SAND2022-3260

Seascape Interface Control Document

Version 3.4

Emily R. Moore
Prolif. Detection Remote Sensing, 6751

Todd A. Pitts

William Marchetto

Henry Qiu

Exploratory Real-Time Sensing, 6773

Leon C. Ross
Prolif. Detection Remote Sensing, 6751

Forest Danford
Space Mission Engineering, 6352

Christopher W. Pitts
Autonomous Sensing & Perception, 5448

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NYSH

MNational Neclear Securfty Administration

ABSTRACT

This paper serves as the Interface Control Document (ICD) for the Seascape automated test harness
developed at Sandia National Laboratories. The primary purposes of the Seascape system are: (1)
provide a place for accruing large, curated, labeled data sets useful for developing and evaluating
detection and classification algorithms (including, but not limited to, supervised machine learning
applications) (2) provide an automated structure for specifying, running and generating reports on
algorithm performance. Seascape uses GitLab, Nexus, Solr, and Banana, open source software,
together with code written in the Python language, to automatically provision and configure com-
putational nodes, queue up jobs to accomplish algorithms test runs against the stored data sets,
gather the results and generate reports which are then stored in the Nexus artifact server.

REVISION HISTORY

Revision Date

1.0
2.0
2.1
3.0
3.1
3.2
33
3.3.1

34

04-26-21
06-01-21
06-17-21
10-21-21
11-03-21
12-20-21
01-20-22
02-01-22

03-09-22

Author(s)

All authors.
All authors.
All authors.
All authors.
All authors.
All authors.
All authors.
All authors.

All authors.

Description

Created

Added clarifying language and new figures

Typos and updated figures

Included updated monorepository

Included multi-stage integration practices

Included full software list to set up Seascape
Included new appendix for development processes
Clarified language on pixel versus geo space label
identification

Added Docker Containerization instructions

CONTENTS

1. Overview of Seascape

L1, IntrodUuCtiOnttt e e e e e e e e e e
1.2, A Brief Description.ttt e e
1.2.1. Seascape Database........... i
1.2.2. Seascape Validation & Verification,
1.3. System Componentsand Roles i
1.3.1. Seascape User Rolesco i,
1.3.2. System COMPONENLS . ..o .vttt ettt ettt e et e ee e
2. Using Seascape
2.1. Using Seascape by Roleso e
2.1.1. Seascape Maintainercouueunerneuneeeneneneeneennnn.
2.1.2. Data EXpert.ot e
2.1.3. Algorithm Developer. i
2.1.4. Program SPONSOTottt
2.2. Incorporating a Data Set into Seascape.oouuiiiiiinineneenn.n.
2.2.1. Required Artifacts
2.2.2. Ingesting Datainto Solrand Nexus i,
2.2.3. DefiningaDataTestSetoi i,
2.2.4. Optional Artifactsoo i e
2.3. Incorporating an Algorithm into Seascapecoiiiniiiiiieennenn...
2.3.1. Prepare a Release of the Algorithm
2.3.2. Artifacts and GitLab Structure
2.3.3. Creating a Continuous Integration (CI) Schedule for your Algorithm.
2.3.4. Adding Algorithm Tagso i
References
Appendices
A. Setting up Seascape From Scratch
A.1. Setting up Seascape From Scratchin GitLab
A.1.1. Create auser access toOKenot ennennenn.n.
A.1.2. Create the S€ascape Eroupoouinirminin e,
A.1.3. Create the Seascape-VV subgroup.......... ...,
A.1.4. Create a GitLab runner(s) for Seascape.............
A.1.5. Register GitLab runner(s) to Seascapeccuiiiiienneon..

10
11
13
13
14

A.2. Putting Your Program in S€ascapec..iiiiiiiiiiiiiiiiia

A2.1.
A2.2.
A23.
A24.

Create your program space in GitLab
Add the Seascape harness to your programcooou....
Add the Algorithms subgroup
Add youralgorithms

. Adding Algorithms via Docker

B.1. Seascape Maintainer Responsibilities i ..

B.2.

B.1.1.
B.1.2.
B.1.3.
B.1.4.
B.1.5.

Prerequisites
Gather Information
Build and Push Docker Image into Seascape
Verify Image in Seascapecooiiiiiiiii i
Runners.

Algorithm Developer responsibilities o i,

B.2.1.
B.2.2.
B.2.3.

Gather Information
Containerize the Algorithm i,
runAlgorithm.sh.

. Seascape Core Development Process

C.0.1.
C.0.2.

. FAQs

Terminologyo
Development Process i

. Software Installation List

E.1.
E.2. GitLab

E3. GitLab CI/CD ... o

E.4.

E.S.

E.3.1.
E.3.2.
Nexus
E.4.1.
E.4.2.
E.4.3.

RUNNEIS . . .o
Pipelineso

Blob (Binary Large Object)ttt
COMPONENL . . . ottt ettt e e e e e e e
N P

. Miscellaneous Notes

. Example Code

. Acronyms

LIST OF FIGURES

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.

Figure 1-5.
Figure 1-6.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.

Figure D-1.
Figure D-2.

Figure E-1.
Figure E-2.

Figure G-1.

Human-in-the-loop interactions with Seascape 10
Basic automated processes within Seascape.............. 12
Seascape GitLab group Structureooiiiiein .. 15
Test executor automated PrOCESSES vv vttt 17
Algorithm evaluation automated processcciiieneenneon.. 19
Report generation automated processouieieieiinnenaen... 20
Final report location in Nexus i, 24
Final report location in NexXusc.i i, 26
Ingest script locationin GitLab 28
Test definitions location in NexXus, 29
GitLab group structure for the algorithm-level............................. 32
Nexus interaction functions within GitLab 54
Final report location in NeXusoo it 55
Stage Configuration in .gitlab-ci.yml 61
Job Configuration in .gitlab-ci.yml 62
GitLab subgroup location of example filesandcode. 66

This page intentionally left blank.

1. OVERVIEW OF SEASCAPE

1.1. Introduction

This all-inclusive document describes the components, installation, and usage of the Seascape
system. Additionally, this manual outlines the step-by-step processes for setting up your own local
instance of Seascape, incorporating new datasets and algorithms into Seascape, and how to use the
system itself. A brief overview of Seascape is provided in Section 1.2. System components and
the various roles of the intended users of the system are described in Section 1.3. Next, steps on
how each role uses Seascape are explained in Section 2.1. Finally, the steps to incorporate data into
Seascape-DB and an algorithm into Seascape-V'V are outlined in Sections 2.2 and 2.3, respectively.
Steps to set up an instance of Seascape can be found in Appendix A.l. Finally, Seascape usage
can be found in Section 2.1. The appendix includes code examples, frequently asked questions,
terminology, and a list of acronyms.

1.2 A Brief Description

Seascape is an automated test harness that allows an objective, repeatable, and recorded evaluation
of machine learning algorithm performance benchmarks. The primary purpose of this system is to
produce an unbiased assessment of algorithm performance against real-world data sets. it utilizes
standard development practices and git branches to to ensure adequate testing before deploying to
production.

The system concept comprises five parts: a well-known, curated, and labeled dataset; a way to
provision and configure computer systems for use during evaluations and to define and execute
performance tests; a means of assessing the test results; and a framework for recording, reporting,
and visualizing the performance assessment. A dataset consists of previously adjudicated data
that has been labeled by a subject matter expert. These labels are stored in a simple well-known
JavaScript Object Notation (JSON) based text format alongside the data itself. For image data
they describe the object or signature type and a polygon enclosing image pixels where the object
is present. Algorithms running on other types of non-image data may be evaluated in Seascape as
well. Section 1-1 described the basic user interactions with the Seascape system, highlighting its
simplicity while noting its majority automated capabilities.

Test definitions (also in JSON format) are used to specify specific elements in datasets. A common
use for this is to set up baseline and full test definitions, in order to differentiate between running
quick evaluations during a development cycle with the baseline test definition or a more compre-
hensive evaluation with the full test definition. Test definitions, combined with a tagged algorithm

e

Data + ISOM l—\ Test Results —. f Repart l—
- L | |

o X \
., £ ' | |
- A * t
. L7 |
" . ' | |
", Gitlak : L
-,

r Y a .‘-.. |
Algorithm Repa l—-[Evaluate Algorithm Performance I—"’ | |

|
| |
e Generate Report 1 |

Test Definitions l—
r |

Creates test __,'I

Wiew
definitiars =

fimal repart

Figure 1-1. The basic user interaction with the Seascape system is highlighted in the dark orange
box. After entering a list of data items to define a test in Nexus, the system automatically produces

a report for review via a web browser. The light yellow boxes encompass the automated portions of
Seascape.

commit in GitLab, define the parameters for a performance pipeline evaluation. The tested al-
gorithm is then run against the specified dataset elements, producing a reported target list. This
reported target list is then automatically compared to the data labels per the test definition, yielding
a performance benchmark. This benchmark, together with the algorithm version and other details
necessary needed to reproduce the test, are saved. Finally, a human-readable report is automati-
cally generated for review. Seascape can be functionally divided into two parts, the database and
validation and verification (V&V) infrastructure. These are described in detail below in Sections
1.2.1 and 1.2.2.

Seascape supports the development of both benchmarking and requirements evaluations. Bench-
marking evaluation is designed to measure performance of a detection and classification algorithm
with a given set of parameters against a specific set of test data. The evaluation contains, for exam-
ple, false positive rate, recall, precision, or F1 score for a given algorithm against a known target
set. This type of evaluation provides the program with expected performance on deployment in a
recorded, automated, and repeatable fashion. This is one of the primary purposes of Seascape.

It is possible to define and develop a requirements evaluation within Seascape as well. Require-
ments evaluations are designed to assess or ensure compatibility and compliance with program
and environment requirements. Automated vulnerability or security scans of software or Docker
images may be performed in order to ensure compliance with program requirements. An evalu-
ation might also ensure that input and output file formats are compatible with a known standard
in preparation for integration into a larger system. Requirements evaluations provide the program
with succinct, automated, and repeatable measures of compliance with requirements in support of
deployment decisions.

1.2.1. Seascape Database

The database portion of Seascape is known as Seascape-DB. Seascape-DB provides the ability to
host and serve data to the Seascape application (or to any other application). It can be queried using

10

a standard web interface. It can also be accessed programmatically and from the command line
through a Restful State Transfer (REST) Application Programming Interface (API). Apache Solr,
Banana and the Nexus artifact server are open source software applications which provide these
capabilities. Seascape-DB can function as intended without Seascape-VV. This is the primary
repository for program-collected data and is a critical part of enabling automatic target recognition
(ATR)/Machine Learning (ML) in the collected data domains. Details regarding how to format
information to provide into the database is covered in Section 2.2. The data set should include all
true positive targets as adjudicated by a subject matter expert. The label information must be in
a JSON format, with keys defined in Section 2.2. It is the combination of this information which
allows the database to function as intended. Once the pair has been ingested into the database,
the data can be searched and interrogated via command-line or graphical user interface, and will
be made available to all program users specified by an access list. The data access for V&V
purposes can be limited as desired. Optionally, supplemental ground truth information or ground
truth context may also be included as an additional file. As this data may originate from another
source, it might not associate directly with a single piece of raw data. Therefore, it is appropriate
for it to reside in its own artifact.

