SAND2021- 3212PE

Sandia

Exceptional service in the national interest National
Laboratories

Convergent and structure preserving architectures for SciML

Nat Trask
Center for Computing Research
Center for Computing Research Sandia National Laboratories

DEPARTMENT OF /ﬁn ' ' DD:Q‘
Tl A” R4 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly
Sstome! Nusisar Svariy Adrminiasretiors owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.




Sandia
Scientific machine learning (SciML) vs traditional ML ) feo

(Some) traditional ML Tasks
Classification
Image/video processing
Natural language processing
Optimal control

(Some) traditional ML Tools
convNets/uNets/GNN for spatial data
RNN/resnets/LSTM for transient
GANs for distributions

Broadly, much of ML is designed for qualitative comparisons and classification
Architectures and training strategies tailored toward a given task

Generally, improved accuracy is “bad”, generalization is “good” 5
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Different requirements for SciML i) fore_

Traditional mod+sim tasks
Constitutive modeling
PDE-based physics models
Dynamical systems
Inverse problems + UQ

Traditional tools for mod+sim
Approximation/FEM spaces

Variational principles

Labor intensive, expensive + small data Geometric/algebraic structure

SciML requirements:
Small data, accuracy, stability, and uncertainty quantification

Can we embed into off-the-shelf ML to obtain hybrid SciML tools w/ guarantees?
3




Our goal: structure preserving SciML

argmin |[NN — ugatal|?

argmin [|[NAN — ugatal|?
: +€|[LINN; €] - £||?

”Black-box” ML Physics-informed ML
No physics + big Weak physics alleviate
data data requirements

No domain expertise

(L
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arg;nin IINN = ugatal|?

such that LINAN;¢] = f

Structure preserving ML
Exact physics treatment
independent of data

Strong physical priors

Objective: Efficient machine learned surrogates that
provide same accuracy, stability and physical
realizability guarantees as traditional forward models

in small data limits
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Parametric high-dim surrogates for UQ + optimal design ) e

For ug € R4 seek

argmin Fug|
0
s.t. Llug] = f S
9 2
Examples: W
o

= Model discovery/calibration
= Design optimization

= Uncertainty quantification
Promising tools: () e RNparam

= DNNs break c.o.d. .
= SciML to enforce constraint dzm(M) <K Ny X Nparam

5
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= Main idea: How to engineer traditional modeling and
simulation requirements into deep learning frameworks
= Q1: Accuracy
= Q2: Structure-preservation and stability

= Some motivating applications across the laboratories
= Al: Realizing exponential convergence with POU-Nets
= A2: A data-driven exterior calculus for structure preservation

Simple pedagogical examples!
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Some data-driven modeling (DDM) exemplars @ SNL
Practical requirements for using SciML in engineering

Extreme/high-risk scenarios require prediction guarantees!

Data-driven models live in an ecosystem of production code




DDM1: Rapid radiation-hardened semiconductor design h) e,

Decade to develop empirical circuit models
for a given semiconductor device!

Assimilating new material/radiation effects
requires O(1 month) turnaround vs years

DDM idea: Use high-fidelity drift-diffusion
PDE model to train a cheap Xyce/DAE
circuit model

\
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Top: PDE simulation of BJT device
Bottom: Empirical compact/circuit model
Left: Modeling challenge: impact of
radiation on nominal device behavior

Gao, X., Huang, A., Trask, N. and Reza, S., Physics-Informed Graph Neural Network for Circuit Compact Model Development. In2020 International
Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (pp. 359-362). IEEE. 8
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DDM1: Rapid radiation-hardened semiconductor design

Ispdaken

Paans: Epitioy
frrse:

IL - Subminaie J
High-fidelity drift-diffusion
PDE-based simulation

ERTE

Learning data-driven graphical Result: robust surrogate
model for voltage-current embedded in production circuit
relation simulator

