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2 | PROJECT OVERVIEW

SEEK - Scoping neuromorphic architecture impact enabling advanced sensing capabilities

YEAR 2 of 2
Project Purpose Goals
As ML approaches are increasingly impactful, Provide an assessment of neural computing
revolutionizing signal processing and data science  approaches yielding insight into the interplay of
tasks, this effort Seeks to understand how neural network algorithms and architectures

emerging neural computing approaches can enable
NA-22 neural network data analysis needs

Approach Deliverables

Scoping study effort integrating empirical studies  Produce a report providing insight into how

and analytical developments jointly pursued by existing and emerging neuromorphic computation
SNL & LANL may benefit NA-22 monitoring activities as well as
» Architecture Insights enable future algorithm development

« Algorithmic Assessments
» Co-Design Analysis



‘ NA-22 Impact

Neuromorphic computing offers a path to
enabling enhanced processing at the sensor

The amount of data transmitted for subsequent
data science processing or analyst interpretation
may be reduced

* Initial processing on the raw data at the
sensor provides an opportunity to transmit
higher order information

* Instead of providing more alerts or
signatures to attend to, the neuromorphic
pre-processing of remotely sensed data may
be filtered providing a data enrichment
through machine intelligence processing
helping to enable model-driven analytics

Communication bottlenecks
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..data enrichment enabling
enhanced situational awareness



4+ 1 Traditional Computation - “End of the Line”

Driven by immense advances,
computer architectures have

pursued optimizations of End of the Line = 2X/20 years (3%/yr)
Amdahl's Law = 2X/6 years (12%/year) ¢
° Com putation com ple)(Ity End of Dennard Scaling = Multicore 2X/3.5 years (23%/year) *
¢ CISC 2X/2.5 years T RISC 2X/1.5 years
. . (22%/year) (52%/year)
*  Communication & storage 100,000
* Parallelization & 10,000
* Scale S Lo
0
>
But physical limits are reaching an end S o
1]
E
* Moore’s Law = .
o

* Dennard Scaling

*  Amdahl’s Law

B
1980 1985 1990 1995 2000 2005 2010 2015
Hennessy, J. L., & Patterson, D. A. (2019). A new golden age for computer architecture. Communications of the ACM, 62(2), 48-60.



s | Traditional Computation - “End of the Line”

Neural networks have a legacy of taxing the computational capabilities available

* In lieu of relying upon physical scaling, need a new paradigm of computing

Two Distinct Eras of Compute Usage in Training AI Systems
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s | Beyond Traditional “End of the Line’

A New Golden Age in
Computer Architecture:
Empowering the Machine-
Learning Revolution

Alternative paradigms — specialization

* GPUs: parallelization in compute density

* FPGAs: programmable hardware adaptivity

What is neural-inspired, neuromorphic, brain-inspired
computing?
* Many terms

* Fundamental notion of taking inspiration from how the

brain performs computation Biological Neuron W
Dendrites ANN W\an X

-morphous

Word Origin

1. a combining form with the meaning “having the shape, form, or structure” of the kind or number
specified by the initial element, used in the formation of compound words:




7 ‘ Which architecture is best!?

—CPU —GPU —FPGA —Accelerator —Neuromorphic
Operations
A
Power

. M
Consumption emory

Reconfigurability

* Broad classes of architectures
employ different approaches &
objectives

# Neurons

=TrueNorth

—SpiNNaker
Loihi
=—BrainScaleS
Energy | , Neuron
PerOp ™~ ™ Fan-In

* Neuromorphic is actively exploring
architectural tradeoffs

af
Li ia,b
ine has slope ax(a, )

Graph of f(x,b) Point (a,b,f(a,b))

https://mathinsight.org/image/partial_derivative_as_slope

* For a fixed architecture (hardware),
the algorithms (software) which are
optimal does not mean they are the
best overall approach - importance
of co-design

...a complex question — but is what this effort is SEEKing to shed light on



8 ‘ Architectural Insight

Architectural CXplOSiOﬁ Landscape of emerging neuromorphic architectures (non-exhaustive)
BrainChip Kneron Apple Neural Engine
‘X? : © Aceelerater FPGA Fﬁ(ler::ltogix so¢ Cerebras
® OfldWlde E.D W DPU EIE Dyt (0] GraphCore
o ave CPU NeuFlow  \1ovidius i
I SiNNak Nervana Google DSP KnuPatsh I\Cylr\llad)(
. Tianijic Pl aker ErEs ambaNova
¢ Industry aS Well aS academla ] Dimap/SynSense ARG P GPU TPL(J:ognis/teApEX Neural .
c ntel Loihi Compute Sticl
?D telten NeuRAM3 Esch:radencecs Groq pGyn’alccm
1 { [= mec . aNN
* Leading chip vendors as well as startups = B Emm
o icron Automata Blaize
. § TrueNorth GrAl Matter Labs PNeuro
* Approaches include 5 W s
. . . . . . "? Cambricon
* Optimizing existing architectures for neural networks 3 ol Cognimen
. £ Aspinity
* Novel materials S o o
. . . . Neurogrid rainScale
* Analog, digital, optical, asynchronous, event driven ! et pame
T?f Resistive Memory
: : c Crosshar
* Scale & Technical maturity <
Spikes 4= Complexity of Messages == Packets

