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Abstract—Demand-side operations incentivize utility cus-
tomers to take part in various grid services. A demand response
enabled load (DREL) is a flexible grid asset that schedules
electricity consumption in response to a time-of-use (TOU) energy
price. Consequently, its energy profile differs from that of a
conventional load that is insensitive to price. This difference
may cause new challenges for distribution system state estimation
(DSSE). 1t is well known that DSSE often needs to use pseudo-
measurements based on historic load profiles to increase system
observability. However, historic profiles of conventional loads are
not representative of DREL behaviors. The inaccuracy impacts
DSSE results and other DSSE-dependent operations. In this
paper, we propose an online pseudo-measurement generation
approach for DSSE with DRELs. We formulate an optimization
model to represent DRELS self-adjusting actions. Sampling-based
stochastic optimization techniques are proposed to account for
uncertainties in DRELs. A set of representative DREL behavior
data corresponding to the samples are used to characterize DREL
pseudo-measurements. Case studies with modified IEEE 123-bus
test system verify the validity of the proposed work.

I. INTRODUCTION

As distributed energy resources (DERs) and advanced load
control technologies continue to grow rapidly, recent years
have witnessed an emerging integration of loads participating
in demand response programs. A demand response enabled
load (DREL) adjusts its power consumption according to a
time-of-use (TOU) energy price to save revenues by following
the signal. As a result, its power output pattern differs from
a conventional load that is normally nonresponsive to TOU
prices. This poses new challenges for efficiently monitoring
and controlling of power distribution assets.

Establishing network visibility is an important first task for
a distribution management system (DMS). Usually, a state
estimator (SE) accomplishes this task [1]. The SE assists in
system supervising and enables many other functions, such as
protection, volt-var control, and utility operational planning.
The effectiveness of many such DMS functions hinges on the
accuracy of the SE [2].

Classic SE is first introduced in the seminal work of
Schweppe et al. for transmission systems [3|]. It is usually
defined as a data-processing algorithm that converts available
system information into estimations about magnitude and
phase angles of AC bus voltage [4]-[12]. The problem of
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finding an SE is usually approached through statistical estima-
tion techniques, like weighted least squares (WLS) [3]], least
absolute value (LAV) [[13]], and least median square (LMS)
methods [[14f]. The developed SEs have delivered consistent
performances, especially when sufficient numbers of high-
quality measurements are available.

Recently, distribution system state estimator (DSSE) has
been studied [2f], [11]]. Existing work usually takes into account
the special features of a distribution system, including high
r/x ratios, radial or weakly-meshed topology, unbalanced and
variable loads, among others [4], [15]-[19]. In [4], a branch-
current state estimation method is proposed that makes use
of the dominantly radial topology in a distribution system to
enhance computational efficiency. In [[16]], non-Gaussian dis-
tributed loads are taken into consideration under a probabilistic
formulation. In [17]], time-varying loads are considered in
DSSE when smart meter data of each such load are available.
In [19]], it is shown that actual load profiles may deviate
from the standard load profiles due to the integration of
more flexible loads, and probability distributions of individual
components are found through statistical study to obtain more
realistic power profiles.

One of the most salient challenges for state estimation in
a distribution context is that a large portion of a distribution
system remains unmonitored; or even if monitored, data are
not transmitted for real-time monitoring and control due to
communication constraints such as high bandwidth require-
ments and privacy concerns [20]. Although researchers have
proposed various methods for placing limited meters in a
distribution system [21]], [22], the real measurements alone
in a real-world distribution system are usually still inadequate
to implement DSSE [?2].

Owing to this insufficient data redundancy, pseudo-
measurements are used to augment the set of available infor-
mation. A pseudo-measurement is an estimate of the missing
real-time information; it is usually obtained based on histor-
ical data or objective predictions [23[]. In general, pseudo-
measurements are usually generated using one of two main
approaches: 1) finding load patterns via analyzing historic
data [3]; and 2) using the correlations between the miss-
ing data and available real-time measurements [1]. The first
approach usually uses empirical probability distributions to
find the expected consumption and its variance, based on the
assumption that a load follows a consistent pattern. To this end,
a variety of probability distribution functions have been devel-
oped to model the loads, including Gaussian distribution [24],
Gaussian mixture model [25]], Weibull distribution [26]], log-
normal distribution [16]], among others. The second approach



commonly needs to recover the correlations between the
missing data and the available measurements. The correlation
is usually implicit and highly complicated; hence, neural-
network-based models have been used to approximate the
correlation function [1]]. Researchers have investigated neural
networks with different structures, such as probabilistic neural
network [27]], parallel distributed processing network [28]],
nonlinear auto regressive exogenous model [29], and others.
Regardless of the detailed structure, one still needs historic
data and real measurements across the system to find model
parameters.

Despite the rich literature, there does not seem to be
adequate study on DSSE with the integration of DRELSs.
In addition, existing tools manifest some limitations when
considerable DRELs are present. First, most existing historic
data are about conventional loads, whereas a DREL normally
does not follow the diurnal patterns of a conventional demand.
In fact, the consumption behavior of a DREL could be entirely
opposite to that of a conventional load. For example, when a
DREL participates in peak shaving or valley filling services, it
needs to refrain from energy consumption during peak hours of
the conventional demands and postpone the usage until valley
hours. Second, unlike conventional loads DREL historic data
have limited implications for future power outputs. Data about
conventional household demands with routine daily living
habits can have consistent patterns. However, there is not
a consistent pattern for DRELs, because they follow ever-
changing energy prices, which means that its historic data are
less correlated to future behaviors. Moreover, there are huge
variations and uncertainties in the power output of a DREL: 1)
the TOU signal has substantial spatial and temporal variability;
and 2) a DREL normally installs various DERs and variable
loads that have strong dynamics and variability. With these
difficulties, directly applying conventional methods will lead
to estimates with only limited accuracy.