Data-driven partitioning to extract coarse partitioning of
space

Use exterior calculus ideas to fit control volume analysis
to data

Partitioning into physics- = Result: reduced order models with structure
informed subdomains preservation + guaranteed stability properties that can
reliably be coupled to production circuit simulators
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DDM2: Shock magnetohydro experiments on Z-machine @P'a"‘t}ﬁ';?éﬁes

A pulsed power fusion facility for generating extreme environments for short times
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DDM2: Shock magnetohydro experiments on Z-machine ) feo
Flyer plate  Material under test

&~

Discovery of material EOS (. A
How to extract EOS under extreme conditions E
from shock response? £
SciML fits black-box EOS to indirect state Mroanote fed from 2 pashes fier
measurements, embedding thermo e ~
£
Physics compatibility allows deployment into g
production codes 9 P
Impact drives shock to study response
4 )
£
. Y,

Synthetic data: MD simulati f
Patel, Ravi G., ..., N.Trask, et al. "Thermodynamically consistent physics-informed neural ynthe ':h oa ckaed mastle;?igla 1ons o
networks for hyperbolic systems." arXiv preprint arXiv:2012.05343 (2020). 11
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Design requirements and issues for data-driven models i)t

1“'% L= Edata + €1 £PDE

E B EEEEEERN EEEEEEERN
S °4 .
5 \ +e2 L1c + €3 Lo + €4 Leonservation
Z 107 Traditional DNNs u(t,z)
° stagnate as : . o
108 | —e— depth 4 width/depth is 5 e e ™ .50
—¢— depth 8 . 0.25
Lo | W depth 12 mcrea_;\se_d d}Je to w0 - e
10 1 Genth 16 optimization - Toe
—#— depth 20 error barrier ey
10° 12 T T T I
8 16 30 64 128 0.0 0.z 0.4 t 0.6 0.8
width
#1: Optimization error #2: Stability, convergence
effecting accuracy guarantees, physics
#3: How to fix while preserving Raissi, Maziar, Paris Perdikaris, and George Em Karniadakis. "Physics

informed deep learning (part i): Data-driven solutions of nonlinear partial

h ig h-dim scalabil ity differential equations." arXiv preprint arXiv:1711.10561(2017). 12
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What needs to be done to augment traditional ML to obtain
trustworthy Al for SciML problems?

Part 1: How to build networks with convergence properties
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What does a deep network actually do? Find a mesh! ) e

Depth L [number g_ijhldden 1a,j,rers

. ; 1
h 4@.&%}& 1,22

~d " b
ST XL XL S

(X7 NZANT. Sy
AW AV

hidden layer width w

Iteration: O

Much of folklore surrounding DNN accuracy related to 1.00
universal approximation theorem giving 0.75
convergence in infinite limits
0.50
To understand actual convergence rates lots of recent 0.25
work provides existence proofs linking to FEM 0.00
* Algebraic convergence w.r.t. width (Opschoor19) —0.25
* RelLU networks as piecewise linear FEM (He18)
* Convergence w.r.t. depth (Telgarsky15,Yarotsky17) —0.50
Cyr, E.C., Gulian, M.A., Patel, R.G., Perego, M. and Trask, N.A., 2020, August. Robust —0.75
training and initialization of deep neural networks: An adaptive basis viewpoint. 1.00

In Mathematical and Scientific Machine Learnmg (pp. 512-536). PMLR.
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Breaking the optimization error barrier - POUnets i)t

These analyses provide a best possible accuracy for a network — but can that
be realized in practice when training with first-order optimizers?

01 0
10" 2 - 1072 4
E B EEEEEERN EEEEEEERN
5 1074 g 10°4 4 Proposed
N o architectures
' . " 2 4076 demonstrate
2 1078+ Traditional MLPs | 2z ™ :
5 3 algebraic
B stagnate as P convergence
10" - —@— depth 4 width/depth is 107
— depth 8 increased due to rates for smooth
10" 10 |~ depth 12 timizati 10° 10 data
T —a— depth 16 optimization
—#— depth 20 error barrier i
100 12 T T T I 10
8 16 32 64 128

width

References from our group:

1. Cyr, Eric C., et al. "Robust training and initialization of deep neural networks: An adaptive basis viewpoint." Mathematical and Scientific
Machine Learning. PMLR, (2020).

