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Abstract

Current state-of-the-art gasoline direct-injection (GDI) engines use multiple injections as one of the key technologies
to improve exhaust emissions and fuel efficiency. For this technology to be successful, secured adequate control of
fuel quantity for each injection is mandatory. However, nonlinearity and variations in the injection quantity can
deteriorate the accuracy of fuel control, especially with small fuel injections. Therefore, it is necessary to understand
the complex injection behavior and to develop a predictive model to be utilized in the development process. This study
presents a methodology for rate of injection (ROI) and solenoid voltage modeling using artificial neural networks
(ANNs) constructed from a set of Zeuch-style hydraulic experimental measurements conducted over a wide range of
conditions. A quantitative comparison between the ANN model and the experimental data shows that the model is
capable of predicting not only general features of the ROI trend, but also transient and non-linear behaviors at
particular conditions. In addition, the end of injection (EOI) could be detected precisely with a virtually generated
solenoid voltage signal and the signal processing method, which applies to an actual engine control unit. A correlation
between the detected EOI timings calculated from the modeled signal and the measurement results showed a high

coefficient of determination.
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Abbreviations

ANN Artificial neural network ICE Internal combustion engine

CFD Computational fluid dynamics ICLC Injector closed-loop control

COSI Controlled Solenoid Injection ML Machine-learning

ECU Engine control unit NVH Noise, vibration, and harshness

EMF Electromotive force PFI Port fuel injection

EOI End of injection ROI Rate of injection

GDI Gasoline direct-injection SOI Start of injection

HDA Hydraulischen Druckanstieg Analysator VCI Valve Controlled Injection
Nomenclature

a Speed of sound [m/s] p Density of the fuel [kg/m?]
AP thoost Solenoid boosting phase [ms]

Pressure difference across the nozzle

m Injected mass [kg] telose Valve closing delay [ms]
tror End of injection timing [ms] thold Solenoid holding phase [ms]
Linj Coil energizing time [ms] tpeak Solenoid picking phase [ms]

(injection command pulse duration)

topen Valve opening delay [ms] tsor Start of injection timing [ms]
m Injected mass [kg] Truet  Fuel temperature [°C]

Ostat Static flow rate [g/min] i Regression weight vector at (i,j) [a.u.]
Vv fixed volume of the chamber [m3] Xk Feature vector for training [a.u.]
R? Coefficient of determination

1. Introduction

Automobile manufacturers are trying to reduce the CO, emissions from vehicles to meet the tightening emission
regulations all over the world. As such, manufacturers are increasing the volume of zero tailpipe emission vehicles

such as battery-electric and fuel cell electric vehicles [1][2]. In addition, hybrid electric vehicles which have both an
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internal combustion engine (ICE) and an electric propulsion system, are also regarded to be the important solution for
the cleaner powertrain technology and they are expected to have larger market shares in the near future [3][4]. Since
hybrid electric vehicles still have ICEs, the improvement of thermal efficiency and emissions from ICEs is essential
to achieve further reduction of CO; emissions in the transportation sector [5]. Numerous research activities are focused

on the optimization of the combustion system and control strategies of ICEs in different aspects.

One of the most important technologies in modern gasoline engines is gasoline direct injection (GDI). Different from
the previous fuel delivery method called port fuel injection (PFI), the GDI engines inject fuel directly into the
combustion chamber. GDI engines have the advantages in reducing knocking combustion thanks to evaporation
cooling and enhancement of in-cylinder flow and turbulence through fuel injection [6][7]. In particular, in the case of
the latter effect, great progress has been carried out on the catalyst light-off time reduction under cold-start conditions
with the GDI technology. Current state-of-the-art GDI engines utilize multiple injections up to 5 times under cold start
catalyst heating conditions to minimize undesired spray impingement and to ensure combustion stability under the
aggressively retarded combustion phasing condition by supplying injection-driven flow and turbulence [8][9]. This
enables the reduction of exhaust emissions during the catalyst heating operation as well as faster catalyst activation
with minimized vehicle noise, vibration, and harshness (NVH). Optimizations in injector nozzle, spray geometry, and
injection strategy are crucial in this aspect. However, precise control in injection quantity is of utmost importance in
advance. To take advantage of the multiple injection strategies, the repeatability and consistency of the injection
quantity control must be secured. Otherwise, it would fail to control combustion stability and air-fuel ratio. Therefore,
it is necessary to minimize the variation in the injection quantity for different injection events, different engine

conditions, and different injectors.

