

1
ρ
σ(uh) +θρu‖2L2(K) +

∑
e

µe‖
[1
ρ
σn(uh)

]
‖2L2(e)

] 1
2

(2.197)

which is the desired upper bound. We note that we would also obtain higher order terms in the
above expression by adding and subtracting terms of the kind

∫
K θhuhdx, but the same argument

could be made as before.

2.11.5. Explicit Estimator Summary

Summarizing, the implementation of the explicit error estimator involves the following steps.
These steps have to be carried out for each eigenvalue separately.

1. Renormalize the eigenvectors as in section 2.11.4, equation 2.180.

2. Loop through all elements in the mesh. Compute the surface flux residuals for each face.
Share that residual vector at each surface Gauss point with neighboring elements to
determine the stress jump 2.156. Integrate over all faces (by summing at surface Gauss
points) to determine Rflux (eq 2.154).

62

3. Loop through all elements in the mesh. At each interior Gauss point of each element,

a) Compute the interior residual,

a1 = |A1(uh) +λhA2(uh)|

b) Compute the integrand,
(a1 +Rflux)2

Note that Rflux is a constant over the element.

c) Sum at Gauss points to obtain the element contribution,

ρ̄2 =
∫

Ωe
(a1 +Rflux)2dΩe

≈
NGauss∑

i

wi(a1(xi) +Rflux)2

4. Compute the global contribution to the error. For elements with linear shape functions, this
may be written,

|λ−λh|
λ

≤ c
(
Ne∑
e=1

(Ce,0h2
eρ̄)2

) 1
2

. (2.198)

Where (as shown in Section 2.11.3, equation 2.170),

C2
e,0 = ρ

(Λ +µ)2

and ρ, Λ and µ are the material density and the Lamé constants respectively. The more
general expression for elements of order p is,

|λ−λh|
λ(p+1)/2 ≤ c

(
Ne∑
e=1

(Ce,p−1h
(p+1)
e ρ̄)2

) 1
2

. (2.199)

We note that although the constant, c, in equation 2.198 is unknown, it is estimated to be
of order 1. The constant depends on the details of the mesh, and in particular on the
minimum angle in the elements.

2.11.6. Approach II - quantity of interest estimator

In,118 an error estimator is derived for the elasticity equation, using the eigenvalues as the
quantity of interest. The estimate is of the form

ηλlow = −η2
upp (2.200)

ηλupp = −η2
low (2.201)

63

where ηλlow is a lower bound on λ−λh, and ηλupp is an upper bound on λ−λh. Note that both
quantities are necessarily negative,11 since the computed eigenvalues are always larger than the
exact ones.

The quantities ηupp and ηlow are computed using the element residual method. This method
involves solving a small linear system on each element to obtain an error representation for that
element, and then the element contributions are accumulated to obtain the total errors. The
element linear system is

−B(ΦK ,v) =R(v,0) +
∫
∂K

gγ,Kvds ∀v ∈WK (2.202)

or
Kba= f (2.203)

where a is the vector of coefficients that represent the function ΦK . In other words,
ΦK =∑Nshapebubble

i=1 aiNi, where Ni is the ith bubble shape function. The left-hand side Kb is the
element stiffness matrix, but evaluated using bubble functions rather than the standard element
shape functions. This is necessary since the standard element stiffness matrix is singular and thus
equation 2.203 would otherwise not be solvable. The right-hand side consists of two terms, an
interior residual term for the interior of the element, and a stress jump term on the element
boundary. This is similar to the interior and boundary residual terms that were encountered in
the explicit error estimator, though the exact formulas for these terms are somewhat different.
The first term is

R(v,0) =B(uh,v)−λhM(uh,v) (2.204)
Equation 2.204 can be most efficiently evaluated using the following method.121 We evaluate the
first term first.

B(uh,v) =
∫
K
BT
bubbleσ(x)dx (2.205)

where BT
bubble is the standard ’B’ matrix, or the matrix of derivatives of the element shape

functions, except that it is using the bubble shape functions rather than the standard shape
functions. Note that the result of equation 2.205 is a vector of length 3xNshapebubble, where
Nshapebubble is the number of bubble shape functions. We note that the routine ForceFromStress
in IsoSolid.C already performs the computation needed for equation 2.205, with the only change
being the use of the matrix BT

bubble rather than the standard BT , and thus this code could be
re-used.

The second term can be evaluated in a similar way.

M(uh,v) =
∫
K
uh(x)v(x)dx (2.206)

Note that uh(x) is a known function. This term is also a vector of length 3xNshapebubble. The
three entries corresponding to the ith bubble shape function are as follows∫

K
u1h(x)φi(x)dx (2.207)∫

K
u2h(x)φi(x)dx (2.208)∫

K
u3h(x)φi(x)dx (2.209)

(2.210)
11for consistent mass only.

64

where u1h, u2h, and u3h are the x, y, and z components of uh, and φi is the ith bubble shape
function.

The boundary term consists of the following. gγ,K is the traction on the element boundary, or∫
∂K

gγ,Kvds =
∫
∂K

[σijnj]vds (2.211)

where [σijnj] denotes the averaged stress on the element faces. For two adjacent elements,
element ’a’ and element ’b’, it is the average of their stress traction vectors.

[σijnj] = 1
2
(
σaijnj +σbijnj

)
(2.212)

Again, the test (shape) function in this case, ’v’ is the bubble function rather than the standard
element shape function. We note that the boundary integral term in equation 2.202 and equation
2.211 is over all faces of the element in question. Thus, if the implementation of this term proceeds
one face at a time, then there will be a nodal summation step to get the complete right-hand side
vector corresponding to the boundary integral term. We could also write this term as

∫
∂K

gγ,Kvds=
Nfaces∑
i=1

∫
∂Ki

gγ,Kvds (2.213)

where ∂Ki is the ith face of element ’K’. Note that the test functions, v become the element shape
functions when restricted to an element. Thus, for a given element bubble shape function φbubble,
and a given face, we can write the previous equation as∫

∂Ki

gγ,Kφbubbleds (2.214)

Note that gγ,K is a 3-vector, and so for a given bubble shape function, and a given face,∫
∂Ki

gγ,Kφbubbleds is also a 3-vector. We then take this 3-vector and project it into the element
right-hand side. After looping through all faces and all bubble shape functions, we end up with a
vector that is of length 3∗Nshapebubble.

Once the linear systems 2.203 are solved on each element, the upper bound, ηup from equation
2.201 can be computed as follows

ηupp =
√∑

K

B(ΦK ,ΦK) (2.215)

This equation can also be written as follows. If we represent the function ΦK as a summation of
coefficients multiplied by the bubble shape functions,

ΦK =
Nshapebubble∑

i=1
aiNi (2.216)

then
ηupp =

√∑
K

B(ΦK ,ΦK) =
√∑

K

aTKba (2.217)

Finally, using equation 2.201, we have an upper bound on the error in the eigenvalue.

65

A lower bound on the error in the eigenvalue can also be computed. This is described in detail
in,118 and we summarize here.

First, we define a function χ ∈ V , which we will define shortly. Once the function χ is defined, the
lower bound can be computed as follows

ηlow = |Rp(χ,0)|√
B(χ,χ)

(2.218)

The quantities in both the numerator and denominator can be computed by looping through all
elements and computing the corresponding element-wise quantities (using equation 2.204), and
then summing globally.

Summarizing, in order to implement the quantity of interest approach for eigenvalue error
estimation, we have the following steps. These must be carried out for each eigenvalue.

1. Loop over all elements. Construct the bubble stiffness matrix, Kb in equation 2.203, in the
same way that standard element stiffness matrix is constructed, but using the bubble shape
functions.

2. Loop over all elements. Construct the right-hand side of equation 2.203. This consists of the
interior part, equation 2.204, and the boundary part, equation 2.211.

3. Loop over all elements and solve the linear systems 2.203, to obtain the error functions ΦK .

4. Compute the upper bound on the error in the eigenvalue using equation 2.217.

5. Compute the lower bound on the error in the eigenvalue using equation 2.218.

2.12. Nonlinear Distributed Damping using Modal Masing Formulation

This provides a method for implementing nonlinear distributed damping into a subsystem with a
nonlinear transient solution. This is a method developed to model the nonlinear damping
response of a subsystem. It implements the damping in a nonlinear manner with the use of an
internal force term. The damping is modeled by an Iwan model and distributed to the subsystem
by a modal expansion. This method augments the internal force vector through a modal masing
formulation.

2.12.1. Subsystem Distributed Damping Formulation with Iwan Model

Given a system that contains a subsystem exhibiting nonlinear damping behavior, the equation of
motion for the subsystem, denoted by B, can be written in typical finite element form as:

MBüB +CBu̇B +KBuB = FB +FJ
B, (2.219)

where MB, CB, KB are the mass, damping, and stiffness matrices of the subsystem B derived
from a low-load response, uB is the discretized nodal displacements, a superposed dot denotes
time differentiation, FB represents the external forces, and FJ

B is a distribution of internal
nonlinear damping forces to be discussed later.

66

A modal expansion is used to distribute the damping to the subsystem; therefore, the problem is
formulated in modal coordinates. Let ΦB be the matrix whose columns are the eigenvectors of
the (MB, KB) system and define modal coordinates in subsystem body B

uB = ΦBqB, (2.220)

where qB is a vector of modal coordinates. It is assumed that the eigenvectors are mass
normalized. Pre-multiplying Eq. (2.219), by ΦΦΦT

B, yields

[ΦΦΦT
BMBΦΦΦB]q̈B + [ΦΦΦT

BCBΦΦΦB]q̇B + [ΦΦΦT
BKBΦΦΦB]qB = ΦΦΦT

BFB + ΦΦΦT
BFJ

B, (2.221)

In order to derive a nonlinear distributed damping system, the force term ΦΦΦT
BFJ

B is modeled by a
four parameter Iwan model:128,129

ΦΦΦT
BFJ

B = FJ
ΦB =−

∫ ∞
0

diag(ρ(φ))[q(t)−βββ(t,φ)]dφ, (2.222)

where ρ is the population density of Jenkins elements of strength φ (not to be confused with the
eigenvectors), and β(t,φ) is the current modal displacements of the sliders in the Iwan model.129

This force term is solved in a discretized form with the integration from zero to φmax:129

FJ
ΦB =−

N∑
m=1

Fm(t)−Fδ(t) +K0q(t), (2.223)

where the integral in Eq. (2.222) is numerically integrated with intervals, ∆φm, such that,

N∑
m=1

∆φm = φmax, (2.224)

with φm being the midpoint of each interval ∆φm in the numerical integration. The, term, Fm(t)
is derived as:129

Fm(t) =

 R
φ2+χ
r,m −φ2+χ

l,m

2+χ sgn [q(t)−βββ(t)] if ‖ q(t)−βββ(t) ‖= φm

R
φ1+χ
r,m −φ1+χ

l,m

1+χ [q(t)−βββ(t)] if ‖ q(t)−βββ(t) ‖< φm

(2.225)

with φr,m and φl,m being the right and left side of each subinterval, ∆φm, and R and χ are a
parameters of the Iwan model. The term, Fδ(t), is found:129

Fδ(t) =
{
S[q(t)−βββ(t)] if [q(t)−βββ(t)]< φm
Sφmaxsgn[q(t)−βββ(t)] otherwise (2.226)

where S is an Iwan parameter. The final term, K0q(t) in Eq. (2.223), is an elastic restoring force
in the Iwan model that is included in the Fm(t) term, but also in the overall subsystem stiffness
matrix, KB. Therefore, it needs to be subtracted, so as not to include the elastic force twice. The
term K0 is the stiffness of the Iwan model under small applied loads (where slip is infinitesimal).
This is calculated from the Iwan parameters as

K0 = Rφχ+1
max

χ+ 1 +S = Rφχ+1
max

χ+ 1 (1 +β) (2.227)

67

Transferring to physical degrees of freedom provides the following for the equation of motion:

MBüB +CBu̇B +KBuB = FB + ΦΦΦ−T
B FJ

ΦB (2.228)

To avoid the possibility of an ill-conditioned and difficult pseudo-inversions, recognize that
MBΦΦΦBBB = ΦΦΦ−T

B , yielding:

MBüB +CBu̇B +KBuB = FB +MBΦΦΦBBBFJ
ΦB (2.229)

Given the above EOM, a typical nonlinear analysis can be performed, recognizing that the force
term MBΦΦΦBBBFJ

ΦB is a function of the displacement. However, care must be exercised in the
implementation, as the modal displacement will need to be passed to the Iwan function for
updating internal forces.

2.12.2. Subsystem Distributed Damping with a Linear Damper

It is possible to derive the same basic formulation as above, but for a linear damping. This
provides a check into the formulation as the results should be the same as a model with a modal
damping parameter.

The only required change from the above derivation is in the nonlinear internal force term, FJ
ΦB.

This term will need to be appropriate for a viscous damper; thus, a function of the modal
velocity. A formulation can be found as the following:

FJ
ΦB = FJ

ΦBi =−2ςiωiq̇i, (2.230)

where subscript i represents the mode, ςi is the damping ratio for mode i, ωi is the frequency for
mode i, and α̇ is the modal velocity. Here I am trying to see how many subscripts I can possibly
add.

2.12.3. Reduced Model

In order to reduce computational demand, a reduced set of eigenvectors (ΦΦΦR
B) can be calculated

for the subsystem and used in place of the total subsystem eigenvector, ΦΦΦB.

2.12.4. Full System Model

Implementation of the full system with nodal degrees of freedom, u, is accomplished with a
typical projection matrix, P , from the full system to the subsystem.

uB = Pu (2.231)

Thus, the EOM, now becomes

Mü+Cu̇+Ku = F+PTMBΦΦΦRRR
BBBFJ

ΦB (2.232)

68

2.13. Shock Response Spectra

Theory for computation of a shock response spectrum may be found in the papers by
Smallwood.131,132 The theory is not repeated here. Many analysts use the MATLAB scripts
developed by Smallwood to perform this analysis. MATLAB provides a nice, interactive
environment for this analysis once the time integration has been performed in Sierra/SD.
Sierra/SD performs exactly the same calculations.

2.14. Superposition for superelement recovery

A Craig-Bampton reduction generates a transformation matrix consisting of a combined set of
fixed interface and constraint modes. These modes may be stored in an Exodus file. We call this
“se-base.exo”. A netcdf file containing the reduced order model, “se.ncf” is also created at this
time. Subsequently, this reduced model is inserted into a residual model for superelement
analysis, say a transient analysis. That analysis outputs the standard Exodus results,
“resid-out.exo” and results on the netcdf file, “se-out.ncf”. The point is to recover the
response on the original interior degrees of freedom of the superelement.

The transient response on the interior degrees of freedom is,

uk(tn) =
nmodes∑

i

qi(tn)φik +
nconstraint∑

j

wj(tn)ψjk (2.233)

where,

uk(tn) = is the displacement at interior dof k
tn = is the time step
qi = is the amplitude of a generalized dof for mode i
φik = is the fixed interface mode i at dof k
wj = is the amplitude of interface dof j
ψjk = is the constraint mode j at dof k

The amplitudes qi and wj are found in “se-out.ncf”, while the mode shapes, φik and ψjk are
found in “se-base.exo”. The “superposition” solution combines these results and writes a new
output file containing the results.

2.15. Coupled Electro-Mechanical Physics

The finite element method was used to derive the coupled equations of motion underlying the
coupled electro-mechanical physics package. The theoretical details are documented in the
referenced Sand report.32

69

2.16. High Cycle Fatigue and Damage

The theory for fatigue analysis is developed from “Random Vibrations, theory and practice”.142

From equation WPO:10.58, the wideband damage is a correction to the narrowband damage.

D = λDNB

For Narrow Band damage, λ is 1, but other damage models (such as that proposed by Wirsching
and Light), use λ as a modifier to adapt Narrow Band damage to Wide Band processes. Narrow
Band damage is defined as:

DNB = ν+
o τ

A
(
√

2σsFSS)mΓ
(
m

2 + 1
)

(2.234)

Note that this equation assumes that the value of A used in the material’s S-N curve is based on
peak stress. If it is calculated based on stress range, narrowband damage is instead express as:

DNB = ν+
o τ

A
(2
√

2σsFSS)mΓ
(
m

2 + 1
)

Both practices are common in material data. We use the definition in equation (2.234) in this
work. The Fatigue Stress Scale (FSS) is a parameter to convert stress units from the simulation’s
unit system to the unit system of the material. Here,

m negative of slope of S-N curve, default=3.
ν+
o rate of crossings
τ is the exposure time (or duration)
A strength coefficient of material
σs RMS stress

FSS Fatigue Stress Scale

The rate of zero crossings may be computed as, ν+
o =

√
M2/M0 from equation WPO:6.24. Here

Mj is a stress moment, which is readily computed in Sierra/SD. Within the modal random
vibration module, RMS stress moments are computed. These are related to the stress moments.

M0 = (VRMS/(2π))2 (2.235)

M2 =
(
VRMS2/(2π)2

)2
(2.236)

M4 =
(
VRMS4/(2π)3

)2
(2.237)

Therefore,
ν+
o = VRMS2/(2π ·VRMS) (2.238)

The RMS stress is the primary output of the modal random vibration analysis.

Material and random loads must be provided as user input, and the other quantities are readily
determined from the analysis. DNB is well-defined. There are various methods of computing the
correction factor λ. A few are outlined below.

70

2.16.1. Sensitivity to Stress

The narrow band damage parameter (eq. 2.234), is very nonlinear in the stress. Effectively,
Dnb ∝ σm. Thus, doubling the stress when m= 3 results in an 8 fold increase in damage rate.
However, m may be as high as 14 for many real materials. Doubling the stress increases the
damage rate by 214 = 16384.

2.16.2. Competing Damage Models

Wirsching and Light: applies equation WPO:10.60. This is described in [141]. Compute:

a(m) = 0.926−0.033m (2.239)
b(m) = 1.587m−2.323 (2.240)

νp =
√
M4/M2 (2.241)

α = ν+
o

νp
(2.242)

ε =
√

1−α2 (2.243)
λ = a(m) + [1−a(m)](1− ε)b(m) (2.244)

Ortiz, Chen and Perng: applies equation WPO:10.62.

k = 2/m (2.245)

β =
√

M2Mk

M0Mk+2
(2.246)

λ = β/α (2.247)

Lutes and Larsen: applies equation WPO:10.68.

λ= (Mk)1/k

ν+
o

(2.248)

Steinberg: The Steinberg approach for calculating fatigue can be useful as a simple check of
fatigue failure. The Steinberg approach uses the assumption that the RMS of the stress is
representative of a 1σ event, and that the peak stress of any given cycle is a random value.
As such, it calculates a cumulative damage as the summation:

D =
∞∑
i=1

ni
Ni

(2.249)

Where:
ni = ν+

o τ erf
(
i√
2

)
(2.250)

and
Ni = A

(i σs)m
(2.251)

71

The Steinberg approach is ideally suited to loads that operate at exactly one frequency, or a
very narrowband of frequencies. There is also the problem of choosing an acceptable
number of terms to calculate. Eventually, the magnitude of the stress becomes great enough
to cause low-cycle failure, and the equations for high-cycle fatigue breakdown. To avoid
this, and to make the calculation inexpensive, it is common to limit ourselves to only the
first 3 terms of the series.

Dirlik: This method is described in Mrsniǩ (112). Define,

xm = M1
M0

√
M2
M4

Z = s√
Mo

α2 = M2√
M0M4

G1 = 2(xm−α2
2)

1 +α2
2

Rd = α2−xm−G2
1

1−α2−G1 +G2
1

G2 = 1−α−2 G1 +G2
1

1−Rd
G3 = 1−G1−G2

Q = 1.25(α2−G3−G2Rd)
G1

Then,
D̄ = C−1νpM

k
2
o

[
G1Q

kΓ(1 +k) + (
√

2)kΓ
(

1 + k

2

)
(G2|Rd|k +G3)

]
Typically, these correction methods provide similar results. The Ortiz and Lutes methods require
the moment Mk, which could vary by material block, and is expensive to compute. The
Wirsching method is somewhat simpler, and will be followed as a first development.

3. Acoustics Solution Methods

In this section, we discuss the partial differential equations behind the acoustic formulations used
in Sierra Structural Dynamics. We also discuss discretization procedures, mesh matching
conditions on the wet surface, exterior boundary conditions, and various loading scenarios
including scattering. As the first step, we show how to derive the acoustic wave equation from the
fluid dynamics equations. This will then lead into a discussion of the coupled equations of
motion.

3.1. Derivation of Acoustic Wave Equation

Under certain assumptions, fluid motion can be approximated as small-amplitude linear wave
propagation. We give a short background on the assumptions that go into the derivation of the

72

acoustic wave equation. In the most general case the fluid motion is governed by the compressible
Navier Stokes equations. In the case of small-amplitude wave propagation, viscosity is typically
neglected, and a polytropic relationship is assumed between pressure and density in the fluid. In
this case, the fluid motion is described by the nonlinear Euler equations

∂ρ

∂t
+∇· (ρv) = q (3.1)

ρ
∂v

∂t
+ρv ·∇v+∇p= f (3.2)

where equations (3.1) and (3.2) represent mass and momentum conservation, respectively, and p,
ρ and v represent the fluid pressure, density, and velocity. The right-hand side terms consist of
mass injection q (density per unit time) and body force f (force per unit volume). Note that these
are both nonlinear equations, and thus allow for both fluid convection and wave propagation. In
addition, we note that a nonlinear pressure-density relation exists for a given fluid

p= p(ρ). (3.3)

Equations (3.1), (3.2), and (3.3) are nonlinear, but they can be linearized under the assumptions
of small fluid motion. First, we decompose the field variables into ambient (background) values
plus small perturbations:

p=p0 + δp

ρ=ρ0 + δρ

v =0 + δv.

(3.4)

We say that all of the perturbations δp, δρ, and δv are O(δ). Since the background velocity is
equal to zero, v itself is also O(δ).

Next, we insert equations (3.4) into equations (3.1), (3.2), and (3.3), and in keeping with the
linearization process we neglect terms that involve products of perturbations. This yields the
following:

q = ∂ρ

∂t
+∇· (ρv)

= ∂

∂t
(ρ0 + δρ) +∇· ((ρ0 + δρ)δv)

= ∂ρ0
∂t︸︷︷︸
=0

+∂δρ

∂t
+ρ0∇· δv+ δρ∇· δv+ δv∇· δρ︸ ︷︷ ︸

=O(δ2)

≈ ∂δρ

∂t
+ρ0∇· δv

(3.5)

f = ρ
∂v

∂t
+ρv ·∇v+∇p

= (ρ0 + δρ)∂δv
∂t

+ (ρ0 + δρ)δv ·∇δv+∇(p0 + δp)

= ρ0
∂δv

∂t
+ δρ

∂δv

∂t︸ ︷︷ ︸
=O(δ2)

+(ρ0 + δρ)δv ·∇δv︸ ︷︷ ︸
=O(δ2)

+∇p0︸︷︷︸
=0

+∇δp

≈ ρ0
∂δv

∂t
+∇δp

(3.6)

73

p(ρ) = p0 + ∂p

∂ρ
(ρ0)δρ+ . . . , (3.7)

where we have linearized the pressure-density relation (3.7) by taking only the first term in a
Taylor series expansion. This implies that to first order,

δp= ∂p

∂ρ
(ρ0)δρ. (3.8)

It is useful to make the definition
c2 ≡ ∂p

∂ρ
(ρ0). (3.9)

That c is in fact the speed of acoustic wave propagation follows below.

Combining equations (3.5), (3.6), and (3.8), we arrive at the linear Euler equations

1
c2
∂δp

∂t
+ρ0∇· δv = q

ρ0
∂δv

∂t
+∇δp= f

(3.10)

Taking the time derivative of the first of equations (3.10), and the divergence of the second of
equations (3.10), we arrive at the linear wave equation

∂q

∂t
−∇·f = ∂

∂t

(1
c2
∂δp

∂t
+ρ0∇· δv

)
−∇·

(
ρ0
∂δv

∂t
+∇δp

)
= 1
c2
∂2δp

∂t2
+ρ0

∂

∂t
∇· δv−ρ0∇·

∂δv

∂t︸ ︷︷ ︸
=0

−∆δp

= 1
c2
∂2δp

∂t2
−∆δp.

(3.11)

It is often useful to employ a formulation of the acoustic wave equation based on a velocity
potential ψ rather than the acoustic pressure δp. This approach can simplify the formulation of
problems in structural acoustics, and can also yield symmetric rather than unsymmetric linear
systems. There are a variety of definitions that can be employed. As the name velocity potential
implies, among the most well-known choices is:

δv =∇ψ. (3.12)

Let us consider the implications of this choice vis-a-vis equation (3.10). Plugging equation (3.12)
into equation (3.10) and reordering derivatives, we obtain

0 = ρ0
∂∇ψ
∂t

+∇δp

=∇
(
ρ0
∂ψ

δt
+ δp

) (3.13)

Therefore, we have
δp=−ρ0

∂ψ

∂t
. (3.14)

With the definition in equation (3.14), time integration of the velocity potential ψ is necessary in
order to recover the physical pressure. The fluid density ρ0 must also be available to perform this

74

conversion, which may create some bookkeeping headaches. An alternative choice for the velocity
potential is to make the definition

δp= ∂ψ

∂t
. (3.15)

In this case, it follows from equation (3.10) that

∇ψ =−ρ0δv, (3.16)

i.e., we have removed ρ0 from the relation between pressure and the velocity potential but made it
appear in relating the velocity potential to ∇ψ.

In either case, a derivation similar to that employed above for the pressure-based wave equation
can be used to show that the velocity potential also satisfies a wave equation120

1
c2
∂2ψ

∂t2
−∆ψ = 0. (3.17)

We use this fact later on for coupled system of equations.

In the following sections, we find it convenient to drop the δs and write v,p to indicate the
perturbations δv,δp.

3.2. Coupled Structural Acoustics

In this subsection, we present the coupling of the acoustic wave equation derived in the previous
section with the structural dynamic equations of an elastic structure. Excellent review
articles79,62 have been written on the subject. In this section we focus on the details relevant to
the Sierra/SD implementation.

3.2.1. Discussion of Matching vs Non-Matching Meshes on Wet Surface

Having the same mesh density in the acoustic fluid and solid may be very inefficient, since the two
domains typically require significantly different mesh densities to achieve a given level of
discretization accuracy. It is also impractical in many applications since the mesh generation
process may be performed separately for the two domains. Generating conforming meshes on the
wet interface may be very difficult, if not impossible, even given the most sophisticated mesh
generation software. Illustrative examples include the hull of a ship, or the skin of an aircraft. In
these cases, the structural and fluid meshes are typically created independently, and have very
different mesh density requirements. Joining them into a single, monolithic mesh is often
impractical.

Although methods for joining dissimilar meshes are well-known in structural mechanics,6,53,98,123

very few papers exist in the area of dissimilar structural acoustic meshes. Mandel107 considered
parallel domain decomposition techniques for structural acoustics in the frequency domain, on
mismatched fluid/solid meshes. Nonconforming discretizations on the wet interface were handled
by duplicating acoustic and structural degrees of freedom on either side of the wet interface, and
imposing coupling equations that enforce continuity of pressure and displacement. The duplicated
degrees of freedom were then included in a dual-primal, parallel domain decomposition strategy.
Only two-dimensional, frequency-domain problems were considered. Flemisch et al.72 studied

75

both fluid-fluid and structure-fluid coupling on mismatched meshes. For fluid-fluid coupling, a
mortar approach was taken, whereas for structural acoustic coupling, the coupling matrices were
assembled in normal fashion and used across the wet interface to coupled the fluid-solid responses.
Only time-domain, serial solutions were considered.

Several recent references considered a displacement-based acoustic formulation, which was then
coupled to an elasticity formulation on mismatched fluid/solid meshes. Alonzo3 used an adaptive
method with error estimation to refine the fluid/solid meshes accordingly. The error estimator
demanded different mesh densities on the fluid and solid interface, as expected. Bermudez24 also
considered a displacement-based acoustic formulation, but used an integral constraint on the wet
interface, along with a static condensation procedure to eliminate the acoustic degrees of freedom.
In both of the preceding references, Raviart-Thomas elements were needed to avoid spurious
modes in the fluid. These modes would have been automatically eliminated with the use of a
potential formulation in the fluid.

In the following sections, a new technique is presented for structural acoustic analysis in the case
of nonconforming fluid/solid interface meshes. We first construct a simple method for coupling
mismatched fluid/fluid meshes, based on a set of linear constraint equations. Using static
condensation, we show how these constraint equations can be eliminated from the final system of
equations. We then demonstrate that the same approach can be taken to couple mismatched
fluid/solid meshes, provided that the coupling matrices that are typically used for conforming
fluid/solid meshes are calculated at a set of nodes with both structural and acoustic degrees of
freedom, and that extra (“ghost”) degrees of freedom are introduced to couple the structural or
acoustic terms to the other side of the interface. With this arrangement, the structural acoustic
coupling resembles a conforming method with like degrees of freedom linked across the interface
via MPC equations. Then the conforming structure to acoustic coupling operators ensure a weak
continuity of particle velocity and stress between the structural degrees of freedom and collocated
acoustic degrees of freedom on the shared side of the interface. Note either the structural degrees
of freedom can be ghosted to the acoustic side of the interface or the acoustic degrees of freedom
can be ghosted to the structural side of the interface. Either arrangement may be more
appropriate depending on the mesh density of the two regions.

In the case that the fluid/solid meshes are conforming, our approach reduces to standard methods
for conformal structural acoustic coupling.

3.2.2. The Coupled Equations and Their Discretizations

In this section, we review the governing equations of acoustics and structural acoustics, along
with their corresponding weak formulations, and then we present our approach for the
nonconforming discretization. We begin with the case when all meshes are conforming, and then
we extend this to the nonconforming case.

3.2.2.1. The Sierra/SD Velocity Potential Formulation There are several common
formulations for acoustics and structural acoustics. Some of these details are outlined briefly here.
Table 3-4 summarizes the formulations used in Sierra/SD.

76

Problem Space Formulation
Acoustics. Source Loading Velocity Potential: (3.15)
Acoustics. Enforced Acceleration Pressure
Structural Acoustics. Loading must be
through source loading only.

Negative Velocity Potential: (3.15) but mul-
tiplied by -1 to maintain symmetry.

Acoustics or structural acoustics with infi-
nite elements

Velocity Potential: (3.15). The infinite ele-
ments are not symmetric.

Table 3-4. – Acoustic Formulations

3.2.2.2. Conforming Structural Acoustics We begin by constructing a weak formulation of the
linear acoustic wave equation for conforming meshes. Subsequently, we consider conforming
structural acoustics. In this section, we will use the relation (3.15) between pressure and the
velocity potential ψ, but write ρf instead of ρ0 as the density of the fluid in order to use ρs for the
solid density. Surface normal vectors are denoted by n̂.

Recall that the linear acoustic wave equation (3.17) is given by

1
c2
∂2ψ

∂t2
−∆ψ = 0. (3.18)

Note that this implies that we do not include volume (body) forces on the fluid. A weak
formulation of equation (3.18) can be constructed by multiplying with a test function and
integrating by parts. We denote the fluid domain by Ωf and its boundary by ∂Ω = ∂Ωn

⋃
∂Ωd,

where the subscripts n and d refer to the portions of the boundary where Neumann and Dirichlet
boundary conditions are applied. We also assume that the fluid is initially at rest, i.e.
ψ(x,0) = ∂tψ(x,0) = 0, which is sufficient for most applications.

Denoting by Vf (Ωf) the function space for the fluid, the weak formulation can be written as
follows. Find the velocity potential ψ : [0,T]→ Vf (Ωf) such that

1
c2

∫
Ω

∂2ψ

∂t2
φdx+

∫
Ω
∇ψ ·∇φdx=

∫
∂Ω
φ∇ψ · n̂ds=−

∫
∂Ωn

ρfφv · n̂ds (3.19)

∀φ ∈ Vf (Ωf), where the fluid velocity v is prescribed on the Neumann portion of the fluid
boundary, Ωn.

Inserting a finite element discretization φ(x) =∑N
i=1φiNi(x) into equation (3.19) results in the

system of equations
Mψ̈+Kψ = fa, (3.20)

where N is the vector of shape functions, M =
∫

Ωf
1
c2NN

Tdx is the mass matrix,
K =

∫
Ωf ∇N ·∇N

Tdx is the stiffness matrix, and fa =−
∫
∂Ωn ρfv · n̂N

Tdx is the external forcing
vector from Neumann boundary conditions.

For structural acoustics, the second order equations of motion for the solid and the wave equation
for the fluid are

ρs
∂2u

∂t2
−∇·σ = f,

1
c2
∂2ψ

∂t2
−∆ψ = 0. (3.21)

77

Here u= (ux,uy,uz) corresponds to the displacement of the structure, σ is the structural stress
tensor, ρs is the density in the solid, and f denotes the body forces on the solid. Subsequently,
the subscripts s and f will refer to solid and fluid, respectively.

The fluid/solid or wet interface is designated by ∂Ωwet. The normal to ∂Ωwet points from solid
into the fluid. In linear acoustics the boundary conditions on ∂Ωwet are

∇ψ · n̂=−ρf∂tu · n̂, σ · n̂=− ∂ψ
∂t
n̂. (3.22)

These boundary conditions correspond to continuity of velocity and stress at the wet interface
respectively.

The weak formulation of the coupled problem is constructed by multiplying the two partial
differential equations in equation (3.21) by test functions and integrating by parts. Denoting by
Vs(Ωs) and Vf (Ωf) the function spaces for the solid and fluid, respectively, we have the following
weak formulation.

Find the mapping (v,ψ) : [0,T]→ Vs(Ωs)×Vf (Ωf) such that∫
Ωs
ρs
∂2t

∂t2
wdx+

∫
Ωs
σ :∇swdx−

∫
∂Ωwet

(σ · n̂)wds=
∫

Ωs
fwdx+

∫
∂Ωn

(σ · n̂)wds,

1
c2

∫
Ωf

∂2ψ

∂t2
φdx+

∫
Ωf
∇ψ ·∇φdx+

∫
∂Ωwet

(∇ψ · n̂)φds

=
∫
∂Ωn

(∇ψ · n̂)φds

(3.23)

∀w ∈ Vs(Ωs) and ∀φ ∈ Vf (Ωf), where ∂Ωn is the portion of the solid and fluid boundaries that has
applied loads, and f is used to denote body forces on the solid. Also, ∇s = 1

2

(
∇+∇T

)
is the

symmetric part of the gradient operator. If Dirichlet boundary conditions were applied to part of
the structure, or if the fluid had a portion of its boundary subjected to Dirichlet conditions, then
the Sobolev spaces Vs(Ωs) and Vf (Ωf) would be modified accordingly to correspond to spaces
that have those same boundary conditions. Recall that the normal is defined to be positive going
from solid into the fluid.

Next, we insert the boundary conditions from equation (3.22), and we define σ · n̂= g on the solid
portion of ∂Ωn, and ∇ψ · n̂=−ρf∂tu · n̂ on the fluid portion of ∂Ωn. This leads to the following
weak formulation. Find the mapping (v,ψ) [0,T]→ Vs(Ωs)×Vf (Ωf) such that∫

Ωs
ρs
∂2t

∂t2
wdx+

∫
Ωs
σ :∇swdx+

∫
∂Ωwet

∂ψ

∂t
n̂wds=

∫
Ωs
fwdx+

∫
∂Ωn

gwds,

1
c2

∫
Ωf

∂2ψ

∂t2
φdx+

∫
Ωf
∇ψ ·∇φdx−ρf

∫
∂Ωwet

(∂tu · n̂)φds=

−ρf
∫
∂Ωn

(∂tu · n̂)φds (3.24)

∀w ∈ Vs(Ωs) and ∀ψ ∈ Vf (Ωf).

78

Assuming a linear constitutive model for the solid, and inserting the spatial discretizations
u= (ux,uy,uz) = (∑uxiNi,

∑
uyiNi,

∑
uziNi) and φ=∑

φiNi into equation (3.24) yields the
following semidiscrete system of linear ordinary differential equations in time[

Ms 0
0 Mf

][
ü

ψ̈

]
+
[

Cs L
−ρfLT Cf

][
u̇

ψ̇

]
+

[
Ks 0
0 Kf

][
u
ψ

]
=
[
fs
ff

]
, (3.25)

where Ms, Cs, and Ks denote the mass, damping, and stiffness matrices for the solid, and Mf ,
Cf , and Kf denote the same for the fluid. The coupling matrices are denoted by L and LT .
Coupling between fluid and structure, as well as any damping in the fluid or solid separately, is
accounted for by the damping matrices. The quantities fs and ff denote the external forces on
the solid and fluid, respectively.

3.2.2.3. Nonconforming Structural Acoustics In the case of nonconforming fluid/solid
discretizations, equations (3.23) and (3.24) contain some extra technicalities. In this section we
first describe a simple procedure for coupling two acoustic domains which share a common
boundary, but with nonconforming discretizations. This method serves as a stepping stone to the
case of nonconforming structural acoustics.

In order to enforce continuity of appropriate field variables between the two different surfaces, the
degrees of freedom and element surfaces involved in the coupling need to be known a priori.
Given the surface meshes of the fluid and solid, this information is non-trivial to obtain, especially
in parallel, since adjacent element surfaces may reside on different processors.

The ACME and Dash package31 have been developed as tools to determine surface contact
conditions between general surfaces in three dimensions. These surfaces can take the form of
boundaries of finite element discretizations, as in our case, or they can be analytic surfaces. In
either case, search algorithms are employed to determine node-to-face interactions between the
opposing surfaces, based on search tolerances. A given node is determined to be in contact with a
given face of the adjacent surface if the distance from the node to the adjacent element face is
within the defined search tolerance. The contact package can compute contact conditions between
most of the standard three-dimensional finite elements, including hexahedrons, tetrahedrons, and
prisms. Once these interactions are defined, one can devise enforcement algorithms to enforce
continuity of the appropriate field variables. Once surface constraints are known, we derive our
own enforcement algorithms, as explained below.

We consider the situation shown in Figure (3-8). Here there are 2 interacting acoustic domains,
and two contact surfaces. We adopt a node-face approach, where one of the two interacting
surfaces contains tied faces and the other tied nodes. We denote surface 1 as the face-surface, and
surface 2 as node-surface. For a transient acoustic simulation involving the two meshes shown in
Figure (3-8), we would have to solve the system of equations given in (3.20), which would involve
degrees of freedom from both acoustic domains, subject to the constraint that the velocity
potential is continuous across the nonconforming interface. The extra equations corresponding to
this constraint can be derived from a simple consideration of the contact geometry.

In Figure (3-9), node x from surface 1 is impinging on element face y of surface 2.

79

Surface 1 Surface 2

Acoustic Domain 2Acoustic Domain 1

Figure 3-8. – Two interacting acoustic domains, with nonconforming meshes at the common interface.
In this case surface 1 is defined to be the face-surface, and surface 2 is the node-surface.

If contact determines that the distance from node x to element face y is within the user-defined
search tolerance, a constraint relation will be needed to enforce continuity of velocity potential.
The constraint relation for this interaction can be written in the form

ψa =
4∑
i=1

ciψ
b
i , (3.26)

where ψa is the velocity potential at node x on surface 1, and ψbi are the velocity potentials at the
four nodes of element face y on surface 2. The coefficients ci are determined from the position of
node x relative to the positions of the nodes on element face y on surface 2. More precisely,
ci =Ni(ξ,η) are the values of the surface shape functions corresponding to the nodes on the
surface of element y in Figure (3-9), and ξ and η are the dimensionless surface coordinates of the
location of node x on the surface of element y. Thus, the velocity potential at node x is
constrained to be equal to the value that would be predicted by a finite element interpolation on
the surface of element y.

For example, in the special case that face y is square and node x lies at the center of the face y,
the coefficients ci would all be equal to 1

4 , indicating that the constraint is an average. This can
be seen by considering the surface shape functions corresponding to a plane bilinear element on a
square ξ =−1,1, η =−1,1.

N1 = 1
4(1− ξ)(1−η)

N2 = 1
4(1 + ξ)(1−η)

N3 = 1
4(1 + ξ)(1 +η)

N4 = 1
4(1− ξ)(1 +η)

(3.27)

If node x were at the center of element y, then ξ = η = 0, and all coefficients would be 1
4 . If x were

off-center, these coefficients would change accordingly. If the surface of element y were a triangle

80

Node "X"

Element "Y"

Surface 1Surface 2

Figure 3-9. – A node-face interaction on the structural acoustic interface.

instead of a square, (indicating a tetrahedron instead of a hexahedron), the procedure would be
the same, except the shape functions in equation (3.27) would be different.

We use this approach, sometimes referred to as standard node collocation or inconsistent tied
contact,53 for all of the nodes/elements on the interacting surfaces. This results in a set of linear
constraints that enforces continuity of velocity potential at discrete points between the two
acoustic meshes.

It is well known that inconsistent tied contact results in constraints which do not meet
convergence criteria for finite elements. In particular, meshes which rely on these methods do not
always pass the static patch test for structures.52,98,123,143 Other methods such as mortar
methods, provide more accurate, but more complex approaches. Fundamentally, these methods
are very similar to those presented here, as the concepts of tying the acoustic degrees of freedom
through a system of constraint equations apply.

These constraint equations can be expressed as44

CΦ = 0, (3.28)

where C is a matrix that contains all of the constraint coefficients from all of the node-face
interactions, and vector Φ contains all degrees of freedom for the problem. The vector Φ can be
partitioned as

Φ =
[

Φf

Φn

]
, (3.29)

where Φn contains all node-surface acoustic degrees of freedom and Φf the face-surface degrees of
freedom. With this partition, equation (3.28) can be written as

CmΦf +CsΦn = 0. (3.30)

We note that the matrix Cs is diagonal either for the constraint enforcement approach used here
or for a dual mortar method.143,123 If the constraint equations are linearly independent (assuming

81

there are no redundant constraints), then the matrix Cs is also nonsingular. The node-surface
degrees of freedom can be condensed from the stiffness matrix by using Φn = CmsΦf , where we
define Cms =−C−1

s Cm. Additional details are provided later.

Next, we examine the dimensions of the constraint matrices defined above, and their relation with
the number of acoustic and structural nodes on the wet interface. We define ns as the number of
nodes on the structural side of the wet surface, and n the total number of degrees of freedom for
the problem. The dimensions of Cs is then seen to be ns by ns, while the dimensions of Cm is ns
by n−ns. For example, consider the mesh shown in Figure (3-8). If we assume that the domain
on the right is a structural domain (instead of acoustic), we would have ns = 7. In addition, only
5 columns of Cm would have nonzero entries.

Following,44 we have
K̃ =Kmm+KmsCms+CTmsKsm+CTmsKssCms (3.31)

Similar condensation expressions hold for the mass and damping matrices. While static
condensation does generate non-diagonal matrices, it does not significantly effect the sparsity of
K̃ or M̃ , since these are local constraint equations that involve only a few degrees of freedom.
After condensing out the node-surface acoustic degrees of freedom in equation (3.20), we obtain a
modified system of equations

M̃ψ̈+ K̃ψ = f̃a, (3.32)

where the tilde superscripts indicate that the node-surface constraints have been condensed out.
Note that the vector ψ only contains the interior degrees of freedom (corresponding to nodes that
are not on the interacting surfaces), and the face-surface degrees of freedom on the contact
surface, since the node-surface degrees of freedom have been eliminated. Equations (3.32) can also
be solved in the frequency domain, as follows[

s2M̃ + K̃
]
ψ = f̃a, (3.33)

where s is the frequency parameter that comes from the Laplace transform.

In the case of structural acoustics, the algorithm for the nonconforming fluid/fluid meshes can be
used as a stepping stone to the nonconforming solid/fluid meshes. In this approach ghost
structural or acoustic degrees of freedom are added to one side of the wet interface. Due to the
ghost degrees of freedom collocated structural and acoustic degrees of freedom are present one
side of the wet interface (e.g. three displacement and one velocity potential degree of freedom).
Two surface integrals in equation (3.24), i.e.

∫
∂Ωwet ∂tψn̂wds and ρf

∫
∂Ωwet ∂tu · n̂φds, are evaluated

to couple the structural acoustic coupling terms at these collocated degrees of freedom. Across
the interface the like degrees of freedom (the “true” degrees of freedom and their ghost
counterparts) are tied together using the same set of linear constraint equations that were
developed for the nonconforming structure/structure case.

In addition to equations (3.25), we have a set of linear constraint equations that couple shared
degrees of freedom across the wet interface. As in the structure/structure case, these constraint
equations represent the relations between the face-surface and node-surface degrees of freedom,
and they take the same form given by equation (3.28). Upon condensing these constraints out of
the system of equations, (3.25), we obtain a modified system of equations[

M̃s 0
0 M̃f

][
ü

ψ̈

]
+
[

C̃s L̃

−ρf L̃T C̃f

][
u̇

ψ̇

]
+
[
K̃s 0
0 K̃f

][
u
ψ

]
=
[
f̃s
f̃f

]
, (3.34)

82

where again the tilde superscripts represent the matrices with constraints condensed out. Note
that, in this case, the structural matrices (and coupling matrices) must be modified during the
constraint removal process. This is because of the coupling matrices L and LT involve
uncondensed degrees of freedom. To solve this system of equations, we use the generalized alpha
time integration method,40 which is a generalization of the Newmark-beta method.

In addition to the transient analysis formulation outlined above, an advantage of our coupling
procedure is that it can be applied equally well to nonconforming structural acoustic problems for
both eigenvalue analysis, and frequency domain analysis. The coupling terms lead to a quadratic
eigenvalue problem.([

K̃s 0
0 −K̃f/ρf

]
+λ

[
C̃s L̃

L̃T −C̃f/ρf

]
+λ2

[
M̃s 0
0 −M̃f/ρf

])[
u
ψ

]
= 0 (3.35)

In the case of zero damping, this is a gyroscopic system with imaginary eigenvalues, and complex
eigenvectors.

The frequency domain equation can be obtained by a Fourier transform of the time domain
equation. This results in following complex-valued system of equations.

([
K̃s 0
0 −K̃f/ρf

]
+ iω

[
C̃s L̃

L̃T −C̃f/ρf

]
−ω2

[
M̃s 0
0 −M̃f/ρf

])[
u
ψ

]
=
[

f̃s
−f̃f/ρf

]
. (3.36)

In the next section on numerical results, we present results from all cases, including time domain,
frequency domain, and eigenvalue analysis simulations.

Our method can be summarized by the diagram in Figure (3-10). In the shown example the
structural nodes on the wet interface are augmented with the acoustic degree of freedom.
Consequently, these nodes each have four degrees of freedom. In this example the acoustic degrees
of freedom are constrained across the interface via an acoustic-to-acoustic MPC. The structure to
acoustic coupling is enforced on the structure side of the interface which has conforming
structural and acoustic degrees of freedom.

One case that requires special care for structural acoustic coupling is double wetted shells (a
structural shell sandwiched between two acoustic domains.) For this case the structural velocities
at the shell and the two acoustic domains should be identical. However, the acoustic pressure
potentials at the two acoustic domains are not identical. To correctly run this case the structural
degrees of freedom should be MPCd across the three domains and the structure-to-acoustic
coupling terms be evaluated on the acoustic domains. This enables two separate and potentially
disjoint acoustic degrees of freedom to be present at the interface. The proper setup for this case
is shown in Figure (3-11).

The dual mortar method143,123 generates a similar set of constraint equations.

83

Constraint equations join acoustic degrees of
freedom on both sides of wet interface

Acoustic subdomain Solid subdomain

1 degree of freedom per node

4 degrees of freedom per node

3 degrees of freedom per node

Figure 3-10. – Illustration of our method for structural acoustic meshes with nonconforming interfaces.
Ghost acoustic degrees of freedom are added to the structural side of the wet interface, and then
connected to the adjacent acoustic surface with constraint equations. The resulting nodes in the mesh
can then have either one acoustic degree of freedom (shown by a circle), three displacement degrees of
freedom (shown by a dashed circle), or one acoustic degree of freedom and three displacement degrees
of freedom (shown by a black-filled circle).

Acoustic
Subdomain

Acoustic
Subdomain

Structural
Shell

Figure 3-11. – Nonconformal Structural Acoustic Tying for Doubled Wetted Shell

84

3.3. Acoustic Scattering

Acoustic scattering refers to the interaction of plane acoustic waves with solid bodies which are
immersed in an infinite acoustic fluid. The plane waves are assumed to originate from infinity,
and after impinging on the solid body, they continue to propagate to infinity. In scattering
simulations, the velocity potential is decomposed into a sum of the incident potential, and
scattered potential

ψtot = ψin+ψsc (3.37)

where ψtot is the total potential, ψin is the incident potential, and ψsc is the scattered potential.
The incident potential is a known quantity, and the scattered potential is unknown. Thus, in the
final formulation, the incident potential becomes part of the right-hand side forcing function, and
the scattered potential remains on the left-hand side as an unknown.

