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PROJECT OVERVIEW
SEEK - Scoping neuromorphic architecture impact enabling advanced sensing capabilities 

YEAR 2 of 2

Project Purpose Goals

As ML approaches are increasingly impactful, 

revolutionizing signal processing and data science 

tasks, this effort Seeks to understand how 

emerging neural computing approaches can enable 

NA-22 neural network data analysis needs

Provide an assessment of neural computing 

approaches yielding insight into the interplay of 

neural network algorithms and architectures 

Approach Deliverables

Scoping study effort integrating empirical studies 

and analytical developments jointly pursued by 

SNL & LANL  

• Architecture Insights

• Algorithmic Assessments

• Co-Design Analysis 

Produce a report providing insight into how 

existing and emerging neuromorphic computation 

may benefit NA-22 monitoring activities as well as 

enable future algorithm development

2



NA-22 Impact

Neuromorphic computing offers a path to 

enabling enhanced processing at the sensor 

• The amount of  data transmitted for subsequent 

data science processing or analyst interpretation 

may be reduced

• Initial processing on the raw data at the 

sensor provides an opportunity to transmit 

higher order information

• Instead of  providing more alerts or 

signatures to attend to, the neuromorphic 

pre-processing of  remotely sensed data may 

be filtered providing a data enrichment 

through machine intelligence processing 

helping to enable model-driven analytics
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Traditional Computation - “End of the Line”

Hennessy, J. L., & Patterson, D. A. (2019). A new golden age for computer architecture. Communications of the ACM, 62(2), 48-60.

Driven by immense advances, 
computer architectures have 
pursued optimizations of 

• Computation complexity

• Communication & storage 

• Parallelization 

• Scale

But physical limits are reaching an end

• Moore’s Law

• Dennard Scaling

• Amdahl’s Law
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Traditional Computation - “End of the Line”

Neural networks have a legacy of taxing the computational capabilities available

• In lieu of relying upon physical scaling, need a new paradigm of computing

AI and Compute (OpenAI May 2018)
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Beyond Traditional “End of the Line”

Alternative paradigms – specialization 

• GPUs: parallelization in compute density

• FPGAs: programmable hardware adaptivity

What is neural-inspired, neuromorphic, brain-inspired 
computing?

• Many terms 

• Fundamental notion of taking inspiration from how the 
brain performs computation
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Which architecture is best?

…a complex question – but is what this effort is SEEKing to shed light on 
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• For a fixed architecture (hardware), 
the algorithms (software) which are 
optimal does not mean they are the 
best overall approach → importance 
of co-design

• Broad classes of architectures 
employ different approaches & 
objectives

• Neuromorphic is actively exploring 
architectural tradeoffs 

https://mathinsight.org/image/partial_derivative_as_slope



Architectural Insight

Architectural explosion

• Worldwide 

• Industry as well as academia 

• Leading chip vendors as well as startups 

• Approaches include
• Optimizing existing architectures for neural networks 

• Novel materials 

• Analog, digital, optical, asynchronous, event driven 

• Scale & Technical maturity 

• Emerging software stack 

Accordingly, here we are considering insights from architectural analysis, benchmarking, and analytical assessments 
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Architectural Insight

Timeline of  neuromorphic impact is both now and emerging 

Today
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Unknown future 

(3D architectures, 

novel devices, … ) 

Hybrid Analog-

Digital 

Neuromorphic 

GPU

ML Accelerators 

Neuromorphic

Event Driven – computation & sensing

Applications such as video analysis, action 

recognition, signature analysis 

Analog – power & speed efficiencies

Applications include sensor pre-

processing directly in analog & time series 

Embedded – FPGA & ASIC 

Applications include tiny ML for enabling 

situational awareness 

Reconfigurable – data stream 

optimizations offering versatility in 

application 

Emerging trends include

Physics based computing –

optical and other paradigms 



Algorithmic Assessments

Many factors influence the efficiency of  neural 

network computation

• Includes model size & structure, precision, 

pruning/compression, etc. 

• Efforts here include parameter sweeps and weight 

pruning study of  a spiking neural network 

• Highlighted ability to maintain performance while 

easing computational cost

• Hyperparameter Architecture Search (HAS)

• Search over models with knobs to adjust their 

architectural configurations  

• Enables tuning several facets of performance
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Tan, Mingxing, and Quoc V. Le. "Efficientnet: Rethinking model scaling for 

convolutional neural networks." arXiv preprint arXiv:1905.11946 (2019).



