Sandia
National SAND2021- 335 7PE

Laboratories

1A L LA
Rl YL
AT AL LY
¥ a

Clay Hughes, Sandia National Laboratories
= — @ENERGY NISA

ional Muciear Socurty Adminstcaion

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology &
Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-
NAO0003525.

: Dataflow Accelerators

Compilers build internal representations of applications that represent the
behavior as a series of graphs -- abstracting the control and data flow

Traditional processors execute instruction sequentially, destroying an
application’s inherent ILP
o Superscalar OoO processors go to great lengths to reconstruct the ILP

o Multiple queues and complex logic allows instructions to issue when operands are available
rather than in program order

> Results are placed in additional queues and made visible to the system in program order

Dataflow architectures are able to execute these graphs directly, without the
need to flatten the graph and artificially recover the parallelism

o Dedicated or shared PEs

o Statically or dynamically scheduled

, | Simulating Dataflow Architectures

There are examples of each of the different types of accelerators in the literature

o Dedicated/Static o Shared/Static
o Softbrain, MAERI(?) - CGRA

> Dedicated/Dynamic o Shared/Dynamic
o Plasticine, SPU > TRIPS, SGMF

The SST dataflow component, llyr, is being developed to model dedicated/static
designs

o Flexible interface to add custom PEs

o Arbitrary connectivity (can even be used to model ReRAM-like crossbars)

o Mappers are dynamically loaded allowing them to be swapped at runtime

o Leverages SST component interface to enable scalable simulations

.| SST llyr Component

Instantiated like any other SST component
o Allows for...
o Multiple instances, possibly with different configurations
o Arbitrary memory hierarchy
o Some limitations on node configurations
> Unable to launch from device

Utilizes new MMIO interface
o Address range set aside for control
o Doorbell and kernel location
o Can send and receive data in global address space
o Eventually will be capable of self-hosted memory with TLB

HBM HBM

. — e

*Currently being tested as a
standalone compute device

| SST llyr Component

Input Input
PEs have a compute unit, input buffers, and output buffers Qur:eFL)JL:eOO QunelilLém

> Number of buffers bounded by connectivity
o Buffer depth is configurable but is uniform for all PEs

Current PE list

> LD, ST, LD_ST

o SLL, SLR, ROL, ROR

- ADD, SUB, MUL, DIV

- FPADD, FPSUB, FPMUL, FPDIV, FPMATMUL

- BUFFER

> ANY, ANYMEM, ANYLOGIC, ANYINT, ANYARITH, ANYFP

Output
Queue

.| SST llyr Component

Address calculation performed by preceding PEs
Memory operations forced to return in program order via common L/S queue

Reponses are forwarded directly to output queue of memory PE

Memory

L/S Queue

Address
Queue

| SST llyr Component

Constructed using a hardware description file
o Describes connectivity between PEs
> Describes allowable operations per-PE

0 [pe_type=ANYMEM] 0--1
—— MEM MEM MEM MEM —— 1 [pe_type=ANYMEM] 01
2 [pe_type=ANYMEM] 1--0
3 [pe_type=ANYMEM] 1--2
——— ARITH ARITH ARITH ARITH |—— 4 [pe_type=ANYARITH] 15
5 [pe_type=ANYARITH] 2--1
6 [pe_type=ANYARITH] 2--3
7 [pe_type=ANYARITH] 2--6
— | ARITH ARITH ARITH ARITH —— 8 [pe_type=ANYARITH] 3--2
9 [pe_type=ANYARITH] 3--7
10 [pe_type=ANYARITH] 4--1
11 [pe_type=ANYARITH] 4--5
——— MEM MEM MEM MEM | 12 [pe_type=ANYMEM] 4--8

.| SST llyr Component

The hardware configuration controls the potential computation, but the application
graph controls the actual computation

LLVM IR will be extracted from the ELF executable and passed to the llyr parser

Parser will construct a dataflow graph with control information (backward edges)
from the LLVM IR

void multiply_mod(int* a, int *b, int* const c)

{

int d = *a;
int e = *b;

=)
intf=3%*d;

intg=2%e;

*c=f+g

, | SST llyr Component

Mapper modules will handle the embedding of the application graph

Can be NP-complete
(factorial complexity)
[Conte, 2004]

N ‘ LLVM and llyr Parsing

User
Application LLVM Tools

@ m— 03

[LVM IR for ELF
Offload Executable
Other Code

Offload targets will be marked in the user application — currently studying how I
o offload_myFunction()

o attribute _ ((offload (device, 0))) myFunction()
o #pragma secret offload directive device(0)
myFunction()

Work in progress...