Injection quantity is known to be proportional to the duration of the coil energizing time (electrical command duration)
applied to the GDI injector. However, for a case using a very small injection quantity such as pilot injections, the
correlation between coil energizing time and injected fuel amount becomes highly nonlinear and accompanies sample-
to-sample variation as shown in Fig. 1. The nonlinear behavior, which also is related with shot-to-shot variation, are
mainly caused by the transient behavior of the needle and the armature during valve opening and closing delays. In
the same manner, sample-to-sample variations can occur under the small injection quantity conditions due to the

tolerances of the mechanical and the electrical elements of each injector [10][11][12]. To mitigate sample-to-sample
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variations and to enhance the repeatability of small injection quantities, the injection quantity diagnostics and
compensation control strategy with solenoid signal feedback has been introduced in the 2010s [13][14]. Many different
suppliers are using such technology denoted as controlled valve operation (CVO) for Bosch [13], injector closed-loop
control (ICLC) for Delphi [14], Controlled Solenoid Injection (COSI) for Vitesco, and Valve Controlled Injection
(VCI) for Hyundai Kefico. The common principle is to measure the actual valve opening and closing delays from the
solenoid signal and correct the length of injection command pulse to be the actual valve opening period for the target
injection quantity. This enables the utilization of GDI injectors with the smallest tolerances as well as the minimized
shot-to-shot variation under various engine operating conditions. This measurement and correction can be performed
on each injector and cylinder and thus, sample-to-sample and cylinder-to-cylinder variations can be minimized as
well. These techniques commonly use the solenoid voltage signal to measure valve closing time to perform the
correction of injection command pulse. When the coil energizing pulse ends, the solenoid driving current supplied
from the driver falls to zero. As a result, the needle moves toward the valve seat by the spring force while the voltage
of the solenoid also increased from the negative value. During this stage, solenoid voltage signal shows a transient
response resulting from a combination of back-electromotive force (EMF) induced by armature movement and a
natural response of the electrical circuit. Once the needle and armature are seated to default position, the EMF becomes
zero, and only the natural response component remains. Therefore, there is an inflection point of the solenoid voltage
curve at the actual valve closing timing and the time difference between this timing and the end of energizing time
can be identified as valve closing delay. An example showing the injection current and corresponding rate of injection
(ROI) and solenoid voltage signal are presented in Fig. 2. These detection and compensation techniques have been
expanded to estimating the valve opening delay as well. These injection quantity control technology is regarded as the
breakthrough technology to meet the stringent exhaust emission regulations and its technical importance is expected

to increase even more in the future.

On the other hand, many automotive manufacturers are recently utilizing various simulation and modeling approaches
to reduce the time and cost of the powertrain and vehicle development. These activities are increasingly being
integrated into a ‘powertrain virtual development’ process and include a variety of tasks such as functional
development of the component, system integration, and preliminary calibration processes beyond the traditional
simulations [15][16][17]. For these developments, it is essential to develop and integrate accurate and efficient models.

Among the required models, the fuel injection rate is one of the most important pieces of information needed for
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engine modeling. Several methodologies have already been implemented for gasoline and diesel injection rate

modeling.

One approach is computational fluid dynamics (CFD) simulation for the characterization of the internal-nozzle multi-
phase flow [18][19]. This is a physics-based approach, so it can provide useful information not only on the injection
rate, but also on also other important spray characteristics. However, it requires high computation cost. Another
approach is one-dimensional hydraulic modeling of the injector, which has been most widely employed for the rate of
injection (ROI) simulations due to the good trade-off between accuracy and computation cost [20][21][22][23].
However, the 1D modeling is based on the characterization of all components of the fuel injection system, requiring
detailed understanding of all geometries and physical phenomena in the elements. Finally, there are zero-dimensional
injector model approaches that employ empirical or mathematical expressions and correlations fitted to experimental
data to produce reliable ROI estimation [24][25]. The accuracy of the simplified model can be improved through
validation with the experimental results. The disadvantage of this approach is the high dependency on experimental
data. Each of these approaches has its pros and cons, while it will be possible to select and use proper methodology
by considering the purpose and available resources. However, if the development and verification of the injection
control strategy such as the previously described feedback control algorithm is required in the virtual development
process, none of the approaches described previously can help since these models cannot replicate the electromagnetic
behavior of the injector. To predict the electromagnetic behavior of the injector correctly, the electromagnetic model
should be implemented and coupled with existing ROI models, but this will greatly increase the complexity and the

difficulty of the modeling.

