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Abstract

Quantitative understanding of the spatial distribution of magnetic fields and Meissner screening currents in two-
dimensional (2D) superconductors and mesoscopic thin film superconducting devices is critical to interpreting the re-
sults of magnetic measurements of such systems. Here, we introduce SuperScreen, an open-source Python package
for simulating the response of 2D superconductors to trapped flux and applied time-independent or quasi-DC magnetic
fields for any value of the effective magnetic penetration depth, A. Given an applied magnetic field, SuperScreen
solves the 2D London equation using an efficient matrix inversion method [} 2] to obtain the Meissner currents and
magnetic fields in and around structures composed of one or more superconducting thin films of arbitrary geometry
with spatially nonuniform magnetic penetration depth. SuperScreen can be used to model screening effects and cal-
culate self- and mutual-inductance in superconducting devices, and simulate the magnetic response of inhomogeneous
2D superconductors.
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PROGRAM SUMMARY 1. Introduction

SuperScreen SuperScreen is a Python package developed to sim-
CPC Library link to program files: (to be added by Technical ulate the static magnetic response of structures com-
Editor) posed of one or more layers containing superconduct-
Developer’s repository link: ing thin films characterized by a London penetration
www.github.com/loganbvh/superscreen depth A that is large compared to the film thickness d.
Code Ocean capsule: (to be added by Technical Editor) SuperScreen solves the coupled Maxwell’s and Lon-
Licensing provisions: MIT License don’s equations in and around superconducting films
Programming language: Python with spatially-varying penetration depth in the presence

Nature of problem: SuperScreen solves for Meissner
screening currents in structures composed of 2D or thin film
superconductors in the presence of an applied magnetic field,

of inhomogeneous applied magnetic fields, pinned vor-
tices, and trapped flux using a matrix inversion method
pinned vortices, and trapped flux introduced by Brandt and Clem [1} 2] and subsequently

Solution method: This package solves the 2D London equa- used by Kirtley, et al. to model the magnetic response of
tion for superconducting thin films using a matrix inversion scanning superconducting quantum interference device
method [11 2] (SQUID) sensors [3} 4].

There have been many previous numerical studies of
magnetic screening and inductance extraction in thin
film and two-dimensional (2D) superconducting de-
vices [15, 16} [7} 18] 9L 10} 11} [12} [T} 2} [13} 14} [15)]. How-
ever, few software tools for this task exist and those

- X that are available are closed-source, are written in low-
Corresponding author.

Email addresses: 1bvh@stanford.edu (Logan Bishop-Van level compiled languages like C, and/or require the use
Horn), kmoler@stanford.edu (Kathryn A. Moler) of specialized file formats or separate computer aided
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design (CAD) software for defining device geometries
and model conﬁgurationsﬂ Most of these tools are
intended for use in the design of superconducting in-
tegrated circuits for single flux quantum (SFQ) logic
and are primarily used for inductance extraction [16].
SuperScreen is an open-source, user-friendly, portable
research tool designed to lower the barrier to entry to
quantitative modeling of 2D superconductors, and to
help interpret and inform measurements of supercon-
ducting thin films and devices.

This introduction to SuperScreen is organized as
follows: In Section 2] we outline the model and its as-
sumptions, and in Section |3| we describe its numerical
implementation. In Section (4| we provide an overview
of the structure of the SuperScreen package and dis-
cuss some important development details. In Section 3]
we demonstrate how to perform several types of simu-
lations using SuperScreen and compare the results to
analytical solutions and experimental results. Finally, in
Section [§] we conclude by discussing applications, limi-
tations, and possible extensions of the package. Python
scripts and Jupyter notebooks used to generate all fig-
ures presented below can be found in the GitHub repos-
itory accompanying this manuscript [[17].

2. The Model

The goal of SuperScreen is to model the mag-
netic response of a thin superconducting film, or a
structure composed of multiple superconducting films
(which may or may not lie in the same plane), to
an applied inhomogeneous out-of-plane magnetic field
H_ applica(X, Y, 7). Given H ppiica(x, y, ) and information
about the geometry and magnetic penetration depth of
all films in a superconducting structure, we aim to cal-
culate the thickness-integrated current density J(x, y) at
all points inside the films, from which one can calcu-
late the vector magnetic field H (x,y,z) at all points both
inside and outside the films.

A convenient method for solving this problem was
introduced by Brandt and Clem in Ref. [1]], expanded
by Brandt in Ref. [2], and subsequently used to model
the magnetic response of scanning SQUID susceptome-
ters [3, 4]. In the London model of superconductiv-
ity, the magnetic field 1-7(?) and 3D current density
f(?) in a superconductor with London penetration depth
A(P) obey the second London equation: V X f(?) =

—H(#)/A%(#), where V = (£, £, 2). The 2D London

! A brief summary of existing tools can be found in

and a more thorough overview in Ref. [16].

model assumes that the current density fis approxi-
mately independent of z, such that f(f’) = f(x, v,2) &
f'ZU(x, y) for a film lying parallel to the x — y plane at
vertical position zg. Working now with the thickness-
integrated current density J_)(x, y) = ]_';0 (x,y) - d, where d
is the thickness of the film, the second London equation
reduces to

V x J(x,y) = —H(x,y)/A(x, y), 4))

where A(x,y) = A%(x,y)/d is the effective penetration
depth of the superconducting film (equal to half the
Pearl length [[18]).

It is important to note that the assumption f(x, ¥,2) =
f'zo(x, y) is valid for only films that are thinner than
their London penetration depth (d <« A, such that
A = A%/d > ). However the model has been ap-
plied with some success in structures with 1 < d, for
example by Kirtley, et al. in modeling the magnetic re-
sponse of scanning SQUID susceptometers [3}4]. Aside
from this limitation, the method described below can be
used to model films with any effective penetration depth
0<A<oo.

Because the current density has zero divergence in-
side the superconducting film (V- J=0) except at small
terminals where current can be injected, one can express
J'in terms of a scalar potential g(x,y), called the stream
function:

5 0 0
Jx,y) = —x Vg = V x (g2) = (a—g ——g). ®))
y  0x

The stream function g can be thought of as the local
magnetization of the film, or the area density of mag-
netic dipole sources (see Ref. [2] for more interesting
properties of the stream function). We can rewrite Eq.
which gives the magnetic field inside of a 2D film, in
terms of g:

H(x,y) = =A [V x Jix,y)
= —A[V X (V x(g2))]
= -A[V(V - (g2) - V2(g2)|
= AV%g(x, )3,

3

where V2 = V - V is the Laplace operator. (The last line
follows from the fact that V - [g(x, ¥)Z] = 0). From Am-
pere’s Law, the three components of the magnetic field
H (P) at position 7 = (x, y, z) due to a sheet of current ly-
ing in the x —y plane (at vertical position z’) with stream



function g(x’,y’) are given by:
H,(F) = f Q.7 7)g(x',y) d*r
F
H,(P = f 0,7, Pg(x',y)d*r )
F

H (P = Hy applica(P) + fF O.(7 7)g(x',y ) d*r.

Here we assume a static out-of-plane applied mag-
netic field ﬁapplied(? ") = H,, appliea(¥')Z. F is the film area
(with g = 0 outside of the film), and Q.(¥, 7"), Q\(7, 7"),
and Q.(#,7') are dipole kernel functions which give the
respective component of the magnetic field at position
= (x,y,z) due to a dipole of unit strength at position

"
)
= (0,2

g A (x=X)z-2)
Qx(r, r ) = 347{[(2 — Z’)z n p2]5/2

=2 1\ (y —y/)(Z - Z/)
OO = = e 2P

P AN Z(Z - Z’)z _,02
O = = o P + PP

®)

where p = /(x—x')2 + (y—»)2. Eq. 4| can also be
seen as the Biot-Savart Law formulated in terms of the
stream function g.