We recall that the linear wave equation in terms of the total velocity potential is given by

1
c2 ψ̈

tot−∆ψtot = 0 (3.38)

Decomposing this into incident and scattered fields, we have[1
c2 ψ̈

in−∆ψin
]

+
[1
c2 ψ̈

sc−∆ψsc
]

= 0 (3.39)

Since the incident wave is assumed to satisfy the wave equation, the first part of the expression
can be dropped, and we are left with

1
c2 ψ̈

sc−∆ψsc = 0 (3.40)

This implies that we can solve for the scattered potential directly. The effect of the incident field
is then accounted for in the boundary conditions on the wet surface.

For scattering in the context of the coupled structural acoustic problem, it is most convenient to
solve for the scattered acoustic potential in the fluid and the total displacement field in the
structure. With that assumption, we have the following partial differential equations

ρsu
tot
tt −∇·σ = F,

1
c2 ψ̈

sc−∆ψsc = 0 = 0.

(3.41)

Here utot corresponds to the total displacement of the structure, σ is the structural stress tensor,
ρs is the density in the solid, and F denotes body forces on the solid. Subsequently, subscripts s
and f refer to solid and fluid, respectively.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet interface,
which is designated by ∂Ωwet), are

∂ψtot

∂n
=−ρf u̇totn (3.42)

σn =−ψ̇totn̂=−
[
ψ̇in+ ψ̇sc

]
n̂ (3.43)

85

where ρf is the density of the fluid, and n̂ is the surface normal vector. These boundary
conditions correspond to continuity of velocity and stress at the wet interface. For
equation (3.42), we note that we rearrange the terms for convenience

∂ψtot

∂n
= ∂ψin

∂n
+ ∂ψsc

∂n
= −ρf u̇totn

(3.44)

Rearranging, we have

∂ψsc

∂n
= −ρf u̇totn −

∂ψin

∂n
(3.45)

Equations (3.45) and (3.43) are in the form that we can insert them directly into the variational
formulation (3.23), with the recognition that the unknowns are the total structural displacement
and scattered velocity potential. Carrying this through, and assuming a linear constitutive model
for both the solid and fluid, the time domain equations of motion can be represented by the
following semi-discrete system of linear ordinary differential equations[

Ms 0
0 −1

ρa
Ma

][
ütot

ψ̈sc

]
+
[
Cs L
LT −1

ρa
Ca

][
u̇tot

ψ̇sc

]
+
[
Ks 0
0 −1

ρa
Ka

][
utot

ψsc

]
=
[

fs
−1
ρa
fa

]
, (3.46)

where Ms, Cs, and Ks denote the mass, damping, and stiffness matrices for the solid, Ma, Ca, Ka

denote the same for the acoustic fluid, ρa is the density of the acoustic fluid, and u and ψ denote
the structural displacement and fluid velocity potential. The coupling matrices are denoted by L
and LT . Coupling between fluid and structure, and any damping in the fluid or solid separately, is
accounted for by the damping matrices. The quantities fs and fa denote the external forces on
the solid and fluid, respectively.

The acoustic load fa for the scattering problem can be written in the form

fa =−
∫
∂Ωn

∂ψin

∂n
φds (3.47)

where again φ is a test function. Since ∂ψin

∂n is a known quantity, we can integrate equation (3.47)
to obtain the loading on the fluid side of the wet interface.

The expression for loading on the structure due to scattering loads is given by

fs =
∫
∂Ωn

ψ̇inwds (3.48)

where w is a test function for the structural discretization. Since ψ̇in is a known quantity, the
force on the solid body can be computed from equation (3.48). Note that equations (3.47)
and (3.48) require the spatial and temporal derivatives of the incident field, ψinc. Thus, even if
ψin is known, methods for computing its spatial and temporal derivatives are also required.

Inserting the expressions for fa and fs from equations (3.47) and (3.48) into equations (3.46), we
can solve for the responses of the acoustic fluid and solid body to incident acoustic waves. The
only requirement on ψin is that it satisfies the acoustic wave equation. Note that the solution to
equations (3.46) will give the scattered acoustic potential. In order to compute the total acoustic

86

potential, we would need to add the incident and scattered potentials together, as in
equation (3.37). Also, we note that the loads from equations (3.47) and (3.48) are generated by a
single incident wave. For multiple incident waves (as in the case of a diffuse field), the right-hand
side of equations (3.34) involve a simple superposition of all of the incident waves.

3.3.0.1. Frequency Domain scattering. The incident potential satisfies the wave equation, and
for a plane wave takes the form

ψin =Aei[k·x−ωt] (3.49)

where ω = 2πf is the circular frequency of the wave, f is the frequency in Hz, k is the vector wave
number, and x is the vector coordinates of a point in space. The vector wave number has three
components, k = (kx,ky,kz), which define the direction of propagation of the wave. For example,
for a wave propagating strictly in the x direction, we would have k = (kx,0,0), where kx = ω

c
would be the standard wave number from one-dimensional wave propagation. The parameter A is
a scalar constant that defines the magnitude of the wave. Although A can be made to vary with
frequency, we will only consider the case where A is a scalar constant. This implies that all
incoming plane waves have the same amplitude (but different frequencies). In the frequency
domain, the time portion of the expression in equation (3.49) drops out, and we are left with

ψin =Aeik·x (3.50)

We consider a three-dimensional elastic body, which is immersed in an infinite acoustic fluid, and
subjected to impinging plane waves from infinity in the frequency domain. The equations of
motion of the coupled system are given by

−ω2
[
M̃s 0
0 M̃a

][
utot

ψsc

]
+ iω

[
C̃s L̃

−ρf L̃T C̃f

][
utot

ψsc

]
+
[
K̃s 0
0 K̃a

][
utot

ψsc

]
=
[

f̃s
−1
ρa
f̃a

]
.

(3.51)
We recall that the portion of the acoustic load fa that comes from Neumann boundary conditions
can be computed from equation (3.47). Given equation (3.50), we define n= (nx,ny,nz) to be the
surface normal of the solid body. We also let k = ω

c (dirx,diry,dirz), where (dirx,diry,dirz) define
the direction cosines of the direction of propagation of the incident plane wave. Then, we have

∂ψin

∂n
=∇ψin ·n= i

ω

c
[nxdirx+nydiry +nzdirz]Aeik·x (3.52)

Inserting this expression into equation (3.47), and integrating, we obtain the loading on the
acoustic fluid due to scattering.

For the loading on the structure, we recall the expression for loading on the structure due to
Neumann boundary conditions in equation (3.48). In the frequency domain case,
σn = nψ̇in = inωψin = inωAei(k·x). Inserting this expression into equation (3.48), and integrating,
we obtain the loading on the solid body due to scattering.

Finally, we examine the complex-valued loads presented in equations (3.47) and (3.48). We make
two observations regarding these loads.

87

1. These loads have real and imaginary parts, and thus even for a single plane wave, they
cannot be combined into a single vector, even though they have the same multiplication
factor A. Currently, Sierra/SD combines load vectors that have the same time function
into a single array. For the case of complex loads in the frequency domain, this translates
into combining the real and imaginary parts into a single array if they have the same “time"
function, which in this case corresponds to the multiplication factor A. A temporary
work-around is to use distinct time functions for the real and imaginary parts in the input
deck. (even if the time functions themselves are identical). Otherwise, if the same time
function is used, the real and imaginary parts would be combined into a single vector in
Sierra/SD.

2. We have considered the case where the coefficient A is a scalar constant, but we could also
consider the case where A=A(ω) is a function of frequency. This would correspond to
multiple plane waves of different amplitudes impinging on the structure. Since the spatial
parts of these loads varies with frequency, they could not be computed by adding the spatial
parts together before multiplying by the coefficient A(ω). Thus, we would have an
inconsistency with the current approach in Sierra/SD of adding the spatial parts together
before multiplying by the time function (which in this case would be A(ω)).

3.4. Nonlinear Acoustics

Linear acoustic theory is based on the assumptions of small amplitude waves and a linear
constitutive theory of the fluid medium. Although these assumptions hold for many
vibro-acoustic interactions, they are invalid in sound fields with high sound pressure levels,78,27,115

i.e. sound fields that have finite amplitude waves. Finite amplitude waves can be generated in
interior fields when resonance occurs,60 in the far-field of atmospheric and underwater
explosions,38 in tire noise generation,75 and in many aeroacoustic sources (such as sonic booms).78

Nonlinear effects increase with the frequency of the waves, and thus the study of nonlinear
acoustics has also become important in high-frequency applications such as ultrasound.84,36

Unlike the linear acoustic wave equation, the nonlinear counterparts can handle waves with finite
amplitude, and allow more accurate modeling of nonlinear constitutive models in the fluid.

The classical Kuznetsov equation94 treats three-dimensional nonlinear acoustic waves to second
order in nonlinearity. Recently, Soderholm133 generalized Kuznetsov’s equation using the exact
equation of state, rather than a series expansion. The nonlinear terms in these wave equations
imply that the sound speed depends on the stress state in the fluid. This leads, eventually, to the
formation of weak shocks (small discontinuities in acoustic pressure). For a monofrequency
source, energy will be gradually transferred from lower harmonics to higher harmonics, leading to
a steepening of an initially smooth wave. Weak shocks radiated from a structure lead to
unpleasant cracking noise, and when impinging on a structure they cause a very different response
than smooth acoustic waves. Thus, it is important to characterize their effects in both noise
radiation and structural coupling problems.

The governing equations of acoustics can be formulated in terms of particle displacement, or
scalar-based quantities such as acoustic pressure or velocity potential. In particle displacement
approach, the mesh moves with the waves, whereas in the latter approaches the mesh is fixed.
The primary advantage of the displacement approach is its easy coupling with a Lagrangian solid
mechanics code, since the unknowns are the same as for the solids. The displacement approach

88

has been studied in,119,39,140 though these references dealt only with the linear case. Since ideal
fluids have zero shear modulus, this approach suffers from an infinite dimensional null space
consisting of rotational modes in the fluid. Numerically, this leads to spurious modes that pollute
the computed solution. These modes can be eliminated through the use of penalty formulations,
but this can result in poor conditioning. Displacement formulations for acoustics are also prone to
mesh tangling in the case of large displacements in either the solid or the fluid, making them
inappropriate for many applications.

In the Eulerian approach, the unknown is typically acoustic pressure or velocity potential. In
problems without structural coupling, the mesh remains stationary. In addition, the null space
consists only of the constant pressure mode, which makes these formulations more stable for
numerical computations. On the other hand, for coupled solid/fluid problems, the Eulerian
formulation requires a coupling mechanism between fluid and solid to handle the different degrees
of freedom used to discretize the fluid/solid domains. In the case of small structural
displacements, this coupling mechanism reduces to coupling operators that couple acoustic
pressure and structural displacements between fluid and solid. In the case of large structural
displacements or rotations, methods such as the Arbitrary Lagrangian-Eulerian (ALE) approach,
which have been developed for aeroelastic coupling,63,64 could also be applied to the structural
acoustics problem. An alternative approach in the case of large structural motion is an Eulerian
method for the fluid allowing the solid/fluid boundary to cuts through fluid elements. Regardless
of the approach taken for the structural coupling, we have chosen the Eulerian approach for
acoustic discretization, since it avoids the null space issues eluded to earlier.

Unlike the rich history of finite element formulations in nonlinear solid mechanics, the finite
element formulation of nonlinear acoustic equations for fluids has received considerably less
attention. Cai et al36 recently used finite elements and parallel computations to solve Kuznetsov’s
equation for the purpose of modeling ultrasonic waves. In a sequence of works, Hoffelner et al84

also used a finite element method to solve Kuznetsov’s equation. Later,83 they used their method
to simulate acoustic streaming and radiation force, two important acoustic phenomena that
cannot be captured from linear theory. Kagawa89 took a similar approach in solving Kuznetsov’s
equation, except that additional approximations were made to the equation prior to
discretization. Vanhille et al138 used finite differences and finite volume methods to solve a
nonlinear acoustic wave equation in the Lagrangian framework.

In this section, we present a finite element implementation of the Kuznetsov wave equation. We
derive the full tangent operator for the spatial discretization, and give an implementation of a
time discretization scheme using the generalized alpha method. We then derive a formulation for
coupling the Kuznetsov equation to the equations of motion of an elastic solid.

In order to illustrate ideas, we begin with the linear acoustic wave equation

1
c2
∂2φ

∂t2
−∆φ= 0 (3.53)

where φ is the velocity potential (φ=∇u, where u is the particle velocity), and c is the speed of
sound. The derivation of this equation neglects both convective and constitutive nonlinearities.

The nonlinear isentropic equation of state for air can be written as follows

P

P0
=
(
ρ

ρ0

)γ
(3.54)

89

where P and P0 are the total and reference pressures, ρ and ρ0 are the current and reference
densities. γ is the ratio of specific heats, and is equal to 1.4 for air. Equation 3.54 can then be
combined with the conservation of momentum and conservation of mass for the fluid to derive
nonlinear wave equations. In Soderholm’s approach, equation 3.54 is used directly. In
Kuznetsov’s approach, it is first expanded in a Taylor series about the isentrope s= s0

78

p= P −P0 =
(
∂P

∂ρ

)
s0,ρ0

(ρ−ρ0) + 1
2

(
∂2P

∂ρ2

)
s0,ρ0

(ρ−ρ0)2 + ... (3.55)

which can be written compactly as

p=A

(
ρ−ρ0
ρ0

)
+ B

2

(
ρ−ρ0
ρ0

)2
+ ... (3.56)

where A= ρ0
(
∂P
∂ρ

)
s0,ρ0

≡ ρ0c
2
0, and B = ρ2

0

(
∂2P
∂ρ2

)
s0,ρ0

. Since
(
∂P
∂ρ

)
s0,ρ0

= c2
0 is the square of the

linear speed of sound, we see from the expansion that the ratio of the first two terms is

B

A
= ρ0
c2

0

(
∂2P

∂ρ2

)
s0,ρ0

(3.57)

The parameter B/A accounts for the nonlinear constitutive law of the fluid up to second order. A
table of values of B/A for various fluids can be found in texts on nonlinear acoustics.78

For linear acoustics, only the first term in the expansion 3.56 is retained. In that case, we have

p=A

(
ρ−ρ0
ρ0

)
= c2

0(ρ−ρ0) (3.58)

which implies that the stiffness of the fluid is the square of the linear speed of sound.

Kuznetsov’s equation uses the above Taylor series expansion of the equation of state, but
truncates all terms past the second. It also accounts for convective nonlinearities to second order.
The equation is derived by combining the Taylor series expansion of the equation of state with
the conservation of mass and momentum. The result is the following..94,60,106,115

1
c2
∂2φ

∂t2
−∆φ− 1

c2
∂

∂t

(
b(∆φ) + B/A

2c2

(
∂φ

∂t

)2
+ (∇φ)2

)
= 0 (3.59)

where φ is defined as p= ρf
∂φ
∂t , and p is the acoustic pressure. The first two terms in equation

3.59 are the same as in equation 3.53, but the fourth and fifth terms are nonlinear. The third
term is a linear absorption term. It is grouped with the nonlinear terms to indicate deviation
from the linear wave equation. The parameter b is for absorption in the fluid due to viscosity and
thermal conductivity.

Equation 3.59 was originally developed in terms of the velocity potential. Here, instead of solving
for the velocity potential, we prefer to solve for ψ such that p= ψ̇. This implies that φ= 1

ρψ.
Inserting this relation into equation 3.59 yields

1
c2
∂2ψ

∂t2
−∆ψ− 1

c2
∂

∂t

(
b(∆ψ) + B/A

2ρc2

(
∂ψ

∂t

)2
+ (∇ψ)2

ρ

)
= 0 (3.60)

90

This is done only for convenience, since the acoustic pressure can easily be computed during post
processing as p= ψ̇. For simplicity, we will still refer to ψ as the velocity potential in the
remainder of this paper.

Soderholm133 derived a higher order nonlinear acoustic equation that accounts for nonlinearities
to higher order. In this approach, the exact equation of state, equation 3.54, is used directly,
rather than the second order expansion of Kuznetsov’s equation. This equation is only valid for
air, whereas Kuznetsov’s equation can be used for any fluid that has a tabulated value of BA .
After combining the equation of state with the conservation of mass and momentum, the
following equation results

1
c2

0

∂2φ

∂t2
−∆φ− b

c2
0

∂

∂t
(∆φ) + 1

c2
0

∂

∂t
(∇φ)2

+ 1
2c2

0
∇φ ·∇(∇φ)2 + γ−1

c2
0

(
∂

∂t
φ+ 1

2 (∇φ)2
)

∆φ= 0

We note that Soderholm’s equation is a generalization of the exact relation given by equation 3.26
in,78 which was derived for the case of a lossless fluid. The only difference is the term b

c20

∂
∂t(∆φ),

which accounts for absorption.

The range of validity of nonlinear wave equations is typically given in terms of acoustic mach
number.

M = u

c0
(3.61)

where u is the particle velocity, and c0 is the linear speed of sound. Rough guidelines are given
in.106 For the Kuznetsov equation, a limit of M ≤ 0.1 is given. For a third order wave equation, a
limit of M ≤ 0.7 is given. These are useful guidelines for the acoustic analyst, who needs to decide
which equation is applicable to their needs.

In summary, three-dimensional nonlinear acoustic waves in thermoviscous fluids can be modeled
using equations derived by Kuznetsov and, more recently, by Soderholm. These equations include
the linear wave equation as a special case. Kuznetsov’s equation generalizes the linear wave
equation to include nonlinearities to second order and linear dissipation. Soderholm’s equation is
an additional generalization that allows for higher degrees of nonlinearity. The dissipative term in
Soderholm’s equation is the same as in Kuznetsov’s equation.

3.4.1. Weak Formulations

In this paper we will only work with Kuznetsov’s equation, since we are interested in a formulation
that is valid for any fluid. A weak formulation of equation 3.60 can be constructed by multiplying
with a test function and integrating by parts. We denote the fluid domain by Ωf and its
boundary by ∂Ω = ∂Ωn

⋃
∂Ωd, where the subscripts n and d refer to the portions of the boundary

where Neumann and Dirichlet boundary conditions are applied. We also assume that the fluid is
initially at rest, i.e. ψ(x,0) = ψ̇(x,0) = ψ̈(x,0) = 0, which is sufficient for most applications.

Denoting by Vf (Ωf) the function space for the fluid, the weak formulation can be written as

91

follows. Find the mapping ψ : [0,T]→ Vf (Ωf) such that

1
c2

∫
Ω
ψ̈φdx+

∫
Ω
∇ψ ·∇φdx

+ 1
c2

∫
Ω
b∇ψ̇ ·∇φdx− 1

ρc4 (B/A)
∫

Ω
ψ̈ψ̇φdx−

2
ρc2

∫
Ω
∇ψ̇ ·∇ψφdx=

∫
∂Ωn

∂ψ

∂n
φds=−

∫
∂Ωn

ρf (u̇n+ b

c2 ün)φds (3.62)

∀φ ∈ Vf (Ωf), where u̇n, and ün are the prescribed particle velocity and acceleration on the
Neumann portion of the fluid boundary. Here we use φ to denote the test function, and not the
velocity potential as denoted earlier. We note that for air, b

c2 is of the order 1e−10 under normal
conditions, and thus it is sufficient to drop the acceleration term and approximate the right-hand
side as −

∫
∂Ωn ρf u̇nφds. We will make this approximation in the remainder of this paper.

We note that an interesting feature of the weak formulation of equation 3.60 is that the
integration by parts only occurs on the linear elliptic terms. The nonlinear terms are not
integrated by parts.

3.4.2. Spatial and Temporal Discretization

A finite element formulation of equation 3.62 is constructed by representing the unknown by a
finite summation ψ(x) =∑n

i=1ψiNi(x) = ψTN , and substituting in equation 3.62. This leads to
the following set of nonlinear ordinary differential equations in time

Fint(ψ̈(x,t), ψ̇(x,t),ψ(x,t)) = Fext(x,t) (3.63)

where

F int = 1
c2

∫
Ω
ψ̈φdx+

∫
Ω
∇ψ ·∇φdx (3.64)

+ 1
c2

∫
Ω
b∇ψ̇ ·∇φdx− 1

ρc4 (B/A)
∫

Ω
ψ̈ψ̇φdx−

2
ρc2

∫
Ω
∇ψ̇ ·∇ψφdx (3.65)

and

Fext =−
∫
∂Ωn

ρf u̇nφds (3.66)

F int is the internal force, which depends on ψ and its first two time derivatives, and F ext is the
external force. We note that ψ̈ and ψ̇ depend on ψ through the time discretization scheme, and
thus we could write equation 3.63 as

Fint(ψ(x,t)) = Fext(x,t) (3.67)

In order to linearize equation 3.63, we could use a finite difference approach, in which the tangent
matrix is derived by differencing the internal force function with respect to an incremental
displacement. Alternatively, we could derive a full Newton tangent matrix by taking partial

92

derivatives with respect to all of the independent variables. We have taken the latter approach,
since it reveals explicitly the fact that the tangent matrix is nonsymmetric.

We define ψ̃, ˜̇ψ, ˜̈ψ as the current iterates, and ψ,ψ̇, ψ̈ as the unknowns. The tangent equations can
be derived by expanding the left-hand side of equation 3.63 in a Taylor series. If we truncate all
terms beyond the constant and linear contributions, we obtain

Fint(ψ,ψ̇, ψ̈)≈ Fint(ψ̃, ˜̇ψ, ˜̈ψ) +[
∂Fint
∂ψ

(ψ̃, ˜̇ψ, ˜̈ψ) + ∂Fint

∂ψ̇
(ψ̃, ˜̇ψ, ˜̈ψ)∂ψ̇

∂ψ
+ ∂Fint

∂ψ̈
(ψ̃, ˜̇ψ, ˜̈ψ)∂ψ̈

∂ψ

]
∆ψ = Fint(ψ̃, ˜̇ψ, ˜̈ψ) +A∆ψ

(3.68)

where ∆ψ = ψ− ψ̃, and ψ̃ is the current iterate. The full tangent matrix A is defined as

A=
[
∂Fint
∂ψ

(ψ̃, ˜̇ψ, ˜̈ψ) + ∂Fint

∂ψ̇
(ψ̃, ˜̇ψ, ˜̈ψ)∂ψ̇

∂ψ
+ ∂Fint

∂ψ̈
(ψ̃, ˜̇ψ, ˜̈ψ)∂ψ̈

∂ψ

]
(3.69)

Since ∆ψ is unknown, we approximate it as ∆ψ̃ = ψ̃− ˜̃ψ, where ˜̃ψ is the previous iterate. Thus, as
convergence occurs, the current and previous iterates become identical.

We have chosen the generalized alpha time integration scheme40 in order to discretize equation
3.63 in time. The generalized alpha method is based on the generalized Newmark method. The
flexibility of this method is useful in this case, since it can be made to be either implicit or
explicit (e.g. central difference), depending on the problem at hand. In displacement form, the
generalized Newmark method first needs an update equation. Given ∆ψ̃, and a previous iterate
˜̃ψ, we compute an updated current iterate as

ψ̃ = ˜̃ψ+ ∆ψ̃ (3.70)

Then, we use ψ̃ to compute updated first and second time derivatives as follows

˜̈ψ = 1
β∆t2

[
ψ̃−ψn− ψ̇n∆t

]
− 1−2β

2β ψ̈n

˜̇ψ = ψ̇n+ ∆t
[
(1−γ)ψ̈n+γ ¨̃ψ

]
= ψ̇n+ ∆t

[
(1−γ)ψ̈n+ γ

β∆t2
[
ψ̃−ψn− ψ̇n∆t

]
−γ 1−2β

2β ψ̈n

]
(3.71)

where γ,β are the integration parameters for the Newmark method, and ψ̇n, ψ̈n are the first and
second time derivatives from the previous time step. Note that, as ∆ψ̃→ 0, ψ̃→ ψn+1, indicating
that the current iterate has converged to the value at the next time step, step n+ 1.

We can simplify by noting that, from equation 3.71,

∂ψ̇

∂ψ
= γ

β∆t
∂ψ̈

∂ψ
= 1
β∆t2

(3.72)

93

We also make the following definitions, which define the tangent stiffness, damping, and mass
matrices

∂Fint
∂ψ

(ψ̃, ˜̇ψ, ˜̈ψ) =Kt

∂Fint

∂ψ̇
(ψ̃, ˜̇ψ, ˜̈ψ) = Ct

∂Fint

∂ψ̈
(ψ̃, ˜̇ψ, ˜̈ψ) =Mt

(3.73)

where Kt, Ct, and Mt denote the tangent stiffness, damping, and mass matrices. The tangent
matrices are the derivatives of the internal force, but evaluated at the current Newton iteration.
Substituting equations 3.72 and 3.73 into equation 3.68 yields

Fint(ψ,ψ̇, ψ̈) = Fint(ψ̃, ˜̇ψ, ˜̈ψ) +
[
Kt+

γ

β∆tCt+
1

β∆t2Mt

]
∆ψ (3.74)

Finally, substituting equation 3.74 into equation 3.63 yields[
Kt+

γ

β∆tCt+
1

β∆t2Mt

]
∆ψ = Fext−Fint(ψ̃, ˜̇ψ, ˜̈ψ) =Res (3.75)

Note that the right-hand side of equation 3.75 is the residual, or the difference between the
external force and the internal force at the current Newton iteration. As convergence occurs, the
residual goes to zero.

We derive explicit expressions for Kt, Ct, and Mt. We have

Kt = ∂Fint
∂ψ

(ψ̃, ˜̇ψ, ˜̈ψ)

=
∫

Ω
∇NT ·∇Ndx− 2

ρc2

∫
Ω

(∇ ˜̇ψ ·∇NT)Ndx (3.76)

Ct = ∂Fint

∂ψ̇
(ψ̃, ˜̇ψ, ˜̈ψ)

= 1
c2

∫
Ω
b∇NT ·∇Ndx− 2

ρc2

∫
Ω

(∇ψ̃ ·∇NT)Ndx (3.77)

− 1
ρc4B/A

∫
Ω

˜̈ψNTNdx (3.78)

(3.79)

Mt = ∂Fint

∂ψ̈
(ψ̃, ˜̇ψ, ˜̈ψ)

= 1
c2

∫
Ω
NTNdx− 1

ρc2B/A

∫
Ω

˜̇ψNTNdx (3.80)

where N is the vector of element shape functions.

94

For the full Newton method, these tangent matrices need to be reformed at each iteration of the
Newton loop. The tangent damping and tangent stiffness matrices are nonsymmetric, since some
terms involve products of shape functions with gradients of shape functions. However, we note
that the initial tangent matrices are all symmetric, since at time t= 0, we have ψ = 0, ψ̇ = 0 and
ψ̈ = 0 by assumption. In that case, we have

Kt0 =
∫

Ω
∇NT ·∇Ndx (3.81)

Ct0 = 1
c2

∫
Ω
b∇NT ·∇Ndx (3.82)

Mt0 = 1
c2

∫
Ω
NTNdx (3.83)

In this work we chose the Newton method for the nonlinear solution, and thus we could use any of
the variants of this method, some requiring more and less frequent updating of the tangent
matrices. In the case of the full Newton method, the nonsymmetric tangent matrices would need
to be reformed at each iteration. In the initial Newton method, only the initial symmetric tangent
needs to be formed. The numerical experiments conducted thus far indicate that excellent
convergence behavior is observed even with the initial Newton method.

3.4.3. Structural Coupling

The second order equations of motion for the solid and the Kuznetsov equation for the fluid are

ρsutt−∇·σ = f

1
c2
∂2ψ

∂t2
−∆ψ− 1

c2
∂

∂t

(
b(∆ψ) + B/A

2ρc2

(
∂ψ

∂t

)2
+ (∇ψ)2

ρ

)
= 0

(3.84)

Here u corresponds to the displacement of the structure, σ is the structural stress tensor, and
subscripts s and f refer to solid and fluid, respectively. The equations of motion for the solid in
equation 3.84 are written in the most general form, which could include both material and
geometric nonlinearities. However, since we are only considering small structural displacements,
these will be specialized to the linear elasticity equations.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet interface,
which is designated by ∂Ωwet), are

∂ψ

∂n
= −ρf u̇n

σn = −ψ̇n̂
(3.85)

where n̂ is the surface normal vector. These correspond to continuity of velocity and stress on the
wet interface. In the case of nonlinear acoustics, the second condition is replaced by106

σn = −n̂
(
ψ̇+ 1

c2 ψ̇
2− 1

2 (∇ψ)2 + b∆ψ
)

(3.86)

95

The linear approximation of condition 3.86 is

σn =−ψ̇n̂ (3.87)

In,84,36 numerical results were presented on the solution of Kuznetsov’s equation, and the
approximation 3.87 was used to convert from velocity potential to pressure as a post-processing
step. In our case we also use this approximation as a post-processing step, and additionally, we
use equation 3.87, rather than equation 3.86 to approximate the structural acoustic coupling.
This is an additional approximation, but it is consistent with the previous studies.84,36 Using
relation 3.86 would lead to nonlinear boundary integral terms, and result in a nonsymmetric
formulation.

The weak formulation of the coupled problem is constructed by multiplying the two partial
differential equations in equation 3.84 by test functions and integrating by parts. Denoting by
Vs(Ωs) and Vf (Ωf) the function spaces for the solid and fluid, respectively, we have the following
weak formulation.

Find the mapping (u,ψ) : [0,T]→ Vs(Ωs)×Vf (Ωf) such that∫
Ωs
ρsüwdx+

∫
Ωs
σ :∇swdx−

∫
∂Ωwet

σnwds=
∫

Ωs
fwdx+

∫
∂Ωn

σnwds

1
c2

∫
Ωf
ψ̈φdx+

∫
Ωf
∇ψ ·∇φdx+

∫
∂Ωwet

∂ψ

∂n
φds

+ b

c2

∫
Ωf
∇ψ̇ ·∇φdx− B/A

ρc4

∫
Ωf
ψ̈ψ̇φdx−

2
ρc2

∫
Ωf
∇ψ̇ ·∇ψφdx=

∫
∂Ωn

∂ψ

∂n
φds

(3.88)

∀w ∈ Vs(Ωs) and ∀φ ∈ Vf (Ωf), where ∂Ωn is the portion of the solid and fluid boundaries that has
applied loads, and f is used to denote body forces on the solid. Also, ∇s = 1

2

(
∇+∇T

)
is the

symmetric part of the gradient operator. If Dirichlet boundary conditions were applied to part of
the structure, or if the fluid had a portion of its boundary subjected to Dirichlet conditions, then
the Sobolev spaces Vs(Ωs) and Vf (Ωf) would be modified accordingly to correspond to spaces
that have those same boundary conditions. We also note that in the integration on the wet
interface, the normal is defined to be positive going from solid into the fluid.

Next, we insert the boundary conditions from equation 3.85, and we define σn = g on the solid
portion of ∂Ωn, and ∂ψ

∂n =−ρfun on the fluid portion of ∂Ωn. This leads to the following weak
formulation. Find the mapping (u,ψ) : [0,T]→ Vs(Ωs)×Vf (Ωf) such that∫

Ωs
ρsüwdx+

∫
Ωs
σ :∇swdx+

∫
∂Ωwet

ψ̇n̂wds=
∫

Ωs
fwdx+

∫
∂Ωn

gwds

1
c2

∫
Ωf
ψ̈φdx+

∫
Ωf
∇ψ ·∇φdx−ρf

∫
∂Ωwet

u̇nφds

+ b

c2

∫
Ωf
∇ψ̇ ·∇φdx− B/A

ρc4

∫
Ωf
ψ̈ψ̇φdx−

2
ρc2

∫
Ωf
∇ψ̇ ·∇ψφdx=−ρf

∫
∂Ωn

u̇nφds (3.89)

96

∀w ∈ Vs(Ωs) and ∀ψ ∈ Vf (Ωf). Equations 3.89 are a nonlinear system of equations, since the fluid
wave equation is nonlinear.

Inserting the spatial discretizations u=∑
uiNi and φ=∑

φiNi into equation 3.89 yields the
following semidiscrete system of nonlinear ordinary differential equations in time[

Ms 0
0 Mf

][
∆ü
∆ψ̈

]
+
[

Cs L
−ρfLT Cf

][
∆u̇
∆ψ̇

]
+
[
Ks 0
0 Kf

][
∆u
∆ψ

]
=
[
Ress
Resf

]
(3.90)

where Ms, Cs, and Ks denote the mass, damping, and stiffness matrices for the solid, and Mf ,
Cf , and Kf denote the same for the fluid. The coupling matrices are denoted by L and LT .
Coupling between fluid and structure, and any damping in the fluid or solid separately, is
accounted for by the damping matrices. The quantities Ress and Resf denote the residuals in the
solid and fluid, respectively (recall equation 3.75).

Ress = F exts −Ms ˜̈u−Cs ˜̇u−L ˜̇ψ−Ksu

Resf = F extf −F intf (˜̈ψ, ˜̇ψ,ψ̃)
(3.91)

Equation 3.25 is solved using Newton’s method, in conjunction with the time discretization
scheme that was introduced earlier. The nonlinear terms in the fluid wave equation are accounted
for in the right-hand side in the initial Newton method, but for a full Newton update, the
matrices Mf , Cf , and Kf would all need to be updated using equations 3.76, 3.79, and 3.80.

For the initial Newton method, equation 3.90 can be symmetrized in a number of ways. For
example, the second equation can be multiplied by −1

ρf
. This makes the system symmetric, but

the matrices are indefinite.

In order to solve the coupled system of equations (3.25), we could either treat the 2×2 block
system as a monolithic system of equations and integrate it directly, or we could use a staggered,
loose coupling scheme. For the numerical examples presented next, we integrate the system
directly.

Finally, we note that most numerical methods for absorbing boundary conditions in acoustics
have been developed for the linear case. The development of absorbing boundary conditions for
nonlinear acoustics is an important area of research, but we do not pursue that subject here. In
this paper we use first-order absorbing boundary conditions of the form

∂ψ

∂n
=−1

c

∂ψ

∂t
(3.92)

This condition leads to an additional contribution to the matrix Cf from equation 3.90. Equation
3.92 is, or course, an additional approximation that neglects nonlinear terms. We mention that
Cai36 made a similar approximation when simulating nonlinear acoustic fields.

3.5. SA_eigen

The quadratic eigenvalue problem which we address in this solution method is given by the
equation below. (

K+λC+λ2M
)
φ= 0 (3.93)

97

where, K is the stiffness matrix,
C is a damping and coupling matrix, and
M is a mass matrix.

More specifically, for a structural acoustic system.([
Ks 0
0 Ka

]
+λ

[
Cs L
−ρaLT Ca

]
+λ2

[
Ms 0
0 Ma

])[
φs
φa

]
= 0 (3.94)

Here the subscripts refer to structural or acoustic domains, ρa is the density of the fluid and L is
a coupling matrix. Note that for this formulation, φa represents the acoustic velocity potential,
which relates to the time derivative of the acoustic pressure, φa =∇u̇a.

If C contains only coupling terms, then it is skew. Readers will recognize this as the eigenvalue
problem for a spinning structure.101 It is Hermitian with real eigenvalues and orthogonal
eigenvectors.109 However, if there is additional damping in the system, as from ρC damping on
the acoustic domain, then C is of mixed symmetry, and the eigenvalues and eigenvectors are
complex. The stiffness matrix is symmetric positive semi-definite, while the mass matrix is
symmetric positive definite.

While various methods are available for solving the generalized, linear eigenvalue problem,12

solution of the quadratic eigenvalue problem is more challenging. The approach followed here is
to transform the problem into a reduced space, solve the corresponding dense matrix system
completely, and prolongate to the original space. The challenge, of course, is to properly choose
that space.

In general, if the eigenvector, φ, can be written in terms of generalized coordinates, q, then this
approach may be taken. For a given transformation matrix, T , which determines φ given q, we
have the following.

φ = Tq (3.95)
T †
(
K+λC+λ2M

)
Tq = 0 (3.96)(

k̃+λc̃+λ2m̃
)
q = 0 (3.97)

Note that the only restriction on T is that we may adequately write φ= Tq. In other words, T
must span the space of the eigenvectors. In particular, T need not be unitary or even orthogonal.
However, for the transformation to be useful for a model reduction, there must be many fewer
columns than rows in T . Note that T † is the transpose, complex conjugate of T , and that the left
and right eigenvectors of equation 3.94 are complex conjugates of each other.

The structural/acoustics problem may be viewed as a two subdomain problem.13 There are a
variety of basis functions that have been examined for connecting such subdomains. Two common
sets are listed in Table 3-5.

We here investigate only the free-free method. Though this method has proved to converge slowly
for structure/structure problems, the coupling between the structural and acoustic domains is
often weak. This may be adequate. For the problems of interest, a full Craig-Bampton type

12The generalized linear eigenvalue problem is (K−λM)φ= 0.
13There is no requirement that each of these subdomains be topologically connected in any special way.

98

Table 3-5. – Potential Basis Functions for Subdomain Reduction

Name Basis Function
Free-Free modes The unconstrained eigenvectors of each subdomain are

computed and used as the columns of T . When the
number of columns in T equals the number of rows,
this basis is complete.

Craig-Bampton The eigenvectors of each subdomain are computed
with the interface fixed. These eigenvectors are sup-
plemented with constraint modes computed by fixing
all the interface degrees of freedom except one. That
dof receives a unit static deformation. This method
has been shown to converge near optimally for struc-
ture/structure interactions.

solution is almost certainly overkill, and will result in a dense matrix too large for standard
solution methods. We may find it advantageous to augment the free-free modes by adding basis
functions near the surface. Some thoughts that have been considered include the following.

• A uniform pressure mode could be added to both the acoustic and structural responses.

• We could consider the static acoustic modes that are generated by the deformations of the
structural eigen analysis. We anticipate that the structural deformations will have a larger
control over acoustic modes, so we may not need to be as concerned about the impact of the
acoustic pressures on the structure, but we may want to include some of these too. Could a
subset of modes be identified that would aid in model completeness and convergence?

• Spline or boundary expansions are possible.

3.5.1. Quadratic Modal Superposition

Consider the system
Mü+Cu̇+Ku= f(t) (3.98)

where M , C, and K are the mass, damping, and stiffness matrices. Standard methods may be
used to solve the eigenvalue equation derived from 3.98 only in the case where the eigenvectors of
K and M also diagonalize C (as in proportional damping for example). In practice this never
happens. For a general damping matrix, no procedures are available to directly solve the
eigenvalue problem. For an excellent survey article on quadratic eigenvalue systems, see the
article by Tisseur.137

However, the second order system may be transformed to a larger, first order system which does
have a known solution. We linearize the system as follows. Define,

w =
[
u̇
u

]
(3.99)

If we consider the eigenvalue problem corresponding to equation 3.98, we would set the right-hand
side f(t) to zero. Then, there are many options for the linearization, but the one chosen for

99

QEVP is [
M 0
0 K

]
w =

[
0 M

−M −C

]
ẇ (3.100)

We assume a solution of the form w = φeλt, and arrive at the eigenvalue problem,

Aφ= λBφ (3.101)

where
A=

[
M 0
0 K

]
, (3.102)

and
B =

[
0 M

−M −C

]
(3.103)

Equation 3.101 yields the “right” eigenvectors. As is seen later, we also need the “left”
eigenvectors, which correspond to the eigenvalue problem,

ψ†A= λψ†B (3.104)

We denote the left eigenvectors as ψi to distinguish them from the right eigenvectors φi.

3.5.2. Diagonalization and Modal Superposition

Symmetric system matrices are always diagonalizable, using the matrix formed by their
eigenvectors. However, when nonsymmetric matrices, such as those of equation 3.100, may be
impossible to diagonalize. This has significant implications for modal superposition techniques,
since if A and B cannot be diagonalized by pre and post multiplying by matrices of eigenvectors,
then the reduced (modal) equations of motion will be coupled. The primary advantages of modal
superposition would be lost.

As discussed in the literature,137,127,95 one case where the matrices A and B are diagonalizable is
if all of the eigenvalues are distinct. If there are repeated eigenvalues, then the matrix is still
diagonalizable, as long as the eigenvectors corresponding to repeated eigenvalues are linearly
independent. This can be summarized by the theory of geometric and algebraic multiplicities of
eigenvalues, as follows:110

• The algebraic multiplicity of an eigenvalue is defined as the number of times that this
eigenvalue is repeated in the list of eigenvalues of the matrix.

• The geometric multiplicity of an eigenvalue is the dimension of the space spanned by its
eigenvectors. Thus, for an eigenvalue with an algebraic multiplicity of 2, the geometric
multiplicity would be 2 if the corresponding eigenvectors are linearly independent, and 1 if
they are linearly dependent.

• An n×n matrix is diagonalizable if and only if the geometric multiplicity is equal to the
algebraic multiplicity for every eigenvalue λ.

100

In short, for the matrix to be diagonalizable, the eigenvectors corresponding to repeated
eigenvalues must be linearly independent. If the eigenvalues are all distinct, then the matrix is
always diagonalizable.

It is also interesting to discuss the circumstances under which the eigenvalues and eigenvectors of
A and B come in complex conjugate pairs. When this is the case, significant savings in storage
and computational time can be achieved. The general rule is simple to prove.105 If the entries in a
matrix are all real-valued, then any complex eigenvalues or eigenvectors that arise must come in
complex conjugate pairs. In order to prove this, we note that for a matrix with all real- valued
entries, the determinant must be a real number. On the other hand, the determinant is also equal
to the product of the eigenvalues. Thus, if some of the eigenvalues are complex, the only way that
the product

det(A) = λ1λ2...λn (3.105)
can be a real number is if all complex eigenvalues have a conjugate pair. For example, if λn and
λn+1 are complex conjugates, then we have

λnλn+1 = (λrn+ jλin)∗ (λrn− jλin) = [λrn]2 +
[
λin

]2
(3.106)

The last expression after the equal sign is a real number. We can also conclude that if a matrix
has any complex entries, then the eigenvalues and eigenvectors are not necessarily complex
conjugates.

To diagonalize A and B, we define a matrix corresponding to the right-eigenvectors that are
computed from equation 3.101.

W = [φ1φ2...φ2n] (3.107)
We can also define a matrix corresponding to the left-eigenvectors from equation 3.104.

U = [ψ1ψ2...ψ2n] (3.108)

Representing the solution as w =∑2n
i=1 ziφi, and the loading as,

g(t) =
[
f(t)

0

]
(3.109)

we have137

−αizi(t) +βiżi(t) = ψ†i g(t) (3.110)

where αi = ψ†iAφi and βi = ψ†iBφi. When modes are mass normalized, βi = 1 and αi = λi. We
note that the † symbol represents a conjugate transpose, not a transpose. This is a
complex-valued uncoupled scalar equation for each degree of freedom in the system, which can be
integrated in time. We have no general solution of the original second order system.
Superposition must be performed on the linearized system. This is a first order system of
differential equations. Different time integration methods are needed.

Time Domain Superposition

Equation 3.110 can be integrated numerically, using first-order time integrators. However,
another approach is to use the analytical solution.

zi(t) =
∫ t

0
ψ∗i g(τ)e−λi(t−τ)dτ (3.111)

101

Finally, given the solution for each zi(t), we compute w =∑2n
i=1 ziφi, and extract the solution u(t)

from the upper half of w(t). We note that in the time domain, the final solution w(t) must be
real-valued, even though both φi and zi are, in general complex. It is easy to show that this is the
case. First, as noted earlier, we recall that the eigenvectors φi come in complex conjugate pairs.
Equation 3.110 implies that zi also comes in conjugate pairs. We note that

w =
2n∑
i=1

ziφi =
n∑
i=1

[
ziφi+ z̄iφ̄i

]
(3.112)

Noting that ziφi+ z̄iφ̄i is a real number, we see that the total summation is also a real number.

Frequency Domain Superposition

For the frequency domain solution, we assume a time-harmonic loading and response.

g(t) = g0e
iωext (3.113)

zi(t) = zie
iωext (3.114)

(3.115)

where ωex is the frequency of the external excitation, and g0 is a spatial vector of loadings at that
frequency. Substituting these relations into equation 3.110, we obtain the equations for complex
modal frequency response

[−αi+ iωβi]zi = ψ†i g0 (3.116)

This can also be written as,

zi = ψ†i g0
−αi+ iωβi

(3.117)

We note that the denominator will go to zero if αi = iωβi, as is expected, in the case of resonance.
A standard approach30 of stabilizing the solution near resonances is to add a small amount of
modal damping. In state space, this corresponds to a adding a real-valued term in the
denominator of equation 3.117. Thus, when αi = iωβi this additional term would prevent a
singular response. This additional real term takes the form

zi = ψ†i g0
γi−αi+ iωβi

(3.118)

where γi is the modal damping, and is a real number.

As before, the solution of the displacement degrees of freedom is a superposition of modal
solutions.

w(ω) =
2n∑
i=1

zi(ω)φi (3.119)

=
2n∑
i=1

φiψ
†
i g0

γi−αi+ iωβi
(3.120)

102

3.5.3. Theory for modal superposition with sa_eigen

In the case of the sa_eigen solution case, the eigenvalue problem is solved in a reduced space.
Recalling equation 3.98, and the transformation u= T û, we can transform equation 3.98 into a
reduced space as

m̂¨̂u+ ĉ ˙̂u+ k̂û= f̂ (3.121)
where m̂= T TMT , ĉ= T TCT , k̂ = T TKT , and f̂ = T T f . We note that the superscriptˆis used
from here on to denote the reduced space. If we then define

q̂ =
[
û
˙̂u

]
(3.122)

As was done for the full system for the QEVP method, we project this into the first order
system14.

Âq̂− B̂ ˆ̇q = ˆg(t) (3.123)
where

Â=
[

0 I

−k̂ −ĉ

]
(3.124)

B̂ =
[
I 0
0 m̂

]
(3.125)

ĝ =
[

0
−f̂

]
(3.126)

Assuming a solution of the form q̂ = φ̂eλt, we arrive at the eigenvalue problem

Âφ̂= λB̂φ̂ (3.127)

where we emphasize that φ̂ is in the state-space form of the reduced problem. This eigenvalue
problem is solved with the DGGEV algorithm from LAPACK.

Once the eigenvalue problem 3.127 is solved, methods of the previous section can be applied for
solution of the scalar modal equations of the linearized system and projection back to the reduced
space and finally to physical space.

We transform equation 3.123 into the frequency domain.

Âq̂− iωexB̂q̂ = ĝ(ω) (3.128)

where ωex is the frequency of the external excitation. We assume that the solution can be
represented as q̂ =∑2n

i=1 ẑiφ̂i. Substituting this into equation 3.128, and premultiplying by the left
eigenvectors ψ̂i, we obtain

α̂iẑi− iβ̂iωexzi = ψ̂i
†
ĝ (3.129)

where α̂i = ψ̂i
†
Âφ̂i and β̂i = ψ̂i

†
B̂φ̂i. This scalar equation, 3.129 can be solved for ẑi. The solution

in reduced space, q̂ can be obtained from q̂ =∑2n
i=1 ẑiφ̂i. Given q̂, û can be extracted from the

upper half of q̂, as per equation 3.122. Finally, once û is known, the original solution u can be
computed from the relation u= T û.
14also known as a state space solution

103

3.5.4. Discussion of Eigenvectors and Superposition

There are several important points to consider for the eigenvectors of this problem.

• The left and the right eigenvectors of the linearized system diagonalize the characteristic
matrices A and B. However, the eigenvectors do not diagonalize the matrices of the original
second order equation, 3.98. This means that the modal equations are coupled in the second
order system, and most simplifications for superposition are available only on the linearized,
first order system.

• The left eigenvectors can be computed from the solution of the transposed equation. Thus,
for symmetric systems, left and right eigenvectors are identical.

• Eigenvectors of the linearized, nonsymmetric systems are often not normalized as expected.
In many cases the eigenvectors are not even completely orthogonal, even when they may be
linearly independent.

3.5.5. Notes on Implementation

Some questions are answered next on the implementation of the superposition algorithm with
regard to the specific linearizations used in the Anasazi and sa_eigen solvers.

1. Can the state-space left and/or right eigenvectors be decomposed into a vector in one half
and then that same vector multiplied by the eigenvalue in the other half?

2. Does the nonzero part of the state-space force vector occupy the top or bottom half of the
vector, and does it have a minus sign in front of it?

