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We have developed a local, linear theoretical model for lower hybrid drift waves that can

be used for plasmas in the weakly collisional regime. Two cases with typical plasma and

field parameters for the current sheet of the Magnetic Reconnection Experiment (MRX)

have been studied. For a case with a low electron beta (βe = 0.25, high guide field case),

the quasi-electrostatic lower hybrid drift wave (ES-LHDW) is unstable, while the electro-

magnetic lower hybrid drift wave (EM-LHDW) has a positive growth rate for a high-βe

case (βe = 8.9, low guide field case). For both cases, including effects of Coulomb colli-

sions reduces the growth rate but collisional impacts on the dispersion and growth rate are

limited (. 20 %).
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I. INTRODUCTION

Magnetic reconnection converts magnetic energy into plasma thermal and flow energy via topo-

logical rearrangements of the magnetic field lines. Energy conversion processes during magnetic

reconnection result in many free energy sources for waves and instabilities near the diffusion re-

gion such as strong gradients of the magnetic field and plasma parameters. Among them, the lower

hybrid drift wave (LHDW) has been widely observed near the diffusion region in both space1–7

and laboratory plasmas8–10. The free energy source of LHDWs is the cross-field current11. The

large density gradients near the separatrix can particularly be a free energy source by inducing a

perpendicular current via a diamagnetic drift.

LHDWs have been a candidate for generating anomalous resistivity because it can interact

differently with magnetized electrons and non-magnetized ions, resulting in momentum exchange

between the two species7–9,12–16. For reconnection with a negligible guide field, the fast-growing,

short-wavelength (kρe ∼ 1; k is the magnitude of the wave vector k, ρe is the electron gyroradius),

quasi-electrostatic LHDW (ES-LHDW) is found to be localized at the edge of the current sheet8

due to the stabilization by the high plasma beta (β )17. On the other hand, the long-wavelength

(k
√

ρeρi ∼ 1; ρi is the ion gyroradius), electromagnetic LHDW (EM-LHDW) that propagates

obliquely to the magnetic field exists in the electron diffusion region9. However, extensive efforts

via numerical particle-in-cell (PIC) simulations15,16 show that the electromagnetic LHDW (EM-

LHDW) does not play an important role in fast reconnection and electron energization near the

electron diffusion region during antiparallel reconnection.

Recent observations by the Magnetospheric Multiscale (MMS) mission show that the ES-

LHDW can be generated inside or near the electron diffusion region5–7, when there is a sizable

guide field. The ES-LHDW can drive electron heating and vortical flows6 near the electron diffu-

sion region. Moreover, the ES-LHDW is capable of generating anomalous drag between electrons

and ions7.

Motivated by these observations, Yoo et al. 7 have developed a local, linear theoretical model

that explains dynamics of both ES- and EM-LHDWs in the presence of a guide field. This model

is based on collisionless closures for the electron heat flux with the assumption of a gyrotropic

electron pressure tensor. Results from the model agree with activities of the ES- and EM-LHDWs

inside a current sheet at the magnetopause7.

In laboratory experiments such as the Magnetic Reconnection Experiment (MRX), effects of
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Coulomb collisions on magnetic reconnection and electron heating are not negligible. The classi-

cal Spitzer resistivity18, for example, can balance the reconnection electric field in the collisional

regime and can even account for 10 – 20 % of that in the collisionless regime19,20. This indicates

that Coulomb collisions may also affect the dynamics of LHDWs in laboratory plasmas.

These collisional effects on LHDWs have not been considered previously, even though LHDWs

in the reconnection current sheet have been extensively studied via theoretical analyses and numer-

ical simulations11,14,21–23. This paper provides the first quantitative study of the effects of Coulomb

collisions on LHDWs. Through this model, we can address how the dynamics of LHDWs in

laboratory plasmas are different from those in collisionless plasmas and when collisional effects

become important. To include effects from collisions, we have advanced the previous models7,24

by using closures of the electron heat flux, heat generated by collisions, and resistivity that can

be used for plasmas with arbitrary collisionality25,26. For a self-consistent modeling of the heat

flux and energy conservation, we also have allowed a first-order perturbation of the perpendicular

electron temperature (T⊥e1 ), which was set to be zero in a previous model by Yoo et al. 7 . Unlike

previous models, the zeroth-order electron temperature anisotropy is not allowed in the current

model because the available closures were developed under the assumption of isotropic electron

pressure at equilibrium. Except these changes, all other assumptions are the same: we used a

kinetic equation for unmagnetized ions, fluid equations for electrons, and a gyrotropic pressure

tensor for electrons.

This linear model can be used to quantify the effects of LHDWs on electron heating and recon-

nection dynamics in weakly-collisional plasmas; with measured wave amplitudes and quasi-linear

arguments, wave-associated anomalous terms and heat generated by collisions with ions can be

directly estimated. It should be noted that the wave-associated heating power cannot be estimated

by collisionless models.

In Section II, we explain the theoretical model for LHDWs in a local geometry. Then, in

Section III, we numerically calculate dispersion relations of LHDWs for two cases. The biggest

difference in the two cases is the value of electron beta, βe. For the low-βe case, which represents

conditions near the electron diffusion region during reconnection with a strong guide field, the

ES-LHDW is unstable. For the high-βe case, which represents conditions in the same region but

with a negligible guide field, the EM-LHDW has positive growth rates. In both cases, collisional

effects on LHDWs with typical MRX parameters are not significant (. 20 %). Finally, in Section

IV, we discuss the results and propose future research.
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FIG. 1. Geometry of the local theory for the LHDW dispersion calculation. We are working in the ion rest

frame with the z direction toward the equilibrium magnetic field (B0) and the y direction along the density

gradient direction. Due to the force balance, the equilibrium electric field E0 is also along the y direction.

The equilibrium electron flow velocity ue0 and wave vector k reside on the x-z plane. The angle between k

and B0 is given by θ .

II. DERIVATION OF THE DISPERSION RELATION

Figure 1 shows the geometry of our local theoretical model for a lower hybrid drift wave

(LHDW) inside a current sheet. Here the subscript 0 indicates equilibrium quantities. We chose

the ion rest frame, and electrons have velocity (ue0) on the x− z plane. The equilibrium mag-

netic field is along the z direction and the density gradient direction is along the y direction. In

this model, there is neither equilibrium temperature gradient nor ion temperature anisotropy. The

equilibrium electron temperature is also assumed to be isotropic, but anisotropy is allowed in the

perturbed electron temperature. The wave vector (k) lies on the x-z plane due to our assumption

of negligible ky. Thus, our theoretical model is local and valid only when the wavelength of the

LHDW is much smaller than the thickness of the current sheet in the y direction24.

To balance the force associated with the pressure (density) gradient, there is an equilibrium

electric field along the y direction. By using the ion and electron force balance equations, the

4



Collisional effects on lower hybrid drift waves

equilibrium electric field E0 can be expressed in terms of other plasma parameters. From the ion

force balance along the y direction, we have

en0E0 = Ti0
dn0

dy
= εn0Ti0, (1)

where n0 is the equilibrium density, Ti0 is the equilibrium ion temperature, and ε = (dn0/dy)/n0

is the inverse of the density gradient scale. From the y component of the electron momentum

equation, we have

−en0(E0−ue0xB0) = Te0
dn0

dy
, (2)

where ue0x is the x component of the equilibrium electron flow velocity and Te0 is the equilibrium

electron temperature. Then, the equilibrium electric field is

E0 =
Ti0

Te0 +Ti0
ue0xB0. (3)

The inverse of the gradient scale is given by

ε =
eue0xB0

Te0 +Ti0
. (4)

Note that Eqns. 3 and 4 are the same as those in the collisionless model in Yoo et al. 7 , because

the resistivity term is zero along the y direction.

All perturbed quantities have a normal mode decomposition proportional to exp[i(k · x−ωt)]

with the wave vector k = (k⊥,0,k‖). Here, the subscript 1 indicates perturbed quantities. For the

dispersion relation, Maxwell’s equations without the displacement current term are used:

k× (k×E1) =−iωµ0J1. (5)

The displacement current term is ignored because the phase velocity of the wave is much smaller

than the speed of light.

Assuming the equilibrium ion distribution function to be locally Maxwellian, the perturbed ion

current density (Ji1) is given by24

Ji1 =−
in0e2

mikvti

[
Z(ζ )E1 +

Z′′(E1 · k̂)
2

k̂− i
(

ε

2k

)
Z′′E1yk̂

]
, (6)

where mi is the ion mass, vti =
√

2Ti0/mi is the ion thermal speed, ζ = ω/kvti, and Z(ζ ) is the

plasma dispersion function. This is from a perturbed Vlasov equation for unmagnetized ions. This

means that any dynamics slower than the ion cyclotron frequency have been ignored, including
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collisional effects on ion dynamics. In our regime of interest, the ion collision frequency is smaller

than the ion cyclotron frequency. The perturbed ion temperature can be also obtained, which is

Ti1 =
ie
k

[
E1 · k̂

(
2Z′+

Z′′′

4

)
− iE1y

(
ε

k

)(
Z′+

Z′′′

4

)]
. (7)

The perturbed electron current density Je1 is obtained from fluid equations. This is different

from the classical formulation of LHDWs, where the kinetic (Vlasov) equation is used for electron

dynamics17,27,28. Since electrons are magnetized, a gyrotropic electron pressure tensor is assumed.