Comparing Eq. 3] and Eq. i} we have in the plane of
the film:

H®) -2 = H(P = AV?g(x,y) =

z—component of the total field

H, applied(?) + f Qz(?» 7/)8(7’) dzr/,
S — F

applied field

(6)

screening field

where now 7 and 7’ are 2D vectors, i.e. z — 7' = 0 since
the film is in the same plane as itself. From Eq.[6] we ar-
rive at an integral equation relating the stream function g
for points inside the superconductor to the applied field
H 2z, applied+

Hz, applied(i) =

- f (0.7 8- W ey .
F
where ¢ is the 2D Dirac delta function.

The goal, then, is to solve (invert) Eq.[/| for a given
H appiied and film geometry F to obtain g for all points
inside the film (with the boundary condition g = 0 en-
forced outside the film). Once g(7) is known, the full
vector magnetic field H(#) can be calculated at any point
7 from Eqs. [ and[5]

2.1. Films with holes

In films that have holes (regions of vacuum com-
pletely surrounded by superconductor), each hole & can
contain a trapped flux associated a current I, circu-
lating around the hole. The applied field that would
cause such a circulating current is given by Eq. [/|if we
set g = L, for all points lying inside hole A:

H_ o, 5(7) =

8
- [ 10 - 67 = NG e ®)
hole 1

In this case, we modify the left-hand side of Eq.[/|as
follows:

Hz,applied(?) - Z Hz,eﬁ,h(?) =

holes i

€))
- f |07, 7) = 67 = F)AG")V?| g(F) .

F
The circulating current I  iS defined as the total
current crossing any curve that connects the interior of

the hole i (where g = I 1 to the exterior of the film
(where g = 0) [IL1, 2].

2.2. The fluxoid

The fluxoid <I)§ for a 2D region S with 1D boundary
0S is given by the sum of magnetic flux through S and
the line integral of the supercurrent density J around
0S8 (2,113, 119]:

o} = f #Oﬂz(mzr+9§ woAPJ(P -d7.  (10)
N as

“flux part” “supercurrent part”

The fluxoid vanishes for a region S completely con-
tained within a superconducting film that contains no
holes or vortices, and has the same value for any re-
gion containing a given hole or collection of vortices
in a superconducting film. This path-independence of
the fluxoid follows from the static London equation
(Eq. [I) on which the present model is based. Fluxoid
quantization—the requirement that the fluxoid @g =
n®, where n is an integer and ®y = h/2e is the mag-
netic flux quantum—is not automatically enforced by
Eq. [T] for multiply-connected films, however it can be
included as an external constraint.

2.3. Vortices

In addition to being trapped in holes (see Section[2.1)),
flux may be trapped in a superconducting film in the



form of vortices. The presence of vortices trapped in a
film at positions 7, modifies Eq. E]as follows:

(I)v =2 =2
Heappiea ) = ) Hean) = ), —L00=7) =

holes i vortices v
_ f (0.2 7) - 67 - AV g7 r,
F
(11)

where ¢ is the 2D Dirac delta function and each vortex
v is associated with a flux @, (typically @, = n®y =
nh/2e, where n is an integer, @ is the magnetic flux
quantum, /4 is the Planck constant, and e is the elemen-
tary charge). By solving Eq. to obtain g(7), one can
compute the supercurrent density in the film due to an
applied field and flux trapped in both holes and vortices.
For a simply-connected region S containing a set of vor-
tices v each associated with a flux ®@,, the fluxoid is
equal to (Dg = Y vorticesy @v- The numerical solution to
Eq.[T1]is described at the end of Section [3]

2.4. Multi-layer structures

For structures with multiple films lying in different
planes or layers, with layer ¢ lying in the plane z = z,
the stream functions and fields for all layers can be com-
puted self-consistently using the following recipe:

1. Calculate the stream function g,(7) for each layer
¢ by solving Eq. [II] given an applied field
Hz, applied(?, Z()-

2. For each layer ¢, calculate the z-component of the
field due to the currents in all other layers m # ¢
(encoded in the stream function g, (7)) using Eq. E]

3. Re-solve Eq. taking the new applied field at
each layer to be the original applied field plus the
sum of screening fields from all other layers. This
is accomplished via the substitution

Hz,applied(f: 70) = H, applied(?’ 2¢)

2 [ e,
m#l Fn
(12)

where F, is surface of all films in layer m and g,,
is the stream function for layer m.
4. Repeat steps 1-3 until the solution converges.

Convergence can be quantified by, for example, cal-
culating the total magnetic flux though all films and
holes in the model at the end of each iteration. In gen-
eral, the more layers there are in a structure the more
iterations are required to reach a given level of conver-
gence.

3. Numerical Implementation

In order to numerically solve Eq. 4] and Eq. O] we
have to discretize the films, holes, and the vacuum re-
gions surrounding them. We use a triangular (Delau-
nay) mesh, consisting of p points (or vertices) which
together form  triangles. Below we denote column vec-
tors and matrices using bold font. AB denotes matrix
multiplication, with (AB);; = Zi:l AjByj (€ being the
number of columns in A and the number of rows in B).
Column vectors are treated as matrices with £ rows and
1 column. On the other hand, we denote element-wise
multiplication with a dot: (A - B);; = A;;B;; for two ma-
trices and (A - v);; = (v - A);; = A;;v; for a matrix A and
a column vector v. AT denotes the transpose of matrix
A.

The discrete version of Eq.[d]is

h, =h, applied T Q- WT)g
—— —_—— —————

total field applied field ~ screening field (13)

hei = h appliedi + Z Qiiw;gj
J

where for clarity we show both the matrix version of
Eq. 4| (top line) and the equivalent discrete sum version
(bottom line).

The p X p kernel matrix Q represents the kernel func-
tion Q.(#, 7) for all points lying in the plane of the film,
and the p X 1 weight vector w, which assigns an ef-
fective area to each vertex in the mesh, represents the
differential element d*7". Both Q and w are solely deter-
mined by the geometry of the mesh, so they only need
to be computed once for a given device. h;, h; ipplicd
and g are all p x 1 vectors, with each row representing
the value of the quantity at the corresponding vertex in
the mesh. The vector w is equal to the diagonal of the
“lumped mass matrix” M: w; = M;; = % e area(t),
where N (i) is the set of triangles ¢ adjacent to vertex i.
The kernel matrix Q is given by

1
ij = (6ij — Dgij + 6;;— | Ci + awa |, (14
Qij = (6ij — Daij ]WU[ Z‘IIWI] (14)

I#i

where g;; = (4xf7 — )" (which is lima._o O.(F. ")
cf. Eq. EI), and ¢;; is the Kronecker delta function. The
diagonal terms involving the p X 1 vector C are meant
to work around the fact that g;; diverge (see Ref. [2]] for
more details), and C is given by

1
Ci= MZ:H VIAx = pi = DI + [Ay - g0 - DI,

s)



where Ax = (Xmax = Xmin)/2 and Ay = (Ymax —Ymin)/2 are
half the side lengths of a rectangle bounding the mod-
eled film and (X, y) are the coordinates of the center of
the rectangle.

The matrix version of Eq.[J)is

heappica = Y Moo n = —(Q - W' = V2-AT)g, (16)
holes i

where we exclude points in the mesh lying outside of
the superconducting film but keep points inside holes in
the film. A is either a scalar or a vector defining the
effective penetration depth at every included vertex in
the mesh, and V? is the Laplace operator, a p X p matrix
defined such that V?f computes the Laplacian V> f(x, y)
of a function f(x, y) defined on the mesh (see[Appendix|
[B).