3. Under what circumstances are there relations between the left and right eigenvectors, such
as φleft = φright or φleft = (φright)†?

The answers to any of these questions depends on the specific linearization of interest. Here we
examine only 2 linearizations, which have been considered earlier, and which will be repeated here
for convenience. [

M 0
0 K

]
w = λ

[
0 M

−M −C

]
w (3.130)

[
0 I
−K −C

]
w = λ

[
I 0
0 M

]
w (3.131)

For the first question, we consider the right and left eigenvectors separately. For the right
eigenvectors, a simple substitution reveals that the right eigenvector for equation 3.130 can be
decomposed as

w =
[
λu
u

]
(3.132)

104

whereas the second linearization (equation 3.131) has right eigenvectors that decompose in the
opposite way.

w =
[
u
λu

]
(3.133)

For the left eigenvectors, we write the equations corresponding to the left eigenvectors as

[
wTt w

T
b

][M 0
0 K

]
= λ

[
wTt w

T
b

][0 M
−M −C

]
(3.134)

[
wTt w

T
b

][0 I
−K −C

]
= λ

[
wTt w

T
b

][I 0
0 M

]
w (3.135)

Multiplying out the terms in equation 3.134, we find that

wTt M = λwTb M (3.136)

which, for nonsingular M, yields
wt = λwb (3.137)

Thus, for the linearization in equation 3.130, the left eigenvectors can be decomposed in a similar
manner as the right eigenvectors when the mass matrix is nonsingular.

Multiplying out the terms in equation 3.135, we find that

wTb K = λwTt (3.138)

Or, for symmetric K,
Kwb = λwt (3.139)

Thus, for the linearization described by equation 3.131, the left eigenvectors cannot be
decomposed as the right eigenvectors were.

When forces are present in the system, we can rewrite equations 3.130 and 3.131 as[
M 0
0 K

]
w−

[
0 M

−M −C

]
ẇ =

[
0
f

]
(3.140)

[
0 I
−K −C

]
w−

[
I 0
0 M

]
ẇ =

[
0
−f

]
(3.141)

Thus, for both linearizations 3.130 and 3.131 the state-space force vector has a zero top half, and
for linearization 3.130 the non-zero bottom half is multiplied by a negative sign. This answers the
second question above.

In order to answer the third question, we first consider the results given in Table 1.1 of.137 In this
table, relationships between the left and right eigenvectors are given for various symmetry
relations of M , C, and K. In particular, property P7 from this table states that if M , K are
Hermitian, C =−C† is skew-Hermitian, and M is positive definite, then if x is a right eigenvector

105

of λ, then x is also a left eigenvector of −λ†. Since we only consider real-valued matrices, we
expect the eigenvalues of the systems of interest to be imaginary, and thus −λ† = λ. Thus,
property P7 states that the left and right eigenvectors of λ are the same. The results in this table
define the left and right eigenvectors as follows

λ2Mu+λCu+Ku= 0 (3.142)

w†λ2M +w†λC+w†K = 0 (3.143)
for right and left eigenvectors u and w, respectively. By taking the conjugate transpose of
equation 3.142, and noting that C =−C† and −λ†, we obtain

u†λ2M +u†λC+u†K = 0 (3.144)

from which the result P7 from Table 1.1 in137 is obtained.

We note that the results from Table 1.1137 are with respect to the quadratic eigenvalue problem,
not the linearized versions. Since equations 3.142 and 3.143 could be linearized in a number of
ways, we would expect the conclusions to change when we go to the linearized problem. For
example, we again consider the case when M , K are Hermitian, C =−C† is skew-Hermitian, and
M is positive definite. With these conditions on M , K, and C, we consider the linearizations
given by equations 3.130 and 3.131, which can be written concisely as

Au= λBu (3.145)

In the case of equation 3.130, we have that A is symmetric, whereas B is skew-symmetric. In the
case of equation 3.131, we have that A is nonsymmetric, and B is symmetric. If we take the
conjugate transpose of equation 3.145, we have the corresponding equation for the left
eigenvectors

u†A† = u†λ†B† (3.146)
For linearization 3.130, we have A† =A, B† =−B, and λ† =−λ. This gives

u†A= u†λB (3.147)

which implies that the left and right eigenvectors of linearization 3.130 coincide.

In the case of equation 3.131, we have that A is nonsymmetric and B is symmetric. Thus, when
we take the conjugate of equation 3.145, we have

u†A† = u†λ†B† (3.148)

which, from symmetry conditions, reduces to

u†A† =−λu†B (3.149)

Thus, since A is nonsymmetric, no relation can be deduced between the left and right
eigenvectors.

Similar conclusions can be drawn about a different version of equation 3.130. If we multiply the
lower equation by −1, we obtain[

M 0
0 −K

]
w = λ

[
0 M
M C

]
w (3.150)

or Aw = λBw. Since C =−C†, the matrix B is nonsymmetric. Then, taking conjugate transposes
of both sides of equation 3.150, we see that we cannot draw conclusions about relations between
the left and right eigenvectors. This is the same problem seen in equation 3.149.

106

3.5.6. Complex Eigenvector Orthogonalization

Let’s assume that there is a complete set of eigenvectors (no Jordan blocks). An eigenvalue of
multiplicity m has an m dimensional eigenspace. Some solvers, such as DGGEV do not generate
an orthonormal bases for these subspaces. If such orthogonalization is required, the procedure in
Figure 3-12 may be followed to orthogonalize two eigenvectors with a common eigenvalue.

Given two modes with a common eigenvalue, λ, and with left and
right eigenvectors, ψi and φj , we orthogonalize with respect to a
matrix B.

ψ†1Bφ1 = β11 (3.151)
ψ†1Bφ2 = β12 (3.152)
ψ†2Bφ1 = β21 (3.153)

We modify ψ2 and φ2 to ensure that β12 = β21 = 0. Let ψ̂ be the
corrected eigenvector.

ψ̂2 = ψ2− εψ1

We require that ψ̂†2Bφ1 = 0. Then,

0 = ψ̂†2Bφ1 (3.154)
= (ψ2− εψ1)†Bφ1 (3.155)
= β21− εβ11 (3.156)

Thus,
ψ̂2 = ψ2−

β21
β11

ψ1 (3.157)

For the right eigenvector,

φ̂2 = φ2−
β12
β11

φ1 (3.158)

Figure 3-12. – Complex EigenVector orthogonalization

3.6. Waterline Determination

We develop the approach for solution of a rigid body floating in a fluid. When the ship is treated
as a rigid body, its equilibrium equations simplify to six equations in six unknowns that involve
force and moment balances in three coordinate directions. However, from symmetry
considerations we may assume that the displacements of the ship are zero in the plane of the
waterline. Further, we assume that the angular rotation of the ship about an axis normal to the
waterline is also zero. Thus, the six equilibrium equations can be reduced to three. For
convenience, we take the ship to be fixed in space while the orientation of the waterline plane is
described by in-plane rotations θ1 and θ2. The position of the ship mass center above and
perpendicular to the waterline is denoted by the coordinate z. Additional details on the
coordinate z and the angles θ1 and θ2 are provided in Section 3.6.1.

107

Since the three equilibrium equations are nonlinear in the angles θ1 and θ2, we employ Newton’s
method for their solution. The Newton step that is associated with the three equilibrium
equations is obtained from the solution of the linear system

KKKT

 ∆z
∆θ1
∆θ2

=−

 F3
M1
M2

 , (3.159)

where KKKT is the tangent stiffness matrix. The terms ∆z, ∆θ1, and ∆θ2 are incremental updates
to the coordinate z and the two angles θ1 and θ2. The terms on the right-hand side of (3.159)
involve the net force and moments acting about the ship center of mass due to buoyancy forces
(pressure loads from water) and gravity. Again, more details are provided later on the precise
form of these terms. Additional details on the implementation of Newton’s method are provided
in § 3.6.5

3.6.1. Reference Frames

The position vector of a node n in a fixed reference frame A can be expressed as

pppn = xn,1aaa1 +xn,2aaa2 +xn,3aaa3, (3.160)

where (xn,1,xn,2,xn,3) are the coordinates of the node and aaa1,aaa2,aaa3 are unit vectors aligned with
coordinate directions X1,X2,X3. We note in the present context that (xn,1,xn,2,xn,3) are the
coordinates of the node in the Exodus finite element model used by Sierra/SD. Further, we
take aaa3 to be directed vertically upward.

Consider a rigid body B with attached unit vectors bbb1, bbb2, bbb3 that are initially aligned with
aaa1,aaa2,aaa3. A rotation of B by θ1 about the aaa1 direction results in

bbb1 = aaa1, bbb2 = cosθ1aaa2 + sinθ1aaa3, bbb3 = cosθ1aaa3− sinθ1aaa2. (3.161)

Next, consider a rigid body C with attached unit vectors ccc1, ccc2, ccc3 that are initially aligned with
bbb1, bbb2, bbb3. A rotation of C by θ2 about the bbb2 direction gives us

ccc1 = cosθ2bbb1− sinθ2bbb3, ccc2 = bbb2, ccc3 = cosθ2bbb3 + sinθ2bbb1. (3.162)

Combining (3.161) and (3.162), we find

ccc1 = cosθ2aaa1 + sinθ2 sinθ1aaa2− sinθ2 cosθ1aaa3, (3.163)
ccc2 = cosθ1aaa2 + sinθ1aaa3, (3.164)
ccc3 = sinθ2aaa1− cosθ2 sinθ1aaa2 + cosθ2 cosθ1aaa3. (3.165)

For purposes of convenience, we choose unit vector ccc3 to be in the direction normal to the
waterline and directed away from the water. Similarly, unit vectors ccc1 and ccc2 are also attached to
the waterline frame. Using summation notation, (3.163-3.165) can be expressed concisely as

ccci = cijaaaj , (3.166)

108

Figure 3-13. – Sketch showing ship, origin O of waterline frame, coordinate z, and angle θ2.

where the scalar coefficient cij = ccci ·aaaj and appears as the entry in row i and column j of the
direction cosine matrix

D =

 cosθ2 sinθ1 sinθ2 −cosθ1 sinθ2
0 cosθ1 sinθ1

sinθ2 −sinθ1 cosθ2 cosθ1 cosθ2

 .
We note that the columns of D are orthonormal, i.e., D−1 =DT .

The origin O of the waterline frame is chosen as the point of intersection of the line in direction
ccc3 passing through the ship mass center with the plane of the water (see Figure 3-13). Thus, the
position vector of the center of mass of the ship relative to O can be expressed as

pppcm/O = zccc3. (3.167)

3.6.2. Pressure at a Node

We would like to express the position vector of a node as in (3.160) relative to O rather than the
origin of reference frame A. To this end, let the position vector of the center of mass of the ship
relative to the origin of A be expressed as

pppcm = xcm,1aaa1 +xcm,2aaa2 +xcm,3aaa3. (3.168)

We note the coordinates (xcm,1,xcm,2,xcm,3) are readily available from Sierra/SD. Next, let the
position vector of O relative to the origin of A be expressed as

pppO = xO,1aaa1 +xO,2aaa2 +xO,3aaa3. (3.169)

Since pppcm = pppO +pppcm/O, it follows from the previous three equations and (3.166) that

xO,j = xcm,j−zc3j j = 1,2,3. (3.170)

The pressure at node n depends on its depth below the waterline. Specifically,

p(n) =−ρg(pppn−pppO) · ccc3

=−ρg((xn,1−xO,1)c13 + (xn,2−xO,2)c23 + (xn,3−xO,3)c33), (3.171)

where ρ is the density of water and g is the acceleration of gravity. If the pressure calculated from
(3.171) is negative, this indicates the node is above the waterline and we set p(n) = 0.

109

3.6.3. Waterline Plane Specification

The initial guess in the Solution section is defined by ttt1, ttt2, ttt3 not on a line. Plowing on,

vvv1 := ttt2− ttt1, vvv2 := ttt3− ttt1,

the unit normal to this plane is given by

nnn= vvv1×vvv2
‖vvv1×vvv2‖

= n1aaa1 +n2aaa2 +n3aaa3. (3.172)

If nnn ·aaa3 = n3 < 0, then we multiply nnn by -1 so that nnn points out of the water rather than into it.

We next show how to relate the waterline plane to the variables θ1, θ2 and z. Since nnn= ccc3, we
find from (3.165) and (3.172) that

sinθ2 = n1, −sinθ1 cosθ2 = n2, cosθ1 cosθ2 = n3, (3.173)

from which follows
θ2 = arcsin(n1), θ1 = arctan(−n2/n3). (3.174)

We will print a warning message if either |θ1| or |θ2| is greater than π/4 (45 degrees). Since the
origin O is in the plane of the waterline, nnn= ccc3, and pppO = pppcm−pppcm/O, we find from (3.167) and
(3.168) that

z = (pppcm−pppO) ·nnn
= (xcm,1−xO,1)n1 + (xcm,2−xO,2)n2 + (xcm,3−xO,3)n3. (3.175)

We note in the previous expression that pppO may be replaced by either ttt1, ttt2 or ttt3 since these
three points are also in the waterline plane.

As described later, Newton’s method is used to solve one force and two equilibrium equations in
terms of the coordinate z and the angles θ1 and θ2. After a converged solution is obtained, it is
important for the analyst to confirm that the sideset used for the problem specification includes
all element faces of the outer ship surface which contain one or more nodes below the waterline.

3.6.4. Net Force and Moment Calculation

With equation (3.171) in hand, Sierra/SD can be used to calculate and assemble the water
pressure loads into equivalent nodal loads. This process involves the interpolation of nodal
pressures to Gauss points and numerical integration. The equivalent nodal loads can then be used
to determine the net force and moment acting on the ship. We outline a procedure for doing this
calculation in the following paragraphs.

Let fi denote the load vector for subdomain (processor) i resulting from water pressure loads. We
note each row of fi corresponds to a load for a particular degree of freedom. For example, row 7
of fi may correspond to a force at a specific node in coordinate direction 3. The vector fi is
associated with a set Ni of nodes in subdomain i. Further, we note that the force vector fffn and
the moment vector mmmn at node n ∈Ni can be extracted directly from fi.

110

Let rrrn := pppn−pppcm denote the position vector from the ship center of mass to node n. Summing
contributions from all the nodes in Ni, we find that the net force and moment contribution from
subdomain i is given by

FFF i =
∑
n∈Ni

fffn, (3.176)

MMM i =
∑
n∈Ni

rrrn×fffn. (3.177)

Summing contributions from all N subdomains, the net force and moment about the mass center
of the ship is given by

FFF s =
N∑
i=1

FFF i = Fs,1aaa1 +Fs,2aaa2 +Fs,3aaa3 (3.178)

MMM s =
N∑
i=1

MMM i =Ms,1aaa1 +Ms,2aaa2 +Ms,3aaa3. (3.179)

Returning to (3.159), we have

F3 = FFF s · ccc3−msg = c3,1Fs,1 + c3,2Fs,2 + c3,3Fs,3−msg, (3.180)
M1 =MMM s · ccc1 = c1,1Ms,1 + c1,2Ms,2 + c1,3Ms,3, (3.181)
M2 =MMM s · ccc2 = c2,1Ms,1 + c2,2Ms,2 + c2,3Ms,3, (3.182)

where ms is the mass of the ship.

3.6.5. Algorithms

Newton’s Method

The initial solution of the nonlinear equations applies Newton’s method directly on the
non-symmetric KKKT . The matrix KKKT will in general be non-symmetric due to follower
contributions. If convergence issues arise, we may be regularized using a variety of approaches.

The method can be summarized as follows.

1. Let f(p) represent the force balance, with p, the parameters equal to z, θ1, and θ2.

2. Let KKKT (p) = df(p)/dp represent the tangent stiffness matrix obtained by differentiating the
force balance with respect to the input parameters.

3. For each iteration, Newton’s method estimates a new parameter set,

pn+1 = pn−KKK−1
T f(pn)

4. Iteration continues until the force balance approaches zero.

Tangent Matrix

We apply finite differences together with (3.180-3.182) to calculate the tangent matrix, KKKT . We
use a finite difference step size of 0.001 for the dimensionless variables θ1 and θ2, while the step
size for z is 0.001 times a characteristic length of the ship.

111

3.7. Wet Modes or Added Mass

Analysts want to compute the structural normal modes for a structure partially submerged in a
fluid. In appropriate approximations, this may be analyzed as a real eigen problem of the
structure with added mass on the wetted surface.

Fluid loading of the real eigenvalue problem is performed by separating the solution domain into
structural and acoustic regions. A real eigen analysis is performed on the acoustic domain which
generates a mass loading correction for a subsequent real eigen analysis of the structure.

3.7.1. Case I - matching meshes at wet interface

After finite element discretization, a submerged coupled structural acoustic system obeys the
following discrete formulation.

−ω2
[
Ms 0
0 −1

ρf
Mf

][
u
φ

]
+ iω

[
Cs L
LT −1

ρf
Cf

][
u
φ

]
+

[
Ks 0
0 −1

ρf
Kf

][
u
φ

]
=
[

fs
fa/ρf

]
(3.183)

where Ms, Cs, and Ks denote the mass, damping, and stiffness matrices for the solid,15 Mf , Cf ,
and Kf denote the same for the fluid, fs and fa denote loadings on the structure and fluid, and u
and φ are the structural displacement and acoustic velocity potential, respectively. The coupling
matrices are denoted by L and LT . Cf may represent a nonreflecting boundary condition on the
exterior of the fluid. Coupling between fluid and structure is accounted for by the matrices L and
LT . Due to the presence of the damping terms, this eigenvalue problem is quadratic. In the
special case Cs = Cf = 0, the system is referred to as gyroscopic since all of the eigenvalues are
real valued, even though a damping matrix is present.

The goal of the added mass approach is to simplify equation (3.183) by considering only the
incompressible limit. This can be achieved by taking the limit cf →∞, where cf is the speed of
sound in the fluid. The latter condition implies an incompressible fluid, which has infinite sound
speed. It is important to note that these limits are only applied to the acoustic equation in the
system (3.183), and not the structural equation. Since we are only interested in eigen analysis, we
set fs = fa = 0 for the remainder of this note.

If we consider the limiting condition cf →∞ applied to the second equation in the
system (3.183), we see that the term ω2

ρf
Mfφ will vanish, since the acoustic mass matrix Mf has a

factor of
(

1
cf

)2
built into it.

Similarly, as cf →∞ the fluid damping, due to either an exterior boundary condition or infinite
elements, vanishes. For absorbing boundaries, this can be seen by considering the corresponding
damping matrix

Cf ij = 1
cf

∫
∂Ωe

NiNjdΩe (3.184)

15In a ship floating in water, the structural stiffness matrix, Ks will typically contain 6 zero energy modes. Addition
of buoyancy terms converts three of these to bounce, roll and pitch modes, but three singularities typically remain.

112

where the integral is evaluated over the exterior boundary ∂Ωe, and Ni, Nj are the standard finite
element shape functions evaluated over Ωe. Thus, the term Cf has a factor of 1

cf
built in, which

implies that it can also be neglected. Physically, this implies that an incompressible fluid provides
no radiation damping. For infinite elements, the damping matrix is different than absorbing
boundaries, but it is still premultiplied by 1

cf
.

Cf ij = 1
cf

∫
Ωe
DNi∇µ ·∇Nj−NiNj∇D ·∇µ−DNj∇Ni ·∇µdV (3.185)

where Ni, µ, and D are components of infinite element shape functions, and here the integral
extends over the entire exterior domain Ωe instead of being on the boundary. Again, due to the
premultiplication of 1

cf
, we can neglect the infinite element damping matrix for incompressible

fluids.

Additionally, we neglect structural damping and set Cs = 0. Applying all of these simplifications
to the second equation in the system (3.183) yields the following result

φ= iωρfK
−1
f LTu (3.186)

This also implies that
iωφ=−ω2ρfK

−1
f LTu (3.187)

If we define λ= ω2, and substitute the previous results into the first equation in the
system (3.183), we obtain

−λ
[
Ms+ρfLK

−1
f LT

]
u+Ksu= 0 (3.188)

The added mass matrix is
Ma = ρfLK

−1
f LT (3.189)

To make the acoustic stiffness matrix Kf invertible, most practitioners assign Dirichlet boundary
conditions p= 0 on the exterior surface.16 Also, standard practice is to mesh the fluid to the
extent of one or two structural diameters away from the structure. As one takes more and more
fluid, the eigenvalues should converge to fixed values (although not precisely the same values as
would be obtained from a full complex eigen solution).

As an alternative to the Dirichlet boundary condition, one can use the spherical absorbing
condition, not the plane wave condition from equation 3.184. The spherical condition is more
accurate, and since it contributes an extra term to the stiffness matrix, it eliminates the need for
the Dirichlet boundary condition. This term takes the form

Ksphericalij = 1
R

∫
∂Ωe

NiNjdΩe (3.190)

where R is the radius of curvature of the absorbing domain, and Nj is a shape function on the
exterior (absorbing) boundary of the surface. This term would then get appended to the acoustic
stiffness matrix Kf , rendering it nonsingular, without the need for the Dirichlet boundary
condition.

Equation (3.188) is an eigenvalue problem in terms of structural unknowns only. For both
absorbing boundaries and infinite elements, the matrix Ma is real-valued, and independent of
frequency. In the case of either absorbing boundaries or simple Dirichlet boundary conditions, it
16Throughout further discussions, we assume that Kf is symmetric, positive definite.

113

is also symmetric, and thus is in the form of a standard eigenvalue problem that will yield
real-valued modes. The eigen solver typically requires an SPD capacitance matrix, M . The linear
solver must still address issues with singular Ks.

For infinite elements, however, Kf is nonsymmetric, and thus the matrix Ma is also
nonsymmetric. In general, this will lead to complex modes, which are undesirable for added mass
calculations. Thus, a symmetrization of Kf may be needed if infinite elements are to be used with
added mass. This may be important, as the Dirichlet boundary condition approach may require a
large acoustic mesh to obtain converged wet modes, whereas infinite elements typically allow for a
much smaller (ellipsoidal) mesh.

3.7.2. Modal Solution of Acoustic Domain

The above procedure requires a solution of the acoustic domain at each step of the system eigen
problem. This may be simplified by use of a modal expansion of the acoustic domain. We begin
with the coupled system of equations, simplified by the limits of infinite acoustic velocity. The
eigen equation may be summarized.(

−ω2
[
Ms 0
0 0

]
+ iω

[
0 L
LT 0

]
+
[
Ks 0
0 −1

ρf
Kf

])[
u
φ

]
= 0 (3.191)

We consider a modal solution of the acoustic domain which diagonalizes the acoustic stiffness
matrix. Specifically, we define φ= ψq such that ψTKfψ = Λf , a diagonal matrix. Substituting
into the lower equation of (3.191), we have,

iωLTu= Kf

ρf
ψq (3.192)

We premultiply by ψT , and solve for q.

q = iωρfΛ−1
f ψTLTu (3.193)

Substitution of q in the top equation of (3.191) results in a simplified expression for the mass
loaded structural eigen problem. (

−ω2[Ms+M̃a] +Ks

)
u= 0 (3.194)

where,
M̃a = ρfLψΛ−1

f ψTLT (3.195)
The eigenvalue problem above is real. The mass matrix contribution is real and symmetric.
However, as in the physical solution above, the mass matrix is full on the wet surface boundary,
and is not typically assembled. The modal solution does not require a linear solve at each
iteration of the eigen solver, but by not assembling the mass matrix we cannot utilize the
shift-invert strategies available in ARPACK.

Decomposition Issues

The linear solver depends on effective decompositions for accurate, robust, high performance
solutions. In these methods, care must be taken for effective load balance. Rebalancing may be
useful. It may be possible to require the linear solver to rebalance. Alternatively, we may want a
decomposition that is independent in the fluid and structural domains.

114

Modal Truncation

The methods in this section are useful only if a reasonable modal truncation can be developed for
the acoustic domain. The only requirement on the basis is that the eigenvectors diagonalize Kf .
Thus, we could solve the standard eigenvalue problem, (Kf −λI)ψ = 0, the generalized eigen
problem with the fluid mass matrix, (Kf −λMf)ψ = 0, or use any other capacitance matrix. It is
not clear which of these solutions would provide the best model for modal truncation. We also do
not have any experience on the number of modes needed for effective truncation.

3.7.3. Case II - mismatched meshes at wet interface

When the meshes are mismatched at the wet interface, extra acoustic degrees of freedom are
created on the structural side of the wet interface, and these degrees of freedom have zero
stiffness. Also, the coupling matrix L is only active on the virtual acoustic degrees of freedom on
the structural side of the wet interface. However, because of the manner in which linear
constraint equations are handled in GDSW, the issue of virtual vs physical acoustic dofs does not
impact the necessary algorithm development for the added mass mat-vec product.

3.7.4. Element Matrix Approximations

In the limits of infinite acoustic velocity, the contributions to the mass and damping matrices for
the fluid go to zero. We consider here the stiffness matrix for an element in volumetric domain
and for an infinite element. The infinite element formulation is described in equation (6.17) of the
infinite element section (6.1.2). As shown in this section, the infinite element is not a function of
either ω or co, and thus is unchanged in the infinite velocity approximation. Likewise, the
volumetric stiffness is defined in equation (3.20) of Section 3. It is also independent of frequency
or acoustic velocity. Standard element formulations apply for both stiffness matrix contributions
in the limits of infinite acoustic velocity.

3.8. Fluid Coupling through the Lighthill Tensor

Convective, turbulent flow may be effectively coupled to acoustic formulations for sound
propagation using the Lighthill analogy. For convenience, we use a pressure formulation of the
acoustic medium.

The inviscid Euler equations given in equation (3.10) including a source term are given by

∂ρ

∂t
+ρ0∇·u = 0, (3.196)

ρ0
∂u
∂t

+∇p= S, (3.197)

where ρ0 is a reference density, ρ is density, p is pressure, u is particle velocity, and S is a source
term. We note that in equation (3.197) the Pressure and density are related as

c2
0ρ= p. (3.198)

115

3.8.1. Pressure formulation

The acoustic pressure formulation is obtained by combining the mass and momentum balance
equations. The time derivative of (3.196) is

ρ̈+ρ0∇· u̇ = 0, (3.199)

where a superposed dot represented partial differentiation with respect to time. The divergence of
(3.197) is

ρ0∇· u̇+∇2p=∇·S. (3.200)
Substituting (3.198) and subsequently eliminating ∇· u̇, the acoustic pressure equation is

1
c2

0
p̈−∇2p=−∇·S. (3.201)

3.8.2. Lighthill tensor

Lighthill’s analogy100 is an approach to the problem of sound generation and propagation in
turbulent flow. The equations of motion are rearranged into a scalar, inhomogeneous wave
equation where the source terms are the noise generation due to turbulence in the fluid:

ρ̈− c2
0∇2ρ=∇· (∇·T), (3.202)

where T is known as the Lighthill tensor. It is expressed in Cartesian component form as

Tij = ρuiuj + (p− c2
0ρ)δij− τij , (3.203)

where the tensor τ is the viscous stress tensor for the fluid.

The pressure form of (3.202) is
p̈− c2

0∇2p= c2
0∇· (∇·T) (3.204)

In Sierra/SD, only the pressure formulation of Lighthill’s method as given by the above
equations is implemented. This is in contrast to most acoustic solutions which employ a velocity
potential formulation.

3.8.2.1. Handoff of Lighthill Tensor from Fuego The incompressible form of the Lighthill
tensor is given by,

Tij = ρuiuj− τij . (3.205)
Fuego provides ∇·T of equation (3.205) as a nodal variable with an arbitrary name on an SD
acoustic mesh. We implement the weak form of (3.204) in Sierra/SD.

3.9. Fluid Structure Interaction

Coupling algorithms have been developed for coupled fluid structure interactions (FSI) between a
computational fluid dynamics (CFD) code and Sierra/SD. CFD provides a high mach number
solution for large eddy simulation (LES) of hypersonic vehicles. While most of the documentation
is still to be published, some discussion of CFD codes can be found in references,109 and.11 The
coupling interactions (one or two-way) are described below.

116

3.9.1. One way FSI coupling

The one-way coupling algorithm between CFD and Sierra/SD is outlined in Figure 3-14. This
one-way algorithm provides a starting point for the two-way approach.

117

1. The CFD and Sierra/SD are started simultaneously using MPI.

2. During the initialization phase, structural nodes and time step infor-
mation is communicated from the Sierra/SD to CFD.

• Sierra/SD sends time step to CFD.
• Sierra/SD identifies nodes on the fluid/structure interface where

pressures are required, and sends to CFD.
• CFD establishes a map between CFD wetted patches and struc-

tural nodes.
• CFD sends initial pressure loads to Sierra/SD.

3. Main loop starts. At each SD time step:
• Send continue/terminate signal from CFD to Sierra.
• if continuing:

a) CFD interpolates the pressures (in both time and space), and
sends nodal pressures to Sierra/SD. CFD uses a bilinear inter-
polation of pressures from CFD cell centers to the projected
nodes. Alternatively, the user may request interpolation to
the nearest node.

b) CFD communicates those pressures to the structure.
c) All communications are passed through the root processors,

i.e. processor zero of each application.

4. CFD code proceeds to next steps while Sierra/SD runs for 1 time step.
Typically, the CFD analysis will have many time steps before the next
communication with Sierra.

5. CFD is ready to send next load in time to Sierra/SD but waits until
last message has been delivered.

6. Repeat main loop until CFD sends “terminate” message to Sierra/SD.

Figure 3-14. – One-Way Coupling Algorithm for CFD and Sierra/SD

118

3.9.2. Two Way FSI coupling

This section describes

1. The CFD algorithm used to perform calculations with moving meshes

2. How this would be leveraged to carry out two-way coupled FSI calculations.

3. How this can be implemented by building upon the one-way coupled FSI implementation.

Current CFD Moving Mesh Algorithm

The following steps describe a moving mesh algorithm to advance the solution from time level n
to n+ 1. For purposes of this document, it is assumed that the surface motion (nodal
displacements, velocities) of a chosen set of surfaces (referred to as moving bodies here) is known
at time level n and n+ 1 - either prescribed or otherwise computed.

1. Given motion of moving bodies and new surface coordinates at time level n+ 1, propagate
motion through the mesh.

Currently, this is done through an inverse distance weighted algorithm. The closest surface
patch on each moving body is computed. The motion of that patch is decomposed into
translation and rotation. The translation and rotation of any point in the mesh due to each
body is computed using a function that varies inversely with distance from the body. The
contribution due to each body is summed to obtain the net motion of the grid point. The
geometric conservation law (GCL) (and see135,64) states essentially that volume is conserved.

2. Compute the face flux through each face in the mesh.

3. Compute the new volumes for each cell in the mesh.

These two calculations are done in a manner that implicitly satisfies the GCL.

4. Using the computed volumes and face fluxes due to mesh motion, update the solution by
solving the Navier-Stokes equations with mesh motion.

This step typically involves Newton iterations due to the approximate linearization used in
the discretization.

The above algorithm can be used to perform two-way coupled FSI calculations, if the motion of
the moving bodies is computed using a computational structural dynamics (CSD) solver and
transferred to the CFD code. This algorithm can be described as follows:

1. Transfer initial pressures at time level n from CFD to CSD code.

2. Compute the motion of moving bodies using CSD code to obtain nodal coordinates and
velocities for the moving bodies at time level n+ 1.

3. Transfer motion of moving bodies at level n+ 1 from CSD code to CFD code.

4. Given motion of moving bodies and new surface coordinates at time level n+ 1, propagate
motion through mesh.

119

a) Currently, this is done through an inverse distance weighted algorithm. The closest
surface patch on each moving body is computed. The motion of that patch is
decomposed into translation and rotation. The translation and rotation of any point in
the mesh due to each body is computed using a function that varies inversely with
distance from the body. The contribution due to each body is summed to obtain net
motion of grid point.

5. Compute the face flux through each face in the mesh.

6. Compute the new volumes for each cell in the mesh.

a) These two calculations are done in a manner that implicitly satisfies the GCL.

7. Using the computed volumes and face fluxes due to mesh motion, update the solution by
solving the NS equations with mesh motion.

a) This step typically involves Newton iterations due to approximate linearization used in
the discretization.

Note that this algorithm is identical to the Conventional Serial Staggered (CSS) algorithm
described in,66 a reference that builds on.65 Also, see section 4.2 of that paper, a General Serial
Staggered procedure (GSS) is proposed in which the steps above are modified as follows :

1. Transfer pressures at time level n from CFD code to CSD code.

2. Compute a prediction of the motion at time level n+ 1 of the moving bodies using CSD
code to obtain nodal coordinates and velocities for the moving bodies.

3. Transfer predicted motion of moving bodies at level n+ 1 from CSD code to CFD code.

4. Compute face fluxes through each face in the mesh and new volumes for each cell in the
mesh.

5. Using the computed volumes and face fluxes due to mesh motion, update the solution by
solving the NS equations with mesh motion.

6. Compute a correction to the loads based on pressures at two time levels, n and n+ 1 and
transfer to CSD code.

a) Update motion of the bodies using corrected loads.

Note that in this algorithm, the corrected body motion is not transferred to the CFD code, a
potential sub-iteration algorithm can be used here to iterate this loop to convergence. In,66 it is
shown that without the sub-iteration, this is still second order. Whether we use the CSS or GSS
algorithm, its implementation within the current FSI framework should be identical (without the
last mentioned sub-iterations). The one-way algorithm is outlined in Figure 3-14 and provides a
baseline for the two-way coupling.

120

3.10. Two-way Coupled FSI Implementation

A two-way coupling algorithm building upon the above implementation of the one-way algorithm
is outlined here. The new steps to augment the existing implementation are marked in red. The
fluid mesh never changes the structural mesh.

1. Transfer a Flag to denote one-way or two-way coupling mode from CFD to Sierra/SD.

2. Get the requested time step size from CFD and from Sierra/SD, and tell both codes to use
the minimum of the two time step sizes. In practice the CFD time step size is the largest
time step size known with sub-cycling on the fluid side.

3. Transfer number of wetted surface nodes and nodal coordinates from Sierra/SD to CFD.

4. Transfer initial time from Sierra/SD to CFD.

a) Setup a map between the CFD wetted patches (identified through input) in CFD and
the structural nodes obtained from Sierra/SD.

5. If Two-way mode, transfer number of wetted CFD Nodes and Nodal coordinates from CFD
to Sierra/SD.

a) Setup a map between the CSD wetted surface and the CFD nodes obtained from CFD.

6. Transfer initial Pressure loads from CFD to Sierra/SD.

7. At each step of time marching scheme in CFD:

a) Send continue/terminate signal from CFD to Sierra/SD.

b) If continuing,

i. Transfer displacements and nodal velocities on CFD wetted surface from
Sierra/SD to CFD.

ii. Update moving mesh CFD solution.

iii. Send Updated pressure loads to Sierra/SD.

iv. GSS: Update CSD solution using updated pressures.

c) Determine if done or continuing, exit if done.

8. Send terminate signal to Sierra/SD.

9. Exit.

The above description holds for the CSS algorithm as implemented.

The pressures loads transferred from CFD to Sierra/SD in Step 7(b)iii above, “Send updated
pressure loads to Sierra/SD,” will use one of the formulae given in equation 28 in reference.66 In
this case, Sierra/SD would have to be modified to a predictor-corrector scheme as described
in.66

121

4. Material

4.1. Anisotropic Materials

A theoretical development for anisotropic elasticity is presented emphasizing the numbering
convention.

Linear Anisotropic Elasticity. Linear elasticity asserts that the stress is a linear function of
the strain:

σij = C4
ijklεkl

Where C4
ijkl are the Cartesian components of the fourth order constitutive tensor and the

Einstein convention of summation on repeated indices is used.

4.1.1. Stress Vectors

By definition, the strain is symmetric. Further, we make the usual constitutive assumption that
the stress is symmetric. This permits the representation of the 3x3 stress matrix and the 3x3
strain matrix each by a column vector having six rows.

s=



σ11
σ22
σ33
σ23
σ13
σ12


and,

e=



ε11
ε22
ε33
2ε23
2ε13
2ε12


.

This is the Voigt notation. Note that this mapping from σ to s and from ε to e is not universal.
This is the numbering used in Malvern and is popular in the materials science world, but it differs
from the numbering used in NASTRAN and from the numbering in ABAQUS. Although s and e
are called the “stress vector” and the “strain vector”, they do not map from one coordinate
system to another as true vectors do. How that mapping is done is discussed in a later section.

We use the above to map the fourth-order tensor C4
ijkl into a 6x6 matrix of material parameters.

This is done with the aid of the matrices that formally map σ to s and from ε to e.

en = Enijεij (4.1)

and
εij = enFnij (4.2)

122

where

E1 =

 1 0 0
0 0 0
0 0 0

 E2 =

 0 0 0
0 1 0
0 0 0

 E3 =

 0 0 0
0 0 0
0 0 1


E4 =

 0 0 0
0 0 1
0 1 0

 E5 =

 0 0 1
0 0 0
1 0 0

 E6 =

 0 1 0
0 0 0
0 1 0

 (4.3)

and

F1 =

 1 0 0
0 0 0
0 0 0

 F2 =

 0 0 0
0 1 0
0 0 0

 F3 =

 0 0 0
0 0 0
0 0 1


F4 =

 0 0 0
0 0 1/2
0 1/2 0

 F5 =

 0 0 1/2
0 0 0

1/2 0 0

 F6 =

 0 1/2 0
0 0 0
0 1/2 0

 (4.4)

We note that the stress mappings are also achieved with the above third order quantities:

sn = Fnijσij (4.5)

and
σij = snEnij (4.6)

From Equations 4.1 and 4.2 or Equations 4.5 and 4.6 we see that,

EmijFnij = δmn (4.7)

Substituting Equations 4.2 and 4.6 into Equation 4.1 and simplifying with Equation 4.7, we find

sm = Cmnen (4.8)

where
Cmn = FmijC

4
ijklFnkl (4.9)

This shows how to find the 6x6 matrix Cij in terms of the fourth order tensor components C4
ijkl.

The material description may also be provided in terms of the components of Cij .

4.1.2. Strain Energy and Orientation

Consider the situation where the matrix of material parameters is provided in a Cartesian
coordinate system different from the global coordinate system in which strains are calculated.
Because stress and strain are tensors, they transfer from one coordinate system to another by:

σij =Raiσ̂abRbj (4.10)

and
εij =Raiε̂abRbj (4.11)

123

where σij and εij are the stress and strain components calculated in some other (global) Cartesian
system and Rai are the components of the rotation matrix that rotates the basis vectors in that
global system to that with respect to which the material properties are defined. A basis vector b̂a
in the local, material frame is expressed in terms of the basis vectors of the global system by:

b̂a =Raibi (4.12)

where b1, b2, and b3 are the basis vectors of the global frame.

From Equations 4.5, 4.6, and 4.9, we find following

sm = (FmijEnabRaiRbj)ŝn. (4.13)

From Equations 4.1, 4.2, and 4.11, we find the more useful relationship

em = (EmijFnabRaiRbj)ên. (4.14)

The above two transformations are simplified:

s= T T ŝ (4.15)

and
e= T ê (4.16)

where the 6x6 transformation matrix, T , is defined

Tnk = EnijFkabRaiRbj = tr
(
ETnRFkR

T
)

(4.17)

Noting that
s= Ĉê, (4.18)

and substituting Equations 4.15 and 4.16 into Equation 4.18, we further find

s= T T ĈTe. (4.19)

Comparing the above with Equation 4.8, we finally find that

C = T T ĈT (4.20)

which was the main point of this exercise.

Note also that the components of arrays En and Fn are mostly zero, with the rest either 1 or 1/2.
The simplified (with Maple) product matrix is

T =
[
T11 T12
T21 T22

]
(4.21)

where

T11 =

 R2
11 R2

12 R2
13

R2
21 R2

22 R2
23

R2
31 R2

32 R2
33

 , (4.22)

124

T12 =

 R13R12 R13R11 R13R11
R23R22 R23R21 R23R21
R33R32 R33R31 R33R31

 , (4.23)

T21 =

 2R21R31 R22R32 R23R33
2R11R31 R12R32 R13R33
2R11R21 R12R22 R13R23

 , (4.24)

and

T22 =

 R23R32 +R22R33 R23R31 +R21R33 R22R31 +R21R32
R13R32 +R12R33 R13R31 +R11R33 R12R31 +R11R32
R13R22 +R12R23 R13R21 +R11R23 R12R21 +R11R22

 . (4.25)

Note that T defined above is the transformation matrix N in of Equation 3.34 in Auld’s “Acoustic
Waves in Solids, Volume I” (reference19), which is used in the same way.

The Maple code to perform the above calculations follows.

with(linalg);
E[1] := matrix(3,3,[[1,0,0],[0,0,0],[0,0,0]]);
E[2] := matrix(3,3,[[0,0,0],[0,1,0],[0,0,0]]);
E[3] := matrix(3,3,[[0,0,0],[0,0,0],[0,0,1]]);
E[4] := matrix(3,3,[[0,0,0],[0,0,1],[0,1,0]]);
E[5] := matrix(3,3,[[0,0,1],[0,0,0],[1,0,0]]);
E[6] := matrix(3,3,[[0,1,0],[1,0,0],[0,0,0]]);
F[1] := E[1];
F[2] := E[2];
F[3] := E[3];
F[4] := (1/2)*E[4];
F[5] := (1/2)*E[5];
F[6] := (1/2)*E[6];
R := matrix(3,3);

for k from 1 to 6 do
FRR[k] := matrix(3,3);
FRR[k] := evalm (R &* F[k] &*transpose(R));
od;

T := matrix(6,6);
for k from 1 to 6 do
for n from 1 to 6 do
T[n,k] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
T[n,k] := T[n,k] +evalm(FRR[k][i,j])*E[n][i,j];
od; od;
od; od;

125

readlib(C);
C(T);

read("/home/djsegal/Maple/tools/maple2mif.mpl");
M := maple2mif();
fprintf("/home/djsegal/MPP/notes/temp.mif",’%s’,M(eval(T))) ;

4.2. Viscoelastic Materials

Here we describe the integration of viscoelastic structures using the generalized alpha method.
For the proper choice of the parameters of the generalized alpha method, the results below reduce
to those corresponding to the Newmark-beta method.

4.2.1. Equations of motion

The equations of motion of elastodynamics in three dimensions are given by

utt−∇·σ = f(x,t) Ω (4.26)
u(x,t) = 0 x ∈ ΓD (4.27)

σ(x,t) = g(x,t) x ∈ ΓN (4.28)
(4.29)

where u= (ux,uy,uz) is the vector of displacements, σ is the stress tensor, and f(x,t) is the body
force. The boundary of Ω is divided into Dirichlet ΓD and Neumann ΓN subregions.

The Dirichlet conditions lead to the space of admissible functions

V =
[
v ∈H1(Ω),v(x) = 0,x ∈ ΓD

]
(4.30)

The equation of motion, along with boundary conditions, is cast into the weak form in the
standard way ∫

Ω
utt ·v+

∫
Ω
σ ·∇svdx=

∫
Ω
f(x,t) ·vdx+

∫
ΓN
g(x,t) ·vds ∀v ∈ V (4.31)

where an integration by parts has been carried out on the middle term, and ∇s = 1
2(∇+∇T)

denotes the symmetric part of the gradient operator.

4.2.2. Constitutive equations

The representation of the time-dependent moduli for a viscoelastic material is commonly written
in the form of a Prony series

G(t) =Ginf + (G0−Ginf)ζG(t) (4.32)

ζG(t) =
∑
i

cie
− t
si (4.33)

126

where G0 is the glassy modulus, Ginf is the rubbery modulus, and ci,si are coefficients used to fit
the Prony series representation to the experimentally measured relaxation curve. A similar
expression holds for K(t), with different values for the constants, and possibly a different number
of terms in the series. Assuming an isotropic viscoelastic constitutive law, we only need to
consider two rate-dependent material properties. In this presentation, we will work in terms of
the bulk K and shear G moduli, since experimental data is typically given in terms of these two
parameters.

The constitutive model for an elastic material can be written in terms of the shear and bulk
moduli

σ =Dε= (KDK +GDG)ε (4.34)

where K, G are the scalar bulk and shear moduli, and as is shown in equation 9.4.7 in,43

DK =



1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



DG =



4/3 −2/3 −2/3 0 0 0
−2/3 4/3 −2/3 0 0 0
−2/3 −2/3 4/3 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


This constitutive law can be generalized to a linear viscoelastic material as follows

σ(x,t) = (G0−Ginf)DG

∫ t

0
ζG(x,t− τ)∂ε(x,τ)

∂τ
dτ +GinfDGε(x,t) + (4.35)

(K0−Kinf)DK

∫ t

0
ζK(x,t− τ)∂ε(x,τ)

∂τ
dτ +KinfDKε(x,t)

The above expression is then used to represent the stress in the weak form of the equations of
motion, 4.31.

Given a finite dimensional subspace Vh ⊂ V , we represent the approximate solution in the
standard way

uh(x,t) =
n∑
i=1

φi(x)ηi(t) (4.36)

where Vh = span(φi), and η(t) represents the unknown time dependence. We also denote
Φ(x) = [φi(x)] as the matrix having φi as the ith column. Inserting this into the equations of
motion, and rearranging, we obtain

Mη̈(t) + (G0−Ginf)K1

∫ t

0
ζG(t− τ)η̇(τ)dτ +

(K0−Kinf)K1

∫ t

0
ζK(t− τ)η̇(τ)dτ +K2η(t) = f(t) (4.37)

127

where
M =

∫
Ω
ρ(x)ΦT (x)Φ(x)dx (4.38)

is the mass matrix,

K1 = (G0−Ginf)
∫

Ω
BTDGBdx+ (K0−Kinf)

∫
Ω
BTDKBdx (4.39)

K2 =Ginf

∫
Ω
BTDGBdx+Kinf

∫
Ω
BTDKBdx (4.40)

are the stiffness matrices, and

f(t) =
∫

Ω
f(x,t) ·v(x)dx+

∫
ΓN
g(x,t) ·v(x)ds (4.41)

is the right-hand side. The corresponding element matrices are defined by breaking the integrals
into element wise contributions.

Equation 4.37 represents a system of Volterra integro-differential equations. Without the inertial
term, 4.37 represents a system of Volterra integral equations of the first kind. The stanrd form for
implicit time integration schemes is

Mη̈(t) +Cη̇(t) +Kη(t) = f̂(t). (4.42)

Here C is a constant damping matrix. Is the system of equations 4.37 reducible to standard form?
ˆf(t) is a modified right-hand side that will include a portion of the viscoelastic convolution term.

We demand that C be independent of time, since this will eliminate the need for refactoring the
left-hand side at each time step. The damping (integral) term in equation 4.37 is time-dependent.
However, we will show that it is possible to split this integral term into a time-dependent and a
time-independent part. The time-independent parts remain on the left-hand side and become the
damping matrix, whereas the time-dependent parts can be carried to the right-hand side, since
they are known quantities. Once the equations 4.37 are reduced to the system 4.42, the standard
time integrators for structural dynamics can be employed.

For simplicity, we consider the case of only a single Prony series term. The results for more terms
can be obtained by adding together the results for a single term. The integral in equation 4.37
can be split into two parts (considering only a single Prony series term)∫ t

0
e
t−τ
s η̇(τ)dτ =

∫ ti

0
e
t−τ
s η̇(τ)dτ +

∫ t

ti

e
t−τ
a η̇(τ)dτ (4.43)

= e
∆t
s

∫ ti

0
e
ti−τ
s η̇(τ)dτ +

∫ t

ti

e
t−τ
s η̇(τ)dτ (4.44)

where the first term is a loading history term that is known at time ti. Consequently, it can be
treated as an additional load and brought to the right-hand side. The remaining term can be split
into two terms, one containing coefficients of η̇, and the other containing coefficients of η̇i. The
former is unknown and thus becomes Cη̇, whereas the latter is known and thus also contributes to
the right-hand side.

In order to evaluate the term ∫ t

ti

e
t−τ
s η̇(τ)dτ (4.45)

we first need a representation for the velocity ˙η(τ) in the interval τ ∈ [ti, t]. We present two
choices, both of which are second order accurate.