On the contrary to the model-based approaches described above, there is a recent trend to apply artificial neural
network (ANN) and machine-learning (ML) algorithms in the fuel spray research area [26][27][28][29]. Advances in
experimental and data analysis are constantly accelerating the massive production of data across all fields. The analysis
of those data through ANN and ML is offering novel breakthroughs in a wide variety of disciplines. As previously
discussed, the physical or mathematical modeling for the prediction of ROI and solenoid electrical signals will be
challenging tasks and it will require the complex modeling of coupled behavior of electromagnetic, hydraulic, and
mechanical components. However, predictive models can be developed without physical modeling for complex

systems through ML instead. Moreover, the ROI and the solenoid voltage signal have a small number of input
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variables that can be simply expressed with numerical values and have the characteristic of a surjective function of
which outputs have the form of a simple 1D curve. Therefore, they are believed that the difficulty of inductive

regression modeling through ML is not high.

The primary objective is to establish a framework to predict ROI and solenoid voltage signal using a ML algorithm.
We develop an ANN network for time-resolved ROI and voltage signals without any time-marching simulations. For
the training, experimental data of various injectors having different Qstat under various injection conditions such as
coil energizing time, fuel temperature, and the pressure difference across the nozzle were utilized. Inputs were
composed of 4 parameters including Qstat and injection conditions. Based on the measurement results, independent
models for ROI and solenoid voltage were separately developed and validated. To the best of the authors’ knowledge,
this is the first study in the literature to introduce a ML based methodology suitable for predicting and quantifying the
injection rate and solenoid voltage signal of a state-of-the-art GDI injector under various operating conditions. In
addition, the value of this study is to propose a useful methodology for fuel injection modeling that can be applied to
the virtual powertrain development process. Since the model proposed in this study can predict not only the ROI but
also the feedback signal required for the precise injection quantity control, The developed model can be used as a sub-
model for the development, verification, and calibration of GDI injection control logic virtually and this will greatly

reduce development time and cost.

2. Experimental set up and condition

2.1. Test injectors and fuel

Five GDI injectors having different Qstat were tested for the ROI and solenoid voltage signal measurement. Tested
injectors are the state-of-the-art injector available in the market of which the maximum injection pressure is 350 bar.
Specification for the test injectors are summarized in Table 1. The static flow rate shown in Table 1 is defined as the
steady-state mass flow rate of the injector when n-heptane is injected with 100 bar of injection pressure under room
temperature and atmospheric pressure conditions. All injectors share identical geometry for components such as valve
seat, needle, armature, internal flow channel, and electromagnetic coil except for the number and size of nozzle holes

to achieve different Qstat varying from 250 to 415 g/min.
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To perform the test under the realistic conditions mimicking the gasoline engine, multi-component surrogate fuel for
United State market fuel (E10 gasoline) was used instead of single component fuel, not representative of real gasoline,
widely used in the ROI measurement. The surrogate fuel was developed under the Department of Energy’s
‘Partnership for Advanced Combustion Engines (PACE), A light-duty national laboratory combustion consortium’

project. Detailed components and properties of the fuel are listed in Table 2.
2.2. Experimental set up and conditions

A schematic diagram of the injection rate measurement is shown in Fig. 3. The measurement system is composed of
the test injector, high-pressure pump, the injection rate meter, and a function generator that sends command to the
injector driver and injection rate meter synchronously. The injection pressure was controlled using a high-pressure
syringe pump (Teledyne 30D). Genotec’s universal injector driver (Solenoid Injector Power Amplifier V2) was used
to generate the solenoid driving current profile supplied by the manufacturer. The solenoid voltage and current were
measured from analog outputs of the injector driver. The Moehwald HDA (hydraulischen druckanstieg analysator)
which is a commercially available injection rate measurement device was used in this study. Details of HDA and its
measurement principle are well described in an earlier study [30]. HDA uses Zeuch’s method that measures the change
in hydraulic pressure that results from injecting fuel into a fuel-filled constant volume chamber while the sound speed
of the fuel is also measured by the equipped ultrasonic sensor. The injection mass flow rate can be calculated by the

following equation.

