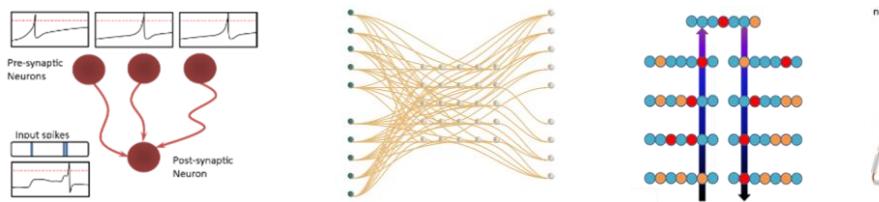
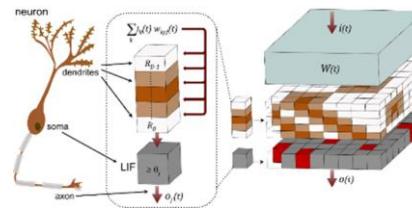


Sandia
National
Laboratories

SAND2021-3207C

SEEK

Scoping neuromorphic architecture impact enabling advanced sensing capabilities



Presented by Craig M. Vineyard, PhD

Co-PI: Andrew Sornborger, PhD (LANL)

Contact emails: cmviney@sandia.gov, sornborg@lanl.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

PROJECT OVERVIEW

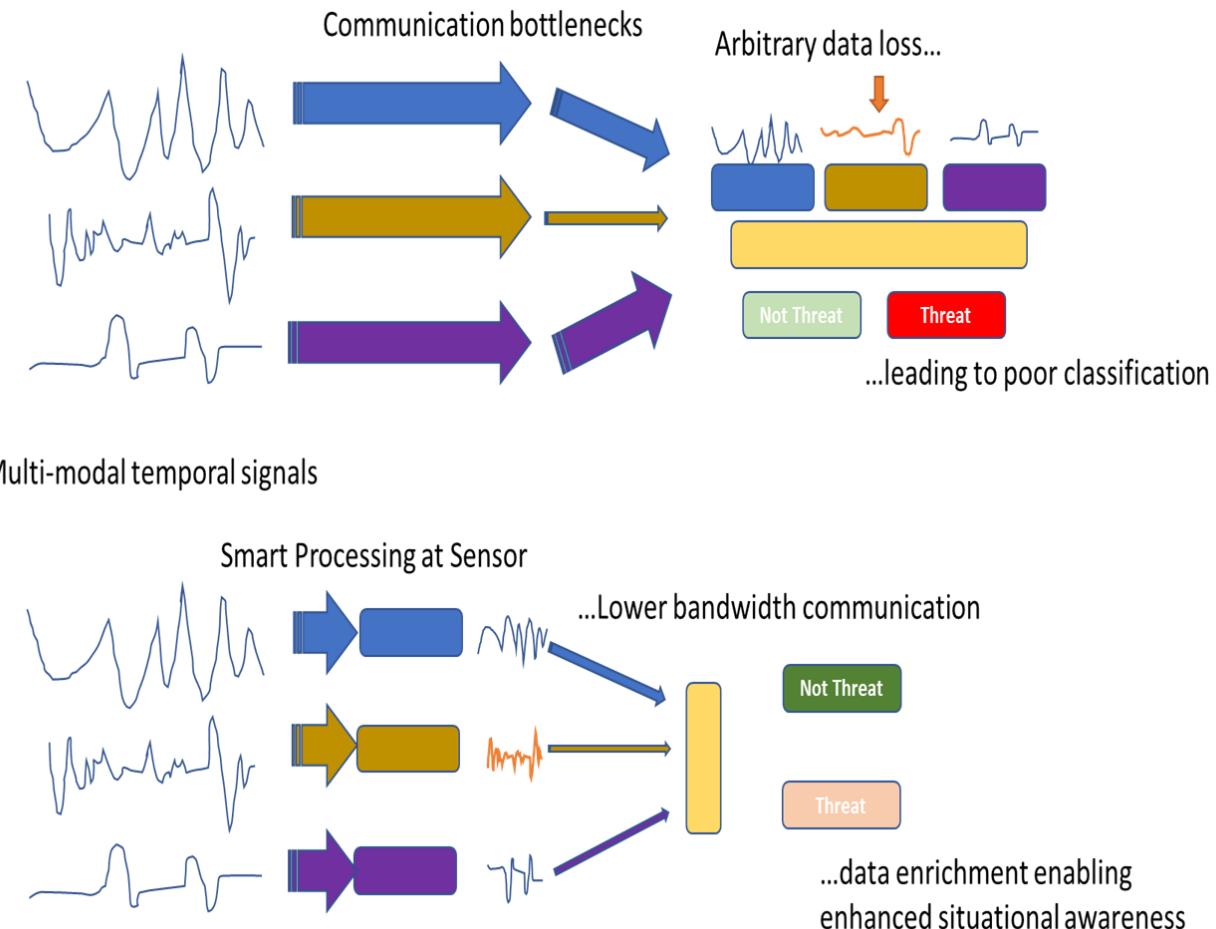
SEEK - Scoping neuromorphic architecture impact enabling advanced sensing capabilities YEAR 2 of 2

Project Purpose	Goals
<p>As ML approaches are increasingly impactful, revolutionizing signal processing and data science tasks, this effort <i>Seeks</i> to understand how emerging neural computing approaches can enable NA-22 neural network data analysis needs</p>	<p>Provide an assessment of neural computing approaches yielding insight into the interplay of neural network algorithms and architectures</p>
Approach	Deliverables
<p>Scoping study effort integrating empirical studies and analytical developments jointly pursued by SNL & LANL</p> <ul style="list-style-type: none"> • Architecture Insights • Algorithmic Assessments • Co-Design Analysis 	<p>Produce a report providing insight into how existing and emerging neuromorphic computation may benefit NA-22 monitoring activities as well as enable future algorithm development</p>

NA-22 Impact

Neuromorphic computing offers a path to enabling enhanced processing at the sensor

- The amount of data transmitted for subsequent data science processing or analyst interpretation may be reduced
- Initial processing on the raw data at the sensor provides an opportunity to transmit higher order information
- Instead of providing more alerts or signatures to attend to, the neuromorphic pre-processing of remotely sensed data may be filtered providing a data enrichment through machine intelligence processing helping to enable model-driven analytics



Traditional Computation - “End of the Line”