128

4.2.3. Linear Representation of Velocity

The first is consistent with the Newmark-beta method, which presumes a constant acceleration
within the time step. With this assumption, the velocity must vary linearly within the time step.
Thus,

˙η(t) = ˙η(ti) + η̈+ ¨η(ti)
2 (t− ti) (4.46)

where η̈ is the (unknown) acceleration at current time t, and ¨η(ti) is the previous acceleration.
Although equation 4.46 is the correct representation for velocity, it is inconvenient in that it
would lead to (after inserting into equation 4.45) a contribution to the mass matrix. This is
undesirable, since it would interfere with the use of a lumped mass matrix. Thus, we re-write the
velocity distribution in an equivalent form

η(t) = ˙η(ti) + η̇− ˙η(ti)
∆t (t− ti) (4.47)

We note that equations 4.46 and 4.47 are equivalent representations of the velocity. By inserting
equation 4.47 into equation 4.45 we obtain∫ t

ti

e
t−τ
s η̇(τ)dτ =

[
s+ s2

∆t
(
e

∆t
s −1

)]
η̇+

[
−se

−∆t
s + s2

∆t
(
1−e

−∆t
s

)]
η̇i (4.48)

The first term involves a coefficient times the unknown η̇, which is the unknown velocity at the
current time, and thus it must remain on the left-hand side as a damping term contribution. The
damping matrix implied by this term is

C = cK(sK + s2
K

∆t (e
−∆t
sK −1))BTDKB+ cG(sG+ s2

G

∆t(e
−∆t
sG −1))BTDGB (4.49)

The second term is known, and thus it can be added to the load vector.

4.2.4. Midpoint Representation of Velocity

A second implicit scheme can be derived by using the midpoint rule on the velocity in the
viscoelastic term. The only difference from the linear approach described above is in equation
4.48.

η̇(t) = η̇+ ˙η(ti)
2 (4.50)

This leads to ∫ t

ti

e
t−τ
s η̇(τ)dτ = s

2
(
1−e

∆t
s

)
η̇+ s

2
(
1−e

∆t
s

)
η̇i (4.51)

In the same way as for the linear velocity approach, we use the term involving η̇ to construct a
damping matrix, and the remaining known terms are carried to the right-hand side.

It should be noted that the midpoint scheme is inconsistent in that a different discretization
scheme is used for the viscoelastic term than was used for the overall time integration. The linear
representation of velocity is a consistent scheme. However, both approaches are second order
accurate.

129

5. Elements

Structural dynamics is a rich and extensive field. Finite element tools such as Sierra/SD have
been used for decades to describe and analyze a variety of structures. The same tools are applied
to large civil structures (such as bridges and towers), to machines, and to micron sized structures.
This has necessarily led to a wealth of different element libraries. Details of these element
libraries are presented in this section. For information on the solution procedures that tie these
elements together, please refer to Section 2.

5.1. Selective integration

In theory, selective integration applies to any 3D isoparametric elements. The implementation
applies selective integration to elements with linear shape functions (such as hex8 or wedge6).
The first step is to explain how to evaluate certain operators on the shape functions. Later the
operators will be integrated into K.

5.1.1. Derivation

The strategy for avoiding over stiffness with respect to bending begins with splitting the strain
into deviatoric and dilatational parts. An isotropic, linearly elastic material has strain energy
density

p= 1
2(2Gε+λtr(ε)I)• ε (5.1)

with some re-arrangement, this can be shown to be:

p=Gε̂• ε̂+ 1
2β(tr(ε))2 (5.2)

where ε̂= ε− 1
3 tr(ε)I.

The contribution to strain energy density from the deviatoric strain is separated from the
contribution from the dilatational strain. The contributions are integrated separately. First, the
strains are expressed in terms of nodal degrees of freedom.

The deformation field depends linearly on the nodal DOFs. The displacement gradient does too.
It should be possible to expand each quantity as follows.

Let Pj be the node associated with the jthe degree of freedom and let sj be the direction
associated with that degree of freedom. The displacement field is:

~u(x) = ÑPj (x)uPjsj ~esj (5.3)

where summation takes place over the degree of freedom j.

Similarly, the displacement gradient is:

~∇~u(x) = (∂

∂xk
)ÑPj (x)uPjsj ~esj~ek (5.4)

130

We define the shape deformation tensor W j corresponding to the j the nodal degree of freedom:

W j(x) = (∂

∂u
Pj
sj

)~∇~u(x) (5.5)

which, with Equation 5.4 yields:

W j(x) = (∂

∂xk
)ÑPj (x)~esj~ek (5.6)

The symmetric part of this tensor is:

Sj(x) = 1
2(W j(x) +W j(x)T) (5.7)

and the strain tensor is
ε(x) = Sj(x)uPjsj (5.8)

From the above, we construct the dilatational and deviatoric portions of the strain in terms of the
nodal displacement components:

tr(ε(x)) = bj(x)uPjsj (5.9)

where
bj(x) = tr(Sj(x)) (5.10)

Similarly,
ε̂(x) = B̂j(x)uPjsj (5.11)

where
B̂j(x) = Sj(x)− 1

3b
j(x)I (5.12)

To evaluate K use the constitutive equation 5.2 and

Km,n = ∂2

∂uPmsm ∂u
Pn
sn

∫
volume

p(x)dV (x) (5.13)

Combine this with the expressions for strain in terms of the nodal DOFs,

Km,n =G

∫
volume

(B̂m(x))T • B̂n(x)dV (x)

+β
∫
volume

bm(x)bn(x)dV (x) (5.14)

5.2. Implementation

From the above it is seen that once the shape deformation tensor W j is found, the rest of the
calculation follows naturally. Next the tensor components are derived. The components of W j

are

W j
mn = ~em ·W j ·~en (5.15)

= δm,sj (
∂

∂xn
)ÑPj (x) (5.16)

131

The partial derivative (∂
∂xn

)ÑPj (x) is calculated from

(∂

∂xn
)ÑPj (x(ξ)) = (∂

∂ξα
)NPj (ξ)J−1

α,n (5.17)

where
Jm,γ = ∂

∂ξγ
xm(ξ) (5.18)

and
N(ξ) = Ñ(x(ξ)) (5.19)

Selective element integration, discussed in Section 5.3, is applied to all isoparametric solid
elements.

5.3. Integration of Isoparametric Solids

A selective integration method for isoparametric solids is described that satisfies the standard
conditions, including the patch test, and at the same time accommodates anisotropic materials.

For computational convenience define the stress and strain vectors as

s=



σ11
σ22
σ33
σ23
σ13
σ12


(5.20)

and,

ν =



ε11
ε22
ε33
2ε23
2ε13
2ε12


. (5.21)

These are related through the matrix of elastic constants.

s= Cν (5.22)

Virtual work will be used to derive the stiffness matrix.

δW =
∫
V
sT δνdV =

∫
V
νTCδνdV (5.23)

If we select the above volume to be that of an element and use the strain-displacement matrices
associated with each nodal degree of freedom,

ν(x) =
∑
j

Bj(x)uj (5.24)

132

where uj is the jth nodal degree of freedom, the virtual work becomes

δW = ujδuk

∫
V
Bj(x)TCBk(x)dV (5.25)

Since the element stiffness matrix is defined by

δW = ujδKij (5.26)

we conclude that
Kij =

∫
V
Bj(x)TCBk(x)dV (5.27)

Next the strain-displacement vectors are decomposed into deviatoric and dilatational
components.

Bj(x) =BD
j (x) +BV

j (x) (5.28)
where,

BV
j (x) = dj(x)



1
1
1
0
0
0


(5.29)

and 3dj(x) is the sum of the first three rows of Bj(x). BD
j (x) is defined by equation 5.28.

Substitution of equation 5.28 into equation 5.27 yields:

Kij =
∫
V
BD
j (x)TCBD

k (x)dV +
∫
V
BV
j (x)TCBV

k (x)dV + · · ·

+
∫
V
BV
j (x)TCBD

k (x)dV +
∫
V
BD
j (x)TCBV

k (x)dV (5.30)

In the case of isotropic materials, the deviatoric and dilatational portions of the strain are
orthogonal with respect to the matrix of material constants. The last two integrals in equation
(5.30) vanish. Finally parasitic shear is mitigated by using special cubature rules for each
contribution to the stiffness matrix in equation (5.30).

Uniform Strain-Displacement Matrices. The purpose of this section is to explain the
treatment for anisotropic materials. The first new tool is the element averaged strain
displacement matrices.

B̄k = 1
V

∫
V
Bk(x)dV (5.31)

For hexahedrons, these are the strain-displacement matrices,70,71 and lead to “uniform strain”
elements. Elements formed by the above strain/displacement matrices are “soft", having
properties similar to elements formed by single point integration. Hex elements of this sort
display spurious zero-energy modes. In what follows, we consider linear combinations of this
strain-displacement matrix formulation with the consistent formulation of equation (5.24).

The uniform strain matrices are also separable into dilatational and deviatoric parts.

B̄k = B̄V
k + B̄D

k (5.32)

133

Mixed Integration. This selective integration method builds on one presented by Hughes.85 We
can achieve the effect of softening elements by forming the strain displacement matrices from
combinations of the consistent strain-displacement and the uniform strain displacement
matrices.

B̂k(x) = αB̄V
k + (1−α)BV

k (x) +βB̄D
k + (1−β)BD

k (x) (5.33)

(14) Note that for all values of α and β, the above correctly captures uniform strains. It is in how
the non-uniform strains contribute to the stiffness matrix that the particular values of α and β
make a difference. By setting values of α and β according to the following table, we recover the
standard integration forms:

α β Integration
1 1 Flanagan and Belytschko
0 0 Full Integration
1 0 Selective Integration

We note that setting α= 1 and using an intermediate value of β, we can achieve performance
comparable to that of the Flanagan and Belytschko element but without admitting hour-glass
modes.

5.4. Mean Quadrature with Selective Deviatoric Control

In this section we discuss the implementation of the mean quadrature element in Sierra/SD.
This work is a result of a collaboration with Sam Key.91

We first examine the element stiffness matrix resulting from a fully integrated element

K =
∫
V
BTCBdV (5.34)

where K is the stiffness matrix, V is the volume of the element, B is the standard
strain-displacement matrix, and C is the matrix of material constants. When implemented in the
standard way, this element behaves poorly for nearly-incompressible materials, and is too stiff
even on materials with moderate Poisson ratios.

A standard approach for softening the element formulation in the presence of nearly
incompressible materials is to replace the matrix B with its mean quadrature counterpart, B̃,

B̃ =
∫
V
BdV (5.35)

This alleviates problems associated with nearly incompressible materials, but the resulting
stiffness matrix exhibits hourglass modes. These modes can be removed either through hourglass
control methods, or by adding in some of the missing deviatoric components. We use the latter
method. B and B̃ split into volumetric and deviatoric components, i.e.

B̃ = B̃V + B̃D (5.36)
B =BV +BD

134

With these decompositions, we define

B̂ = B̃V + B̃D +sd(BD− B̃D) (5.37)

where sd is a parameter between 0 and 1. When sd= 0, the element corresponds to a mean
quadrature element. When sd= 1, the element corresponds to mean quadrature on the volumetric
part, but with full integration on the deviatoric component.

With this new definition of B̂, we can define the stiffness matrix for this element as

K =
∫
V
B̂TCB̂dV (5.38)

5.5. Bubble Functions

Low order finite elements tend to behave poorly when subjected to bending loads. The bubble
hex elements have been shown to give much better bending performance, without increasing the
number of degrees of freedom in the element,134,86.103 In this section we give a brief review of the
theory behind this element.

The representation of displacement at the element level in the standard hex8 element is

u =
8∑

i=1
uiNi(ξ) = uTN (5.39)

where u is the element displacement, Ni is the ith shape function, N is the vector of shape
functions, and ξ is the vector of reference element coordinates. The bubble element augments the
standard finite element basis functions with additional bubble functions. The representation of
displacement at the element level for the bubble element takes the form

u =
8∑

i=1
uiNi(ξ) +

3∑
i=1

aiPi(ξ) = uTN+aTP (5.40)

where Pi(ξ) are the bubble functions, P is the vector of bubble functions, ai are the unknown
coefficients for the bubble functions, and a is the vector of unknown coefficients for the bubble
functions. The corresponding expression for element strain is given as

ε= Bu+Ga (5.41)

where B and G are the appropriate derivatives of the shape functions. We note that B is a 6x24
matrix, whereas G is a 6x9 matrix. See,13486 for the exact forms of these matrices.

The corresponding element stiffness and load terms can be assembled into a block 2times2
system [

K ET

E H

][
u
a

]
=
[

f
0

]
(5.42)

where K =
∫
eB

TCBdV is the 24x24 element stiffness matrix corresponding to standard element
shape functions, H =

∫
eG

TCGdV is the 9x9 stiffness matrix corresponding to bubble shape
functions, E =

∫
eG

TCBdV is the 9x24 matrix corresponding to products of bubble and standard
shape functions, and f is the element load vector. The bubble unknowns a are local to each

135

element, and may be condensed out. Eliminating the bubble unknowns yields the modified
element stiffness matrix

K̂ =K−ETH−1E (5.43)

The order of K remains 24×24.

With one of two supported corrections, the bubble hex element passes the patch test, assuring
convergence. First134 is based on evaluating G at the element centroid instead of the Gauss points.
The second86 determines the average value of G, and subtracts the average value from G.

In Sierra/SD, we have taken the second approach. A new G matrix is defined, Ĝ, that is
constructed by subtracting the average value of G from G.

Ĝ=G− 1
Ve

∫
e
GdV (5.44)

We replace G with Ĝ in the above equations. We note that, in the implementation of this element
in Sierra/SD, it was found that after implementing the correction described above, the element
passed the patch test. Without the correction, the element failed all of the patch tests.

With the bubble element, stress is a function of the thickness. Stress is determined from the
strain. The solution procedure determines is element displacement vector u. Equation 5.41 for
the strain depends on the bubble DOFs a. Due to equation 5.42,

a = H−1Eu (5.45)

5.5.1. Nonlinear analysis of bubble functions

The bubble element can be used in nonlinear analysis. The procedure86 is reviewed next.
Although the assumed strain approach was used instead of the assumed displacement method,
both lead to the same procedure.

We will give the necessary modifications for a nonlinear static analysis. The governing equation
is

F int(u,α) = Fext (5.46)

It separates into two equations

F int1 =
∫

Ω
BTσdΩ = F ext (5.47)

F int2 =
∫

Ω
GTσdΩ = 0 (5.48)

The stress is given by σ = Cε, where ε is given by equation 5.41.

The quantities u and α denote the unknowns, and û and α̂ represent the current iterates of
displacement and bubble unknowns. The two term Taylor’s series for internal force is

F int1 (u,α)≈ Fint
1 (û, α̂) + ∂Fint

1
∂u ∆u+ ∂Fint

1
∂α

∆α (5.49)

F int2 (u,α)≈ Fint
2 (û, α̂) + ∂Fint

2
∂u ∆u+ ∂Fint

2
∂α

∆α (5.50)

136

We define

KT = ∂F int1
∂u (5.51)

ET = ∂F int1
∂α

(5.52)

HT = ∂F int2
∂α

(5.53)

where the subscript T denotes tangent matrices that are computed at the current configuration.
Using these definitions and substituting equations 5.50 into equations 5.48, we obtain[

KT (ET)T
ET HT

][
∆u
∆a

]
=
[
Resu
Resα

]
(5.54)

where

Resu = F ext−F int1 (û, α̂) (5.55)
Resα =−F int2 (û, α̂) (5.56)

In equation 5.48 and others, σ and B depend on displacement u and bubble unknowns α. Using
the chain rule, the tangent matrices are

KT = ∂
∫

ΩB
TσdΩ

∂u =
∫

Ω

∂BT

∂u σdΩ +
∫

Ω
BT ∂σ

∂udΩ (5.57)

ET = ∂
∫
ΩB

TσdΩ
∂α

=
∫

Ω

∂BT

∂α
σdΩ +

∫
Ω
BT ∂σ

∂α
dΩ (5.58)

HT = ∂
∫
ΩG

TσdΩ
∂α

=
∫

Ω

∂GT

∂α
σdΩ +

∫
Ω
GT

∂σ

∂α
dΩ (5.59)

In each of these expressions, on the right-hand side the first and second terms are geometric and
material stiffnesses respectively.

The deformation gradient is used to evaluate ∂BT

∂u and ∂BT

∂α . New notation is needed. X is the
initial configuration, x is the current configuration, and u = x−X is the displacement. Note
that

F = ∂x

∂X
= I+ ∂u

∂X
= I+uT

DN

DX
+αT

DP

DX
(5.60)

∂F

∂u
= DN

DX
(5.61)

∂2F

∂u2 = 0 (5.62)

This implies that ∂2F
∂u2 = 0. Therefore,

e= 1
2(F TF − I) (5.63)

B = ∂ε

∂u
= F

∂F

∂u
(5.64)

∂B

∂u
= F

∂2F

∂u2 + ∂F

∂u

∂F

∂u
= ∂F

∂u

∂F

∂u
(5.65)

137

Similarly, we can construct these equations for the bubble functions

e= 1
2(F TF − I) (5.66)

G= ∂ε

∂α
= F

∂F

∂α
(5.67)

∂G

∂α
= F

∂2F

∂α2 + ∂F

∂α

∂F

∂α
= ∂F

∂α

∂F

∂α
(5.68)

where similar identities have been used

F = ∂x

∂X
= I+ ∂u

∂X
= I+uT

DN

DX
+αT

DP

DX
(5.69)

∂F

∂α
= DP

DX
(5.70)

∂2F

∂α2 = 0 (5.71)

For the cross terms, we have

e= 1
2(F TF − I) (5.72)

B = ∂ε

∂u
= F

∂F

∂u
(5.73)

∂B

∂α
= F

∂2F

∂u∂α
+ ∂F

∂u

∂F

∂α
= ∂F

∂u

∂F

∂α
(5.74)

where, again we justify that the second term vanishes as follows

F = ∂x

∂X
= I+ ∂u

∂X
= I+uT

DN

DX
+αT

DP

DX
(5.75)

∂F

∂u
= DN

DX
(5.76)

∂2F

∂u∂α
= 0 (5.77)

In a similar manner as was done for the linear element, the bubble degrees of freedom can be
condensed from equations 5.56. This results in the equation

(KT −ETTH−1
T ET)∆u = Resu−ET

TH−1
T Resα (5.78)

Thus, the full tangent operator for the bubble element is given by

KT −ETTH−1
T ET (5.79)

the internal force is given by
F int1 (û, α̂)−ETTH−1

T F int2 (û, α̂) (5.80)

and the residual is given by two terms

Resu−ETTH−1
T Resα (5.81)

These equations describe the nonlinear analysis of the bubble element.

138

5.6. Quadratic isoparametric solids

Quadratic elements (elements with bilinear or higher order shape functions) such as the hex20 and
tet10 are naturally soft and do not need to be softened by positive values of G and β (see sections
5.1 and 5.3 for definitions of G and β). Therefore, the values G= 0 and β = 0 are recommended.

5.6.1. Shape functions and integration points

The shape functions and Gauss points for hex20 elements use a standard ordering. The nodal
ordering (and shape functions) follows the ordering in the Exodus manual. Gauss points are
input and output using the ordering developed by Thompson.136 Internally, the Gauss points are
located at element coordinates (and order) shown in Table 5-6.

139

number label suffix X Y Z
1 111 0 0 0
2 112 0 0 A
3 110 0 0 -A
4 121 0 A 0
5 122 0 A A
6 120 0 A -A
7 101 0 -A 0
8 102 0 -A A
9 100 0 -A -A
10 211 A 0 0
11 212 A 0 A
12 210 A 0 -A
13 221 A A 0
14 222 A A A
15 220 A A -A
16 201 A -A 0
17 202 A -A A
18 200 A -A -A
19 011 -A 0 0
20 012 -A 0 A
21 010 -A 0 -A
22 021 -A A 0
23 022 -A A A
24 020 -A A -A
25 001 -A -A 0
26 002 -A -A A
27 000 -A -A -A

Table 5-6. – Hex20 Gauss Point Locations. The constant A=0.77459666924148. The unit element is
2x2x2, with a volume of 8 cubic units.

140

5.7. Wedge Shape Functions

The shape functions are given explicitly as in.85 These are provided as bi-linear polynomials in r,
s, t, and ξ, where r and s are independent coordinates of the triangular cross-subsections,
t= 1− r−s, and ξ is the coordinate in the third direction. For our purposes, it is necessary to
expand the shape functions as polynomials in r, s, and ξ:

Nk =Ak0 +Ak1r+Ak2s+Ak3ξ+Ak4rξ+Ak5sξ (5.82)

5.7.0.1. Wedge quadrature

Table 5-7. – Shape functions and coefficients
Shape Function A0 A1 A2 A3 A4 A5
N1 = 1

2(1− ξ)r 1
2 -1

2
N2 = 1

2(1− ξ)s 1
2 −1

2
N3 = 1

2(1− ξ)t 1
2 -1

2 -1
2 -1

2
1
2

1
2

N4 = 1
2(1 + ξ)r 1

2
1
2

N5 = 1
2(1 + ξ)s 1

2
1
2

N6 = 1
2(1 + ξ)t 1

2 -1
2 -1

2
1
2 -1

2 -1
2

141

Table 5-8. – Wedge element integration rules
No. Points r s ξ

1 1/3 1/3 0
2 1/3 1/3 -1/

√
3

1/3 1/3 1/
√

3
6 1/6 1/6 -1/

√
3

1/3 1/6 -1/
√

3
1/6 1/3 -1/

√
3

1/6 1/6 1/
√

3
1/3 1/6 1/

√
3

1/6 1/3 1/
√

3

5.8. Tet10

The degree 2 integration rule (see for example Appendix 3.1 of85) based on values at the four
vertices is used for the stiffness matrix. The mass matrix depends on integrals of polynomials two
degrees higher than the stiffness matrix. Higher order integration is required to determine a
consistent (exact) mass matrix than is required for the stiffness matrix. The 16-point integration
comes from.87 (Using 4-point integration to try to estimate the mass matrix of a natural element
resulted in a 30 by 30 mass matrix with several zero eigenvalues.) A 16-point integration with
degree of exactness 6 from87 is used for the mass matrices. However, cubature rules of degree two
or four90 suffice for the Tet4 and Tet10 respectively.

5.9. Hex20 shape functions and gradients

The shape functions a determined from the monomials

pi(ε) = εri1 ε
si
2 ε

ti
3 .

for the non-negative integers {ri,si, ti}1≤i≤20 such that

r2
i +s2

i + t2i ≤ 7.

The derivation of a cardinal basis starts with the rst matrix.

count=0
for I = 0 to 7

for J = 0 to 7
for K = 0 to 7

if I^2 + J^2 + K^2 <= 7
count = count + 1

r(count) = I
s(count) = J
t(count) = K

endif
endfor

endfor
endfor

142

The shape functions {Ni(r,s, t)}1≤i≤20 are linear combinations of the pi satisfying
Ni(rj ,sj , tj) = δi,j ,

~N =A~p. (5.83)

The element has 20 nodes. A is a 20×20 matrix. Wouldn’t A be 60×60 ?

We find the 400 term A−matrix values. Let ~εi denote the natural coordinate value at the ith
node. We have A~p(~ε1) = ~e1 ≡ (1,0,0, . . . ,0)T , and, in general, A~p(~εi) = ~ei.

[~ε1,~ε2, . . . ,~ε20] = [A][~p(~ε1), ~p(~ε2), . . . , ~p(~ε20)]

or,
I =AP

or,
A= P−1

The SD source code labels A as hc20.

The gradients are also linear combination of the pi, ∂
~N

∂εj
, (j = 1,2,3), determined by differentiating

equation 5.83,
∂ ~N

∂εj
=A

∂~p

∂εj

The ∂~p/∂εj may be written as a linear combination of the pk via the following three equations.

∂pi
∂ε1

= riε
ri−1
1 εsi2 ε

ti
3 (5.84)

∂pi
∂ε2

= siε
ri
1 ε

si−1
2 εti3 (5.85)

∂pi
∂ε3

= tiε
ri
1 ε

si
2 ε

ti−1
3 (5.86)

while noting that equations 5.84, 5.85 and 5.86 are zero if ri, si, or ti is zero, respectively. The
matrices Bj with j = 1,2,3 are sought such that,

∂ ~N

∂εj
=Bj~p.

Evaluating ∂ ~N/∂εj and ~p at all 20 nodes, we have,[
∂ ~N

∂εj
(~ε1), ∂

~N

∂εj
(~ε2), . . . , ∂

~N

∂εj
(~ε20)

]
=Bj [~p(~ε1), ~p(~ε2), . . . , ~p(~ε20)] (5.87)

Matrix equation 5.87 can be inverted to solve for Bj with j = 1,2,3. In Hex20.C, AB1 is B1 , AB2
is B2, and AB3 is B3.

5.9.0.1. Shape Function Ordering: The above method results in elements which satisfy the
requirements that the evaluation of shape function i on node i is one. However, the
implementation does not ensure compatibility with standard node ordering from Exodus. We’ve
provided a re-ordering function to ensure this.

143

5.9.0.2. Anisotropy Anisotropic materials requires special care in the rotation of the matrix of
material parameters when those parameters are given in some coordinate system other that in
which the element matrices are calculated. The formulae for rotating those matrices are derived
in 4.1.

5.10. 6 noded Triangle

This section reviews the derivation of the triangular shell element (TriaShell) element. The
membrane DOFs (u,v,θz) are decoupled from the bending DOFs (w,θx,θy). Allman’s triangle2

models the membrane response. The discrete Kirchhoff triangle21 (DKT) models the bending
response.

Allman’s Triangular Element Allman’s formulation after the substitutions cos(γij) = yji
lij

and
sin(γij) = −xji

lij
, is

u= u1ψ1 +u2ψ2 +u3ψ3 + 1
2y21(ω2−ω1)ψ1ψ2+

1
2y32(ω3−ω2)ψ2ψ3 + 1

2y13(ω1−ω3)ψ3ψ1
(5.88)

v = v1ψ1 +v2ψ2 +v3ψ3 + 1
2x21(ω2−ω1)ψ1ψ2

−1
2x32(ω3−ω2)ψ2ψ3− 1

2x13(ω1−ω3)ψ3ψ1
(5.89)

The stiffness and mass matrices ([K]AT , [M]AT) are found using general finite element procedures.
The element has a mechanism that introduces spurious low energy modes. The mechanism arises
if the deformations are all zero and the rotations are all the same. A “fix”43 has been
implemented.

Discrete Kirchhoff Element The DKT21 element has 9 DOFs. It is obtained by transforming a
12 DOF element with mid-side nodes to a triangle with the nodes at the vertices only. This is
obtained as follows. Using Kirchhoff theory, the transverse shear is set to zero at the nodes. And
the rotation about the normal to the edge is imposed to be linear. Using these constraints, a nine
DOF bending element is derived (DKT) using the shape functions for the six-node triangle.
Unfortunately, the variation of w over the element cannot be explicitly written. Therefore, the w
variation over the element needs to be calculated before the mass matrix can be obtained.

As stated, the equation for w is not explicitly stated over the element in the derivation by Batoz
et al.. Using a nine DOF element, a complete cubic cannot be written, since 10 quantities would
be needed to get a unique polynomial. The strategy taken here is that the stiffness matrix
produced using for the DKT element provides reasonable results, and the derivation of the mass
matrix is not as critical. So, the equation for w145 as

w = α1ψ1 +α2ψ2 +α3ψ3+
+α4ψ1ψ2 +α5ψ2ψ3 +α6ψ3ψ1+
+α7ψ1

2ψ2 +α8ψ2
2ψ3 +α9ψ3

2ψ1

(5.90)

Our AT and DKT element stiffness and mass matrix derivations used Maple. The consistent mass
matrix derivation follows the standard finite element procedure. And mass lumping of
translational DOFs are found as usual. Mass lumping for the rotational DOFs, however, are set to

1
125 of the translation terms.

144

DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z -1.405 × 10−2 -1.398 × 10−2 -1.398 × 10−2

θx 3.337 × 10−2 3.337 × 10−2 3.337 × 10−2

θy 3.106 × 10−2 3.089 × 10−2 3.089 × 10−2

θz 0.000 0.000 0.000

Table 5-9. – Comparison of deflections at Node 2.

DOF AT/DKT ABAQUS AT/DKT!
x 0.000 0.000 0.000
y 0.000 0.000 0.000
z 1.949 × 10−2 1.955 × 10−2 1.955 × 10−2

θx 3.363 × 10−2 3.363 × 10−2 3.363 × 10−2

θy -2.686 × 10−2 -2.702 × 10−2 -2.702 × 10−2

θz 0.000 0.000 0.000

Table 5-10. – Comparison of deflections at Node 3.

The complication in the derivation of the combined AT and DKT shell element is the derivation
of DKT element mass matrix. We used an incomplete family of polynomials. We think that this
did not affect the result.

Verification and Validation. Results for our AT element agree with the published results.2
The square plate in pure bending and a cantilevered beam with a parabolic tip load are used as
verification examples. The mass matrix verification is limited to noting that mass is conserved in
the u,v directions.

The DKT element is validated against experimental data for a triangular fin.21 The first 10
eigenvalues for the triangular fin (cantilever) match very well. In addition, the DKT element is
verified by using a cantilevered beam and matching deflection results at the tip. If ν = 0, then
results should match very closely with Euler-Beam theory results, and they did.

Finally, the AT/DKT element is verified by comparing with published results from Ref..61 Tables
5-9 and 5-10 show that our elements match exactly with ABAQUS to the number of digits shown.
The first column is the result produced by Ertas et al., the second column is the result produced
by ABAQUS, and the third column is the result produced by Sierra/SD using this DKT/AT
element.

5.11. 3 noded Triangle

The triangular shell used most in Sierra/SD is the Tria3 element developed by Carlos Felippa of
the University of Colorado in Boulder. This element is similar to the TriaShell element
presented in Section 5.10. Full details of the theory behind the element is out of the scope of this

145

document, but details may be found in references5,69 and.68 Unfortunately, these references omit
any mention of how this element handles the bending part.

5.12. Beam2

The 2-noded beam43 element uses under-integrated cubic shape functions. Isotropic material
models are supported. Torsional effects are accounted for in the axis of the beam. The area and
bending moments are constants independent of position in the beam.

Attributes are read from the Exodus file for each element.

1. The cross sub-sectional area of the beam (Attribute 1)

2. The first bending moment, I1. (Attribute 2).

3. The second bending moment, I2. (Attribute 3).

4. The torsional moment, Jk. (Attribute 4).

5. The orientation of the beam (Attributes 5, 6 and 7)

The orientation should not be aligned with the beam axis. In the event of an improperly
specified orientation, a warning will be written, and a new orientation selected. The
orientation is an x,y,z triplet specifying a direction. It does not need to be perpendicular to
the beam axis, nor is it required to be normalized. The orientation vector, and the beam
axis define the plane for the first bending direction.

Torsion

As outlined in Blevins,28 the stiffness properties of beam torsion are governed by Jk (Attribute 4),
while the mass properties are derived from the polar moment of inertia, Jpolar = I1 + I2. This
representation is accurate for beams with closed cross sections, but will have significant error for
more open sections. Warping in open sections is not accounted for in this standard beam
formulation.

5.13. Nbeam

Beam/bar elements are a major component in many structural Finite Element Models (FEM). It
is important to employ a beam/bar element which includes transverse shear and torsion in
addition to axial and bending stiffness. Additionally, the mass formulation needs to include rotary
inertia. The Nbeam element is an implementation of the NASTRAN CBAR element. The
stiffness matrix is identical to the CBAR. The mass matrix is a new formulation to this
implementation providing a diagonal mass matrix w/ rotary inertia included.

The Nbeam element stiffness matrix is based on Timoshenko beam theory.122 The formulation
differs in the inertia coupling formulation. The derivation of this specific form is provided in [104].
The exact form of the stiffness matrix implemented in Sierra/SD is shown in Figure 5-15.

146

AE/L 0 0 0 0 0 −AE/L 0 0 0 0 0

R1 β 0 −Lβ/2 LR1/2 0 −R1 −β 0 −Lβ/2 LR1/2

R2 0 −LR2/2 Lβ/2 0 −β −R2 0 −LR2/2 Lβ/2

GJ/L 0 0 0 0 0 −GJ/L 0 0

k2 −βL2/3 0 Lβ/2 −LR2/2 0 k4 −βL2/6

k1 0 LR1/2 −Lβ/2 0 −βL2/6 k3

AE/L 0 0 0 0 0

R1 β 0 Lβ/2 −LR1/2

Ri2 0 LR2/2 −Lβ/2

GJ/L 0 0

k2 −βL2/3

k1

Figure 5-15. – Nbeam Element Stiffness Matrix

The following derived102 quantities are used depending on the value of I12.

If I12 = 0 If I12 6= 0

β = 0 β = 12EI12
L3

R1 = 12EI1
L3

[
1 + 12EI1

s1AGL2

]−1
R1 = 12EI1

L3

R2 = 12EI2
L3

[
1 + 12EI2

s2AGL2

]−1
R2 = 12EI2

L3

The rest of the quantities are valid for any value of I12.

k1 = L2R1
4 + EI1

L

k2 = L2R2
4 + EI2

L

k3 = L2R1
4 − EI1

L

k4 = L2R2
4 − EI2

L
s1 = Ay/A shear factor
s2 = Az/A shear factor

The Nbeam mass matrix is given in Figure 5-16. The mass quantity m′ is defined as
m′ = ρAL/2.

If the local coordinate system is not the global coordinate system, then the transformation to
global coordinates introduces off diagonal terms to the mass matrix in the rows corresponding to
rotary inertia. In Sierra/SD the mass matrix is lumped by setting off diagonals to zero and not
adding them to a diagonal. Total rotary mass contributions are reduced. An alternative is to set
off diagonals to zero and add them to a diagonal; this increases total rotary mass contributions.

147

m′ 0 0 0 0 0 0 0 0 0 0 0
m′ 0 0 0 0 0 0 0 0 0 0

m′ 0 0 0 0 0 0 0 0 0
m′J/A 0 0 0 0 0 0 0 0

m′I2/Az 0 0 0 0 0 0 0
m′I1/Ay 0 0 0 0 0 0

m′ 0 0 0 0 0
m′ 0 0 0 0

m′ 0 0 0
m′J/A 0 0

m′I2/Az 0
m′I1/Ay

Figure 5-16. – Nbeam mass matrix

Table 5-11. – Nbeam Parameters
Description Keyword Exodus Attributes
Cross-Sectional Area Area 1
First Bending Moment I1 2
Second Bending Moment I2 3
Cross Inertia I12 N/A
Torsional Moment J 4
Beam Orientation orientation 5-7
Y-axis Shear Area Factor Shear_factor_1 N/A
Z-axis Shear Area Factor Shear_factor_2 N/A
Offset Vector At 1st Node offset 8-10
Offset Vector At 2nd Node - 11-13

148

Element properties are specified in the text input file. The required parameters are listed in Table
5-11.

The parallel axis theorem is used to account for offsets. The offset vector is defined as a vector
from the bending neutral axis of the beam to the nodal location. All other quantities are derived
from the material data and the element length.

Torsion

As outlined in Blevins,28 the stiffness properties of beam torsion are governed by Jk, while the
mass properties are derived from the polar moment of inertia, Jpolar = I1 + I2. This representation
is accurate for beams with closed cross sections, but will have significant error for more open
sections. Warping in open sections is not accounted for in this standard beam formulation.

5.14. Navy quadrilateral

Many structural components on naval vessels, including the hull, bulkheads and decks are made
from plate, be it steel, aluminum or a composite material. As such, plate and shell elements are
essential to any finite element analysis of ships or submarines. It is important to employ an
element that is shear deformable and can also accommodate orthotropic layers. The nquad is a
four-noded isoparametric element that is designed to be similar to the NASTRAN CQUAD4
element.

This section is based on material in chapter 4 of [124] that does not appear in [125].

The development of the stiffness matrix draws from the plane elasticity and bending formulations
found in [124]. The membrane and bending components are decoupled. The membrane stiffness
terms are derived from the integrals in equation 4.156 in [124]:

K11
ij =

∫
Ωe

(
C11

∂ψi
∂x

∂ψj
∂x

+C33
∂ψi
∂y

∂ψj
∂y

)
dxdy (5.91)

K12
ij = K21

ij =
∫

Ωe

(
C12

∂ψi
∂x

∂ψj
∂y

+C33
∂ψi
∂y

∂ψj
∂x

)
dxdy (5.92)

K22
ij =

∫
Ωe

(
C33

∂ψi
∂x

∂ψj
∂x

+C22
∂ψi
∂y

∂ψj
∂y

)
dxdy (5.93)

where the Cij are the elastic material constants for plane stress

C11 = C22 = E
1−ν2 C12 = νE

1−ν2 C33 = E
2(1+ν

and the ψi are the bilinear element shape functions (see equation 4.31 in [124]) over the element
Ωe. For a rectangle of width a and height b,

ψ1 = (1− ξ/a)(1−η/b)

ψ2 = ξ

a
(1−η/b)

ψ3 = (1− ξ/a)η
b

ψ4 = ξ

a

η

b
.

149

The membrane stiffness matrix is of the form:[
K11 K12

K21 K22

]

assuming the displacement vector is of the form {u1,v1,u2,v2, ...}.

The bending terms are organized here into a block 3 by 3 matrix,
[
K11 K12 K13

K22 K23sym K33

]wSx
Sy

=

f1

f2

f3

 .
The bending stiffness terms, based on the shear deformation theory of plates, are based on the
integrals in equation 4.226 in [124]:

K11
ij =

∫
Ωe

(
D44

∂ψi
∂x

∂ψj
∂x

+D55
∂ψi
∂y

∂ψj
∂y

)
dxdy

K12
ij =

∫
Ωe

(
D44

∂ψi
∂x

ψj

)
dxdy

K13
ij =

∫
Ωe

(
D55

∂ψi
∂y

ψj

)
dxdy

K22
ij =

∫
Ωe

(
D11

∂ψi
∂x

∂ψj
∂x

+D33
∂ψi
∂y

∂ψj
∂y

+D44ψiψj

)
dxdy

K23
ij =

∫
Ωe

(
D12

∂ψi
∂x

∂ψj
∂y

+D33
∂ψi
∂y

∂ψj
∂x

)
dxdy

K33
ij =

∫
Ωe

(
D33

∂ψi
∂x

∂ψj
∂x

+D22
∂ψi
∂y

∂ψj
∂y

+D55ψiψj

)
dxdy

where the Dij are the isotropic elastic material constants (defined for example in equation 4.221
of [124]:

D11 = D22 = Eh3

12(1−ν2)
D12 = νD11

D33 = Gh3

12
D44 = D55 =Ghk

where h is the thickness of the plate and k is the shear correction factor. The bending stiffness
matrix is of the form:  [K11] [K12] [K13]

[K22] [K23]
sym [K33]


assuming the displacement matrix is of the form {w1, θx1, θy1,w2, θx2, θy2, ...} To minimize the
effect of locking, reduced integration on the shear terms (i.e., those involving D44 and D55) is
used.

The stabilization method from Belytschko23 is used for the Nquad element. Using single point
integration K [1x1]

s for the shear stiffness matrix leads to hourglass modes for some problems.

150

Using full integration K [2x2]
s can cause shear locking in some problems. Belytschko recommends a

shear stiffness matrix given as Ks = (1−ε)K [1x1]
s +εK

[2x2]
s , a linear combination of the reduced

integration and full integration shear stiffness matrices. The fraction, ε= rt2/A is a function of
thickness and area. Here r = 0.03, t is the element thickness and A the area of the shell. This
automatic selection of ε works for very thin plates, but can be a problem for thicker elements; ε
should never exceed 1.

The layered shell formulation, also based on first-order shear deformation theory, draws from [117],
particularly equations 3.4-5 and 3.4-6 found therein.

The stiffness matrices developed for the isotropic and laminate cases do not account for in-plane
rotational stiffness. A fictitious stiffness for the θz d.o.f. is provided by equation 12.3-4 in [43]. The
resulting element stiffness matrix is 24 x 24, accounting for 6 d.o.f at each of the four nodes.

A consistent mass matrix is formed based on equation 4.235 in:124

Mij =
∫

Ωe
ρhψiψj dxdy

where ρ is the material density. The diagonal mass matrix is derived by row summation.

Element level strains are expressed by equation 4.147 in:124

{ε}e = [B]e {∆}e

where the five terms in {ε}e are εx, εy, and τxy as well as the transverse shear strains γyz and γzx.
The 5 x 24 matrix [B]e is formed by the element shape functions and their derivatives and the 24
x 1 vector {∆}e are the nodal displacements. The membrane and bending strain-displacement
relationships are found, respectively, in equations 11.1-3 and 11.1-4 in [43]:

Membrane:
εx = u,x εy = v,y γxy = (u,y+v,x)

Bending:
εx =−zθy,x γxy =−z(θy,y +θx,x)
εy =−zθx,y γyz = w,y−θx

γzx = w,x−θy

Note that the bending equations are altered from 11.1-4 in [43]. In that reference, a rotation
about the x-axis is expressed as θy and a rotation about the y-axis is θx x. These definitions have
been reversed in the above equations.

The user provides element properties in the Sierra/SD input deck. The required parameters
are:

1. Element thickness.

2. Material ID, which contains the required material properties (E, ν, ρ).

3. For the layered shell case, each layer must have specified its own material ID (such as an
orthotropic_layer), thickness and fiber orientation.

151

5.15. Truss

The truss element implementation43 pages 214-216 uses linear shape functions. Torsional stiffness
vanishes, unlike the NASTRAN truss element. Area is independent of position in the truss. The
following parameter is read from the Exodus file.

1. The cross sub-sectional area of the truss (Attribute 1)

5.16. Spring

Spring elements have mass 0. Stiffnesses Kx, Ky, and Kz are set in the input deck.

• The force generated in a Spring element should be collinear with the nodes. Typically, a
spring element connection between coincident nodes generates 0 torque.

• Springs attach 3 DOFs. If some of the spring constants vanish, then the associated DOF has
0 stiffness. However, the degree of freedom will remain in the A-set 1.1 matrices. Adjacent
elements provide stiffness entries connecting the spring to the model. If the other DOFs are
not attached to adjacent elements, then the stiffness is singular.

The element stiffness matrix K̃ =

K̃11 = diag(Kx,Ky,Kz),
[

K̃11 −K̃11
−K̃11 K̃11

]
. (5.94)

For Ri in SO(3) as described in section 1.6, the frame ũi is transformed from the unrotated frame
ui by T = diag(R1,R2), [

u1
u2

]
= [T]

[
ũ1
ũ2

]
.

The spring nodes rotate together, R1 =R2. For Kij =RT K̃ijR,

K =
(
K11 K12
K12 K22

)

5.17. Superelements

A superelement has reduced mass and stiffness matrices generated by a model reduction process
such as component mode synthesis 2.9. Superelement generation typically saves the element in a
file. Subsequent analysis a system (or residual structure) typically read the element from its file.

Superelements may contain sensitivity matrices 2.9.2. A point estimate of the superelement mass
or stiffness matrix may be computed as a Taylor series expansion and used as part of a standard
analysis. The approximate reduced matrix is given by the expansion.

Kr(p)≈Kr(po) + dKr

dp
(p−po) (5.95)

where p is the sensitivity variable, po is the nominal value of that variable and Kr(p) represents
the reduced order matrix evaluated at an arbitrary point in parameter space.

152

5.18. Gap

The gap element is a nonlinear spring which has a stiffness matrix that is dependent on
displacement. In the element coordinate frame, the stiffness matrix has the same form as the
matrix in equation 5.94 with the replacements:

Spring Gap
Open Closed

Kx KU KL
Ky KT ×KU/KL KT
Kz KT ×KU/KL KT

Note that typically KL�KU .

The two nodes of the gap element must rotate together. Spring elements are the same. The
matrix transforms exactly as the matrix for a spring element.

5.19. Rigid Elements

Sierra/SD supports standard pseudoelements for rigid bodies. These include,

• Rrod - a rigid truss element, infinitely stiff in extension, but with no coupling to bending
degrees of freedom. An element creates exactly one constraint equation.

• RBar - a rigid beam, with up to 6 constraint equations per element.

• RBE2 - a rigid solid. With up to 6(n−1) degrees of freedom deleted, where n is the number
of nodes. An RBE2 can stiffen a structure.

• RBE3 - an averaging type solid. This connects to many nodes, but removes up to 6 dofs on
the reference node.

A rigid element has infinite stiffness and zero mass. In the input Exodus mesh beam elements
represent rigid elements. In the input text file the corresponding block selects the type of rigid
element.

Internally rigid elements are all stored and applied as special multi-point constraints. The RBE2
is a type of RBar (multiple instances). Elements all activate DOFs, but not ordinary MPCs. A
rigid element is an MPC that activates DOFs.

Considerations for NASTRAN users

Rigid elements are intended to provide a capability similar to NASTRAN rigid elements.
However, the differences can be significant. One difference is due to the solvers. Sierra/SD
solvers manage the separation of dependent and independent DOFs, freeing the analyst from
having to manage this complexity. Specification of rigid elements in NASTRAN implies this
relation. If applied in the most common ways (such as an RBar constraining 6 dofs), the elements
are the same. If some but not all of the DOFs are constrained, and if NASTRAN’s autospc
capability is invoked, significant differences are possible.

153

5.19.1. Rrod

An Rrod is a pseudoelement which is infinitely stiff in the extension direction. The constraints for
an Rrod may be conveniently stated as ensuring that the dot product of the translation and the
beam axial direction for a Rrod vanishes. Each Rrod adds one constraint equation.

Consider the geometry of Figure 5-17. The equation of constraint for the Rrod is

lxdux+ lyduy + lzduz = 0 (5.96)

du

du

l’

l

A

B

A

B

Figure 5-17. – Rigid Element Geometry. The undeformed extent of the bar may
be expressed as ~l, with components,

lx = xB−xA

ly = yB−yA

lz = zB−zA

After deformation, ~du = ~duB − ~duA, the modified extent is, ~l′, with components
as below.

l′x = lx +dux

l′y = ly +duy

l′z = lz +duz.

5.19.2. RBar

An RBar is a pseudoelement which is infinitely stiff in all the directions. An RBar can stiffen a
structure. The constraints for an RBar may be summarized as follows.

1. the rotations at either end of the RBar coincide,

154

2. the extension of the bar is zero,

3. translations at one end of the bar are consistent with rotations.

It is apparent that the last two of these constraints may be specified mathematically by requiring
that the translation be the cross product of the rotation vector and the bar direction.

~T = ~R× ~L

where ~T is the translation difference of the bar (defined as ~U2− ~U1),
~R is the rotation vector, and
~L is the vector from the first grid to the second.

The three constraints in the cross product, together with the three constraints requiring identical
rotations at both ends of the bar form the six required constraint equations. Referring to Figure
5-17, the six constraint equations are 17

dux+ lyRz− lzRy = 0 (5.97)
duy + lzRx− lxRz = 0 (5.98)
duz + lxRy− lyRx = 0 (5.99)

Rxa = Rxb (5.100)
Rya = Ryb (5.101)
Rza = Rzb (5.102)

Partial Constraints on an RBar

NASTRAN permits application of some of the above constraints on an RBar. For example, one
can apply the first 3 constraints, and ignore the constraints on rotation alone. In addition,
NASTRAN permits control of which end of the bars is constrained, and can split dependent and
independent degrees of freedom between the nodes. Although NASTRAN permits fewer than 6
dependent dofs, SD requires 6 independent dofs.

Sierra/SD uses two attributes in the Exodus file to partially constrain an RBar. An attribute
labeled “CID_FLAG_INDEP”is the constraint flag associated with the independent dofs. It
should always be “123456”, and it is always associated with the first node of the bar. The second
attribute, “CID_FLAG_DEPEND”, establishes the dependent degrees of freedom on the second
node of the bar. This attribute determines which of the equations above are applied. For
example, if CID_FLAG_DEPEND = 123000 then the first three constraint equations are applied.

With partial application of the constraint equations, the results can be confusing. If equations
5.100-5.102 are not applied, then the rotation terms in 5.97 are appropriate only to the
independent node. This is not always what is anticipated by the analyst. It is not possible to
allocate DOFs to arbitrary ends of the bar. For this reason, the rotation may differ from what is
produced by NASTRAN. Recall that applying CID_FLAG_INDEP = CID_FLAG_DEPEND =
1 results in an Rrod type constraint.

17For a zero length bar, the first three constraints are modified to become dux = duy = duz = 0.

155

5.19.3. RBE3

The RBE3 applies distributed forces to many nodes. The structure is not stiffened.

The RBE3 uses the concept of a reference node. The theory follows the MSC documentation
included in section 5.20. RBE3 element is a simplification of the Nastran RBE3 element. One
simplification is that the RBE3 supports one weight that is applied to all the nodes. The
NASTRAN RBE3 element supports different weights for each of its nodes.

Earlier implementations of the RBE3 differed significantly from the MSC/NASTRAN
implementations 5.20.

