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Scientific machine learning (SciML) vs traditional ML

(Some) traditional ML Tasks
Classification

Image/video processing
Natural language processing

Optimal control

(Some) traditional ML Tools
convNets/uNets/GNN for spatial data

RNN/resnets/LSTM for transient
GANs for distributions
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Image credit: google images, Microsoft.com, … 

Broadly, much of ML is designed for qualitative comparisons and classification

Architectures and training strategies tailored toward a given task

Generally, improved accuracy is “bad”, generalization is “good”



Different requirements for SciML

Traditional mod+sim tasks
Constitutive modeling

PDE-based physics models
Dynamical systems

Inverse problems + UQ

Traditional tools for mod+sim
Approximation/FEM spaces

Variational principles
Geometric/algebraic structure
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Image credit: google images, techbriefs.com, forbes.com, sandia.gov 

SciML requirements:
Small data, accuracy, stability, and uncertainty quantification

Can we embed into off-the-shelf ML to obtain hybrid SciML tools w/ guarantees?

Complex geometries, physics-based interactions

?

Labor intensive, expensive + small data

?



Our goal: structure preserving SciML
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”Black-box” ML
No physics + big 

data

Physics-informed ML
Weak physics alleviate 

data requirements

Structure preserving ML
Exact physics treatment 

independent of data

No domain expertise                                                                                       Strong physical priors

Objective: Efficient machine learned surrogates that 
provide same accuracy, stability and physical 

realizability guarantees as traditional forward models 
in small data limits



Parametric high-dim surrogates for UQ + optimal design

Examples:
 Model discovery/calibration
 Design optimization
 Uncertainty quantification
Promising tools:
 DNNs break c.o.d.
 SciML to enforce constraint
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Outline for today

 Main idea: How to engineer traditional modeling and 
simulation requirements into deep learning frameworks
 Q1: Accuracy
 Q2: Structure-preservation and stability

 Some motivating applications across the laboratories
 A1: Realizing exponential convergence with POU-Nets
 A2: A data-driven exterior calculus for structure preservation

Simple pedagogical examples!
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Some data-driven modeling (DDM) exemplars @ SNL

Practical requirements for using SciML in engineering

Extreme/high-risk scenarios require prediction guarantees!

Data-driven models live in an ecosystem of production code
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DDM1: Rapid radiation-hardened semiconductor design
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Decade to develop empirical circuit models 
for a given semiconductor device!

Assimilating new material/radiation effects 
requires O(1 month) turnaround vs years

DDM idea: Use high-fidelity drift-diffusion 
PDE model to train a cheap Xyce/DAE 
circuit model

time
Gaussian dose rate pulse 
in semiconductor,
peak at 200 ns

Top: PDE simulation of BJT device
Bottom: Empirical compact/circuit model
Left: Modeling challenge: impact of 
radiation on nominal device behavior

Gao, X., Huang, A., Trask, N. and Reza, S., Physics-Informed Graph Neural Network for Circuit Compact Model Development. In 2020 International 
Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (pp. 359-362). IEEE.
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High-fidelity drift-diffusion High-fidelity drift-diffusion 
PDE-based simulationPDE-based simulation

Partitioning into physics-Partitioning into physics-
informed subdomainsinformed subdomains

Learning data-driven graphical Learning data-driven graphical 
model for voltage-current model for voltage-current 

relationrelation

Result: Result: robust surrogate robust surrogate 
embedded in production circuit embedded in production circuit 

simulatorsimulator

 Data-driven partitioning to extract coarse partitioning of 
space

 Use exterior calculus ideas to fit control volume analysis 
to data

 Result: reduced order models with structure 
preservation + guaranteed stability properties that can 
reliably be coupled to production circuit simulators

DDM1: Rapid radiation-hardened semiconductor design



DDM2: Shock magnetohydro experiments on Z-machine
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A pulsed power fusion facility for generating extreme environments for short times



DDM2: Shock magnetohydro experiments on Z-machine
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Discovery of material EOS
How to extract EOS under extreme conditions 

from shock response?

SciML fits black-box EOS to indirect state 
measurements, embedding thermo

Physics compatibility allows deployment into 
production codes

 

Patel, Ravi G., …, N.Trask, et al. "Thermodynamically consistent physics-informed neural 
networks for hyperbolic systems." arXiv preprint arXiv:2012.05343 (2020).
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Flyer plate Material under test

Impact drives shock to study response

Magnetic field from Z pushes flier

Synthetic data: MD simulations of 
shocked material



Design requirements and issues for data-driven models
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Traditional DNNs 
stagnate as 

width/depth is 
increased due to 
optimization 
error barrier

Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis. "Physics 
informed deep learning (part i): Data-driven solutions of nonlinear partial 
differential equations." arXiv preprint arXiv:1711.10561 (2017).