1.2.2. Seascape Validation & Verification

The validation and verification portion of Seascape is known as Seascape-VV. Seascape-VV pro-
vides the capability to provision and configure machines, run algorithms in an automated and
repeatable fashion, verify the algorithm responses against the labels via Seascape-DB, and report
the results. Nexus, GitLab, Python, and a series of additional GitLab and code configuration struc-
tures provide this capability. Seascape-VV cannot function as intended without Seascape-DB. The
automation capabilities of Seascape-VV create an incredibly easy to use interface for users, as well
as provide the capability to repeat and compare algorithm performances against known data.

Provision and configure machines The first critical automation component in Seascape-VV is
the ability to provision and configure machines. When an algorithm runs, it will need access to a
specific software environment, such as libraries, custom code, and certain versions of software. In
addition, algorithms can be written to take advantage of multiple threads or processes to dynami-
cally speed up processing. Seascape-VV offers these capabilities using GitLab runners, discussed
in Section 1.3, allowing essentially any runner node to configure a machine to the needs of the
algorithm without human intervention.

Define and execute tests Seascape-VV provides an automated capability to define and execute
tests. Tests can be defined by any user to generate performance results in an automated fashion for
the algorithm. These tests will not only determine the algorithm’s response to the data, but will
also score the algorithm against the known truth (via the JSON files). The users can define how the
response is compared to the labels. For example, an exact pixel-to-pixel match or simply a similar
shaped identification.

11

Mexus

Test Definitions l— Data + ISOM l—\ Test Results —, f Repart l—
[\ . i h | |
!
|

! - g LY |
LY 5, ol

\, | |
) Y | |
b s N i : |

', “ Gitlah £ w |
) v LY I

kY . |
| Algorithm Repa l—-[Evaluate Algorithm Performance I—'" L f |
T —

i |
4 o 3 |
\'". — Generate Report f |
Test Executar i |

| |
Creates test /

Wiew
definitiars y

fimal repart

Figure 1-2. The automated sections of Seascape are highlighted in the dark orange boxes.
Seascape’s infrastructure is primarily automated.

Accessing test results For the current version of any given algorithm, a result is generated,
that is, the algorithm’s response and the validation against the known truth, for each item in the test
data set. Automated processes regularly verify that all data have a result for the current version of
the algorithm. When the algorithm changes, new results are generated. These results are available
within the Nexus repository, discussed in Section 1.3.

Record, report and visualize performance Performance is automatically assessed through the
culmination of results for each data item against the current algorithm version. The automated
reporting capability generates a detailed overview and summary results for the entire defined data
set. If the report layout needs to change, this can be done without re-running the test results as
they are available in Nexus. The report uses numerous result and data visualization techniques to
provide a full picture to the users on algorithm performance. The current report breaks down results
by target type, and includes the ability to examine image chips in true positive, false positive, false
negative, and misclassification categories. The report includes click-able hyperlinks to each aspect
of the entire pipeline.

Figure 1-2 describes the basic process of Seascape-VV and how the user interacts with the system.
The process begins along the bottom left, in the User group. The user begins the process by
creating a test definitions files and pushing the file to Nexus (discussed in Section 2.2.3). The
user then simply waits for the process to finish, and views the report once it is generated and
published in Nexus (discussed in Section 2.1.4). As designed, Seascape-VV performs its functions
automatically, requiring minimal interaction with the user.

Once a user defined CI Schedule executes, the Test Executor process (discussed in Section 1.3.2.3)
verified is the results are already present in Nexus. If not, it initiates the Evaluate Algorithm
Performance process (discussed in Section 1.3.2.3), pulling data from Nexus and the algorithm
information from GitLab. The Evaluate Algorithm Performance process publishes test results for
each data in Nexus. The Generate Report process (discussed in Section 1.3.2.3) then creates a
report from the information provided in Nexus and publishes a final report. The user is then able
to view this final report in Nexus.

12

1.3. System Components and Roles

This section will provide an in-depth outline of each component and its purpose, as well as the
intended usage roles.

1.3.1. Seascape User Roles

Usage of Seascape naturally can be divided into four primary roles, discussed below.

Seascape Maintainer This role is held by the party hosting the Seascape application, either for
their own local use or as the maintainer role for a larger program. This role will include tasks
such as setting up the system, configuring the GitLab runners, instantiating and ingesting data into
Solr, and management of the automated runs. This role should have the ability to set up and make
changes to any item within Seascape.

Data Expert This role is held by the users of Seascape for in supporting a curated database as
well as assisting automated V&V. This role will include tasks such as preparing and ingesting the
data into the database, working with other roles to provide expert recommendations as to which
data should be used for V&V testing, how the data should be validated by the Seascape-VV CI
pipelines, and continued ingestion. This role should not have the ability to alter anything within
the algorithm areas, and should only work within the community code repositories for data man-
agement tools.

Algorithm Developer This role is held by the users of Seascape for the purpose of automated
algorithm V&V. This role will include tasks such as providing the data and data schema infor-
mation to the maintainers, providing their algorithm and required artifacts to the maintainer, and
reviewing the final reports. This role should have the ability to make changes only within their
algorithm area and should not have the ability to alter any other pieces of Seascape.

Program Sponsor This role is held by the sponsor of Seascape for the purpose of running auto-
mated validation and verification pipelines regularly. This role will include tasks such as defining
data test sets for runs, approving the final report structure, and running tests manually or auto-
matically. This role should involve regular interactions with the maintainers, and should allow the
maintainers to make changes on their behalf. This role should not have the ability to alter any
algorithm area information, while maintaining the ability to view anything within Seascape.

Roles are not strictly enforced, though, access to various levels of the GitLab repository may be
restricted based on roles. As certain roles will have inherent access to all data within the system,
please work with the Seascape maintainer and/or the Program sponsor to put in place an non-
disclosure agreement (NDA) if desired or appropriate.

13

1.3.2. System Components

Seascape is comprised of three categories of components which work together to provide its unique
capabilities:

* Software stack
 GitLab group structure

* Configuration code repositories

1.3.2.1. Software stack

The following modern software programs were chosen for their merits in interoperability, avail-
ability, open nature, and security considerations.

Git Git is the version control system of record for Seascape. Teams and individuals are free to
use whatever tooling they want to develop their algorithms, but the evaluations against the official
test data sets are performed on code checked into the Git repositories. Git provides the basis for
automated pipeline testing, as well as version control and documentation which allows for a better
record of testing and repeatability of tests. Common terminology can be found in Appendix E.1.

GitLab GitLab is an integrated version control, testing, and deployment suite of tools, built on
top of the Git version control system. The current version of Seascape is built in GitLab, leveraging
many of the built-in tools. GitLab provides a practical user interface to perform Seascape tasks,
observe the pipeline during runtime, and view subsequent artifacts in a more user friendly manner.
Common GitLab terminology used throughout this document, such as commits and tags, can be
found in Appendix E.2.

GitLab Cl GitLab Cl is a tool for Continuous Integration and Delivery (CI/Continuous Develop-
ment/Deployment (CD))[4]. The general idea behind continuous integration and delivery is that
code should be tested often and quickly. This can help assure that newly generated code will not
modify or corrupt previously correct processes. When using a version control system like Git,
CI/CD generally runs tests on each commit, when it is pushed to the repository. Common termi-
nology can be found in Appendix E.3.

14

Seascape
L,Seascape—vv
<Your Program>
LfAlgorithms
Lf<Your Algorithm>
Seascape—Core
ExampleAlgorithms

Figure 1-3. The basic Seascape GitLab group structure. The top level is referred to as the Seascape-
level, with the subsequent level called Program-level, and then the Algorithm-level. Each user role
has an assignhed area and permissions into levels are based on those roles.

GitLab Runner A GitLab runner is an application used by GitLab CI/CD to run jobs in a
pipeline. Runners are used throughout Seascape, for example, to provision and configure machines
to evaluate algorithm performance. GitLab runners are registered at the Seascape level. Each run-
ner will commonly used research & development (RD) packages, as well as a Linux operating
system (OS), the specifics of which are dependent on the environment where Seascape is being
hosted. Additional, algorithm specific requirements can be added to all or specific runners, with
descriptive tags indicating which runner has any given specific item, such as Graphics Processing
Units (GPUs) or a different OS.

Nexus Nexus is an artifact repository manager. An artifact repository provides a seamless way
to collect and share artifacts, while abstracting away the artifact’s physical location on disc. Nexus
serves artifacts from Seascape-DB, as well as test definitions, test results, and reports generated
from Seascape-VV. Common terminology can be found in Appendix E.4

Solr/Banana Solr is a metadata database used by Seascape-DB’s data search and discovery. Solr
provides a distributed search and indexing functionality of Seascape-DB data. It easily serves the
data into Seascape-VV in an automated and programmatic fashion. Solr provides the backend
information to Banana, a Graphical User Interface (GUI) to display faceted information that is
easily customizable to the users preference. Banana provides a quick visual interrogation tool to
understand the data within Seascape-DB.

Conda/Python The configuration code repositories which make up Seascape are written in the
Python 3 language. Seascape uses Anaconda python to manage and install the Python packages
necessary for Seascape.

1.3.2.2. GitLab group structure

Figure 1-3 described the required GitLab group structure for a general program with one algorithm.
The program level contains a variety of algorithm repositories. Each algorithm repository is self-
contained for testing and reporting.

15

Seascape-VV level The Seascape structure level houses most commonly used code and capabil-
ities needed to create and manage Seascape. Only those with the maintainer role should have the
ability to change any information at this level. Data experts will need access to this level, though
should not change any information at this level.

Program level The program level consists of program named folder, and houses all information
pertinent for integration with the Seascape system. The Algorithms area is defined below. While it
is appropriate for both the maintainer and program roles to have change permissions at this level,
the maintainer role should make all necessary changes.

Algorithm level The algorithm level consists of all algorithms within a given program. Each
algorithm will be provided with its own named folder and will include the algorithm repository
and required artifact codes provided by the algorithm developer role. More information can be
found in Section 2.3. The algorithm developer role should be the primary user at this level.

1.3.2.3. Seascape-Core

Additional code that is necessary to utilize the full capability of Seascape can be found in Seascape-
Core. This repository consist of scripts to enable items such automated installation of software
and configuration files, enable automated testing, and other important items. The Seascape-Core
repository should be placed under the Seascape-VV GitLab structure, as shown in Figure 1-3.

Test Executor The Test Executor primarily includes python code coupled with a GitLab CI/CD
file to create the primary automation functionality of Seascape-VV. Figure 1-4 outlined the decision
tree of the Test Executor. The Test Executor will run on a user defined schedule. Details of this
set-up are discussed in Section A.