5.19.3.1. Characteristic Length. An element characteristic length is computed to allow scaling
the equations. The distance between the reference point (subscript q) and a connected point
(subscript i) is expressed by the components

Li,x = xi−xq (5.103)
Li,y = yi−yq (5.104)
Li,z = zi−zq (5.105)

Li =
√
L2
i,x+L2

i,y +L2
i,z (5.106)

The characteristic length of the element is the average of these lengths,

Lc =
Nc∑
i=1
|Li|/Nc, (5.107)

where Nc is the number of connected points. If Lc is computed as a binary zero it is changed to a
value of unity.

To ensure that the element is invariant to a change of scale, the weighting functions w1 through
w6 provided by the user are modified to produce a connected grid point’s weighting matrix.

W =



w1
w2 0

w3
w4L

2
c

0 w5L
2
c

w6L
2
c


(5.108)

That is, the rotational DOF coefficients are scaled by the square of the characteristic length.

156

Figure 5-18. – Equilibration of loads

q

i

Li,x

Li,y

A force of −ê1 at point i is equivalent
to a force of −ê1 and a moment of
τz = Li,y at point q.

5.19.3.2. Equilibration. Conventional equilibration equations are applied. These equations
relate a force applied at the reference point to an equivalent force and moment applied at the
reference node as illustrated in Figure 5-18. The loads at the connection point, i, relate to the
loads at the reference point.

Pq = STiqPi (5.109)

Where,

Siq =



1 0 0 0 Li,z −Li,y
1 0 −Li,z 0 Lx

1 Li,y −Li,x 0
1 0 0

0 1 0
1


(5.110)

5.19.3.3. Assembled Constraint. As shown in Section 5.20 (equation 5.118), the loads on the
set of all connection nodes may be computed from the load on the reference node. S is a
concatenation of the individual Siq,

S =


S1,q
S2,q
...

SNc,q

 . (5.111)

Gqi =A−1S′W, (5.112)

and
Pi =G′qiPq. (5.113)

Similarly,

W =


W1

W2
...

Wc

 (5.114)

157

and A is a 6 by 6 weightings matrix.
A= STWS (5.115)

We require that A be non-singular, which corresponds to a requirement that the RBE3 be
non-mechanistic. The constraint relation follows directly from Gqi, i.e. define the 6 by (6 + 6Nc)
matrix,

C = [−Iqq Gqi] (5.116)

and apply the constraint,

C
[
uq
ui

]
= 0. (5.117)

Each row of C contains the constraint coefficients for one of the six possible constraints in the
RBE3.

5.20. MSC documentation of Nastran’s RBE3 element

The documentation of the modern RBE3 element is provided by MSC from their web page.113 It
has been reformatted.

Solution#: 4494 Last Modified Date: 06/01/00 09:06:19 AM
Product Line: MSC.Nastran Product Name: MSC.NASTRAN (1002 or 1004)

Product Version: Product Feature:
Article Type: FAQ Publish: Y

The RBE3 element is a volume or surface spline element similar to the RSPLINE line spline
element. The purpose of this memorandum is to develop a method for computing the terms in the
equations of constraint generated by the element.

A sample Bulk Data Entry for the element is :

$ EID [blank] REFGRID REFC WT1 C1 G1,1 G1,2
RBE3 15 5 123456 1.0 123 10 20

$ G1,3 G1,4 WT2 C2 . .
, 30 40

$ UM G1 C1 G2 C2 . . .
, UM 10 123 20 23 30 3

The grid points 10 through 40, entered in the Gi,j fields on the entry, are connected to a reference
grid point (number 5). The number of connected points, Nc, is unlimited. The physical principle
used to generate the constraint equation coefficients is that the motion of a body connected to the
reference grid point produces a weighted least-squares best fit to the actual motions at the other
connected grid points. The reference point is connected by 1 through 6 DOFs (REFC

158

specification). The connected points are also connected by 1 through 6 DOFs (Ci specification)
with a weighting factor Wti. The UM data is optional, and is explained below.

The reference is the original design document for this element. Over the years some changes have
been made in the interests of better theory and increased numerical robustness. Those changes
are incorporated in this document as though this were the original design document, to avoid the
awkwardness of first explaining older behaviors and then the present behavior. The original
equations of the reference are derived with conventional variational principles applied to
displacement variables. The derivation used here is based on force variable principles. This has
proven to be more intuitive and better understood by some engineers. The results derived by the
displacement method theory and force method theory are identical. The reference is not available
in machine-readable format. A fax copy may be requested from the MSC/NASTRAN
Development Secretary, Jan.McLaughlin@MSCSOFTWARE.COM. It is primarily of historical
interest.

5.20.0.1. REFERENCE: Mathematical Specification for the RBE3 Element, MAG-4, 15 April
1975 (Also, known as MAG-81).18 MSC documents appear to no longer exist.

5.20.1. Generation of unit weighting functions

The element is designed to allow use of any coordinate system at any connected grid point, the
global coordinate system in NASTRAN parlance. In the interests of clarity the equations are first
developed for a system where all variables are defined in one common coordinate system (the
basic coordinate system), then modified to allow global coordinates. An element characteristic
length is computed to allow scaling the equations. The distance between the reference point
(subscript q) and a connected point (subscript i) is expressed by the components

Li,x = xi−xq
Li,y = yi−yq
Li,z = zi−zq
Li =

√
L2
i,x+L2

i,y +L2
i,z

The characteristic length of the element is the average of these lengths, Lc =∑c
i=1 |Li|/c, where c

is the number of connected points. If Lc is computed as a binary zero it is changed to a value of
unity. User weighting functions wi are nondimensionalized to produce a nodal weighting matrix.

w̃i = wiL
2
c , W = diag(w1,w2,w3, w̃4, w̃5, w̃6).

Conventional equilibrium equations are developed,

Siq =



1 0 0 0 z −y
1 0 −z 0 x

1 y −x 0
1 0 0

0 1 0
1


18This TAN is known in MSC’ s internal filing system as MAG-102.

159

This matrix expresses the loads that must be applied to the reference point to react loads applied
at a connected point,

Pq = STiqPi

The equilibrium matrix can also be used to generate a loading pattern on the connected points
due to a load on the reference point. Let Pqin be a set of arbitrary loads on the reference point.
When this load is applied, it is “beamed out” as loads on the connected points,

Pi=


P1
P2
...
Pc

=


W1

W2
...

Wc



S1
S2
...
Sc

XPqin =WSiq

X is a 6 by 6 matrix to be determined. The criterion used in its determination is that the load
distribution mechanism should be in equilibrium. The equilibrium condition is that

Pqout =
[
S′1 S′2 ... S′c

]
Pi = STiqPi

Then
Pqout = STiqWSiqXPqin

GTqi =WSX (5.118)
If Pqout = Pqin, then

X = (STiqWSiq)−1, Pi =WSXPq =GTqiPq

5.20.1.1. Transformation. The direction cosine matrix Ti expresses the transformation between
ui, the values in basic coordinates, and ũi, the values in global coordinates:

ui = Tiũi

The transformed equilibrium equations and weighting matrices are

Siq =


T1S1
T2S2
...
TcSc


The transformed weighting matrix in global coordinates is

Wi = T ′iWiTi

The transformed A matrix is
Ai = S′iqWiSiq

A=
∑
i

Ai

It is shown in the reference that the introduction of global coordinates modifies Gqi as shown:

Gqi = TiA
−1[Siq]Wi

160

This implies the dual relationship between displacements

uq =Gqiui

Cast in the Nastran convention of constraint equations,

Rqi = [−Iqq Gqi]

and,

Rqi

[
uq
ui

]
= 0.

Rqi is the rows of the matrix of MPC coefficients for one RBE3 element.

5.20.2. Selection of dependent dofs (Optional)

The default selection for dependent DOFs (m-set) are the REFC DOFs listed for the REFGRID.
There are modeling applications where it is convenient to use these DOFs in a set exclusive from
the dependent set, such as the analysis set (a-set). The dependent DOFs may be moved to the
connected DOFs with the optional UM data. The number of DOFs must match the number of
REFC DOFs, and the selected DOFs in the UM data must have non-zero weighting functions. If
the subset of Rgi associated with these DOFs is named Rmm, the Rqi matrix is pre-multiplied by
the inverse of this quantity,

Rqi =R−1
mmRqi = [−Imm|R−1

mmRmn]

The user is required to select a UM set that produces an Rmm matrix that is stable for inversion.
There are TANs that describe techniques for selection of a good set of UM variables. The
uncoupling of the dependent equations allows some of them to be discarded, as described in the
next section.

Equation selection. The total Rqi is generated above. It has 6 rows. Six or fewer rows are
transmitted to the system constraint matrix Rmg, depending on the REFC data. This data consists
of a packed integer with up to 6 numbers in the range of 1 to 6, and describes which rows are to
be passed to Rmg. The remaining rows are discarded.

5.20.3. Features for dimension independence

A good finite element should produce the same results regardless of the units of measure used in
the model. That is, the same structure modeled in millimeters, centimeters, or inches should
provide identical results. The RBE3 gains this valuable characteristic by scaling the rotation
weights with an element characteristic length,Lc, as described above. The effect of this scaling is
demonstrated here by an example. In the interests of simplicity all geometry is in the basic
coordinate system and the only non-zero offsets are in the z direction. The T matrix is then an
identity matrix, and need not be listed in these equations. Consider the problem, defined by the
Siq matrix above and Wi matrices below, where

161

x = xi−xq = 0,
y = yi−yq = 0,
z = zi−zq >< 0

The user inputs up to six weighting factors w1 through w6. The weighting factors for rotation are
multiplied by Lcsq = Lc2, the square of the characteristic lengths of the element. These modified
terms are underlined in the matrix below, for example, w̃4 = L2

cw4. The modified weighting factor
matrix is then

W =



w1
w2

w3
w4L

2
c

w5L
2
c

w6L
2
c


The contribution for grid point i to the equilibrium matrix A is

A= S′WS =



w1 0 0 0 w1z 0
w2 0 −w2z 0 0

w3 0 0 0
L2
cw4 +z2w2 0 0

Sym L2
cw5 +z2w1 0

L2
cw6



The diagonal terms for rotation (for example A55) have the form L2
cwi+z2wj , where wi is the

rotational weighting term, and wj the translation term active in rotation weighting because of
offsets. The motivation for modifying the rotation term can be seen in this addition of effects.
Both L2

c and z2 are in the same units of measure. When a model is changed from centimeters to
millimeters, for example, the ratio of rotation effects to offset effects is unchanged. This
modification of the rotation term allows the solution in the area of the RBE3 element to be the
same for all units of measure. As z and Lc are related by a common factor the ratio of moment
terms coming in directly from applied moments (L2

cw5) stays in constant ratio to the moment
terms from offsets (z2w1) regardless of whether lengths are measured in centimeters, millimeters,
or inches. This modification of the moment weight term provides dimension independence.

This example also provides an opportunity to discuss another counter-intuitive behavior of the
RBE3 element, the difference between the user-supplied weighting functions and the actual values
used in the corresponding coefficients of the constraint matrix. Let us simplify the expression of A
above by setting zi = 0.0. A becomes a diagonal matrix, which when inverted and multiplied by
W to form G, becomes an identity matrix. The weighting factors are scaled to provide
equilibrium. There may be little correlation between the values in the weighting matrix and the
values in the coefficients of the constraint matrix. The requirements for equilibrium may change
these values radically. Similarly, it shows that the significance of the weighting factors is in their
ratio to one another. If all are multiplied by 10, for example, the inversion of the A matrix, used

162

to impose equilibrium, removes this factor of 10 so that the coefficients of the constraint matrix
are unchanged.

Stability issues. The solution requires the inverse of A. It may be ill-conditioned for linear
equation solution. It is first equilibrated to make the inversion more stable. Let Ad be the
diagonal terms of A. It is pre- and post-multiplied by the inverse of Ad,

A=A−1
d AA−1

d

This makes all of the diagonal terms of A unity. Any term multiplied by A is first multiplied by
Ad. A matrix decomposition subroutine is used that provides an inverse conditioning number. As
this number approaches zero the solution becomes more ill-conditioned. A belt-and-suspenders
check that is less mathematical and more engineering-oriented is made by also computing the
largest term in [A−1A− I], which should be a computational zero, and outputting this value when
it passed a certain threshold. If the element is determined to be pathologically ill-conditioned it
causes a user fatal error exit.

5.20.4. Upward compatibility

The RBE3 element prior to V70.7 had a more primitive theory that does not provide dimension
independence. Its theory is identical to that above if a value of 1.0 is substituted for the
characteristic length Lc. A system cell is provided to obtain this theory in V70.7. Its use allows
computation of the same answers that were provided in earlier systems.

System Cell 310 Value Action
0 (default) Use new theory.
1 Use old theory.

The name of this system cell is OLDRBE3. For example, either entry below will cause the old
theory to be used:

NASTRAN OLDRBE3=1 $ or
NASTRAN SYSTEM(310)=1 $

Changes to the RBE3 element for V70.7 are summarized in TAN 4155.

5.20.5. RBE3 element changes in Version 70.7

Solution#: 4155 Last Modified Date: 04/17/00 02:50:26 PM
Product Line: MSC.Nastran Product Name: MSC.NASTRAN Basic (1003)

Product Version: 70.7 Product Feature: ELEM
Article Type: FAQ Publish: Y

163

5.20.5.1. 1. The theory used for the RBE3 element has been modified so that the element is
independent of the units of measure. For example, a structure modeled in centimeters will provide
the same results when modeled in millimeters. This was untrue for certain cases in systems prior
to Version 70.7. A system cell provides the capability available prior to Version 70.7.

Ref. Tan 3280 for Version 70.6

5.20.5.2. 2. THEORY The modeler inputs a reference grid point, its connectivity, a weighting
factor for other connected grid points, their connectivity, and the connected grid point ids. An
RBE3 element used for testing this new capability of the form

$ EID [blank] REFGRID REFC WT C G1 G2
RBE3, 123, , 4 123456 1.0 123456 1 2
$ G3
, 3

The modeler’s intent here is to connect grid point 4, for all 6 of its DOFs to the 1, 2, and 3 grid
points, for all of their DOFs, with a uniform weighting factor for all. The element divides forces
applied to point 4 to the other grid points in a manner that is influenced by their geometry and
weighting factors, in a manner that maintains equilibrium. Define a line from the reference point
to a connected point as an arm of the element. In the revised theory, a characteristic length, Lc of
the element is calculated from the average length of its arms. The square of this length is used to
modify the weighting of the connected rotation DOFs. The element is described and derived in
TAN 4494. Some of the results of that derivation are used here. The constraint equation terms
applied to a connected point ui and the reference point uq are

uq =Gqiui

The constraint matrix itself has the following components:

Gqi = TiA
−1SiqWi

Ti is a rotation matrix that is an identity matrix when GIDi and GIDq are in parallel coordinate
systems. It will be dropped from this discussion. Siq is the traditional matrix for transmitting
rigid body motion between point “i” and point “q”. It has unit terms on the diagonal, and offset
lengths on coupling terms between translation and rotation in the upper triangle. Wi is the
user-supplied weighting functions, and A a matrix used to force the element to meet equilibrium
requirements. All MSC/NASTRAN constraint-type (R-) elements must meet an equilibrium
condition, to avoid any possibility of internal constraints in the element. It is tedious and
instructive to work out a simple example by hand, for a simple geometry. We will instead look at
typical terms, to avoid some of the tedium.

The A matrix is generated by finding the resultants of loads applied at the connected points,
measured at the reference point. The 5,5 term for a single connected point is shown in the
referenced TAN to be

A55 = w5 +z2
iw2.

When A is inverted, this term operates on the corresponding Siqwi term

Giq55 = w5/(w5 +z2
iw1)

164

If zi is zero, the effects of this normalization is to "wash out" the w5 weighting term, so that the
coefficient is 1.0. If zi is not zero, the ratio of translation load effects z2

iw1 to rotation loads effects
w5 is

Ratio= w5/(z2
iw1)

This leads to a dimensional dependence, in that the ratio changes when the model is converted
from millimeters to centimeters, for example. This undesirable behavior is eliminated by
multiplying the rotation weighting factors by the square of the characteristic length, Lc,

Ratio= L2
c ∗w5/(z2

iw1)

If zi (and Lc) have their units of measure changed, the ratio stays constant. If this modified
weighting constant is used on the 5,5 term

Giq55 = L2
cw5/(L2

cw5 +z2
iw1)

If zi = 0.0 the weighting terms wash out. If it is non-zero the denominator of this quantity is
constant with changes in units of measure.

Note that answers will change only when rotations are given connectivity for the connected DOFs,
and then only when the rotations at the connected DOFs are part of a redundant load path. This
is because the element is required to meet equilibrium conditions to avoid internal constraints,
that is, single point constraints that do not appear in the SPCFORCE output. If the load path is
statically determinate the equations used to impose equilibrium will adjust the values of internal
loads in the element as needed to meet equilibrium, regardless of the value of the weighting
functions. Always meeting equilibrium requirements ensures that there will be no internal SPC
forces in the element.

5.21. Shell Offset

Consider a shell offset, with an offset vector, ~v. Notice that ~v could be defined at each nodal
location in what follows, but for this development, we assume a single offset ~v which applies to all
nodes. That is, consider the offset of a single node. Define a coordinate system at the node, with
variables u. On the offset beam the coordinate system is ũ.

u is related to ũ. The constraint of a constant offset may be stated that the displacement
difference of the two systems must be orthogonal to ~v, i.e. (u− ũ) = ~v×~κ, where ~κ is the rotation
at the nodes.

Thus, we can write, (
ũ
κ

)
= [L]

(
u
κ

)
(5.119)

For multiple nodes each diagonal block of L depends on the offset of the corresponding node. We
can use this transformation matrix to eliminate the degrees of freedom associated with ũ. The
energy of the shell can be written,

Estrain = 0.5
{
ũ
κ

}T [
K̃
]{ ũ

κ

}
(5.120)

165

But with this substitution,

Estrain = 0.5
{
u
κ

}T [
LT K̃L

]{ u
κ

}
(5.121)

If we let K = LT K̃L, then

Estrain = 0.5
{
u
κ

}T
[K]

{
u
κ

}
(5.122)

Thus, ũ has been eliminated, and the equations may be put in terms of the output variables.

5.22. Hexshell usage and limitations

A hexshell67 element has the behavior of a standard shell element and the mesh topology of a
brick. Thin regions meshed with the solid brick topology may be modelled with hexshells without
concern for the large element aspect ratios.

Hexshells require an thickness direction. It is important to be able to identify that direction. SD
implements four such methods

natural The natural ordering of the nodes in the element can determine the thickness direction.
This is the method used by Carlos to develop the element. I believe that the connectivity
for the element will indeed have to be modified to properly interface to his software.

sideset The placement of a sideset on one (or both) thickness faces of the elements uniquely
identifies the thickness direction.

topology The topology may be used to identify the thickness direction if the hexshell is in a
sheet. Another hypothesis is that the sheet does not intersect itself. The thickness direction
connects the sheet’s free surfaces. Further, once the thickness direction is established for one
element, the thickness direction propagates to the adjacent elements.

projection The thickness direction could be determined by the closest projection to a coordinate
direction.

We will try to support all of the above methods. The topology method puts the least burden on
the analyst. It is the least explicit however, and the most work to implement (especially in
parallel). The next simplest (for the analyst) is the projection method. Sideset methods are
burdensome for both the analyst and the developers. The natural method is the easiest to
implement, but can be next to impossible for the analyst to use.

Input will be structured as follows. Keywords are associated with each method. At most one of
the four keywords above may be entered. The default is topology.

Block 9
HexShell
orientation sideset=’1,2’
material=9

end

166

or,

Block 10
HexShell
orientation topology
material=9

end

The mass properties of a layered HexShell are computed approximately as follows.

1. The volume fraction, fi, and density, ρi, of each layer is determined.

2. The contribution of the mass of the element is added to the nodes as if an element of
density ρ̄=∑

i ρifi filled the entire element.

The net effect of this is that the mass is computed as if an average density were applied. This
could introduce minor errors if the element is thick and is much denser on one side than
another.

Materials for all HexShell specifications can be defined as a function of temperature, with the
temperatures defined through the Exodus file as element variables.

5.23. Membrane

In this section we provide the theory behind the tangent stiffness matrix for the quad membrane
element in Sierra/SD. This element has stiffness in the in-plane directions, but has no stiffness
out-of-plane. Also, it has no rotational degrees of freedom. The following formulation coincides
with the Abaqus7 membrane.

To begin, we define two orthogonal surface directions in the plane of the membrane l and m, and
a normal vector n. Given these unit vectors, a local coordinate system (l,m,n) is implied. We
consider the weak formulation of the internal force term for the membrane in the deformed
configuration22

δWint =
∫

Ω
δDDD : σσσdΩ (5.123)

where Wint is the virtual work, Ω is the domain of the membrane, σσσ is the stress tensor, and
LLL= ∂uuu

∂xxx =DDD+WWW is the deformation gradient. The rate-of-deformation DDD and spin tensors WWW are
defined as

DDD = 1
2

[(
∂uuu

∂xxx

)
+
(
∂uuu

∂xxx

)T]
(5.124)

WWW = 1
2

[(
∂uuu

∂xxx

)
−
(
∂uuu

∂xxx

)T]
(5.125)

The updated Lagrangian formulation is used. Thus, the integral in equation 5.123 is over the
current (deformed) configuration of the membrane.

W is a skew-symmetric tensor, and the tensor product of a skew-symmetric tensor with a
symmetric tensor vanishes. Equation 5.123 reduces to

δWint =
∫

Ω
δLLL : σσσdΩ (5.126)

167

Equation 5.126 is written in terms of the global coordinate system. In the formation of the
tangent stiffness matrix, we wish to use the fact that all stress components normal to the plane of
the membrane are zero. Hence, when considering equation 5.123 in terms of the (l,m,n)
coordinate system of the membrane, we can eliminate the out-of-plane terms and write as

δWint =
∫

Ω
δLlm : σlmdΩ (5.127)

where l,m= 1,2 are the indices for the in-plane coordinate system of the membrane, Llm = ∂ul
∂xm

,
and σlm is the 2×2, in-plane stress tensor.

Next, we need to relate the derivatives in the plane of the element to those in the global
coordinate system. This is because the numerical integration of the tangent stiffness matrix takes
place in the plane of the element (and hence involves derivatives with respect to in-plane
coordinates), whereas the derivatives in equation 5.127 are in terms of global coordinates. We can
express the in-plane displacement in terms of the out-of-plane displacement as

ul = uuu · lll (5.128)
um = uuu ·mmm (5.129)
un = uuu ·nnn (5.130)

The relationship between the derivatives can be computed

∂uuu

∂xl
= ∂uuu

∂xxx

∂xxx

∂xl
= ∂uuu

∂xxx
eeel (5.131)

where eeel is the unit vector in the l direction. Similar expressions hold for the other components.
Taking the dot product of both sides of the previous equation with the unit vector in the m
direction, eeem, we arrive at

∂um
∂xl

= eeem
∂uuu

∂xxx
eeel (5.132)

Next, we consider the expression given for the tangent operator in7∫
Ω
δDDD : CCC : dDDD+σσσ :

(
δLLLT ·dLLL−2δDDD ·dDDD

)
dΩ (5.133)

Due to the vanishing out-of-plane stress, and invariance through the thickness, the thickness
factors out, and this can be written as an area integral

t

∫
A
δDDD : CCC : dDDD+σσσ :

(
δLLLT ·dLLL−2δDDD ·dDDD

)
dA (5.134)

The first term is recognized as the material stiffness, and the second is the geometric stiffness
term. In particular, the material stiffness term is precisely the same as the standard form of the
material stiffness in three dimensions, expect that it is restricted to two dimensions. The
geometric stiffness term is more involved, and we elaborate some more on that.

First, we consider the deformation gradient in the plane of the element

Llm = eeel
∂uuu

∂xm
(5.135)

168

We have

δLlm = eeel
∂δuuu

∂xm
(5.136)

δLTlm =
(
∂δuuu

∂xm

)T
eeeTl (5.137)

eeeTl eeem = δlm implies that

LLLTLLL=
(
∂uuu

∂xm

)T
eeeTl eeem

∂uuu

∂xl
=
(
∂uuu

∂xm

)T ∂uuu

∂xl
(5.138)

since eeeTl eeem = δlm.

The rate of deformation DDD is the symmetric part of LLL. Thus, we can write

Dlm = 1
2

(
eeel
∂uuu

∂xm
+eeem

∂uuu

∂xl

)
(5.139)

With these relations, we can expand the expression for the geometric stiffness, as

t

∫
A
σlm

(∂δuuu
∂xm

)T ∂uuu

∂xl
− 1

2

2∑
γ=1

(
eeeγ
∂δuuu

∂xl
+eeel

∂uuu

∂xγ

)(
eeeγ
∂δuuu

∂xm
+eeem

∂uuu

∂xγ

)dA (5.140)

The material stiffness term can be integrated with a selective deviatoric approach, in much the
same was as for a volumetric element. First, we note that after finite element discretization, the
material stiffness term in equation 5.134 can be written as

Kmat =
∫
V
BTCBdV (5.141)

where K is the stiffness matrix, V is the volume of the element, B is the two-dimensional
strain-displacement matrix

We define the mean quadrature counterpart to B,

B̃ =
∫
V
BdV (5.142)

B and B̃ split into volumetric and deviatoric components, i.e.

B̃ = B̃V + B̃D (5.143)
B =BV +BD

With these decompositions, we define

B̂ = B̃V + B̃D +sd(BD− B̃D) (5.144)

where sd is a parameter between 0 and 1. When sd= 0, the element corresponds to a mean
quadrature element. When sd= 1, the element corresponds to mean quadrature on the volumetric
part, but with full integration on the deviatoric component.

With this new definition of B̂, we can define the stiffness matrix for this element as

K =
∫
V
B̂TCB̂dV (5.145)

This is the approach taken for integrating the material stiffness term in equation 5.134

169

5.24. Corrections to Element Matrices

Several elements generate element matrices that may need corrections. For example, the stiffness
matrix generated from Craig-Bampton reductions may not be positive definite, and may not have
the proper null space. Infinite acoustic elements have a similar problem with the mass matrix.
These errors are typically small, but may lead to unstable systems. Correcting the errors is an
important step.

The errors are removed using an eigen decomposition. We compute the eigenvalues and
eigenvectors of the element matrix of concern.

(A−λI)φ= 0

where A is the matrix of concern, λ are the eigenvalues and φ are the eigenvectors. Computation
of the eigen problem on a small element matrix is not expensive. We normalize the eigenvectors
such that φTφ= I. It follows that φT = φ−1. We correct the element matrix by computing,

Ãjk =Ajk−
λi<0∑
i

φijλiφik (5.146)

The element matrix Ã replaces matrix A in subsequent calculations. The correction of the null
space vectors (and the element matrix) is optionally performed for Craig-Bampton models. See
Figure 2-7.

5.25. Mass lumping

A consistent mass matrix is used by default. A lumped mass matrix is used to apply gravity
loads, and is available for most solution cases. Several mass lumping techniques are outlined in
the literature.82 Summing mass across rows is an established method. It works for most
volumetric elements. It is used in SD.

For elements both with translational and rotational DOFs, the row sums are segregated. With a 2
node beam with 6 dofs per node, the sum for rows {1,2,3} includes columns {1,2,3} and {7,8,9}.
Rotational lumping uses the same row sum method for rotational inertias. The sum for rows
{4,5,6} includes columns {4,5,6} and {10,11,12}. Rotational lumping uses the

6. Boundary conditions and initial conditions

6.1. Acoustic and Structural Acoustic

In this section, we describe the various boundary conditions available in Sierra/SD for acoustics
and structural-acoustics. In each case we discuss the governing equations and discretization
approaches.

170

6.1.1. Absorbing Boundaries

The need to truncate acoustic domains arises in exterior problems, where the fluid or solid
domain is infinite or semi-infinite. In these cases, the domain could be truncated either with
infinite elements, or absorbing boundary conditions. We describe below the simple absorbing
boundary conditions that have been implemented in Sierra/SD. Infinite elements (see
section (6.1.2)) are also implemented in Sierra/SD. We describe the cases of an acoustic space
and an elastic space separately.

6.1.1.1. Acoustic Space The implementation of absorbing boundary conditions begins by
considering the weak formulation of the equations of motion, in equations (3.23). On an
absorbing boundary, one needs to consider the term∫

∂Ωn

∂ψ

∂n
φds, (6.1)

which arises from the integration by parts on the acoustic space. Absorbing boundary conditions
are typically derived by applying impedance matching conditions to equation (6.1), in such a way
that the boundary absorbs waves of a given form exactly. For example, the simplest absorbing
boundary conditions consist of plane wave and spherical wave conditions,62 which are either the
zero-th order accurate Sommerfeld condition

∂ψ

∂n
= −1
cf

∂ψ

∂t
(6.2)

or the first order accurate Bayliss-Turkel condition

∂ψ

∂n
= −1
cf

∂ψ

∂t
− 1
R
ψ (6.3)

where R is the radius of the absorbing spherical boundary.

Inserting equation (6.2) into equation (6.1), we obtain a term proportional to ψ̇, which becomes a
damping matrix. Inserting equation (6.3) into equation (6.1), we obtain two matrix terms, one
that contributes to the damping matrix, and another that contributes to the stiffness matrix.
Note that in the limit of large R, the spherical wave condition reduces to the plane wave
condition, since for large enough radius, the spherical wave begins to resemble a plane wave.

Both conditions (6.2) and (6.3) are implemented in Sierra/SD.

6.1.1.2. Elastic Space In the case of an elastic space, very similar absorbing boundary
conditions can be applied as were in the acoustic space, except the boundary has to absorb both
pressure and shear waves. In the case of an acoustic medium, only pressure waves are of interest.
Thus, the elastic space is more complicated.

The equation of motion for an elastic space can be written as

ρutt−∇·σ = f (6.4)

171

where ρ is the material density, utt is the second time derivative of displacement, σ is the stress,
and f is the forcing. A weak formulation of this equation can be constructed by multiplying with
a test function and integrating by parts.∫

V
ρuttwdV +

∫
V
σ :∇wdV −

∫
∂V
σswdS =

∫
V
f ·wdV (6.5)

where w is the test function, and σs is the traction vector on ∂V , the boundary of volume V . The
absorbing boundary condition is imposed on the portions of ∂V that point into the infinite space.
In this derivation, we assume that this includes the entire boundary ∂V . If only part of the
boundary pointed into the infinite space, the derivation would be exactly the same.

Considering the term ∫
∂V
σswdS (6.6)

we note that the traction vector σs can be decomposed into its normal and tangential
components, i.e. σs = σn+σt. Then, we apply the conditions

σn =−ρcLvn (6.7)
σt =−ρcT vt

where cL and cT are the longitudinal and shear wave speeds in the medium, and vn, vt are the
normal and tangential components of velocity vectors on the surface. Inserting these relations
into equation (6.6) yields two absorbing boundary matrices. Since these matrices involve the
velocities, they become part of the overall damping matrix of the structure.

6.1.2. Infinite Elements for Acoustics

Infinite elements have been around since the mid 1970’s. Excellent review articles can be found
in,12.76

In the early formulations, only frequency-domain formulations were considered, and system
matrices were developed that depended on frequency in a nonlinear manner. Though these
formulations worked in the frequency domain, there was no clear approach for transforming them
to the time domain. As a result, time domain formulations for infinite elements were delayed for
some time. The formulations12,41 in the time domain formulation would involve convolution
integrals that could be used with the frequency-dependent system matrices. However, storing the
time histories for the convolution integrals would be a significant burden for a time-domain
code.

In the early 1990’s, Astley13,18,15 derived a conjugated formulation that resulted in system
matrices that were independent of frequency. This allowed the frequency domain formulation to
be readily transformed to the time domain, in the same way that is typically done in linear
structural dynamics. He also derived a scheme for post-processing the infinite element degrees of
freedom to compute the far-field response at points outside of the acoustic mesh. This approach
followed from a time-shift applied to the infinite element degrees of freedom.

The exterior acoustic problem consists of finding a solution p, outside of some bounded region Ωi.
We refer to Figure (6-19) for a description of the geometry. We have an interior domain Ωi, and

172

Ω

Ω
i

e

Γ

Figure 6-19. – Domains Ωi and Ωe and interface Γ for the exterior acoustic problem.

an exterior domain Ωe, and a boundary Γ that separates the inner and outer domains. We wish
to find the acoustic pressure p in Ωe. In the exterior domain Ωe, the acoustic pressure must
satisfy the acoustic wave equation

1
c2 p̈−∆p= 0 (6.8)

a Neumann boundary condition on Γ
∂p

∂n
= g(x,t) (6.9)

and the Sommerfeld radiation condition at infinity

∂p

∂r
+ 1
c

∂p

∂t
→ 1

r
(6.10)

as r→∞.

We note that the weight and test functions are chosen such that the Sommerfeld condition is
satisfied identically. Then, the weak formulation reads as follows∫

Ωe

1
c2 p̈q+∇p ·∇qdV =

∫
Γ
gqdS (6.11)

In the frequency domain, the counterpart to equation (6.11) is as follows

−k2
∫

Ωe
pqdV +

∫
Ωe
∇p ·∇qdV =

∫
Γ
gqdS (6.12)

173

where k = ω
c .

We will focus on conjugated infinite element formulations, which implies specific choices for the
trial and weight functions for the infinite elements. For the trial functions, we have

φj(x,ω) = Pj(x)e−ikµ(x) (6.13)

and for the weight functions, we have

ψj(x,ω) =D(x)P (x)eikµ(x) (6.14)

where P (x), D(x), and µ(x) are as yet undefined functions of x, and k = ω
c is the wavenumber.

The choice of these functions will determine the particular infinite element approach. In our case,
the exponential in the weight functions involves a conjugate of the exponential in the trial
functions. This results in the exponential canceling out in the system matrices, thus rendering the
matrices independent of frequency.

Given these trial functions, the solution p(x,ω) can be written in an expansion

p(x,ω) =
N∑
i=1

qj(x,ω)φj(x,ω) (6.15)

Substituting these expressions for trial and weight functions into equation (6.12), we obtain for
following expression∫

Ωe
(Pi∇D+D∇Pi+ ikDPi∇µ) · (∇Pj− ikPj∇µ)qi−k2DPiPjqidV (6.16)

Separating out terms of ω, we obtain the following expressions for the stiffness, mass and
damping matrices

Kij =
∫

Ωe
(Pi∇D+D∇Pi) ·∇PjdV (6.17)

Cij = 1
c

∫
Ωe
DPi∇µ ·∇Pj−PiPj∇D ·∇µ−DPj∇Pi ·∇µdV (6.18)

Mij = 1
c2

∫
Ωe
DPiPj(1−∇µ ·∇µ)dV (6.19)

Consider the phase function µ(x). First, we note that the series expansions for the trial functions
(the ith term is given by equation (6.13)), assume an outwardly propagating wave. The exact
solution from which these trial functions are derived involves a source point for the wave. We
denote the distance from that source point to a point on the base surface by a. The phase
function is then defined by

µ(x) = r−a (6.20)

In spherical coordinates, the gradient of a function is equal to

∇f(r,θ,φ) = r̂
∂f

∂r
+ 1
r

∂f

∂φ
φ̂+ 1

rsin(φ)
∂f

∂θ
θ̂ (6.21)

Since the expression for µ(x) depends only on r, we have

∇µ(x) = r̂ (6.22)

174

Thus, ∇µ(x) ·∇µ(x) = 1. This implies that when the boundary defining the infinite elements is a
spherical surface, the mass matrix from equation (6.19) is identically zero. This makes sense, since
it ensures that the modes are outgoing, and that there are no standing waves. Since a numerical
integration of equation (6.19) will never come out identically zero, the question then becomes
whether to include this numerical mass in the time integration, or whether to neglect it from the
outset. This has important implications in the stability of the time integration, as outlined in.16

In terms of discretizing the infinite domain, infinite elements can be classified into 2 main
approaches: the separable approach, and the mapped approach. In the separable approach, the
exterior domain is assumed to be in a separable coordinate system, such as spherical or
spheroidal. In the mapped approach, the nodes on the exterior boundary are mapped into parent
elements using a special mapping functions that map the infinite domain into a finite reference
element domain. The mapped approach is advantageous because it allows a more arbitrary
placement of nodes on the exterior surface. The separable approach requires the exterior nodes to
conform to a specific boundary, and thus this approach places more restrictions on the mesh
generation process.

6.1.2.1. Infinite Element Shape Functions In our work, we have chosen the mapped approach
due to its flexibility in mesh generation. The integrals in equations (6.17), (6.19), and (6.18) are
over an infinite domain, Ωe. In order to perform numerical integration of these integrals, we first
must map onto a unit reference element, as in standard finite elements. The mapping is as
follows

x=
N∑
j=1

Mj(s, t,v)xj (6.23)

where x is a point in the infinite domain, xj are the coordinates of the mapping points, s, t define
the base coordinates of the base plane of the infinite element (which lies on the exterior surface of
the acoustic mesh), and v is the base coordinate in the infinite direction. If we consider a point on
the exterior surface, and its radial point ai, then the base coordinate along the radial edge
emanating from this point is given by,

vi = 1−2ai/ri (6.24)

Equivalently,
ri−ai = ai

1 +vi
1−vi

(6.25)

Where ri is a radial distance from a virtual source point (or virtual origin). Each node on the
infinite element boundary may have a source point, as illustrated in Figure (6-20). Generally, the
source point is positioned to ensure that rays are normal to the surface.13,17 The mapping ensures
that as the element coordinate v approaches 1, the physical radial coordinate, r approaches
infinity; thus mapping an infinite space onto a unit element.

The virtual source point can provide an orthogonal basis in the radial direction. For non-spherical
meshes, one virtual source point is needed for each point on the infinite element boundary to
ensure that the radial expansions are normal to the surface and orthogonal to the surface shape
functions, Si(s, t). This permit writing the mapping function as a product of spatially separated
terms, Mi(s, t,v) = Si(s, t)Ri(v). This orthogonality is also necessary to ensure that the mass
matrix remains positive semi-definite. The mass matrix (from equation (6.19)) includes the term

175

mesh

Interior

acoustic

O
O

r

r

a

a

1

2

2

2

1

1

Figure 6-20. – Infinite Element Radial Mapping. Each node on the infinite element boundary may
have an origin, Oi, (called a virtual source point) and an effective nominal radius, ai. The source point
is chosen to ensure that rays are normal to the surface. For a spherical boundary, all virtual source
points are at the center of the sphere.

1−∇µ ·∇µ. The magnitude of the gradient term, ∇µ, is exactly 1.0 when the source is normal to
the surface. It is greater than one otherwise, which leads to an indefinite matrix, and can produce
instability in dynamic integration.

In Sierra/SD two methods are used to generate the source point location. The first travels the
normal vector a fixed distance b, where b is the dimension of the minor axis. The second method
provides an offset that intersect a plane normal to the vector and passing through the origin of
the ellipsoid. These two methods are illustrated in Figure (6-21).

Figure 6-21. – Methods of Locating Source Point. On the left, the source point is located on the
surface normal, a distance b into the structure, where b is the minor axis dimension. On the right, the
source point is located along the surface normal such that it intersects a plane normal to the vector,
and containing the ellipsoid centroid.

The radial point a is interpolated over the infinite element base, to give

a(s, t) =
N∑
i=1

aiSi(s, t) (6.26)

where Si(s, t) is the implied surface shape function of the base element on the exterior surface. In
this way, tetrahedrons or hexahedrons may be used in the acoustic mesh. For the infinite elements,
the only difference is the surface shape functions Si(s, t). The radial interpolation is independent

176

of the underlying finite element. The mapping functions Mj(s, t,v) given in equation (6.23) are
constructed as tensor products of the surface shape functions Si(s, t) and radial basis mapping
functions. The radial basis mapping functions are typically defined to be linear functions that
map the finite domain into the infinite domain. These functions are given as,

m1(v) = 2v
v−1

m2(v) = 1 +v

1−v
(6.27)

Thus, when v =−1, we have that m1(v) = 1 and m2(v) = 0. When v = 1, we have m1(v) =−∞
and m2(v) =∞. In this way, the infinite domain is mapped to a finite domain.

The mapping functions Mj(s, t,v) are defined as tensor products of the surface shape functions
Si(s, t) with the radial mapping functions from equation (6.27). For example, for an 8-node hex,
the surface shape functions are defined as,

S1(s, t) = (1 +s)(1 + t)
4

S2(s, t) = (1 +s)(1− t)
4

S3(s, t) = (1−s)(1 + t)
4

S4(s, t) = (1−s)(1− t)
4

(6.28)

Then, the 8 functions Mi(s, t,v) can be constructed by crossing each Si(s, t) from equation (6.28)
with an mj(v) from equation (6.27).

Equation (6.25) can then be used to compute the phase function µ(x) at an arbitrary point

µ(x) = r−a=
N∑
i=1

(r−ai)Si(s, t) =
N∑
i=1

aiSi(s, t)
1 +v

1−v = a(s, t)1 +v

1−v (6.29)

With µ(x) defined, we consider P (x). The lth shape function P (x) is defined as

Pl(x) = 1
2Si(s, t)(1−v)Qj(v) (6.30)

where Qj(v) is a polynomial in a single variable. Various choices of Qj(x) have been investigated,
including Lagrangian,13,18 Legendre,14 Jacobi,56 and rational (integrated Jacobi).50 Lagrangian
shape functions result in very poorly conditioned infinite element matrices. The other three
choices all appear to give acceptable levels of conditioning. Dreyer56 showed that the Jacobi
polynomials in general give a better condition than the Legendre polynomials. Regardless of the
choice for Q(x), equations (6.23) and (6.30) imply that P (x) will be a function of the reference
element coordinates r,s, t, and thus can be integrated over the reference element.

The function D(x) is defined as

D(x) =
(1−v

2

)2
(6.31)

177

We have defined P (x), µ(x), and D(x), in terms of the reference element coordinates r,s, t. The
integrals in equations (6.17), (6.18), and (6.19) can all be evaluated by standard Gaussian
quadrature over the reference unit element (either hex or tet).

6.1.3. Computation of solution at far-field points

After the solution to the acoustic problem is complete, the values of the coefficients in the
expansion of equation (6.15) are known. The next step is then to compute the solution at far-field
points outside of the acoustic mesh. We consider two cases below, one where the polynomial
functions P (x) in equation (6.13) is a Lagrangian shape function, and the other where P (x) is a
more general polynomial (like a Legendre or Jacobi polynomial). In the former case, the functions
P (x) are associated with particular nodes having values of 1 at the node and 0 at the other nodes.
In the latter case, this property does not hold.

We assume that we wish to compute the solution at a node d that is at a location xd, and a radial
distance r = ||xd|| from the origin. This point is located on a radial line with a corresponding
radial point a. Thus, for this point we have µd = r−a., We have

p(xd,ω) =
N∑
i=1

qj(ω)Pj(xd)e−ikµd (6.32)

Note that ’N’ in this case is the number of infinite element basis functions within the infinite
element that includes the point d. In the case of Lagrangian polynomials, we have the property
that the function is equal to 1 at the node of interest and is equal to 0 at the other nodes. Thus, in
the case that the point xd coincides with a node in the infinite element, we have the expression

p(xd,ω) = qd(ω)e−ikµd (6.33)

where qd(ω) is the infinite element shape function corresponding to node d. Equivalently, we
have

qd(ω) = p(xd,ω)eikµd (6.34)

Thus, the pressure at the node d is equal to the corresponding value of the coefficient of the
infinite element expansion corresponding to that node, multiplied by the factor e−ikµd , where µd
is equal to the distance (along the radial line) from the boundary of the acoustic domain to the
node d.

If we take the inverse Fourier transform of equation (6.34), we get

qd(t) = p(xd, t+
d

c
) (6.35)

Thus, the pressure time history at node d is equal to a time-shifted value of the infinite element
degree of freedom qd(t) corresponding to node d. This makes physical sense in that it would take
the wave additional time equal to d

c to reach the point d.

Next we consider the case when P (x) is not a Lagrangian polynomial. In this case, the point d
could not be associated with any particular node. In this case, we still have the relation

p(xd,ω) =
N∑
i=1

qj(ω)Pj(xd)e−ikµd (6.36)

178

except in this case, the polynomials P (x) do not necessarily vanish at d. Thus, again bringing the
exponential to the other side of the equation, we have

p(xd,ω)eikµd =
N∑
i=1

qj(ω)Pj(xd) (6.37)

Taking inverse Fourier transforms, we arrive at the result

p(xd, t+
d

c
) =

N∑
i=1

qj(t)Pj(xd) (6.38)

Since all quantities on the right-hand side of equation (6.38) are known after the finite/infinite
element solution is complete, we can post-process to compute the pressure at the field point xd.

6.1.4. Point sources

Point acoustic sources are common in acoustic modeling, and we provide some capability for
doing this in Sierra/SD. Here we describe the theory behind this implementation. The theory of
point sources93,120 in acoustics is typically formulated by considering a pulsating sphere of radius
R, centered at the point xs. Upon taking the limit as the radius of the sphere goes to zero, one
obtains the equation for an acoustic point source.

We consider a point source that is injecting mass into the acoustic domain at a rate

ṁs(t) = ρQs(t) (6.39)

where ṁs is the mass per unit time of fluid that is being injected into the domain, ρ is the density
of the fluid, and Qs(t) is the volume velocity (volume per unit time) of the fluid that is entering
the acoustic domain. More on this will be given later in Section 3.8.2 on Lighthill’s approach, and
its connection with the point source. We can construct a point source consistent with the mass
injection rate q defined in equation (3.1) via multiplication of ṁs by a Dirac delta function (which
itself has units of one over volume). Because ∂q/∂t appears in the wave equation (3.11), one more
time derivative of ṁs is required:120

1
c2
∂2p

∂t2
−∇2p=−m̈s(t)δ(x−xs), (6.40)

where p is the acoustic pressure at a point in the domain, c is the speed of sound, and ρ is the
fluid density. We note that the volume velocity can also be written as the time derivative of the
volume in the source

Qs(t) = dV

dt
(6.41)

where V is the volume enclosed by the source. Equation (6.41) is valid for a spherical source
enclosing a volume V , but in the case of a point source we shrink the radius to zero. The volume
velocity, Qs, is also sometimes referred to as the source strength. It is the integral of the normal
component of surface velocity over the spherical surface of the source. Since the surface velocity is
the same everywhere on the surface of the sphere, the source strength is

Qs =
∫
S
vndS = vn

∫
s
dS = 4πa2vn (6.42)

179

where a is the radius of the sphere, and vn is the normal component of velocity on the surface. By
considering the volume increase for a pulsating sphere, it is easy to see that equations (6.41)
and (6.42) are the same.

We note that in the Sierra/SD implementation of acoustics, we use the time derivative of
pressure rather than the pressure directly. We also scale the equation by density, since this is
needed when the fluid properties are not constant. Thus, we would modify equation (6.40) as
follows

1
ρc2

∂2ψ

∂t2
− ∇

2ψ

ρ
=−ṁs(t)

ρ
δ(x−xs), (6.43)

where p= ∂ψ/∂t. Equivalently, this gives

1
ρc2

∂2ψ

∂t2
− ∇

2ψ

ρ
=−Qs(t)δ(x−xs) (6.44)

In the frequency domain, equation (6.40) is typically written as(
∇2 +k2

)
φ=−4πAδ(x−xs) (6.45)

where A is referred to as the amplitude of the source. The solution to equation (6.45) in an
unbounded domain can be shown to be

φ= A

r
ejkr (6.46)

where r = |x−xs| is the distance from the source to the point x in the domain, and k = ω
c is the

wavenumber. Assuming a time-harmonic expression for Qs(t) =Qejωt, it follows from
equation (6.44) that Q and A are related by

Q= 4πA
ρ
. (6.47)

The solution φ can therefore be expressed as

φ= ρQ
ejkr

4πr (6.48)

or due to ψ = ∂p/∂t, as

p= jωρQ
ejkr

4πr . (6.49)

Specification of dV/dt in equation (6.44) and d2V/dt2 in equation (6.40) is covered in User’s
Manual.

A finite element formulation of the previous equation can be constructed as usual, by multiplying
the previous equation by a test function, and integrating by parts. We note that the domain of
integration must include the point xs, the location of the point source. Also, we note that the
integration against the delta function δ(x−xs) is a duality pairing, rather than an integral, since
the integral of a delta function is not defined. In what follows, we assume that the point xs lies on
a node in the finite element mesh. This will facilitate the modeling, since we will typically define
the point source on a nodeset or nodelist consisting of a single node.