This paper develops a DSSE framework with a new pseudo-
measurement characterization for DRELs. We develop a dy-
namical model to describe the responsive capability of a
DREL, and formulate an optimization problem to approxi-
mate a DREL’s self-adjusting behavior over available DREL
capacity. The problem is structured such that its solution is
dependent on a TOU price while satisfying all operational
constraints. To account for uncertainties and dynamics of
DREL loads, a comprehensive dynamical model is developed
to describe the behaviors of a set of loads and resources, in-
cluding heating, ventilation, and air conditioning (HVAC), en-
ergy storage systems (ESSs), plug-in electric vehicles (PEVs),
and renewable resources. The model is incorporated in the
optimization problem, so that the solution respects opera-
tional constraints and user preferences throughout the planning
horizon. The parameters of the problem represent the DREL
specifics, like the number of PEVs on-site, HVAC initial
temperature, and renewable generation. These parameters are
considered unknown, representing the uncertainty of DRELSs.
We apply stochastic optimization techniques to sample the
parameters. Solving the optimization problem in the sampled
scenarios yields a dataset that is representative of DREL
behaviors. Standard load modeling approaches can then be

applied to find pseudo-measurements. The contributions of the
paper are summarized as follows:

o We have yet to find anyone who has studied the DSSE
problem with DRELs; furthermore, we propose a novel
pseudo-measurement characterization approach to solve
the problem.

e We propose a new DREL modeling approach for DSSE
by formulating it as a stochastic optimization problem
that yields a set of representative DREL profile data.

o The proposed method is amenable to real-world applica-
tion. We show how publicly available real-world data can
be processed to obtain the required information.

o We show the sensitivity of DSSE accuracy with respect
to DREL penetration levels and modeling errors through
practical simulation case studies.

The paper is organized as follows: Section [lI| discusses the
state estimation problem and a motivating example; Section
shows the main technical results; Section uses simulation
case studies to demonstrate the value of the proposed work;
and Section [V| concludes the paper.

II. PROBLEM FORMULATION
A. State Estimation Problem

It is well known that a DSSE solves the following weighted
least square (WLS) problem [25]:

minJ = (z — h(x))" W (z — h(x), (1)

where W is a weight matrix, z is a measurement vector, X is
the system state to be found, and these two are coupled by,
z = h(x) + e, where e is an error term. The DSSE problem
is to find a x that minimizes J.

WLS () is usually a non-convex problem in power system
applications due to the nonlinearity in the function h(x).
Different methods exist to solve for a sub-optimum solution
to the problem, like convex relaxation and heuristic methods.
Below, we show the commonly used Gauss-Newton iteration
method. This method generates a sequence of state estimates
{x}, and the limit point of the sequence is used as the
estimation result. The k-th element of the sequence is given
as follows:

X1 = X+ G() TTHT (%)W (2 —h(%), @)

where H(X},) is the Jacobian matrix of function h (&) evaluated
at x;,, and G()A(k) =HT ()A(k)WH()A{k)
B. Pseudo-Measurement

Notice that in WLS , measurement z needs to be deter-
mined before the problem can be solved. If an advanced me-
tering infrastructure exists at every node, the real measurement
can be directly used to find z. However, a distribution system
is often underdetermined, which means that the dimension
of z composed only by real measurements is usually much
smaller than that of x. In such a case, one can use pseudo-
measurements to increase the dimension of z and ensure the
observability of the system [[11]].

Pseudo-measurements are estimates about unmeasured pa-
rameters. They are usually generated based on previous
knowledge about the unmeasured parameters. For conventional
state estimation problems, such parameters are obtained from



abundant historic data. Different methods, such as Gaus-
sian mixture models and artificial neural network methods,
have been employed to extract patterns to generate pseudo-
measurements [[1]], [20], [25].

C. Motivating Example

The advancements in load control technology and the
development of demand response programs have enabled loads
to provide grid services. The power consumption of a demand
response enabled load (DREL) is dependent on time-of-use
(TOU) rates, which are designed to reflect the changing needs
of a power system. As a result, the power profile of a DREL
can be highly variable and fundamentally different from that
of a conventional load. This is illustrated in Fig. I} where
we show the power profiles of a conventional load and a
DREL composed of base loads, energy storage systems, plug-
in electric vehicles, among others. The compositions and
statistical features of the loads are detailed in Section the
dynamics of the loads are described by the models shown
in Section The figure shows that the DREL profile is
significantly different from the conventional profile. Moreover,
the DREL power has more variability as the energy price
changes rapidly. For example, the DREL creates a steep valley
at around hour 11 because the energy price rises. In the
following hours, a rebound consumption is observed because
price falls.

Conventional  methods usually generate  pseudo-
measurements that share similar patterns. As Fig. []]
demonstrates the high variability of DRELs and their
difference against a conventional load, it is required that we
develop new pseudo-measurement characterization of DRELSs.