Figure 1-4 should be interpreted starting from top with the Wake Up node. The process begins
by pulling test definitions from Nexus. If there are no test definitions, the process shuts down, as
there will be no report to generate. If a test definitions file is present, next the process looks for an
algorithm commit tags from GitLab. Specifically, the process is looking for a commit tag within
the algorithm repository to indicate which algorithm version and test definitions file was used. If
there is no algorithm commit tag present, the process shuts down. If the tag is present, the process
will then look for test results in Nexus for that algorithm commit tag. If there are no test results,
the process will create the pipeline necessary to generate those results. If there are test results
present, the process will verifies there were no failures present, through the presence or absence
of a failure.txt file within Nexus. If there was a failure present, the process shuts down. If
there was not, the process checks to see if test results are complete, that is, there are test results
for each piece of data being evaluated. If they are, then this process has completed its tasking
and shuts down. If not, the process will create the pipeline necessary to generate the results. This
pipeline will include starting the process to evaluate the algorithm, discussed in Section 1.3.2.3
and in Figure 1-5.

16

Gitlab Mexus
Wake Up Test Definitions | | Test Results | | failure.tat :
]

b

Pull test definitions
< Test present? Mlgorithm Repo
s,

Pull algorithm tags

Tag present?

N —

Pull test results

Taghashin *.
i test results? -

Yes
. ‘u'l
Mo <" Failure present? |
Ho 4]

i3

" Test results
"+, complete?

Yes MNa '/

Create pipelines
to generate results

Yes

Figure 1-4. The basic functions of the automated test executor can be broken down into a decision
tree. Test executor is the heartbeat of the automated Seascape processes.

17

A major benefit to the design of this process is that it will automatically comb through Nexus and
make sure every results has already been generated for the information requested - regardless of
whether that information was requested a minute ago, a day ago, or a year ago. This means, as
the database of relevant data within Seascape-DB grows, this process will automatically generate
pipelines to evaluate the algorithm on the new test data. This also allows for the more lengthy pro-
cesses, such as algorithm evaluation, to run on a regular schedule, to include nights and weekends.
Finally, when a new algorithm version has been committed and tagged appropriately (as opposed
to simply committing), this process will ensure all pipelines to generate results are kicked off,
without the user having to do so. Allowing the flexibility to include the tag or not means results
will not get regenerated for small, untagged commits, like a new comment, or print statement.

Performance Performance consists python scripts needed to generate performance reports. The
capabilities of performance are cued from the test executor process. Figure 1-5 describes the
process of evaluating algorithm performance for Seascape-V'V.

Figure 1-5 should be interpreted starting from top, at the Test Executor trigger node. This process
is kicked off by the test executor process, described in Section 1.3.2.3. The test executor trig-
gers the performance pipeline CI for the algorithm and provides the algorithm commit hash and
data IDs to this process. Any specific GitLab runner requirements listed within the performance
pipeline CI are met at this step. For example, if the algorithm needs a Windows OS with Central
Processing Unit (CPU) clusters available, the performance pipeline CI will list both the OS and
hardware as requirements. Then, Seascape-VV will select a specific GitLab runner tagged with
these requirements and run the process on that specific runner and associated runner node. The
algorithm is then cloned and checked out into that machine using the algorithm information from
the algorithm repository in GitLab. Next, the data is pulled from Nexus and paths are generated
to the data in the TFILE environment variable, discussed in detail in Sections 2.2.3 and 2.3. A
shell script, defined for each algorithm, discussed in Section 2.3, reads in the IF ILE environmen-
tal variable and executes the algorithm against the data listed within TF ILE. Algorithm results
are generated and set within the OF ILE environmental variable, discussed in Section 2.3, and the
shell script ends. Results are then checked using the known truth from Nexus against the results
generated for each piece of data and are collected in a single file, results. json, published in
Nexus. At any time, if a node fails, to include the algorithm, a failure.txt file is generated
and published in Nexus, which includes information as to the nature of the failure.

A major benefit in the design of this process is that it remains independent of the final report
process. This means that results do not need to be regenerated if there is a format change, data ID
list change, or otherwise small change made to the report or pipeline. This keeps potentially long
processes from regenerating results without the technical need to.

Reports Reports consists of python scripts needed to generate performance reports. The capa-
bilities of the report generator process is initiated by same defined GitLab CI/CD scheduler as Test
Executor. Details of this set-up are discussed in Section A. Figure 1-6 describes the automated
report generation process for Seascape-V'V.

18

Gitlab

Test Executor
trigger

commit hash
data IDs

gitlab-ci.y
- Set up V&V
Algorithm Repo environment

Clone
algorithm
l Nexus
Check out
algorithm Data + JSON

commit hash

Pull data
from Nexus

runAlgoerithm.sh

Read IFILE
environment
variable

Execute
algorithm

N

Set OFILE
environment
variable

|

Read
OFILE

e

results

T

‘ failure. txt ‘ ‘ results.json ‘

Go to Sleep

Figure 1-5. The basic functions of the automated algorithm evaluation processes can be broken
down into a decision tree. These processes are at the center of Seascape, running and evaluating
algorithm performance.

19

Gitlab

P

Wake Up Fu!l S . Test present?
definitions
. Her

§ e -
1 .

e / ‘\“u 5,
-~
Y . Go o Slesp

Pull
— . -
| algerithm tags =, Tag present?

{ Algorithen Repa Yei
1] e,
ks

|
| Pull repart ———__
- +)
5 Pepart
'y present?

| Generate o— { Her

f| report L

Tesdt Results !

|/
Test Definitions |~ |
) %]

Figure 1-6. The basic functions of the automated report generation processes can be broken down
into a decision tree. This processes is is the final automated step of the system, generating new

reports based on previously gathered resulits.

Figure 1-6 should be interpreted starting from left hand side with the Wake Up node. The process
begins by pulling test definitions from Nexus. If there are no test definitions, the process shuts
down, as there will be no report to generate. If a test definitions file is present, next the process
looks for an algorithm commit tags from GitLab. Specifically, the process is looking for a commit
tag within the algorithm repository to indicate which test definitions file was used. If there is no
algorithm commit tag present, the processes shuts down. If the tag is present, the process will
look in Nexus for a report from that specific tag. If there is a report already present, the processes
shuts down. If there is no report present, the process will generate a report using the test results
from the algorithm commit tag in Nexus. The report is then pushed to Nexus and the process is
complete.While this process can be initiated manually or on a schedule, it naturally is subsequent
to the test executor and execute algorithm performance processes.

A major benefit to the design of this process, is that if there are test results for a specific algorithm
commit tag already, but a user would like to see a report from a certain subset of those results,
the test results do not need to be regenerated in order to create the report. Simply put, the report
generation process cumulates already calculated results into one file. This saves processing time if
the user decides to remove or add data which already has results in Nexus.

Ansible This repository contains the Ansible script to install instances of Nexus, Solr, and Git-
Lab. Installation can be for each item independently or a combination based on user’s needs.

Common This repository contains commonly shared code used by other Seascape repositories
and pipelines. For example, the ingest and interface code for Solr and Nexus resides in this repos-

itory. This repo also contains the Python API for gitlab.

20

2. USING SEASCAPE

2.1. Using Seascape by Roles

The skills and work flow to use Seascape are highly dependent on which role you have in the
process. In this section, we discuss the prerequisite skills and common work flow tasks as defined
by the roles identified in Section 1.3.1.

2.1.1. Seascape Maintainer

Work flow:
* Install and configure Seascape
* Prepare the program level in GitLab
* Add users to GitLab program group
* Provide ICD to users
* Ingest new data into Seascape-DB
 Set requirements for algorithms
* Create a new CI schedule for each algorithm

The following section describes the primary work flow of the Seascape maintainer and where to
find detailed information on the tasks. In additional to the tasks below, the Seascape maintainer is
expected to be the expert on the system and provide assistance to all users, while maintaining the
infrastructure.

Install and configure Seascape The first step is to install and configure Seascape. Details and
prerequisites can be found in Appendix A.

Prepare the program level Next, create a space within Seascape specific to the program. Details
and prerequisites can be found in Appendix A.2.

Add users Users need to be added to the relevant program group. This will provide them access
to interact and use the system. The users must already have an account in GitLab to perform this
step.

21

Provide ICD Provide the ICD, located in the Documents subgroup, shown in Figure 1-3 in Sec-
tion 1.3.2.2, to all new users.

Ingest new data into Seascape-DB Once the data expert has provided the data, with labels,
and a Solr schema file, the data is ready to create a Solr core, and therefore viewable by Banana,
as well as get ingested into Nexus. Details can be found in Section 2.2.

Set requirements for algorithms Some algorithms may require a specific OS, hardware, soft-
ware, or other requirements to run. These requirements should be levied through which machines
are available for GitLab runners to use. The Seascape maintainer is responsible for making those
requirements available via registered GitLab runners, working with the hosted environment. If any
requirements are not available, the algorithm developer needs notified immediately. If algorithms
require docker, please consult Appendix B.1.

Create a new CI schedule for each Algorithm In order to add an algorithm to the automated
capabilities of GitLab CICD, any new schedule must be added to Seascape-Core pointing to the
specific algorithm. This is a task to be performed by the maintainer role. Details can be found in
Section 2.3.3.

2.1.2. Data Expert

The following section describes the primary skills required and typical work flow of the data expert
and where to find detailed information on the tasks. Please take a moment to read the ICD, located
in the Documents subgroup, shown in Figure 1-3 in Section 1.3.2.2.

Prerequisite skills:
* Generate an Extensible Markup Language (XML) file to define the Solr schema
* Create a script to fuse data into a single Solr document
Work flow:
* Get added to GitLab group
* Provide data to maintaner for ingest

¢ Provide data assistance

Get added to GitLab group In order to use and interact with the Seascape system, your GitLab
user must be added to the relevant program group within GitLab. Please provide this information
to the Seascape maintainer.

22

Provide data for ingest Data must be prepared and curated for ingest into Seascape-DB. Details
can be found in Section 2.2. Any optional artifacts should be added as well. Anytime new data has
been captured and curated, the new information must be added to the Solr core. Examples can be
found in Section 2.2. If the data is unique, please work with the Seascape maintainer to encompass
the uniqueness of the data.

Provide data assistance As the data expert, this role is expected to provide support to both the
algorithm developer and the program sponsor when creating test definitions, determining machine
learning test sets, and other data related tasks.

2.1.3. Algorithm Developer

The following section describes the primary skills required and typical work flow of the algorithm
developer and where to find detailed information on the tasks. Please take a moment to read the
ICD, located in the Documents subgroup, shown in Figure 1-3 in Section 1.3.2.2.

Prerequisite skills:

* Check in code to GitLab to create and update the algorithm repository

* Generate a shell script wrapper to execute the algorithm against data
Work flow:

* Get added to GitLab group

* Provide requirements for algorithm

* Prepare test definitions files, if desired

* Add algorithm and artifacts into appropriate algorithm folder

e Commit any new algorithm changes, adding a tag when necessary

* View the report

Get added to GitLab group In order to use and interact with the Seascape system, your GitLab
user must be added to the relevant program group within GitLab. Please provide this information
to the Seascape maintainer.