Eq. [16]is a matrix equation relating the applied field
to the stream function inside a superconducting film,
which can efficiently be solved (e.g. by Cholesky or LU
decomposition) for the unknown vector g, the stream
function inside the film. Since the stream function out-
side the film and inside holes in the film is already
known, solving Eq. [I6] gives us the stream function for
the full mesh. Defining K = (Q -wl —v2. AT)il, we
have

-K (hz, applied ~ Lholes hz,efr,h) inside the film

g= Icirc,h
0 elsewhere

inside hole i

a7

If there is a vortex containing flux @, located in a film
at position 7; indexed as mesh vertex j, then for each po-
sition 7 within that film, we add to the stream function
gi the quantity u(;l(DjK,-j/wj, where K;; is an element of
the inverse matrix defined above, and w; is an element
of the weight matrix which assigns an effective area to
the mesh vertex at which the vortex is located. This
process amounts to numerically inverting Eq.|11]as de-
scribed in Ref. [2]].

Once the stream function g is known for the full
mesh, the supercurrent flowing in the film can be com-
puted from Eq. |2} the z-component of the total field in
the plane of the film can be computed from Eq. and
the full vector magnetic field Hi(x, y,2) at any point in
space can be computed from Eqs.[d|and [5] Multi-layer
structures are solved iteratively as described in Section

24

4. Package Overview

In this section we give a high-level overview of the
SuperScreen package. Further details can be found

in the online documentation [20]. The specific ver-
sion of the package corresponding to this manuscript is
v0.4.0.

4.1. Development Details

At the time of writing, SuperScreen requires Python
version 3.7-3.9. The package is located in a public
repository on GitHub [21} 22]], and a suite of unit tests
is run automatically via the GitHub Actions continu-
ous integration (CI) tool whenever a change or proposed
change (Pull Request) is made to the main branch of the
repository. At the time of writing, the test suite is exe-
cuted using Python versions 3.7 through 3.9, and the test
coverage is > 95%. Any changes to the main branch
of the repository also trigger an automatic re-build of
the online documentation [20]. Stable versions of the
package are tagged on GitHub and uploaded to PyPI,
the Python Package Index. The source code and docu-
mentation are provided under the MIT License [’

SuperScreen has several important dependencies
beyond the Python standard library: numpy [23] and
scipy [24] for numerics, matplotlib [25] for vi-
sualization, pint [26] for handling physical units,
shapely [27] for creating and manipulating device ge-
ometries, meshpy [28] 29| 30] and optimesh [31] for
mesh generation, and Ray [32| [33]] for parallel process-

ing with shared memory (see[Appendix E).

4.2. Devices

Information about the geometry and penetration
depth of a superconducting structure is described
by an instance of the superscreen.Device class.
A Device is made up of one or more supercon-
ducting layers, each represented by an instance of
superscreen.Layer. Each layer sits in a specified
plane parallel to the x — y plane and has its own effec-
tive penetration depth A, which can either be a constant
or a superscreen.Parameter that defines A(x, y), the
effective penetration depth as a function of position (see
[Appendix _C). Alternatively, the effective penetration
depth A can be defined in terms of a layer’s London
penetration depth A and its thickness d: A = A%/d, in
which case the London penetration depth can be either
a constant or a superscreen.Parameter.

Each layer can contain one or more superconducting
films which may have one or more holes in them.
Films and holes are represented by instances of the
superscreen.Polygon class. All polygons in a device
must be simply-connected; a hole in a film is modeled as

Zhttps://opensource.org/licenses/MIT
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SuperScreen | Set-theoretic Boolean
polygonA.union(polygonB) AUB OR
polygonA.intersection(polygonB) ANB AND
polygonA.difference(polygonB) A\ B AND NOT
polygonA.difference(polygonB, symmetric=True) | (A\ B)U(B\A) | XOR

Table 1: Methods for combining superscreen.Polygon objects, along with their corresponding set-theoretic and boolean logic operations.

one Polygon instance whose coordinates all lie within
the Polygon representing the film. Polygons can con-
structed and combined using set-theoretic operations.
Table[I]|shows the four methods available for combining
a supercreen.Polygon instance polygonA, whose
vertices lie in set A, with a polygon polygonB, whose
vertices lie in set B. Note that polygonB can be a
superscreen.Polygon, an n X 2 numpy array of ver-
tex coordinates, or a LineString, LinearRing, or
Polygon from the shapely package [27].

In addition to superconducting films and holes, one
may define “abstract regions,” which are polygons that
do not necessarily correspond to a physical feature in
the structure, but will still be meshed. Abstract re-
gions can be used to define a “bounding box” around
a structure to be modeled, or to locally increase the
density of the computational mesh in a given region.
The superscreen.geometry module provides func-
tions for generating the underlying polygon vertices for
simple shapes (ellipses and rectangles), which can be
combined as described above to create more compli-
cated geometries.

Once the layers, films, holes, and abstract regions
have been defined, one can generate the computational
mesh by calling Device.make_mesh(). The region
that is meshed is defined by the convex hull of the union
of all polygons in the device. Mesh generation is a two
step process. First, an initial Delaunay mesh is cre-
ated using meshpy [28], which is a Python interface
to Triangle [30l 29]], a fast compiled 2D mesh gener-
ation tool. Second (and optionally), the mesh is fur-
ther optimized using optimesh [31]. The goal of the
mesh optimization step is to improve the “quality” of
each triangular element in the mesh, where quality mea-
sures how close a triangle is to equilateral (quality < 1,
with equality for equilateral triangles). In practice, the
more optimesh steps are performed, the more uniform
in size and spatial density the triangles in the mesh be-
come. The local density of triangles in the mesh is de-
termined by the density of vertices in the device’s poly-
gons and the total number of triangles. Regions where
there are many polygon vertices will be meshed more
densely than regions with few polygon vertices. If no

optimesh optimization is performed, then every poly-
gon vertex is guaranteed to be a mesh vertex. See Code
Block [T] for a demonstration of the process of creating
a Device, and Figure [I[(a) to view the resulting geom-
etry and mesh. After the mesh has been generated, the
geometry-dependent matrices and vectors described in
Section[3]are computed and one can begin solving mod-
els.

4.3. Solvers

A SuperScreen model consists of 1) a Device
with a mesh, 2) a function or Parameter that de-
fines the applied magnetic field as a function of posi-
tion H_ applied(X,y,2), 3) a value for the current circu-
lating around each hole in the device due to trapped
flux, and 4) a collection of vortices v located at po-
sitions 7, and carrying flux ®,. These items serve
as the inputs to SuperScreen’s main solver function,
superscreen.solve (), which implements the calcu-
lation outlined in Section When simulating a de-
vice with more than one layer, one can specify the
number of times to implement the iterative calculation
described in Section [2.4] in order to solve for the re-
sponse of all layers self-consistently. One can also
skip the iterative portion of the calculation entirely and
only solve for the response of each layer to the ap-
plied field, assuming no interaction between layers. The
device.solve_dtype attribute determines the numpy
floating point data type used by solve(). The default
data type is float64 (64-bit double-precision float,
equivalent to Python’s float type), but one can, for
instance, set device.solve_dtype = "float32" to
use 32-bit single-precision floats in order to save mem-
ory.

The output of superscreen.solve() is a 1ist of
superscreen.Solution objects, with a length of 1
plus the number of iterations used for the iterative por-
tion of the calculation. A Solution encapsulates all of
the information about a solved model: the Device, ap-
plied field, circulating currents, vortices, and calculated
stream functions and magnetic fields for all layers in the



import superscreen as sc
from superscreen.geometry import circle, box

# Define the device geometry.
length_units = "um"

ro = 3 # outer radius

ri =1 # inner radius

slit_width = 0.25

Lambda = 1 # effective penetration depth

ring = circle(ro)
hole = circle(ri)

# Define the Polygon representing the superconductor.
layer = sc.Layer("base", Lambda=Lambda)
film = sc.Polygon.from_difference(

)

device = sc.Device(
film.name,
layers=[layer],
films=[film],
abstract_regions=[bounding_box],
length_units=length_units,

)

device.plot (mesh=True)

applied_field = sc.sources.ConstantField(10)

# Visualize the solution.

solution.plot_currents()

# Plot the magnetic field evaluated at each layer in
solution.plot_fields()

# Plot the field evaluated at any points in space.
solution.plot_field_at_positions(device.points, zs=0.

# circle() and boz() generate arrays of polygon (z, y) coordinates.

slit = box(slit_width, 1.5 * (ro - ri), center=(0, -(ro + ri) / 2))

[ring, slit, hole], name="ring with_slit", layer="base"

bounding_box = sc.Polygon("bounding_box", layer="base", points=circle(1.2 * ro))
# Create a Device and generate and plot the computational mesh.

device.make_mesh(min_points=3500, optimesh_steps=None)
# Calculate the device's response to a uniform applied field.
solution = sc.solve(device, applied_field=applied_field, field_units="uT")[-1]

# Plot the current density evaluated at each layer in the Device.

the Device.