2. Patel, Ravi G, et al. "A block coordinate descent optimizer for classification problems exploiting convexity." arXiv preprint
arXiv:2006.10123 (2020). Accepted to AAAI-MLPS

3. Lee, Kookjin, et al. "Partition of unity networks: deep hp-approximation." arXiv preprint arXiv:2101.11256 (2021) accepted to
AAAI-MLPS 15
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DNNs may emulate traditional approximation spaces ) feo

Opschoor et al have established that DNNs may emulate a broad class of
approximations: nodal FEM, free-knot splines, spectral approximation, RBFs

Proposition 4.2, For each n € My and each polynomial v € P ([~1,1]), such that v(z) = 3§_ §z",
for all x € [—1,1] with Co := 377, |T4|, there exist NNs {5} ac0,1) with input dimension one and output
dimension one which satisfy

llo = R(LEN| sy <5
Emulation R(®5)(0) =v{0),
of monomials L{®3) < CL(1 + logy(n)) logs(Co/8) + § Crlloga(n))* + C(1 + logy(n))",
M{F5) <4Cunlog, (Co/ ) + 8Cum logy(n) + 40 (1 + log, (n)) log, (Co/ 8) + C{1 +n),
Mi(®5) < dlogg(n) +4,
M (B5) <dn + 2

if Cop = & IfCo = 3 the same estimaies hold, but with Cy replaced by 23,
Proposition 5.1. For all p = (pi)ieqn, vy C N, all partitions T of I = (0,1) inte N open, disjoint,

connected subintervals and for all v e Sp(I,T), for 0 < £ < 1 exist NNz {307 }.c01y such that for all
1< g <o holds

ﬂv —R (@:ITIP) |WJ.-.-'{f] Selblwie
L (7)) <Co(1 + 1083 (Ponee)) (2 + ot (1/)) + i logy (1/2) + C (1 + 1og3(pmar))
Emulation M (3277) <80 i‘p? + 4C3 log, {1,'.-:}fjp‘- + log, (1/e) C (1 + ilogi(m})
of piecewise fwoy -
. C 510 i
polynomial space ! (1 2 mlosile ;')

+ 2N (CL(1 + 1o, (Prue) ) (2Pmax + log; (1/€)) + O (1 + logh (prax))) |
M; (@:-T-P) <EN,
M, (@2-"-?) <IN 4 2.

In addition, it holds that R (@07 7) (z,) = v(x;) for all § € {0,..., N}, where {x;}]2, are the nodes of
T.

Opschoor, J.A., Petersen, P.C. and Schwab, C., 2020. Deep ReLU networks and high-order finite element

methods. Analysis and Applications, 18(05), pp.715-770. 16
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Definition: Partition of unity (POU) Key role:

A collection of functions {¢i},_,  y satisfying Localizing approximation
e ¢; >0
> di=1

Example:
Consider a partition of Q C R? into disjoint cells Q@ = |J; C;. Then the indicator
functions ¢;(z) = 1¢, (x) form a POU.

10 1

0E A
03 1

06
(L

04 4
04 A

02 - 021

0.0 1 0.0 4
T T T T T T

POU corresponding to Cartesian mesh, and another with non-disjoint supports
17
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POU-Net i) tators

Main idea: rather than emulate POU + monomials, build them
directly into architecture

Trainable parameters

Hidden layer
(MLP/RBFnet)

“——— Arbitrary

\ / v\ Banach space

Partition of Unity Globally optimal

polynomial coefficients

Training:
1. Solve weighted least squares for globally optimal coefficients

2. Apply gradient update to adjust partition
18
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A “meshfree” generation of a traditional hp-FEM space () o=,

Phase 1: Epoch 0
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Using ResNets for POUs allow D P [ Poune
discontinuities in partitions 2