dm d V dP
am_yéle_ L&

dat dt  a? dt

(eq-1)

dm . - . . . .
Where d—r: is the injected mass flow rate, V is the fixed volume of the measuring chamber, p is the density of the fuel,

a is the speed of sound measured by the ultrasonic sensor, and P is the chamber pressure. The thermo-regulator
integrated in HDA allowed controlling the measurement system temperature, including the injector and fuel
temperatures. The pressure of the main chamber is controlled by pressure regulating valves installed in the chamber
and the chamber pressure (back-pressure from the perspective of injector) was set tol5 bar for all experimental
conditions. This is higher than the ambient pressure condition of GDI engine with normal early injection timing as

well as the lowest operative chamber pressure of HDA. However, the value was chosen to minimize test errors and



https://doi.org/10.1016/j.fuel.2021.122569

noise caused by cavitation generated by high velocity fuel injection as reported in the earlier study on Zeuch method
ROI characterization [31]. In additions, it was reported in in the earlier studies [24] [32] that effect of back pressure

on ROI is relatively small while ROI is mainly affected by the square root of the pressure difference across nozzle.

The test conditions are summarized in Table 3.. The duration of injection command pulse (coil energizing time) was
varied between 200 ps, the shortest pulse width that fuel can be injected , and 5 ms which is the usual maximum
injection duration in a GDI engine considering the intake stroke injection at rated rpm. The fuel injection pressure was
varied from 50 bar to 380 bar while the back pressure was fixed at 15 bar. It should be noted that the pressure difference
across the nozzle which is the value of subtracting the back pressure from the injection pressure, will be the discussed

as an important injection factor in this study. Fuel temperature was varied from 25 C to 100 C. In order to characterize

the ROI of the injector in practical for the purpose of engine development and calibration, it is very important to
perform the measurement at a temperature as low as -30 C, where the viscosity of the fuel increases significantly.
However, in this study, the test could not be performed at a temperature lower than the room temperature due to the

limitations of the test equipment and facility.

Combining the conditions described above, experiment was conducted for a total of 570 conditions. Fig. 4 shows the
summarized test conditions. The fuel was injected at 2 Hz repetition rate and the ROI data were acquired with a
sampling rate of 100 kHz. The data were acquired for 100 injections and the ensemble-averaged data were post-
processed by noise filtering. Measured ROI data using Zeuch method can be contaminated by measurement errors and
noise due to pressure fluctuations in the fuel chamber and mechanical vibrations of the injection system. In particular,
high-frequency noise has been reported and measures for noise filtering has been applied to improve signal quality in
earlier studies [30] [31]. In this study, moving averaging over 9 consecutive data points was applied considering
capability of effective noise reduction and retaining of sharp step response as well as its simplicity and ease of

implementation.

2.3. Machine-learning methodology and computational setup

In the present work, a machine learning function installed in the MATLAB program was utilized as a mean of
regression to predict fuel injection rate and solenoid voltage signal. A built-in ANN code using the Bayesian

regularization algorithm was applied, following the schematic diagram shown in Fig. 5. The Bayesian regularization
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is a mathematical process that converts a nonlinear regression into a “well-posed” statistical problem in the manner
of ridge regression. This algorithm is known to be more robust than standard back-propagation methods because it
can reduce the need for a lengthy cross-validation process. Thus, it is one of the commonly used algorithms for
engineering problems. The building block of an ANN is the layers and neurons that represent the smallest processing
element [33][34]. In the neuron, it can have one or more inputs of X, which comes from the environment or other
neurons. These inputs then are multiplied with a weight w; and are shifted by a bias wo to provide the intermediate

value of y as presented in the following equation, eq-2.

y = Xiliwix; + Wy (eq-2)