Algorithmic Assessments

Spiking Weight Agnostic Neural Networks (WANN)

• Evolutionary neural architecture search method we have extended to 

spiking circuits  

• Efficient networks which emphasize connectivity more  than weights

• Enabling explorations into properties like network size, complexity, 

noise resilience, multi-sensor fusion 
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Algorithmic Assessments 

Pursuing WANN robustness 
• Combining the convolutional structure of 

a Whetstone spiking neural network as a 

preprocessor & feeding extracted 

features as inputs into the WANN

• Combining the two methods on a

timeseries binary classification task

provides a strong boost to 

performance (85.9% → 98.0%) while 

striving to improve network efficiency

• Applying noise to WANNs

• Given emphasis on computation 

structure over weighted inputs

• Input noise added with respect to the 

variance of each input 
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Co-Design Analysis 

Analytical Architecture Analysis - Assayer

• Tool which given a set of neural network layers (and a dataflow) analyzes systolic array 
type hardware execution 

• Factors in costs associated with computation, memory access, communication (references 
30 nm CMOS)  

• Produces various metrics (energy, latency, reuse, etc.)

• We’ve extended base capability to include activation function cost (ReLU) & pooling layers 
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Co-Design Analysis 

• Built a hardware testing harness
• Input:

• A set of PyTorch neural networks

• A selection of hardware parameters

• Converts:
• Pooling layers to convolutional layer sizes

• PyTorch networks to a set of dimensions

• Runs:
• Multiple instances of Maestro

• Controlled through MPI

• Collects:
• Result data from Maestro
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Co-Design Analysis 

Baseline sweeps –

• Applied to 12 CNN models

• 3 dataflow types (output, input/row, & weight stationary)

• Analysis where each dataflow-model combination is over 200k hardware 
configurations 

Models Run

Wide Resnet 50

Squeezenet

Shufflenet V2

Resnet 50

Resnet 18

Mobilenet

Inception V3

GooGLeNet

CN Resnet

Densenet / Densenet 201

Alexnet

Hardware Configurations

Number of PEs: 32 – 262144

L1 Sizes: 256 – 262144

L2 Sizes: 2048 – 262144

N.O.C Bandwidth: 16 – 2048

Number of ALUs per PE: 
1,2,16,32
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Co-Design Analysis 

Per dataflow insights -

Latency Across Models Per DataflowEnergy Across Models Per Dataflow
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Co-Design Analysis 

Finding valid dataflows is critically important

Hardware must have

• Enough L2 buffer to hold data that is reused

• Enough L1 buffer to hold working data

• Some hardware can only work with specific dataflows

Output Stationary

Row (input)Stationary

Weight Stationary

Valid Hardware and Dataflow Configurations as a Fraction of Total
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Co-Design Analysis 

Sweep results – Energy vs Latency mean 

Across all valid hardware / dataflow 
combinations across all models:
• Mean of energy and latency

Sweeps show a trend where
• Weight stationary can be the worst performing 

dataflow

• Row stationary is generally well performing

• There is a limit to increasing the compute power 
and gaining faster results

General trends allow for pathways to further 
detailed analysis:
• Investigate specific hardware & dataflow 

combinations

Mean Energy & Latency
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Co-Design Analysis 

To further examine hardware configuration 
performance:
• We are adding new, non Convolutional Neural 

Network support to Assayer

First example network is a “Transformer” 
network
• Architecture first described in “Attention is All 

You Need” 

• Uses multiple combinations of matrix 
multiplication and fully connected networks

The Transformer network posed new problems 
for mapping to systolic-array hardware:
• The model required significantly large L1 

(scratch) memory to run

• These runs start at 32KB of L1 memory 

• Largest CNN sweep was 32KB of L1 memory

Vaswani, Ashish, et al. "Attention is all you 

need." Advances in neural information 

processing systems 30 (2017): 5998-6008.
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Co-Design Analysis 

Smaller range of energy usage results
• Lower energy use overall than CNN models

Latency is wildly distributed
• Latency is also lower than many of the CNN networks

Attention is all you Need network is faster and more efficient 
• Assuming the accelerator hardware has large enough SRAM cache
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Future Work & Conclusions 

• Integrating the presented efforts in architecture insight, algorithmic assessments, 
& co-design analysis –

• This project will produce a report providing insight into how existing and emerging 
neuromorphic computation may benefit NA-22 monitoring activities as well as enable 
future algorithm development

• Importantly, as neural network algorithms as well as architectures are actively 
evolving, we believe it is necessary to consider a co-design perspective 

• Not only are there approaches available now for enabling enhanced processing at the 
sensor, but potential advances are hinting at orders of  magnitude improvements 

• For novel computing paradigms to reach this potential, advantageous to consider interplay 
of  algorithms & architectures
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Thank you!