Driven by immense advances, computer architectures have pursued optimizations of

- Computation complexity
- Communication & storage
- Parallelization
- Scale

But physical limits are reaching an end

- Moore’s Law
- Dennard Scaling
- Amdahl’s Law

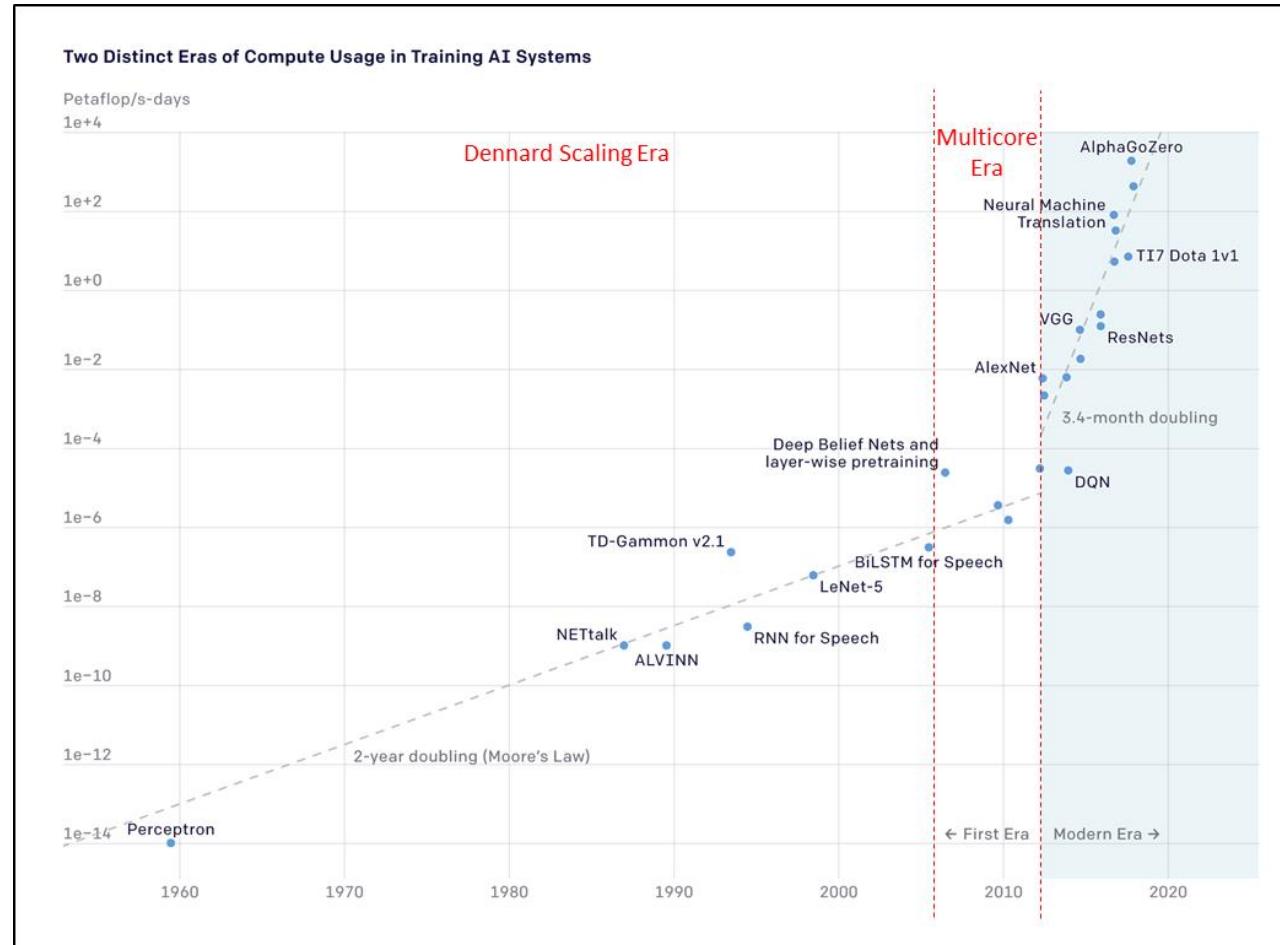


Hennessy, J. L., & Patterson, D. A. (2019). A new golden age for computer architecture. Communications of the ACM, 62(2), 48-60.

Traditional Computation - “End of the Line”

Neural networks have a legacy of taxing the computational capabilities available

- In lieu of relying upon physical scaling, need a new paradigm of computing



Beyond Traditional “End of the Line”

Alternative paradigms – specialization

- GPUs: parallelization in compute density
- FPGAs: programmable hardware adaptivity

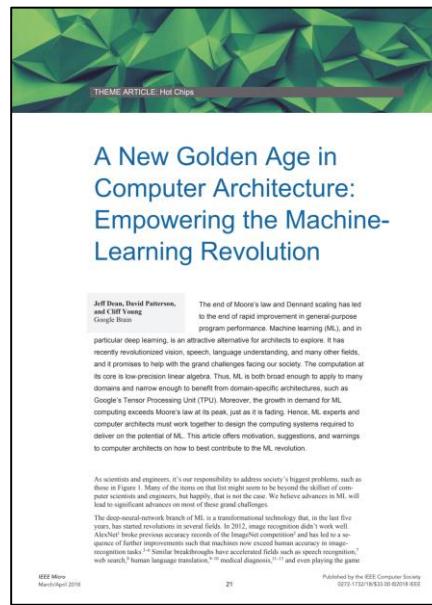
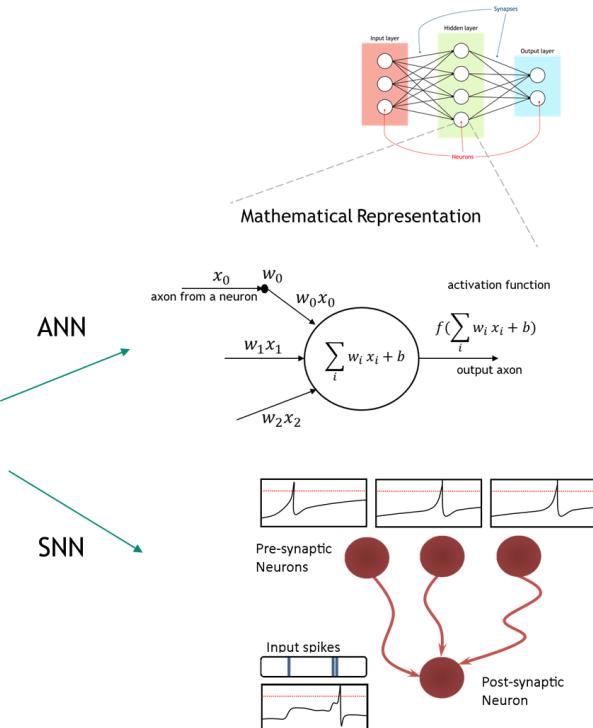
What is neural-inspired, neuromorphic, brain-inspired computing?

- Many terms
- Fundamental notion of taking inspiration from how the brain performs computation

-morphous

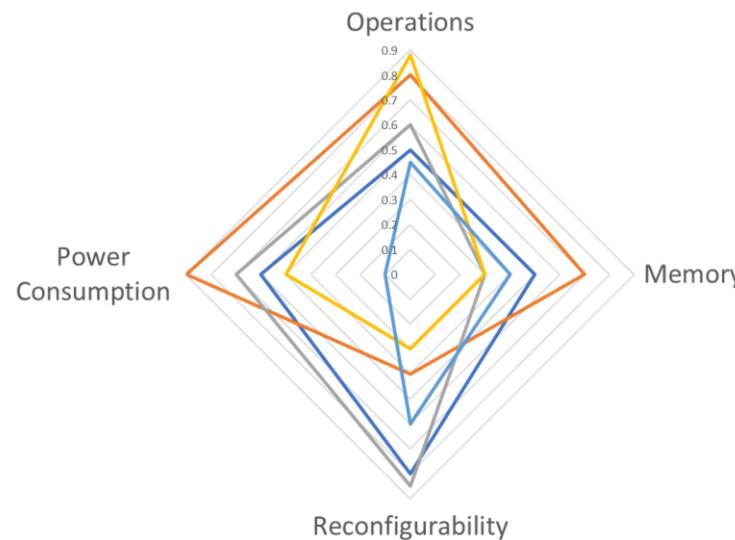
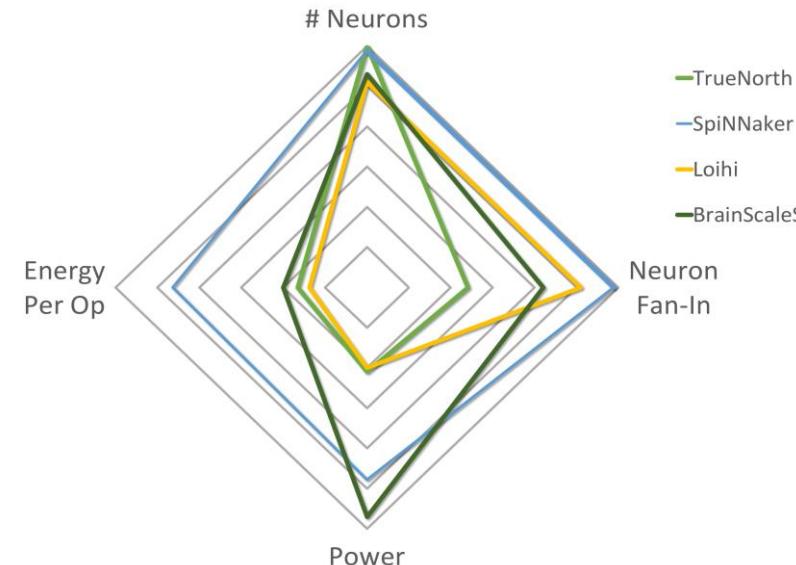
Word Origin

1. a combining form with the meaning “having the shape, form, or structure” of the kind or number specified by the initial element, used in the formation of compound words:
polymorphous.