180

Denoting by Vf (Ωf) the function space for the fluid, the weak formulation can be written as
follows. Find the mapping ψ : [0,T]→ Vf (Ωf) such that

∫
Ω

ψ̈

ρc2φdx+
∫

Ω

∇ψ ·∇φ
ρ

dx=−
∫
∂Ωn

u̇nφds+Qs(t)

∀φ ∈ Vf (Ωf), where u̇n is the prescribed velocity on the Neumann portion of the fluid boundary.
We note that the first term on the right-hand side is a surface excitation force, and thus only
contributes nonzero terms on nodes that lie on the surface

∫
∂Ωn . The second term comes from the

point source, and only contributes a nonzero term on the node where the point source is located.

Inserting a finite element discretization φ(x) =∑N
i=1φiNi(x) into equation (6.50) results in the

system of equations
Mψ̈+Kψ = fa, (6.50)

where N is the vector of shape functions, M =
∫

Ωf
1
ρc2NN

Tdx is the mass matrix,
K =

∫
Ωf
∇N ·∇NT

ρ dx is the stiffness matrix, and fa =
∫
∂Ωn u̇nN

Tdx+Qs(t) is the external forcing
vector from Neumann boundary conditions.

If Q= dV
dt is computed with a void element in Presto, equation (6.50) can be used to compute the

right-hand side term and the corresponding acoustic response.

6.2. Perfectly Matched Layers

The perfectly matched layers are described in detail in Bunting et al.34 Given a structure S
surrounded by bounded interior domain Ωi, and an exterior domain Ωe, the exterior acoustics
problem consists of determining the acoustic pressure, p, in domain Ωe∪Ωi. We refer to Figure
6-22 for a schematic of the geometry. In a domain truncation strategy, boundary conditions are
applied to the outermost boundary Γe of Ωi.

To illustrate the ideas, we assume an acoustic pressure wave propagating in the x-direction, with
wavenumber k = ω

c , where ω is the circular frequency, and c is the speed of sound. The wave takes
the form

p(x) = p0e
ikx (6.51)

S

ΓSΓe
Ωi Ωe

Figure 6-22. – Domains Ωi and Ωe and interface Γ for the exterior acoustic problem.

181

As written, this wave is undamped, and will propagate indefinitely with no change of shape.
However, if we allow the wave to propagate on a coordinate system that has complex coordinates
x̃= a(x) + ib(x), where a(x) and b(x) are functions of x, then the equation of the wave
becomes88

p(x̃) = p0e
ikx̃ = p0e

i(ka(x)+ikb(x)) = p0e
−kb(x)eika(x) (6.52)

We observe that this wave corresponds to damped wave propagation, with decay coefficient equal
to kb(x). For a coordinate stretching of b(x)> 0, this wave will decay exponentially fast, which is
the case considered in this paper. If b(x)< 0, then the wave will grow exponentially fast.

In order for equation (6.52) to be a solution to a wave equation, that wave equation must itself be
written in a coordinate system that is complex, rather than real-valued. On the other hand, the
corresponding finite element implementation is most easily derived on a real-valued coordinate
system. Thus, though the governing partial differential equations of the PML are written in a
complex coordinate field, the corresponding weak formulation is mapped to a real coordinate
system, to facilitate the finite element implementation.

In order to build up to the ellipsoidal PML formulation, the following sections provide derivations
of rectangular, rotated rectangular, and spherical PML. These provide the building blocks for the
ellipsoidal case. We will subsequently show that the ellipsoidal formulation reduces to the
spherical and rectangular cases by choosing equal and large radii of curvature, respectively.

6.2.1. Cartesian PML

We define the PML domain as being a parallelepiped of dimension (2ā,2b̄,2c̄), centered at the
origin, with an interior parallelepiped hole of dimension (2a,2b,2c). Practically, this would
correspond to the case where the structure of interest, as complex shape it may have, was
surrounded by an acoustic mesh that terminated at the boundary of the inner parallelepiped. The
PML would then occupy the region between the inner and outer parallelepiped boundaries. A
simple shift can be applied if the domain is not origin-centered.

The PML formulation can be broken down into three steps. First the analytic continuation is
used to map the Helmholtz equation into the complex plane. Then the weak form is formulated
on the complex plane, and the chain rule is applied to map between the complex and real plane.
Finally, the results from the chain rule give a weak formulation over the real-valued domain, but
with the dissipative properties stemming from the transformation to complex coordinates.

6.2.1.1. Step 1. Analytic continuation The PML equations can be written in either first or
second order form. Here we consider the implementation of second order form. In the interior
Ω = ΩI , the acoustic pressure must satisfy the acoustic Helmholtz equation

−∆p−k2p= 0 (6.53)

where k = ω
c , and p is the acoustic pressure, a prescribed Neumann boundary condition on ΓS

∂p

∂n
= g(x,ω) (6.54)

182

and the Sommerfeld radiation condition for outgoing waves at infinity111∣∣∣∣∂p∂r − ikp
∣∣∣∣=O(1

r2

)
, r→∞ (6.55)

where k = ω
c . We note that equation (6.53) involves constant coefficients, meaning that the speed

of sound and density in the fluid are assumed to be constant. More specifically, equation (6.53) is
undamped, meaning that the waves will not attenuate as they propagate through the medium.

Equation (6.53) is written in terms of real coordinates. As illustrated earlier, the waves will decay
in the PML if the coordinates are considered as complex-valued rather than real-valued. Thus, we
use analytic continuation to map the Helmholtz equation into the complex plane

∆̃p−k2p= 0 (6.56)

where the change of coordinates for the x-direction is defined as:

x̃= x− i

ω

∫ a

x
σ(ξ)dξ a < x < ā (6.57)

x̃= x+ i

ω

∫ x

a
σ(ξ)dξ − ā < x <−a (6.58)

Similar expressions describe the coordinate transformations for the other two coordinate axes.

6.2.1.2. Step 2. Weak formulation over complex-valued domain We note that the weak
formulation of equation (6.56) can be constructed using either a bilinear or sesquilinear
formulation.49,51 The difference is only whether complex conjugation is applied to the test
functions. In standard finite element methods for acoustics, these formulations lead to the same
discrete system of equations. However, with PML the formulations yield different numerical
methods. In this paper we take the bilinear approach, since it yields a complex-symmetric system
of linear equations that can be exploited in the linear solver. The bilinear weak form of equation
(6.56) seeks p ∈ Vf (Ω̃I) such that∫

Ω̃I
[〈∇̃p,∇̃q〉−k2pq]dΩ̃I =

∫
Γ̃S
gqdΓ̃S (6.59)

where the tildes indicate quantities defined over the complex extension of the domain ΩI , and q
represents the test function.

6.2.1.3. Step 3: Apply the chain rule From equation (6.58) and the Fundamental Theorem of
Calculus, we see that

∂x̃

∂x
= γx(x) = 1± i

ω
σ(x) (6.60)

Similar expressions hold for the y and z coordinates. This implies that the gradients of acoustic
pressure can be transformed between the real and complex domains using a Jacobian

∇∇∇p= JJJcart∇̃∇∇p (6.61)

183

where the Jacobian matrix for the Cartesian coordinate system JJJcart is defined as

JJJcart =

 γx 0 0
0 γy 0
0 0 γz

 (6.62)

Conversely, we can map from the complex to the real derivatives using the inverse of the
Jacobian.

∇̃∇∇p= JJJ−1
cart∇∇∇p (6.63)

where

JJJ−1
cart =


1
γx

0 0
0 1

γy
0

0 0 1
γz

 (6.64)

The scale factor that maps Ω̃I into ΩI is the determinant of the Jacobian,

Wcart = γxγyγz (6.65)

6.2.1.4. Step 4: Revert to real-valued weak formulation Using the previous results and the
determinant relation from equation (6.65), the corresponding weak version of the Helmholtz
equation is given as follows. Find p ∈ Vf (ΩI) such that∫

ΩI

[
(JJJ−1

cart∇p) · (JJJ−1
cart∇q)−k2pq

]
WcartdΩI =

∫
ΓS
gqdS. (6.66)

We note that we can turn this into a Helmholtz equation with variable coefficients as follows∫
ΩI

[AAA〈∇p,∇q〉−k2pq]Wcart dΩI =
∫

ΓS
gqdΓS (6.67)

where AAA=WcartJJJ
−1
cartJJJ

−T
cart. We note that AAA is a symmetric matrix, which follows from our choice

to use a bilinear formulation rather than sesquilinear. Matrix AAA can be interpreted in a general
way, without being tied to the cartesian coordinate system. The Jacobian matrices account for
the different scaling factors for the various coordinate systems. Note that equation (6.67) achieves
all of the goals that were set from the beginning - a symmetric weak formulation over the
real-valued domain, but with built-in dissipative properties stemming from the transformation to
complex coordinates.

In the following sections, we will derive PML equations for rotated Cartesian, spherical, and
ellipsoidal coordinates. In all cases, the weak formulation will be precisely the same as in equation
(6.67), but with a different Jacobian matrix JJJ and corresponding determinant W . Thus, we will
only derive expressions for JJJ in each of the coordinate systems.

184

6.2.2. Rotated Cartesian Coordinates

In this section we consider the case where the PML surface is extruded from a flat plane that is
oriented at an arbitrary angle in three-dimensional space. If we define xxx= xi, i= 1,2,3 as the
unrotated coordinates and xxx′ = x

′
i, i= 1,2,3 as the coordinates in the rotated coordinate system,

we have

R=

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 (6.68)

where aij is the direction cosine between the xi and x
′
i axis. This defines the transformation as

follows
xxx
′ =RRRxxx (6.69)

The Jacobian matrix for this case can be computed from the chain rule108

JJJrotcart = ∂(x̃, ỹ, z̃)
∂(x,y,z) = ∂(x̃, ỹ, z̃)

∂(x′y′ ,z′)
∂(x′ ,y′ ,z′)
∂(x,y,z) =

 γx 0 0
0 γy 0
0 0 γz

RRR= JJJcartRRR (6.70)

The inverse of this matrix is given as

JJJ−1
rotcart =RRRTJJJ−1

cart (6.71)

Thus, the coefficient matrix for this case is given by

AAA=WrotcartJJJ
−1
rotcartJJJ

−T
rotcart

=WrotcartRRR
TJJJ−1

cart(JJJcartRRR)−T

=WcartRRR
TJJJ−1

cartJJJ
−T
cartRRR

(6.72)

where we have used the fact that Wrotcart =Wcart. We see that this involves a simple rotation
tensor transformation applied to the diagonal Jacobian matrix given in the unrotated case,
equation (6.64). Thus, equation (6.67) applies, and can be used to construct the weak formulation
in the rotated Cartesian case, but with a modified coefficient matrix AAA given in equation (6.72).

6.2.3. Spherical Coordinates

In a similar manner, we can derive the Jacobian matrix for a spherical PML. Though other
researchers130,42 have chosen to solve the spherical PML equations directly in spherical
coordinates, we prefer to map the equations back to the Cartesian system to facilitate the finite
element implementation. Thus, in this case our Jacobian needs to account for this additional
transformation. The formulation for this case is given in.108 The mapping from spherical to
Cartesian coordinates is given as

x= r sin(φ)cos(θ)
y = r sin(φ)sin(θ)
z = r cos(φ)

(6.73)

185

The corresponding analytically continued coordinates are given as

x̃= r̃ sin(φ)cos(θ)
ỹ = r̃ sin(φ)sin(θ)
z̃ = r̃ cos(φ)

(6.74)

Note that the complex coordinate stretching occurs only in the radial direction, as dissipative
effect is not desired in the transverse directions. With these definitions the Jacobian matrix is
given by the chain rule

JJJspherical = ∂(x̃, ỹ, z̃)
∂(x,y,z) = ∂(x̃, ỹ, z̃)

∂(r,φ,θ)
∂(x,y,z)
∂(r,φ,θ)

−1

=

 r̃
′ sin(φ)cos(θ) r̃ cos(φ)cos(θ) −r̃ sin(φ)sin(θ)
r̃
′ sin(φ)sin(θ) r̃ cos(φ)sin(θ) r̃ sin(φ)cos(θ)
r̃
′ cos(φ) −r̃ sin(φ) 0


 sin(φ)cos(θ) r cos(φ)cos(θ) −r sin(φ)sin(θ)

sin(φ)sin(θ) r cos(φ)sin(θ) r sin(φ)cos(θ)
cos(φ) −r sin(φ) 0


−1

(6.75)

Once again, equation (6.67) applies, and can be used to construct the weak formulation in the
case of spherical coordinates, but with a modified coefficient matrix AAA given in equation (6.75).

We note that an advantage of the curvilinear PML formulation is that it is one-dimensional in the
sense that the stretching only happens in one of the coordinate directions, in this case the radial
direction. Thus, we can define the stretching as being in the radial direction only. This takes the
form

r̃ = r+ i

ω

∫ r

R
σ(ε)dε (6.76)

which implies that
r̃
′ = ∂r̃

∂r
= γ(r) = 1 + i

ω
σ(r) (6.77)

6.2.4. Ellipsoidal Coordinates

In the case of ellipsoidal coordinates, we first must choose an appropriate coordinate system for
the complex stretching of the PML. Ellipsoidal coordinates can be expressed in various ways, but
we have found use of the coordinates developed by Burnett35 to be the most convenient for
defining the PML. We select the case of the prolate ellipsoid, with a≥ b= c. As in the spherical
case, we prefer to solve the final equations in Cartesian coordinates rather than ellipsoidal. Thus,
we will apply complex stretching to the ellipsoidal coordinate system, but will map the resulting
equations back to Cartesian coordinates for the finite element solution. Once again, all of these
transformations can be applied with the Jacobian.

We define an ellipsoidal radius35 as
r = c1 + c2

2 (6.78)

where c1 and c2 are the distances of a given point on the ellipse to the two foci. We note that on
the ellipsoidal surface, r is a constant, and is essentially a generalization of the notion of radial

186

distance in the case of a sphere. Given the major and minor radii a and b of the ellipse, the
distance to the focus along the major axis is given by f =

√
a2− b2.

In terms of PML, we choose the direction of complex stretching to be along the direction defined
in equation (6.78). We note that unlike the radial direction for a sphere, equation (6.78) defines
curvilinear lines, and thus the PML layer will produce damping along those directions. This is
necessary since if we were to define damping along straight-line paths (say in the direction normal
to the ellipsoid surface), then the complex stretching would occur in all three directions r, φ, θ.

Given these parameters, the ellipsoidal coordinate system is defined as

x=
√
r2−f2 sin(φ)cos(θ)

y =
√
r2−f2 sin(φ)sin(θ)

z = r cos(φ)

(6.79)

Note that in the case of a sphere, a= b= c, which implies that f = 0, and these coordinates
reduce to the spherical case. The stretched coordinates in the ellipsoidal case are given by

x̃=
√
r̃2−f2 sin(φ)cos(θ)

ỹ =
√
r̃2−f2 sin(φ)sin(θ)

z̃ = r̃ cos(φ)

(6.80)

This implies that the transformation matrix is given as

JJJellipsoidal = ∂(x̃, ỹ, z̃)
∂(x,y,z) = ∂(x̃, ỹ, z̃)

∂(r,φ,θ)
∂(x,y,z)
∂(r,φ,θ)

−1

=


r̃r̃
′

√
r̃2−f2

sin(φ)cos(θ)
√
r̃2−f2 cos(φ)cos(θ) −

√
r̃2−f2 sin(φ)sin(θ)

r̃r̃
′

√
r̃2−f2

sin(φ)sin(θ)
√
r̃2−f2 cos(φ)sin(θ)

√
r̃2−f2 sin(φ)cos(θ)

r̃
′ cos(φ) −r̃ sin(φ) 0




r√
r2−f2

sin(φ)cos(θ)
√
r2−f2 cos(φ)cos(θ) −

√
r2−f2 sin(φ)sin(θ)

r√
r2−f2

sin(φ)sin(θ)
√
r2−f2 cos(φ)sin(θ)

√
r2−f2 sin(φ)cos(θ)

cos(φ) −r sin(φ) 0


−1

(6.81)

6.2.5. Ellipsoidal Coordinates with X axis as Major axis

The previous section assumed that the major axis of the ellipse was oriented along the z direction.
For completeness, we show here how to adjust the formulation in the case when the major axis is
along the x direction. In this case the ellipsoidal coordinate system is defined as

x= rcos(φ)

y =
√
r2−f2 sin(φ)sin(θ)

z =
√
r2−f2 sin(φ)cos(θ)

(6.82)

187

Note that in the case of a sphere, a= b= c, which implies that f = 0, and these coordinates
reduce to the spherical case. The stretched coordinates in the ellipsoidal case are given by

x̃= r̃ cos(φ)

ỹ =
√
r̃2−f2 sin(φ)sin(θ)

z̃ =
√
r̃2−f2 sin(φ)cos(θ)

(6.83)

This implies that the Jacobian matrix is given as

JJJ = ∂(x̃, ỹ, z̃)
∂(x,y,z) = ∂(x̃, ỹ, z̃)

∂(r,φ,θ)
∂(x,y,z)
∂(r,φ,θ)

−1

=


r̃
′ cos(φ) −r̃ sin(φ) 0

r̃r̃
′

√
r̃2−f2

sin(φ)sin(θ)
√
r̃2−f2 cos(φ)sin(θ)

√
r̃2−f2 sin(φ)cos(θ)

r̃r̃
′

√
r̃2−f2

sin(φ)cos(θ)
√
r̃2−f2 cos(φ)cos(θ) −

√
r̃2−f2 sin(φ)sin(θ)




cos(φ) −r sin(φ) 0
r√
r2−f2

sin(φ)sin(θ)
√
r2−f2 cos(φ)sin(θ)

√
r2−f2 sin(φ)cos(θ)

r√
r2−f2

sin(φ)cos(θ)
√
r2−f2 cos(φ)cos(θ) −

√
r2−f2 sin(φ)sin(θ)


−1

(6.84)

6.2.6. Relations Between the PML Formulations

It is clear that as the minor and major axis become equal, a= b= c, and hence f = 0. This
implies that the Jacobian for ellipsoidal coordinates in equation (6.81) reduces to the spherical
Jacobian given in equation (6.75).

As an additional step, we consider that the spherical Jacobian reduces to that of the Cartesian in
the limiting case of a large radius of the inner sphere defining the PML boundary. This can be
seen by considering equations (6.76) and (6.77), which we repeat here for convenience

r̃ = r+ i

ω

∫ r

R
σ(ε)dε (6.85)

which implies that
r̃
′ = ∂r̃

∂r
= γ(r) = 1 + i

ω
σ(r) (6.86)

As r and hence R become very large, we see from equation (6.76) that then r̃→ r, since the
imaginary term will become vanishingly small compared to r. However, from equation (6.77) we
see no limiting change in r̃′ as r becomes large, since σ(R) = 0 and σ(r) will be bounded by the
thickness of the PML layer. Thus, going back to equation (6.75), we have:

188

JJJspherical = ∂(x̃, ỹ, z̃)
∂(x,y,z) = ∂(x̃, ỹ, z̃)

∂(r,φ,θ)
∂(x,y,z)
∂(r,φ,θ)

−1

=

 r̃
′ sin(φ)cos(θ) r̃ cos(φ)cos(θ) −r̃ sin(φ)sin(θ)
r̃
′ sin(φ)sin(θ) r̃ cos(φ)sin(θ) r̃ sin(φ)cos(θ)
r̃
′ cos(φ) −r̃ sin(φ) 0


 sin(φ)cos(θ) r cos(φ)cos(θ) −r sin(φ)sin(θ)

sin(φ)sin(θ) r cos(φ)sin(θ) r sin(φ)cos(θ)
cos(φ) −r sin(φ) 0


−1

→

 r̃
′ sin(φ)cos(θ) r cos(φ)cos(θ) −r sin(φ)sin(θ)
r̃
′ sin(φ)sin(θ) r cos(φ)sin(θ) r sin(φ)cos(θ)
r̃
′ cos(φ) −r sin(φ) 0


 sin(φ)cos(θ) r cos(φ)cos(θ) −r sin(φ)sin(θ)

sin(φ)sin(θ) r cos(φ)sin(θ) r sin(φ)cos(θ)
cos(φ) −r sin(φ) 0


−1

=

 sin(φ)cos(θ) cos(φ)cos(θ) −sin(φ)sin(θ)
sin(φ)sin(θ) cos(φ)sin(θ) sin(φ)cos(θ)

cos(φ) −sin(φ) 0


 γ(r) 0 0

0 r 0
0 0 r


 1 0 0

0 1
r 0

0 0 1
r


 sin(φ)cos(θ) cos(φ)cos(θ) −sin(φ)sin(θ)

sin(φ)sin(θ) cos(φ)sin(θ) sin(φ)cos(θ)
cos(φ) −sin(φ) 0


−1

(6.87)

For the cartesian case in the pure x direction, φ= π
2 and θ = 0.

R=

 1 0 0
0 0 1
0 −1 0

 (6.88)

and

J =

 γ(r) 0 0
0 1 0
0 0 1

 (6.89)

Similar substitutions can be applied for other values of φ and θ that show the Jacobian reduce to
a rotation between spherical and cartesian coordinates. For off axes cases, the Jacobian will be a
full matrix. Thus, the limiting case of a large radius for the PML surface reduces to a
one-dimensional PML layer. Constructing a tensor product with PML layers in the other two
directions produces a diagonal Jacobian matrix as given for the Cartesian case in equation (6.62).

6.3. Matrices from Applied Forces

In addition to the standard mass and stiffness matrices that arise in linear structural dynamics,
force-based matrices are also common. The most common include follower stiffness matrices from
applied pressures, and Coriolis/centrifugal matrices in rotating structures. These notes describe

189

the design of the interface for these additional matrices. We will focus on the following three
terms

1. Follower stiffness matrix from applied pressure. This is a nonsymmetric term, but is
symmetrized, and becomes part of the stiffness matrix.

2. Centrifugal stiffness in rotating structures. This is a symmetric term, and becomes part of
the stiffness matrix.

3. Coriolis matrix in rotating structures. This is a skew-symmetric term that becomes part of
the damping matrix.

6.4. Analysis of Rotating Structures

The finite element analysis of rotating structures has been studied by many authors. There are
two different approaches to this problem, with each approach being limited to certain
applications. In the first approach, a rotating coordinate system is constructed that rotates with
the structure.7,37,97,59 Then, deformations about that rotating coordinate system are sought. In
the second approach, an Eulerian (ALE) formulation is used, in which the structure rotates
through an Eulerian mesh, and then Lagrangian deformations are considered about the Eulerian
configuration.114,29 The Lagrangian approach is not appropriate for problems when contact
surfaces are present, since the boundary conditions in the contact patch would change with time.
On the other hand, the Eulerian approach is applicable to problems with contact, but requires the
structure to have a radial symmetry.

In these notes, we derive the finite element formulation corresponding to three-dimensional finite
elements for the Lagrangian approach. The Eulerian derivation can be found in.114

We begin by considering the homogeneous equations of motion of a solid body in three
dimensions (see Figure 6-23).

Y

X

Z

u

u
r

u

x

u1 2

3

W

W

W3

1

2

Figure 6-23. – A schematic of a structure that is undergoing rotations about the three global coor-
dinate axis.

ρr̈−∇·σ = 0 (6.90)

190

where r̈ is the particle acceleration, ρ is the material density, and σ is the stress tensor. We
consider here both the case of homogeneous (no forcing), and the case where the body forces from
rotation enter into the right-hand side. This equation holds relative to a fixed, inertial reference
frame. The term inertial reference frame is typically used to describe a reference frame that is not
accelerating. Thus, we assume that the coordinate system is rotating, but not undergoing a
translational acceleration. It could have a translational velocity. We use a dot notation (i.e.
Newton’s notation) to denote the time derivative of a function.

We now consider a reference frame that has the same origin as the inertial one described above,
but is rotating at some angular velocity Ω = (Ω1,Ω2,Ω3). We wish to formulate the problem in a
relative Lagrangian framework, in which the displacement, velocity, and acceleration are all
written as relative quantities, i.e. relative to the rotating coordinate system. Once the equations
are written in terms of these relative quantities, we will be able to consider the small deformation
problem about this rotating state.

The position vector r of a point on the structure can be written in terms of either the stationary
coordinate system or the rotating (relative) coordinate system. Given these position vectors, the
velocity and acceleration expressions can be developed. Standard textbooks on rigid body
dynamics139 give the following expressions for the velocity ṙ and acceleration r̈ in terms of the
relative velocity u̇rel and relative acceleration ürel

ṙ = u̇rel+ Ω× r (6.91)

and
r̈ = ürel+ 2Ω× u̇rel+Ω̇× r+ Ω× (Ω× r) (6.92)

where r = x+urel and x are the coordinates of the point in the rotating coordinate systems, and
urel is the displacement of the point relative to the rotating coordinate system.

We can now rewrite the first term in equation 6.90 as

ρr̈ = ρ
[
ürel+ 2Ω× u̇rel+Ω̇× r+ Ω× (Ω× r)

]
(6.93)

Having the equations of motion in the rotating coordinate system, we now proceed to construct
the weak formulation. This can be done by multiplying equation 6.90 by a test function v,
substituting equation 6.93, and integrating by parts

ρ

[∫
V
ürel ·vdV + 2

∫
V

(Ω× u̇rel) ·vdV +
∫
V

(Ω̇× r) ·vdV

+
∫
V

(Ω× (Ω× r)) ·vdV
]

+
∫
V
σ :∇vdV −

∫
S
σnvdS = 0

(6.94)

We note that since r = x+u, the term involving x will become part of the load vector. Also, we
will subsequently drop the rel subscripts from the above equation, since all quantities are now in
the relative (rotating) coordinate system. Thus, the weak formulation becomes

ρ

[∫
V
ü ·vdV + 2

∫
V

(Ω× u̇) ·vdV +
∫
V

(Ω̇×u) ·vdV

+
∫
V

(Ω× (Ω×u)) ·vdV
]

+
∫
V
σ :∇vdV =

+
∫
S
σnvdS−ρ

∫
V

(Ω̇×x) ·vdV −ρ
∫
V

(Ω× (Ω×x)) ·vdV

(6.95)

191

For simplicity in the subsequent derivations we will drop the flux load term on the right-hand side
of 6.95. Thus, we have

ρ

[∫
V
ü ·vdV + 2

∫
V

(Ω× u̇) ·vdV +
∫
V

(Ω̇×u) ·vdV

+
∫
V

(Ω× (Ω×u)) ·vdV
]

+
∫
V
σ :∇vdV =

−ρ
∫
V

(Ω̇×x) ·vdV −ρ
∫
V

(Ω× (Ω×x)) ·vdV

(6.96)

The first and last terms in the left-hand side of the above equations correspond to the mass and
stiffness matrices, respectively. The second term is the skew-symmetric Coriolis term, the third
term is the Euler force term, and the fourth term is the symmetric centrifugal term. We note that
the stiffness term includes both the initial (material) stiffness associated with the material
properties, and the geometric stiffness associated with the stresses. This stress state comes from
the solution of the steady-state spinning problem, which will be described shortly.

It is easy to show that the centrifugal term is symmetric, whereas the Coriolis term is
skew-symmetric. For the centrifugal term, we note the following identity for the triple cross
product

a× (b× c) = b(a · c)− c(a · b) (6.97)

Using this for examining the centrifugal term, we have

ρ

∫
V

(Ω× (Ω×u)) ·vdV = ρ

∫
V

(Ω ·v)(Ω ·u)− (u ·v)(Ω ·Ω)dV (6.98)

By switching u and v in the above expression, the same result is obtained, since the dot product
is commutative. Thus, this term is symmetric.

For the Coriolis term, we use the following identities

a · (b× c) = b · (c×a) (6.99)

and
a× b=−b×a (6.100)

Using these two identities, we have

2ρ
∫
V

(Ω× u̇) ·vdV = 2ρ
∫
V
v · (Ω× u̇)dV = 2ρ

∫
V

Ω · (u̇×v)dV

=−2ρ
∫
V

Ω · (v× u̇)dV =−2ρ
∫
V

(Ω×v) · u̇dV
(6.101)

A similar argument can be made to show that the Euler force term is skew-symmetric.

6.4.0.1. Stiffness Adjustments. We can now construct the finite element discretization of this
equation by adopting the usual expansions, u=Niui, u̇=Niu̇i, and ü=Niüi. We will generate
the forms of the matrices corresponding to the interactions a single node (node i) with another
single node (node j). Both of these nodes are within the same element. These will be 3×3

192

matrices, which then can be projected into the element matrices. First, we note the form of the
expansion for displacement

u=Niui (6.102)

We also use the isoparametric approach and approximate the position vector as

x =Nixi (6.103)

where x = (x1,x2,x3) is the position vector of a point in the rotating coordinate system. Since the
displacement is a vector of dimension 3, each shape function can be represented as a dimension-3
vector of the form

Ni = (φi,0,0) (6.104)

where φi is the ith shape function. Although we write the shape function in the first entry of the
3-vector Ni, it is placed in the k entry, where k =mod(i,3).

6.4.0.2. Coriolis Submatrix. With this notation, the 3×3 Coriolis submatrix corresponding to
the interaction between shape functions i and j can be evaluated by setting u=Ni, and v =Nj .
Then, the (i, j)submatrix is given by

2ρ
∫
V

(Ω×Ni) ·NjdV (6.105)

We also define the Coriolis rotation matrix as

Ω̄ =

 0 −Ω3 Ω2
Ω3 0 −Ω1
−Ω2 Ω1 0

 (6.106)

and the Euler force matrix as the time derivative of the Coriolis matrix

˙̄Ω =

 0 −Ω̇3 Ω̇2
Ω̇3 0 −Ω̇1
−Ω̇2 Ω̇1 0

 (6.107)

Finally, for a given finite element we define the matrix Λ to be the square matrix of dimension the
number of degrees of freedom for the element, where each 3×3 diagonal block of Λ contains a
copy of Ω. That is,

Λ =


Ω̄ 0 ... 0
0 Ω̄ ... 0
...

0 ... 0 Ω̄

 (6.108)

After doing some simplifications, we find that the element level Coriolis matrix is given by,

2ρ
∫
V

(Ω×Ni) ·NjdV = 2M Ω̄ (6.109)

where we have the on the right-hand side, the product of the 3×3 matrices, and M and Ω̄. M is
the diagonal matrix

M =

 ρ
∫
V φiφjdV 0 0

0 ρ
∫
V φiφjdV 0

0 0 ρ
∫
V φiφjdV

 (6.110)

193

As observed earlier, because of the skew-symmetry of the matrix Ω, the Coriolis matrix is
skew-symmetric.

Given the 3×3 interaction matrix for nodes i and j, and using the matrix Λ we can project the
result from equation 6.109 into the full element matrix

Kg = 2MΛ (6.111)

where Kg is the Coriolis (gyroscopic) matrix, M is the mass matrix of the element.

6.4.0.3. Centrifugal Stiffness Contribution. Next, we derive the form of the 3×3 submatrix
corresponding to the centrifugal term. Again, setting u=Ni and v =Nj , we have the 3×3
matrix

ρ

∫
V

(Ω× (Ω×Ni)) ·NjdV =M Ω̄Ω̄ (6.112)

As with the Coriolis term, we can project this into the full element mass matrix as

Kc = MΛΛ (6.113)

Given the finite element discretizations defined, we can construct the matrix equations
corresponding to equation 6.96 as

Mü+Gu̇+ [Km+Kg +Ke+Kc]u= Fc+Fe (6.114)

where M and Km are the standard mass and stiffness matrices, Kg is the geometric stiffness
matrix(to be defined below),

G= ρ

∫
Ve

(Ω×Ni) ·NjdVe = MΛ (6.115)

is the Coriolis (or gyroscopic) matrix (given here over a single element volume Ve)

Ke,ij = ρ

∫
Ve

(Ω̇×Ni) ·NjdVe = MΛ̇ (6.116)

is the Euler force matrix,

Kc,ij = ρ

∫
Ve

(Ω× (Ω×Ni)) ·NjdVe = MΛΛ (6.117)

is the centrifugal matrix,

Fc,j =−ρ
∫
Ve

(Ω× (Ω×x)) ·NjdVe =−MΛΛx (6.118)

is the centrifugal force term, and

Fe,j =−ρ
∫
Ve

(Ω̇×x)) ·NjdVe =−MΩ̇x (6.119)

is the force term corresponding to the Euler force matrix, where x is the position vector in the
rotating coordinate system of the nodes on the element.

We note that the solution of equation 6.114 must proceed in two steps. First, a static problem
must be solved to determine the stress field. The solution determines the geometric stiffness
matrix Kg. Once Kg is known, equation 6.114 can be solved by standard methods.

194

6.4.1. Static Analysis

In the case of a statics, problem, we have ü= u̇= 0, and equation 6.114 reduces to

[Km+Ke+Kc]u= Fc+Fe (6.120)

this equation can be solved for u, which then provides the stresses to allow for the computation of
Kg.

6.4.2. Modal Analysis

In either the Lagrangian or Eulerian cases the formulation leads to a gyroscopic eigenvalue
problem, which can then be solved using a quadratic eigenvalue solver.

Setting the force terms to zero, and assuming a solution of the form u= eλt, equation 6.114
reduces to [

λ2M +λG+ (Km+Kg +Ke+Kc)
]
u= 0 (6.121)

Again, we mention that Kg must be determined by the solution of equation 6.120 before equation
6.121 can be solved.

6.4.3. Transient Analysis

We note that equation 6.114 can be solved with a direct time stepping algorithm to compute the
transient response of the structure to some loading type. In that case the solution that is
obtained is the time history of the displacement u of the structure relative to the rotating
coordinate system.

6.5. Alternative Derivation Based on Lagrange’s Equations

Here we consider an element e with both translational and rotational degrees of freedom (dofs). It
is assumed that rows 1-6 of the element mass matrix Me correspond to the translational and
rotational dofs of the first node of the element. Similarly, rows 7-12 of Me are for the second
node. In these notes the subscript e is used for element and not for Euler.

The velocity of node i of e in an inertial frame can be expressed as

vvvi = u̇uui+ωωω× (xxxi+uuui), (6.122)

where u̇uui is the velocity of node i in the rotating frame, ωωω is the angular velocity vector of the
rotating frame, xxxi is a position vector from the axis of rotation to node i, and uuui is the
displacement vector of node i in the rotating frame. Notice that the time derivative of xxxi in the
rotating frame is zero. It follows from (6.122) that

vi = u̇i+Aui+ bi, (6.123)

195

where vi, u̇i, and ui are 6x1 vectors of dofs for node i associated with vvvi, u̇uui, and uuui, respectively.
Further,

A=



0 −Ω3 Ω2 0 0 0
Ω3 0 −Ω1 0 0 0
−Ω2 Ω1 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, bi =



Ω2xi3−Ω3xi2
Ω3xi1−Ω1xi3
Ω1xi2−Ω2xi1

Ω1
Ω2
Ω3


, (6.124)

where xxxi = (xi1,xi2,xi3) and ωωω = (Ω1,Ω2,Ω3). Let ne denote the number of nodes for element e.
Defining

ve =


v1
v2
...
vne

 , u̇e =


u̇1
u̇2
...
u̇ne

 , ue =


u1
u2
...
une

 , be =


b1
b2
...
bne

 (6.125)

and Ae = diag(A,A, . . . ,A) we find
ve = u̇e+Aeue+ be. (6.126)

The kinetic energy of element e is given by

Te = vTeMeve/2
= (u̇e+Aeue+ be)TMe(u̇e+Aeue+ be). (6.127)

With Lagrange’s equations in mind, we find

d

dt

(
∂Te
∂u̇e

)
=Me(üe+ Ȧeue+Aeu̇e+ ḃe), (6.128)

∂Te
∂ue

=ATeMe(u̇e+Aeue+ be), (6.129)

where Ȧe and ḃe are obtained by replacing Ω1,Ω2,Ω3 in the previous expressions for Ae and be by
Ω̇1, Ω̇2, Ω̇3. We then obtain

d

dt

(
∂Te
∂u̇e

)
− ∂Te
∂ue

=Meüe+ (MeAe−ATeMe)u̇e+ (MeȦe−ATeMeAe)ue

+Meḃe−ATeMebe.

(6.130)

The first matrix Me on the right-hand side of (6.130) is the standard mass matrix, while
(MeAe−ATeMe) is the skew symmetric Coriolis matrix. Similarly −ATeMeAe is the symmetric
centrifugal softening matrix, while MeȦe is the contribution to the stiffness matrix from a
nonconstant angular velocity. The internal (strain) energy of element e can be expressed as

Ue = uTe (Kstand
e +Kgeom

e)ue/2, (6.131)

where Kstand
e and Kgeom

e are the standard and the geometric stiffness matrices for element e. If
we ignore any external or damping forces, the equations of motion for element e obtained from
Lagrange’s equations are given by

d

dt

(
∂Te
∂u̇e

)
− ∂Te
∂ue

+ ∂Ue
∂ue

= 0 (6.132)

196

It then follows that the contribution of element e to the equations of motion are obtained from
Lagrange’s equations and given by

Meüe+ (MeAe−ATeMe)u̇e+ (Kstand
e +Kgeom

e +MeȦe−ATeMeAe)ue =
ATeMebe−Meḃe.

(6.133)

In summary,

1. We have expressions for all the various matrices and forcing terms originating from rotating
coordinate system effects. Notice in the derivation that they all originated from a single
scalar, the kinetic energy of element e.

2. As expected, we can avoid calculating additional integrals by using element mass matrices.

3. There can be forcing terms for rotational dofs since the rows of ḃe associated with them are
not necessarily zero for a nonconstant angular velocity.

4. For rotational dofs, there are no centrifugal loads for a constant angular velocity since the
final three rows and columns of A vanish (see ATeMebe term in (6.133)).

6.6. Random Pressure Loading

Input for random loads can be complicated. The most general type of input is the correlation
matrix, which is the inverse Fourier transform of the spectral density matrix,19 Sij(ω).

c(~x1,~x2, t1− t2) = E[P (~x1, t1)P (~x2, t2)] (6.134)

where E[] is the expected value of the pressure at two locations on the surface at respective
times.

This could be defined as a user defined function. In the most general case, that is the best means
of a definition. However, defining that function is a real chore, and in many cases, the function
can be more easily defined.

6.6.1. Specialization for Hypersonic Vehicles

A number of simplifications can reduce the complexity of the correlation matrix. In the following
paragraphs, we examine each of these, and arrive at a simplified parametric input for the
correlation matrix.

19In the frequency domain we have the autospectral density matrix, and cross spectral density matrices which together
form the spectral density matrix. It typically has units of (PSI)2/Hz.

197

Ergodic or Stationary Systems

Many variables change significantly during hypersonic flight. For example, the velocity of the
body and the density of the air may depend on the portion of the trajectory. However, within
limited time bounds of the trajectory, the system may be considered stationary. We represent this
by writing the pressure as a product of a deterministic function and a stationary function of time
and space.

P (~x,t) = σ(~x,t)Q(~x,t) (6.135)

where, σ is a slowly varying, deterministic function, and Q contains all the random processes.

The pressure field applied to the hypersonic body is not stationary. One reason is the deceleration
of the vehicle and the increase in dynamic pressure with time. However, we assume here that this
non-stationary behavior can be modeled by P = σQ, where Q is stationary and ergodic, and σ is
a scaling or modulation function of time and space. This class of non-stationary model is called a
modulated stationary process. Because Q is stationary, E[Q(x1, t1)Q(x2, t2)] can be written as a
function of t2− t1, call it τ(t2− t1). However, P is not stationary because
E[P (x1, t1)P (x2, t2)] = σ(x1, t1)σ(x2, t2)τ(t2− t1) cannot be written as a function only of (t2− t1);
t1 and t2 appear in the σ terms.

This can simplify computation of the correlations of the pressure.

c(~x1,~x2, t1, t2) = E[P (~x1, t1)P (~x2, t2)] (6.136)
= σ(~x1, t1)σ(~x2, t2)E[Q(~x1, t1)Q(~x2, t2)] (6.137)

Separation of spatial and temporal components

We may often separate the temporal and spatial components of the correlation function.

E[Q(~x1, t1)Q(~x2, t2)] = π(~x1,~x2)τ(t1, t2) (6.138)

Where π(~x1,~x2) contains the spatial component of correlation, and τ(t1, t2) contains the temporal
correlation.

Simplified Spatial Correlation

There is little data and few mathematical models of the spatial correlation of pressure on a body
during hypersonic flight. A report by Corcos45 is most commonly used. It describes the
correlation variation as products of decaying exponentials. There is some evidence that the
variables may be “self similar”, at least in the flow direction, so the decay constants are scalable
with the frequency and velocity. The self-similar properties are less well established in the
transverse directions.48 The spatial component of correlation may be written as,

π(~x1,~x2) = exp(−αz∆z)exp(−βt∆y) (6.139)

In this expression, the spatial correlation terms depend on the separation in the stream (or flow)
direction, ∆z, and on the transverse separation, ∆y.

198

Simplified Temporal Correlations

Aerodynamic models that predict the pressure power spectral density (PSD) on the surface of a
hypersonic body are still under development. Many of these models predict a PSD that is only a
weak function of the axial location. Thus, the PSD at the back of the body is a scaled version of
those at the front. Further, with high velocities, the PSD is very flat within the band of interest.
Thus, the PSD may be represented as a product of a deterministic function of z and a single
PSD. The correlations reflect this same product, and the deterministic function σ() can be
employed to carry this scaling. If the PSD is flat over the bandwidth, the temporal correlation
may be further simplified. We may then write,

τ(t1, t2) = sin(ωc(t1− t2))
ωc(t1− t2) (6.140)

where we use the fact that the Fourier transform of a constant frequency response with cutoff
frequency ωc is a sin(x)/x.20

Temporal Interpolation and Filtering

As noted above, we have an assumption that there is a cutoff frequency. Anything above that
frequency is out of band of the analysis, and can (should) be filtered. Equivalently, time steps less
than T = π/ωc should also be filtered. One way to approach this is to sample at an interval T ,
and interpolate using a sin(x)/x type filter as described below. Note that in addition to the
benefit of filtering, sampling at an interval, T , can reduce the amount of memory used to store
the temporal correlation.

Let [−ν∗,ν∗], 0< ν∗ < ωc, be the frequency band of a deterministic function, x(t), −∞< t <∞.
Then,

x(t) = lim
n→∞

n∑
k=−n

x(kT)αk(t,T) (6.141)

where

αk(t,T) = sin[π(t/T −k)]
π(t/T −k) (6.142)

=
sin[πT (t−kT)]

π
T (t−kT) (6.143)

“It is sufficient to know the values x(kT), with k = ...,-2, -1, 0, 1, 2, ... to reconstruct the entire
signal x(t), −∞< t <∞."

Note:

αk = 1 if t
T

= k (6.144)

αk = 0 if t
T

any other integer (6.145)

|αk| decreases to zero as
∣∣∣∣ tT −k

∣∣∣∣ increases. (6.146)
20While a flat response results in a sin(x)/x, which is the default, many PSD responses are not flat, so a user defined

temporal function may be required.

199

Advancing the Coarse Temporal Solution

The strategy described involves computation of the solution on a coarse temporal grid, with
interpolation to a fine time step as described above. The process for advancing the coarse time
solution is described here.

The initial coarse solution, Y (x,T), is given by the solution to the Cholesky factor of the
correlation matrix.

Y = chol(c̃)W (6.147)
where

c̃ is the d(2n+ 1) x d(2n+ 1) correlation matrix
W is a vector of zero mean, unit variance random vari-

ables, and
Y is the properly correlated solution vector at the 2n+1

coarse time values, 0, T , 2T , ..., (2n+ 1)T and the d
sample locations.

6.6.1.1. Temporal Advancement As described in texts on stochastic calculus (see77 for
example), we can compute the response of a Gaussian random vector when a portion of the vector
is known. Consider a random vector Y , which is partitioned into a known part, Y (1), and a
portion to be determined, Y (2). We may write, (see equation 2.109 of [77]),

ξ = (Y (2)|Y (1) = z) (6.148)
˜ N(µ̂, ĉ) (6.149)

where,
µ̂ = µ(2) + c(2,1)[c(1,1)]−1(z−µ(1)) (6.150)
ĉ = c(2,2)− c(2,1)[c(1,1)]−1c(1,2) (6.151)

and µ(i) is the mean on each portion of the solution.
In words, we can express the normal distribution of the unknown vector as a random distribution
with mean µ̂ and variance given by the covariance matrix ĉ. The covariance does not depend on
the previous samples but only on the partition of the original covariance matrix. The mean
depends weakly on the previous sample, z.

The matrix c is partitioned as follows.

c(1,1) is c̃, the original correlation matrix. It is a square matrix of dimension d(2n+ 1).

c(2,2) is the dxd correlation matrix associated with zero time lag.

c(2,1) is an additional set of d rows of the correlation matrix associated with the time lag
(2n+ 2)T .

c=


C(0) C(T) C(2T) ... | C((2n+ 2)T)
C(T) C(0) C(T) ... | C((2n+ 1)T)
... | ...

C((2n+ 2)T) C((2n+ 1)T) C(2nT) ... | C(0)


and C(T) is the d x d correlation matrix evaluated on the d spatial points at time lag T .

200

6.6.1.2. Procedure The solution is advanced as follows.

1. We augment the system to have d(2n+ 2) equations. Thus, c(1,1) is the d(2n+ 1) covariance
previously calculated.

2. We use b= chol(c(1,1)) to compute the desired mean of the new distribution. Specifically,

µ̂ = µ(2) + c(2,1)(btb)−1(z−µ(1)) (6.152)
= c(2,1)(btb)−1z (6.153)
= gz (6.154)

where we have used the fact that both µ(1) and µ(2) are zero. We store the rectangular
matrix g = c(2,1)(btb)−1. We no longer need the original covariance matrix c̃, nor its factor, b.

3. We reuse g to compute the revised correlation matrix.

ĉ = c(2,2)− c(2,1)[c(1,1)]−1c(1,2) (6.155)
= C(0)−gc(1,2) (6.156)

where C(0) is the d x d correlation matrix for a time lag of zero. The matrix ĉ is dxd as well.

4. We perform a Cholesky factor on ĉ. This is the second such factor, and it is performed on a
smaller space. It need be performed only on the first advancement as ĉ is a constant.

b̂= chol(ĉ) (6.157)

5. Compute the new distribution.

ξ = Ñ(µ̂, ĉ) (6.158)
= µ̂+ chol(ĉ)w (6.159)
= µ̂+ b̂w (6.160)

where w is a zero mean, unit normal Gaussian basis.

6. Move solution vector solution, Y , up by one, and insert ξ in the new locations.

6.7. Removing Net Torques from Applied Loads

6.7.1. Introduction

For structures without any connections to ground, there are six rigid body modes. Three modes
correspond to rigid body translations, while the remaining three are for rigid body rotation about
the center of mass of the structure. If the applied loads have a net torque about the center of
mass, then we should expect the structure to eventually begin tumbling as time progresses. If the
net torque vanishes, then the small strain approximation used in Sierra/SD is accurate since
rotational deformations should remain small. This expectation holds even in the presence of large
displacements caused by loads with significant translational rigid body components.

The purpose of these notes is to describe options for removing net torques from applied loads in
order to avoid tumbling in Sierra/SD during transient analyses. One option assumes that the
center of mass is known, while the second makes use of the mass matrix for the system finite
element model. We note that net translational loads are not removed using either of these
options. Only the mass matrix option is used in Sierra/SD.

201

6.7.2. Use of Mass Matrix

Let M and K denote the mass and stiffness matrices for the structure. Further, let Φtran and Φrot

contain the translational and rotational rigid body modes. Both Φtran and Φrot have 3 columns,
and for floating structures KΦtran =KΦrot = 0. We will assume the mass matrix M is symmetric
and positive definite, while the stiffness matrix is assumed to be symmetric and have 6 rigid body
modes as stated. Further, we assume for the damping matrix C that CΦrbm = 0 and ΦT

rbmC = 0,
where Φrbm =

[
Φtran Φrot

]
. If rigid body motion of the structure does not cause any damping

forces, then this assumption holds. One instance where this assumption on C does not hold is for
models with mass proportional damping.

Consider a node i of the model that has both translational and rotational degrees of freedom.
The rows of Φrbm associated with this node are given by

Φi
rbm =



1 0 0 0 ri3 −ri2
0 1 0 −ri3 0 ri1
0 0 1 ri2 −ri1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (6.161)

where rrri = ri1eee1 + ri2eee2 + ri3eee3 is the position vector of node i in the global coordinate system.
Note here that the origin for rrri is the origin of the global coordinate system and does not
necessarily coincide with the center of mass of the system.