The y from each neuron is transferred through an activation function to provide the output. The activation function
can be in various forms such as linear, Gaussian, Heaviside, ramp, or sigmoid. In the present work, sigmoid is used as
an activation function for all hidden layers and linear the output layer because it demonstrated the best performance
both in terms of prediction and training. As described above, the training on measured ROI and solenoid voltage was

performed using 4 inputs such as the pressure drop across the nozzle [bar], the coil energizing time (injection command

pulse) [us], fuel temperature [°C], and Qstat [g/min] with 100 iterations. The output size was 500 by 1 column that

covers 0 to 5 ms after the start of the coil energizing time. It was essential to perform the so-called training where the
weights and biases of all involved neurons are determined before using the ANN. This task was carried out as an
optimization process to minimize the error in predicting the desired output for the input vector of a known dataset.
Different combinations of dataset ratios for training, validation, and testing were explored. The best performance was
found in 70%, 20%, 10%, and 60%, 20%, 20% for injection rate and solenoid voltage, respectively. Meanwhile, a
parametric investigation showed the best agreement with 2 layers that have 10 and 30 neurons, 2 layers that have 9
and 10 neurons for injection rate and solenoid voltage, respectively. Considering the trend of injection quantity and
the number of training set, ROI data sets were divided into 4 parts based on the coil energizing time of 0-300us, 300-
700us, 700-2000ps, and 2000-5000us regimes. One set was assigned for the ballistic region with energizing time less
than 300ps for to predict accurately its injection quantity feature. Another set was assigned for the energizing time
from 300us where ballistic region ends to 700us which correspond the induced time of the peak current. This was
applied to reflect the slight difference in ROI depending on whether the holding phase was applied. For longer

energization times with the holding phase, no particular trend is observed except for clear proportional increase with
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energization time. However, in the case of the longer energizing time than 2000us, less measurements were conducted
compared to other test conditions due to its linearity. Therefore, a separate regime was assigned for energizing time

longer than 2000us.

3. Results and discussion

3.1 Discussions on ROI and solenoid voltage measurement results

In this section, the detailed characteristics of measured ROI and solenoid voltage signal will be discussed. Fig. 6 shows
the ROI trend according to the coil energizing time. It is shown that trend of ROI is not consistent with the energizing
time and it can be divided into three regimes showing distinct characteristics. Region A shown in Fig. 6 is known as
the ballistic region. In this region, needle motion follows a parabolic trajectory without reaching the upper position
due to the short energizing time [10]. The duration and the amplitude of the ROI increase linearly with energizing
time in this region. However, with increasing energizing time, the ROI shows less change, identified as region B in
Fig. 6. In this region, the needle lift approaches the mechanical limit therefore, even if the energizing time increases,
the needle lift barely changes while the bouncing motion of the needle can occur. As a result, the actual injection
quantity does not increase with the increased energizing time while non-linearity of injection quantity arises due to
the dynamic behavior of the needle motion as depicted in Fig. 1. On the other hand, with the further increase in coil
energizing time, the needle reaches the maximum lift and maintains its position till the end of the coil energizing time.
Thus, the injection quantity increases as the energizing time increases again. The relatively proportional relationship
between the energizing time and the injection quantity is observed in this region. This corresponds to ‘linear’ region
C in Fig 6. As discussed so far, the injection rate shows a distinguishable behavior according to the coil energizing
time and injection pressure. It will be evaluated whether the regression model can reflect these behaviors seen in the

measurement results.

Fig. 7 shows the effect of pressure difference across the nozzle on ROI. As the pressure difference increases, the peak
ROI increases and the ramp during start and end of injection has a higher slope. In particular, the fast ramp-down
slope shorten the closing period and the end of injection. However, this trend is shown under Region C conditions of
longer coil energizing time where the needle lift reaches its maximum limit. A more complex tendency can be shown

when short energizing time is applied. An example is illustrated in Fig. 8 where the ROIs were obtained for various

pressure difference with the coil energizing time of 250us. It is confirmed in Fig.8 that the valve closing delay
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decreases as the pressure difference increases from 200 to 350 bar. However, the valve closing delay increases when
the pressure difference increases from 100 to 200 bar. Similar trends were also shown in different injectors with a
shorter energizing time. Such behavior is the manifestation of non-monotonic effect of pressure difference during the
valve closing period. In general solenoid type GDI injectors, if the pressure difference is high, the hydraulic force of
the pressurized fuel pressing the needle ball increases as presented in earlier study [35]. As a result, the needle descends
towards the seat faster, shortening the closing delay. However, if there is no effect of accelerating the closing motion
of the ball and needle by the pressurized fuel, ROI will only depend on the pressure difference and fixed effective area
of the nozzle. As a result, the closing delay can increase as the pressure difference increases. Under the condition of a
short energizing time near the ballistic region and some pressure difference condition, the energizing time ends when
the needle lift is small and the hydraulic force due to pressurized fuel is small compared to the spring force. As a result,
higher pressure difference can increase the valve closing delay as shown in Fig. 8. The non-monotonic trend observed
for the relationship between pressure difference and valve closing delay will be included in a checklist for the

verification of the model's accuracy.