III. DREL PSEUDO-MEASUREMENT

In this section, we develop a DREL pseudo-measurement
characterization approach. As shown in Fig. [2| we develop an
optimization model to provide representative DREL behavior
data to generate pseudo-measurements. We first develop a
dynamical model to quantify the flexibility and capability of
a DREL to participate in grid services. Then we use an opti-
mization model to mimic the DREL decision-making process
subject to quantified DREL capability and various operational
constraints. Notice that in the following, the output of the
proposed DREL model is a time-series energy consumption
profile; and the pseudo-measurements for power injection are
approximated by dividing the energy pseudo-measurements by
the length of the time step.

Notice that we assume that each DREL is a price-taker that
manages its local resources according to energy prices sent
from an upstream third-party demand response program. The
distribution system operator does not directly participate in
either managing the program or local DREL resources. Hence,
it is not modeled in this work.

A. Dynamical Model

We develop a discrete-time linear model to characterize
a DREL penetrated distribution system node. Using this,
we seek to find the collective nodal power profile at the
point of interconnection (POI), considering various DREL
compositions. The model can be used to represent general
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Fig. 1: Conventional and DREL power profiles

DRELSs or conventional loads. We exemplify in this subsection
how it characterizes multiple representative distributed energy
resources (DERs). Specifically, we assume that there are n®
energy storage systems (ESSs), nf heating ventilation and
air-conditioning (HVAC) systems, n" plug-in electric vehicles
(PEVs), and a composite base load with an aggregated photo-
voltaic (PV) generation. The ESSs, HVACs, and PEVs are con-
sidered to be controllable components. It is worth mentioning
that although base loads and PV generation cannot be directly
controlled, they can influence the system’s responsiveness to
TOU rates.

Without loss of generality, we show the model for an
arbitrary node indexed by :. We first discuss individual DER
models, then show the aggregate model of a DREL node.

1) ESS: We model the charging/discharging behavior of
an ESS using a linear discrete time model. Let ¢ be the ¢-
th discrete time interval. Let the state of charge (SOC) of the
j-th ESS at the end of ¢ be denoted by SOC; ;(t) € [0,1],
we represent the battery charging/discharging commands as
uf;(t) = [wW¥(t), ul4(t)]T € [0,1]* and the superscript
represents that the two variables are of the same domain;
the energy output bound is EE]-, the upper bound for SOC
change is ASOC, ;, which is defined as EP; divided by the
overall battery capacity; and let the charging and discharging
efficiency be 77, € (0,1) and Thd, ; € (0,1). Furthermore, let
EEj(t) represent the energy consumption of the ESS during
time interval ¢. With the above definition, the battery model
is given as follows:

{ SOC@j(t—i—l):SOCm (t)+AS()_C'i7j(n§7ju23 (t) - %Bd (f,))

_ nﬁj bd
E} () = EY; (wi5(8) — (1))

3)
Notice that the efficiency terms make the model more prone
to practical study: charging and discharging commands cannot
be operated without any losses in real-world applications. In
terms of charging, (1 —7¢ ;) EP ;uf$ amount of energy is lost
owing to various electrical and thermal losses. The base of the
SOC is the rated capacity in the unit of kWh. We only need
to use it to determine ASOCM and the initial SOC, then
the evolution of the system dynamics can be fully described
by the ESS model. It is also worth mentioning that in the
model the charging and discharging commands are continuous
variables, opposed to some existing work [30] that treats them
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Fig. 2: Proposed DSSE with pseudo-measurement characterization for DRELSs

as binary variables. This is because we suppose proper energy
management system is installed with the ESS increase its
flexibility in energy outputs.

2) HVAC: HVAC represents an important type of flexible
loads in demand responses. A typical HVAC system usually
involves air handling unit, chillers, and variable air volume
boxes [31]], so that it has both cooling and heating functions. In
this paper, we develop a model that is amenable to direct load
control optimization problem formulations, adapted from [31]].

We show the model for the j-th HVAC on the node. It is an
equivalent thermal circuit model similar to an electrical RLC
circuit, where temperature is treated similarly to voltage. The
dynamics of indoor temperature are modeled using a capacitor-
like heat bank supplied by a heat source modeled as a voltage
source. The temperature of the heat source is influenced by
both the ambient environment and the HVAC. Let T ;(t) be
the indoor temperature, ﬂ/fj(t) represent the ambient temper-
ature, and TlHj (t) represent the temperature adjustment (i.e.,
cooling and heating) effect of an HVAC. Furthermore, let
ufl i (t) = [u(t),w}(t)]" € [0,1]* represents the HVAC
control such that uj"i(t) € [0,1] (resp., uw'(t) € [0,1]) is
heating (resp., cooling) control demand: it works as a slider
to determine the heating (resp., cooling) intensity. In addition,
Eﬁ"j(t) represents the energy consumption of the HVAC at
time t. The thermal dynamics of an HVAC with respect to
power consumption are given as follows:

Tl (t+1)=aT} (t)+(1 - a) (TA(t)+TH(¢))
TH(t) = RAE! (ui (1) — wis(1)))

Ej;(t) = (1—a)AEM (uglj‘-(t) + uﬁfg(t))

“4)

where coefficient @ = e~ 2t/ CR R and C are the thermal
resistance and capacitance, At is the duration of one time step,
and AEY is a constant representing energy transfer rate. This
model describes the influences of ambient temperature and an
HVAC system on the indoor temperature. As indicated by the
model, without any control the indoor temperature eventually
converges to the outdoor temperature, TZAJ Unlike the model
developed in [31]], we allow uf‘j (t) to act as a continuous
variable and separate the cooling and heating control. Hence,
our model can emulate different temperature settings rather
than on/off operations.