These functions/loops will be compiled with the user code but the LLVM IR will
be embedded with them in the final executable

.| SST llyr Component Sample Configuration

Llyr = sst.Component("dataflow0®"”, "llyr.llyr")

Llyr.addParams({

"verbose":
. "1GHz",
"config" :
"fp lat"” :
"int lat":
"div lat":
"mul lat":

"clock"

)}

Parameters

II1II ,

"maeri layout.cfg",
II4II ,
IIlII ,
Il3|l ,
II2II ,

o clock: Operating frequency for entire device

o config: Input hardware layout

o xxX_lat: Number of cycles to complete the operation

o queue_depth: number of buffer entries

o |s_entries: number of L/S entries to process each cycle
o mapper: app_graph - hw_graph embedding

Additional parameters for |
standalone/testing

o application: application in LLVM IR

o mem_init: memory initialization file

_ | Embedding Problem

Dataflow hardware consists of a set of PEs that may have fixed or
programmable connectivity (MAERI, Softbrain, Plasticine, efc.)

A user application consists of a set of operations that map to one or more PE
types (add, sub, mul, etc.)

Goal: Map user application operations onto set of hardware PEs

Graph matching
o Exact, Inexact
o Exponential complexity

Subgraph iso/monomorphism
o All possible subgraphs from reference graph
o NP-complete (factorial complexity) [Conte, 2004]

Integer Optimization
o Treat app_graph - hw_graph as optimization problem

., | Current Approach

Running standalone VF3 implementation from the University of Salerno
Have tested VF3 on multiple graphs (up to 32 nodes)

Current problem is that constraints can result in no valid mapping
> Need a way to bypass a node
o Will require some tweaking to be able to perform lookahead in the algorithm

MIP-Mapping discussions in progress
o Still working on expressing constraints and understanding design space

| LLVM IR to AppGraph

Application Graph

LD

% mul = mul nsw i32 %0, 3

MUL

LLVM IR

i ‘ Node Attributes Don’t Matter

—— ANY ANY ANY ANY | —
— ANY ANY ANY ANY ——
— ANY ANY ANY ANY | ——

— ANY ANY ANY ANY ——

3 ‘ Node Attributes Don’t Matter

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ANY

ST

ANY

ANY

ANY

ANY

13720 possible mappings

. ‘ Node Attributes Matter (Mostly...)

LD LD LD ——
ARITH ARITH ARITH —
—— ARITH ARITH ARITH ARITH ——
ST
— ST ST ST ST |—

184 possible mappings

. ‘ Node Attributes Don’t Matter

—— ANY ANY ANY ANY ——
— ANY ANY ANY ANY | ——
— ANY ANY ANY ANY | ——

— ANY ANY ANY ANY |[——

; ‘ Node Attributes Don’t Matter

ANY ANY ANY ——
ANY ANY ANY ——
— ANY ANY ANY ANY | ——
ST
— ANY ANY ANY ANY |[——

656 possible mappings

. ‘ Node Attributes Matter (Mostly...)

ARITH

ST

ST

LD

ARITH ———

0 possible mappings
* No path from ADD - ST

ST

LD

LD

ARITH

ARITH

ARITH

ARITH

ST

ST

., ‘ Node Attributes Matter (Kind'a Sort'a)

ARITH

MEM

MEM

MEM

ARITH

ARITH

ARITH

ST

MEM

ARITH

ARITH

ARITH

32 possible mappings

MEM

MEM

MEM

Summary
22

SST dataflow component, llyr, is being tested as a standalone compute unit
o Successfully runs torus and grid hardware graphs with GEMM application graph
> Successfully runs RRAM crossbar model with GEMM

No automatic mapping of application to hardware yet

> VF3 shown to work using sample application and hardware graphs -- currently working on
integration with SST as a ‘mapper’ subcomponent

Currently testing with integer types
o Data passed between PEs as raw bitstream so double/float requires some conversion

QUESTIONS

BACKUP SLIDES