Sierra/SD mass orthonormalizes the rigid body modes. Namely,

ΦT
rbmMΦrbm = I, (6.162)

where I is the identity matrix (notice this equation also implies ΦT
rotMΦrot = I). Moreover, the

columns of Φrbm are orthonormalized from the leftmost column to the right so that the rigid body
translational modes remain in the first three columns of Φrbm. Φrot is the mass-orthonormalized
rigid body mode matrix for rotations.

The standard equations of motion can be expressed as

Mü+Cu̇+Ku= f, (6.163)

where u and f are the displacement and applied force vectors. Next, consider the approximation
u= Φrbmq, where q is a 6x1 vector. Substituting u= Φrbmq into (6.163) and premultiplying by
ΦT
rbm, it follows from (6.162) and the assumptions KΦrbm = 0 and CΦrbm = 0 that

q̈ = ΦT
rbmf, (6.164)

or, equivalently,

q̈tran = ΦT
tranf, (6.165)

q̈rot = ΦT
rotf. (6.166)

Notice from (6.166) that there will be rigid body rotational accelerations if ΦT
rotf 6= 0. We will

consider a modified force vector of the form

f̃ = f −MΦrots, (6.167)

202

where s is a 3x1 vector to be determined from the condition

ΦT
rotf̃ = 0. (6.168)

Substitution of (6.167) into (6.168) and use of ΦT
rotMΦrot = I then gives us

s= ΦT
rotf, (6.169)

and (6.167) then reads
f̃ = f −MΦrot(ΦT

rotf). (6.170)

Examination of Flexible Modes

By premultiplying (6.170) by ΦT
rot and using ΦT

rotMΦrot = I once again, one can confirm that
ΦT
rotf̃ = 0 as required to avoid rigid body rotational accelerations.

Let Φflex denote the mode shape matrix for the undamped flexible modes. The mode shape
matrix for all the modes can be written as Φ =

[
Φtran Φrot Φflex

]
. Notice since both ΦTMΦ

and ΦTKΦ are diagonal, it follows that ΦT
flexMΦrot = 0.

The generalized force associated with the flexible modes is given by

fflex = ΦT
flexf. (6.171)

Since ΦT
flexMΦrot = 0, we then find

f̃flex = ΦT
flexf −ΦT

flexMΦrot(ΦT
rotf)

= fflex. (6.172)

Thus, the generalized force vector f̃flex for the modified force vector is identical to the original
one fflex. This implies that the adjustments made to the original force vector do not modify the
flexible response. This is a nice feature.

Parallelization Issues

When the model is decomposed by element21 the mass matrix provides requisite information
about duplication of nodal quantities on the boundaries. Thus, nodal quantities (which are
replicated on subdomains which share a boundary) are only counted once in a dot product.
However, for statics, there is no mass matrix, and the identity is substituted for the mass matrix.
While the system matrix is the identity, the appropriate submatrix of the identity on each
subdomain is not a subdomain identity matrix. It is a diagonal matrix with entries,

Ĩsubjj = 1/cardinalitynodej

This definition of the subdomain identity submatrix, Isub permits multiplication without
duplication of values on the subdomain boundary. This submatrix must be used for
orthogonalization and for the force correction (equation 6.170).
21each element is on exactly one subdomain.

203

Filter of Output Displacements

The mass matrix also provides stabilization of the solution matrix. For statics solutions on
floating structures, the solution matrix is the stiffness matrix, which is singular. Additional tools
are in place to help the linear solver with this challenge. In particular, GDSW (see e.g.54) may
solve such systems provided that the dimension of the null space is provided. However, small
nonequilibrated forces or round off in the solver can still result in solution vectors in the range of
the null space. For statics, these displacement vectors are also filtered to eliminate the rigid body
component. The filtering uses equation 6.170, with the identity matrix replacing the mass matrix.

6.8. Traction Loads

In the traction loading of a side set, if the user specified coordinate frame Cu with basis

(ê1, ê2, ê3)

is specified with the traction vector, it is used to determine the directions of application of the
loads so that the third component remains the element normal vector, n̂.

Loads are applied in the projected coordinate frame Cp with basis

(p̂1, p̂2, n̂)

determined using the normal,

p̂1 = ê2× n̂ ρ1, p̂2 = n̂× p̂1 ρ2.

Here ρi are positive scalar normalization terms. The event ê2× n̂= 0 is handled by substituting
p̂1 = ê1× n̂ρ1 and p̂2 = n̂× p̂1 ρ2.

The direction in which forces will be applied depends on the coordinate systems. In particular
side sets will need to be chosen (or subdivided) to ensure that ê2× n̂ 6= 0.

In a cartesian coordinate frame, element normal vectors for tractions should not be aligned with
the y direction of the applicable coordinate frame. In the cylindrical frame (r,θ,z) or a spherical
coordinate frame (r,θ,φ), element normal vectors aligned with the azimuthal direction are
problematic.

204

X̃

ỸZ̃

Cuser

X̃′

Ỹ ′
Z̃′ = n

Cp

Figure 6-24. – Coordinate Frame Projection for Tractions

6.9. Consistent Loads Calculations

Starting with equation 4.1-6 from Concepts and Applications of Finite Element Analysis by Cook
et al.[43],

{re}=
∫
Ve

[B]T [E]{ε0}dV −
∫
Ve

[B]T {σ0}dV +
∫
Ve

[N]T {F}dV +
∫
Se

[N]T {Φ}dS (6.173)

where each of these terms are defined in Subsection 4.1 of the above mentioned reference. The
load vector, {re}, is composed of four parts in equation 6.173. In this document, only the last
part, which is the contribution of the surface tractions to the load vector, will be considered.
Rewriting,

{re}=
∫
Se

[N]T {Φ}dS (6.174)

Here, the integral is calculated over the surface of the element on which the surface traction, {Φ},
is applied. Therefore,

{Φ}= [ΦxΦyΦz]T (6.175)

and [N] is the shape function matrix of the element on which the surface tractions, {Φ}, are
applied. To generate a model for application inn Sierra/SD, {Φ} can be generated within
PATRAN or other preprocessors by applying a spatial field to a specified side set. In Sierra/SD
however, these spatial field values are available only on the surface nodes of the element. Using
the nodal values of this surface traction, the value at any surface location must be determined
using an interpolation function over the surface or side of the element. Since only one value per
node may be specified on the side set in Sierra/SD, a surface traction may be applied only in
one direction at a time. Therefore, {Φ} will be defined as,

205

{Φ}=


nx
ny
nz

Φ(x,y,z) (6.176)

6.9.1. Elements with consistent loads

The following 3-D and 2-D elements have consistent loads implemented:

• Hex8

• Hex20

• Wedge6

• Tet4

• Tet10

• Tria3

• TriaShell

• Tria6 (four Tria3s)

• QuadT (two Tria3s)

• Quad8T (1 QuadT and 4 Tria3s)

6.9.2. Pressure Loading

Here, we will consider only pressure loads on 3-D elements, such that

{Φ}=


nx
ny
nz

Φ(x,y,z) (6.177)

where [nx,ny,nz]T is the normal to the element face. Hence, the consistent loads can be
calculated as,

{re}=
∫
Se

[N]T {Φ}dS =
∫
Se

[N]TΦ(x,y,z)(~a×~b)dSe (6.178)

Here,

~a= [∂x
∂r
,
∂y

∂r
,
∂z

∂r
]T (6.179)

~b= [∂x
∂s
,
∂y

∂s
,
∂z

∂s
]T (6.180)

where Φ is the pressure load, and (x,y,z) are the physical coordinate directions, and (r,s) are the
local element directions for the face of the element. The normal may be obtained by taking the
cross-product of ~a and ~b.

206

6.9.3. Shape Functions for Calculating Consistent Loads

For 3-D elements, all the faces are either quadrilateral or triangular shaped. Hence, shape
functions for quads and triangles could be used to evaluate the consistent loads. However,
application of the shape functions for the 3-D elements, reduces code and “fits” better into the
current finite element class structure. This is what is currently implemented. This requires a
“mapping” of the 3-D elements’ faces to a 2-D plane. The additional overhead for using the 3-D
elements is that each face of the element must have this “mapping” which states how the
elements’ 3-D shape functions map to a 2-D element. For example, for a Hex20, the element
coordinates (η1,η2,η3) are defined in a particular way. For each face of the Hex20, defined by a
side id, the face has a local coordinate system (r,s). The “mapping” defines how (r,s) are related
to (η1,η2,η3). This also helps define how 2-D Gauss points are mapped to the 3-D face. These
mappings are available for all the linear and quadratic 3-D elements.

6.9.4. Shell Elements - consistent loads

All the 2-D elements (shell elements) compute loads based on the Tria3 shape functions. The
consistent loads calculations for the Tria3 can be “copied” to the TriaShell. This way all the shell
elements use the same consistent loads implementation. Since Carlos Felippa designed the Tria3,
his consistent loads implementation is used. The portion for linearly varying pressure loads is
shown here. If the loads are aligned along an edge, {q}, they need to be decomposed into
(qs,qn,qt). Where (s,n,t) are coordinate directions along the element edge. Coordinate s varies
along the element edge tangentially, n is normal to the element edge, and t is tangent to the
element edge in the transverse direction, i.e., in the direction of the thickness. Once, the edge
load is decomposed, the equations for consistent loads are,

f1
s = 1

20(7qs1 + 3qs2)L21 f2
s = 1

20(3qs1 + 7qs2)L21 (6.181)

f1
n = 1

20(7qn1 + 3qn2)L21 f2
n = 1

20(3qn1 + 7qn2)L21 (6.182)

f1
t = 1

20(7qt1 + 3qt2)L21 f2
t = 1

20(3qt1 + 7qt2)L21 (6.183)

m1
s =m2

s = 0 (6.184)

m1
n =− 1

60(3qt1 + 2qt2)L2
21 m2

n = 1
60(2qt1 + 3qt2)L2

21 (6.185)

m1
t =− 1

40(3qn1 + 2qn2)L2
21 m2

t = 1
40(2qn1 + 3qn2)L2

21 (6.186)

where qs1 is the value of q in the s direction at node 1 of the edge, L12 is the length of the edge.
The superscripts 1,2 are the node numbers of the edge. Note, it is assumed here that the load q is
per unit length, but this is not assumed when creating the sideset in PATRAN for example.
Therefore, this distributed load is multiplied, in Sierra/SD, by the thickness of the triangle.

207

For a pressure load on the face of the Tria3, the equations become,

f1
x = f1

y =m1
z = f2

x = f2
y =m2

z = f3
x = f3

y =m3
z = 0 (6.187)

f1
z =

(8
45p1 + 7

90p2 + 7
90p3

)
A (6.188)

f2
z =

(7
90p1 + 8

45p2 + 7
90p3

)
A (6.189)

f3
z =

(7
90p1 + 7

90p2 + 8
45p3

)
A (6.190)

m1
x = A

360[7(y31 +y21)p1 + (3y31 + 5y21)p2 + (5y31 + 3y21)p3] (6.191)

m1
y = A

360[7(x13 +x12)p1 + (3x13 + 5x12)p2 + (5x13 + 3x12)p3] (6.192)

m2
x = A

360[(5y12 + 3y32)p1 + 7(y12 +y32)p2 + (3y12 + 5y32)p3] (6.193)

m2
y = A

360[(5x21 + 3x23)p1 + 7(x21 +x23)p2 + (3x21 + 5x23)p3] (6.194)

m3
x = A

360[(3y23 + 5y13)p1 + (5y23 + 3y13)p2 + 7(y23 +y13)p3] (6.195)

m3
x = A

360[(3x32 + 5x31)p1 + (5x32 + 3x31)p2 + 7(x32 +x31)p3] (6.196)

where yij = yi−yj and xij = xi−xj , A is the area of the triangle, pi is the value of the pressure
load at node i, and (xi,yi) are coordinates of the triangle in 2-D space.

Finally, the “pseudo” elements (QuadT, Quad8T, Tria6) created by using triangles require
overhead. For example, the Quad8T is composed of 1 QuadT and 4 Tria3s. However, since it is
defined as a Quad8T, it has distribution factors at its 8 nodes, and these distribution factors have
to be mapped to the 1 QuadT and the 4 Tria3s. The number of distribution factors is 3 however,
if the load is applied to its edge. Therefore, this extra coding can be seen in the ElemLoad
method of the shells’ classes.

6.10. Solution of Singular Linear Systems

It may be required on occasion to solve problems with singular coefficient matrices. For example,
the static analysis of a structure that has no essential boundary conditions (free-free) will
typically have six rigid body modes and the stiffness matrix is singular. In this subsection, we
describe how singular linear systems are handled by the GDSW solver and also provide
supporting theory. The development below is for serial runs, but the same approach is applied to
the singular linear system associated with the coarse problem for multi-processor runs.

Consider a structure with a symmetric and positive semi-definite stiffness matrix K. The columns
of the matrix Q span the null space of K. That is, KQ= 0 and QTQ= I, where I is an identity
matrix. For example, Q can be obtained from Gram-Schmidt orthogonalization of the geometric
rigid body modes.

We are interested in solving linear systems of the form

Ku= f. (6.197)

208

Since K is singular, we must have QT f = 0 for a solution of (6.197) to exist. In other words, the
force vector must be orthogonal to the rigid body modes. We may perform a simple Gaussian
elimination process with row pivoting on the matrix Q to identify a set of linearly independent set
of rows of Q. Without loss of generality, let Q2 denote these rows of Q and let us express Q as

Q=
[
Q1
Q2

]
,

where Q2 is square and nonsingular by construction. Similarly, we express the stiffness matrix
as

K =
[
K11 K12
K21 K22

]
.

Our first step is to show that K11 is positive definite. To this end, consider a vector v of the
form

v =
[
v1
0

]
,

where v1 6= 0. We may express v as
v =Qq+Q⊥q⊥,

where q and q⊥ are vectors, QT⊥Q⊥ = I and QT⊥Q= 0. Notice if q = 0, then q⊥ 6= 0 since v1 6= 0.
Likewise, if q 6= 0, then we have from the lower block of the expression for v that

0 =Q2q+Q⊥2q⊥.

Since Q2 is nonsingular and q 6= 0, it follows that q⊥ 6= 0. Thus, in both cases we have q⊥ 6= 0
which implies v⊥ =Q⊥q⊥ 6= 0. Consequently, since vT⊥Kv⊥ > 0 for all v⊥ =Q⊥q⊥ 6= 0, we have

vT1 K11v1 = vTKv = vT⊥Kv⊥ > 0.

In other words, K11 is positive definite and thus nonsingular.

The following procedure is used in GDSW for solving (6.197) for serial runs. The same approach
for multi-processor runs applies to the singular linear system for the coarse problem.

1. Make sure f is orthogonal to Q by calculating f = f −Q(QT f).

2. Solve the linear system [
K11 0

0 I

][
ũ1
ũ2

]
︸ ︷︷ ︸

ũ

=
[
f1
0

]
.

3. Remove any null space component by calculating u= ũ−Q(QT ũ).

We next verify that the solution from this procedure satisfies (6.197). Notice from Step 2 that
ũ2 = 0 and

K11ũ1 +K12ũ2 = f1. (6.198)

The first block of equations in KQ= 0 reads as K11Q1 +K12Q2 = 0, which gives

K−1
11 K12 =−Q1Q

−1
2 .

209

Since QT f = 0, we also have
QT1 f1 +QT2 f2 = 0.

From the previous two expressions it follows that

K21K
−1
11 f1 =−Q−T2 QT1 f1

=−Q−T2 (−QT2 f2) = f2

It then follows from the previous equation and Step 2 that

K21ũ1 +K22ũ2 =K21K
−1
11 f1 = f2 (6.199)

In summary, (6.198) and (6.199) verify that the ũ calculated from the procedure satisfies Kũ= f .
The final step of the procedure removes any null space component from ũ, and we can verify

Ku=K(ũ−Q(QT ũ)) =Kũ= f

and
QTu=QT (ũ−Q(QT ũ)) =QT ũ−QT ũ= 0.

7. Contact

7.1. Multipoint Constraints

User’s Manual describes MPCs. Here coordinate system dependencies are discussed.

MPCs may be defined in any coordinate system. However, all nodes in the MPCs are defined in
the same system. This is done for convenience in parsing, and not for any fundamental reason.
Consider a constraint equation where each entry in the equation could be specified in a different
coordinate system. ∑

i

Ciu
(ki)
i = 0

where Ci is a real coefficient, and u(ki)
i represents the displacement of degree of freedom i in

degree of coordinate system ki. We can transform to the basic coordinate system using
u

(ki)
i =∑

jR
(ki)
ji u

(0)
j , where R(ki) is the rotation matrix for coordinate system ki. Then we may

write, ∑
i,j

CiR
(ki)
ji u

(0)
j = 0

or, ∑
i

C
(ki)
i u

(0)
i = 0

where C(ki)
i =∑

jR
(ki)
ij Cj . Note however, that in this analysis, we have assumed that the

dimension of C is 3. Thus, rotation into the basic frame will likely increase the number of
coefficients.

Sierra/SD is designed to support constraints through at least two methods. These include a
constraint transform method and Lagrange multipliers. Lagrange multiplier methods are used for
all the parallel solvers. The serial solver uses constraint transform methods.

210

7.2. Constraint Transformations in General Coordinate Systems

In general, constraint equations can be applied in any coordinate system. We here describe the
transformation equations and implications for general constraints in any coordinate system. The
implications of this use in Sierra/SD are also outlined.

Consider a constraint equation,
C ′u′ =Q (7.1)

where the primes indicate a generalized coordinate frame. The frame may be transformed to the
basic coordinate system using equation 1.27, and

u′ =Ru (7.2)

Rewrite equation 7.1 as
C ′Ru =Q
Cu =Q

(7.3)

where C = C ′R.

Thus, a general system of constraint equations may be easily transformed to the basic system.
Further, the rotational matrix is a 3x3 matrix which may be applied to each node’s degrees of
freedom separately.

7.2.1. Decoupling Constraint Equations

We still have a coupled system of equations. We partition the space into constrained and retained
degrees of freedom, and describe the constrained dofs in terms of its Schur complement.

u=
[
ur
uc

]
(7.4)

The whole constraint equation may be similarly partitioned.

[
Cr Cc

][ur
uc

]
= [Q] (7.5)

Note that Cr is an cxr matrix, Cc is cxc, and Q is a vector of length c. Under most conditions Q
is null.

This may be solved for uc,
uc = C−1

c Q−C−1
c Crur (7.6)

We must be concerned with cases where Cc may be either singular or over constrained. The
former case occurs if we try to eliminate c equations, but the rank of C is less than c. This could
occur if the equations are redundant. We can over constrain the system only if Q is nonzero.
Both these situations need attention, but both can be dealt with.

We may also write the solution using a transformation matrix, T .

211

[
ur
uc

]
= [T] [ur] + Q̃ (7.7)

where
T =

[
1
Crc

]
(7.8)

Crc =−C−1
c Cr (7.9)

and
Q̃=

[
0

C−1
c Q

]
=
[

0
Q̆

]
(7.10)

7.2.2. Transformation of Stiffness Matrix

We assume a similar partition of the stiffness matrix. The equations for statics are then,[
Krr Krc

Kcr Kcc

][
ur
uc

]
=
[
Rr
Rc

]
(7.11)

or,
[K] [T]ur + [K]

[
Q̃
]

=R (7.12)

and
T TKTur = T T

{
R−KQ̃

}
= R̃ (7.13)

We can define the reduced equations,

K̃ = T TKT =Krr +KrcCrc+CTrcKcr +CTrcKccCrc (7.14)

and,

R̃ = T TR−T T
[
KrcQ̆

KccQ̆

]
=Rr +CTrcRc−KrcQ̆−CTrcKccQ̆

(7.15)

The solution in the retained system is
K̃ur = R̃ (7.16)

The system may be solved using the reduced equations, and the constrained degrees of freedom
may be solved using equation 7.6. Much of this is detailed in Cook, but without the constrained
right-hand side.

For eigen analysis the mass matrix may be transformed exactly as the stiffness matrix in equation
7.14. There is no force vector.

For transient dynamics the mass and stiffness matrix transform the same. The force vector and
force vector corrections may be time dependent. There is currently no structure to store these
time dependent terms in Sierra/SD.

212

7.2.3. Application to single point constraints

Our initial efforts at applying single point constraints (SPC) has been limited to the basic
coordinate system. In that system the equations decouple, Cc is unity and Crc is zero. Then
equations 7.14 and 7.15 reduce to elimination of rows and columns.

To properly account for the coupling that occurs when the constraints are not applied in the basic
coordinate system, we must generate all the constraint equation on the node. This may be up to
a 6x6 system. I believe that there is no real conflict in first applying constraints in the basic
system, then adding additional constraints in other systems.

The process for applying constraints can be summarized as follows.

1. Generate the constraint equation in the generalized coordinate system (equation 7.1).

2. Transform the constraint equation to the basic coordinate system (equation 7.2).

3. Determine the constraint degrees of freedom. It may need to be done in concert with the
next step to keep from degrading the matrix condition.

4. Compute the two transformation matrices C−1
c and Crc from equations 7.5 and 7.9.

5. Compute the corrections to the force vector from equation 7.15. We currently do not have a
structure to store these corrections, except for the case of statics.

6. Compute the reduced mass and stiffness matrices from equation 7.14.

7. Eliminate the constraint degrees of freedom from the mass and stiffness matrix.

In addition, for post processing,

8. store the terms of the equations necessary to recover the constraint degrees of freedom
(equation 7.6).

A few words about post processing could also prove useful. In the first implementation of
Sierra/SD, constraints were applied only in the basic coordinate system. The degree of freedom
to eliminate was obvious from the Exodus file, and its value was a constant (usually zero). In
this later version, a more general approach must be used. We use the following strategy.

1. degrees of freedom directly constrained to zero are handled implicitly. This is done by
setting the G-set vector to zero before merging in the A-set results. There is no storage cost
for this.

2. Other degrees of freedom are managed using an spc_info object. An array of these objects
will be stored globally. Each object contains the degree of freedom to fill, an integer
indicating the number of other terms, a list of dofs/coefficients, and a constant. This
facilitates solutions of the form,

uspc = constant+
retained dofs∑

i

uiCi (7.17)

213

7.2.4. Multi Point Constraints

The application to multi-point constraints is very straight forward. The only difference is that the
whole system of equations must be considered together. This changes the linear algebra
significantly because the matrices must be stored in sparse format. However, the steps that are
applicable for single point constraints also apply here. Subsection 7.1 deals more explicitly with
MPCs.

7.2.5. Transformation of Power Spectral Densities

Note: The following is taken almost verbatim from Paez’s book [142]. We identify how to
transform output PDS.

Let H(f) denote a frequency response function vector for a given input (in the global system)
expressed as,

H(f) =H1(f)e1 +H2(f)e2 +H3(f)e3

where ei represents the unit vectors of this space. Note that H(f) is an output vector at a single
location in the model. H(f) can also be expressed using an alternate set of unit vectors, ẽi.

H(f) = H̃1(f)ẽ1 + H̃2(f)ẽ2 + H̃3(f)ẽ3

Taking the dot product of these two equations and equating the results, we have,

H̃1(f) =
3∑

k=1
ckiHk(f) (7.18)

where
cki = ek · ẽi

The spectral density function Gij(f) (for a given input and at a single output location) can be
expressed as,

Gij(f) = αH∗i (f)Hj(f) (7.19)

where α is a constant and superscript * denotes complex conjugate. Similarly for the alternative
coordinate frame,

G̃ij(f) = αH̃∗i (f)H̃j(f)

We may use equation 7.18 to express G̃ in terms of the Hi. We may then use the spectral
definition in equation 7.19 to provide the transformation of spectral densities.

G̃ij(f) = α

(3∑
k=1

ckiH
∗
k(f)

)(3∑
m=1

cmjHm(f)
)

=
3∑

k=1

3∑
m=1

ckicmjGkm (7.20)

This can be expressed in matrix notation as G̃= CTGC.

214

7.3. Orthogonality of MPC to Rigid Body Vectors

There are many requirements on multipoint constraints (MPCs). One that is essential is that the
constraints must be orthogonal to rigid body rotations. By this we mean that the multipoint
constraints must not constrain the system in a way that eliminates rigid body motion. This can
be easily seen in modal analysis. An ungrounded system with MPCs must retain 6 rigid body
modes. Transient and static analysis has the same issues, but here the problem may not be as
obvious. Note that there are a variety of means of arriving at the weights for a set of constraints,
such as tied data. A mortar method preserves rigid body motion with a different set of
constraints. The weights for these systems may differ, but all must allow the body to freely
rotate. It is clear that each constraint equation must satisfy this orthogonality independently.

For tied data a nodal dof on the node-surface ~xs is constrained to the nearest face by a row of C.
R is a function of the coordinates. Effectively R is a function of the lofting. Particular solutions
of the family of equations

C(λ)R(λ) = 0 (7.21)

are determined, ensuring that C is a continuous function of the lofting parameter. In other words,
enforcing orthogonality changes the constraints as little as possible.

7.3.1. Beam Example

Figure 7-25 illustrates a node ~x3 constrained to a beam with nodes ~x1 and ~x2. This beam is
represented using a 2 dimensional coordinate frame, and has no rotational degrees of freedom.
The X axis is aligned with the beam. There are two dof per node. The node ~x3 is located a
distance d from the node ~x1.

1 3 2

d

Figure 7-25. – Node Constrained Directly to Beam.

The displacement vector is defined as,

U = [u1xu1y u2xu2y u3xu3y] (7.22)

The high level approach of sections 7.3.1 and 7.3.2 is to address certain deficiencies by activating
different dof of nodes. Some Sierra codes do not allow for constraints that couple different dof of
the same nodes.

The constraints keeping node ~x3 on the beam (x3 = x1 +d) are

C(0) =
[
(1−d) 0 d 0 −1 0

0 (1−d) 0 d 0 −1

]
(7.23)

and the corresponding three orthogonal rigid body vectors are,22 The node
~xs = ~x3 = [x3,y3]T ,x3 = [x1,x2][1−d,d]T , y3 = 0. The origin o is chosen to make the rigid modes

22We are using infinitesimal rotations where sin(θ) = θ.

215

orthogonal, o= x1 +h, h= (x2−x1)/2. Finally x3 = o+ (2d−1)h.

R(0)T =

1 0 1 0 1 0
0 1 0 1 0 1
0 −θ 0 θ 0 (2d−1)θ

 , θ = 1 (7.24)

The constraints C are orthogonal (C ·R= 0) to the rigid body vectors, R.

7.3.2. Offset Example

A small offset of a tied node above the tied face is common for a variety of reasons. For example,
tying together nodes on curved surfaces often introduces an offset from the plane of constraints,
as is illustrated in Figure 7-26. Figure 7-27 shows the general case in which the third node is

Figure 7-26. – Example Node on Face Constraint on Cylinder. The faceted faces produce a small
offset from the nodal location of a point on the matching cylinder.

offset, L, along the positive Y axis. The point on the node-surface, ~xs = ~x3 = [x3,y3]T , is lofted
y3 = L. The corresponding rigid body modes are

R(λ)T =

1 0 1 0 1 0
0 1 0 1 0 1
0 −1 0 1 λ (2d−1)

 , λ= Lsign(1/2−d)/h (7.25)

What is important here is that the rotation rigid body mode gains an extra term. Rotation of
this beam about the Z axis now has a term in X. These rotational rigid body modes are no
longer orthogonal to the original constraints, 7.23.

L1 2

3

d

Figure 7-27. – Node Constrained Offset to Beam.

Row one of C(0) is the problem; row two of C(0) equals row two of C(λ). In this paragraph, c(λ)
is row one of C(λ). As a sparse vector, the graph of c(λ) is the set of nonzeros. The only vector
orthogonal to the RBM, with the same graph as C(0), namely [1,0,−1,0,0,0], does not constrain
the node. The graph of c(λ) will have to expand. Adding the y dof of active nodes to graph of C,
the solution of equation 7.21 is

c(λ) = [1−d,λ/2,d,−λ/2,−1,0]

216

7.3.3. Correct MPC Equations

A solution to the problem can be obtained by using a projection onto the plane, as illustrated in
Figure 7-28. The constraints for the projected node are determined from the standard shape
functions of the element face, as in equation 7.23. However, we also maintain a perpendicular
offset from that projection point on the face to the constrained node.

~us = ~up+~ur

and,
~ur = ~θ×~ε

where ~θ represents the rotation vector, and ~ε represents the offset. When using shells and beams,
we have ~θ as a natural part of the rotational coordinates. For solids elements, we must compute ~θ.

1X

ur

X2

θε

up

us
ur

Xs

ε

1X

uu

u

1

2

X2
p

Figure 7-28. – Constraint Projection. Standard shape functions provide the constraint relations for
the projected point, Up. A rigid perpendicular offset maintains the proper geometry to retain rigid body
invariance, and is used to compute ~ur. The total, ~us is the sum of these components.

217

Initially, one may conclude that higher order elements would alleviate the issues somewhat.
Quadratic shape functions for these elements can properly represent second order geometry and
displacements. However, multipoint constraints are inherently linear. We have not yet evaluated
the effects of MPCs on curved, higher-order element faces.

7.3.4. Orthogonalization of Incorrect MPCs

A simple orthogonalization step can make the constraint weights once again orthogonal.23 We
compute,

α = ~C · ~Ri/||~Ri||2 (7.26)
C̃ ← ~C−α~Ri (7.27)

where ~C represents the constraint equation, and ~Ri represents one of the orthogonalized rigid
body modes. As long as they span a full space, we can restrict ~R to the nodes in the constraint
interaction. This allows us to modify a constraint without generating terms that extend across
the entire body. Typically, this operation will add terms to C that were previously zero. In
general, this operation must be performed for all rigid body modes on each constraint.

The orthogonalization process of equation 7.27 works for shell and beam models that include
rotational degrees of freedom on the nodes of the constraint. If rotational dofs are added to
constraints applied only to solid elements, those constraints are ineffective because solid elements
have no active rotational degrees of freedom. However, if the degrees of freedom in the constraint
spans the space properly, these rotational degrees of freedom may be removed and only
translational degrees of freedom retained. Equation 7.27 still applies, but now is restricted to the
translational degrees of freedom on nodes in the constraint.

7.3.4.1. Orthogonalization on incomplete space. In some cases, there are insufficient degrees
of freedom in the constraint equation to adequately span the space of the rigid body vectors.
With shells and beams this is not an issue because the six dofs on a single node can represent 6
orthogonal rigid body rotations. When only solid elements are active, a minimum of three nodes
are required to represent the same six rigid body modes. When insufficient degrees of freedom are
available in the constraint, a few possibilities are presented for ensuring rigid body invariance.

1. In some cases the constraint may be orthogonal to all rigid body modes. No modification is
necessary.

This is the case for two co-located nodes that are constrained by a rigid translation. It can
be shown in this case, that the rotation vector (expressed only as translational terms) is a
null vector. The orthogonality with that vector is trivially zero.

2. The constraint could be eliminated. This may be the correct solution for two nodes tied
only by rotation. In some cases, this may change the response of the solution.

3. Additional degrees of freedom from neighboring nodes could be introduced into the
constraint. See the discussion in Figure 7-29.

23Orthogonalization can be achieved in a variety of means. This is one simple approach.

218

Detection: A critical issue is the identification of conditions that result in bad solutions. This
occurs when the orthogonalization of the vector results in a null vector. To avoid numerical
round-off issues we define this such that,

C̃

C
< δ

Where C̃ is the updated constraint equation determined from equation 7.27 and δ is a small
quantity.24

No constraints are added to the system. That would change the solution. The number of nodes (dofs)
that are involved in the orthogonalization of the RBM increases. This is much like adding an extra
independent term to a RBE3 averaging element. Recall that we restricted the RBM to the nodes involved
in the constraint. This was an arbitrary choice, determined to avoid creating constraint equations that
span the space of the solution. In this effort we broaden the space to ensure that the reduced rigid body
vectors are long enough to permit orthogonalization of each vector with respect to the constraints.
Generally, we want to add degrees of freedom that are physically near the nodes in the constraint, however
addition of nodes that are collocated or co-linear with existing constraint nodes is not beneficial. We use
the following strategy.

1. Determine the centroid of the MPC, ~xo, and a characteristic length, L.

2. Select the N nearest nodes from each processor, that are not part of the MPC. This requires a sort
by location.

3. Communicate, and contract this list to the N nearest nodes in space.

4. Apply these additional degrees of freedom, and recompute the C̃ vector and norms.

5. If the norm is still zero, issue a message and abort.

Figure 7-29. – Additional Nodes in the MPC. Unimplemented.

7.3.5. Adding the same dof of new nodes

This section revisits the offset beam problem, discussed in section 7.3.2. Here the same dof of
certain other nodes are added to the graph. The constrained node is
~x5 = [x5,y5]T ,x5 = [x1,x2][1−d,d]T , and y5 = L. In node face contact, the other vertices of the
face that have been filtered out are the natural choice: (~xi)4

i=1. Typically

~x3 ∼ ~x2 + [0, ỹ]T , ~x4 ∼ ~x1 + [0, ỹ]T (7.28)

The dimensionless parameters of interest are η = ỹ/h, ỹ < 0, and λ= Lsign(1/2−d)/h.

Hypothesis for x dof solution: η+λ 6= 0 or equivalently ỹ+Lsign(1/2−d) 6= 0.

Differentiating equation (7.21), and once again letting c denote row one of C,
ċR+ cṘ= 0,cṘ= [0,0,1]T . Nodes ~x1 and ~x2 handled the c(0) term. Nodes ~x3 and ~x4 handle the
ċ(0) term.

Define B as the result of removing the following rows and columns from R: remove the rows
corresponding to the first 2 nodes, remove even rows corresponding to the y dof in c, and remove
the middle column.

24chosen as 1/1000.

219

It helps to consider the case in which the approximation (7.28) is exact,

B =

1 η
1 η
1 −λ


The constraint is determined by BT ċ(3 : 5) = [0,1]T . The hypothesis is that B has full rank. If the
approximation (7.28) is exact, η+λ must be nonzero. More generally, the cross product of the
columns is nonzero if and only if B has full rank, a condition that can be read off from the
coordinates.

Solving BT c(3 : 5) = [0,1]T is not trivial. Unfortunately this type of equation is typically solved
via normal equations, whose inaccuracy increases with the need for accuracy. In terms of the
economy size qr factorization of B =QU , (Q has the same size as B and U in M(2,2) is upper
triangular), c(3 : 5) =QR−T [0,1]T . That means, for f such that RT f = [0,1]′, the constraint is
c= [0;Qf].

7.3.6. Lofted node face constraints

An element may or may not be tied to a node, ~xs, in a way that preserves rotations. This section
is about detecting constraints that do not preserve rotations, and then modifying the constraints
so that rotations are preserved. Lofting is a geometric characterization of the extent to which a
node face constraint preserves rotations.

To understand all of this, let’s start with some simple cases: a node face constraint tying a node
to a planar triangular face, a planar quadrilateral face, a discussion of lofting, and then remarks
the extent to a planar face accurately describes the general non-planar case.

A planar triangle is defined by three non-coincident nodes. A node face constraint is not lofted if
the constrained node is in the plane of the triangular face. The vertex coordinates determine the
matrix

R̃=

1 x0 y0 z0
1 x1 y1 z1
1 x2 y2 z2


Recall the concept of barycentric coordinates. The vertices are coplanar if and only if R̃ has rank
3, in which case the plane is the 2d set of points of the form[

1
~x

]

in the range of R̃T . Node triangular face contact involves the matrix

R=


1 x0 y0 z0
1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3

 , (x3,y3,z3) = ~xs (7.29)

A node face constraint, c, preserves rotations if and only if cTR= 0. Or geometrically, node on
planar triangular face constraints preserves rotations if and only if the constrained node is in the

220

plane determined by the triangular face. A constraint that does not preserve constraints is lofted
some nonzero distance λ above the plane,

~xs = ~xp+~nλ

Here ~xp is the orthogonal projection along the unit normal ~n of the lofted node onto the face.

The same argument applies to a planar quadrilateral. Although R̃ is 4 by 4 in this case, still has
rank of only 3. Barycentric coordinates define a plane, as in the case of a triangle. Finally R is 5
by 4 in this case.

In node face constraints, if the nodes are not planar, then barycentric coordinates define a surface,
instead of a plane. In the case of a quadrilateral, R̃ may have rank 4, but it is nearly singular.

A lofted constraint is fixed by adding nodes so that R̃ has a small condition number. This is done
by adding the nodes of the element that contains the face. There are pathological cases in the SD
test suite in which the "face" is a collection of nodes, and in these cases, nodes are added from one
of the elements attached to one of the nodes.

There’s a nifty construction of the new weights as a perturbation of the old weights, c, which not
being documented anywhere else, will be documented here. The construction is reviewed in the
case of a node tied to the quadrilateral face of a hexahedron. For the problem to be well posed,
the new weights must be a perturbation that is proportional to λ. In light of this, it is helpful
express the equations in terms of λ:

R=R(λ) =R(0) +e5λ~n
T , c= c(λ), c(0)TR(0) = 0

Our goal is to determine c(λ) so that c(λ)TR(λ) = 0. Substituting

c(λ) = c(0) +λċ(0)

c(λ)TR(λ) = λ(c(0)T Ṙ(0) + ċ(0)R(λ)

Recalling that the last coordinate of c(0) is −1, c(0)T Ṙ(0) =−e4λ(0,~nT). After adding (in this
case the other 4) nodes, there is a "reasonable" vector of weights s such that

R(0)T s=
[

0
~n

]

Note that c(0) had to be re-indexed after adding nodes. The nifty trick is the identity
RT (λ)(I+ c(0)eT9) =RT (0). In particular

RT (λ)(I+ c(0)eT5)s=
[

0
~n

]
, ċ(0) = (I+ c(0)eT9)s

7.4. Constraints and infinite eigenvalues

Constraints (in §7.1) modify equation (2.89) to an eigenvalue problem

A

[
φ
λ

]
=B

[
φ
λ

]
ω2 (7.30)

221

A=
[
K CT

C 0

]
, B =

[
M 0
0 0

]
.

The modes and mode shapes and modes satisfy the equation

Kφ+CTλ=Mφω2, (7.31)

Like superelements, Lagrange multipliers λ are not part of the finite element mesh interface.
Lagrange multipliers are not exposed to users. When an eigenvalue problem is restarted, the
Lagrange multipliers for the modes in the restart file are all set to zero.

The remainder of this section discusses a very technical issue that, every once in a while,
developers need to understand. If constraints are present then there are infinite modes[

0
λ

]
, B

[
0
λ

]
= 0.

Approximate solutions of the constrained eigenvalue problem can be misleading if the infinite
modes are not deflated. The deflation technique is due to Hans Weinberger. Fortunately in
Sierra/SD, the deflation matches the Lagrange multiplier methods used to solve the linear
systems,54,55 and is handled, for the most part, behind the scenes. Sometimes however, such
as during debugging, it is necessary to know exactly how this works, and this section
is included to address that case.

But before diving in, let’s go over what the constrained eigenvalue problem, equation (7.30), has
in common with equation (2.89). Multiplying φT and row one of equation (7.30),

Kφ+CTλ=Mφω2,

brings us to the unconstrained equation

φTKφ= φTMφω2.

The standard normalization
φT (K,M)φ= (Λ, I)

is used here too. Although
Cφ= 0,

note that
[0, λ]T

[
K CT

C 0

]
= [λTC,0] 6= 0

is the force maintaining the constraints.

The elimination of the redundant constraints uses the partition (or more precisely reordering)
C = [Cr,Cc] so that Cc square and non-singular. This is done by the linear solver. The
corresponding partition of φ into retained (independent) and constrained (dependent) vectors is

φ=
[
φr
φc

]
.

The constraint equation is Crφr +Ccφc = 0, or C−1
c Cr φr +φc = 0 or

Crc =−C−1
c Cr, φc = Crcφr. (7.32)

222

The dimension of φc equals the dimension of λ. The partition also induces a change in the
eigenvalue problem.

[
Kdd Kdi CTr
Kid Kii CTc

] φr
φc
λ

=
[
Mdd Mdi

Mid Mii

][
φr
φc

]
λ

To eliminate φc, [
Kdd+KdiCrc CTr
Kid+KiiCrc CTc

][
φr
λ

]
=
[
Mdd+MdiCrc
Mid+MiiCrc

]
φrλ (7.33)

And finally to eliminate λ, in equation (7.33) subtract from row one −CTrc times row two. For S
defined by

S(K) =Kdd+KdiCrc+CTrcKid+CTrcKiiCrc,

the reduced eigenvalue problem is
S(K)φr = S(M)φrλ

Given φr and λ, equation (7.32) determines φc. And λ is determined by

λ= C−Tc (Mid+MiiCrc−Kid−KiiCrc)φr

7.5. Sparsepak Contact Enforcement

Constraints may be eliminated using the constraint transform method. This is described in detail
in Cook, chapter 9 (ref43). In this method, the analysis set is partitioned into constrained degrees
of freedom and retained degrees of freedom. The constrained dofs are eliminated.

Unlike many Finite Element programs, Sierra/SD does not support user specification of
constraint and residual degrees of freedom. The partition of constrained and retained degrees of
freedom is performed simultaneously in the “Gauss()” routine. This routine performs full pivoting
so the constrained degrees of freedom are guaranteed to be independent. Redundant specification
of constraint equations is handled by elimination of the redundant equations and issue of a
warning. User selection of constrained dofs in Nastran has led to serious difficulty to ensure that
the constrained dofs are independent and never specified more than once.

For constraint elimination we have a constraint matrix C = [Cr, Cc] where Cc is a square,
non-singular matrix and Cr is the solution. We wish to solve for,

Crc =−[Cc]−1Cr

This is equivalent to the Gauss-Jordan elimination problem for Kx= b if we let Cr = b, Cc =K
and x=−Crc. There is one additional wrinkle: we have mixed the rows of C so Cc is
intermingled with Cr. However, we only require that CC be non-singular. Therefore, if we do a
Gaussian elimination with full pivoting we should simultaneously obtain an acceptable reordering
of C, and obtain Crc.

In practice, it is not even necessary that Cc be non-singular. It is not uncommon for two identical
constraints to be specified. The program issues a warning and continues.

Constraint transform methods do not currently support recovery of MPC forces.

223

The Gaussian elimination is presently being performed with a sparse package called "SuperLU,"
instead of a dense Gaussian elimination, to speed up the time to create Crc. On some platforms,
e.g., sgi and DEC, the blas routine dmyblas2.c in the CBLAS directory of of the SuperLU
directory (need superlu-underscore-salinas.tar to create this) should be the one and only routine
whose object file is placed into the SuperLU-blas library (presently called
libblas-underscore-super.a) to be linked in to create the Sierra/SD executable. Failure to include
this routine will cause failures of the type "Illegal value in call to DSTRV" on the above platforms,
and including more than dmyblas2.c can cause slow performance on many platforms as the
SuperLU-CBLAS could override the built-in blas routines. (The built-in routines are almost
always faster.)

7.6. GDSW Contact Enforcement

A GDSW contact enforcement method is summarized. Maintaining constraints, i.e. given any ũ,
finding “near by" u= T ũ satisfying the constraints, is discussed at the end. Contact introduces a
residual force to the momentum equation,

Ku+CTλ= f (7.34)

and the constraint
Cu= 0, C is r×n, r� n (7.35)

A null space basis Z of rank ≤ n− r satisfies CZ = 0. The full rank case, rank(Z) = n− r, is
addressed here (with the complicated software handling the general case, and including many
important optimizations). Displacements are of the form u= Zv, and the momentum equation,
(7.34), reduces to (ZTKZ)v = ZT f .

Direct elimination is a null space basis method in which permutation matrices Q and P are found
such that

0 =QCPuP = CSuP = [CSI ,CSD]
[
uIP
uDP

]
, u= PuP

Here D and I denote the dependent and independent sets. The full rank case has CSD nonsingular
for |S|= |D|= r. A clever notation is CDSCSD = I and CDSCSI = CDI . Independent
displacements uIP are independent of the constraints. Meanwhile uDP depends on uIP through
the constraints,

uDP +CDI uIP = 0, Z =
[

I
−CDI

]
.

In practice an LU decomposition

CT = P

[
LD
LI

]
UQ

leads to
LTD uDP +LTI uIP = 0, CDI = L−TD LTI .

The transformation T = PZP TI resets the dependent constraints, leaving the independent
constraints invariant. Here P = [PD,PI] so that in particular ũIP = P TI ũ.

224

7.7. Tied Friction

The work on tied surfaces with friction is under development. Details are maintained in our
design documentation.

7.8. Mortar Methods

7.8.1. Background

For simplicity, we only consider one of the three components of displacement in the following
development; the same approach holds for the other two components of displacement. Let ub and
ua denote displacements on the b and a sides of a mesh interface. Ideally, we would like to
satisfy

ua = ub

at all locations on the interface. This restriction, however, is only practical for meshes which are
conforming at the interface. Otherwise, displacements would be restricted to a low-order
polynomial of degree equal to that of the lowest-order finite element on either side of the
interface. As a result, the interface would be too stiff.

For mortar methods, the constraint ua = ub is only satisfied in a weak sense. Specifically, the
mortar constraints are of the form ∫

Γ
λ(ua−ub)dx= 0, (7.36)

where Γ denotes the interface and λ is a Lagrange multiplier. Notice the familiar inconsistent tied
contact (node on face) constraints for node can be expressed in this form by choosing λ as a Dirac
delta function for the subject node. For mortar methods it is important that constant functions
are in the space of Lagrange multipliers. Dirac delta functions cannot be combined to obtain a
constant. Thus, we should not expect the convergence rates of mortar and tied contact methods
to be identical. Indeed, the convergence rates for tied contact are in general suboptimal.25

Let qb and qa denote vectors of nodal values of displacement on the b and a sides of the interface.
Similarly, let qλ denote a vector of discrete values of the Lagrange multiplier. The displacements
and Lagrange multiplier are approximated (discretized) as follows:

ub = φTb qb, (7.37)
ua = φTa qa, (7.38)
λ= φTλ qλ, (7.39)

where φb and φa are vectors of shape functions for the b and a sides of the interface, and φλ is a
vector of shape functions for the Lagrange multiplier. A discrete form of the mortar constraints
are obtained from substitution of (7.37-7.39) into (7.36).

Mssqa+Msmqb = 0, (7.40)

where
Mss =

∫
Γ
λaφ

T
a dx, Msm =

∫
Γ
λaφ

T
b dx. (7.41)

225

The standard mortar method implemented in ACME uses

φλ = φa. (7.42)

In other words, the Lagrange multiplier shape functions are the same as the shape functions for
the a side of the interface. We note in the mortar methods literature that Lagrange multiplier
shape functions are often modified for a nodes on the boundary of the interface. The purpose for
this modification is to avoid redundant constraints at the intersection of two or more interfaces.
At present, we make no such modifications, but we will revisit this topic in a later section.
Substitution of (7.42) into (7.41) gives

M standard
ss =

∫
Γ
φaφ

T
a dx, M standard

sm =
∫

Γ
φaφ

T
b dx. (7.43)

Although the matrix M standard
ss is sparse and positive definite, its inverse is dense. Thus, if one

were to solve (7.40) for qa in terms of qb, each a node displacement would depend on all the b side
nodal displacements in the general case. As a result, solvers which make use of this form of
constraint elimination would suffer from significant memory and computational demands for
interfaces with large numbers of nodes.

Dual mortar methods find and use a Lagrange multiplier basis which leads to a diagonal Mss

matrix. Each a node displacement depends on the b node displacements in a neighborhood of the
a node. Eliminating the a node displacements is efficient. Elimination is also efficient with tied
contact.

Let σ denote an element face on the a side of the interface. Further, let σ(Γ) denote the set of all
such faces on Γ. From (7.41) we then have

Mss =
∑

σ∈σ(Γ)
Mssσ, Msm =

∑
σ∈σ(Γ)

Msmσ, (7.44)

where
Mssσ =

∫
σ
φλφ

T
a dx, Msmσ =

∫
σ
φλφ

T
b dx. (7.45)

For the dual mortar method, we choose the vector φλ to be a linear combination of rows of φa.
Specifically, for each a face σ we set

φλ =Aσφa, (7.46)

where Aσ is a transformation matrix. In order to have a method which passes constant stress
patch tests (linear consistency), it must be possible to obtain a constant function from a linear
combination of the rows of φλ. We see that Aσ equal to the identity matrix satisfies this condition
since the sum of all a shape functions over σ is unity. In this case, however, we recover the
standard mortar method. The present goal is to choose Aσ to satisfy the constant approximation
property while also leading to a diagonal matrix Mss. To this end, we follow the construction
in143 and:123

Aσ =Dσ(M standard
ssσ)−1, (7.47)

where
Dσ = diag

(∫
σ
φa dx

)
. (7.48)

226

Replacing φa in (7.43) by Aσφa, we obtain

Mdual
ss =

∑
σ∈σ(Γ)

∫
σ
Aσφaφ

T
a dx=

∑
σ∈σ(Γ)

AσM
standard
ssσ =

∑
σ∈σ(Γ)

Dσ, (7.49)

Mdual
sm =

∑
σ∈σ(Γ)

∫
σ
Aσφaφ

T
b dx=

∑
σ∈σ(Γ)

AσM
standard
smσ . (7.50)

Since each Dσ is diagonal, it follows that Mdual
ss is also diagonal.