* Emerging software stack

Accordingly, here we are considering insights from architectural analysis, benchmarking, and analytical assessments



9 ‘ Architectural Insight e \

Analog — power & speed efficiencies :
Applications include sensor pre- :

- =

Emer gmg trends include processing directly in analog & time series

Event Driven — computation & sensing
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1
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Applications such as video analysis, action |
1
1
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recognition, signature analysis

_______________________________

Reconfigurable — data stream :
optimizations offering versatility in :
|
|

- =

S e Y application

i Embedded — FPGA & ASIC . S o e e e = /

' Applications include tiny ML for enabling : e .

| situational awareness /: f Physics based computing — :

"""""""""""""""""" ' . optical and other paradigms :
— Hybrid Analog- ] ;

= E = Digital
ML Accelerators = = Neuromorphic

- Neuromorphic | B
GPU @ \ L1 P = % - Unknown future iy
- @ B T <3D architectures,
= —  Today novel devices, ... )

Timeline of neuromorphic impact is both now and emerging



10 ‘ Algorithmic Assessments

Many factors influence the etficiency of neural

network computation

* Includes model size & structure, precision,

pruning/comptression, etc.

* Efforts here include parameter sweeps and weight

pruning study of a spiking neural network

* Highlighted ability to maintain performance while

easing computational cost
* Hyperparameter Architecture Search (HAS)

* Search over models with knobs to adjust their

architectural configurations

* Enables tuning several facets of performance

Dense Sparse

Pruning
—
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P —
| - ayider-- -
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| — - - 1
#channels . : ]
————————— i~ wider - — 1 : i
: . - deeper
[ [ —— deeper
i ) - D '
- == = =
-- layer i - 1
B ) ] I ~ + higher |, higher
__ Fresolution HxW - resolution
(a) baseline (b} width {c) depth (d) resolution

scaling scaling scaling scaling

Tan, Mingxing, and Quoc V. Le. "Efficientnet: Rethinking model scaling for
convolutional neural networks." arXiv preprint arXiv:1905.11946 (2019).
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{e) compound
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11 ‘ Algorithmic Assessments ot

Spiking Weight Agnostic Neural Networks (WANN) == MH&_;\% T
* Evolutionary neural architecture search method we have extended to L=
spiking circuits —T

* Efficient networks which emphasize connectivity more than weights

* Enabling explorations into properties like network size, complexity,

noise resilience, multi-sensor fusion

T L

JATANTTRNRINNY

T T T Y

I

WANN Spiking WANN
Tuned Shared Weight Tuned Network Size Tuned Shared Weight Tuned Network Size
Swingup Cartpole * 723 £ 16 932+6 62 745 £ 11 912+ 5 56
Bipedal Walker * 261 + 58 3227 338 290 + 22 281 * 31 210
MNIST 91.9% 94.2% 4553 87.7% 88.2% 3150

* mean T std, reward over 100 rollouts



2 | Algorithmic Assessments

Sample Vector Underlying Event

1.0

o
0

o
)]
[

Normalized Intensity

o
IS
| |

0.2

0.0

Time Index Time Index

WANN MNIST (16x16) INPUT NOISE CLASSIFICATION RESULTS

Pursuing WANN robustness
- Combining the convolutional structure of
a Whetstone spiking neural network as a
preprocessor & feeding extracted
features as inputs into the WANN i
- Combining the two methods on a o
timeseries binary classification task
provides a strong boost to
performance (85.9% — 98.0%) while
striving to improve network efficiency
* Applying noise to WANNs
» Given emphasis on computation
structure over weighted inputs i Nos
* Input noise added with respect to the 25
variance of each input e

0% | 10% | 25% | 50% | 75% | 100% | 200% | Connections | # of Nodes | I
91.71% | 84.51% | 65.76% | 40.47% | 29.45% | 24.12% | 16.62% 3403 450 I
91.04% | 89.46% 80.18% | 55.96% | 40.33% | 33.21% | 20.07% 3467 486
90.74% | 89.65% | 84.10% | 64.03% | 47.61% | 37.09% | 22.20% 3643 558
85.21% | 84.20% | 79.48% | 65.64% | 50.10% | 39.42% | 20.97% 3499 561
73.66% | 72.96% | 69.58% | 59.05% | 46.69% | 39.18% | 23.35% 3534 595
66.85% | 66.62% | 64.84% | 57.29% | 47.70% | 39.60% | 22.80% 4533 873



13 1 Co-Design Analysis

Analytical Architecture Analysis - Assayer

* Tool which given a set of neural network layers (and a dataflow) analyzes systolic array
type hardware execution

* Factors in costs associated with computation, memory access, communication (references
30 nm CMOS)

* Produces various metrics (energy, latency, reuse, etc.)