Provide requirements for algorithm Some algorithms may require a specific OS, hardware,
software, or other requirements to run. These requirements should be levied through which ma-
chines are available for GitLab runners to use. Algorithm developers should provide a list of
requirements to the program sponsor. These requirements are then communicated to the Seascape
maintainer, who will ensure requirements are made available via registered GitLab runners.

23

Reports
<Your Program>
L,Algorithms
Lf<Your Algorithm Name>
L,<Your Algorithm Hash>
L,<Your Test Definitions Name>
L,report.html

Figure 2-1. Location of the final report within the Nexus artifact structure.

Prepare test definitions Test definition are used to specify a subset of samples included in
a single evaluation. As an algorithm developers, it might be desirable to create your own test
definitions set for rapid integration or using a partial partition. If you are unfamiliar with the data,
please work with the data expert on this task. Creating and pushing test definitions can be found in
Section 2.2.3.

Adding an algorithm and artifacts Next, the algorithm and artifacts must be added. As dis-
cussed in Section 2.3, a new GitLab project must be created for each algorithm. Then, the algo-
rithm repository including the Seascape compliant algorithm, as well as required artifacts, can be
added. Once this step as been completed, please inform the Seascape maintainer, as they will need
to add the new algorithm into test executor in order for the automated processes to include the
algorithm. If your algorithm requires docker, please refer to Appendix B.2.3.

Commit algorithm changes Algorithm changes can be committed and synced to the GitLab
origin at the developer’s discretion. In order to trigger an evaluation pipeline, simply tag a com-
mit using the naming convention detailed in Section 2.3.4. any time a commit is tagged, it is
recommended that the algorithm developer validates the results.

View report Whenever generated, via creating a test definition or tagging a commit, evaluation
reports should be viewed to validate results. The report is found in Nexus in the following loca-
tion:

2.1.4. Program Sponsor

The following section describes the primary skills required and typical work flow of the program
sponsor and where to find detailed information on the tasks. Please take a moment to read the ICD,
located in the Documents subgroup, shown in Figure 1-3 in Section 1.3.2.2.

Prerequisite skills:

» Use a browser to navigate the Nexus repository to locate test definitions and final report
artifacts

24

* Delete and/or push a simple text file into Nexus using the browser to generate new evaluation
runs

* Fill out a simple text template to define the test definitions
Work Flow:
* Get added to GitLab group
* Define test definitions for V&V testing, with data expert
* Communicate requirements with algorithm developer and Seascape maintainer
* Define automated processes run schedules, with Seascape maintainer

* View the reports

Get added to GitLab group In order to use and interact with the Seascape system, your GitLab
user must be added to the relevant program group within GitLab. Please provide this information
to the Seascape maintainer.

Define test definitions Often, the program sponsor will chose a select subset of data for each
algorithm to perform for V&V testing. While evaluating an algorithm against the entire dataset
does not require a test definitions file, running on a subset does. This subset of data should be
chosen with the data expert, as well as experts in algorithm V&V. The program sponsor should fill
out the test definitions example template file found in Appendix G. The file will then need to be
pushed to Nexus. More details can be found in Section 2.2.3.

Communicate requirements Some algorithms may require a specific OS, hardware, software,
or other requirements to run. These requirements should be levied through which machines are
available for GitLab runners to use. Program sponsors should work with the algorithm developers
to determine if and what requirements are necessary. GitLab runners are registered at the Seascape
level, and therefore should be registered, added, and maintained through the Seascape maintainer.
The program sponsor should communicate these requirements to the Seascape maintainer to im-
plement.

Define automated process schedules Two of the three automated processes within Seascape
run on a predetermined schedule. These can be altered to meet the needs of the program spon-
sor. Please work with the Seascape maintainer to make the appropriate selection and codify the
schedule in GitLab.

View report The evaluation report should be viewed regularly to validate results. The report is
found in Nexus in the following location:

25

Reports
<Your Program>
L,Algorithms
Lf<Your Algorithm Name>
L,<Your Algorithm Hash>
L,<Your Test Definitions Name>
L,report.html

Figure 2-2. Location of the final report within the Nexus artifact structure.
2.2 Incorporating a Data Set into Seascape

In order for Seascape to perform V&V against an algorithm, a properly curated data set must be
provided for reference. This section is primarily for the data expert role. The data set is accessed
programmatically by Seascape using Nexus and made available for command line or GUI using
Solr and Banana. A Solr core is created for each data set, given the appropriate artifacts. Once the
artifacts have been created, the data can be pushed into Solr and Nexus.

2.2.1. Required Artifacts

The following artifacts are required from the data expert in order to prepare for ingest into Solr and
Nexus:

* Raw image data
* Label data in JSON

¢ Solr schema definition in XML

Raw data must be provided in its raw format, with an accompanying label data JSON file with an
item name. For example, images with a raw Tag Image File Format (TIFF) format could be named
Image20200620-00954Z.tif with an associated label file Image20200620-00954Z.json. The label
data JSON will include a list of all labels within a single datafile. Any other additional information
is permitted in the JSON file. Each label in the label data JSON will include the following required
keys! :
featurelID: <string >
Note: Unique value across the entire database, for example UUID

class: <string >
Note: Class definition , can be as generic as "target"

"While the data expert may know that there is absolutely no ambiguity in arriving at lat-lon coordinated in relation
to the lat-lon present in the label (polygonGeo) and could therefore score in lat-lon space, there can be ambiguity
present in other algorithms when they arrive at lat-lon space (e.g. choosing an affine vs. perspective transform to
go from pixel space to lat long space). Therefore, some programs have required scoring in the native pixel space
to eliminate any ambiguity to allow for appropriate comparison in algorithm performance for the same dataset.
Please check with your program.

26

imagelD: <string >
Note: Associated image or data file name, without the full path

polygonPxl: <list of float pairs>
Note: Polygon corners in (x,y), also known as (column, row),
pixel location. This should be a closed polygon (first/last point
will be the same)

If the raw data is geo-located, then each label in the label data JSON will also include the following
keys:
polygonGeo: <list of float pairs>
Note: polygon corners in (longitude , latitude) decimal degree
location. This should be a closed polygon (first/last point will

be the same) and the corners should be in the same order as
the polygonPxl list.

geoTransform: <list of float triplets >
Note: the 3x3 transformation matrix used to convert polygonPxl
pixel coordinates to polygonGeo geo—coordinates.

An example of the label JSON data can be found in Appendix G. Once the raw data and label pairs
have been generated, the data needs to be prepared to generate a Solr core. Solr requires a schema
file to describe the database format. The schema file is unique to each data set and therefore must
be generated by the data providers. The Solr schema file is an XML file which describes the data
that Solr will index. The schema defines a collection of fields, both the field name itself and field
type are specified. Field type definitions are powerful and include information about how Solr
processes incoming field values and query values. An example of the Solr schema file can be
found in Appendix G. Generally, this function should be performed by the data expert.

2.2.2. Ingesting Data into Solr and Nexus

Once the required artifacts have been prepared, the following steps are performed by the Seascape
maintainer role to ingest the data into Solr and Nexus:

* Fuse data into a single Solr database document
* Post database document to Solr

* Ingest data into Nexus

Generally, this function is performed by the maintainer, who is responsible for Solr and Nexus.
First, data must be fused into a single Solr database document. This is a critical step in identifying
what information needs to be provided to Solr for the given data set, given future queries. In the
previous section, we identified the label JSON as important and required information. There is
likely additional information the developer or program would like to query on, such as where the
image is located on the planet or what time the image was taken. This is the step in which we
define additional information for future queries.

27

Seascape
L,Seascape—vv
<Your Program>
LfAlgorithms
Seascape—-Core
LfCommon
L,Ingest

h ingest_dataset.py
ingest_nexus.py

Figure 2-3. GitLab subgroup location of the generic ingest scripts.

If optional artifacts are available, such as those described in Sections 2.2.4.1 and 2.2.4.2, this
additional information can be fused during this step as well. The artifact which enables this step is
a list of dictionaries to serve as the single database document for Solr. Next, the database document
must be posted to Solr. Finally, the data must be ingested into Nexus. These are easy, common
commands that can be performed in a few ways. Generic ingest scripts for both Solr and Nexus
can be found in Figure 2-3.

If these scripts do not meet the data or optional data specific needs, you must create your own
script. If you do create your own script, work with the Seascape maintainer to add your script into
the repository. An example of a more specific ingest script is available in Appendix G, showing,
in Python, how to create the database document for Solr, post the document to Solr, and ingest
the data into Nexus. We include examples of adding optional information, such as the image time
from the image and sensor geometry from the image metadata.

2.2.3. Defining a Data Test Set

In this section, we discuss how to define which data an algorithm will be evaluated against. There
are two primary sets of data against which algorithms are run: the entire or full dataset and a,
generally much smaller, subset of data. The smaller subset is also called the baseline set. A
baseline is commonly used to do a quick comparison of results, or provide a quick assessment for
the algorithm team. There are two steps to define a test set:

¢ Create a test definitions JSON file

* Upload to Nexus

As discussed in Section 1.3.2.3, the test executor automated process looks at the algorithm commit
tag to determine if a full or baseline subset dataset will be used to evaluate the algorithm. The pro-
cess then looks at the test definition files in Nexus to determine which dataset name the algorithm
tag is associated with. A test definition file also describes which target classes to use in the dataset
(some datasets include many target types). The specific images comprising the baseline dataset are
also specified in the test definition file. Seascape-VV defaults to the baseline or smaller dataset,
preventing users from accidently beginning a lengthy evaluation process against all available data.
In order to evaluate against the entire dataset the tag in gitlab should include the five characters

28

TestDefinitions
L,<Your Program>
L,Algorithms
Lf<Your Algorithm Name>
L,<YourTestDefinitions.json>

Figure 2-4. Location of the test definitions files within the Nexus tree structure.

_full at the end of the tag name string. If the tag name string ends in _baseline, then a smaller,
baseline dataset will be used for evaluation.

Create a test definitions JSON file This file is created by hand in any editor the user is com-
fortable with. An example template file is available in Appendix G for the program sponsor role
to complete. The test definitions file provides the automated processes information as to which
dataset and which targets within the datasets to use. If a baseline, or subset dataset is desired,
those specific baseline data IDs are listed in this file. The test definitions JSON file should have
the following keys:

dataset: <string >
Note: Name of the dataset, consistent with the Nexus repository name

target_list: <string>
Note: List of target types to be evaluated by the algorithm

baselinelDs: list of <strings>
Note: A list of image names with file extension. This is the
list of images for baseline or default evaluations. Use of this key
by the automated system is controlled by the name of the algorithm tag
in GitLab.

An example test definition can be found in Appendix G.

Upload to Nexus This file must be placed within the TestDefinitions folder in the Nexus repos-
itory, under the appropriate program and algorithm, as visualized in Figure 2-4.

Numerous baseline test definitions can be generated, each defined by their their own JSON file.
If there are numerous baseline test definition files, each one will be evaluated when running in
baseline mode.

2.24. Optional Artifacts

Additional files are permitted and encouraged to further describe the data, which can be stored in
their own Solr core. These files are ensure the all possible pertinent information is found in the
database.