Which architecture is best?

—CPU —GPU —FPGA —Accelerator —Neuromorphic



https://mathinsight.org/image/partial_derivative_as_slope

- Broad classes of architectures employ different approaches & objectives
- Neuromorphic is actively exploring architectural tradeoffs
- For a fixed architecture (hardware), the algorithms (software) which are optimal does not mean they are the best overall approach → importance of co-design

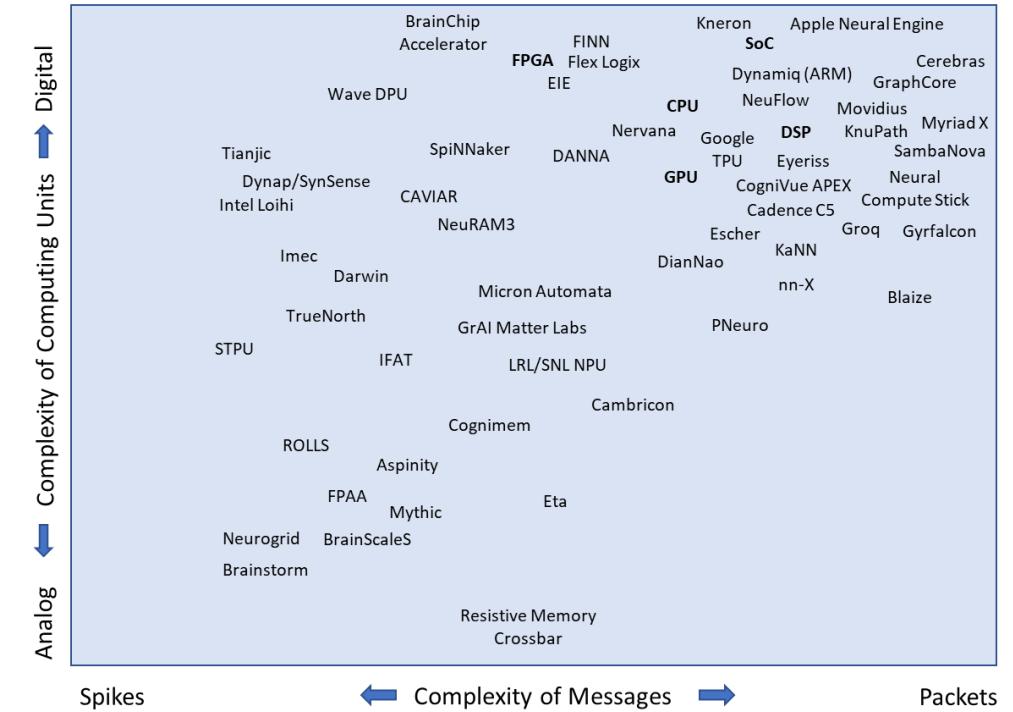
...a complex question – but is what this effort is SEEKing to shed light on

Architectural Insight

Architectural explosion

- Worldwide
- Industry as well as academia
- Leading chip vendors as well as startups
- Approaches include
 - Optimizing existing architectures for neural networks
 - Novel materials
 - Analog, digital, optical, asynchronous, event driven
- Scale & Technical maturity
- Emerging software stack

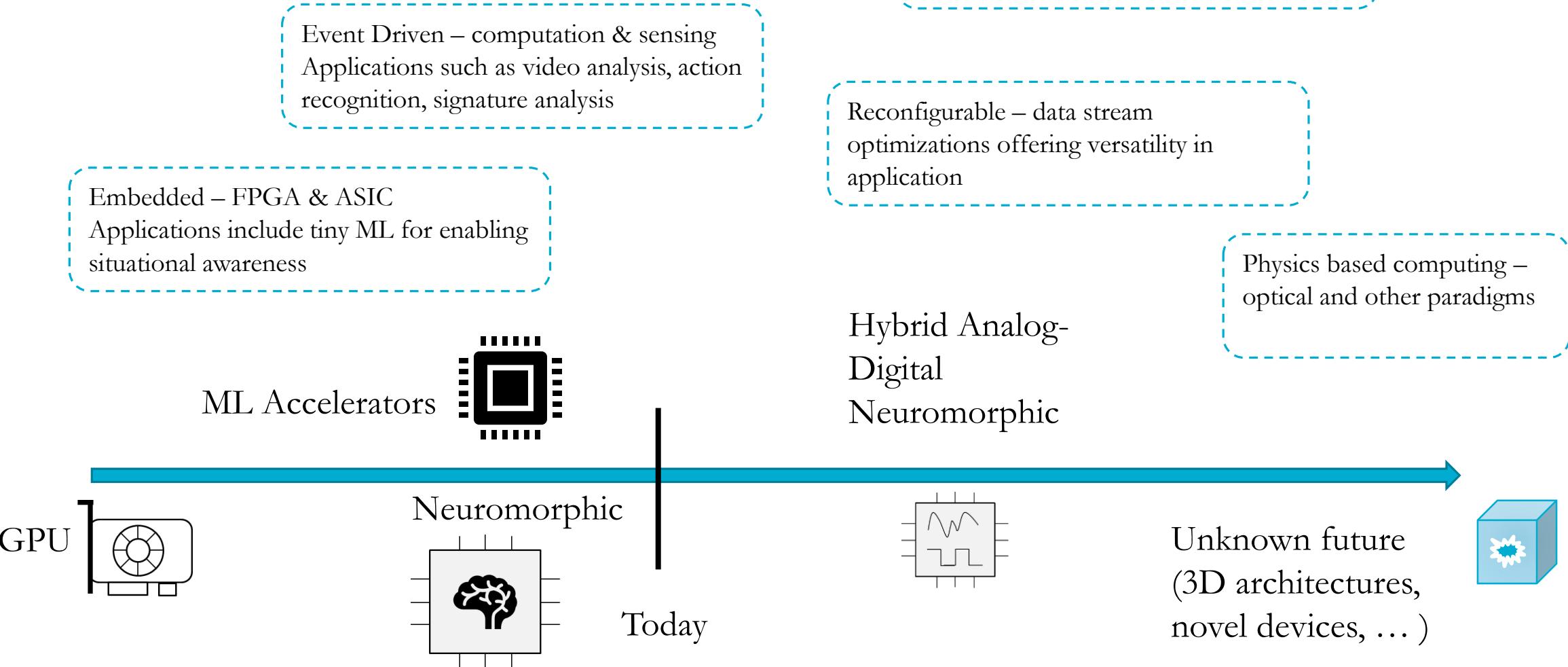
Landscape of emerging neuromorphic architectures (non-exhaustive)



Accordingly, here we are considering insights from architectural analysis, benchmarking, and analytical assessments