#1: Optimization error 
effecting accuracy

#2: Stability, convergence 
guarantees, physics

#3: How to fix while preserving 
high-dim scalability



What needs to be done to augment traditional ML to obtain 
trustworthy AI for SciML problems?

Part 1: How to build networks with convergence properties
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What does a deep network actually do? Find a mesh!
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Much of folklore surrounding DNN accuracy related to 
universal approximation theorem giving 

convergence in infinite limits

To understand actual convergence rates lots of recent 
work provides existence proofs linking to FEM

• Algebraic convergence w.r.t. width (Opschoor19)
• ReLU networks as piecewise linear FEM (He18)

• Convergence w.r.t. depth (Telgarsky15,Yarotsky17)

Cyr, E.C., Gulian, M.A., Patel, R.G., Perego, M. and Trask, N.A., 2020, August. Robust 
training and initialization of deep neural networks: An adaptive basis viewpoint. 

In Mathematical and Scientific Machine Learning (pp. 512-536). PMLR.



Breaking the optimization error barrier - POUnets

These analyses provide a best possible accuracy for a network – but can that 
be realized in practice when training with first-order optimizers?
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Proposed 
architectures 
demonstrate 

algebraic 
convergence 

rates for smooth 
data 

Traditional MLPs 
stagnate as 

width/depth is 
increased due to 
optimization 
error barrier

References from our group:
1. Cyr, Eric C., et al. "Robust training and initialization of deep neural networks: An adaptive basis viewpoint." Mathematical and Scientific 

Machine Learning. PMLR, (2020).
2. Patel, Ravi G., et al. "A block coordinate descent optimizer for classification problems exploiting convexity." arXiv preprint 

arXiv:2006.10123 (2020). Accepted to AAAI-MLPS
3. Lee, Kookjin, et al. "Partition of unity networks: deep hp-approximation." arXiv preprint arXiv:2101.11256 (2021) accepted to 

AAAI-MLPS



DNNs may emulate traditional approximation spaces
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Opschoor, J.A., Petersen, P.C. and Schwab, C., 2020. Deep ReLU networks and high-order finite element 
methods. Analysis and Applications, 18(05), pp.715-770.

Emulation
of piecewise 

polynomial space

Emulation 
of monomials

Opschoor et al have established that DNNs may emulate a broad class of 
approximations: nodal FEM, free-knot splines, spectral approximation, RBFs 



Partition of unity
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POU corresponding to Cartesian mesh, and another with non-disjoint supports 

Key role:
Localizing approximation



POU-Net
Main idea: rather than emulate POU + monomials, build them 
directly into architecture
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Hidden layer
(MLP/RBFnet)

So
ftm

ax

cN P(x)

c1 P(x)

y

x
∑ y

Trainable parameters

Globally optimal Globally optimal 
polynomial coefficientspolynomial coefficients

Training:
1. Solve weighted least squares for globally optimal coefficients
2. Apply gradient update to adjust partition

Arbitrary Arbitrary 
Banach spaceBanach space



A “meshfree” generation of a traditional hp-FEM space
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Using ResNets for POUs allow 
discontinuities in partitions

Top left: Evolution of partitions on unit interval
Top right: Optimal reconstruction (blue) of 
piecewise quadratic space (red)
Bottom right: Convergence vs ResNet



An “aspirational” error estimate
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• If reconstructing with polynomials, and 
POU with compact support is found, 
we realize hp-convergence for smooth 
functions independent of dimension

• Prompts questions for how to promote 
sparsity in POU parameterization + 
training (see paper) Lee, Kookjin, et al. "Partition of unity networks: deep hp-

approximation." arXiv preprint arXiv:2101.11256 (2021) 
accepted to AAAI-MLPS



hp-convergence for smooth functions
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High-dimensional approximation
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Hidden layer
(MLP/RBFnet)

So
ftm

ax

c1 P(x)

x

∑ y

Encoder x

cN P(x)

IDEA:
Discovery of latent dimensional coordinates
”Mesh” underlying manifold

EXAMPLE:
”Find” theta coordinate and mesh manifold

x

Trainable parameters

Decoder



Example – discovering a mesh of the unit sphere
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Target (blue)
Regressed (orange)

Isocontours of ith 
partition

RMS loss

Linear basis
Data sampled from θ in [0,1.5π]



Example – breaking curse of dimensionality
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What needs to be done to augment traditional ML to obtain 
trustworthy AI for SciML problems?