29

2.2.4.1. Additional data metadata

An accompanying metadata JSON file may be provided to further describe the original data. Addi-
tion information example include environmental conditions, sensor configurations, technical speci-
fications about the instrument or data, sensor geometry, wind conditions, daylight or nighttime col-
lections or sensor configurations. This filename must match the associated data file name with an
_metadata marker at the end of the filename. For example, data named Image20200620-00954Z.tif
would have an metadata file with the namelmage20200620-00954Z_metadata.json. This JSON file
can include as many or as little keys as desired. Additionally, this additional metadata file will be
ingested into the Solr data core and into Nexus along with the primary data and label data.

An example metadata JSON can be found in Appendix G. As this information is directly related
to a specific data product, it will remain with the data product within the Solr core.

2.2.4.2. Supplemental ground truth data

A supplemental ground truth Hierarchical Data Format 5 (HDFS) or ground truth context file may
also accompany the image and label. Supplemental ground truth information is defined as other
information pertaining to the location of a target as reported by another entity. For example, your
project may include images and labels on the location of a car within that image. The car may have
its own position information as reported by a GPS unit. This would be considered ground truth
information. This information is often critical for developers during algorithm RD and therefore
should be stored alongside the image and label in Nexus.
time: <string >
Note: time in epoch

lat: <float>
Note: latitude of the target in decimal degrees, from (-90,90)

lon: <float>
Note: longitude of the target in decimal degrees, from (-180,180)

Optional information about the target can be included, if relevant. HDFS5 attributes are highly
encouraged to properly describe units of measurement. An example ground truth HDFS5 can be
found in Appendix G. As this information is not necessarily related directly to a specific data
product, as not all ground truth information has an associated data product, it will get stored as its
own separate Solr core. A schema .xml file is required with this data.

2.3. Incorporating an Algorithm into Seascape

Seascape can incorporate an algorithm written in any language with only a few steps. Seascape
was developed with an emphasis on requiring very few changes to any existing code, as to not
interfere with the developers research and development process. The majority of work required
to incorporate an algorithm into Seascape involves preparing a small amount of additional support

30

code. When incorporating a new algorithm into Seascape, the Seascape maintainer and algorithm
developers must:

1. Prepare a release of the algorithm
2. Artifacts and Gitlab Structure
3. Creating a CI Schedule for your Algorithm

4. Adding Algorithm Tags

2.3.1. Prepare a Release of the Algorithm

The algorithm developer role prepares a release of the algorithm. Any algorithm being added to
Seascape has the following requirements:

* Must be callable from a shell script.
* It must be able to accept the full path name to an image

* Some algorithms require external information or data for operation. An example of this
might be a threshold value or a path to a file on disk containing weights for a trained machine
learning style classifier. These data must be must be specifiable as command line arguments,
in configuration files, or as environment variables. Any necessary files must be available
within Seascape, either in Gitlab or Nexus, depending on the file size.

* The final output must be a set of JSON files following the Seascape schema detailed below

The algorithm may also utilize any additional parameters and outputs. The GitLab CICD pipelines
which drive Seascape-VV communicate using the IFILE and OF ILE environmental variables.

IFILE is populated with the path to a text file containing newline-separated paths to each image
to be processed by the algorithm. For a baseline test, the list of images are described in the baseline
test definitions JSON in Nexus. The test definitions file is discussed in Section 2.2.3. For a full
evaluation, the test executor will select a portion of the entire dataset to run in each pipeline. The
maximum number of data items in each pipeline is specified by the max_image CI variable in the
.gitlab-ci.yml. Section 2.3.2 discusses the runAlgorithm. sh script.

OFILE is the path to a text file containing paths to each individual JSON result produced by the
algorithm. The output paths are newline-separated, one path for each image provided in IFILE.
Each JSON file will include a top level array of detection objects, each with the following keys:

31

featureID: <string >
Note: Unique value across the all algorithm runs. This may be a UUID
generated by the algorithm post processing code.

class: <string >
Note: Class definition , can be as generic as " target

(]

polygonPxl: <list of float pairs>
Note: Polygon corners in (x,y), also known as (column, row), pixel
location. This should be a closed polygon (first/last point are
the same)

An example of both the OFILE results text file and an individual image results JSON file can be
found in Appendix G.

2.3.2. Artifacts and GitLab Structure

Seascape
L,Seascape—VV
Lf<Your Program>
LfAlgorithms
L,<Your Algorithm Git Repository>

<algorithm specific code>
information. json
runAlgorithm.sh

Figure 2-5. GitLab group structure of the Seascape algorithm-level. This folder structure provides
the automated process framework for finding each artifact needed for algorithm benchmarking.

2.3.2.1. Create your algorithm git project

The Seascape maintainer is responsible for preparing the algorithm project folder in GitLab where
the algorithm repository and other artifacts will be located.

1. In GitLab/Seascape/Sescape-V V/Your_Program/Algorithms, click New Project
a) Project Name: <Your algorithm name>
b) Project URL: <Your algorithm name>

c¢) Click Create project

2.3.2.2. Required artifacts

Your algorithm git repository As described in Figure 2-5, each new algorithm repository to
house algorithm specific code and artifacts.

32

information.json This JSON defines the name and version of the algorithm, and is used by the
report generation tool when creating the report. The JSON file should have the following keys:

Algorithm: <string >
Note: Name of your algorithm

Version: <string >
Note: A moniker for the current version of the algorithm to use in the report

An example can be found in Appendix G.

runAlgorithm.sh This script is a wrapper for the algorithm. This artifact is created by the al-
gorithm developer. This allows flexibility in the algorithm’s language. The script is effectively
the interface between the test harness and the algorithm itself. It calls the algorithm with the re-
quired inputs, specified by Seascape-VV, does any pre-processing on the data (for example file
format conversion), provides any flags necessary to configure the algorithm, post-processes the al-
gorithm output, if necessary (for example converting the algorithm output to JSON), and provides
the resulting output to Seascape-V'V. The script should do the following:

1. Activate any necessary environments (for example a pip or Conda environment)
2. Compile the source code if necessary to produce an executable file

3. Provide data to an algorithm via the TFILE environmental variable, which contains the
image list as defined in TestDefinitions

4. Run the algorithm with the proper configuration on the image list, producing an appropri-
ately formatted output

5. Export the path of each data results to the OF ILE environmental variable environment vari-
able

6. Deactivate environment, clean up, if necessary

An example script can be found in Appendix G. This function is performed by both the maintainer
role, who is responsible for the creation of the algorithm GitLab structure, and by the algorithm
developer role, who is responsible for providing the algorithm Git repository and required arti-
facts.

2.3.23. Optional artifacts

Any additional files which will, for example, to support environmental creation or allow for easier
algorithm integration are welcome and encouraged. Any additional artifacts will be ignored by the
Seascape system. Please note, if you include any additional artifacts which may utilize a GitLab
runner, such as a GitLab CI/CD pipeline, please work with the Seascape maintainers to coordinate
this.

33

2.3.3. Creating a Cl Schedule for your Algorithm

In order to add an algorithm to the automated capabilities of GitLab CI CD, a new CI Schedule
needs to be created in Seascape-Core for each new algorithm. This is a task to be performed by
the maintainer role.

1. In GitLab/Seascape/Sescape-V V/Seascape-Core, click CI CD, click Schedules
a) Click New Schedule
i. Description: <Algorithm Name>
ii. Interval Pattern: <Cron Formatted Time denoted how after to run>
iii. Cron Timezone: UTC
iv. Target Branch: master

v. Variables:

Variable Value

algorithm_repo <Your Project>/<Algorithms>/<Your
Algorithm>

dataset_name <the dataset name from Nexus/Data>

score_metric <your algorithms score metric (iou,over-

) lap,etc)>
vi. . . .

target_list <list of targets from dataset in Nexus/-
Data> (no https://)

max_images <number of images per trigger per sched-
ule run>

max_triggers <number of triggers per schedule run>

max_pool_size <177777>

2.3.4. Adding Algorithm Tags

Seascape-VV, specifically the test executor, relies on tagged commits to specify which algorithm
version should be run through the Seascape-VV pipeline. The algorithm developer should tag a
commit in order to communicate to the pipeline that this is the version to use during evaluation.

Multiple tags can exist for separate commits. The following is how to tag an algorithm commit in
GitLab:

1. In GitLab/Seascape, go to your algorithm page.
2. Select Repository > Tags > New Tag
a) Tag name: <Your tag name>

b) Create from: <specific commit hash> or master

34

Your tag must be created from the master branch in order to be run within the automated pipelines.
Please note, test executor will only automatically evaluate algorithms with tags of suffix _full or
_baseline.

35

REFERENCES

[1] Apache solr reference guide.

[2] DOCKER. Install Docker Engine on Ubuntu.

[3] GITLAB. GitLab CI/CD Pipeline Configuration Reference.
[4] GITLAB. GitLab Continuous Integration & Delivery.

[5] GITLAB. Install GitLab Runner manually on GNU/Linux.

[6] NVIDIA. Installation Guide.

36

APPENDIX A. Setting up Seascape From Scratch

In this section, we describe step-by-step how Seascape is set up from scratch. These tasks are
performed by the Seascape maintainer. For most users of the Seascape system, there will already
be an installed Seascape instance available for use, and these steps will not need to be followed.

A

Before these steps are begun, the following software programs must already be installed onto the
system:

All steps below involving Docker are optional. Not all networks allow the use of
Docker. Please skip these steps as appropriate for your environment

e Solr
¢ Banana

¢ Nexus

¢ GitLab

A.1. Setting up Seascape From Scratch in GitLab

This section houses the specific steps to set up a brand new Seascape instance. The ordering is im-
portant. Please follow the sections and steps in order. This is a task for the Seascape maintainer.

A.1.1. Create a user access token

This user token will be used in the repositories created below
1. In GitLab, click your profile picture (upper right hand corner) and click Settings
2. Click Access Tokens
a) Name: seascape-vv
b) Check "api"
¢) Check "read_user"
d) Check "read_api"

e) Check "read_repository"

37

f) Check "write_repository"

g) Check "read_registry"

h) Check "write_registry"

i) Click Create personal access token

J) A token string will be displayed at the top.

k) Record the value of the token for future use. This will be used for the access_token
CI/CD variables later on

A.1.2. Create the Seascape group

The Seascape Group is the top-level gitlab object. It will house all other subgroups and repositories.
Steps:

1. In GitLab
a) Click Groups -> Explore Groups
b) Click New Group
i. Group Name: Seascape
ii. Visibility Level: Private
c¢) Click Create Group
d) Click Settings (Gear Icon)
1. Enter Description
ii. Click Save changes
iii. Expand Permission,LFS,2FA
A. Uncheck "Allow users to request access"
B. Check "Allow projects within this group to use Git LFS"
C. Default Branch Protections: Fully Protected
D. Allowed to create subgroups: Owners
E. Click Save Changes
e) Click Members

i. add each member with their respective roles

38

A.1.3. Create the Seascape-VV subgroup

The Seascape-VV GitLab group is a subgroup of Seascape. It will house all other Seascape-Core
and your projects algorithms needed for Seascape-V'V. Steps:

1. In GitLab, browse to Seascape

a) Click New Subgroup
b) Enter:

1. Group Name: Seascape-VV

ii. Visibility Level: Private

c¢) Click Create Group
d) Add CI/CD Variables

1. Click Settings->CI/CD

ii. Expand Variables and Enter (uncheck Protected Variable for all):

Variable

Value

access_token

access_token_username

assessor
dataset_repo
docker_registry
ii. gitlab_url
nexus_url
report_def_repo
report_repo
score_metric
test_def_repo
test_results_repo
timeout_seconds

A.1.4. Create a GitLab runner(s) for Seascape

<the user access token created above>

<the username associated with the access

token>

correlation

Data

777

<your main gitlab url (no http://)>
<your main nexus url>
ReportDefinitions
Reports

iou

TestDefinitions
Results

7200

A GitLab Runner is a Linux computer that will be set up and used to run the algorithms, calculate
their performance, and create reports of results through the GitLab CI/CD mechanism. At least

one is required, however, more is preferred.