9 Architectural Insight

Emerging trends include

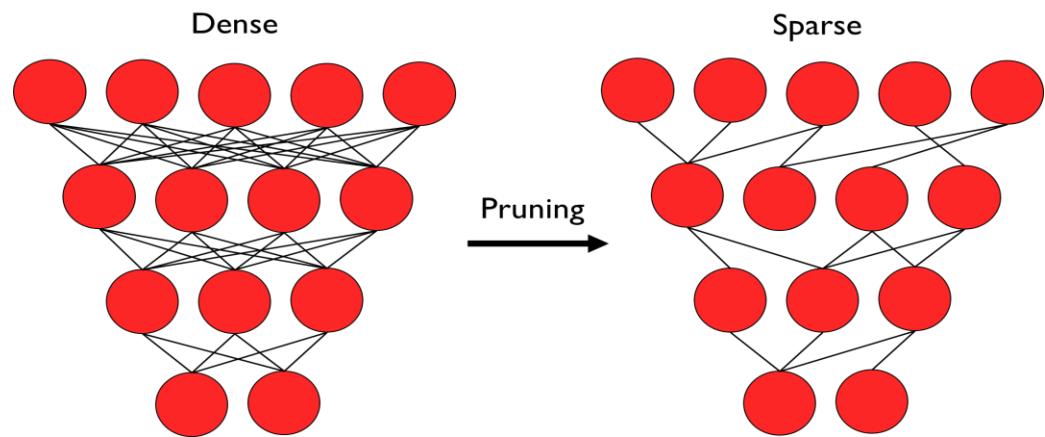
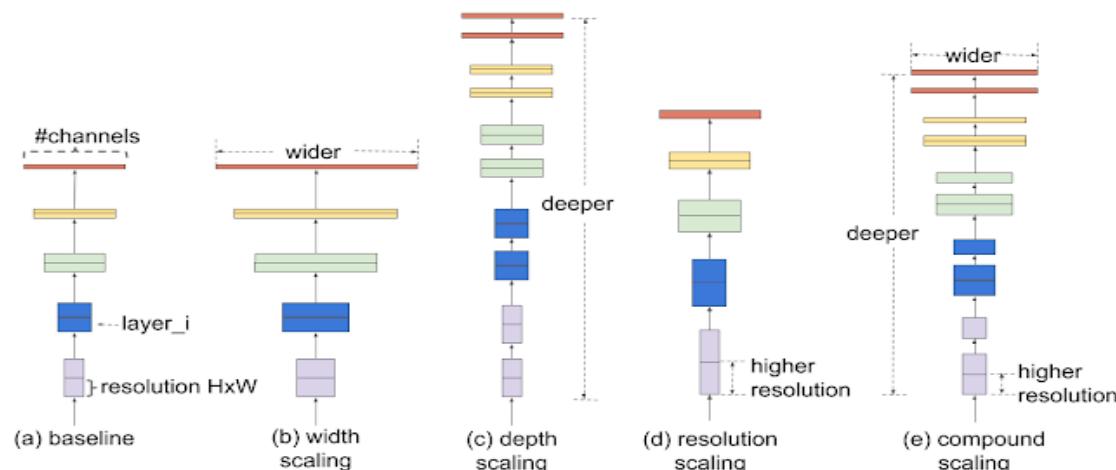


Timeline of neuromorphic impact is both now and emerging

Algorithmic Assessments

Many factors influence the efficiency of neural network computation

- Includes model size & structure, precision, pruning/compression, etc.
- Efforts here include parameter sweeps and weight pruning study of a spiking neural network
 - Highlighted ability to maintain performance while easing computational cost
- Hyperparameter Architecture Search (HAS)
 - Search over models with knobs to adjust their architectural configurations
 - Enables tuning several facets of performance

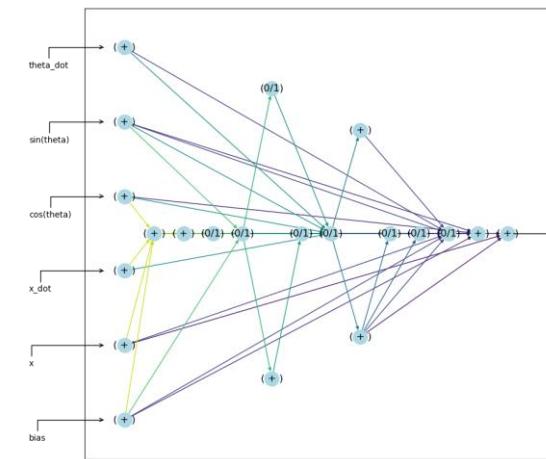
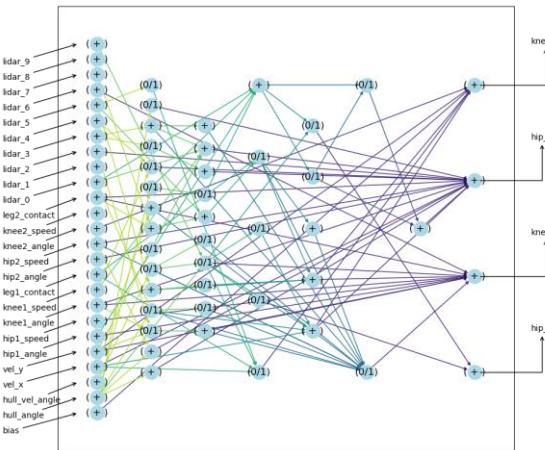


Tan, Mingxing, and Quoc V. Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." *arXiv preprint arXiv:1905.11946* (2019).

Algorithmic Assessments

Spiking Weight Agnostic Neural Networks (WANN)

- Evolutionary neural architecture search method we have extended to spiking circuits
- Efficient networks which emphasize connectivity more than weights
- Enabling explorations into properties like network size, complexity, noise resilience, multi-sensor fusion



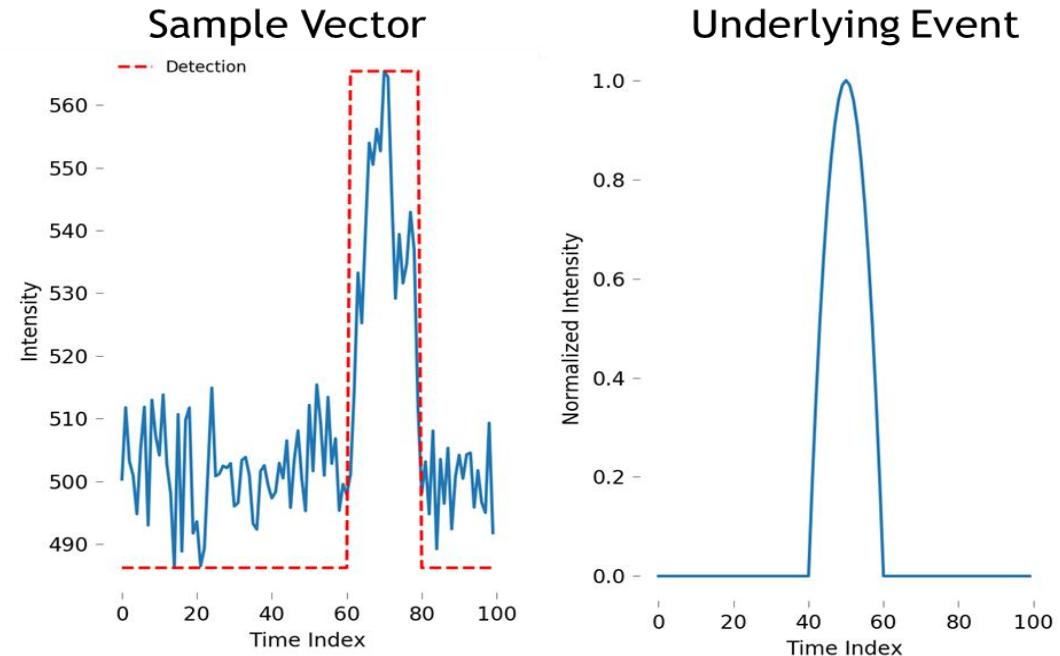
	WANN			Spiking WANN		
	Tuned Shared Weight	Tuned	Network Size	Tuned Shared Weight	Tuned	Network Size
Swingup Cartpole *	723 ± 16	932 ± 6	62	745 ± 11	912 ± 5	56
Bipedal Walker *	261 ± 58	322 ± 7	338	290 ± 22	281 ± 31	210
MNIST	91.9%	94.2%	4553	87.7%	88.2%	3150