5)

Code Block 1: The typical workflow for a SuperScreen simulation: 1) Define

the device geometry and materials properties, 2) generate the

computational mesh, 3) solve the model for a given applied field and/or trapped flux, and 4) visualize the results.

device. A Solution also has methods for processing
the simulation results, including:

e Solution.grid_data(): Interpolates the cal-
culated stream functions g(x,y), magnetic fields .
HoH(x,y), or current densities f)(x, y), for each
layer from the triangular mesh to a rectangular
grid.

e Solution.field_at_position(): Calculates

the vector magnetic field at any point(s) in space
due the applied field and the currents flowing the
in the device using Eqs. [dand [5]

Solution.interp_current_density(): Eval-
uates the 2D current density J(x, y) in each layer at
arbitrary (x,y) coordinates via interpolation.

Solution.polygon_flux(): Calculates the total
flux through each polygon in the device.
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Figure 1: The output of Code Block |l Meissner screening of a uniform 10uT out-of-plane field by a ring with inner diameter 1um, outer
diameter 3 um, and effective penetration depth A = 1um, interrupted by a slit of width 0.25um. (a) Plot of the boundary of the ring (blue),
circular bounding box (orange), and the computational mesh (gray), generated with Device.plot(). (b) The current density J'in the ring,
generated with Solution.plot_currents(). (c) The z-component of the magnetic field uoH, evaluated at the plane of the ring, gener-
ated with Solution.plot_fields(). (d) The z-component of the magnetic field evaluated z = 0.5um above the ring (generated using

Solution.plot_field_at_positions()).

e Solution.polygon_fluxoid(): Calculates the
fluxoid for a specified polygonal region in the de-
vice. See Section 5.l for more details.

Solutions also have several visualization methods
built in (see Code Block [T} Figure[T] and Section [@.4).

One may wish to solve many models involving the
same device while varying other aspects of the model,
for example sweeping the applied field, circulating cur-
rents, vortex properties, or some parameter of one or
more layers in the device. Fortunately, the mesh,
Laplace operator, kernel matrix, etc. (described in Sec-
tion[3) depend only on the geometry of the device paral-
lel to the x—y plane. This means that the same mesh and
matrices can be re-used for models with different ap-
plied fields, circulating currents, vortex properties, layer
z-positions, and penetration depths.

The superscreen.solve_many() function man-
ages the setup and execution of such a sweep. One
can provide a sequence of Parameter objects defining
different applied fields and/or a sequence of circulating
current values over which to sweep and/or a “layer up-
dater” function that modifies each layer in the device ac-
cording to some set of keyword arguments, which can
also be swept. The latter option can be used to sweep
layer heights or penetration depths. Given these in-
puts, superscreen.solve_many () will generate and
solve all of the corresponding models. The models can
either be solved in series in a single Python process
(the default), or in parallel in multiple Python processes
running across multiple CPUs, or even across multiple

nodes in a cluster (see[Appendix_E).

4.4. Visualization

SuperScreen offers several functions for visualiz-
ing the results of simulations (which are also aliased as
methods on superscreen.Solution):

e superscreen.plot_streams(): Given a
Solution, plots the stream function g(x,y) for
one or more layers in the device.

e superscreen.plot_currents(): Given a
. =3
Solution, plots the current density J(x,y) for one
or more layers in the device.

e superscreen.plot_fields(): Given a
Solution, plots the total field H.(x,y) or the
screening field H (x,y) — H_ appliea(x, y) for one or
more layers in the device.

e superscreen.plot_field_at_positions():
Given a Solution, plots the total field H(x,y,z)
or H,(x,y, z) at an arbitrary set of positions (x, y, z).

See Code Block [I] and Figure [I] for an exam-
ple of the usage and output of plot_fields() and
plot_currents().

4.5. Comparison & Persistence

Parameters, Layers, Polygons, Devices, and
Solutions all implement the equality operator, ==.
Two Parameters are considered equal if the Python
bytecode of their underlying functions is the same and
their keyword arguments are the same. Two Layers are
equal if their name, penetration depth, thickness, and
vertical position are all equal. Two Polygons are equal
if they are in the same layer and their name and poly-
gon vertices are equal. Two Devices are equal if their
name, layers, films, holes, and abstract regions are all
equal. Two Solutions are equal if their device, ap-
plied field, circulating currents, list of trapped vortices,
timestamp (time at which the solution was created), and
all stream function and magnetic field arrays are equal.



Two Solutions created at different times can also be
compared using the solution.equals() method.

Instances of superscreen.Device and
superscreen.Solution can be saved to and
loaded from disk using their respective to_file()
and from_file() methods, making it straightforward
to store and share models and simulation results.
Layers, Polygons, and all metadata are serialized
to JSON, a widely-used, human-readable plain text
format. Functions and Parameters, such as those
that compute the applied field or penetration depth,
are serialized in binary form using the dill pack-
age [34]. Numpy arrays, such as the mesh itself and the
computed stream functions and fields, are saved in the
numpy npz file format. A list of Solutions, such
as that returned by superscreen.solve() can be
saved/loaded all at once using save_solutions () and
load_solutions().

5. Examples

5.1. Calculating the fluxoid

SuperScreen allows one to calculate the fluxoid
(I)’; for any polygonal region S whose boundary 45
lies completely within a superconducting film using
the method Solution.polygon_fluxoid() (see Sec-
tion Eq. . The “flux part” fS/,ton(?) d’r is
calculated using Solution.polygon_flux(), which
computes the flux through a polygon representing a re-
gion § as Og = ;5 HoH;w;, where H; is the mag-
netic field at vertex i (recall that w; assigns an effec-
tive area to mesh vertex i). The “supercurrent part”
ﬁs ,qu(f’)J_)(?) - d7 is calculated by evaluating the vec-

tor current density J at each point in the path dS using
Solution.interp_current_density(), then com-
puting the line integral along the path using the trape-
zoid rule. The sum of these two terms gives the fluxoid
@]

While the 2D London model doesn’t “know” about
fluxoid quantization, in the sense that the quantiza-
tion condition CD§ = n®, is not automatically satis-
fied by solutions to Eq. [I] for multiply-connected films,
we can nevertheless calculate current and field distribu-
tions for different fluxoid states in multiply-connected
superconductors by adjusting the currents circulating
around each hole to realize a prescribed set of fluxoid
values. For a structure with N, holes, we can spec-
ify N, fluxoids d>£ and find the circulating currents I,
by minimizing the deviation of each fluxoid from its
desired value. This calculation is implemented in the
superscreen.find_fluxoid_solution() function.

import superscreen as sc
# Assume that we have already created a
# superscreen.Device with one or more
# holes, and generated the mesh.
# Spectify the desired fluzoid for each
# hole in the device:
fluxoids = {
hole_name: O
for hole_name in device.holes

}
applied_field = sc.sources.ConstantField (1)
field_units = "mT"

result = sc.find_fluxoid_solution(
device=device,
fluxoids=fluxoids,
applied_field=applied_field,
field_units=field_units,

)

solution, opt_result = result

Code Block 2: Calculating the field and current distributions for flux-
oid states in a multiply-connected superconducting film. Given a
Device with Nj, > 1 holes and a desired fluxoid (Df: for each hole,
superscreen.find_fluxoid_solution() optimizes the current
I, circulating around each hole to realize the desired fluxoid state. The
function returns a tuple of length 2, the first element being the final
optimized superscreen.Solution and the second element being
an instance of either scipy.optimize.RootResults (if N, = 1)
or scipy.optimize.OptimizeResult (if N > 1), which contains
information about the optimization that was performed. See Figure[J]
for an example of the results for a film with two holes, both in the
n = 0 fluxoid state.