Top left: Evolution of partitions on unit interval * U I
Top right: Optimal reconstruction (blue) of S | N | o | N O O
piecewise quadratic space (red) 1R 2 5E) w0656 ) 2@ 36 09 56
Bottom right: Convergence vs ResNet (a) Triangular waves (b) Quadratic waves
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An “aspirational” error estimate

Theorem 1. Consider an approximant ypoy of the form (1)
with V = m, (RY). If y(-) € C™1(Q) and €*, c* solve (3)
to yield the approximant yp,;, then

)m+l

lyPou — y”im) <Chny max diam (supp(0%,) (4)

where ||ypo, — Ylle,(p) denotes the root-mean-square norm
over the training data pairs in D,

1

> Wrou(®) — y(x))%,

Y (x,y)ED

lyrov — y”-ﬂ'z{'ﬂ] = J N

and
Crmy = ||y||C"'+1IIﬂ}'

If reconstructing with polynomials, and
POU with compact support is found,
we realize hp-convergence for smooth
functions independent of dimension
Prompts questions for how to promote
sparsity in POU parameterization +
training (see paper)
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Proof. For each o, take g, € 7, (R?) to be the mth order
Taylor polynomial of y{-) centered at any point of supp(¢8 ).
Then for all x € supp(g ),

|6 (%) — y(x)| < Cpn, diam (supp(6£))™" . (5)

Define the approximant Jpoy = Ef:'l & (x)qq(x), which
is of the form (1) and represented by feasible (£, ). Then by
definition of i, and (3), we have

lupou (x}—y{x}“icm = |lpou(x) — H{x}“fsii"}

N Nownt
=137 ot (xhaalx) - u(x) 3 s (x)

=1

2

(D)

2

N
=113 #8(%) (ga(x) = 4(x))

=1

£2(1)

For each x = x; € D, if x £ supp(T?), then we apply (5);
atherwise, the summand ¢ (x) (g, (x) — y(x)) vanishes. So

llwpou (%) = w(X)[17, 0y
2

Npws
< |37 Couy diam (supp(s8))™" 65 (x)

=1

£2(T¥)

. 2
N

> ek

a=1

< Cry max diam |:.".1.|pnp~|{qﬁuﬁ}I}m+1

£2(P}

<= Uy max diam [suppl{l;bi }}m-l-l .

Lee, Kookijin, et al. "Partition of unity networks: deep hp-
approximation." arXiv preprint arXiv:2101.11256 (2021)
accepted to AAAI-MLPS

20
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hp-convergence for smooth functions i)t

Mc{z=0ye[-1,11}J{y =0,z € [-1,1]}
f(z,y) = sin(27z) sin(27y)
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High-dimensional approximation ) feo

Encoder

Trainable parameters

Hidden layer

(MLP/RBFnet)

IDEA: 0
Discovery of latent dimensional coordinates \/
"Mesh” underlying manifold

EXAMPLE:
"Find” theta coordinate and mesh manifold




Example — discovering

1.00

075

0.50 -

0.25

0.00 -

—0.25 -

—0.50 4

—0.75 -

—1.00

3 0 1

Isocontours of ith
partition

Linear basis

D

ata sampled from 06 in [0,1.51T

Sandia
a mesh of the unit sphere ) feee,,

1071 5
10 -
0.5 - 102 .
0.0 -
—0.5 - 1072 -
—1.0
T T T 10— T T
O 2 4 l.Dl l.DEI
Target (blue) RMS loss

Regressed (orange)

23




Example — breaking curse of dimensionality

M c [0,1]¢

L ()

F(t) = tanh (10 (% _ %))

=<0,...,0>+t*<1,..,1>
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Regressed function
=1
[}
=]

11— ldim

10 dim

| — 100 dim
| — 1000 dim

1u—2 -

RMS error

107 4

1072 A

= 1ldim

10 dim
= 100 dim
= 1000 dim

10°

T T T
10¢ 108 10*
Iterations
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What needs to be done to augment traditional ML to obtain
trustworthy Al for SciML problems?

Part 1: How to build networks with convergence properties

Part 2: How to preserve structure related to physics-
compatibility, stability, and well-posedness
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What are physics compatible discretizations for PDEs?