This can be done on any machine of your choice. The specific instructions will be for Ubuntu

18.04

Steps:

. Install GitLab Runner [5]

>> curl -LJO <https ://Path/To/GitLabRunner.deb>

>> dpkg -i <GitLabRunner.deb>

. Install Docker [2]

>> curl —fsSL https:// get.docker.com —o get—docker.sh

>> sudo sh get—docker.sh
>> sudo usermod —aG Docker gitlab —runner

. Start and Enable Docker

>> sudo systemctl
>> sudo systemctl

. Install Nvidia-Docker [6]

>> distribution=\$ (.
>> curl -s -L <https/To/nvidia—-docker/gpgkey
>> curl -s -L <https/To/nvidia—-docker.list >

| sudo tee </Path/To/nvidia-docker.list >

>> sudo apt update

>> sudo apt install -y nvidia—-docker2

. Install Ansible

>> sudo apt-—get

. Install Vagrant

>> sudo apt-—get

. Install VirtualBox

>> sudo apt-—get

. Install Git LFS

>> sudo apt-—get

install

install

install

install

start
enable docker

docker

Ansible

vagrant

virtualbox

git—1fs

40

/etc/os—release ;echo \$ID\$VERSION_ID)

sudo apt-key add - \

A.1.5. Register GitLab runner(s) to Seascape

This sections will register your newly created GitLab Runner(s) to Seascape.

Exercise forethought in choosing tag names for your runners. Avoid program- or
A hardware-specific names (unless actually necessary for a particular algorithm). Pre-
fer name such as “has-nvidia”, “has-docker”, etc. Also avoid version tags, such as
“has-python-3.9”. Generic names will make it easier to upgrade hardware or handle
program renames.

Prerequisites:
1. Must have at least one gitlab-runner setup
Steps:
1. In GitLab, browse to the Seascape Group
a) Click Settings (Gear Icon) -> CI/CD
b) Expand Runners
i. Under Setup a group runner manually
A. Record the value of "Register the runner with this URL:"
B. Record the value of "And this registration token:"
2. On the GitLab Runner host
>> sudo gitlab —runner register
a) Uses the following Settings
i. Enter the URL from above
ii. Enter the registration token value from above
iii. Enter a description: <machine name>-shell

iv. Enter tags for the runner: docker,nvidia-docker,shell-runner,seascape,seascape-
shell,<machine name>-shell

v. Enter an executor: shell

>> sudo gitlab —runner register

a) Uses the following Settings
i. Enter the URL from above

ii. Enter the registration token value from above

41

iii. Enter a description: <machine name>-docker

iv. Enter tags for the runner: docker-runner,seascape,seascape-docker,<machine name>-
docker

v. Enter an executor: docker

vi. Enter default Docker image: alpine:latest

3. In GitLab, browse to the Seascape Group

a) Click Settings->CI/CD

b) Expand Runners

¢) For each runner

i. Click edit (pencil icon)
A. Check "Paused runners doesn’t accept new jobs"

B. (only shell runners) Check "Indicates whether this runner can pick jobs with-
out tags"

C. Click Save Changes

A.1.5.1. Setup the Seascape-Core repository

Seascape-Core houses the full capability of Seascape including the automation of testing.

Prerequisites:

1. Obtained seascape-core-master.tar.gz

Steps:

1. On Linux Box

>>
>>
>>
>>
>>
>>

tar —xvf seascape—core—master.tar.gz

cd seascape-—core—master
git init
git add
git commit —-m "Initial"

git push ——set—upstream
<http /To/GitLab/Seascape/Seascape —-VV>/Seascape—Core. git master

2. In Gitlab

a)
b)

Browse to Seascape/Seascape-V V/Seascape-Core

Create a Trigger
1. Click Settings -> CI/CD

42

ii. Expand Pipeline triggers
A. Description: Performance
B. Click Add Trigger
C. Denote Token:
D. Denote Trigger URL (last line of curl command):
¢) Add CI/CD Variables
1. Click Settings -> CI/CD

ii. Expand Variables and Enter (uncheck Protected Variable for all):

Variable Value
algorithm_repo ExampleAlgorithms/Huron
max_images 1

1i. max_triggers 2
max_pool_size 10
performance_trigger_token <token denoted above>
trigger_url <trigger url denoted above>

A.1.5.2. Adding the Example Algorithm

1. In GitLab, browse to Seascape/Seascape-VV
a) Click New Subgroup
b) Enter:
i. Group Name: ExampleAlgorithms
ii. Visibility Level: Private
c¢) Click Create Group
2. Obtained Huron-master.tar.gz
3. On Linux Box

a) Copy over Huron-master.tar.gz

>> tar —xvf Huron—-master.tar.gz
>> c¢d Huron—-master
>> git init

>> git add .
>> git commit -m "Initial"
>> git push ——set—-upstream

<http /To/GitLab/Seascape/Seascape -VV/ExampleAlgorithms >/Huron. git master
4. In Gitlab, browse to Seascape/Seascape-V V/ExampleAlgorithms/Huron

43

a) Click Repository->Tags
b) Click New tag
¢) Enter:
1. Tag Name: v1_baseline

d) Click Create Tag

A.1.5.3. Testing the Example Algorithm

1. In GitLab, browse to Seascape/Seascape-V V/Seascape-Core
a) Click CI/CD -> Schedules
b) Click New schedule
c) Enter:
i. Description: Huron
ii. Uncheck Active
d) Click Save Pipeline Schedule
e) Click the Play button on the schedule you created
f) Click CI/CD -> Pipelines

g) Verify all Pipelines successfully complete

A.2. Putting Your Program in Seascape

Seascape can incorporate an arbitrary number of programs. A program is defined as an area that
will hold multiple algorithms.

A.2.1. Create your program space in GitLab

1. In Seascape/Seascape-V'V, click New subgroup
a) Group Name: <Your Program Name>
b) Group URL: <Your Program Name>
c¢) Click Create Group

44

A.2.2. Add the Seascape harness to your program

1. In GitLab/Seascape/<Your Program Name>, click New subgroup

a) Group Name: Harness

b) Group URL: Harness

¢) Click Create Group

1. In GitLab/Seascape/<Your Program Name>/Harness, click New project

a) Click Create blank project

b) Project Name: Performance

c) Project URL: Performance

d) Click Create Project

e) Click Settings->Repository

f) Expand Mirroring repositories

L.

1.
1ii.
1v.
V.
Vi.
vii.

viii.

Git Repository URL: https://<your username>@<your gitlab url>/Seascape/Ref-
erence/Harness/Performance.git

Mirror direction: Pull

Authentication method: Password

Password: <your gitlab password>

Check Overwrite diverged branches

Click Mirror Repository

Click the refresh button next to row created (circle arrows)

Check default branch and protected branch settings, and set them to match the
original repository, if necessary

2. Go back to GitLab/Seascape/<Your Program Name>/Harness

a) Click New project

b) Click Create blank project

i. Project Name: Reports

ii. Project URL: Reports

iii. Click Create Project

c) Click Settings->Repository

d) Expand Mirroring repositories

45

1.
1ii.
1v.

V.
Vi.

Vii.

Viii.

. Git Repository URL: https://<your username>@<your gitlab url>/Seascape/Ref-

erence/Harness/Reports.git

Mirror direction: Pull

Authentication method: Password

Password: <your gitlab password>

Check Overwrite diverged branches

Click Mirror Repository

Click the refresh button next to row created (circle arrows)

Check default branch and protected branch settings, and set them to match the
original repository, if necessary

e) Click CI/CD -> Schedules
f) Click New Schedules

1.
il.
ii.
1v.
V.

Vi.

Description: GenerateReports
Interval Pattern: Custom 1 * * * *
Cron Timezone: UTC

Target Branch: master

Check Activate

Click Save pipeline schedule

A.2.3. Add the Algorithms subgroup

1. In your program area, click New subgroup

a) Group Name: Algorithms
b) Group URL: Algorithms

c¢) Click Create Group

A.2.4. Add your algorithms

Please reference Section 2.3

46

APPENDIX B. Adding Algorithms via Docker

Seascape can also incorporate algorithms wrapped within a docker container. Algorithm Devel-
opers can use this capability to make their algorithms more portable, allowing them to ship the
algorithm with pre-installed dependencies, instead of installing the dependencies at runtime. This
appendix outlines the responsibilities of integrating a Dockerized algorithm into Seascape between
the algorithm developer and Seascape maintainer. This section also assumes the Algorithm Devel-
oper interested in Dockerizing their application will already be familiar with the basics of docker.

B.1. Seascape Maintainer Responsibilities

B.1.1. Prerequisites

* Algorithm Repository has been created in Seascape as per Section 2.3.2

* Possesses the source code or Docker container for algorithm that meets algorithm developer
requirements as per Appendix B.2.3

* Agreed upon Docker container tag provided by the Algorithm Developer

— tag_name:

B.1.2. Gather Information

1. Denote the Seascape Algorithm path
a) Login into the Seascape and browse to your Algorithm Repo
b) Look at the URL and Denote:

1. algorithm_path: /seascape/seascape-vv/

» example: /seascape/seascape-vv/examplealgorithms/huron-docker
2. Get the gitlab URL:port
a) In your Algorithm Repo
1. Click Packages & Registries -> Container Registries

ii. Click CLI Commands

47

iii. Look at the text of the login command, denote the gitlab_url_port as everything
after "Docker login"

A. gitlab_url_port:

* example: cee-gitlab.sandia.gov:1234

B.1.3. Build and Push Docker Image into Seascape

This section outlines the best practice of this goal, acknowledging there are other ways to build
and push. The Algorithm Developer may have provided you with a pre-built Docker container, or
the algorithm source code and a Docker file. If pre-built, extract the image and skip to step 5.

1.