In this case, the 3+1 fluid model (n, u, p‖, and p⊥; p‖ and p⊥ are the parallel and perpendicular

pressure, respectively) is appropriate25. In this fluid model, off-diagonal terms of the electron

pressure tensor are ignored.

The first order electron momentum equation is given by

imen0 (ω−k ·ue0)ue1 = ik ·Pe1+en0(E1+ue1×B0+ue0×B1)+e(E0+ue0×B0)ne1−Re1, (8)

where Pe1 is the perturbed electron pressure tensor and Re1 is the perturbed resistivity. The per-

turbed electron density ne1 is given by the electron continuity equation, which is

(ω−k ·ue0)ne1 = (k ·ue1− iεue1y)n0. (9)

To close the momentum equation, we need closures for Pe1 and Re1. For Pe1, we only need

closures for p⊥e1 and p‖e1, since we assume a gyrotropic pressure tensor as mentioned earlier. To

obtain p⊥e1 and p‖e1, we start from the following kinetic equation:

∂ fe

∂ t
+v ·∇ fe−

e
me

(E+v×B) · ∂ fe

∂v
=C( fe), (10)

where fe is the electron distribution function and C( fe) is the collision operator. First, multiplying

the kinetic equation with me(vz−uez)
2 and integrating over the velocity space yields

∂ p‖e
∂ t

+∇ · (ue p‖e)+∇ ·q‖e +2
∂uez

∂ z
p‖e =C‖e , (11)

where

p‖e =me

∫
(vz−uez)

2 fedv, (12)

q‖e =me

∫
(v−ue)(vz−uez)

2 fedv, (13)

C‖e =
∫

C( fe)me(v−ue)
2dv. (14)
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Similarly, multiplying the kinetic equation with me[(vx− uex)
2 + (vy− uey)

2]/2 and integrating

over the velocity space yields

∂ p⊥e
∂ t

+∇ · (ue p⊥e )+∇ ·q⊥e +

(
∂uex

∂x
+

∂uey

∂y

)
p⊥e =C⊥e , (15)

where

p⊥e =me

∫ 1
2
[(vx−uex)

2 +(vy−uey)
2] fedv, (16)

q⊥e =me

∫ 1
2
[(vx−uex)

2 +(vy−uey)
2](v−ue) fedv, (17)

C⊥e =
∫ 1

2
C( fe)[(vx−uex)

2 +(vy−uey)
2]dv. (18)

Linearizing Eqn. 11 yields

−iω p‖e1 + εue1yn0Te0 + i(k ·u0)p‖e1 + i(k ·ue1)n0Te0 + ik ·q‖e1 +2ik‖ue1zn0Te0 =C‖e1. (19)

By using p‖e1 = ne1Te0 +n0T ‖e1 and Eqn. 9, Eqn. 19 can be written as

i(ω−k ·u0)n0T ‖e1 = ik ·q‖e1 +2ik‖ue1zn0Te0−C‖e1. (20)

Similarly, linearizing Eqn. 15 yields

i(ω−k ·u0)n0T⊥e1 = ik ·q⊥e1 + ik⊥ue1xn0Te0−C⊥e1. (21)

We now need fluid closures for q‖e1, q⊥e1, C‖e1, and C⊥e1. First, the 3+1 fluid model gives us7

q‖e =
ẑ

meωce
×
(

p‖e∇Te +Te∇p‖e−
Te

2
∇π
‖
e −T ‖e ∇p⊥e

)
+q‖ezẑ, (22)

where ωce = eB0/me, π
‖
e = 2(p‖e − p⊥e )/3 and T ‖e = p‖e/ne. After linearization, the x component

of q‖e1 is

q‖e1x =
2Te0

3(Te0 +Ti0)
n0ue0x(T

‖
e1−T⊥e1 ) = rten0ue0x(T

‖
e1−T⊥e1 ), (23)

where rte = 2Te0/3(Te0 +Ti0). For q⊥e , we derive a closure in Appendix A, which can be written

as

q⊥e =
ẑ

meωce
×
[(
−5

6
p‖e +

17
6

p⊥e

)
∇Te−

(
2
9

T ‖e +
4
9

T⊥e

)
∇p‖e +

(
8
9

T ‖e −
2
9

T⊥e

)
∇p⊥e

]
+q⊥ezẑ,

(24)
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After linearization, the x component of q⊥e1 is

q⊥e1x =−
2Te0

3(Te0 +Ti0)
n0ue0x(T

‖
e1−T⊥e1 ) =−rten0ue0x(T

‖
e1−T⊥e1 ). (25)

For q‖e1z and q⊥e1z, we employ a closure for plasmas with arbitrary collisionality, which can be

written as25

q‖e1z =
6
5

h‖e1 +σ
‖
e1, (26)

q⊥e1z =
2
5

h‖e1−
1
2

σ
‖
e1, (27)

where

h‖e1 =−
1
2

ik̄‖K̄hhn0vteT ∗e1 + ik̄‖K̄hσ vteπ
‖
e1 + K̄hRn0Te0(ue1z−ui1z)+ iK̄hSvteπ

‖
e1, (28)

σ
‖
e1 =

4
3

ik̄‖K̄hσ n0vteT ∗e1− ik̄‖K̄σσ vteπ
‖
e1 + K̄σRn0Te0(ue1z−ui1z)+ iK̄σSvteπ

‖
e1. (29)

Here T ∗e1 = Te1 + 2π
‖
e1/5n0, vte =

√
2Te0/me is the electron thermal speed, and k̄‖ = k‖λc is the

normalized parallel wave number. The electron collision length is defined as λc ≡ vteτee, and the

electron-electron collision time τee is given by

τee =
6
√

2π3/2ε2
0
√

meT 3/2
e0

n0e4 lnΛee
, (30)

where lnΛee is the Coulomb logarithm for electron-electron collisions and ε0 is the permittivity

of free space. In Eqns. 28 and 29, K̄AB represents a kernel function that is obtained from a 6400

moment solution25. The kernel function K̄AB has the following form:

K̄AB =
ak̄α

‖

1+d1k̄δ

‖ +d2k̄2δ

‖ +d3k̄3δ

‖ +d4k̄4δ

‖ +d5k̄5δ

‖ +d6k̄6δ

‖
, (31)

where values of coefficients such as a, α , and δ in Eqn. 31 are given in Table 1 in Ji and Joseph 25 .

For a negative k̄‖, K̄AB(k̄‖) = K̄AB(−k̄‖) if α = 0 or α = 2. When α = 1, K̄AB(k̄‖) =−K̄AB(−k̄‖).

These closures are consistent with those of Hammett and Perkins 29 in the collisionless limit, and

they become consistent with those of Braginskii 30 in the collisional limit.

The heat generated by the collision terms C‖e1 and C⊥e1 also needs a closure, and can be written

as

C‖e1 =
2
3

Qe1 +S‖e1, (32)

C⊥e1 =
2
3

Qe1−
1
2

S‖e1, (33)
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where Qe is the heat generated by collisions and S‖e is related to the temperature anisotropy25. The

closure for S‖e1 is given by25

S‖e1 =
4
3

k̄‖K̄hS
n0

τee
T ∗e1 +

k̄‖
τee

K̄σSπ
‖
e1 + i

8
3

K̄RS
n0Te0

vteτee
(ue1z−ui1z)−

2.05− K̄SS

τee
π
‖
e1. (34)

The heat generated by collisions can be written as26

Qe = 3
mene

miτei
(Ti−Te)−uei ·Re, (35)

where τei is the electron-ion collision time and uei = ue−ui is the relative flow velocity between

electrons and ions. Assuming the ion charge status Zi is unity, τei is

τei =
6
√

2π3/2ε2
0
√

meT 3/2
e0

n0e4 lnΛei
, (36)

where lnΛei is the Coulomb logarithm for electron-ion collisions. Linearizing Qe yields

Qe1 = 3
mene1

miτei
(Ti0−Te0)+3

men0

miτei
(Ti1−Te1)−ue0 ·Re1−uei1 ·Re0. (37)

We also need an expression for the resistivity. Since there is no temperature gradient in the

equilibrium quantities, the zeroth order resistivity Re0 can be written as26

Re0 =−α
‖men0

τei
ue0zẑ−α

⊥men0

τei
ue0xx̂. (38)

For Zi = 1, the two coefficients are26

α
‖ = 0.504, (39)