Numerical integration over each a face σ is done in ACME by first decomposing σ into a set of
triangular facets t(σ) and then summing the contributions from each of these facets. Specifically,
from ACME we have access to the integrals

M standard
sst =

∫
t
φaφ

T
a dx, M standard

smt =
∫
t
φaφ

T
b dx, (7.51)

where t ∈ t(σ). By assembling contributions to σ, we then calculate

M standard
ssσ =

∫
σ
φaφ

T
a dx=

∑
t∈t(σ)

M standard
sst . (7.52)

With M standard
ssσ in hand, we then calculate

Mdual
sst =AσM

standard
sst =Dσ(M standard

ssσ)−1M standard
sst , (7.53)

Mdual
smt =AσM

standard
sst =Dσ(M standard

ssσ)−1M standard
smt . (7.54)

Since M standard
ssσ is symmetric and positive definite, it can be factored using the Cholesky

decomposition. Accordingly, products with the inverse of M standard
ssσ in (7.53) and (7.54) can be

obtained with calls to LAPACK routines DPOTRF and DPOTRS. It then only remains to calculate the
entries of the diagonal matrix Dσ.

Let e denote a vector of the same length as φa and with all its entries equal to 1. Since the sum of
shape functions in φa equals 1 in σ, we have

φTa e= 1. (7.55)

From (7.52) we then obtain

M standard
ssσ e=

∫
σ
φa(φTa e)dx=

∫
σ
φa dx. (7.56)

With reference to (7.48), it then follows that

Dσ = diag
(
M standard
ssσ e

)
. (7.57)

The procedure used to calculate the transformed mortar matrices Mdual
sst and Mdual

smt for the dual
Lagrange multiplier basis is summarized as follows.

1. Calculate M standard
ssσ by assembling contributions from triangular facets as in (7.52).

2. Calculate the diagonal matrix Dσ according to (7.57).

227

3. Calculate the mortar matrices Mdual
sst and Mdual

smt for the dual Lagrange multiplier basis
according to (7.53) and (7.54).

In summary, all that is needed is to replace the mortar matrices M standard
sst and M standard

smt for each
triangular facet t by their dual basis counterparts Mdual

sst and Mdual
smt . The remainder of the coding

in ACME remains the same. The only code changes on the Sierra/SD side is to pass a flag to
ACME indicating whether or not to use the dual mortar method.

7.8.2. Treatment of Interface Boundary

To be continued. This section will deal with the special treatment of constrained nodes on the
interface boundary to avoid potential redundant constraint equations.

7.8.3. Nodal Coordinate Adjustments

To be continued. This section will deal with how to initially move the constrained nodes to retain
all six rigid body modes for curved interfaces or flat interfaces with initial gaps.

7.9. Correction For Dynamic Constraint Equilibrium

Multipoint constraints defined in an initial condition that is in equilibrium are homogeneous. The
constraint equation applied to the displacement, velocity, or acceleration vanishes. A constraint
generated at an equilibrium maintains equilibrium for all time.

Under some circumstances in a transient analysis, constraints can be generated in a
non-equilibrium state. This occurs, for example, if two domains are initialized to different
pressures and then connected via an MPC. Additionally, MPCs created in the middle of a run,
such as on a moving mesh, are often created in a state that is at least subtly out of equilibrium.
In this circumstance, it is required to bring the constraint into an equilibrium state as quickly as
possible to enforce the intended continuity. Generally, immediate enforcement of a constraint on
the primary variable will not regain equilibrium. For example, if enforcement of the constraint
immediately eliminates a displacement jump, this will cause a large discontinuity of velocity at
the constraint.

To remedy this situation, a special sequence of non-homogeneous constraints is generated that
brings the constraint back to equilibrium as quickly as possible: specifically, in exactly three
transient time steps.

Section 2.1 gives a detailed description of the Newmark beta time integration method. Let d+

and d− indicate the displacement variable on either side of an interface at which a constraint is to
be applied. The constraint violation across the interface is u= d+−d−. At the current step, we
know the values

un =d+
n −d−n

u̇n =v+
n −v−n

ün =a+
n −a−n ,

228

but time-stepping must be done in a special way in order to bring u, u̇, ü back to zero. Although
not required for the method to work, we simplify the following discussion by assuming the
standard values of γ = 1

2 and β = 1
4 . Rewriting in u equation 2.4 for the Newmark beta step, we

obtain equations 7.58 and 7.59.

u̇n+1 =u̇n+ ∆t
2 (ün+ ün+1) (7.58)

un+1 =un+ ∆tu̇n+ ∆t2
4 ün+ ∆t2

4 ün+1 (7.59)

The target value for the constraint violation, un+1, will be specified later. Equation 7.59 can thus
be rearranged to provide the unknown acceleration ün+1 as a function of the known initial
conditions and un+1, shown in equation 7.60.

ün+1 = −ün∆t2−4un+ 4un+1−4∆tu̇n
∆t2 (7.60)

Recursively applying equations 7.58 and 7.60 yields the acceleration and velocity at the end of
three steps as a function of the assumed target values un+1,un+2,un+3 for the constraint
violation:

u̇n+1 =−2un+ 2un+1−∆tu̇n
∆t (7.61)

ün+2 =−ün+1∆t2−4un+1 + 4un+2−4∆tu̇n+1
∆t2 (7.62)

u̇n+2 =−2un+1 + 2un+2−∆tu̇n+1
∆t (7.63)

ün+3 =−ün+2∆t2−4un+2 + 4un+3−4∆tu̇n+2
∆t2 (7.64)

u̇n+3 =−2un+2 + 2un+3−∆tu̇n+2
∆t (7.65)

Next assume a formula that will set the target constraint violation for the next step in terms of
the current displacement, velocity, and acceleration constraint violation. Assume there exist some
unknown coefficients weighting the mismatch in current displacement, velocity, and acceleration
as given in Equations 7.66, 7.67, 7.68.

un+1 =Cdun+Cv∆tu̇n+Ca∆t2ün (7.66)
un+2 =Cdun+1 +Cv∆tu̇n+1 +Ca∆t2ün+1 (7.67)
un+3 =Cdun+2 +Cv∆tu̇n+2 +Ca∆t2ün+2 (7.68)

Equations 7.64, 7.65, 7.68 can be simultaneously solved to find the update coefficients that yield
exactly zero displacement, velocity, and acceleration at the end of the third step:

un+3 = 0, u̇n+3 = 0, ün+3 = 0. (7.69)

Note that by plugging 7.66 into 7.67 to express un+1 in terms of Cd,Cv,Ca, and 7.67 into 7.68 to
express un+2 in terms of Cd,Cv,Ca, the equations become non-linear in the unknown coefficients
Cd,Cv,Ca. This solution yields the coefficients in equation 7.70:

Cd = 3
4 , Cv = 1

2 , Ca = 1
16 . (7.70)

229

When the update coefficients are used to set a target constraint violation at the next step, then
for any initial conditions the constraint will reach total equilibrium after exactly three Newmark
beta time steps. Once this equilibrium is reached, the target displacement for the constraint
becomes zero and for all future steps the constraint is a standard homogeneous constraint. Two
examples of the equations of motion utilizing the constraint update coefficients are given in
figures 7-30 and 7-31.

1 2 3 4 5
Step

100

200

300

400

500

Disp

Figure 7-30. – Equilibration from uA = 100 uB = 500

1 2 3 4 5
Step

500

1000

1500

Disp

Figure 7-31. – Equilibration from uA = 200 uB = 700 u̇A =−200 u̇B = 1600 üA =−1000 üB = 400

230

BIBLIOGRAPHY

[1] M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Analysis.
1st ed. John Wiley & Sons, Inc., 2000 (cit. on p. 53).

[2] D. J. Allman. “A Compatible Triangular Element Including Vertex Rotations for Plane
Elasticity Problems”. In: Comput. and Struct. 19.1-2 (1996), pp. 1–8 (cit. on pp. 144, 145).

[3] A. Alonzo et al. “An Adaptive Finite Element Scheme to Solve Fluid-Structure Vibration
Problems on Non-Matching Grids”. In: Computing and Visualization in Science 4 (2001),
pp. 67–78 (cit. on p. 76).

[4] Kenneth F. Alvin et al. “Incorporation of Sensitivity Analysis into a Scalable Massively
Parallel Structural Dynamics FEM code”. In: Presented at the 5th U.S. Congress on
Computational Mechanics. Boulder, CO, Aug. 1999 (cit. on p. 52).

[5] Kenneth F. Alvin et al. “Membrane triangles with corner drilling freedoms – I. The EFF
element”. In: Finite Elements in Analysis and Design 12 (1992), pp. 163–187 (cit. on
p. 146).

[6] M. Aminpour, J. Ransom, and S. McCleary. “A coupled analysis method for structures
with independently modelled finite element subdomains”. In: Int. J. Numer. Meth. Engng.
38 (1995), pp. 3695–3718 (cit. on p. 75).

[7] Anonymous. Abaqus Theory Manual. Dassault Systémes, 2011 (cit. on pp. 167, 168, 190).
[8] Peter Arbenz et al. “A Comparison of Eigensolvers for Large-scale 3D Modal Analysis

using AMG-Preconditioned Iterative Methods”. In: Int. J. Numer. Meth. Engng. 1 (2003),
pp. 1–21 (cit. on p. 34).

[9] Srinivasan Arunajatesan, Neeraj Sinha, and Lawrence Ukeiley. “On the application of
Hybrid RANS-LES and proper orthogonal decomposition techniques to control of cavity
flows”. In: DNS/LES Progress and Challenges: Proceedings of the Third AFOSR
International Conference on DNS/LES. Vol. ADA412801. Aug. 2001, pp. 673–688 (cit. on
p. 116).

[10] Srinivasan Arunajatesan et al. “High Performance Computational Modeling of Unsteady
Surface Loads in Complex Weapons Bays”. In: 2009 DoD High Performance Computing
Modernization Program Users Group Conference (2009), pp. 57–66 (cit. on p. 116).

[11] Srinivasan Arunajatesan et al. “One-Way Coupled Fluid Structure Simulations of Stores in
Weapons Bays”. In: 51st Aerospace Sciences Meeting (Jan. 2013). SAND2012-4687A
(cit. on p. 116).

[12] R. J. Astley. “Infinite Elements Wave Problems: A Review of Current Formulations and an
Assessment of Accuracy”. In: Int. J. Numer. Meth. Engng. 49 (2000), pp. 951–976 (cit. on
p. 172).

[13] R. J. Astley. “Transient Wave Envelope Elements for Wave Problems”. In: Journal of
Sound and Vibration 192.1 (1996), pp. 245–261 (cit. on pp. 172, 175, 177).

231

[14] R. J. Astley and J. P. Coyette. “Conditioning of Infinite Element Schemes for Wave
Problems”. In: Communications in Numerical Methods in Engineering 17 (2001),
pp. 31–41 (cit. on p. 177).

[15] R. J. Astley, J. P. Coyette, and L. Cremers. “Three dimensional Wave Envelope Elements
of Variable Order for Acoustic Radiation and Scattering Part II Formulation in the Time
Domain”. In: Journal of the Acoustical Society of America 103.1 (1998), pp. 64–72 (cit. on
p. 172).

[16] R. J. Astley and J. A. Hamilton. “The Stability of Infinite Element Schemes for Transient
Wave Problems”. In: Computer Meth. in Appl. Mech. Eng. 195 (2006), pp. 3553–3571
(cit. on p. 175).

[17] R. J. Astley, G. J. Macaulay, and J. P. Coyette. “Mapped Wave Envelope Elements for
Acoustical Radiation and Scattering”. In: Journal of Sound and Vibration 170.1 (1994),
pp. 97–118 (cit. on p. 175).

[18] R. J. Astley et al. “Three dimensional Wave Envelope Elements of Variable Order for
Acoustic Radiation and Scattering Part I Formulation in the Frequency Domain”. In:
Journal of the Acoustical Society of America 103.1 (1998), pp. 49–63 (cit. on pp. 172, 177).

[19] B. A. Auld. Acoustic Fields and Waves in Solids, Second Edition. Vol. I. Robert E. Krieger
Publishing Company, 1990 (cit. on p. 125).

[20] M. Baruch and Y. Zemel. “Mass Conservation in the Identification of Space Structures”.
In: AIAA Jounral 1239 (1989). ASME, ASCE, AHS, and ASC, Structures, Structural
Dynamics and Materials Conference, pp. 710–712 (cit. on p. 10).

[21] Jean-Louis Batoz, Klaus-Jurgen Bathe, and Lee-Wing Ho. “A Study of Three-Node
Triangular Plate Bending Elements”. In: Int. J. Numer. Meth. Engng. 15 (1980),
pp. 1771–1812 (cit. on pp. 144, 145).

[22] T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and
Structures. 1st ed. John Wiley & Sons, 2000 (cit. on pp. 17, 19, 167).

[23] T. Belytschko, CS Tsay, and WK Liu. “A stabilization matrix for the bilinear Mindlin
plate element”. In: Computer Meth. in Appl. Mech. Eng. 29.3 (1981), pp. 313–327 (cit. on
p. 150).

[24] A. Bermudez, P. Gamallo, and R. Rodriguez. “A Hexahedral Face Element for
Elastoacoustic Vibration Problems”. In: JASA 109.1 (2001), pp. 422–425 (cit. on p. 76).

[25] C. Bernardi, Y. Maday, and A. T. Patera. “A New Nonconforming Approach to Domain
Decomposition: the Mortar Element Method”. In: Nonlinear Partial Differential Equations
and Their Applications. Collége de France Seminar, Vol XI (Paris, 1989-1991). vol 299 of
Pitman Res. Math. Ser., Longman Sci. Tech., Harlow, 1994, pp. 13–51 (cit. on p. 225).

[26] C. Bernardi and R. Verfurth. “Adaptive finite element methods for elliptic equations with
non-smoooth coefficients”. In: Numerische Mathematik 85 (2000), pp. 579–608 (cit. on
p. 58).

[27] R. T. Beyer. Nonlinear Acoustics. Department of the Navy, Sea Systems Command, 1974
(cit. on p. 88).

[28] Robert D. Blevins. Formulas for Natural Frequency and Mode Shape. Malabar, FL, USA:
Krieger, 1984 (cit. on pp. 146, 149).

232

[29] R. Boman and J. Ponthot. “Finite element simulation of lubricated contact in rolling using
the arbitrary Lagrangian-Eulerian formulation”. In: Computer Meth. in Appl. Mech. Eng.
193 (2004), pp. 4323–4353 (cit. on p. 190).

[30] M. Brinkmeier et al. “A Finite Element Approach for the Simulation of Tire Rolling
Noise”. In: Journal of Sound and Vibration 309.1-2 (2008), pp. 20–39 (cit. on p. 102).

[31] K. Brown and T. Voth. ACME: Algorithms for Contact in a Multiphysics Environment,
API Version 1.3. Tech. rep. SAND Report 2003-1470. Sandia National Laboratories, 2003
(cit. on p. 79).

[32] G. Bunting, C.B. Smith, and T. Walsh. Massively Parallel Capability in Sierra/SD for
Vibration with Piezoelectrics. Tech. rep. SAND2021-2373. PO Box 5800, Albuquerque, NM
87185-5800: Sandia National Laboratories, 2021 (cit. on p. 69).

[33] Gregory Bunting. Strong and Weak Scaling of the Sierra/SD Eigenvector Problem to a
Billion Degrees of Freedom. Tech. rep. SAND 2019-1217. Sandia National Laboratories,
2019 (cit. on p. 34).

[34] Gregory Bunting et al. “Parallel Ellipsoidal Perfectly Matched Layers for Acoustic
Helmholtz Problems on Exterior Domains”. In: Journal of Computational Acoustics (2018)
(cit. on p. 181).

[35] D. S. Burnett and R. L. Holford. “An Ellipsoidal Acoustic Infinite Element”. In: Computer
Meth. in Appl. Mech. Eng. 164.1-2 (1998), pp. 49–76 (cit. on p. 186).

[36] X. Cai and A. Odegard. “Parallel Simulation of 3D Nonlinear Acoustic Fields on a Linux
Cluster”. In: IEEE International Conference on Cluster Computing. 2000 (cit. on pp. 88,
89, 96, 97).

[37] T. Carne et al. Finite Element Analysis and Modal Testing of a Rotating Wind Turbine.
Tech. rep. SAND82-0345. Sandia National Laboratories, 1982 (cit. on p. 190).

[38] K. Castor et al. “Long-Range Propagation of Finite-Amplitude Acoustic Waves in an
Ocean Waveguide”. In: JASA 116.4 (2004), pp. 2004–2010 (cit. on p. 88).

[39] H. C. Chen and R. L. Taylor. “Vibration Analysis of Fluid-Solid Systems Using a Finite
Element Displacement Formulation”. In: Int. J. Numer. Meth. Engng. 29 (1990),
pp. 683–698 (cit. on p. 89).

[40] J. Chung and G. M. Hulbert. “A Time Integration Algorithm for Structural Dynamics
with Improved Numerical Dissipation - The Generalized Alpha Method”. In: JAM 60.2
(1993), pp. 371–375 (cit. on pp. 83, 93).

[41] J. L. Cippola and M. J. Butler. “Infinite Elements in the Time Domain using a Prolate
Spheroidal Multipole Expansion”. In: Int. J. Numer. Meth. Engng. 43 (1998), pp. 889–908
(cit. on p. 172).

[42] F. Collino and P. Monk. “The Perfectly Matched Layer in Curvilinear Coordinates”. In:
SIAM J. Sci. Comp. 19.6 (1998), pp. 2061–2090 (cit. on p. 185).

[43] R. D. Cook and M. E. Plesha D. S. Malkus. Concepts and Applications of Finite Element
Analysis. 3rd. John Wiley & Sons, 1989 (cit. on pp. 40, 127, 144, 146, 151, 152, 205, 223).

[44] R. D. Cook and M. E. Plesha D. S. Malkus. Concepts and Applications of Finite Element
Analysis: Chapter 9. 3rd. John Wiley & Sons, 1989 (cit. on pp. 81, 82).

[45] G. M. Corcos. “Resolution of Pressure in Turbulence”. In: J. Acoustical Society of America
35.2 (1963), pp. 192–199 (cit. on p. 198).

233

[46] R. R. Craig. Structural Dynamics: An Introduction to Computer Methods. John Wiley &
Sons, 1981 (cit. on pp. 28, 45).

[47] David M. Day and Tim Walsh. Damped Structural Dynamics. Tech. rep. SAND2007-2072.
Sandia National Laboratories, 2007 (cit. on pp. 37, 38).

[48] Lawrence J. DeChant and Justin A. Smith. Band Limited Correlation Estimates for
A(ξω/U) and B(ηω/U) Using Beresh et. al. 2013 Data Sets. Tech. rep. SAND2014-1123.
Sandia National Laboratories, 2014 (cit. on p. 198).

[49] L. Demkowicz. Computing with hp-Adaptive Finite Elements, Volume 1: One and Two
Dimensional Elliptic and Maxwell Problems. Chapman and Hall, CRC, 2007 (cit. on
p. 183).

[50] L. Demkowicz and J. Shen. “A Few New (?) Facts about Infinite Elements”. In: Computer
Meth. in Appl. Mech. Eng. 195 (2006), pp. 3572–3590 (cit. on p. 177).

[51] L. Demkowicz et al. Computing with hp-Adaptive Finite Elements, Volume 2: Frontiers,
Three Dimensional Elliptic and Maxwell Problems with Applications. Chapman and Hall,
CRC, 2008 (cit. on p. 183).

[52] C. Dohrmann, S. Key, and M. Heinstein. “A Method for Connecting Dissimilar Finite
Element Meshes in Two Dimensions”. In: Int. J. Numer. Meth. Engng. 48 (2000),
pp. 655–678 (cit. on p. 81).

[53] C. Dohrmann, S. Key, and M. Heinstein. “Methods for Connecting Dissimilar
Three-Dimensional Finite Element Meshes”. In: Int. J. Numer. Meth. Engng. 47 (2000),
pp. 1057–1080 (cit. on pp. 75, 81).

[54] Clark Dohrmann. GDSW 101. May 2008 (cit. on pp. 204, 222).
[55] Clark Dohrmann. Some Notes on the 3-Level GDSW Solver. Aug. 2005 (cit. on p. 222).
[56] D. Dreyer and O. von Estorff. “Improved Conditioning of Infinite Elements for Exterior

Acoustics”. In: Int. J. Numer. Meth. Engng. 58 (2003), pp. 933–953 (cit. on p. 177).
[57] R. Duran, C. Padra, and R. Rodriguez. “A Posteriori Error Estimates for the Finite

Element Approximation of Eigenvalue Problems”. In: Mathematical Models and Methods in
Applied Sciences 13.8 (2003), pp. 1219–1229 (cit. on p. 60).

[58] M. S. Eldred, V. B. Venkayya, and W. J. Anderson. “Mode tracking issues in structural
optimization”. In: AIAA Journal 33.10 (1995), pp. 1926–1933 (cit. on p. 51).

[59] M. Endo et al. “Flexible Vibration of a Thin Rotating Ring”. In: Journal of Sound and
Vibration 92.2 (1984), pp. 261–272 (cit. on p. 190).

[60] B. O. Enflo and C. M. Hedberg. Theory of Nonlinear Acoustics in Fluids. Kluwer
Academic Publishers, 2002 (cit. on pp. 88, 90).

[61] A. Ertas, J. T. Krafcik, and S. Ekwaro-Osire. “Explicit Formulation of an Anisotropic
Allman/DKT 3-Node Thin Triangular Flat Shell Elements”. In: Composite Material
Technololgy 37 (1991), pp. 249–255 (cit. on p. 145).

[62] G. C. Everstine. “Finite Element Formulations of Structural Acoustics Problems”. In:
Comput. and Struct. 65.3 (1997), pp. 307–321 (cit. on pp. 75, 171).

[63] C. Farhat and P. Geuzaine. “Design and Analysis of Robust ALE Time-Integrators for the
Solution of Unsteady Flow Problems on Moving Grids”. In: Computer Meth. in Appl.
Mech. Eng. 193 (2004), pp. 4073–4095 (cit. on p. 89).

234

[64] C. Farhat, P. Geuzaine, and C. Grandmont. “The Discrete Geometric Conservation Law
and the Nonlinear Stability of ALE Schemes for the Solution of Flow Problems on Moving
Grids”. In: J. Comp. Phys. 174 (2001), pp. 669–694 (cit. on pp. 89, 119).

[65] C. Farhat, M. Lesoinne, and P. LeTallec. “Load an motion transfer algorithms for fluid
structure interaction problems with non-matching discrete interfaces: Momentum and
energy conservation, optimal discretization and applications to aeroelasticity”. In:
Computer Meth. in Appl. Mech. Eng. 157 (1998), pp. 95–114 (cit. on p. 120).

[66] C. Farhat, K. G. van der Zee, and P. Geuzaine. “Provably second-order time-accurate
loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity”.
In: Computer Meth. in Appl. Mech. Eng. 195 (2006), pp. 1973–2001 (cit. on pp. 120, 121).

[67] C. A. Felippa. The SS8 Solid-Shell Element: Formulation and a Mathematica
Implementation. Tech. rep. CU-CAS-02-03. Univ. Colo. at Boulder, 2002 (cit. on p. 166).

[68] Carlos A. Felippa and Scott Alexander. “Membrane triangles with corner drilling freedoms
– III. Implementation and performance evaluation”. In: Finite Elements in Analysis and
Design 12 (1992), pp. 203–239 (cit. on p. 146).

[69] Carlos A. Felippa and Carmelo Militello. “Membrane triangles with corner drilling
freedoms – II. The ANDES element”. In: Finite Elements in Analysis and Design 12
(1992), pp. 189–201 (cit. on p. 146).

[70] D.P. Flanagan and T. Belytschko. “A Uniform Strain Hexahedron and Quadrilateral with
Orthogonal Hourglass Control”. In: Int. J. Numer. Meth. Engng. 17 (1981). doi,
pp. 679–706 (cit. on p. 133).

[71] D.P. Flanagan and T. Belytschko. “Simultaneous relaxation in structural dynamics”. In:
Journal of the Engineering Mechanics Division, ASCE 107 (1981), pp. 1039–1055 (cit. on
p. 133).

[72] B. Flemisch, M. Kaltenbacher, and B. Wohlmuth. “Elasto-acoustic and acoustic-acoustic
coupling on non-matching grids”. In: Int. J. Numer. Meth. Engng. 67.13 (2006),
pp. 1791–1810 (cit. on p. 75).

[73] R. L Fox and M. P. Kapoor. “Rate of Change of Eigenvalues and Eigenvectors”. In: AIAA
Journal 6 (1968), pp. 2426–2429 (cit. on pp. 51, 53).

[74] F. Fuentes et al. “Orientation embedded high order shape functions for the exact sequence
elements of all shapes”. In: Computers and Mathematics with Applications 70.1 (2015),
pp. 353–458 (cit. on p. 2).

[75] M. J. Gagen. “Novel Acoustic Sources from Squeezed Cavities in Car Tires”. In: JASA
106.2 (1999), pp. 794–801 (cit. on p. 88).

[76] K. Gerdes. “A Review of Infinite Element Methods for Exterior Helmholtz Problmes”. In:
Journal of Computational Acoustics 8 (1 2000), pp. 43–62 (cit. on p. 172).

[77] Mircea Grigoriu. Stochastic Calculus, Applications in Science and Engineering. Birkhäuser,
2002 (cit. on p. 200).

[78] M. F. Hamilton and D. T. Blackstock. Nonlinear Acoustics. Academic Press, 1998 (cit. on
pp. 88, 90, 91).

[79] I. Harari et al. “Recent Developments in Finite Element Methods for Structural
Acoustics”. In: Archives of Computational Methods in Engineering 3 (1996), pp. 132–311
(cit. on p. 75).

235

http://dx.doi.org/10.1002/nme.1620170504

[80] Bjørn Haugen. “Buckling and Stability Problems for Thin Shell Structures Using High
Performance Finite Elements”. PhD thesis. Boulder: University of Colorado at Boulder,
1988 (cit. on p. 44).

[81] V. Heuveline and R. Rannacher. “A Posteriori Error Control for Finite Element
Approximations of Elliptic Eigenvalue Problems”. In: Advances in Computational
Mathematics 15 (2001), pp. 107–138 (cit. on pp. 53, 54).

[82] E. Hinton, T. Rock, and 0. C. Zienkiewicz. “A note on mass lumping and related processes
in the finite element method”. In: Earthquake Engineering & Structural Dynamics 4
(1976), pp. 245–249 (cit. on p. 170).

[83] J. Hoffelner, H. Landes, and R. Lerch. “Calculation of Acoustic Streaming Velocity and
Radiation Force Based on Finite Element Simulations of Nonlinear Wave Propagation”. In:
Proceedings of IEEE Ultrasonics Symposium 1 (2000), pp. 585–588 (cit. on p. 89).

[84] J. Hoffelner et al. “Finite Element Simulation of Nonlinear Wave Propagation in
Thermoviscous Fluids Including Dissipation”. In: IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control 48.3 (2001), pp. 779–786 (cit. on pp. 88, 89, 96).

[85] Thomas J. R. Hughes. The Finite Element Method–Linear Static and Dynamic Finite
Element Analysis. Prentice-Hall, Inc, 1987 (cit. on pp. 134, 141, 142).

[86] A. Ibrahimbegovic and E. L. Wilson. “A Modified Method of Incompatible Modes”. In:
Communications in Applied Numerical Methods 7 (1991), pp. 187–194 (cit. on pp. 135,
136).

[87] Y. Jinyun. “Symmetric Gaussian quadrature formulae for tetrahedral regions”. In:
Computer Meth. in Appl. Mech. Eng. 43 (1984) (cit. on p. 142).

[88] Steven G Johnson. “Notes on Perfectly Matched Layers”. In: Lecture notes, Massachusetts
Institute of Technology (2008) (cit. on p. 182).

[89] Y. Kagawa et al. “Finite Element Simulation of Nonlinear Sound Wave Propagation”. In:
Journal of Sound and Vibration 154 (1992), pp. 125–145 (cit. on p. 89).

[90] P. Keast. “Moderate degree tetrahedral quadrature formulas”. In: Computer Meth. in
Appl. Mech. Eng. 55 (1986) (cit. on p. 142).

[91] Samuel W. Key. personal communication. Dec. 2003 (cit. on p. 134).
[92] Tae Soo Kim and Yoo Young Kim. “Mac-based mode-tracking in structural topology

optimization”. In: Comput. and Struct. 74 (2000), pp. 375–383 (cit. on p. 51).
[93] Kinsler et al. Fundamentals of Acoustics. John Wiley & Sons, 1982 (cit. on p. 179).
[94] V. P. Kuznetsov. “Equations of Nonlinear Acoustics”. In: Sov. Phys. Acoust. 16 (1971),

pp. 467–470 (cit. on pp. 88, 90).
[95] G. F. Lang. “Demystifying Complex Modes”. In: Sound and Vibration Magazine 28.8

(1989), pp. 36–40 (cit. on p. 100).
[96] Matts Larsen. “A Posteriori and a Priori Error Analysis for Finite Element

Approximations of Self-Adjoint Elliptic Eigenvalue Problems”. In: SIAM J. Numer. Anal.
38.2 (2000), pp. 608–625 (cit. on pp. 53–55).

[97] R. Laurenson. “Modal Analysis of Rotating Flexible Structures”. In: AIAA Journal 14.10
(1976), pp. 1444–1450 (cit. on p. 190).

236

[98] T. Laursen and M. Heinstein. “Consistent mesh tying methods for topologically distinct
discretized surfaces in nonlinear solid mechanics”. In: Int. J. Numer. Meth. Engng. 57
(2003), pp. 1197–1242 (cit. on pp. 75, 81).

[99] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide. Philadelphia, PA,
USA: SIAM, 1998 (cit. on p. 34).

[100] Michael J Lighthill. “On sound generated aerodynamically. I. General theory”. In:
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 211.1107 (1952), pp. 564–587 (cit. on p. 116).

[101] Peter W. Likins. “Finite element appendage equations for hybrid coordinate dynamic
analysis”. In: International Journal of Solids and Structures 8.5 (1972), pp. 709–731
(cit. on p. 98).

[102] Abimael F.D. Loula, Thomas J.R. Hughes, and Leopoldo P. Franca. “Petrov-Galerkin
formulations of the Timoshenko beam problem”. In: Computer Meth. in Appl. Mech. Eng.
63.2 (1987), pp. 115–132. issn: 0045-7825 (cit. on p. 147).

[103] R. H. MacNeal. Finite Elements: Their Design and Performance. Marcel Dekker, 1994
(cit. on p. 135).

[104] R. H. MacNeal. The NASTRAN Theoretical Manual. NASTRAN Theoretical Manual was
first published by NASA through COSMIC. NASA no longer maintains NASTRAN and
COSMIC no longer exists. Various vendors reproduce this manual with permission from
NASA. None, 1972 (cit. on p. 146).

[105] G. Mahan. Applied Mathematics. Kluwer Academic Publishers, 2002 (cit. on p. 101).
[106] S. Makarov and M. Ochmann. “Nonlinear and Thermoviscous Phenomena in Acoustics,

Part II”. In: Acustica 83.2 (1997), pp. 197–222 (cit. on pp. 90, 91, 95).
[107] J. Mandel. “An Iterative Substructuring Method for Coupled Fluid-Solid Acoustic

Problems,” in: J. Comp. Phys. 177 (2002), pp. 95–116 (cit. on p. 75).
[108] P. J. Matuszyk and L. Demkowicz. “Parametric Finite Elements, Exact Sequences, and

Perfectly Matched Layers”. In: Computational Mechanics 51.1 (2013), pp. 35–45 (cit. on
p. 185).

[109] L. Meirovitch. “A New Method of Solution of the Eigenvalue Problem for Gyroscopic
Systems”. In: AIAA Journal 12.10 (1974), pp. 1337–1342 (cit. on p. 98).

[110] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2001 (cit. on p. 100).
[111] Ch Michler et al. “Improving the performance of Perfectly Matched Layers by means of

hp-adaptivity”. In: Numerical Methods for Partial Differential Equations 23.4 (2007),
pp. 832–858 (cit. on p. 183).

[112] Matjaž Mršnik, Janko Slavič, and Miha Botežar. “Frequency-domain methods for a
vibration-fatigue-life estimation - Application to real data”. In: International Journal of
Fatigue 47 (2013), pp. 8–17 (cit. on p. 72).

[113] MSC support. url: http://support.mscsoftware.com/ (cit. on p. 158).
[114] U. Nackenhorst. “The ALE-formulation of bodies in rolling contact. Theoretical

foundations and finite element approach”. In: Computer Meth. in Appl. Mech. Eng. 193
(2004), pp. 4299–4322 (cit. on p. 190).

[115] K. Naugolnykh and L. Ostrovsky. Nonlinear Wave Processes in Acoustics. Cambridge
University Press, 1998 (cit. on pp. 88, 90).

237

http://support.mscsoftware.com/

[116] R. B. Nelson. “Simplified Calculation of Eigenvector Derivatives”. In: AIAA Journal 14.9
(1976), pp. 1201–1205 (cit. on pp. 51, 52).

[117] O. O. Ochoa and J. N. Reddy. Finite Element Analysis of Composite Laminates. Kluwer
Academic Publishers, 1992 (cit. on p. 151).

[118] J. T. Oden and S. Prudhomme. “Error Estimation of Eigenfrequencies for Elasticity and
Shell Problems”. In: Mathematical Models and Methods in Applied Sciences 13.3 (2003),
pp. 323–344 (cit. on pp. 53, 63, 66).

[119] M. A. Hamdi Y. Ousset and G. Verchery. “A Displacement Method for the Analysis of
Coupled Fluid-Structure Systems”. In: Int. J. Numer. Meth. Engng. 13 (1978),
pp. 139–150 (cit. on p. 89).

[120] A. D. Pierce. Acoustics: An Introduction to Its Physical Principles and Applications. ASA,
1989 (cit. on pp. 75, 179).

[121] Serge Prudhomme. personal communication. Mar. 2004 (cit. on p. 64).
[122] J. S. Przemieniecki. Theory Of Matrix Structural Analysis. Dover Publications, 1968

(cit. on p. 146).
[123] Michael A. Puso. “A 3D mortar method for solid mechanics”. In: Int. J. Numer. Meth.

Engng. 59 (2004), pp. 315–336 (cit. on pp. 75, 81, 83, 226).
[124] J. N. Reddy. An Introduction to the Finite Element Method. 1st ed. McGraw Hill, 1984

(cit. on pp. 149–151).
[125] J. N. Reddy. An Introduction to the Finite Element Method. 2nd ed. McGraw Hill, 1993

(cit. on p. 149).
[126] Garth Reese, Rich Field, and Daniel J. Segalman. “A Tutorial on Design Analysis Using

von Mises Stress in Random Vibration Environments”. In: Shock and Vibration. Digest
32.6 (2000) (cit. on p. 23).

[127] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press
UK, 1992 (cit. on p. 100).

[128] Daniel J. Segalman. A Four-Parameter Iwan Model for Lap-Type Joints. Tech. rep. SAND
2002-3828. Sandia National Laboratories, Nov. 2002 (cit. on p. 67).

[129] Daniel J. Segalman. “A Four-Parameter Iwan Model for Lap-Type Joints”. In: Journal of
Applied Mechanics 72 (Sept. 2005), pp. 752–760 (cit. on p. 67).

[130] J. L. Shirron and T. E. Giddings. “A Finite Element Model for Acoustic Scattering from
Objects Near a Fluid-Fluid Interface”. In: Computer Meth. in Appl. Mech. Eng. 196
(2006), pp. 279–288 (cit. on p. 185).

[131] David O. Smallwood. “An Improved Recursive Formula for Calculating Shock Response
Spectra”. In: Shock and Vibration Bulletin 51.2 (1981), pp. 211–217 (cit. on p. 69).

[132] David O. Smallwood. “An Improved Recursive Formula for Calculating Shock Response
Spectra”. In: Shock and Vibration Bulletin 56.1 (1986), pp. 285–287 (cit. on p. 69).

[133] L. H. Soderholm. “On the Kuznetsov Equation and Higher Order Nonlinear Acoustics
Equations”. In: Proc. 15th International Symposium on Nonlinear Acoustics, Göngen 524.1
(2000), pp. 133–136 (cit. on pp. 88, 91).

[134] R. L. Taylor, P. J. Beresford, and E. L. Wilson. “A Non-conforming Element for Stress
Analysis”. In: Int. J. Numer. Meth. Engng. 10 (1976), pp. 1211–1219 (cit. on pp. 135, 136).

238

[135] P. D. Thomas and C. K. Lombard. “Geometric conservation law and its application to flow
computations on moving grids”. In: AIAA Journal 17 (1979), pp. 1030–1037 (cit. on
p. 119).

[136] D. Thompson, P. P. Pébay, and J. N. Jortner. An Exodus II Specification for Handling
Gauss Points. Tech. rep. SAND2007-7169. Sandia National Laboratories, 2007 (cit. on
p. 139).

[137] F. Tisseur and Karl Meerbergen. “The Quadratic Eigenvalue Problem”. In: SIAM Rev.
43.2 (2001), pp. 235–286 (cit. on pp. 99–101, 105, 106).

[138] C. Vanhille, C. Conde, and C. Campos-Pozuelo. “Finite Difference and Finite Volume
Methods for Nonlinear Standing Ultrasonic Waves in Fluid Media”. In: Ultrasonics 42
(2004), pp. 315–318 (cit. on p. 89).

[139] C. Wilson, J. Sadler, and W. Michaels. Kinematics and Dynamics of Machinery. Harper
and Row, 1983 (cit. on p. 191).

[140] E. L. Wilson and M. Khalvati. “Finite Elements for the Dynamic Analysis of Fluid-Solid
System”. In: Int. J. Numer. Meth. Engng. 19 (1983), pp. 1657–1668 (cit. on p. 89).

[141] Paul H. Wirsching and Mark C. Light. “Fatigue under wide band random stresses”. In:
Journal of the Structural Division, ASCE 106.7 (1980), pp. 1593–1607 (cit. on p. 71).

[142] Paul H. Wirsching, Thomas L. Paez, and Keith Ortiz. Random Vibrations: Theory and
Practice. Courier Corporation, 2006 (cit. on pp. 70, 214).

[143] Barbara I. Wohlmuth. “A Mortar Finite Element Method Using Dual Spaces for the
Lagrange Multiplier”. In: SIAM J. Numer. Anal. 38.3 (2000), pp. 989–1012 (cit. on pp. 81,
83, 226).

[144] Min Yu, Zhong-Sheng Liu, and Da-Jun Wang. “COMPARISON OF SEVERAL
APPROXIMATE MODAL METHODS FOR COMPUTING MODE SHAPE
DERIVATIVES”. In: Comput. and Struct. 62.2 (1996), pp. 301–393 (cit. on p. 51).

[145] O. C. Zienkiewicz and R. L. Taylor. “The Finite Element Method”. In: 4th ed. Vol. 2.
McGraw-Hill Book Company Limited, 1991. Chap. 1, pp. 23–26 (cit. on p. 144).

239

INDEX

accuracy
null space, 48

added mass, 112
algorithms

fast modal freqeunce response, 33
fast modal transient, 33
modal transient, 31, 32

anisotropy, 144

component mode synthesis, 45
constraint transformations, 211
coordinate frames, 12
coordinate systems, 12
correction of matrices, 49
Craig-Bampton reduction, 45

sensitivity, 51

distributed damping, 66
DOF, 2
DOF Set

Analysis-set, 5
Assembly-set, 5
Common-set, 5
full-set, 4
G-set, 5
M-set, 5
S-set, 5
Solution-set, 5
Structural-set, 4

eigen, 34
eigenvalue problem, 34

ARPACK, 34
buckling, 40
error estimation, 53
element residual method, 64
explicit, 54
quantity of interest, 63

Lanczos, 34
quadratic, 97
structural acoustics, 97
wet mode, 112

element
acoustic, 11
Allman, 144
beam2, 146
gap, 153
geometric stiffness, 135, 190, 195
hex20, 139, 142
hex8, 135
hexshell, 166
integration points, 139
matrix correction, 49, 170
membrane, 167
Nbeam, 146
nquad, 149
offset, 165
rigid, 153
rbar, 154
RBE3, 156
Rrod, 154

selective integration, 130
spring, 152
superelement, 11, 45, 69, 152
tet10, 139, 142
tria3, 145
tria6, 144
truss, 152
wedge15, 139
wedge6, 130, 141

Euler angles, 6

Farhat, Charbel, 1
fatigue, 70
Felippa, Carlos, 1, 145, 166
filterRBM, 21
fluid structure interation, 116
frequency response, 33

Lighthill tensor, 116
load, 205

consistent, 205

mass lumping, 170

240

mass properties, 10
element, 10

matrix dimensions, 2
modal acceleration method, 27
modal masing, 66
modal transient, 30, 32
mortar method, 225
multipoint constraints, 210

Newmark beta, 14, 126
Ng, Esmond, 1
null space correction, 50

perfectly matched layers, 181

quaternions, 7

relative_disp, 25
rotation, 6

sa_eigen, 97, 103
scattering, 85
Sierra transfer, 44
single point constraint, 5
solution spaces, 2
structural acoustics

eigenvalue, 97
SuperLU, 2

time integration, 126

viscoelasticity, 38, 126

241

This page intentionally left blank.

242

DISTRIBUTION

Hardcopy—Internal

Number of
Copies Name Org. Mailstop

1 K. H. Pierson 1542 0845

Email—Internal

Name Org. Sandia Email Address

Technical Library 1911 sanddocs@sandia.gov

243

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Introduction
	Solution Spaces
	Matrix Dimensions: Terminology
	Revised Set definition Example

	Rotational Degrees of Freedom
	Euler Angles
	Infinitesimal Rotational Angles
	Quaternions
	Implementations
	Consequence for Linear Elements in nonlinear solutions

	Interpolation within an Element
	Mass Properties
	Calculations
	Acoustic and Superelements

	Coordinate Systems

	Structural Solution Procedures
	Linear transient analysis
	Predictor Corrector Adjustment
	Prescribed Accelerations

	Nonlinear transient analysis
	Nonlinear Transient Analysis with Constraints
	Damping in Nonlinear Solutions
	Damping of Flexible Modes Only

	Random Vibration
	Algorithm
	Power Spectral Density
	Tensor Transformations of PSD
	RMS Output
	RMS Stress
	Matrix properties for RMS stress

	Modal Frequency Response Methods
	No Rigid Body Modes
	Rigid Body Modes
	Example

	Fast Modal Solutions
	Modal Solution Summary
	Parallel Fast Modal
	Determination of Modal Force

	Eigenvalue Problems
	Complex Eigen Analysis - Modal Analysis of Damped Structures
	Modal Analysis of Damped Structures
	Input File Specification
	Output File Format
	Some Back Ground
	Viscoelasticity
	Viscofreq
	Trust Regions and Real Modes
	ViscoFreq - Approximate Viscoelastic Response

	Linear Buckling
	Eigen Problem Methods for Buckling
	Buckling with Constraints
	Geometric Stiffness

	Component Mode Synthesis
	Reduction of superelement matrices
	Craig-Bampton sensitivity analysis

	Eigenvalue Sensitivity Analysis
	A posteriori error estimation for eigen analysis
	Preliminaries
	An explicit error estimator
	Error estimates for elasticity
	Explicit Estimator - Multiple Materials
	Explicit Estimator Summary
	Approach II - quantity of interest estimator

	Nonlinear Distributed Damping
	Subsystem Distributed Damping with Iwan
	Subsystem Damping with Linear Damper
	Reduced Model
	Full System Model

	Shock Response Spectra
	Superposition for superelement recovery
	Coupled Electro-Mechanical Physics
	High Cycle Fatigue and Damage
	Sensitivity to Stress
	Competing Damage Models

	Acoustics Solution Methods
	Derivation of Acoustic Wave Equation
	Coupled Structural Acoustics
	Discussion of Matching vs Non-Matching Meshes on Wet Surface
	The Coupled Equations and Their Discretizations

	Acoustic Scattering
	Nonlinear Acoustics
	Weak Formulations
	Spatial and Temporal Discretization
	Structural Coupling

	SA_eigen
	Quadratic Modal Superposition
	Diagonalization and Modal Superposition
	Theory for modal superposition with sa_eigen
	Discussion of Eigenvectors and Superposition
	Notes on Implementation
	Complex Eigenvector Orthogonalization

	Waterline Determination
	Reference Frames
	Pressure at a Node
	Waterline Plane Specification
	Net Force and Moment Calculation
	Algorithms

	Wet Modes or Added Mass
	Case I - matching meshes at wet interface
	Modal Solution of Acoustic Domain
	Case II - mismatched meshes at wet interface
	Element Matrix Approximations

	Fluid Coupling through the Lighthill Tensor
	Pressure formulation
	Lighthill tensor

	Fluid Structure Interaction
	One way FSI coupling
	Two Way FSI coupling

	Two-way Coupled FSI Implementation

	Material
	Anisotropic Materials
	Stress Vectors
	Strain Energy and Orientation

	Viscoelastic Materials
	Equations of motion
	Constitutive equations
	Linear Representation of Velocity
	Midpoint Representation of Velocity

	Elements
	Selective integration
	Derivation

	Implementation
	Integration of Isoparametric Solids
	Mean Quadrature with Selective Deviatoric Control
	Bubble Functions
	Nonlinear analysis of bubble functions

	Quadratic isoparametric solids
	Shape functions and integration points

	Wedge Shape Functions
	Tet10
	Hex20 shape functions and gradients
	6 noded Triangle
	3 noded Triangle
	Beam2
	Nbeam
	Navy quadrilateral
	Truss
	Spring
	Superelements
	Gap
	Rigid Elements
	Rrod
	RBar
	RBE3

	MSC documentation of Nastran's RBE3 element
	Generation of unit weighting functions
	Selection of dependent dofs (Optional)
	Features for dimension independence
	Upward compatibility
	RBE3 element changes in Version 70.7

	Shell Offset
	Hexshell usage and limitations
	Membrane
	Corrections to Element Matrices
	Mass lumping

	Boundary conditions and initial conditions
	Acoustic and Structural Acoustic
	Absorbing Boundaries
	Infinite Elements for Acoustics
	Computation of solution at far-field points
	Point sources

	Perfectly Matched Layers
	Cartesian PML
	Rotated Cartesian Coordinates
	Spherical Coordinates
	Ellipsoidal Coordinates
	Ellipsoidal Coordinates with X axis as Major axis
	Relations Between the PML Formulations

	Matrices from Applied Forces
	Analysis of Rotating Structures
	Static Analysis
	Modal Analysis
	Transient Analysis

	Alternative Derivation Based on Lagrange's Equations
	Random Pressure Loading
	Specialization for Hypersonic Vehicles

	Removing Net Torques from Applied Loads
	Introduction
	Use of Mass Matrix

	Traction Loads
	Consistent Loads Calculations
	Elements with consistent loads
	Pressure Loading
	Shape Functions for Calculating Consistent Loads
	Shell Elements - consistent loads

	Solution of Singular Linear Systems

	Contact
	Multipoint Constraints
	Constraint Transformations in General Coordinate Systems
	Decoupling Constraint Equations
	Transformation of Stiffness Matrix
	Application to single point constraints
	Multi Point Constraints
	Transformation of Power Spectral Densities

	Orthogonality of MPC to Rigid Body Vectors
	Beam Example
	Offset Example
	Correct MPC Equations
	Orthogonalization of Incorrect MPCs
	Adding the same dof of new nodes
	Lofted node face constraints

	Constraints and infinite eigenvalues
	Sparsepak Contact Enforcement
	GDSW Contact Enforcement
	Tied Friction
	Mortar Methods
	Background
	Treatment of Interface Boundary
	Nodal Coordinate Adjustments

	Correction For Dynamic Constraint Equilibrium

	Bibliography
	Index