For N, = 1, it is treated as a root-finding problem,
which can be solved with typically only three calls to
superscreen.solve(). For N, > 1, it is a least-
squares minimization problem with N}, free parameters.
Code Block 2ldemonstrates how to model a device with
one or more holes, each in the n = 0 fluxoid state, sub-
ject to a uniform applied field, and Figure [2] shows the
field and current distributions for a rectangular super-
conducting film with A = 0.25 um, which has one rect-
angular and one elliptical hole. The least-squares mini-
mization for the model shown in Figure@], with N, = 2,
required 18 total calls to superscreen.solve(). It
is important to note that while SuperScreen can cal-
culate the field and current distributions or a given flux-
oid state, the model does not capture transitions between
fluxoid states.
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Figure 2: (a) Magnetic field and (b) current density distributions gen-
erated by Code Blockfor a rectangular superconducting film with
A = 0.25 um, which has one rectangular and one elliptical hole. The
film is subject to a uniform applied out-of-plane field of 1 mT, and
both holes are set to be in the n = 0 fluxoid (i.e. Meissner) state.
The resulting ciruclating currents are lrectangle = —1.071 mA and
Lettipse = —1.589 mA, and the residual fluxoid for each hole is smaller
than 1077 @j. These results were computed using a mesh with ap-
proximately 5,000 vertices and 10,000 triangles.

5.2. Pearl vortices in thin films

Vortices trapped in 2D superconductors (d < 4,
where d is the film thickness and A is the London pene-
tration depth), i.e. “Pearl vortices,” are associated with
different current and magnetic field distributions than
Abrikosov vortices trapped in bulk type-II superconduc-
tors [18]]. The 2D Fourier transform I:IZ(E, z) of the out-
of-plane component of the magnetic field H,(7, z) from
a Pearl vortex located at the origin x =y = z = 0 is
given by

- 1 @ I8z
A.F.2) = FIH(F.0)) = ————

- - 9 (18)
Ho 1+ 2Alk|

where ¥ {-} is the 2D Fourier transform, k= (ky, ky) are
in-plane spatial frequencies, z is the out-of-plane posi-
tion at which the field is evaluated, and 2A = 24%/d is
the Pearl length [18] 35]. The real-space magnetic field
distribution near a Pearl vortex can be calculated by tak-
ing the inverse Fourier transform of Eq. H,(F,z) =
FUA.(K,2)).

To include vortices in a SuperScreen model, one
can simply input a 1ist of superscreen.Vortex ob-
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jects when calling superscreen.solve(). A Vortex
object specifies the x, y position for the vortex core, the
name of the superconducting layer in which the vortex
is pinned, and the number of flux quanta @, contained
in the vortex (which is 1 by default). The field distribu-
tions generated by SuperScreen in the presence of vor-
tices as described in Sections [2.3] and [3| agree to within
a few percent with the distributions obtained using this
Fourier transform method, as demonstrated in Figure 3]
Figure [3[e) shows the fluxoid for a circular region S
with radius r = 1 um enclosing a Pearl vortex trapped
in a film as a function of the film’s effective penetration
depth, A. When A = 0, the screening currents decay
very quickly away from the center of the vortex, so the
“supercurrent part” of the CD§ vanishes. With increas-
ing A, the “supercurrent part” accounts for an increasing
fraction of the total fluxoid. See Ref. [2]] for a method
to compute the self-energy and interaction energies of
vortices in thin films.

5.3. Calculating inductance

As shown in Ref. [2]], the mutual inductance M;; be-
tween holes i and j in a superconducting structure is
given by

f

Si

M= —, (19)

I
where <I>§_ is the fluxoid for a region S; containing the
hole i, and I ; is the current circulating around hole
j. The mutual inductance values for a set of holes
form a mutual inductance matrix. The diagonals of the
mutual inductance matrix are the hole self-inductances
(M;; = L;, the self-inductance of hole i), and the matrix
is symmetric (M;; = M};) due to the reciprocity theo-
rem. In this context, the flux and supercurrent parts of
the fluxoid correspond to the geometric and kinetic in-
ductance respectively [1]]. If the penetration depth of the
film containing hole i is A = 0, then no field penetrates
the film, the fluxoid d)f; _is equal to the flux through
hole i, and the total inductance is equal to the geometric
inductance. For a device with Nj holes, the N, X N,
mutual inductance matrix M can be computed using
the Device.mutual_inductance_matrix () method.
For example, the mutual inductance matrix for the de-
vice shown in Figure [2]is:

10.319 -1.536
M= (—1.527 7.130 ) PH.
where the matrix is indexed as
ellipse
rectangle/’
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Figure 3: Vortex field profiles calculated using SuperScreen agree with the analytical solution (Eq. to within a few percent. Here, we model
a vortex trapped at the center of a square superconducting film lying in the x — y plane with side length 20 um as a function of the film’s effective
penetration depth, A. (a) Cross section along the x-axis of the out-of-plane magnetic field uoH, from the vortex, evaluated at a vertical distance
z = 1 um above the film. The left inset shows the current density in the plane for film for A = 2 um, and the right inset shows the corresponding
magnetic field evaluated at z = 1um, with a dashed white line indicating the cross-section axis. (b) Percentage difference between the poH,
calculated with SuperScreen and the Fourier transform method for the x-axis cut shown in (a). (¢) Cross-section along the z-axis of uoH, directly
above the center of the vortex (logarithmic y axis scale). (d) Percentage difference between the o H; calculated with SuperScreen and the Fourier
transform method for the z-axis cut shown in (¢). In (a) and (c), the results from SuperScreen are shown as open circles and the results from
the Fourier transform method are shown as solid lines. (e) The fluxoid CI)'§ for a circular region in the film with radius » = 1 um centered on the
vortex core. As A increases, so to does the supercurrent contribution to the fluxoid. (f) Error in the total simulated fluxoid relative to ®g: error =

(@(A) — g)/®o.
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Figure 4: Self-inductance L of a circular ring with inner radius a and
outer radius b (see inset), as a function of the ratio a/b and the ring’s
effective penetration depth A. Filled circles indicate results from
SuperScreen, solid lines show numerical results from Figure 2 of
Ref. [T]l, blue squares and diamonds show numerical results from Fig-
ure 1 of Ref. [9], and the dashed line indicates the analytical solution,
L = 2upa, for A = 0 in the limit a/b — O[Z,[12]. The SuperScreen
results were generated using a mesh with approximately 4,000 ver-
tices and 8,000 triangles.
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and the “fractional asymmetry” of M is |[My -
M|/ min(| Mo ], IM1o]) = 0.6%.