α
⊥ = 1− 1.46r+1.06

r
5
3 −0.081r

4
3 +2.97r+2.13

, (40)

where r = ωceτee. There are additional terms in Re1 since temperature gradients exist in the first

order. The parallel (z) component of Re1 is25

R‖e1 =−i
k̄‖K̄hR

vteτee
n0T ∗e1− i

3
4

k̄‖K̄σR

vteτee
π
‖
e1− (1− K̄RR)

n0me

τee
uei1z + i

2K̄RS

vteτee
π
‖
e1. (41)

Eqn. 41 can be written as

R‖e1 =−ik‖n0γ
‖
ezT
‖

e1− ik‖n0γ
⊥
ezT⊥e1 − (men0/τee)(1− K̄RR)uei1z, (42)

where

γ
‖
ez =

3
5

K̄hR +
1
2

K̄σR−
4K̄RS

3k̄‖
, (43)
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γ
⊥
ez =

2
5

K̄hR−
1
2

K̄σR +
4K̄RS

3k̄‖
. (44)

The x component of Re1 is26

R⊥e1 =−α
⊥men0

τei
uei1x−α

⊥meue0x

τei
ne1− ik⊥β

⊥n0Te1, (45)

where β⊥ for Zi = 1 is given by26

β
⊥ =

6.33r+2.47

r
8
3 +2.75r

7
3 +3.99r2 +5.31r

5
3 +8.23r+3.52

. (46)

Finally, the y component of Re1 is given by R×e1 = α×men0uei1y/τei. Here the coefficient α× for

Zi = 1 is26

α
× =

r(2.53r+0.81)

r
8
3 +2.54r

7
3 +6.14r2 +7.35r

5
3 +11.22r+4.09

. (47)

With these closures, the first-order momentum equation (Eqn. 8) can be used to obtain the

perturbed electron current density Je1. Then, the Maxwell equation (Eqn. 5) can be written as
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz




E1x

E1y

E1z

= 0. (48)

The detailed derivation of each component of tensor D can be found in Appendix B.

III. COLLISIONAL EFFECTS ON THE DISPERSION

Dispersion relations for the lower hybrid drift waves are obtained from |D|= 0, where |D| is the

determinant of the tensor D; from this equation, the normalized angular frequency Ω is computed

numerically for the given k and θ . Required input parameters are B0, n0, Te0, Ti0, ue0z, and ue0x.

In addition, the ion mass has to be specified.

Compared to the previous collisionless model in Yoo et al. 7 , there are two significant changes

in the current model: the inclusion of the first-order perturbation of the perpendicular electron

temperature (T⊥e1 ) and the use of collisional closures. To understand the effects of each change,

we obtain dispersion relations from four different models – (i) the collisionless model in Ref.

Yoo et al. 7 , (ii) a model with collisional closures but without T⊥e1 , (iii) the current model in the

collisionless limit τee −→ ∞, and (iv) the current model.

First, we obtain dispersion relations with typical plasma and field parameters near the electron

diffusion region of the Magnetic Reconnection Experiment (MRX) during reconnection with a
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guide field; B0 = 180 Gauss, n0 = 2× 1013 cm−3, Te0 = Ti0 = 10 eV, ue0z = −130 km/s, and

ue0x = 50 km/s. Here the ion species is singly-ionized helium. Justified by previous measurements

in MRX19,31, we assume that Zi = 1. With these parameters, τeeωce = 157, βe is 0.25 and VA is 44

km/s. Note that ue0x exceeds VA, which is a necessary condition for LHDWs to have large growth

rates.

Figure 2 shows dispersion relations from the four models. Left (right) panels are contour plots

of the real (imaginary) part of the angular frequency as a function of kρe and θ . Here ρe = vte/ωce

is the electron gyroradius. From now on, ω represents the real part of the angular frequency and

γ represents the imaginary part. Both ω and γ are normalized to the (angular) lower hybrid fre-

quency, ωLH. All four models are qualitatively similar, showing strong growth rates (γ . 0.6ωLH)

for the quasi-electrostatic lower hybrid drift wave (ES-LHDW). The ES-LHDW propagates al-

most perpendicular to B0 (θ ∼ 90◦) with ω . ωLH. The peak growth rate occurs at kρe ∼ 0.7 and

θ ∼ 91◦. Here kρe ∼ 0.7 corresponds to λ ∼ 0.6 cm. These similarities among the four mod-

els indicate that the effects of Coulomb collisions on the ES-LHDW are limited for typical MRX

parameters. Moreover, inclusion of T⊥e1 also has a limited impact on the dispersion.

For better comparison between the four models, the dispersion relation and growth rate of the

ES-LHDW are presented in Fig. 3 for θ = 91◦. It is worth noting that including Coulomb colli-

sions decreases the growth rate γ . This is understandable since collisions decrease the reaction of

electrons to the external perturbation, such that they reduce the positive feedback from the plasma.

The change in ω is not straightforward but is related to frequency shift due to additional terms of

ue1x and ue1z. For example, the parallel force balance equation Eqn. B.48 has the resistivity R‖e1,

which adds additional terms in αez in Eqn. B.50. These additional terms can cause a shift in ω

(note that αez has a dependency on ω via αe).

It is interesting to see that including T⊥e1 in the electron dynamics decreases both ω and γ

of the ES-LHDW. Interpreting this trend is complicated, because T⊥e1 impacts both the x and z

components of the electron momentum equation. For the x component, the first term (ik⊥n0T⊥e1 )

on the right side of Eqn. B.55, which is the perturbed perpendicular electron pressure gradient

term, directly contains T⊥e1 . For the parallel momentum balance of Eqn. B.48, T⊥e1 affects T ‖e1 via

q‖e1x in Eqn. 23. The parallel resistivity (Eqn. 42) also has a term with T⊥e1 (−ik‖n0γ⊥ezT⊥e1 ).

The dispersion relation is calculated after setting γ⊥ez = 0 to remove contributions from T⊥e1 in

the z component of the electron force balance equation. As shown in Fig. 4, this change (green

line) decreases ω and increases γ , compared to the reference case with T⊥e1 (red line). Changes in
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FIG. 2. Dispersion relation of the LHDW with typical MRX parameters near the electron diffusion region

with a high guide field. Left (right) panels show the real (imaginary) part of the angular frequency as a

function of k and θ . (a) Collisionles model without T⊥e1 . (b) Collisional model without T⊥e1 . (c) Model with

T⊥e1 in the collisionless limit (τee −→ ∞). (d) Collisional model with T⊥e1 (the most complete model). Results

from the four models qualitatively agree with each other; the quasi-electrostatic LHDW that propagates

almost perpendicular to B0 is unstable. The maximum growth rate appears around kρe ∼ 0.7 and θ ∼

91◦. The growth rate of the mode decreases with collisional effects (b,d), compared to the corresponding

collisionless cases (a,c).
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FIG. 3. 1D dispersion relation of the ES-LHDW for θ = 91◦. (a) ω/ωLH as a function of kρe. Including

collisional effects (solid lines) increases the real frequency, while models with T⊥e1 (red lines) have lower

ω . (b) γ/ωLH as a function of kρe. Collisional effects (solid lines) decrease γ , compared to results from the

corresponding collisionless cases (dashed lines).

FIG. 4. 1D dispersion relation of the ES-LHDW for θ = 91◦. (a) ω/ωLH as a function of kρe for four

cases with collisional effects. The blue (red) line indicates the reference case without (with) T⊥e1 . If T⊥e1 is

removed from the x component of the electron momentum equation (cyan line), ω becomes significantly

larger. Removing the contribution from T⊥e1 in the z component of the electron momentum equation (green

line), on the other hand, reduces ω . (b) γ/ωLH as a function of kρe for four cases with collisional effects.

Effects of T⊥e1 on γ are not important, as all four cases show similar values.
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Collisional effects on lower hybrid drift waves

ω and γ are not significant.

The change in ω with T⊥e1 is caused by the ik⊥n0T⊥e1 term in the x component of the electron

momentum equation. As shown in Fig. 4 (a), without the term (magenta line), ω increases sig-

nificantly compared to the reference case with T⊥e1 (red line). Removing the ik⊥n0T⊥e1 term also

increases γ for most values of k. Again, these changes are caused by the frequency shift due to the

additional term with ue1x; from Eqns. B.55 and B.35, the inertial term effectively changes from

imen0(ω−k ·ue0)ue1x to imen0(ω−k ·ue0−0.5c̄⊥uxk⊥vte)ue1x.

We have repeated the dispersion calculation for the electromagnetic, long-wavelength LHDW

(EM-LHDW) that propagates obliquely to B0. The plasma and field parameters used for cal-

culations are B0 = 30 Gauss, n0 = 2× 1013 cm−3, Te0 = Ti0 = 10 eV, ue0z = −50 km/s, and

ue0x = 130 km/s. Again, the ion species is singly-ionized helium and Zi = 1. With these parame-

ters, τeeωce = 26.2, βe is 8.9 and VA is 7.3 km/s. These parameters represent typical MRX values

near the electron diffusion region during reconnection with a negligible guide field.