Part 1: How to build networks with convergence properties

Part 2: How to preserve structure related to physics-
compatibility, stability, and well-posedness



What are physics compatible discretizations for PDEs?

Methods for solving PDEs which:
Use generalized Stokes theorems to 
approximate differential operators

Preserve topological structure in 
governing equations

Mimic properties of continuum operators 
(thus sometimes called mimetic 

discretizations)

26

Arnold, D. N., Bochev, P. B., 
Lehoucq, R. B., Nicolaides, R. A., 

& Shashkov, M. (Eds.). (2007). 
Compatible spatial discretizations 

(Vol. 142). Springer Science & 
Business Media.



Two key ingredients:

1: A topological structure
In PDE discretization this is a 

mesh, with boundary 
operators linking cells, faces, 

edges, and nodes
We will use a graph as an 

inexpensive low-dimensional 
mesh surrogate

2: Metric information
Measures associated with 

mesh entities, ensuring 
discrete exterior derivatives 
converge to div/grad/curl

Graphs are purely topological 
with no natural metric, we 
will use ML to extract metric 

information from data

27



The ingredients to the discrete exterior calculus
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- +

+-
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Chain complex

Cochain complex

Codifferentials

Compatible PDE

K+1-simplices as chains
Stokes theorem give cochains
L2-adjoints give codifferentials

Combinatorial Hodge

K-cliques as chains
Graph div/grad/curl give cochains

Use data to obtain codifferentials



A data-driven exterior calculus (DDEC)
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What does all this give you?
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Theorems…
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Details: Trask, Nathaniel, Andy Huang, and Xiaozhe Hu. 
"Enforcing exact physics in scientific machine learning: a 
data-driven exterior calculus on graphs." arXiv preprint 
arXiv:2012.11799 (2020).



Using DDEC to discover structure preserving surrogates
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High-fidelity PDE
solution

Apply graph-cut to 
coarse-grain

chain complex

Average over 
partitions to obtain 

training data

Black box NN flux

Structure preserving 
trainable exterior 

derivatives



General optimization problem

33

Invertible bilinear form 
w/ metric params

Nonlinear perturbation 
with DNN params

If we can fit the model to data while 
imposing equality constraint, then 

during training we restrict to manifold 
of solvable models preserving physics

Fluxes:

Conservation:



Is PDE constraint well posed?
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A unique solution exists if the Hodge-Laplacian is sufficiently large relative to the 
nonlinear part, following standard elliptic PDE arguments

• Poincare constant easily estimated from matrix eigenvalues
• Lipschitz constant on nonlinearity straightforward for DNNs

Solvability constraint could be enforced during training if desired



“PDE”-constrained optimization
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An iterative algorithm 
guaranteeing exact 

enforcement of physics 
at each iteration:



Back to Darcy…
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Comparison to traditional covolume: improved accuracy at low resolution
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Comparison of pressure for same # DOF for FVM (left) and DDEC (center)
Right: profile along diagonal shows better fit to solution (green) by DDEC (blue) vs FVM (orange)

N = 22

N = 52

N = 102



Nonlinear Darcy: potential profile across diagonal
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The rest of the de Rham complex - magnetostatics
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Extracted surrogate:
Is exactly div free

Provides sharp interfaces
Conserves circulation
Guaranteed solvable

Generalizes to other BCs
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High-fidelity drift-diffusion High-fidelity drift-diffusion 
PDE-based simulationPDE-based simulation

Partitioning into physics-Partitioning into physics-
informed subdomainsinformed subdomains

Learning data-driven graphical Learning data-driven graphical 
model for voltage-current model for voltage-current 

relationrelation

Result: Result: robust surrogate robust surrogate 
embedded in production circuit embedded in production circuit 

simulatorsimulator

 Data-driven partitioning to extract coarse partitioning of 
space

 Use exterior calculus ideas to fit control volume analysis 
to data

 Result: reduced order models with structure 
preservation + guaranteed stability properties that can 
reliably be coupled to production circuit simulators

Recall DDM example: semiconductor surrogates
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