The self-inductance L of a 2D circular ring with in-
ner radius a and outer radius b (see inset of Figure[d) has
been used as an informal benchmark for superconduct-
ing inductance calculations. For a ring with effective
penetration depth A = 0, it has been shown analytically
that L — 2uga in the limit a/b — 0 [[7, 12]. Kha-
paev calculated the inductance for A = 0 as a function
of a/b [9], and Brandt and Clem calculated the induc-
tance as a function of both A and a/b [I]. Figure [
shows a comparison between these previous numeri-
cal results and the results from SuperScreen. Note
that the models used by Brandt and Clem (solid lines)
and by the LCR2D software (blue diamonds) require
a circularly symmetric superconducting film, whereas
SuperScreen (filled circles) and 3D-MLSI [9, [10, [11]]
(blue squares) support arbitrary 2D geometry.
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Figure 5: Calculating SQUID susceptometer mutual inductance, defined as the fluxoid induced in the SQUID pickup loop per unit current flowing
in the field coil: Mpp_pc = tl)lf,L/IFc. Top row (a): Schematics of SuperScreen models for the field coil and pickup loop region of four sizes
of scanning SQUID susceptometer (generated using Device.draw()) with pickup loop inner radii ranging from 0.1 gm (“Small”) to 3 um (“X-
Large”). Middle row (b): Simulated magnetic field poH, evaluated at the plane of layer W1, which contains the pickup loop, normalized by the
current /rc flowing in the field coil (which is located in layer BE). Bottom row (c¢): Convergence of the four models, defined as the fractional
change in mutual inductance between subsequent iterations i. For all four models, the simulated mutual inductance, Mg, falls within the range of
mutual inductance values measured in real devices, Mexp, which were reported in Table 1 of Ref. [3]l. The mutual inductance values are shown in
units of ®g/A, where 1 ®g/A ~ 2.068 x 1073 pH. The meshes for the “Small,” “Medium,” and “Large” models consisted of approximately 7,000
vertices and 14,000 triangles, whereas the mesh for the “X-Large” model consisted of about 8,000 vertices and 15,000 triangles. The two smaller
models converge more quickly than the two larger models for reasons discussed in[Appendix D] Note that for the “X-Large” model, we set the
thicknesses of layers I1 and 12 both to 400 nm (instead of the nominal values of 150 nm and 130 nm respectively), to ensure convergence (see

[Appendix D]and Figure[D.3).

5.4. Application: scanning SQUID susceptometry netic field from the field coil, modifying the amount of
flux threading the pickup loop and reducing the mutual
inductance Mp_pc. The magnitude of this reduction in
Mpy _rc is a measure of the sample’s penetration depth
and therefore its superfluid density.

As an example application, we consider scanning
SQUID microscopy, a technique in which a supercon-
ducting sensor is used to study superconducting or mag-
netic samples on micron length scales [3]. In scanning
SQUID susceptometry, the magnetic susceptibility of a Figure [5(a) shows SuperScreen Device models of
sample is measured by bringing the sample close to a the field coil and pickup loop region of four types of
pair of superconducting loops [36} 37, 38]. The first real SQUID susceptometers, with geometry taken from
loop, called the “pickup loop” (PL) is attached to a the layout artwork (GDS) files. In addition to the field

SQUID circuit that sensitively measures the magnetic coil and pickup loop, there are superconducting shields
flux threading the loop. The second loop, called the that limit the amount of magnetic flux that can pene-
“field coil” (FC), carries a known current Irc and applies trate the leads connecting the loops to the rest of the
a known magnetic field to both the pickup loop and the circuit (the rest of the circuit is not modeled). There are
sample. A superconducting sample will screen the mag- three relevant layers of superconducting films: the base
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Figure 6: Simulation of a scanning SQUID susceptometry measurement.
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(a) Geometry of the Device representing the “sensor” SQUID. (b)

Geometry of the Device representing the “sample” SQUID. (c¢) Susceptibility of the sample SQUID measured at a temperature of 4.0 K. (d)
Simulated susceptibility, calculcated using the method described in Section@ The pickup loop of the sample, which in reality is connected to a
SQUID circuit that has a non-linear magnetic response, is modeled as a continuous superconducting loop in the zero-fluxoid (i.e. Meissner) state.
The susceptibility signal is defined as MpL.Fc — MpL-FC, no sample» Where Mpp_Fc, no sample & 163 @o/A (see Figure E[a), second column). The scale

bar in (a) applies to all four panels.

electrode (BE), which is furthest from the sample con-
tains the field coil; the first wiring layer (W1), which
contains the pickup loop and a shield covering the field
coil leads; and the second wiring layer (W2), which is
closest to the sample and contains a shield covering the
pickup loop leads. There are two insulating layers: 11,
which separates BE and W1, and 12, which separates
W1 and W2. For the superconducting layers, which are
made of Nb, we take the London penetration depth to be
A = 80nm, and the layer thicknesses correspond to the
real device design (see Table 1 of Ref. [4] and Figure 8
of Ref. [3]). It is important to note that because 1 < d
for all three layers, the susceptometers are not in the 2D
limit in which the model described in Section [2]is tech-
nically valid. Nevertheless, as shown in Figure 5] the
field coil - pickup loop mutual inductances, My, com-
puted by SuperScreen lie within the range of mutual
inductances measured in real devices, My, (taken from
Table 1 of Ref. [3l]), for all four sizes of susceptome-
ter, indicating that variation in current density along the
thickness of each film is not critical in determining the
mutual inductance in this case. Figure [5(c) shows the
convergence of Mpr _pc as a function of solver iteration

(see Section[2.4).

Having established the value of the field coil - pickup
loop mutual inductance in the absence of a sample,
Mp1FC, no samples W€ can simulate a scanning SQUID
susceptometry measurement by calculating Mpy _gc in
the presence of a superconducting sample as a function
of the relative position of the pickup loop and the sam-
ple, (x;,ys). For example, in Figure |§| we simulate a
SQUID susceptometry measurement of a “Large” sus-
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ceptometer (the sample) measured with a “Medium” su-
ceptometer (the sensor). Given a Device representing
the sensor and a Device representing the sample, this
calculation is performed in three steps:

1. Simulate the sensor with some known cur-
rent Igc circulating in the field coil to obtain
field_coil_solution and MpL kc, no sample-

2. For a given relative position (x4,Yy;) be-
tween the sensor and sample, simulate
the sample with an applied field given by
field_coil_solution.field_at_position()
to obtain sample_solution.

3. Simulate the sensor again, this
with the applied field given
sample_solution.field_at_position(),
evaluate the fluxoid (D}’:L for the hole representing
the sensor’s pickup loop, and calculate the mutual
inductance: Mpy_pc(x;,ys) = @

time
by

];L/IFC-

These three steps are repeated for every desired (x;, y;)
to build up a susceptometry image. The susceptibil-
ity signal is reported as Mprrc(Xs, Ys) = MPL-FC, no sample
where values that are more negative indicate a stronger
diamagnetic response from the sample. Note that in
principle it is possible to combine the sensor and sam-
ple into a single Device with 6 superconducting lay-
ers, however this is impractical because it would re-
quire generating a new mesh for each (x,,y;) and, as
discussed in detail in the problem scales
unfavorably with the number of layers in a device and
with the total lateral extent of a device.



6. Conclusion

The ability to model and visualize screening effects in
inhomogeneous 2D superconductors and devices con-
structed from superconducting thin films can help to
build intuition about these systems, aid in interpreta-
tion of measurement results, and enable optimization of
measurement and device design. SuperScreen is an
open-source, user-friendly, portable, and efficient tool
that solves this problem. Applications of the package
include calculating self- and mutual-inductance in pla-
nar and multi-planar superconducting circuits, and mod-
eling the magnetic interaction between inhomogeneous
superconducting samples and superconducting sensors
such as scanning SQUID susceptometers [3].