As shown in Fig. 5, dispersion relations from the four models again qualitatively agree with

each other; these models expect positive growth rates for the EM-LHDW. Models without T⊥e1 have

the maximum growth rate around kρe ∼ 0.6 and θ ∼ 55◦, while those with T⊥e1 have the maximum

growth rate around kρe ∼ 0.5 and θ ∼ 50◦. The wavelength with the largest growth rate is about

4 cm. In is interesting to see that all models expect that the mode has frequency significantly less

than ωLH in the ion rest frame. This agrees with measurements in MRX and numerical simulations

that show that most of the power of the EM-LHDW exists below ωLH
9,16.

For comparison between the four models, ω and γ as a function of k for θ = 55◦ are presented

in Fig. 6. Similar to the ES-LHDW case, collisional effects decrease γ regardless of the existence

of T⊥e1 in the model. This is consistent with the aforementioned explanation; collisions decrease

the reaction of electrons to the external perturbation, thereby decreasing the positive feedback. For

the EM-LHDW, collisions generally decrease ω especially when T⊥e1 is not included in the model

(blue lines). Including T⊥e1 further decreases both ω and γ for this mode (red lines).

IV. SUMMARY AND DISCUSSION

In summary, we have developed a local, linear model of LHDWs that includes effects of

Coulomb collisions and T⊥e1 . This model works best for plasmas with weak collisionality. Without

collisions, some assumptions for the 3+1 model may not be valid, as the zeroth-order distribution
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FIG. 5. Dispersion relation of the LHDW with typical MRX parameters near the electron diffusion region

with a negligible guide field. Left (right) panels show the real (imaginary) part of the angular frequency as a

function of k and θ . (a) Collisionless model without T⊥e1 . (b) Collisional model without T⊥e1 . (c) Model with

T⊥e1 in the collisionless limit (τee −→ ∞). (d) Collisional model with T⊥e1 (the most complete model). Again,

results from the four models qualitatively agree with each other; the electromagnetic LHDW that propagates

obliquely to B0 is unstable. The maximum growth rate appears around kρe ∼ 0.5 and θ ∼ 50◦. The growth

rate of the mode decreases with collisional effects (b,d), compared to the corresponding collisionless cases

(a,c).

15



Collisional effects on lower hybrid drift waves

FIG. 6. 1D dispersion relation of the EM-LHDW for θ = 55◦. (a) ω/ωLH as a function of kρe. Models

with T⊥e1 (red lines) have lower ω . The impact of Coulomb collisions on ω is negligible. (b)γ/ωLH as a

function of kρe. Collisional effects (solid lines) decreases γ , compared to results from the corresponding

collisionless cases (dashed lines).

function is not close to a Maxwellian. In addition, in the collisionless plasma, agyrotropy can be

developed, while a gyrotropic electron pressure tensor is assumed in this model. For collisional

plasmas, we need to consider the zeroth-order electric field along the x and z directions; for the

zeroth-order electron force balance, additional components of E0 are needed to balance the zeroth-

order resistivity Re0. If there are too many collisions, we need additional first-order terms (eE0xne1

and eE0zne1) in the x and z components of the electron momentum equation (Eqn. 8). From

Eqn. 38, required equilibrium electric field components are given by E0z =−α‖B0ue0z/ωceτei and

E0x =−α⊥B0ue0x/ωceτei. From Eqn. 3, E0x/E0 is given by

E0x

E0
=− α⊥Te0

Te0 +Ti0

1
ωceτei

∼− 1
ωceτee

, (49)

because α⊥ ∼ Te0/(Te0 + Ti0) ∼ 1 and τei ∼ τee for Zi = 1. This means that E0x is negligible

compared to E0, as long as electrons are fully magnetized (ωceτee� 1), which is one of the basic

assumptions of this model. From a similar argument, E0z is also negligible unless |ue0z| � |ue0x|.

For the two cases presented here, effects of both E0x and E0z are expected to be minimal since

|ue0z| ∼ |ue0x| and ωceτee� 1.

To verify this argument, we have calculated dispersion relations of LHDWs after including two

additional terms (eE0xne1 and eE0zne1) and have found that impacts from these terms are actually
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negligible. The basic reason for not including additional components of E0 in the current model

is that including E0x may require an additional electron flow component along the y direction,

since there will be a corresponding E×B drift of electrons, while ions are unmagnetized. This

means that collisions may impact the dynamics of LHDWs by changing the equilibrium itself. A

future work will address this effect in a self-consistent manner. As the main purpose of the current

study is to study collisional effects on LHDWs, we minimize other changes for simplicity. The

parallel component of the equilibrium electric field E0z, on the other hand, can be easily added

in the model without creating complexity. Moreover, E0z in the electron diffusion region during

reconnection with a strong guide field may significantly exceed the value required to balance the

classical resistivity32. In the future, we will study possible impacts of E0z on LHDWs with values

measured in MRX during guide field reconnection.

With this model, we have calculated two sets of LHDW dispersion relations for typical MRX

parameters. The first case uses parameters from the electron diffusion region during reconnection

with a significant guide field, while the second one uses those with a negligible guide field. Due

to the presence of the guide field, the first case has a low electron beta (βe = 0.25), such that

the ES-LHDW is unstable in that region. For the second case (βe = 8.9), on the other hand, the

ES-LHDW is stabilized by the high beta effect17 and the EM-LHDW is unstable instead.

It will be interesting to study the critical value of βe that determines whether the ES- or EM-

LHDW is unstable. Initial studies show that the critical value is determined by the value of

ue0x/VA; for a relatively low (∼ 1) value of ue0x/VA like the first case, βe also has to be low

(. 0.5) to have the ES-LHDW unstable. For a high value (> 10) of ue0x/VA, on the other hand,

the ES-LHDW exists at the higher βe ∼ 1. We plan to conduct a statistical study with data from

MMS and/or MRX, which will be compared to results from the current theoretical model.

Based on the two cases we have studied, collisional effects on LHDWs in typical MRX current

sheets are limited. In both cases, including Coulomb collisions in the model decreases the growth

rate. However, the difference in γ is relatively small (. 20 %). This is because the wavelengths of

LHDWs (0.5–5 cm) are smaller than the mean free path of electrons (∼ 10 cm) and electrons are

fully magnetized (ωceτee� 1) for these parameters.

To further investigate how collisions may impact on the dispersion relation, we have artificially

varied τee and τei. For the ES-LHDW, artificially high collisions significantly affect the dispersion

relation and the growth rate, as shown in Fig. 7 (a) and (b). When the collisions are enhanced by

a factor of 5 (red dashed line), the real frequency becomes larger for kρe > 0.2 than the reference
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FIG. 7. 1D dispersion relations with various collisionalities for the two cases. (a) ω/ωLH as a function of

kρe for the ES-LHDW case. When τee is artificially decreased to 0.2τee (red dashed line), which means

that collisions are enhanced by a factor of 5, there is a significant increase in ω when kρe > 0.4. The same

change is also applied to the other collision time, τei. The blue line indicates the reference value without any

change in the collision time. (b)γ/ωLH as a function of kρe for the ES-LHDW case. When collisions are

enhanced (red solid and dashed lines), there are noticeable changes in γ . (c)ω/ωLH as a function of kρe for

the EM-LHDW case. When collisions are enhanced, there are large changes in the dispersion. (d)γ/ωLH as

a function of kρe for the EM-LHDW case. When collisions are enhanced (red solid and dashed lines), the

growth rate with smaller kρe decreases notably.

value (blue solid line). There is also significant decrease in the growth rate for kρe > 0.7. Changes

in less collisional cases, on the other hand, (green solid and dashed lines) are minimal. With the

reduced collision time (τee → 0.2τee), the mean free path (τeevte) becomes about 2 cm, which
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corresponds to kρe ∼ 0.2. This supports the insertion that collisions have large impacts on modes

with a wavelength comparable to the mean free path (λ ∼ 2πτeevte).

For the case of the EM-LHDW, effects from collisions become significant when collisions are

enhanced by a factor of 5 or more (τee→ 0.2τee and τei→ 0.2τei). As denoted by the red line in

Fig. 7 (c), the overall shape of the dispersion relation changes noticeably, when τee is reduced to

0.2τee. The mean free path with 0.2τee is about 2 cm (the same electron temperature and density

as the first case), and the change starts around 0.2kρe. When τee reduces even further to 0.1τee

(red dashed line), the deviation from the reference line starts around 0.1kρe. For both cases, there

are also significant reductions in γ , as shown in Fig. 7 (d) especially for kρe < 0.7.

This means that parameters for the two cases studied here are actually in the weakly collisional

regime and that the dynamics of LHDWs are susceptible to collisional effects only when collisions

are strong. For example, if the base electron temperature for both cases is 3 eV, the dispersion

relation from this collisional model will be vastly different from that of the collisionless model.

Including T⊥e1 in the model has limited impacts on the dispersion; it generally decreases the

frequency and growth rate of LHDWs, but changes in ω and γ are less than 20 % for both cases.