* mean \pm std, reward over 100 rollouts

Algorithmic Assessments

Pursuing WANN robustness

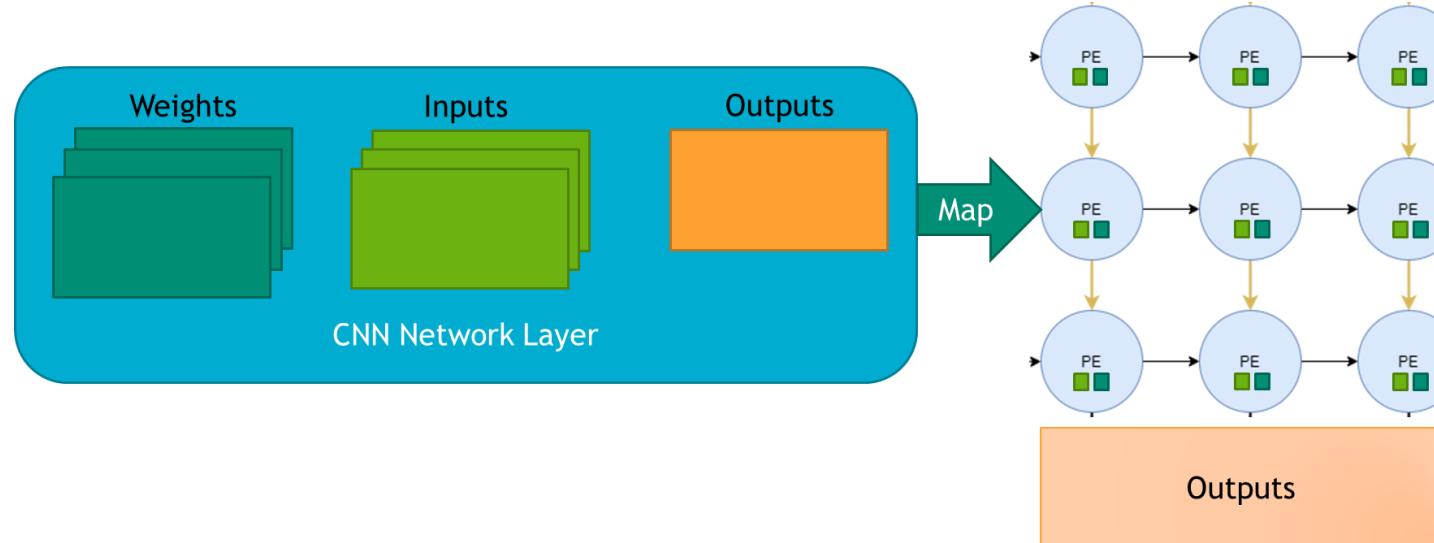
- Combining the convolutional structure of a Whetstone spiking neural network as a preprocessor & feeding extracted features as inputs into the WANN
 - Combining the two methods on a timeseries binary classification task provides a strong boost to performance ($85.9\% \rightarrow 98.0\%$) while striving to improve network efficiency
- Applying noise to WANNs
 - Given emphasis on computation structure over weighted inputs
 - Input noise added with respect to the variance of each input



WANN MNIST (16x16) INPUT NOISE CLASSIFICATION RESULTS										
Test Noise	0%	10%	25%	50%	75%	100%	200%	Connections	# of Nodes	
Trained Noise										
0%	91.71%	84.51%	65.76%	40.47%	29.45%	24.12%	16.62%	3403	450	
10%	91.04%	89.46%	80.18%	55.96%	40.33%	33.21%	20.07%	3467	486	
25%	90.74%	89.65%	84.10%	64.03%	47.61%	37.09%	22.20%	3643	558	
50%	85.21%	84.20%	79.48%	65.64%	50.10%	39.42%	20.97%	3499	561	
75%	73.66%	72.96%	69.58%	59.05%	46.69%	39.18%	23.35%	3534	595	
100%	66.85%	66.62%	64.84%	57.29%	47.70%	39.60%	22.80%	4533	873	

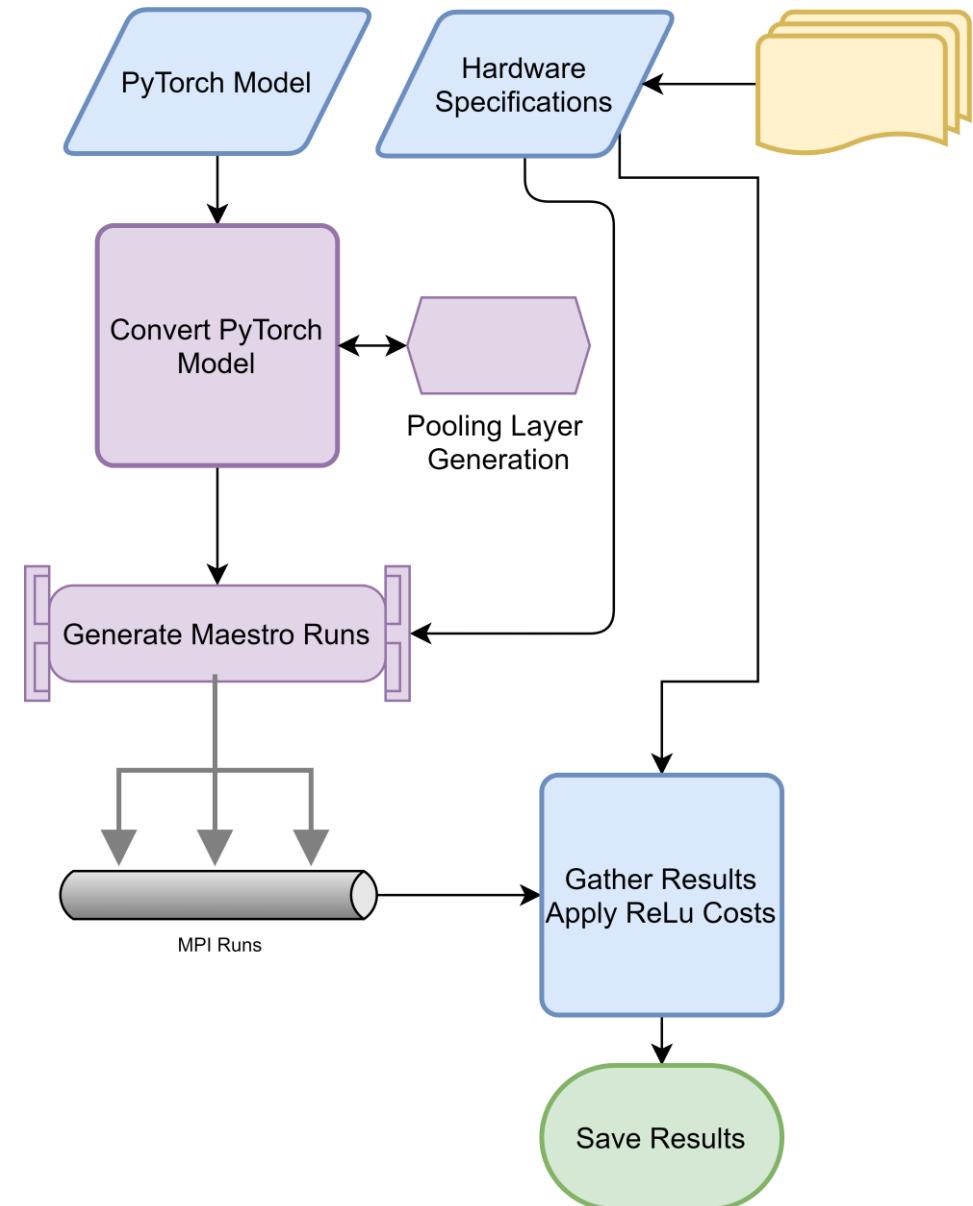
Analytical Architecture Analysis - Assayer