THE IMA VOLUMES IN MATHEMATICS
AND ITS APPLICATIONS

eoitors  Douglas N. Arnold

Richard B, Leho
[ [ . . l“:q

Methods for solving PDEs which: i
Use generalized Stokes theorems to g;:t‘il;?ﬁble
approximate differential operators Discretizations

Preserve topological structure in

governing equations
Mimic properties of continuum operators
(thus sometimes called mimetic o

discretizations)

Arnold, D. N., Bochev, P. B.,
Lehoucq, R. B., Nicolaides, R. A,,
& Shashkov, M. (Eds.). (2007).
Compatible spatial discretizations
(Vol. 142). Springer Science &
Business Media.

26
-~ ...



Two key ingredients:

1: A topological structure

In PDE discretization this is a
mesh, with boundary
operators linking cells, faces,
edges, and nodes

We will use a graph as an
inexpensive low-dimensional
mesh surrogate

2: Metric information

Measures associated with
mesh entities, ensuring
discrete exterior derivatives
converge to div/grad/curl

Graphs are purely topological
with no natural metric, we
will use ML to extract metric
information from data

Sandia
m National

Laboratories
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The ingredients to the discrete exterior calculus i) b

Chain complex
OU Cl 02 03 Z ; O_ _———

Cochain complex

CU do Cl dq 02 do 03 J;} du = Lw U
Codifferentials
*
cl 2 X Cl 02 C3 (v, dpu)k = (dkv, u)k 11
d* d* d*
Compatible PDE Combinatorial Hodge
K+1-simplices as chains K-cliqgues as chains
Stokes theorem give cochains Graph div/grad/curl give cochains
L2-adjoints give codifferentials Use data to obtain codifferentials

28




A data-driven exterior calculus (DDEC)

d; d; d; d;

T N
5 5 5 52

0 —— Ol —— (2 +—— (3 +—— ...
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L 4
dj_4

o

(i d

. C

da—1 lB
d

dg—1 Cd

Idea: Take graph calculus and introduce learnable inner products

— T
k
(z,y)B, = "By

(z,y)p, = z"Dyy

to find data-driven exterior calculus operators that inherit the structure of

graph exterior calculus

29
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What does all this give you? ) e

dg dj d; d3 dj_1
o o o e T
0 53 1 5;‘ 2 5; 3 6;; 63 d
CO 2= Ol = 2 e 0B ...

8o 51 02 3 dda—1
R [

00 _do 1 _d 2 b2 a3 ds 0 ddm1 g

e Differential operators which locally and globally conserve fluxes, circula-
tions, potentials

e Invertible Hodge Laplacians Ay = dj, dg+1 + didj 4
e Exact sequence properties dyy1dx = dpdp,, =0
e Hodge decomposition u = d*a + dff +

e Corollary: treatment of nontrivial null-spaces in electromagnetism
30




Theoremes...

Theorem 3.1. The discrete derivatives di in form an exact sequence if
the simplicial complex is exact, and in particular diyy odi = 0. In R3, we
have CURL;, o GRAD;, = DIV;, o CURL;, = 0.

Theorem 3.2. The discrete derivatives dj, in form an exact sequence of
the simplicial complex is exact, and in particular dy ody,, = 0. In R3, DIV o
CURL}; = CURL} o GRAD} = 0.

Theorem 3.3 (Hodge Decomposition). For C*, the following decomposition

holds
ck = im(dk71)®k ker(Ak)®k im(dy), (17

where @, means the orthogonality with respect to the (-, ~)DAB71 -inner product.
Rk
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Theorem 3.4 (Poincaré inequality). For each k, there exists a constant cpy
such that

HZkHDkB;' < (:Psk‘|dkzk“Dk+1B,:_ll’ Z € h’n(d;;),

and another constant Cl*",k: such that
Iztllp, 5,1 < cpildiizrlp, B 1> 2Zx € im(di_1).
Thus, for u, € C*, we have

. *
hkeiﬂfmk) llup — thDkB’:l <C (Hdkllk“DL,HB];il + ||d,€71u1<||Dk771B;i1> ,

where constant C' > 0 only depends on cpy and cp, .