These changes mostly come from the additional pressure gradient term (ik⊥n0T⊥e1 ) in the elec-

tron momentum equation along the x direction. This limited impact is related to the existence of

Lorentz force terms along the perpendicular direction7; because of these terms, the electron force

balance is less sensitive to the pressure gradient term along the perpendicular direction.

It should be noted that the current theoretical model ignores the global structure of the current

sheet by assuming that there is no wave propagation along the density gradient direction (y di-

rection in Fig. 1). To address the effects from the global current sheet structure, an eigenmode

analysis21,33 or numerical simulations22,23 will have to be carried out, which will be one of our

future works. In MRX, where the current sheet is actually broader (∼ 10de; de is electron skin

depth), this local approximation is generally valid, as the length scale along the y direction is

larger than the wavelength of LHDWs.

This model assumes that there is no equilibrium temperature gradient across the current sheet.

In MRX, electrons are locally heated in the current sheet20,34. However, inside the current sheet

the temperature gradient is rather small, compared to that of density. Therefore, effects of the

temperature gradient are expected to be negligible24.

This study will provide a theoretical framework for quantifying anomalous terms and heat-

ing associated with LHDWs in MRX. With the solved dispersion relation, we can express every
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fluctuating quantity in terms of a measurable quantity. For example, the first-order density pertur-

bation (Eqn. B.81) can be expressed in terms of the fluctuation in the reconnection electric field

(δErec) that can be measured with a probe8,35. Then, the wave-associated anomalous drag term

D = −〈δneδErec〉/〈ne〉36 can be estimated by measuring δErec. Here the assumption is that the

linear relation holds, such that we can use ne1 ∼ δne. Furthermore, this model can provide direct

estimates of wave-associated heating in Eqn. 35 via the same quasi-linear argument. This estimate

cannot be done with other collisionless models. In the future, we will establish quasi-linear calcu-

lations and conduct measurements of LHDWs in MRX to find out how LHDWs affect the electron

and reconnection dynamics.

Appendix A: Derivation of the heat flux closure

From the kinetic equation in the (t,r,w≡ v−V) coordinates (V is the fluid velocity),

d f
dt
− (w ·∇V) · ∂

∂w
f +∇ · (w f )+

∂

∂w
· (A f )+

q
m

w×B · ∂

∂w
f =C( f ), (A.1)

where
d
dt

=
∂

∂ t
+V ·∇, (A.2)

A =
1
m
[F∗+q(V×B)]− dV

dt
. (A.3)

For the p‖ fluid equation, we need to obtain the closure

q‖ =
∫

d3vmw2
‖w f = q‖‖ẑ+q‖⊥, (A.4)

q = h =
∫

d3v
1
2

mw2w f = h‖ẑ+h⊥, (A.5)

where

q‖‖ =
∫

d3vmw3
‖ f =

6
5

h‖+σ‖, (A.6)

q⊥‖ =
∫

d3v
1
2

mw2
⊥w‖ f =

2
5

h‖−
1
2

σ‖. (A.7)

have been obtained in Ji and Joseph 25 and the q‖⊥ has been obtained in Yoo et al. 7 . Now we obtain

q⊥ =
∫

d3v
1
2

mw2
⊥w f = q⊥‖ ẑ+q⊥⊥. (A.8)

Note that q⊥ can be obtained from

h⊥ = q⊥ =
∫

d3v
1
2

mw2w⊥ f =
1
2

q‖⊥+q⊥⊥. (A.9)
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We adopt the closure (transport) ordering d/dt ≈ 0 and the linear response theory, linear in ther-

modynamic drives i.e. ∇T , ∇p‖ and ∇p⊥.

We take the moments
∫

d3v1
2mw2w of the kinetic equation:∫

d3v
1
2

mw2w
d f
dt

=
d
dt

q : ignored by the closure ordering,

∫
d3v

1
2

mw2w(w ·∇V) · ∂

∂w
f : ignored by the linearization,∫

d3v
1
2

mw2w∇ · (w f ) = ∇ · (
∫

d3v
1
2

mw2ww f ).

We should decompose wwww into orthogonal polynomials (see Ji and Held 37) for the consistent

truncation in the expansion of a distribution function.

c =
w
vT

=
w√

2T/m
. (A.10)

In terms of orthogonal basis

c2cc = c2
(

cc− 1
3

c2I

)
+

1
3

c4I

=

(
c2− 7

2

)(
cc− 1

3
c2I

)
+

7
2

(
cc− 1

3
c2I

)
+

1
3

c4I

=−p21 +
7
2
p20 +

2
3

(
1
2

c4− 5
2

c2 +
15
8

)
I+

2
3

(
5
2

c2− 15
8

)
I

=−p21 +
7
2
p20 +

2
3
p02I+

[
5
3

(
c2− 3

2

)
+

5
2
− 5

4

]
I

=−p21 +
7
2
p20 +

2
3
p02I+

(
−5

3
p01 +

5
4

)
I, (A.11)

∫
dv

1
2

mw2ww f → 1
2

mv4
T

[
7
2
p20 +

(
−5

3
p01 +

5
4

)
I

]
=

7
2

1
2

v2
Tπ+

1
2

mv4
T

5
4

nI

=
7
2

T
m
π+

5
2

T
m

pI

=
7
2

T
m
p− T

m
pI. (A.12)

Hereafter→ will be used to drop b terms which will be nullified by the b× operation:

∇ ·π =
3
2

b∂‖π‖−
1
2

∇π‖→−
1
2

∇π‖. (A.13)
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For the ∂

∂w · (A f ) term

A =
1
m
[F∗+q(V×B)]− dV

dt
=

1
mn

(∇p+∇ ·π). (A.14)

∫
dv

1
2

mw2w
∂

∂w
· (A f ) =−

∫
dvmA · ∂

∂w
(
1
2

w2w) f

=−
∫

dvm(A ·ww+
1
2

w2A) f

=−p ·A− 3
2

pA

=−A ·π− 5
2

pA. (A.15)

All together ∇ · (w f )+ ∂

∂w · (A f )

all = ∇ ·
(

7
2

T
m
π+

5
2

T
m

pI
)
− 1

mn
(∇p+∇ ·π) ·π− 5

2
p

1
mn

(∇p+∇ ·π)

=
7

2m
(∇T ·π+T ∇ ·π1)+

5
2m

(p∇T +T ∇p0)−
1

mn
(∇p+∇ ·π) ·π− 5

2
p

1
mn

(∇p0 +∇ ·π1)

=
7

2m
∇T ·π+

1
m

T ∇ ·π+
5

2m
p∇T − 1

mn
(∇p+∇ ·π) ·π. (A.16)

∫
d3v

1
2

mw2w
∂

∂w
· (w×B f ) =−1

2
m
∫

d3v(w×B f ) · ∂

∂w
(
w2w

)
=−1

2
m
∫

d3v(w×B f ) ·
(
2ww+w2I

)
=−1

2
m
∫

d3vw2w×B f

=−h×B. (A.17)

q
m

∫
d3v

1
2

mw2w
∂

∂w
· (w×B f ) =−Ωh× ẑ. (A.18)

The final equation becomes up to O(Ω0)

(terms dropped by closure ordering)+all+(terms ∝ b)−Ωh× ẑ = (collision terms ∝ b)

h⊥ =
1
Ω

ẑ×all

h⊥ =
1

mΩ
b×

[
5

2m
∇T ·π+

1
m

T ∇ ·π+
5

2m
p∇T − 1

mn
(∇ ·π) ·π

]
. (A.19)

Since we are interested in q⊥ up to O(Ω−1), we consider only the CGL viscosity which is O(Ω0)

π =
3
2

π‖(bb− 1
3
I), (A.20)
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∇ ·π =
3
2

b∂‖π‖−
1
2

∇π‖

=−1
2

∇π‖+b terms, (A.21)

and

(∇ ·π) ·π =

(
3
2

b∂‖π‖−
1
2

∇π‖

)
· 3

2
π‖(bb− 1

3
I)

=
1
4

π‖∇π‖+b terms, (A.22)

all =
7

2m
∇T ·π+

1
m

T ∇ ·π+
5

2m
p∇T − 1

mn
(∇p+∇ ·π) ·π

=− 7
4m

π‖∇T − T
2m

∇π‖+
5

2m
p∇T +

π‖
2mn

∇p− 1
4mn

π‖∇π‖+b terms, (A.23)

q⊥ =
1

mΩ
b×

(
−7

4
π‖∇T − T

2
∇π‖+

5
2

p∇T +
π‖
2n

∇p− 1
4n

π‖∇π‖

)
, (A.24)

q⊥⊥ = q⊥−
1
2

q‖⊥, (A.25)

where7

q‖⊥ =
1

mΩ
b×

(
p‖∇T +T ∇p‖− T

2
∇π‖−

p‖

n
∇p⊥

)
. (A.26)