2.

git clone <Algorithms source repository>

cd into directory

. Docker login <gitlab_url_port>

Docker build -t <gitlab_url_port>/<algorithm_path>:<tag_name>
» example: Docker build -t cee-gitlab.sandia.gov:1234/examplealgorithms/huron-docker:v1.0.0
Docker push <gitlab_url_port>/<algorithm_path>:<tag_name>

» example: Docker push cee-gitlab.sandia.gov:1234/examplealgorithms/huron-docker:v1.0.0

B.1.4. Verify Image in Seascape

This section outlines the best practice of this goal, acknowledging there are other ways to verify.
After pushing your algorithm to gitlab, verify that it is there by:

1.
2.

3.

Navigate to the algorithm repo
Click "Packages & Registries" -> "Container Registries"

Click on <algorithm_path>/ Root image

4. Verify your <tag_name> exists

B.1.5. Runners

Make sure that the machines designated as gitlab runners have Docker installed and accessible by
the gitlab-runner user.

48

B.2. Algorithm Developer responsibilities

B.2.1. Gather Information

1. Work with the Seascape Maintainer to establish where the Docker image can be pulled from.

2. Obtain the appropriate login credentials to the container registry

B.2.2. Containerize the Algorithm

This can be done in many ways, however the container still needs to coordinate with runAlgo-
rithm.sh to pass the appropriate values to the algorithm within the container. Tried and true meth-
ods of passing data to the algorithm include using Docker volumes as well as sending them over
local host.

The one restriction to using Docker containers is to not use bind mounts. Bind
A mounts allow the Docker container to potentially leave behind file artifacts that the

gitlab-runner user does not have permission to use. The runner will then fail all

subsequent runs until the offending files are removed, likely with sudo/root access.

B.2.3. runAlgorithm.sh

The runAlgorithm.sh scripts needs to include the following steps, in addition to the requirements
found in section 2.3.2.2:

1. Pull the Docker image from the algorithm container registry. Example:

docker_tag=v1.0.0

docker_image=cee—-gitlab.sandia.gov:1234/seascape/seascape-

vv/ examplealgorithms/huron-docker
docker_image=$docker_image:S$Sdocker_tag
echo "docker_registry: Sdocker_registry"

Docker login -u ${access_token_username} -p ${access_token}

Docker pull ${docker_image}

2. Run the Docker image

* This can be done in many ways and it is up to the developer to decide how to ingest the
contents of IFILE and output the results to OFILE

3. Save the OFILE results in $pwd/results.txt

4. Stop and remove the Docker container. Example:

49

Sdo

Docker rm \$ (Docker stop \$Docker id) || true

5. Clean up
* Deactivate and remove any conda environments

* Clean up any other changes introduced by the Docker container

50

APPENDIX C. Seascape Core Development Process

The maintenance and expansion of the core Seascape capabilities should minimally impact the
users of Seascape. The best method for the Seascape maintainers to accomplish this includes pro-
viding updates via the typical test, development, and production phases of software development.
This will allow for adequate testing of the new additions which ensuring all users of Seascape are
kept up to speed with any changes they must make.

In this section, we describe the Seascape Core development process. This process uses two Nexus
Databases (Test and Prod) and contains three development phases: Development (Dev), Test, and
Production (Prod).

C.0.1. Terminology
C.0.1.1. Nexus Databases

e Test

— The database that the Seascape maintainer(s) will interact with during the Dev and Test
phases

— Dev branches and the Staging branch interact with this database
* Prod
— The production database

— The Master branch interacts with this database

C.0.1.2. Development Phases

e Dev

Uses the Nexus Test Database

Development branches, cloned from the Staging Branch, are utilized in this phase

The Seascape maintainer will determine the test(s) to prove their changes are correct

Nexus entries will be under <commit_hash>_ <dev branch name> folders

e Test

— Uses the Nexus Test Database

51

¢ Prod

The Staging branch is utilized in this phases

Staging CI schedules are defined by the Seascape maintenance team in order to robustly
test Seascape as a whole

Nexus entries will be under <commit hash>_staging folders

x These folders are deleted periodically to ensure that the full processing of Seascape
takes place on the Staging branch

Uses the Nexus Prod Database
Nexus entries will be under <commit hash>_staging folders

* Only changes that pass Test and are accepted by the Seascape maintenance team
are incorporated into the Master Branch

C.0.2. Development Process

¢ Dev

1.

A GitLab Issue that documents the bug/enhancement/feature needs to exist. This can
be create by a developer or the team.

. During a Seascape maintenance team meeting, the Seascape maintenance team will

come to consensus about what issues need to be pursued. An issue will be assigned to
a developer.

. The Seascape maintainer will then create:

— A development branch cloned from the Staging branch
— Dev CI Schedule(s) that points the development branch

The Seascape maintainer will do all development on their development branch, while
frequently pulling from the Staging branch continuously incorporate new changes from
others.

. The Seascape maintainer will use their DEV CI Schedule(s) to test their changes.

The Seascape maintainer will also create unit tests to cover their new/changed code.

Once the changes have been completed, the Seascape maintainer will create a Merge
Request into the Staging branch

. The Seascape maintenance team will review the Merge Request including the Issue

and Source code. The Seascape maintenance team will either accept the merge or
communicate that more work/changes need to be made

— This includes unit test coverage and success of those tests

52

9. Once the Merge Request is accepted, the Seascape maintainer can move onto the Test
phase.

e Test

1. In the most common case, the Seascape maintainer will just need to wait for the all of
the STAGING CI Schedules to complete successfully.

— In some cases, the Seascape maintainer might need to create their own STAGING
CI Schedule(s) to test their changes in the Test phase.

2. If errors occur, based on the problem, the Seascape maintainer will either:

— If the problem is large, remove the changes from the Staging branch, and go back
to the Dev phases

— If the problem is small, make the change to the Staging branch.

3. Once all STAGING CI/CD Schedules complete successfully, the Seascape maintainer
will schedule time with the Seascape maintenance team to show the results and discuss.

4. If the Seascape maintenance team agrees that the change is appropriate and of qual-
ity, the Seascape maintenance team can decide to merge the changes into the Master
branch.

¢ Prod

1. a. This is the production version of Seascape. It will run the Master branch which is
the most up-to-date, APPROVED code against the Nexus Prod Database.

53

APPENDIX D. FAQs

How do I pull data onto my local machine to train with? Use the function get_repo_con-
tents found in the nexusmanip.py file within the Common configuration code repository, in
Figure D-1.

Seascape
Common
L,Ingest
L,nexusmanip.py

Figure D-1. GitLab subgroup location of the nexusmanip.py function, which has functions to inter-
act with Nexus.

How do | run the pipeline automatically? Assuming that there is a dataset and algorithm
already in your program and Seascape has been configured by the Seascape maintainer to run your
algorithm, there are two tasks to initiate an evaluation run.

The first task is to create a test definitions file and push it to Nexus. This is described in detail in
Section 2.2.3. If there is already a test definitions file in Nexus to meet your needs, you can skip
this step.

The next step is to tag an algorithm commit. This identifies an algorithm version for evaluated,
as well as further articulates which dataset is the algorithm being evaluated against. Detailed
directions can be found in Section 2.3.4.

Finally, as test executor runs on a schedule, please wait until test executor has executed the appro-
priate processes, evaluated the algorithm, and generated a report.

How do I run the pipeline by hand? Assuming that there is a dataset and algorithm already
in your program, that Seascape has been configured by the Seascape maintainer to run your algo-
rithm, and that there are test definitions and an algorithm commit tag in place, GitLab CI provides
the ability to initiate a process by hand.

First, go to the GitLab process group you would like to run. For example, if you would like to
re-generate a report by hand, go to the Reports repository, located in Figure ??.

* Click CI/CD -> Schedules
* Click the play button

54

As a reminder, processes check for the existence of the artifact they create. Therefore, you need to
remove that artifact from Nexus if you intend to recreate and replace it.

How do | access a report? The evaluation report is found in Nexus in the following loca-
tion:

Reports

Seascape

L,<Your Program>

LfAlgorithms
L,<Your Algorithm Name>
| <Your Algorithm Hash>
L,<Your Test Definitions Name>
L,report.html

Figure D-2. Location of the final report within the Nexus artifact structure.

How do | determine where to start with Seascape? The first step is to understand which
role you have within Seascape. Roles are described in Section 1.3.1. Next, look in Section 2.1 to
see which tasks are performed by each role. This section will point you to the correct tasks.

How do | know if my algorithm was incorporated into Seascape correctly? The eas-
iest way to ensure an algorithm was correctly incorporated into Seascape is to look at the pipeline
success indicator. If the pipelines all executed, next check if the correct artifacts were generated
in Nexus, in reverse creation order. Ensure the final report was generated in Nexus. If the report
is not there, verify that results were generated for each image within their appropriate location in
Nexus.

55

APPENDIX E. Software Installation List

The following is a list of software packages and libraries necessary to stand up the Seascape sys-
tem.

o The following assumptions and notes are made:

1. There is access to conventional software repositories such as PyPi or conda
2. These will be installed on a Linux-type operation system

3. Some programs inherently use libraries provided with the operation system.
This document does not include those dependencies, for example, libraries in-
stalled with OS package managers such as yum, apt, etc.

4. There is a strong preference, but not a requirement, to have access to a RHEL
satellite server

The following software programs are required to install Seascape:

e GitLab Version 12.4.2

Solr 7.7.0

* jts-core 1.15.0

Java 1.8.0_192
* Java Hotspot 64-Bit Server VM build 25.192-b2 mixed mode

e Banana 1.6.25

Nexus 3.24.0-02

* Custom Seascape (Huron, optional) python and javascript files

In addition to the above mentioned packages, Python 3 must be installed on the system with ac-
cess to the libraries listed in Table E-1 in order to run the custom Seascape (Huron, optional)
software. Please note these package names and version are as they appear when utilizing the Ana-
conda Python package manager. There is no guarantee that the names or versions would appear
identically as they would in another repository, such as Pip.

56

If installation of Huron, the test algorithm, is desired, the additional python packages are listed
in Table E-2. Please note these package names and version are as they appear when utilizing the
Anaconda Python package manager. There is no guarantee that the names or versions would appear
identically as they would in another repository, such as Pip.

57

Table E-1. This table include all required python packages to install Seascape.