Theorem 3.5 (Invertibility of Hodge Laplacian). The k" -order Hodge Lapla-
cian Ay is positive-semidefinite, with the dimension of its null-space equal to
the dimension of the corresponding homology H* = ker(dy,)/ im(dx—1).

Details: Trask, Nathaniel, Andy Huang, and Xiaozhe Hu.
"Enforcing exact physics in scientific machine learning: a
data-driven exterior calculus on graphs." arXiv preprint

arXiv:2012.11799 (2020).

31
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v » F —_— Structure preserving d*F —
trainable exterior / O

derivatives

F +kVeop=0 F+§d0gb+N(¢5)

Black box NN flux

'A“h

High-fidelity PDE Apply graph-cut to Average over
) coarse-grain partitions to obtain
solution : ..
chain complex training data

32
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General optimization problem h

Fluxes: WEi1 = dek + ENN(dkuka 5)?
Conservation: dk—l d;;—luk —|— dZWkJrl == fk

m) o(v,u; B, D)+ Ny[u;£] = b(v)

Invertible bilinear form Nonlinear perturbation
w/ metric params with DNN params
If we can fit the model to data while argmin, ||W — Wdata,| |2
imposing equality constraint, then B,D,¢

during training we restrict to manifold

Sandia
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of solvable models preserving physics ~ such that Ljw,u;B,D,£| =0

33




Sandia
Is PDE constraint well posed? ) e

a(v,u; B, D) + Ny[u; ] = b(v)

Theorem 3.6. The equation (24)) has at least one solution ug € V satisfies

1]

upl| < ——mM@M@MM—.
el < =

(26)

Theorem 3.7. If _Conlfl - 1, then the equation (24f) has at most one
Cp(cp_CN)

solution in V.

A unique solution exists if the Hodge-Laplacian is sufficiently large relative to the
nonlinear part, following standard elliptic PDE arguments

* Poincare constant easily estimated from matrix eigenvalues
* Lipschitz constant on nonlinearity straightforward for DNNs

Solvability constraint could be enforced during training if desired

34
-~ ...
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“PDE”-constrained optimization

LuB,D,¢ = ||W — Waata||* + ATL[w, u; B, D, ¢]
Liw,u;B,D, & =0

e Solve forward problem with current model parameters

An iterative algorithm w,u< VyLyaBpe=0
guaranteeing exact
enforcement of physics e Solve adjoint problem with current forward solution
at each iteration:

A VyLuaBpe =0

e Apply gradient descent to update model

B,D,{ <+ VBp¢LuarBDe =0

35




Back to Darcy... ) feo

V-F=f d5F = f

F+rVo=0 F+E&dop+Ny(9)=0
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Comparison to traditional covolume: improved accuracy at low resolution 7 Sandia
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Comparison of pressure for same # DOF for FVM (left) and DDEC (center)
Right: profile along diagonal shows better fit to solution (green) by DDEC (blue) vs FVM (orange)
37
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Nonlinear Darcy: potential profile across diagonal i)t
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=1
H1 1 Extracted surrogate:
Vx -Vxu=f Is exactly div free
amEE IR | % Provides sharp interfaces
v —0 Conserves circulation
Uy = ‘U= Guaranteed solvable
Generalizes to other BCs
7
Blgg =
10 A ——-_1.________________ —
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Recall DDM example: semiconductor surrogates

Ispdaken

Paans: Epitioy
frrse:

IL - Subminaie J
High-fidelity drift-diffusion
PDE-based simulation

ERTE

Learning data-driven graphical Result: robust surrogate
model for voltage-current embedded in production circuit
relation simulator

Data-driven partitioning to extract coarse partitioning of
space

Use exterior calculus ideas to fit control volume analysis
to data

Partitioning into physics- = Result: reduced order models with structure
informed subdomains preservation + guaranteed stability properties that can
reliably be coupled to production circuit simulators

40
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