Finally,

q⊥ = q⊥‖ ẑ+q⊥⊥. (A.27)

One can rewrite equations in terms of p‖ and p⊥ using

π‖ =
2
3
(p‖− p⊥), (A.28)

p =
1
3

(
p‖+2p⊥

)
= nT. (A.29)

Appendix B: Derivation of tensor D

In terms of T ‖e1 and T⊥e1 , q‖e1z and q⊥e1z (Eqns. 26 and 27) can be expressed as

q‖e1z =−ic̄‖q‖n0vteT ‖e1− ic̄‖q⊥n0vteT⊥e1 + c̄‖qun0Te0uei1z, (B.1)

q⊥e1z =−ic̄⊥q‖n0vteT ‖e1− ic̄⊥q⊥n0vteT⊥e1 + c̄⊥qun0Te0uei1z, (B.2)
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where 6 dimensionless parameters are defined as

c̄‖q‖ =
9
25

k̄‖K̄hh−
8
5

k̄‖K̄hσ +
2
3

k̄‖K̄σσ −
4
5

K̄hS−
2
3

K̄σS, (B.3)
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25
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4
15
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3

k̄‖K̄σσ +
4
5

K̄hS +
2
3

K̄σS, (B.4)

c̄‖qu =
6
5

K̄hR + K̄σR, (B.5)

c̄⊥q‖ =
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25
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2
15
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k̄‖K̄σσ −
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15
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K̄σS, (B.6)

c̄⊥q⊥ =
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25
k̄‖K̄hh +

8
15

k̄‖K̄hσ +
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k̄‖K̄σσ +
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K̄hS−
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K̄σS, (B.7)

c̄⊥qu =
2
5

K̄hR−
1
2

K̄σR. (B.8)

Here uei1z = ue1z−ui1z is the the first-order relative flow velocity along the z direction.

With Eqns. 7, 9, 37, 38, 42, and 45, Qe1 can be written as

Qe1 =

(
1− K̄RR +

α‖τee

τei

)
n0meue0z

τee
uei1z +

c̄Q‖n0

τee
T ‖e1 +

c̄Q⊥n0

τee
T⊥e1 +AQ, (B.9)

where
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5
− K̄σR

2
+

4K̄RS

3k̄‖

)
+

2ik̄⊥β⊥ue0x

3vte
, (B.11)

AQ =

[
3me(Ti0−Te0)

miτei
+

α⊥meu2
e0x

τei

]
ne1 +

3men0

miτei
Ti1 +

2α⊥men0.ue0x

τei
uei1x. (B.12)

With Eqns. 32, 33, 34, and B.9, C‖e1 and C⊥e1 can be written as

C‖e1 = c̄‖C‖
n0T ‖e1

τee
+ c̄‖C⊥

n0T⊥e1
τee

+ c̄‖Cu
n0Te0uei1z

τeevte
+

2
3

AQ, (B.13)

C⊥e1 = c̄⊥C‖
n0T ‖e1

τee
+ c̄⊥C⊥

n0T⊥e1
τee

+ c̄⊥Cu
n0Te0uei1z

τeevte
+

2
3

AQ, (B.14)

where 6 dimensionless parameters are given by

c̄‖C‖ =
2
3

c̄Q‖+
4
5

k̄‖K̄hS +
2
3

k̄‖K̄σS−
2(2.05− K̄SS)

3
, (B.15)

c̄‖C⊥ =
2
3

c̄Q⊥+
8

15
k̄‖K̄hS−

2
3

k̄‖K̄σS +
2(2.05− K̄SS)

3
, (B.16)
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c̄‖Cu =
4
3

(
1− K̄RR +

α‖τee

τei

)
ue0z

vte
+

8i
3

K̄RS, (B.17)

c̄⊥C‖ =
2
3

c̄Q‖−
2
5

k̄‖K̄hS−
1
3

k̄‖K̄σS +
2.05− K̄SS

3
, (B.18)

c̄⊥C⊥ =
2
3

c̄Q⊥−
4
15

k̄‖K̄hS +
1
3

k̄‖K̄σS−
2.05− K̄SS

3
, (B.19)

c̄⊥Cu =
4
3

(
1− K̄RR +

α‖τee

τei

)
ue0z

vte
− 4i

3
K̄RS. (B.20)

With these closures, Eqns. 20 and 21 can be written as

irαeT ‖e1 = c̄‖‖T
‖

e1 + c̄‖⊥T⊥e1 + c̄‖uTe0
ue1z

vte
− c̄uxTe0

ue1x

vte
− c̄nTe0

ne1

n0
+A‖t , (B.21)

irαeT⊥e1 = c̄⊥‖ T ‖e1 + c̄⊥⊥T⊥e1 + c̄⊥u Te0
ue1z

vte
+
(
ik̄⊥− c̄ux

)
Te0

ue1x

vte
− c̄nTe0

ne1

n0
+A⊥t , (B.22)

where

αe = (ω−k ·ue0)/ωce, (B.23)

c̄‖‖ = k̄‖c̄
‖
q‖− c̄‖C‖+ irtek⊥τeeue0x, (B.24)

c̄‖⊥ = k̄‖c̄
‖
q⊥− c̄‖C⊥− irtek⊥τeeue0x, (B.25)

c̄‖u = ik̄‖c̄
‖
qu− c̄‖Cu +2ik̄‖, (B.26)

c̄ux =
8α⊥τeeue0x

3τeivte
(B.27)

c̄n =
2meτee

miτei

(
Ti0

Te0
−1
)
+

4α⊥τeeu2
e0x

3τeiv2
te

(B.28)

c̄⊥‖ = k̄‖c̄
⊥
q‖− c̄⊥C‖− irtek⊥τeeue0x, (B.29)

c̄⊥⊥ = k̄‖c̄
⊥
q⊥− c̄⊥C⊥+ irtek⊥τeeue0x, (B.30)

c̄⊥u = ik̄‖c̄
⊥
qu− c̄⊥Cu, (B.31)

A‖t =−
2meτee

miτei
Ti1−

(
ik̄‖c̄

‖
qu− c̄‖Cu

)
Te0

ui1z

vte
+

8α⊥τeeue0x

3τeivte
Te0

ui1x

vte
, (B.32)

A⊥t =−2meτee

miτei
Ti1−

(
ik̄‖c̄

⊥
qu− c̄⊥Cu

)
Te0

ui1z

vte
+

8α⊥τeeue0x

3τeivte
Te0

ui1x

vte
. (B.33)

With Eqns. B.21 and B.22, the T ‖e1 and T⊥e1 can be written as

T ‖e1 = c̄‖uzTe0
ue1z

vte
+ c̄‖uxTe0

ue1x

vte
+ c̄‖nTe0

ne1

n0
+A‖i , (B.34)
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T⊥e1 = c̄⊥uzTe0
ue1z

vte
+ c̄⊥uxTe0

ue1x

vte
+ c̄⊥n Te0

ne1

n0
+A⊥i , (B.35)

where

c̄‖uz =

(
irαe− c̄⊥⊥

)
c̄‖u + c̄‖⊥c̄⊥u(

irαe− c̄‖‖
)(

irαe− c̄⊥⊥
)
− c̄‖⊥c̄⊥‖

, (B.36)

c̄‖ux =−
(
irαe− c̄⊥⊥

)
c̄ux− c̄‖⊥

(
ik̄⊥− c̄ux

)(
irαe− c̄‖‖

)(
irαe− c̄⊥⊥

)
− c̄‖⊥c̄⊥‖

, (B.37)

c̄‖n =−

(
irαe− c̄⊥⊥+ c̄‖⊥

)
c̄n(

irαe− c̄‖‖
)(

irαe− c̄⊥⊥
)
− c̄‖⊥c̄⊥‖

, (B.38)

c̄⊥uz =

(
irαe− c̄‖‖

)
c̄⊥u + c̄⊥‖ c̄‖u(

irαe− c̄‖‖
)(

irαe− c̄⊥⊥
)
− c̄‖⊥c̄⊥‖

, (B.39)

c̄⊥ux =

(
irαe− c̄‖‖

)(
ik̄⊥− c̄ux

)
− c̄⊥‖ c̄ux(

irαe− c̄‖‖
)(

irαe− c̄⊥⊥
)
− c̄‖⊥c̄⊥‖

, (B.40)

c̄⊥n =−

(
irαe− c̄‖‖+ c̄⊥‖

)
c̄n(

irαe− c̄‖‖
)(

irαe− c̄⊥⊥
)
− c̄‖⊥c̄⊥‖

. (B.41)

The additional ion terms A‖i and A⊥i can be expressed as

A‖i = c̄‖i‖A
‖
t + c̄‖i⊥A⊥t , (B.42)