3) PEV: Charging and discharging behaviors of a PEV
can be controlled at a customer site. A PEV becomes con-
trollable when it is being plugged in and is incompletely
charged. Meanwhile, it is effectively uncontrollable when it
is unplugged or is fully charged. PEV control needs to ensure

the required energy and charging deadline are respected. This
behavior can be described using a two-dimensional linear
model.

We consider the j-th PEV on-site. The state variable of
the model is [RC; ;(t), RW; ;(t)]", where RC; ;(t) denotes
the minimum remaining time to finish the charging task, and
RW; ;(t) represents the maximum remaining time to postpone
the charging. The control variable represents the command to
charge or wait, uy;(t) = [uf§(t), uly (t)]T € [0,1]%, where
ufS(t) is to charge, ufy (¢) is to wait, and [0, 1]* represents
that both elements have the same domain of [0, 1]. Notice that
uf?(t) + ufgv(t) = 1, since a vehicle cannot charge and stay
idled at the same time. For example, if u;$(t) = 1 the PEV
charges for the entire time step. Then although the remaining
time necessary for charging is decreased by one, the remaining
waiting time is unchanged. With the above-defined variables
and parameters, the state dynamics of a PEV is given by:

RC;;j(t+1) = RC; ;(t) — ufS(t)
RWi,j(t + 1) = RWz’,j(t) —u W(t)

Y vV, RC i ©)
Em»(t) = Ei,jui,j (t)

where the output variable E;’ ; Trepresents the energy con-
sumption of the PEV at time ¢, EZV ; is the maximum energy
consumption during one time step.

4) Overall Model: The base load and PV generation are
considered uncontrollable. We denote their composite energy
output as EF(t) and EFY(t) respectively. Notice that mod-
els (3), @), and () are all discrete-time linear models sharing
a similar structure. For example, we normalize the control
input of each DREL component to its potentially diverse bases,
hence, each control variable is defined on [0, 1]. Owing to this
trait, their performance can be represented by a more compact
one as follows:

{ l‘i(t + 1) = Ail‘i(t) + Bgiui(t) + Bliwi(t), )

yi(t) = Dg,u;i(t) + D w;(t).

Note that the base load and PV generation are included in
system disturbance variable w;; the output y; € R is a scalar
representing the overall energy consumption at the POI of node
i. The coefficient matrices can be obtained easily from the
individual models. The definition of the states and parameters
are available in Appendix [A] It is worth mentioning that
model (6) can be easily generalized to describe a node when it
has none or only a fraction of the above described components.



B. Optimization Model

System (6) models the DREL energy output and its time
evolution, hence it characterizes the capability of a DREL
to participate in grid services. Next we model how a DREL
makes use of the capability to maximize self-profits. The key
task lies in simulating DREL responsiveness to TOU prices.
The optimal decision making processes can be approximated
by an optimization problem.

Without loss of generality, we show the optimization prob-
lem for node 7 at time step zero, and let the optimization
horizon be N and let 7 = {0,--- , N — 1}. The optimization
problem is as follows:

N—-1
min c(t)y;(t), subj. to (7a)
oy, ; (t)yi(t), subj

uP (1) €0, 12", 2P (1) €al, 75],t € T, aP(N) = 2PN, (7d)
W) e 0,12, M) e 28,79, teT, (7e)
W) e0, 1%, wReH+dNe) =1, teT, (D
uRC(t) < RCy(t), uXC(t) > 1 — RW;(t), t€T, (7g)
ug§(t) =0,

¥t > min{N, RC, ;(0) + RW, ;(0)},j =1,--- ,n", (7h)
yilt) € [yi(t), 5a(t)], teT. (7h)

Parameter c(t) represents TOU price at time ¢, hence the cost
function aims at minimizing energy cost. Constraints
and are the system model and the initial condition,
constraint (/1) ensures the POI power output does not exceed
operational limitations, and constraints (7d)—(7h) represent the
individual operational constraints for DERs and ensure user
preferences are respected throughout the optimization horizon.

1) ESS constraint (Id): Constraint (7d) includes the ESS
energy output and SOC constraints. They are usually obtained
from operational and physical constraints. In addition, it
specifies a prescribed level for the end SOC. For example,
the SOC level can be regulated to the middle of the operating
range to ensure enough capacity to charge and discharge [32].

2) HVAC constraint (Te)): Constraint include the limits
for the HVAC energy consumption and the room temperature.

3) PEV constraints ({Tf)—(7h): Constraint is the phys-
ical energy output bounds and ensures PEVs cannot charge
and wait at the same time. Constraints and ensure
that the desired energy is charged before the deadline.

The parameters of the problem include x?, w;, and ¢, in
addition to dynamical system parameters. It can be seen that
problem (7)) is a linear programming problem. If all the system
parameters are known, computationally efficient algorithms
exist to find the optimal solution. The solution can mimic how
a DREL responds to TOU prices.