- Tool which given a set of neural network layers (and a dataflow) analyzes systolic array type hardware execution
- Factors in costs associated with computation, memory access, communication (references 30 nm CMOS)
- Produces various metrics (energy, latency, reuse, etc.)
- We've extended base capability to include activation function cost (ReLU) & pooling layers



Co-Design Analysis

- Built a hardware testing harness
 - Input:
 - A set of PyTorch neural networks
 - A selection of hardware parameters
 - Converts:
 - Pooling layers to convolutional layer sizes
 - PyTorch networks to a set of dimensions
 - Runs:
 - Multiple instances of Maestro
 - Controlled through MPI
 - Collects:
 - Result data from Maestro



Baseline sweeps –

- Applied to 12 CNN models
- 3 dataflow types (output, input/row, & weight stationary)
- Analysis where each dataflow-model combination is over 200k hardware configurations

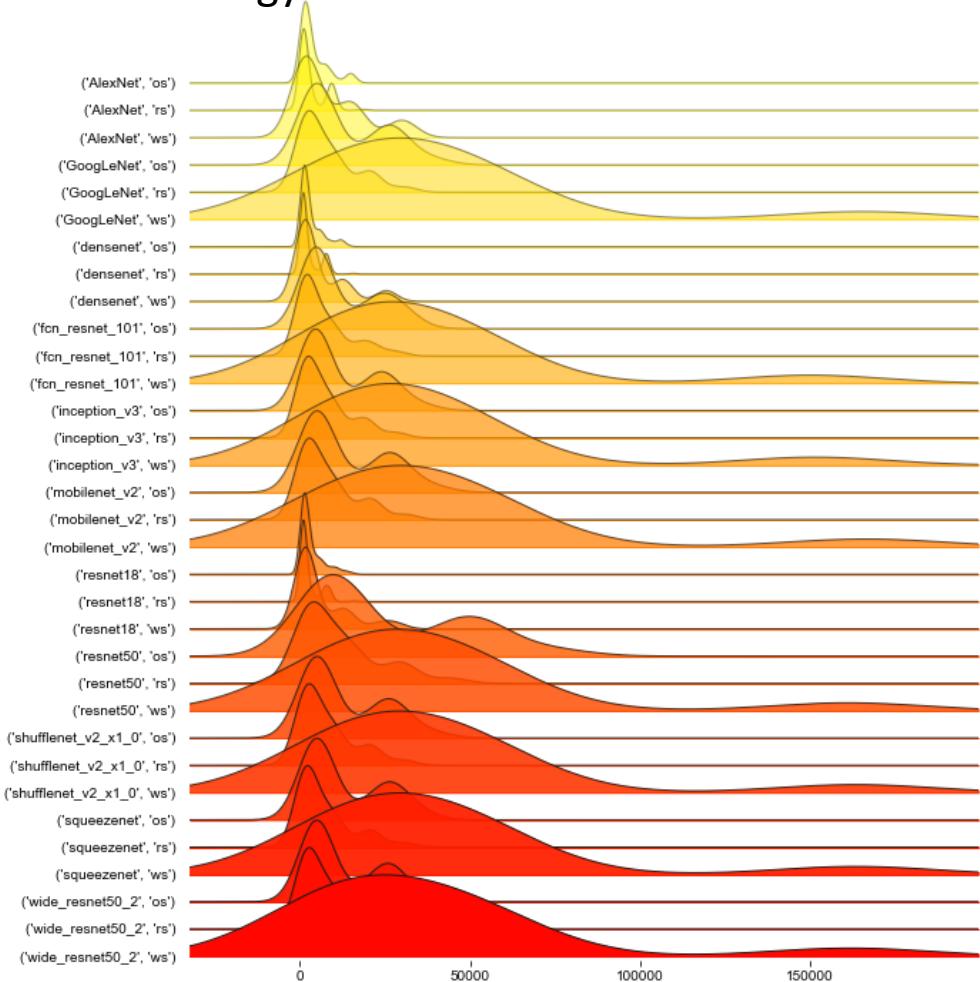
Models Run
Wide Resnet 50
SqueezeNet
Shufflenet V2
Resnet 50
Resnet 18
MobileNet
Inception V3
GoogLeNet
CN Resnet
Densenet / Densenet 201
Alexnet

Hardware Configurations
Number of PEs: 32 – 262144
L1 Sizes: 256 – 262144
L2 Sizes: 2048 – 262144
N.O.C Bandwidth: 16 – 2048
Number of ALUs per PE: 1,2,16,32