A⊥i = c̄⊥i‖A
‖
t + c̄⊥i⊥A⊥t , (B.43)

where

c̄‖i‖ =
irαe− c̄⊥⊥(

irαe− c̄‖‖
)(

irαe− c̄⊥⊥
)
− c̄‖⊥c̄⊥‖

, (B.44)

c̄‖i⊥ =
c̄‖⊥(

irαe− c̄‖‖
)(

irαe− c̄⊥⊥
)
− c̄‖⊥c̄⊥‖

, (B.45)

c̄⊥i‖ =
c̄⊥‖(

irαe− c̄‖‖
)(

irαe− c̄⊥⊥
)
− c̄‖⊥c̄⊥‖

, (B.46)

c̄⊥i⊥ =
irαe− c̄‖‖(

irαe− c̄‖‖
)(

irαe− c̄⊥⊥
)
− c̄‖⊥c̄⊥‖

. (B.47)
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The z component of Eqn. 8 is

imen0(ω−k ·u0)ue1z = ik‖p
‖
e1 + en0(E1z +u0xB1y)−R‖e1. (B.48)

From the Faraday’s Law (ωB1 = k×E1), B1y = (k‖E1x− k⊥E1z)/ω . With Eqns. 9, B.34, B.35,

B.48, and 42, ue1z is expressed as

iαezue1z = ic̄xzue1x + c̄yzue1y +Aez +Aiz, (B.49)

where

αez = αe−
k‖vte

2ωce

[
c̄‖uz + γ

‖
ezc̄
‖
uz + γ

⊥
ez c̄⊥uz−

2i(1− K̄RR)

k̄‖
+

k‖vte

αeωce

(
1+ c̄‖n + γ

‖
ezc̄
‖
n + γ

⊥
ez c̄⊥n

)]
,

(B.50)

c̄xz =
k‖vte

2ωce

[
c̄‖ux + γ

‖
ezc̄
‖
ux + γ

⊥
ez c̄⊥ux +

k⊥vte

αeωce

(
1+ c̄‖n + γ

‖
ezc̄
‖
n + γ

⊥
ez c̄⊥n

)]
, (B.51)

c̄yz =
εk‖v2

te

2αeω2
ce

(
1+ c̄‖n + γ

‖
ezc̄
‖
n + γ

⊥
ez c̄⊥n

)
, (B.52)

Aez =
E1z

B0
+

ku0x

ω

E1x cosθ −E1z sinθ

B0
, (B.53)

Aiz =
ik‖
eB0

(
A‖i + γ

‖
ezA
‖
i + γ

⊥
ezA⊥i

)
− 1− K̄RR

ωceτee
ui1z. (B.54)

The x component of Eqn. 8 is

imen0 (ω−k ·ue0)ue1x = ik⊥(n0T⊥e1 +Te0ne1)+ en0(E1x +B0ue1y−ue0zB1y)−R⊥e1. (B.55)

With Eqns. 9, B.34, B.35, 45, B.49, and B.55, ue1y can be expressed as

γeyue1y = iαexue1x−Aex−Aix−
c̄zxk⊥vte

2αezωce
(Aez +Aiz), (B.56)

where γey, αex, and Aex are

γey = 1+
c̄nxεk⊥v2

te
2αeω2

ce
+

c̄zxc̄yzk⊥vte

2αezωce
, (B.57)

αex = αe−
c̄nxk2

⊥v2
te

2αeω2
ce
− c̄zxc̄xzk⊥vte

2αezωce
− k⊥vte

2ωce

[
β⊥c̄‖ux

3
+

(
1+

2β⊥

3

)
c̄⊥ux−

2iα⊥τee

k̄⊥τei

]
, (B.58)

Aex =
E1x

B0
− ku0z

ω

E1x cosθ −E1z sinθ

B0
, (B.59)

Aix =
ik⊥
eB0

[
β⊥A‖i

3
+

(
1+

2β⊥

3

)
A⊥i

]
− α⊥ui1x

τeiωce
. (B.60)
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Here two dimensionless parameters are given by

c̄nx = 1+
β⊥c̄‖n

3
+

(
1+

2β⊥

3

)
c̄⊥n −

2iα⊥τeeue0x

k̄⊥τeivte
, (B.61)

c̄zx =
β⊥c̄‖uz

3
+

(
1+

2β⊥

3

)
c̄⊥uz +

c̄nxk‖vte

αeωce
. (B.62)

Similarly, the y component of Eqn. 8 is

imen0 (ω−k ·u0)ue1y = en0(E1y−B0ue1x−ue0xB1z+ue0zB1x)+e(E0−ue0xB0)ne1−R×e1. (B.63)

With Eqns. 9, 3, and B.49, ue1x can be expressed as

γexue1x =−iαeyue1y +
3irtek‖u0x

2αeαezωce
(Aez +Aiz)+Aey +Aiy, (B.64)

where γex, αey, Aey, and Aiy are

γex = 1+
3rtek⊥ue0x

2αeωce

(
1+

c̄xzk‖
αezk⊥

)
, (B.65)

αey = αe− i
α×

ωceτei
− 3rteεue0x

2αeωce

(
1+

c̄yzk‖
αezε

)
, (B.66)

Aey =
E1y

B0
− k

ω

(u0x sinθ +u0z cosθ)E1y

B0
, (B.67)

Aiy =
α×

ωceτei
ui1y. (B.68)

With Eqns. B.56 and B.64, ue1y is given by

ue1y = i
[
iCe

yx(Aex +Aix)+Ce
yy(Aey +Aiy)+ iCe

yz(Aez +Aiz)
]
, (B.69)

where

Ce
yx =

(
γey−

αexαey

γex

)−1

, (B.70)

Ce
yy =Ce

yx
αex

γex
, (B.71)

Ce
yz =Ce

yx

(
c̄zxk⊥vte

2αezωce
+

3rteαexk‖ue0x

2γexαeαezωce

)
. (B.72)

Similarly, ue1x is given by

ue1x = iCe
xx(Aex +Aix)+Ce

xy(Aey +Aiy)+ iCe
xz(Aez +Aiz), (B.73)
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where

Ce
xy =

(
γex−

αexαey

γey

)−1

, (B.74)

Ce
xx =Ce

xy
αey

γey
, (B.75)

Ce
xz =Ce

xy

[
3rtek‖u0x

2αeαezωce
+

αeyc̄zxk⊥vte

2γeyαezωce

]
. (B.76)

Then, ue1z can be written as

ue1z = iCe
zx(Aex +Aix)+Ce

zy(Aey +Aiy)+ iCe
zz(Aez +Aiz), (B.77)

where

Ce
zz =−

1
αez

+
c̄xzCe

xz

αez
+

c̄yzCe
yz

αez
, (B.78)

Ce
zx =

c̄xzCe
xx

αez
+

c̄yzCe
yx

αez
, (B.79)

Ce
zy =

c̄xzCe
xy

αez
+

c̄yzCe
yy

αez
. (B.80)

The final goal is to obtain the perturbed current density of electrons, which is given by Je
1 =

−en0ue1− eue0ne1. Thus, an expression for ne1 is required. From Eqns. 9, B.69, B.73, and B.77,

ne1 is given by

ne1 =
kn0

ω−k ·ue0

[
iC′ex (Aex +Aix)+C′ey (Aey +Aiy)+ iC′ez (Aez +Aiz)

]
, (B.81)

where

C′ex =Ce
xx sinθ +Ce

yxε/k+Ce
zx cosθ , (B.82)

C′ey =Ce
xy sinθ +Ce

yyε/k+Ce
zy cosθ , (B.83)

C′ez =Ce
xz sinθ +Ce

yzε/k+Ce
zz cosθ . (B.84)

Now we are ready for computing the dispersion relation. Eqn. 5 is

k2
‖E1x− k⊥k‖E1z− iωµ0J1x = 0, (B.85)

k2E1y− iωµ0J1y = 0, (B.86)

k2
⊥E1z− k⊥k‖E1x− iωµ0J1z = 0. (B.87)
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By multiplying by d2
i (di ≡ c/ωpi is the ion skin depth; ωpi is ion plasma frequency), the above

equation can be written as

K2 cos2
θE1x−K2 sinθ cosθE1z− iΩ

B0

en0
J1x = 0, (B.88)

K2E1y− iΩ
B0

en0
J1y = 0, (B.89)

K2 sin2
θE1z−K2 sinθ cosθE1x− iΩ

B0

en0
J1z = 0, (B.90)

where K ≡ kdi and Ω = ω/ωci.