C. Dataset for Pseudo-Measurement Generation

Notice that the exact values of some of the aforementioned
optimization or dynamical model parameters may be unknown
in practice. Similar issues exist in stochastic optimization
problems where certain variables or parameters are uncertain

as well. We apply a scenario-based method to tackle the issue.
We assume that a system operator knows the TOU price and
has a rough idea of the variation range of the parameters. For
example, there are effective data-driven system identification
tools to disaggregate nodal power output data into individual
system parameters [33]].

For simplicity, problem is represented in the following
compact form:

mine'y; subj. to: Ay; < b, ®)
where A and b are composite parameters for this problem; with
a slight abuse of notation, let y; = [y;(0),--- ,4:;(N —1)]T be
the composite POI output. Suppose A and b are unknown but
follow given probability distributions. For example, they may

follow uniform distributions with known bounds.

Applying Monte Carlo sampling method, we can obtain

N3 realizations of the unknown parameters. Each realization
represents a potential operation scenario with different DREL
specifications. Substituting the parameters into (§), the prob-
lem becomes well-defined. Therefore, we can obtain the POI
output profile §¥ for the select k-th scenario. For each time
step t, we can obtain a dataset of DREL profiles, given as
Vilet) = {9} (@), 3 ().
Remark 1 (Stopping Criteria). We use a stopping criteria based
on coefficient of variation (CV) to determine when to terminate
the Monte Carlo simulations. The stopping criteria is set to
be 1 x 10~* in the simulation case study. Recall that for
each DREL penetrated bus, we seek to sample the variance
of the consumption profile, in order to find the representative
distribution of the responses that the DRELs may have with
regard to the TOU energy prices. Taking this into account, we
terminate the simulation when the change of sample variance
is sufficiently small. In Monte Carlo simulations, CV is often
used to indicate the dispersion of samplings; in our case study,
we suppose that when CV converges (the change of CV is
smaller than a threshold) then the change of sample variance
is sufficiently small [34]-[36]. In many power engineering
research where Monte Carlo simulation methods are applied,
like reliability study, researchers often use the convergence of
CV as a stopping criteria as well [35]]

Remark 2 (Computational Efficiency). The computational effi-
ciency of our work is reasonable. There are two main concerns
on this regard: one is whether we need to conduct a large num-
ber of the Monte Carlo simulations; and the other is whether
optimization problem (8) can be solved efficiently. From our
numerical test, the average number of Monte Carlo simulations
is around 700 times using the aforementioned stopping criteria
when the number of unknown parameters varies from 22 to
52; and using CVX [37] the average computation time for the
problem is 0.1 seconds on a laptop with Intel Core 15-1.7GHz
8-core CPU and 16-GB of RAM. Furthermore, as DRELs
mostly operate without explicit coordination with the others,
each DREL’s decision making process can be formulated as
an independent problem. This further allows us to reduce the
computational burden as parallel computing method can be
used to expedite the sampling.



D. Statistical Characteristics of Pseudo-Measurements

Various methods can be applied to find the statistical
characteristics of the pseudo-measurements using the dataset.
For example, one can utilize Gaussian mixture model (GMM)
to describe the statistical characteristics of the data as dis-
cussed in our previous work [25]]; or machine learning based
methods [1f], [27] can be used to find pseudo-measurements
and integrate them into state estimation problem. Substituting
actual measurements and the generated pseudo-measurements
into (1)), one can find the state estimation for a distribution
system penetrated by DRELs. Here, we briefly exemplify how
the pseudo-measurements can be generated and integrated into
state estimation problem. Suppose we have obtained datasets
for the conventional loads or the DRELs, we first use the
GMM approximation and mixture reduction method detailed
in [18] to approximate its distribution with a GMM. We let
each GMM component be a univariate Gaussian distribution,
and relevant components can be merged into clusters. Then for
time step ¢, we use the expected value of y;(t) as the pseudo-
measurement. The variance of the pseudo-measurement is
obtained by deriving the equivalent Gaussian distribution from
the GMM [18]], [25]]. The pseudo-measurements are used to
construct vector z in @]); and the variances are used to find
the weight matrix W such that W is a diagonal matrix
whose diagonal entries are the reciprocals of the corresponding
variances of the measurements [[11]]. Fig. [3| shows an example
of using the aforementioned method to approximate the load
distribution with a GMM at Bus 63 of IEEE 123-bus system.
The probability density functions of the GMM components are
represented in red curves. The overall GMM approximated
distribution is the black curve, and it can be seen that the
GMM can well represent the original distribution.
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0.05 (Weight 0.49 —GMM fit
2
2 0.041 1
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2 M 254
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Fig. 3: Example of GMM approximation for load distribution
at Bus 63 of the IEEE 123-bus system

IV. CASE STUDIES

In this section, we use simulation case studies based on
real-world data to demonstrate the validity of the proposed
approach. The case studies are based on a three phase unbal-
anced IEEE 123-bus system as shown in Fig. ] The IEEE
123-bus system has 197 power lines and 91 loads [38]]. It has
been used ubiquitously as a test system to examine SEs. We

show that the proposed methods are amenable to real-world
application as the required system information can be easily
obtained.