Name Version Name Version
_libgcc_mutex 0.1 py 1.10.0
_openmp_mutex 4.5 pycparser 2.21
attrs 21.2.0 pyopenssl 21.0.0
beautifulsoup4 4.10.0 pyparsing 3.04
brotlipy 0.7.0 pysocks 1.7.1
bs4 0.0.1 pytest 6.2.5
ca-certificates 2021.10.26 pytest-cov 3.0.0
certifi 2021.10.8 python 3.9.7
cffi 1.15.0 python-dateutil | 2.8.2
chardet 3.04 python-gitlab 24.0
coverage 5.5 python-slugify | 5.0.2
cryptography 35.0.0 pytz 2021.3
cycler 0.11.0 readline 8.1
dill 0.3.4 requests 2.22.0
fonttools 4.28.3 rtree 0.9.7
idna 2.8 scikit-learn 1.0.1
iniconfig 1.1.1 scipy 1.7.3
jinja2 3.0.3 seaborn 0.11.2
joblib 1.1.0 seascape 0.1.0
kiwisolver 1.3.2 setuptools 58.0.4
1d_impl_linux-64 2.35.1 setuptools-scm | 6.3.2
libedit 3.1.20210910 | shapely 1.8.0
libffi 33 Six 1.16.0
libgce-ng 9.3.0 soupsieve 2.3.1
libgomp 9.3.0 sqlite 3.36.0
libstdcxx-ng 9.3.0 text-unidecode | 1.3
markupsafe 2.0.1 threadpoolctl 3.0.0
matplotlib 3.5.0 tk 8.6.11
multidict 5.2.0 toml 0.10.2
multiprocessing-on-dill | 3.5.0a4 tomli 1.2.2
ncurses 6.3 tqdm 4.62.3
numpy 1.21.4 tzdata 2021e
openssl 1.1.11 urllib3 1.25.11
packaging 21.3 wheel 0.37.0
pandas 1.3.4 XZ 5.2.5
pillow 8.4.0 yarl 1.7.2
pip 21.24 zlib 1.2.11
pluggy 1.0.0

58

Table E-2. This table include all required python packages to install Huron.

Name Version Name Version
blas 1 libtiff 4.0.10
bzip2 1.0.8 libuuid 1.0.3
ca-certificates 2019.10.16 libxcb 1.13
cairo 1.14.12 libxml2 299
certifi 2019.9.11 matplotlib 3.1.1
cloudpickle 1.2.2 mkl 20194
curl 7.55.1 mkl_fft 1.0.14
cycler 0.10.0 mkl_random 1.1.0
cytoolz 0.10.0 mkl-service 2.3.0
dask-core 2.6.0 ncurses 6.1
dbus 1.13.6 networkx 2.4
decorator 4.4.0 numpy 1.17.2
expat 2.2.6 numpy-base 1.17.2
fontconfig 2.13.0 olefile 0.46
freetype 29.1 openjpeg 2.3.0
freexl 1.0.5 openssl 1.0.2¢
gdal 2.3.2 pcre 8.43
geos 3.6.2 pillow 6.2.0
giflib 5.14 pip 19.3.1
glib 2.56.2 pixman 0.38.0
gst-plugins-base | 1.14.0 poppler 0.65.0
gstreamer 1.14.0 poppler-data 0.4.9
hdf4 42.13 proj4 5.0.1
hdf5 1.10.2 pyparsing 2.4.2
icu 58.2 pyqt 59.2
imageio 2.6.1 python 3.7.0
intel-openmp 20194 python-dateutil | 2.8.0
jpeg 9b pytz 2019.3
json-c 0.13.1 pywavelets 1.1.1
kealib 1.4.7 qt 5.9.6
kiwisolver 1.1.0 readline 7

krb5 1.16.1 scikit-image 0.15.0
libboost 1.67.0 scipy 1.3.1
libcurl 7.61.1 setuptools 41.4.0
libdap4 3.19.1 shapely 1.6.4
libedit 3.1.20181209 | sip 4.19.8
libffi 3.2.1 six 1.12.0
libgce-ng 9.1.0 sqlite 3.30.0
libgdal 232 tk 8.6.8
libgfortran-ng 7.3.0 toolz 0.10.0
libkml 1.3.0 tornado 6.0.3
libnetcdf 4.6.1 wheel 0.33.6
libpng 1.6.37 Xerces-c 322
libpq 10.5 Xz 524
libspatialite 4.3.0a 59 | alib 1.2.11
libssh2 1.8.0 zstd 1.3.7
libstdcxx-ng 9.1.0

chapterTerminology

E.1.

Git

Some basic Git terminology is useful in understanding and working with Git and GitLab (see sec-
tion 1.3.2.1). These terms are used in the rest of the manual as defined here. For more information
on Git, consult Stack Overflow or the Git web site at https://git—scm.com/.

Some key terms:

Repository (also abbreviated as repo): a repository is a collection of files on a server
Clone: cloning downloads the repository from the server

Branch: a branch is a change history

Merge: applying one branch’s changes onto another branch

Commit: staging changes to send to the main repository

Push: sending changes to the main repository

Git has a few concepts that are important to remember:

E.2.

To add changes to tracking, use git add <path>. Multiple files can be added at once by
specifying multiple paths or the path to a directory.

Git doesn’t automatically track all files in a directory; to add a file to change tracking, use
git add <path>. Multiple files and directories can be added in the same way as done when
adding changes from already-tracked files.

To bundle changes and add them to the local change history, use git commit.

To push committed changes to a repository, use git push.

GitLab

Group: a group is a collection of groups or projects, analogous to a directory on a file system
Subgroup: a subgroup is a group that is a child of another group
Project: a project is a Git repository, along with things like pipelines, artifacts, etc.

Artifacts: artifacts and outputs of pipelines, and can include (among other things) binaries,
documentation, and test results

60

E.3. GitLab CI/CD

E.3.1. Runners

A runner is a machine running a worker process that accepts jobs from a GitLab server and exe-
cutes the pipeline as defined in the configuration file (see section E.3.2).

Tags A tagis a descriptive string associated with a particular commit. Jobs can be assigned to
particular machines with zags that have been associated to specific runners. This is generally done
to ensure that necessary software or hardware, such as Docker or a particular type of graphics card,
is present on the machine executing the pipelines.

Executor An executor is the method of execution on a runner machine. The most commonly
used executor methods are:

* shell - Commands are run directly on the machine.

* Docker - A Docker container is started on the machine, and the pipeline is executed in the
container.

E.3.2. Pipelines

A pipeline is an ordered collection of stages. A pipeline is defined in a YAML-formatted file com-
monly named . gitlab-ci.yml. This configuration file is discussed in more depth in Section E.3.2.

.gitlab-ci.yml The configuration of a CI pipeline is controlled by the configuration file.

Stages Stages are unordered collections of jobs. All jobs that are defined to run in a particular
stage are run in parallel[3]. Stages are defined in the .gitlab-ci.yml file as a list:

stages:
- build
- test

Figure E-1. Stage Configuration in .gitlab-ci.yml

Stages can have any name, including spaces (although as a matter of good practice, you should
avoid using spaces). Common names include:

* build

e test

61

* deploy
¢ clean

« publish

It is important to note that stages run in the order they are defined. In Figure E-1, the execution
order would be build, test. Switching the order of the stages would produce wildly different (and
profoundly more disappointing) results.

Jobs A job is the unit of work in GitLab CI. Each job is composed of several parts, with the
most important covered here.

cmake:
stage: build
before_script:
- mkdir build && cd build
script:
- cmake
- make
artifacts:
paths:
— build

Figure E-2. Job Configuration in .gitlab-ci.yml

name Every top-level unknown key in an otherwise valid configuration file is parsed by GitLab
Cl as a job, with the key serving as the name of the job. In the example in Figure E-2, the name of
this job would be cmake.

stage Each job must have a stage key. The value of the key is the stage to which the job is
assigned.

before_script A job may have a before_script key. The value of the key is a list of shell
commands to be executed before anything else takes place. If all jobs have the same commands in
before_script sections, they can be abstracted into a top-level before_script section that applies to
all jobs in the pipeline configuration.

script Each job must have a script key. The value of the key is a list of shell commands to
execute. This is where you will place the command to build and test your algorithms.

62

artifacts Artifacts are outputs of jobs. These can include binaries, documentation, or other
products of the shell commands in the script section. The artifact key can have several keys that
control when artifacts expire (are no longer available to view or download), how they are stored,
etc. For this manual, we will only cover the paths key. The artifacts.paths key has as its value a
list of paths from the root of the repository to artifacts that are to be stored. Directories are valid
artifacts, and will save the directory and all of its contents. In the example in Figure E-2, the build
folder would be saved and downloadable.

E.4. Nexus

E.4.0.1. Repository

A repository 1s a structured collection of components (section E.4.2). Conceptually, it is organized
like a filesystem on disk, with hierarchical folders. Each repository is associated with a blob
(Section E.4.1).

E.4.1. Blob (Binary Large Object)

A blob or blob store is the raw storage format for Nexus. Typically, there is one blob per repository,
in order compartmentalize changes to repositories or migrations.

E.4.2. Component

Components are the items requested by a build system, package manager, or other client to the
Nexus instance. A typical example of this would be a PyPi package. Components can contain
exactly one asset, as would be the case with an artifact like a PDF document. A PyPi component,
on the other hand, contains a variety of assets, including the code, the setup file, examples of use,
and many other files. A JAR component would contain at least a POM file and the compiled JAR
files themselves. Components can also contain other components.

E.4.3. Asset

An asset is the fundamental item of storage. An archive file, PDF document, text file, or other type
of file is an asset.

E.5. Solr

E.5.1. Core

A core is a single index and the related configuration and log files [1].

63

E.5.2. Index

A Solr index 1s a searchable data structure that returns documents matching queries[1]. A document
is a collection of fields, which can be data or text references to where data can be accessed[1].

64

APPENDIX F. Miscellaneous Notes

If you are used to the version control system known as Subversion there are a few important
differences to note when you are using Git:

* Multi-stage push: svn commit adds changes in tracked files to the change history and sends
them to the main repository, whereas Git uses two commands to accomplish the same task:

— git commit adds changes to a local copy of your repository
— git push sends all the changes in your local repository to the server (or origin).

* When a Git repository is cloned, all branches are cloned as well, making your local copy a
complete working copy of the repository

* git clone does equal svn checkout

* git checkout does not do the same thing as svn checkout
— git checkout <file> updates a single file from the server repository
— git checkout -b <branch name> creates a new branch

— git checkout <branch name> switches to a branch

65

APPENDIX G. Example Code

Example code and files are available in:

Seascape
Your Project
Documentation
L,Developers
files

Figure G-1. GitLab subgroup location of example files and code.

66

APPENDIX H. Acronyms

This section lists all acronyms used in this document.

API
ATR
CD

CI
CLI
CPU
GPU
GUI
HDFS
ICD
JSON
ML
NDA
OS
RD

Application Programming Interface

automatic target recognition

Continuous
Development/Deployment

Continuous Integration
command line interface
Central Processing Unit
Graphics Processing Unit
Graphical User Interface
Hierarchical Data Format 5
Interface Control Document
JavaScript Object Notation
Machine Learning
non-disclosure agreement
operating system

research & development

REST
SME
SSH
TCP/IP

TIFF
VLAN
VM
VNC
VPC
VPN
V&V
HTTP
XML
UUID

67

Restful State Transfer
Subject Matter Expert
Secure Shell Protocol

Transmission Control
Protocol/Internet Protocol

Tag Image File Format
Virtual Local Area Network
Virtual Machine

Virtual Network Computer
Virtual Private Cloud

Virtual Private Network
validation and verification
HyperText Transfer Protocol
Extensible Markup Language

Universally Unique IDentifier

DISTRIBUTION

Hardcopy—Internal

Number of :
Copies Name Org. Mailstop
1 John R. Dickinson 6773 0972
1 Jeffrey A. Mercier 6770 0980

Email—internal I

Name

Org.

Sandia Email Address

Technical Library

1911

sanddocs@sandia.gov

68

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