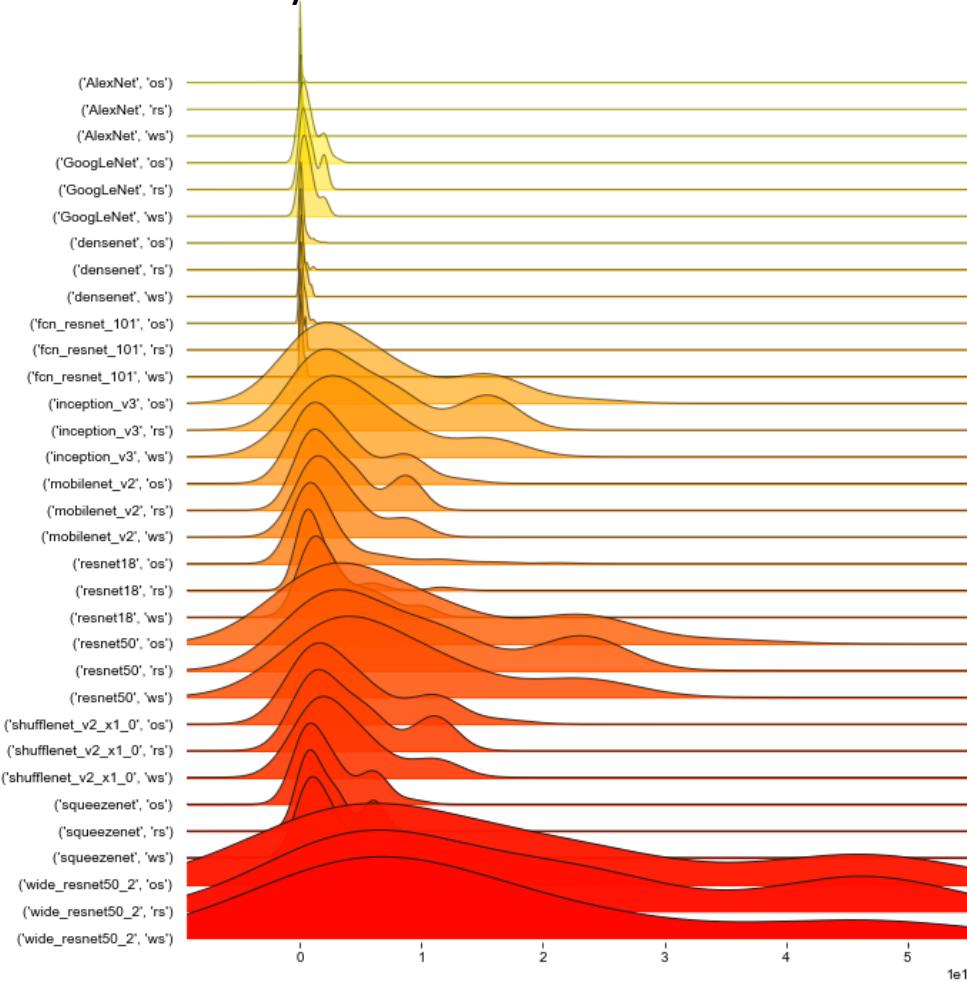
Co-Design Analysis

Per dataflow insights -

Energy Across Models Per Dataflow



Latency Across Models Per Dataflow



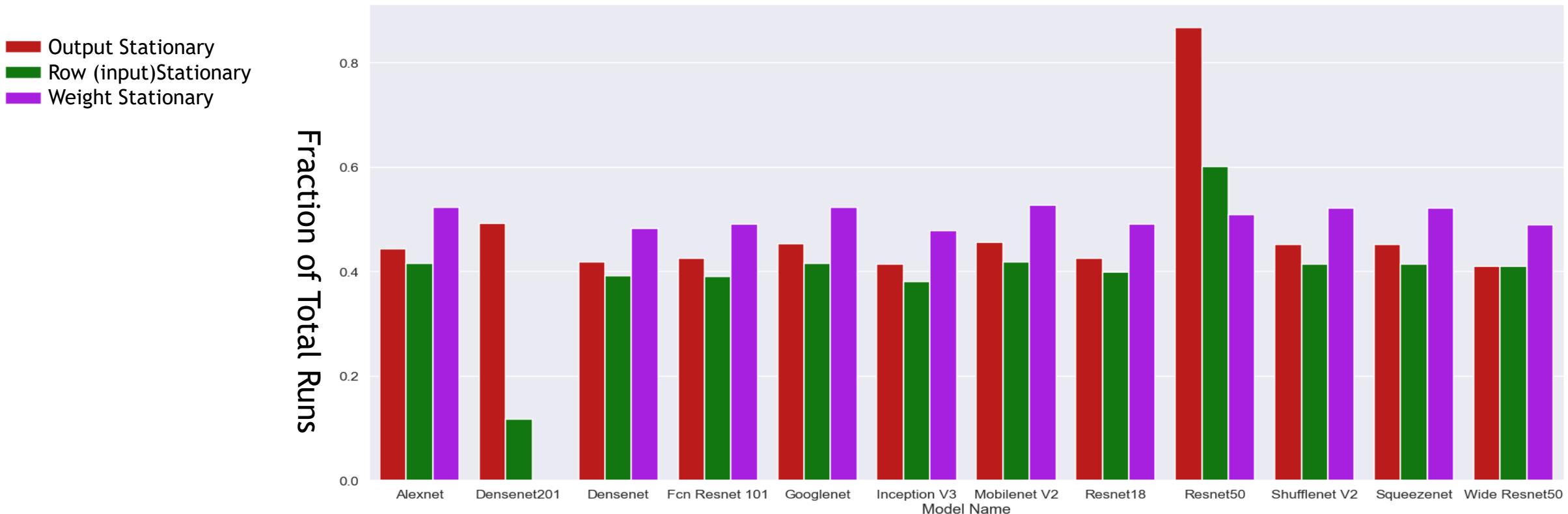
Co-Design Analysis

Finding valid dataflows is critically important

Hardware must have

- Enough L2 buffer to hold data that is reused
- Enough L1 buffer to hold working data
- Some hardware can only work with specific dataflows

Valid Hardware and Dataflow Configurations as a Fraction of Total



Co-Design Analysis

Sweep results – Energy vs Latency mean

Across all valid hardware / dataflow combinations across all models:

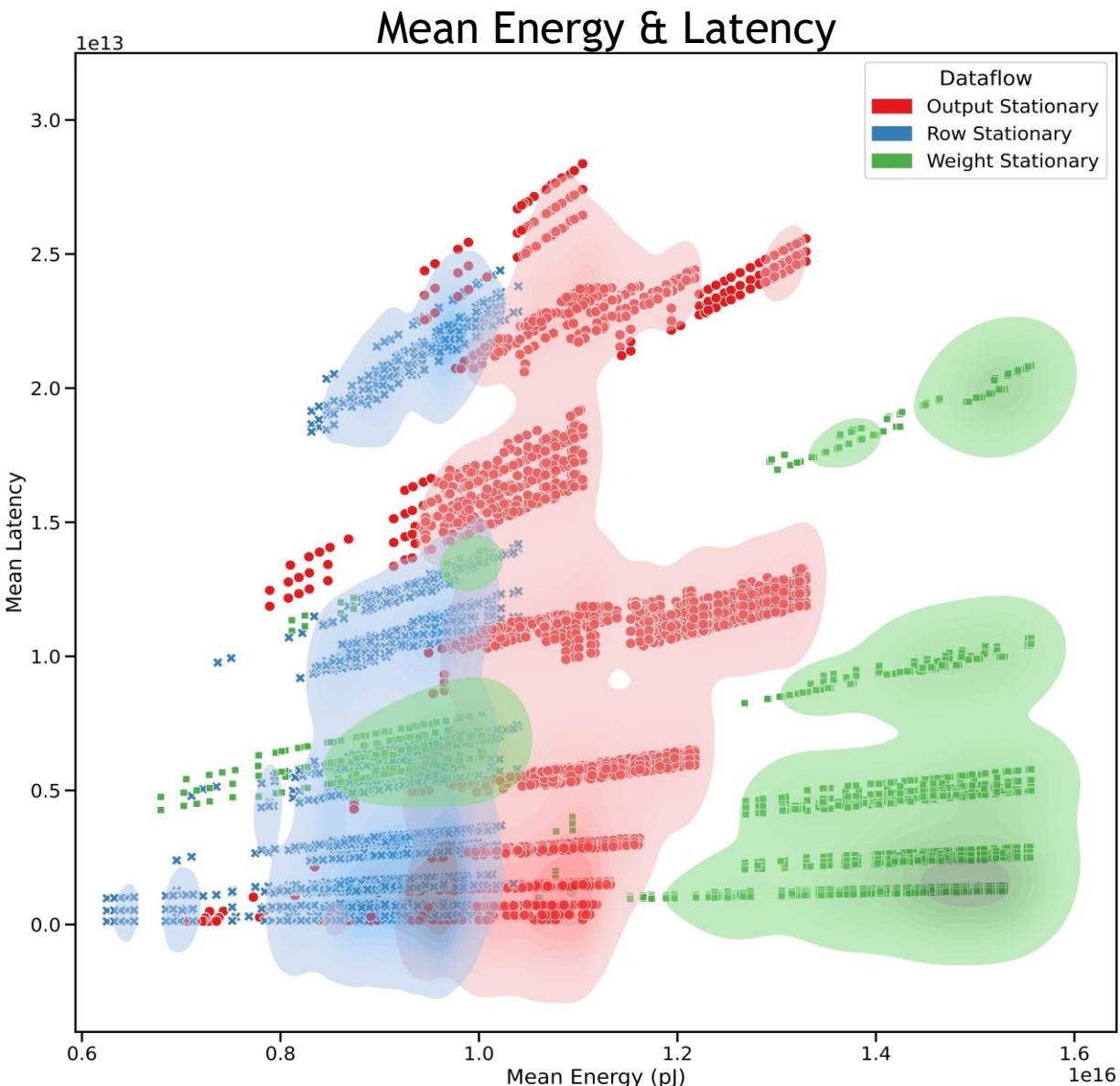
- Mean of energy and latency

Sweeps show a trend where

- Weight stationary can be the worst performing dataflow
- Row stationary is generally well performing
- There is a limit to increasing the compute power and gaining faster results