2550

Fig. 4: IEEE 123-bus system [38]

A. Setup

Suppose there are 18 current sensors implemented in the
system and one voltage sensor at the substation to provide real
measurement data. We use pseudo-measurements to represent
all the loads for DSSE purpose. Furthermore, the DRELSs
reside in 10 nodes, the DREL penetrated nodes correpond to
15% of the overall load demand. Each DREL penetrated node
is illustrated in Fig. 5] The available real measurements and
sites of the DRELs are summarized in Table [I, where I;_;
represents the complex current flows in power line connecting
bus ¢ and j, and Bus .5 stands for phase j of bus 7. In this
study, the current measurements are the real and imaginary
parts of the three-phase currents, and the voltage measure-
ments are the three-phase voltage magnitude and phase angles
at the outgoing terminal of the substation transformer [39]. The
real measurements are assumed to have a standard deviation
corresponding to 3% error, which is a commonly used set-
up for real measurement accuracy in the literature [25] and
is aligned with the accuracy of commercial meters like the
current transformers designed in accordance with standard
IEC 60044-1 accuracy class 1.0 [40]], [41]. Notice that higher
accuracy in measurement data can improve the estimation
results, but the applicability of the proposed work does not
depend on the accuracy level of measurement data. In addition,
except for switches connecting bus 18-135 and 54-94, all the
other switches are assumed to be closed.

TABLE I: Summary of Real Measurements and DREL Sites

DREL Sites
Bus 1.1, Bus 11.1
Bus 22.2, Bus 30.3
Bus 37.1, Bus 48.3
Bus 49.2, Bus 76.1
Bus 88.1, Bus 98.1

Real Measurements
Viso
It 2,13-4,17-8,15—6,1s8-13
I15-16, I18—21, 2325, [26—27, I26—31
I36-38,140—41,144—45, 151151, I65—66
I74—75,I78—80, l91-93

To better investigate DREL time-varying characteristics, we
need to obtain their time-series power profiles. The manuals
of IEEE test systems usually only contain a snapshot of the



Fig. 5: DRELs at one node

system loading condition. We use real-world data to obtain the
time-series power profiles.

First, PEV charging behaviors are obtained from historical
data about PEVs or regular vehicles. We exemplify it using
National Household Travel Survey (NHTS) 2017 data. NHTS
2017 data records the daily travel history of anonymous users.
Although it does not specify whether the users are driving
PEVs, useful information can be extracted to represent PEV
behaviors. For example, it records the time when users make
their last trip home and the moment they leave for work.
These data are used to find the probability distributions of the
start and end time of a charging event. Second, for weather-
related information like temperature and PV generation data,
one can resort to weather report or measurement tools that are
easily available. For example, the solar radiation information is
commonly available from measurement devices of a PV panel,
and it can be used to estimate the PV generation in a region.
In this case study, we use PV power generation profiles from
Solar Radiation Research Laboratory of National Renewable
Energy Laboratory [42].

We use real utility customer data to generate base load
power consumption profiles. Seven classes of distribution
loads are considered in this paper, namely residential loads:
single residential loads with and without heating loads, multi-
residential loads with and without heating loads; and non-
residential loads: commercial loads, non-residential loads with
daily consumption smaller than 100 kWh, and non-residential
loads with daily consumption between 100—400 kWh. The
typical power profiles of these types are shown in Fig.[6] They
are representative utility loads. For example, the load with
100—400 kWh daily consumption may represent some office
loads, because the weekday peak happens in the middle of
the day, while the weekend profile is much flatter. We assume
each node in the system to have a time-varying consumption
profile. Despite the different profiles, the power averaged over
a day is set to be the snapshot power provided by the IEEE
123-bus manual. For example, in the manual the real power
consumption at phase A of bus 76 is 105 kW. Fig. [7| shows
four load profiles, each of which has 105 kW as the average
power but with different compositions. The specified load

compositions are shown in Table [l Using the utility data
along with other data-processing methods discussed above, the
parameters in system (6)) can be obtained; hence the behaviors
of DRELSs can be emulated in the simulation. The TOU energy
price is real-time energy price signals obtained from PJM [43]],
so all the parameters of optimization problem can be
found as well to apply the proposed work. Samples of the
DREL and conventional load profiles are shown in Fig.
In the figures, the red curves represent the conventional load
profiles while the blue curves represent the DREL profiles.
It can be seen that the DRELs have more variability and
have large deviations from the convention profile. This shows
that the DRELs vary the outputs in response to the energy
prices in order to reduce costs, and its consumption pattern
is different from a conventional load. The sampled data are
used to generate pseudo-measurements to assist in our state
estimations. Furthermore, the unknown parameters include the
initial SOC of the ESSs, PEV charging starting and ending
time, PEV required energy, HVAC initial temperature, base
load and PV generation. We suppose that the DRELs are
incentivised to provide the values for the other parameters.
In this paper, we mainly consider the DRELs with real
power responses and let the power factors at each node remain
constant that are equal to those provided in the IEEE 123-bus
manuals [38]. With this assumption, when the sampling of
the real power profiles are obtained, we can directly find the
reactive power profiles as well; in addition, the distributions
of the reactive power is similar to that of the real power. For
example, suppose the real power data follow a Gaussian distri-
bution with mean 60 and variance 16, and let the ratio of real
power over reactive power be two. Then the generated reactive
power data follow a Gaussian distribution with mean 30 and
variance 4. It is worth mentioning that the general idea of the
proposed pseudo-measurement characterization method can be
applied to the application of DSSE with DRELs responding
to other time-varying operational signals, like reactive power
demand response signals or voltage regulation [30] as well.