* We've extended base capability to include activation function cost (ReLU) & pooling layers

B
AT\ Vs —"‘\\
I—H PE )—b PE |
\‘\\_7.'.7_ / \\\-7.'!//
AN
—> PE —— PE
NG, I

CNN Network Layer

Outputs



Co-Design Analysis

* Built a hardware testing harness
* Input:
* A set of PyTorch neural networks
* A selection of hardware parameters
* Converts:
* Pooling layers to convolutional layer sizes
* PyTorch networks to a set of dimensions
* Runs:
* Multiple instances of Maestro
e Controlled through MPI
* Collects:
* Result data from Maestro

/DyTorch Model/ %

r

Convert PyTorch
Model

h

-

l

HGenerate Maestro Run

v vy

-

Hardware
pecifications

E

Pooling Layer
Generation

—

r

o 00—

MPI Runs

.

Gather Results

Apply ReLu Costs

>

v

Save Results



15 I Co-Design Analysis

Baseline sweeps —
* Applied to 12 CNN models
3 dataflow types (output, input/row, & weight stationary)

* Analysis where each dataflow-model combination is over 200k hardware
configurations

Models Run

Wide Resnet 50

Hardware Configurations
Squeezenet

Number of PEs: 32 — 262144

Shufflenet V2

Resnet 50 L1 Sizes: 256 — 262144
Resnet 18 L2 Sizes: 2048 — 262144
Mobilenet N.O.C Bandwidth: 16 — 2048
Inception V3 Number of ALUs per PE:
GooGLeNet Lo L5

CN Resnet

Densenet / Densenet 201

Alexnet
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Co-Design Analysis

Per dataflow insights -

Energy Across Models Per Dataflow Latency Across Models Per Dataflow
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17 ‘ Co-Design Analysis

Finding valid dataflows is critically important

Hardware must have
* Enough L2 buffer to hold data that is reused

* Enough L1 buffer to hold working data
* Some hardware can only work with specific dataflows

Valid Hardware and Dataflow Configurations as a Fraction of Total

Alexnet Densenet201 Densenet Fcn Resnet 101 Googlenet Inception V3  Mobilenet V2 Resnet18 Resnet50 Shufflenet V2 Squeezenet Wide Resnet50
Model Name

mmm Qutput Stationary
mmm Row (input)Stationary
mmm Weight Stationary

0.8

0.6

0.

-y

0.

M

SUNy jeloj Jo uolloeld4

0.
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Co-Design Analysis

Sweep results — Energy vs Latency mean

Across all valid hardware / dataflow
combinations across all models:

* Mean of energy and latency

Sweeps show a trend where

* Weight stationary can be the worst performing
dataflow

* Row stationary is generally well performing

* There is a limit to increasing the compute power
and gaining faster results

General trends allow for pathways to further
detailed analysis:

* Investigate specific hardware & dataflow
combinations

Mean Latency

Mean Energy & Latency
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Co-Design Analysis

To further examine hardware configuration
performance:

* We are adding new, non Convolutional Neural
Network support to Assayer

First example network is a “Transformer”
network

* Architecture first described in “Attention is All
You Need”

* Uses multiple combinations of matrix
multiplication and fully connected networks

The Transformer network posed new problems
for mapping to systolic-array hardware:

* The model required significantly large L1
(scratch) memory to run

* These runs start at 32KB of L1 memory
* Largest CNN sweep was 32KB of L1 memory

Output
Probabilities
e h
Add & Norm
Feed
Forward
e 1 ™\ (CAdd & Norm ;
@) Mult-Head
Feed Attention
Forward 7 7 Nx
— ]
N Add & Norm
p—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
1 , \ —
Positional Positional
Encod ? & -
ncoding Encoding
Input Qutput
Embedding Embedding
Inputs Qutputs

Vaswani, Ashish, et al. "Attention is all you
need." Advances in neural information
processing systems 30 (2017): 5998-6008.
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Smaller range of energy usage results
* Lower energy use overall than CNN models

Latency is wildly distributed
* Latency is also lower than many of the CNN networks

Attention is all you Need network is faster and more efficient
* Assuming the accelerator hardware has large enough SRAM cache

Latency
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21 | Future Work & Conclusions

* Integrating the presented efforts in architecture insight, algorithmic assessments,
& co-design analysis —
* This project will produce a report providing insight into how existing and emerging

neuromorphic computation may benefit NA-22 monitoring activities as well as enable
future algorithm development

* Importantly, as neural network algorithms as well as architectures are actively
evolving, we believe it is necessary to consider a co-design perspective

* Not only are there approaches available now for enabling enhanced processing at the
sensor, but potential advances are hinting at orders of magnitude improvements

* For novel computing paradigms to reach this potential, advantageous to consider interplay
of algorithms & architectures
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