There are several important limitations to the applica-
bility of SuperScreen and the matrix inversion method
on which it is based [} [2]]. First, strictly speaking all
superconducting films should be in the 2D limit, with
London penetration depth A large compared to the film
thickness d, such that the current density is approxi-
mately constant along the thickness of the film. There
are cases where the model reproduces experimental re-
sults despite violation of this condition (e.g. the calcula-
tions and in Refs. [3l 4] and Section @, but care must
be taking in interpreting results in these cases. Second,
the model assumes that all superconducting films be-
have linearly and without dissipation, and that the ap-
plied magnetic field and current density are well be-
low the critical field and critical current density of all
films in a device. Third, SuperScreen does not sup-
port “terminal currents,” i.e. currents flowing in one
terminal of a device and out another terminal. This
means that inductance calculations are limited to struc-
tures with holes, in which all applied currents are cir-
culating currents associated with trapped flux. Terminal
currents can, however, be included in stream function-
based models by setting appropriate boundary condi-
tions [9, [10, (11} [14]. An extension to the model de-
scribed above that treats the magnetic response of a su-
perconducting ring interrupted by two Josephson junc-
tions (i.e. a SQUID) with trapped vortices and terminal
currents is given in Ref. [[13]. Finally, care should be
taken to ensure that for a given model the mesh is of
sufficient density that, to within the desired precision,
the results of simulations do not depend on mesh size
(see[Appendix D).

Potential improvements to SuperScreen include:
support for terminal currents as discussed above, auto-
mated determination of solution convergence for mod-
els with multiple layers, more sophisticated mesh gen-
eration (e.g. automated local mesh refinement based on
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device geometry or adaptive mesh refinement based on
solution convergence), integration with standard inte-
grated circuit layout software or file formats, and further
numerical optimization, including GPU acceleration.
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Appendix A. Existing tools

Here, we briefly describe existing software tools for
modeling the magnetic response of superconducting de-
vices, most of which are specifically designed for in-
ductance extraction for superconducting integrated cir-
cuits. FastHenry, a widely-used 3D (normal metal) in-
ductance extraction tool from MIT [39]], has been ex-
tended to support superconducting elements [40} [41]].
This modified version of FastHenry has been used for
inductance extraction in the commercial software In-
ductEx [42]. While FastHenry is open-source, it is writ-
ten in C and must be compiled for a specific computer
architecture and operating system. FastHenry executa-
bles compiled for several common operating systems
are available as part of the open-source XicTools super-
conducting integrated circuit design suite from White-
ley Research, Inc [40} 41]. A 2D London model based
on a scalar stream function, much like the model used
by SuperScreen [I} 2], forms the basis of the 3D-
MLSI software package [9} [10} [11], which is also writ-
ten in C and is not open-source. For a more thor-
ough overview and comparison of inductance extraction
tools, see Ref. [[16].

Appendix B. Laplace operator

The definition of the discrete Laplace operator V>
(also called the Laplace-Beltrami operator) deserves
special attention, as it reduces the problem of solving
a partial differential equation V2g(x,y) = f(x,y) to the
problem of solving a matrix equation V?g = f [43]. As
described in Ref. [44], the Laplace operator V2 for a



mesh is defined in terms of two matrices, the mass ma-
trix M and the weak Laplacian matrix L: V> = M~'L.

In a 2D mesh, the mass matrix M gives an effec-
tive area to each vertex in the mesh. Here we use a
“lumped” mass matrix, which is diagonal with elements
M;; = %Z[E,\,@ area(r), where N(i) is the set of trian-
gles ¢ adjacent to vertex i. The weak Laplacian matrix
L is defined in terms of a symmetric weight matrix W,
which assigns a weight to every edge in the mesh. W
may be defined in a number of ways:

1. Uniform weighting: In this case, W is simply the
adjacency matrix for the mesh vertices:

0 ifi=j
Wii=141

0 otherwise

if i is adjacent to j

2. Inverse-Euclidean weighting:  Each edge is
7 7 |71’

weighted by the inverse of its length: |7 — 7;
where 7; is the position of vertex i.

0 ifi=j
|7 =7l

0 otherwise

Wi = if i is adjacent to j

3. Half-cotangent weighting: Each edge is weighted
by the half the sum of the cotangents of the two
angles opposite to it.

0 ifi=j
Wij=143 (cota/,-j + cotﬁ,-j) if i is adjacent to j
0 otherwise
By default, SuperScreen uses half-cotangent

weighting. The Laplacian matrix L is defined in terms
of the weight matrix W: L;; = W;; — 6;; 2., Wj,. Finally,
the Laplace operator is given by V2 = M~'L.

Appendix C. Spatially inhomogeneous A

As mentioned in Section [4.2] the effective penetra-
tion depth A of each layer can be specified as a numeric
constant or as a superscreen.Parameter that com-
putes A(x, ), the effective penetration depth as a func-
tion of position. As a (somewhat contrived) example,
Code Block [3] demonstrates how to modify the model
of a ring with a slit from Code Block [I] and Figure
such that the ring’s penetration depth A(x,y) increases
linearly as a function of the angle between the vector
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7 = (x,y) and the —y axis (along which the slit lies).
The resulting current and field distributions are shown
in Figure[C.7} Note that A(x, y) must vary slowly on the
scale of the spacing between mesh vertices in order for
results to be reliable. For example, the simulated super-
current density near a point-like defect (i.e small com-
pared to the triangles in the mesh) associated with a pen-
etration depth Agefect in an otherwise uniform film with
penetration depth Ag << Agetect Will depend strongly on
the specifics of the mesh near the defect. One can avoid
this problem by increasing the density of the mesh in re-
gions of fast-varying A by adding one or more “abstract
regions” to the Device as described in Section 4.2

Appendix D. Numerical considerations

While the numerical method described in Section [3]
is generally quite robust, it can break down for certain
extreme geometries. The stream function g(x, y) repre-
sents the local magnetization or density of infinitesimal
current loops. The z-component of the magnetic field at
position 7 = (x,y, z) from a film F with stream function
g lying in a plane parallel to the x — y plane at vertical
position z’ is given by (see Equations {] and [3)):

H(7) = sz(?, 7)g(x',y") d*r’, where
F

b 2=V -p?
O T = = or + 7P

and p = /(x-x)?+(y—y)%. Eq. is exact for a
continuous stream function g. However, the discretized
version of Eq. [D.1] in which the double integral over
the film area F is replaced by a sum over triangular
mesh elements, is only valid if 6z = z — Z/, the ver-
tical distance between the film and the point at which
the field is being evaluated, is large compared to the
typical distance 6r between vertices in the mesh repre-
senting the film. For z — 7/ = 6z < 6r, the field H,(7)
resembles that of a discrete set of isolated dipoles lo-
cated at the mesh vertex positions, rather than that of a
continuous sheet of current (see Figure [D.8(b)). This
can lead to unphysical results when evaluating the field
very close to the surface of a film (for example using
Solution.field_at_position()), or when solving
models involving multi-layer structures where the ver-
tical spacing between layers is much smaller than the
lateral extent of the films, in which case the iterative
calculation (Section [2.4) may not converge.

The limitation described above can be seen in the
model of the largest SQUID susceptometer described
in Section [5.4] which has a field coil inner radius of

(D.1)




def linear_vs_angle(

x: np.ndarray, y: np.ndarray, *, min_val: float, max_val: float
) -> np.ndarray:

# Rotate the input coordinates so that theta = 0

# corresponds to the slit position (along the -y azis).

X, y = sc.geometry.rotate(

np.stack(np.atleast_1d(x, y), axis=1), np.degrees(-np.pi / 2)

).T

# Calculate the angular position of each mesh vertex.

angles = np.arctan2(y, x) + np.pi # range: [0, 2 * pi]

# Set Lambda to increase linearly from min_val to maz_val

# as a function of angular position.

Lambdas = angles / (2 * np.pi) * (max_val- min_val) + min_val

return Lambdas

# Define the Parameter and assign it as the Lambda of the superconducting layer.
Lambda = sc.Parameter(linear_vs_angle, min_val=0.1, max_val=1.0)
device.layers["base"] .Lambda = Lambda

# Everything below is identical to Code Block 1:

# Calculate the device's response to a untform applied field.

applied_field = sc.sources.ConstantField(10)

solution = sc.solve(device, applied_field=applied_field, field_units="uT")[-1]
# Visualize the solution.