B. Case Study 1

We first test the accuracy of the proposed work. For the
simulation case study, we separate available data into two
groups: one is known to the state estimator and is considered as
historical data; the other is unknown and used for conducting
the testing. The former group of data is used to generate the
pseudo-measurement and the latter is treated as actual data in
the testing. Utilizing the proposed work, the estimated values
of voltage magnitude and angles are obtained, as shown in
Fig. 0 The actual states are plotted in blue curves while the
estimated ones are plotted in orange dotted curves. It can
be observed that both the voltage magnitude and angles are
estimated accurately using the proposed work. In addition,
for the entire day, the state estimation accuracy level remain
similar. From 1000 statistical trials, the average root mean
square error (RMSE) is 2.08%. To exemplify the estimation
accuracy, we show the absolute errors of the voltage magnitude
and phase angles in Fig. and Fig. for one trial. Notice
that the bus number is modified following the set-up of [39] as



some bus numbers in the original system are not consecutive.
Each grey line represents the absolute error profile in a
time step, and we show 48 profiles in each subfigure which
correspond to the estimation error of a whole day. One can
observe that the proposed method can provide a reasonable
estimation of the voltage magnitude and phase angles of
the entire system, because most magnitude absolute errors
are below 0.05 p.u. and angle absolute errors are below 5
degrees, regardless whether the estimated states are near or
far away from real measurements. Another observation is that
the estimations associated with the buses that are nearer to the
substation have relatively higher accuracy owing to the impact
of the real measurements at the substation.

In the online exercise of the proposed work, we iterate the
following Monte Carlo trial: we sample a realization of all the
unknown parameters; with the sampled parameters plugged in
the optimization problem, we solve the problem to find the
optimal solution, which is an estimated energy output profile;
we include the estimated profile into a dataset of the previously
obtained estimations and calculate the CV; if CV reaches
the prescribed threshold 1 x 10~%, the sampling procedure
is stopped, and we find the GMM; otherwise, we iterate the
aforementioned process. In average, the whole procedure takes
about 73 seconds of CPU time on a laptop with Intel Core
i5-1.7GHz 8-core CPU, 16-GB of RAM, and open-source
optimization solver CVX.

C. Case Study 2

In this case study, we use historical data of DRELs to
generate DREL pseudo-measurements to compare with the
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proposed method. The simulation results show that the pro-
posed method still has better estimation accuracy (root mean
squared error: 2.08% vs 5.78%) because it can better model
the responsiveness of DRELs to variations in energy prices.

To obtain meaningful historical data to represent DREL’s
previous responsiveness to energy prices, we extract one year
(from 09/02/18 to 09/01/19) of the PJM locational marginal
pricing (LMP) energy prices [44] at the pricing node Easton;
and use the energy prices to guide the operation of DRELSs for
a year. The resulting DREL energy outputs are considered as
the historic DREL data. To generate pseudo-measurements, we
apply existing work [24] to fit the historical data with Gaussian
distributions. Then we use the expected output as the pseudo-
measurements and use the variance to tune the weight matrix.
Similar to the proposed work, we can thus solve a weighted
least square problem to find the estimated states.

We compare the state estimation results of the new bench-
mark with the proposed method for the day of 09/02/19, which
is the next day of the one-year period used to generate historic
data. The energy price of the PIM pricing node Easton of that
day is used to generate the actual DREL profile as well. It can
be seen in Fig. that the expected energy outputs are not a
good approximation of the particular consumption profile on
09/02/19, because the energy price on 09/02/20 is different
from the average energy price of the previous year as shown
in Fig. [13] The RMSE of the benchmark is 5.78% as opposed
to 2.08% of our work.

One reason for the difference is that our method explicitly
take the variations of the current energy prices into considera-
tion when estimating the DREL behaviors. Consequently, we
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Fig. 6: Example power profiles of seven types of utility customers
TABLE II: Different compositions of loads at phase A of bus 76
Single  Multi  Single w/ Heat  Multi w/ Heat kWh Only ~ Small (0—100 kWh)  Med (100—400 kWh)
Composition 1 40% 30% 10% 0 10% 10% 0
Composition 2 10% 0 30% 0 0 0 60%
Composition 3 10% 10% 30% 30% 20% 0 0
Composition 4  14% 14% 15% 14% 14% 14% 15%
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Fig. 7: Aggregated load profiles at POI of bus 76 phase A with four compositions
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Fig. 9: Actual and estimated results for voltage magnitude and angles at Bus 8.1, 54.2, 93.2, and 26.3

can better capture the DREL responsiveness to a special energy
price. While the existing method has a dataset of historical
data; when the energy price is uncommon, it may generate a
less accurate pseudo-measurements.

D. Sensitivity Study

At last, we study the impacts of the DREL penetration level
and parameter estimation accuracy on the estimation accuracy.