From Eqn. 6, each component of iΩB0Ji
1/en0 is

iΩB0

en0
Ji

1x = ζ ZE1x +
ζ Z′′ sinθ

2

(
E1x sinθ − i

ε

k
E1y +E1z cosθ

)
, (B.91)

iΩB0

en0
Ji

1y = ζ ZE1y, (B.92)

iΩB0

en0
Ji

1z = ζ ZE1z +
ζ Z′′ cosθ

2

(
E1x sinθ − i

ε

k
E1y +E1z cosθ

)
. (B.93)

From Eqns. B.73 and B.81, iJe
1x/en0 is given by

iJe
1x

en0
=Ce′

xx(Aex +Aix)− iCe′
xy(Aey +Aiy)+Ce′

xz(Aez +Aiz), (B.94)

where Ce′
xx = Ce

xx + kue0xC′ex /(ω − k · ue0), Ce′
xy = Ce

xy + kue0xC′ey /(ω − k · ue0), and Ce′
xz = Ce

xz +

kue0xC′ez /(ω−k ·ue0). Similarly, from Eqns. B.77 and B.81, iJe
1z/en0 is given by

iJe
1z

en0
=Ce′

zx(Aex +Aix)− iCe′
zy(Aey +Aiy)+Ce′

zz(Aez +Aiz), (B.95)

where Ce′
zx = Ce

zx + kue0zC′ex /(ω − k · ue0), Ce′
zy = Ce

zy + kue0zC′ey /(ω − k · ue0), and Ce′
zz = Ce

zz +

kue0zC′ez /(ω−k ·ue0). Since there is no y component in ue0, iJe
1y/en0 is simply

iJe
1y

en0
= iCe

yx(Aex +Aix)+Ce
yy(Aey +Aiy)+ iCe

yz(Aez +Aiz). (B.96)

In terms of dimensionless parameters, ΩB0Aex, ΩB0Aey, and ΩB0Aez can be written as

ΩB0Aex = (Ω−KUe0z cosθ)E1x +(KUe0z sinθ)E1z, (B.97)

ΩB0Aey = [Ω−K(Ue0x sinθ +Ue0z cosθ)]E1y, (B.98)

ΩB0Aez = (KUe0x cosθ)E1x +(Ω−KUe0x sinθ)E1z, (B.99)

Ue0 = ue0/VA and VA = B0/
√

µ0min0 = diωci is the Alfvén speed.
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With Eqn. 7, Aiz in Eqn. B.54 is

Aiz = c̄izx
iJi

1x
en0

+ c̄izz
iJi

1z

en0
+

c̄izT

B0

[
E1 · k̂

(
2Z′+

Z′′′

4

)
− iE1y

(
ε

k

)(
Z′+

Z′′′

4

)]
, (B.100)

where three dimensionless parameters are given by

c̄izx =
4α⊥(c̄‖iz + c̄⊥iz )τeek‖ue0x

3τeiωce
, (B.101)

c̄izz =−
[
c̄‖iz
(

ik̄‖c̄
‖
qu− c̄‖Cu

)
+ c̄⊥iz

(
ik̄‖c̄

⊥
qu− c̄⊥Cu

)] k‖vte

2ωce
+

i(1− K̄RR)

ωceτee
, (B.102)

c̄izT =
2(c̄‖iz + c̄⊥iz )meτee cosθ

miτei
. (B.103)

Here two additional parameters c̄‖iz and c̄⊥iz are defined as

c̄‖iz = (1+ γ
‖
ez)c̄
‖
i‖+ γ

⊥
ez c̄⊥i‖, (B.104)

c̄⊥iz = (1+ γ
‖
ez)c̄
‖
i⊥+ γ

⊥
ez c̄⊥i⊥. (B.105)

Similarly, Aix is

Aix = c̄ixx
iJi

1x
en0

+ c̄ixz
iJi

1z

en0
+

c̄ixT

B0

[
E1 · k̂

(
2Z′+

Z′′′

4

)
− iE1y

(
ε

k

)(
Z′+

Z′′′

4

)]
, (B.106)

where three dimensionless parameters are given by

c̄ixx =
4α⊥(c̄‖ix + c̄⊥ix)τeek⊥ue0x

3τeiωce
− α⊥

τeeωce
, (B.107)

c̄ixz =−
[
c̄‖ix
(

ik̄‖c̄
‖
qu− c̄‖Cu

)
+ c̄⊥ix

(
ik̄‖c̄

⊥
qu− c̄⊥Cu

)] k⊥vte

2ωce
, (B.108)

c̄ixT =
2(c̄‖ix + c̄⊥ix)meτee sinθ

miτei
. (B.109)

Two additional parameters c̄‖ix and c̄⊥ix are

c̄‖ix =
β⊥

3
c̄‖i‖+

(
1+

2β⊥

3

)
c̄⊥i‖, (B.110)

c̄⊥ix =
β⊥

3
c̄‖i⊥+

(
1+

2β⊥

3

)
c̄⊥i⊥. (B.111)

The last ion term is Aiy = (α×/ωceτei)Ji
1y/en0.
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Eqns. B.88–B.90 can be written as
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz




E1x

E1y

E1z

= 0. (B.112)

Each component of the tensor D is

Dxx =K2 cos2
θ −Ce′

xx (Ω−KUe0z cosθ)−Ce′
xzKUe0x cosθ (B.113)

−Ci
xx

(
ζ Z +

ζ Z′′ sin2
θ

2

)
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FIG. 8. Dispersion relation for the case of the ES-LHDW (Te = Ti = 10 eV, ne = 2×1013 cm−3, B0 = 180

Gauss, ue0x = 50 km/s, singly-ionized helium). (a) Dispersion relation for four cases. The blue and red

lines indicate results from collisional and collisionless models, respectively. The green line denotes the case

derived here with Poisson’s equation and perturbed quantities in the collisionless model. The black lines

indicate results from the classical models17. (b) Growth rate of the ES-LHDW for all cases.
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Appendix C: Comparison with Classical Model

Since the current model has been established independently, benchmarking with the classical

model is desirable. Here, we used the well-known model by Davidson et al. 17 . For this bench-

marking, we set both k‖ and ue0z to be zero as in the classical model.

As shown in Fig. 8, results from both collisional (blue line) and collisionless (red line) models

do not agree with results from the classical model (black line). In particular, our models expect

an almost linear dispersion relation, but ω increases slowly for small kρe in the classical model.

Another interesting difference is that the peak growth rate occurs around kρe ∼ 0.6 in our models,

while it is around kρe ∼ 1 in the classical model. This discrepancy is not due to the choice of

our heat flux closures; there is not much difference between our two models, which shows the

insensitivity of the dispersion to p⊥e1. Moreover, the dispersion relation is independent of p‖e1 when

k‖ = 0. We also have confirmed that this discrepancy is not due to the inclusion of the perturbed

ion current density, which is ignored in the classical model.

We note that the basic set of equations used in the classical model by Davidson et al. 17 is

different. The biggest difference is that Poisson’s equation is used in the classical model, while

we used Faraday’s induction law. To understand the cause of this discrepancy, we have developed

another model to calculate the dispersion relation. In this model, we follow basic equations of the

classical model, while using our results for the perturbed density and current density.

In our geometry, the first order equations in Davidson et al. 17 can be written as

E1y−
iµ0ω

k2(1−∆2)
J1y = 0, (C.1)

E1x +
ie

ε0k
(ni1−ne1) = 0, (C.2)

where ∆ = ω/(ck), which is from the displacement current. This contribution is ignored, since the

phase velocity of LHDWs is much smaller than the speed of light (|∆2| � 1). We have confirmed

that the dispersion relation is insensitive to the inclusion of ∆2.

For J1y, ni1, and ne1, we use results from our models. The perturbed ion density is given by24

ni1 = i
n0e

mik2v2
ti

Z′(kE1x− iεE1y). (C.3)

For the perturbed electron density, we will use one from the collisionless model for simplicity, as

there is not much difference between two models. We also assume that Te0 = Ti0. With k‖ = 0 and
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ue0z = 0, ne1 can be expressed as7
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kn0
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The y component of the perturbed ion current is24

Ji
1y =−

ie2n0

miω
ζ ZE1y. (C.7)

The y component of the perturbed electron current is7
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With Eqns. C.3, C.4, C.7, and C.8, Eqns. C.1 and C.2 can be written as

DyyE1y +DyxE1x = 0, (C.11)

DxyE1y +DxxE1x = 0, (C.12)

where
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where λDi =
√

ε0Ti0/e2n0 is the ion Debye Length. The dispersion relation can be obtained by

setting DxxDyy−DxyDyx = 0.

The dispersion relation from this simplified model (green line) agrees with the classical model,

as shown in Fig. 8 (a). This means that the discrepancy is due to the use of Poisson’s equation,

where the Faraday induction term is ignored. With the parameters for the ES-LHDW, βe is about

0.25, which means that perturbed magnetic field due to the perturbed plasma current may not

be negligible. This argument is supported by observations in laboratory and space7,10, where

magnetic field fluctuations exist when there are strong electric field fluctuations associated with

ES-LHDW.

It is interesting to see that the growth rate from the simplified model is considerably lower than

that from the classical model, as shown in Fig. 8 (b). This difference is likely related to the lack of

a rigorous modeling of the heat flux in this simplified model. Although the magnitude is different,

both models show that the peak growth rate is around kρe ∼ 1.

This comparison shows that the use of electron fluid equations are acceptable for dynamics of

LHDWs. It should be also noted that only our models include full electromagnetic effects, since

the induction term is included. These effects are important when β is not negligible.
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