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Stripline short-circuit loads on the Z pulsed-power machine can
2 I produce planar shockless compression of solids to 400+ GPa

* current pulse of 7-26 MA delivered to load (target)

* controllable pulse shape, rise time 100-1500 ns

* stripline = parallel flat-plate electrodes shorted at one end, identical loading of sample pairs

* magnetic JXB force induces ramped stress wave in electrode material

* stress wave propagates into ambient material, de-coupled from magnetic diffusion front

T T T
e sound speed c increases with pressure (normal materials) snapshots of propagating wave
. 200 -
* ramp steepens into a shock c?=(0P/2p) g
cL=pc/py P )
<1 mm > § 100 & |
cathode anode 2 ™
® O 6 magnetic stress 400 ¢
diffusion wave :
F 0 1 1
OBNONNO, HORE front 300 ¢ 0 50 100 150 200
- Lagrangian position (um)

200 3 principal
: Hugoniot

R e

pressure (GPa)

principal
@ = @ @ isentrope
N N y J Q5 (dS = 0)
Joule-heated compressed undisturbed T, S T s
(plasma/gas/liquid) (solid) (solid) ?’%q%_; \j

NG



3

Focus today on two different analyses of one data set

Last time (2019): experiment design choices, approaches to analyzing velocimetry data

* Electrode thickness, square samples, LiIF windows, 2-D MHD drive correction

* Single-sample iterative Lagrangian analysis (ILA), post-reverberation characteristics mapping

* Bayesian calibration to infer EOS parameters with uncertainties, sensitivity analysis
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Today: comparing II.A and Bayesian calibration (BC)

* Analyze four measurements from one experiment on iridium (Ir)

* Interaction between sample strength and window release limits ILA below peak pressure

* Parameterize EOS for BC using arbitrary reference isentrope in B(P)
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Processed velocimetry data from multi-megabar ramp-compression
experiments on seven different transition metals are awaiting analysis
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CL (Lagrangian Wave Speed)

5 ‘ Single-sample ILA of thick Ir sample loses
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Characteristics-based window correction in ILA cannot account for
6 | local elastic release response of sample as peak reflects from LiF

Example: simulation of Ta/LiF

ILine contours of Riemann invariants

°> Representative of characteristics
° Peak input velocity > 2300 m/s

° Characteristics from input velocity > 1500 m/s
traverse elastic region before reaching window
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Bayesian calibration of EOS parameters fits a hydro-code model to
7 I velocimetry measurements from multiple independent samples of material

1. Set up and parameterize set of 1-D MHD simulations corresponding to set of measurements
° Define uncertain parameters and their prior distributions (mean and standard deviation)

> Experimental (B-field drive, thickness, timing) and material-model parameters (velocity is not a parameter)

2. Generate training data by Latin Hyper-cube Sampling (LHS) from the prior distributions
° Ideally ~1000 simulation sets per uncertain parameter

> Output 1s velocity residual (simulation — experiment) waveforms as a function of input parameters
5. Construct Gaussian Process (GP) emulator from the LHS training data
4. Use Markov Chain Monte Carlo (MCMC) to sample posterior distributions from GP

> Use a GP emulator because MCMC 1s a serial operation and hydro-code 1s too slow
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Brown et al., Journal of the Royal Statistical Society Series C, 67, 4 (2018)



Typically use strength model with fixed parameters that have been
8 | calibrated to separate high-pressure ramp-and-release experiments

Uni-axial strain ramp-compression response convolves EOS and strength

> Deviatoric stress from pressure-dependent yield stress

° Thermal pressure increment due to plastic work

Specially-designed experiments capture release from peak velocity

> High-pressure yield stress extracted from peak region insensitive to EOS

o Calibrate a simplified pressure-hardening model to data at multiple pressures
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Inferred probability distributions can depend strongly on priors...
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. and on sensitivity of velocity to each parameter

Global variance-based sensitivity analysis (Sobol)

> Gives an indication of which parameters are identifiable within the calibration
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An arbitrary reference EOS curve localizes sensitivity

B =cB", i=12,..,15

prior means ¢, =1.0

' B(P): experiment “applies” P,
—VISAR measures ¢; and u* (related to
95% ClI deformation = p), B= pc?

Z3192S4: no reverberation below 420 GPa

prior std. dev's o, =0.03

——Bscale
——rho0
——ast
——cCl

c2
—C3
——c4
——CcH
- Cb

A%

SN

Thiba
3.3
Time (uS)

3.35

——C7
—C8
—c9
——cc10
——cll
——cl2
——cl3
——cl4
——c15

increasing after 350 GPa
to 0.15 at 550 GPa

N N
() (92}

Bulk Modulus (TPa)
(=)
un

\ 5

e
8]

extrapolation

=N { B(P) Knots: Prior means & deviations

—PChip Interpolation

ILA result

no sensitivity beyond c13

~—_——"
B DN 4340 T

Bscale

rho0

200 300 400 500
Pressure (GPa)

Parameterize B(P) along
isentrope reference curve,

cl3 v

2t i “#&:!:'w

R

3.4
Reverberation

Y92 close to loading path so
c2 insensitive to values of
Lzt thermal parameters
3.45

brings back some sensitivity to c2



12 ‘ First-cut BC for Z3192 deviates from ILA above ~350 GPa
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13 | Posterior “coverage” of velocity suggests problem at highest pressures
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14 I SUMMARY

1. Analyzed shockless compression of Ir to > 400 GPa

2. Iterative Lagrangian Analysis (ILA) limited by sample strength effects on window
interaction due to single-valued response assumed by characteristics mapping

3. Bayesian Calibration (BC) method using arbitrary B(P) reference isentrope may, with
more work, be able to constrain compressibility of Ir at pressures > 400 GPa

4. Plenty more to do!
° Investigate iterative transfer-function mapping as way to account for strength-window effect
> Make additional high-pressure strength measurements to improve precision of EOS results
> Apply best techniques found for Ir to data on the other six metals
° Etc., etc.
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