Recall that in the previous case studies, we assume the
DREL penetration level to be approximately 15%. In this
subsection, we further consider the following scenarios: 5, 20,
30, 50 buses are penetrated by DRELSs, aside from the original
10-bus case. They correspond to 5.7%, 26.4%, 37.9% and
45.8% of the total demand, respectively. For each scenario,

we conduct two sets of simulations (1000 simulations each
set): one is conducted when the proposed work is applied;
and the other is conducted using the new benchmark method
where DREL historical data are used to generate pseudo-
measurements. The RMSEs are computed, which are shown
in Table [l It can be observed that with the increase of
DREL penetration levels, the estimation errors of our approach
and the benchmark both increase in general. This shows that
the penetration level of DRELSs can influence the estimation
accuracy. One reason is that we consider a variety of uncertain
components in a DREL, which amounts to the variability of
their output profiles. It could be more difficult for a state
estimator to capture the increased variability. Consequently,
the estimation accuracy is influenced. However, our approach
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outperforms the benchmark in all the considered penetration
levels. One reason is that our approach tackles specifically
of the variability with respect to the current energy prices,
instead of solely relying on the historical data to estimate such
variability. This further shows the advantage of the proposed
work.

TABLE III: Estimation Accuracy with Different DREL Pene-
tration Levels

No. DREL Buses  Prop. Appr. RMSE (%) Benchmark RMSE (%)
1.01

5 1.11
10 2.08 5.78
20 2.19 5.81
30 2.27 6.21
50 2.48 6.92
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Fig. 13: Comparison between average and actual LMP energy
price

In addition, we conduct sensitivity study with respect to
the parameters in the DREL model. In previous case studies
the bounds of the SOC are assumed to be known and are
set as [0.1,0.9]. In the sensitivity study, we still assume the
SOC bounds in the DREL model to be [0.1,0.9]; meanwhile,
the actual SOC bounds are [0.1,0.9], [0.05,0.95], [0.15,0.85],
[0.2,0.8], [0.3,0.7], and [0.45,0.55], respectively. For each
scenario, we conduct 1000 simulation trials to obtain the
averaged RMSEs. The results are summarized in Table [[V]
Notice that the first row is the scenario where the actual
SOC bounds match those used in the model. It can be seen
that when the difference in the estimated and actual SOC
bounds are relatively small (e.g, when the estimated error
is less than =+0.2), the estimation accuracy is reasonable.
However, when the difference is too large, the estimation



result is highly inaccurate, as in the case with the actual
SOC range [0.45,0.55]. It should be pointed out that we have
four to eight ESSs for each DREL penetrated nodes; and
each ESS has a capacity of 20 kWh. In the IEEE 123-bus
system that we use for the testing many buses have a real
power injection of 40 kW or less, hence the perturbations
of £0.2 to the estimated SOC bounds are non-trivial and
they show the reasonable estimation accuracy of the proposed
work. Another insight from the results is that though our
approach can still have reasonably good estimation results
with moderate DREL modeling errors, the estimation accuracy
can be improved if more accurate DREL model is available.
Potential methods to improve the model fidelity includes:
1) DRELs can be incentivized to provide some operating
parameters like SOC operating range to the utility; 2) utility
can employ advanced load disaggregation methods to find the
required information [33]].

TABLE IV: Sensitivity to Perturbations of SOC Bounds

Actual SOC Bounds RMSE (%)
(0.1,0.9] 2.08
[0.05,0.95] 2.11
[0.15,0.85] 2.25
[0.2,0.8] 2.74
0.3,0.7] 5.76
[0.45, 0.55] 33.6

V. CONCLUSION

This paper reports improved performance of a state esti-
mator for a distribution system with new characterization of
significant DRELs in the system. A DREL has more diverse
power consumption characteristics than a conventional load in
that it has strong responsiveness to a time-varying price signal.
Historic conventional load profiles cannot characterize this
responsiveness, and it poses challenges for generating pseudo-
measurement for DSSE. We develop a new online pseudo-
measurement characterization to tackle this issue. We formu-
late an optimization model to emulate a DREL’s self-interested
decision making mechanism. The uncertainty and different
compositions of a DREL are modeled as unknown parameters
of the model. We use a sampling-based method from stochastic
optimization techniques to solve the optimization problem.
The optimization results constitute a set of representative
DREL profiles amenable to pseudo-measurement generation.
The proposed approach is generic and can be easily extended
to pseudo-measurement characterization of loads responsive to
any other signal related to grid services, like voltage support,
frequency support, spinning reserve, among others. Simulation
case studies based on IEEE 123-bus test systems as well as
real-world data verify the validity of the proposed work.

APPENDIX A
DETAILS OF MODEL

Compact state and control representations of the individual
components are given as follows:
Aggregate ESS state: zB = [SOC’M, e ,SOC’MLB} T

Aggregate HVAC state: R {T{l, . 7T1.17nﬂ} !
Aggregate PEV state: z) = [RCiy,++ ,RW, ] T
Aggregate ESS control: u? = [u]ffl, e ,uEiB} '
Aggregate HVAC control:  u} = {ugl, e ,uﬂnﬂ] !
Aggregate PEV control:  u) = {uﬁ(f, e ,u?‘;fv} '

The aggregate state, control, output, and uncontrollable distur-
bance variables of node ¢ are given by

Aggregate node i state: ;= [T, @7, @))"]T
Aggregate node ¢ control: wi = [(WB)7, (T, @)T]T

Aggregate node i disturbance: w; = [T, EX, EPY]T

System and control matrices can be easily obtained from
the individual models as well. For example, if the system has
one of each DREL component, these matrices are as follows:

1 ASOC;
_ EH
A= a o (1 —a)RAE;
1 1
1 1
o —1/n
1 -1
B2i— G 1
-1
o o | DL =R -ER (1 - a)ABY,
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0 00 . T
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