# Plot the current density evaluated at each layer in the Device.
solution.plot_currents()

# Plot the magnetic field evaluated at each layer in the Device.
solution.plot_fields()

# Plot the field evaluated at any points in space.
solution.plot_field_at_positions(device.points, zs=0.5)

J

Code Block 3: Simulating an inhomogeneous superconducting device. Here we modify the superconducting ring with a slit from Code Blockl
and Flguremto have an effective penetration depth A(x,y), which increases linearly from 0.1 um to 1 um as a function of the angle between the
vector 7 = (x,y) and the —y axis. See Flgure-for the resulting current and field distributions.

AX, y) Current density, / Uon (z=0um) uon(z 0.5 um)

1. 30 11
30
) % 10
20%.2 20': 0
— N
; = 15T
10 0 8
2 um 5 7
— .

Figure C.7: The output of Code Block Meissner screening of a uniform applied field of 10 4T by a ring with a slit in a superconducting film with
inhomogeneous effective penetration depth A(x,y). (a) The inhomogeneous effective penetration depth A(x, y), with the ring’s outline overlaid in
orange. (b) The current density J'in the ring, generated with Solution.plot_currents(). (c¢) The z-component of the magnetic field uoH,
evaluated at the plane of the ring, generated with Solution.plot_fields(). (d) The z-component of the magnetic field evaluated z = 0.5 um
above the ring (generated using Solution.plot_field_at_positions()).

IJUHZ [IJT]

6 um and a total modeled area of roughly 600 um?. As and pickup loop when 8z < ér because, in that case, the
shown in Figure [D.8] SuperScreen significantly over- discretized version of Eq. [D.I] does not correctly com-
estimates the mutual inductance between the field coil pute the magnetic field due the stream functions of the
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Figure D.8: SuperScreen results may be unreliable for multi-layer
models where the spacing between layers is smaller than the typical
vertex-to-vertex distance, dr. (a) Field coil - pickup loop mutual in-
ductance for the largest SQUID suscepometer modeled in Section@
as a function of the minimum vertical spacing between layers, 6z. The
simulated mutual inductance is shown with blue circles, and a his-
togram of the mesh vertex-to-vertex distances ¢r is shown in orange
(arb. y axis units). When 6z < 6r, the model significantly overesti-
mates the mutual inductance. (b) and (¢): Out-of-plane magnetic field
HoH; evaluated at the plane of the pickup loop (W1 layer) for (b) the
nominal layer spacing with 6z < 62 (indicated with a black X in (a))
and (c) 6z > 6r (indicated with a black + in (a)). For 6r < 6§z, the
magnet field calculated using Eq. mresembles that of a discrete set
of isolated dipoles rather than a continuous sheet of current. Note that
(b) and (c¢) share the same color scale, which is saturated in (b).

superconducting layers. For the sake of computing mu-
tual inductance as in Section [5.4] it is physically rea-
sonable to artificially increase the vertical spacing be-
tween layers such that 6z > or because we expect the
magnetic field at the pickup loop, a vertical distance 0z
away from the center of the field coil, to fall off roughly

-3/2

as (512 + RIZ:C) , where Rec ~ 6um > 6z, How-
ever, in situations where 6z is a critical dimension (in
the sense that increasing it would invalidate the physical
model), one’s only option is to decrease dr by increasing
the density of the mesh.

For this reason, mutli-layer structures with closely-
spaced layers are the most challenging class of problem
to solve. The iterative method used described in Sec-
tion 2.4] is memory-intensive for models with a large
mesh (many vertices p and triangles ¢, with typically
t = 2p) and/or many layers L, because the average dis-
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Figure D.9: Scaling of kernel matrix size p? with mesh vertex spac-
ing or for a mesh with p vertices and ¢ triangles for the device shown
in Figure m (a) Typically the number of triangle ¢ in the mesh
is close to twice the number of vertices p. (b) Normalized his-
tograms of vertex distances 6r. The histogram bins are given by
numpy . linspace(0.15, 0.65, 201). (c) The mean vertex-to-
vertex distance (dr) scales roughly as p Y2, (d). The size of each
p % p kernel matrix (of which where are (’2‘) for a device with L layers)

scales roughly as (6r)~*. Note that in each row the colors correspond
to the number of vertices p in the mesh, as indicated in (a), with mesh
size increasing from dark to light colors.

tance between vertices decreases slowly with increasing
number of vertices, (5r) ~ p~'/2, whereas the size of
the (dense floating-point) p X p matrix that represents
the dipole kernel Q.(7,7’) in Eq. increases as p°.
The end result is that the memory footprint of kernel
matrix scales roughly as (6r)™*, so decreasing the mean
distance between vertices by a factor of 2 increases the
memory required by a factor of roughly 16 (see Fig-

ure[D.9).

Furthermore, for a model with L layers there are
(é) = L(L — 1)/2 such kernel matrices needed for
each iteration of the calculation outlined in Sec-
tion In superscreen.solve(), these (g) ma-
trices are computed during the first iteration and then
cached in memory for use in subsequent iterations.



One can force the kernel matrices to be cached to
disk if they would otherwise occupy too large a
fraction of the available system memory using the
cache_kernel_memory_cutoff argument, but this
comes at a significant performance cost. In many
cases, one can use lower-precision floating point num-
bers (e.g. using 32-bit single-precision floats instead
of the default 64-bit double-precision floats by set-
ting device.solve_dtype = "float32") to reduce
memory requirements without significantly impacting
solution accuracy.

Appendix E. Parallel processing

As discussed above, one can solve many models
involving the same Device in parallel across multiple

CPUs using the superscreen.solve_many()
function. There are two methods available
for process-based parallelism in SuperScreen:

parallel_method="multiprocessing", which uses
the multiprocessing package from the Python stan-
dard library, and parallel_method="ray", which
uses the third-party distributed computing framework
Rayﬂ [32} 33]. Both approaches utilize shared memory
so that only a single copy is made of the large arrays
required to solve a Device (the mesh, kernel matrix
Q, Laplace operator V2, etc.), rather than num_cpus
copies, where num_cpus is the number of worker
processes.

There are three ways to invoke Ray from
SuperScreen when running on a single machine,
e.g. a multi-core CPU. The first is to simply pass
the keyword argument parallel_method="ray"
when calling solve_many() (see Code Block [M).
This will automatically create a Ray cluster using (by
default) all available physical CPU cores, solve the
models in parallel, and then shut down the cluster
before returning. The second method is to manually
create a Ray cluster using the Ray Python applica-
tion programming interface (API) prior to calling
solve_many(..., parallel_method="ray"),
as demonstrated in Code Block The third
method is to start a Ray cluster using the com-
mand line interface (CLI), then connect to the
existing cluster using the Python API prior to calling
solve_many (..., parallel_method="ray"), as
demonstrated in Code Block [6l One of the latter two

3Note that at the time of writing, Ray support for Windows is ex-
perimental and under active development.
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parallel_method = "multiprocessing"
# parallel_method = "ray"

# Spectify number of worker processes:

num_cpus = 4

# Or automatically use all

# avatlable physical CPUs:

# num_cpus = None

_ = superscreen.solve_many (
device=device,
parallel_method=parallel_method,
num_cpus=num_cpus,
**solve_kwargs,

Code Block 4: Utilizing process-based parallelism in SuperScreen
given a superscreen.Device and solver options stored in a dictio-
nary solve_kwargs.

methods should be used for finer control over the Ray
cluster. For example, if calling solve_many () many
times in a single session, one can use these methods
to avoid the overhead of starting and stopping a Ray
cluster multiple times.

Running superscreen.solve_many() in parallel
across multiple nodes in a computing cluster is a sim-
ple extension to the method outlined in Code Block [6]
although the specifics depend upon the infrastructure
of the cluster, e.g. job management software. See the
“Multi-Node Ray” section of the Ray documentation for
more details [33]].
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