General trends allow for pathways to further detailed analysis:

- Investigate specific hardware & dataflow combinations



Co-Design Analysis

To further examine hardware configuration performance:

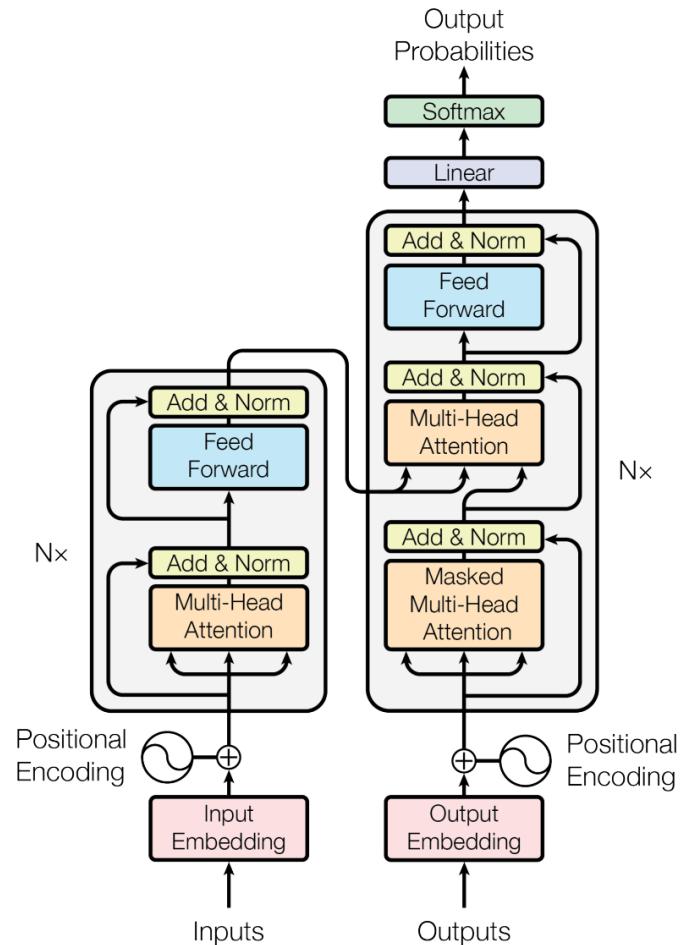
- We are adding new, non Convolutional Neural Network support to Assayer

First example network is a “Transformer” network

- Architecture first described in “Attention is All You Need”
- Uses multiple combinations of matrix multiplication and fully connected networks

The Transformer network posed new problems for mapping to systolic-array hardware:

- The model required significantly large L1 (scratch) memory to run
 - These runs **start** at 32KB of L1 memory
 - Largest CNN sweep was 32KB of L1 memory



Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems* 30 (2017): 5998-6008.

Co-Design Analysis

Smaller range of energy usage results

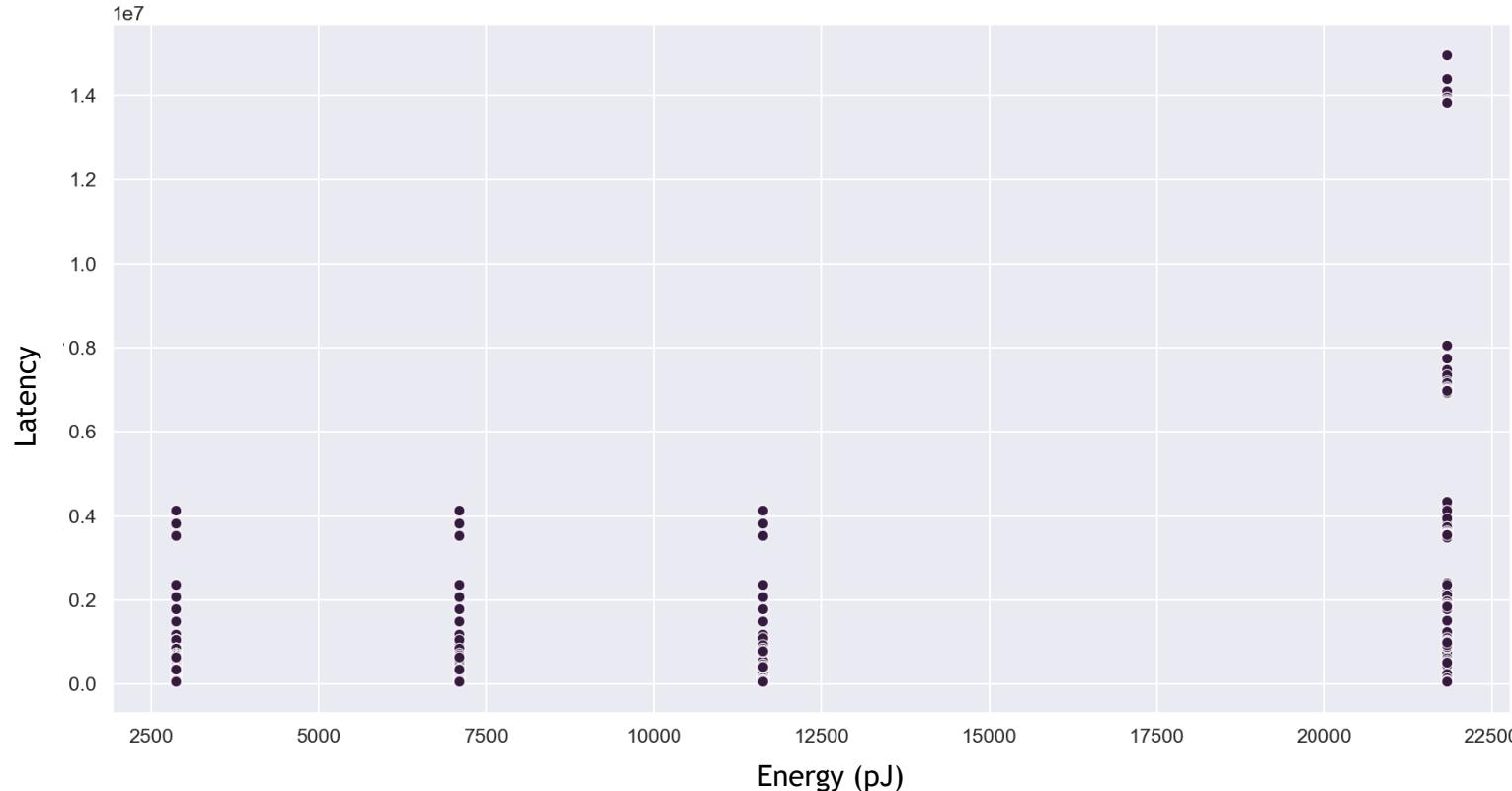
- Lower energy use overall than CNN models

Latency is wildly distributed

- Latency is also lower than many of the CNN networks

Attention is all you Need network is faster and more efficient

- Assuming the accelerator hardware has large enough SRAM cache



Future Work & Conclusions

- Integrating the presented efforts in architecture insight, algorithmic assessments, & co-design analysis –
 - This project will produce a report providing insight into how existing and emerging neuromorphic computation may benefit NA-22 monitoring activities as well as enable future algorithm development
- Importantly, as neural network algorithms as well as architectures are actively evolving, we believe it is necessary to consider a co-design perspective
 - Not only are there approaches available now for enabling enhanced processing at the sensor, but potential advances are hinting at orders of magnitude improvements
 - For novel computing paradigms to reach this potential, advantageous to consider interplay of algorithms & architectures

Thank you!