Fig. 9 shows the impact of fuel temperature on ROI. The slight decrease of the peak ROI can be seen with higher
temperature, even though the difference is almost negligible. The valve opening and closing delay were also slightly
reduced as the temperature increased. This is because of density and viscosity decrease as the fuel temperature
increases, reducing the friction that the needle motion is subject to. It is worthwhile to reiterate that the ROI test was
not performed under very cold conditions below zero such as -30 degrees, where the viscosity of the fuel increases
significantly [36][37]. Therefore, the influence of fuel temperature was shown to be very small and the accuracy and
the importance of the modeling is expected to be relatively low if it were to extrapolate to cold temperature conditions.
However, as one of the test conditions, an evaluation will be performed to check if the model can predict the effect of

fuel temperature on ROI to be small as shown in the experimental results.

As an additional piece of ROI modeling, the effect of the static flow rate of each injector on the ROI is shown in Fig.
10. It can be seen that the maximum injection flow rate increases linearly as the static flow rate increases as expected.
Five injectors having different Qstat as shown in the table were tested in the study, and it will be discussed later

whether the model can predict the ROI trend according to the Qstat in the model validation section.
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Fig. 11 shows the correlation between the timing when inflection point in the solenoid voltage signal is observed and
the actual EOI timing calculated from ROI. The inflection point of the solenoid voltage shown in Fig. 11 was found
as the value at which the second derivative of injection driving voltage became zero. This is the method that was
applied to the actual logics in engine control unit (ECU) as shown in earlier study [12] even more advanced methods
are now applied to reduce errors and variations. In Fig. 11, it is confirmed that the inflection point of the solenoid
voltage and actual EOI timing have a strong correlation as explained in the introduction. If the ROI and solenoid
voltage can be accurately predicted through regression modeling, it will be possible to develop, validate and pre-
calibrate the injection control logic in ECU using these models for a virtual development environment. The possibility

will be discussed later in the model validation section.

3.2. Regression model development and evaluation

To validate the model, the correlation between the predicted data from the ANN and experimental data was evaluated
for both ROI and solenoid voltage models. Table 4 shows the R? for all of the training, validation, and test data sets
for the model. Both models show a high R? which indicates the quality of regression is sufficient to make a prediction
for ROI and solenoid voltage signal. Most of the training score reached over 0.99 except for the short energizing time
(0-300us) case due to the inherent non-linearity in ROI discussed in the previous section. This shows that superior
accuracy of the model could be achieved compared to the previous study previous study that performed 1D hydraulic
simulations on a GDI injector and reported an R2 of 0.92 under linear injection quantity condition [22]. Other than
the training data set, new inputs that were not even included in the training, validation, and test procedure were tested
as shown in Fig. 12. The comparison between ROI prediction by the machine-learning algorithm and experimental
result indicates the models can predict ROI features of not only quasi steady-state but also transient dynamics. The
machine-learning algorithm is able to detect SOI, and EOI precisely by showing closely matching those timings with
the experimental result regardless of injectors’ pressure difference, coil energizing time, fuel temperature, and static
flow rate. The details of ROI, for example, decrease in ROI during needle lift-up, fluctuations in early injection period,
and even after needle close were well replicated with the machine-learning algorithm. Again, it is emphasized that the

conditions in Fig. 12 were excluded in any training dataset but utilized for the evaluation of the models.

3.3. Model validation and discussions

12
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Comparison of the injection quantity calculated by integrating ROI trace for both model and experimental result is
shown in Fig. 13. (a). Experimental symbols shown in Fig.13 (a) may seem insufficient to derive the modeled curve
but it can be noted that they are experimental results form injector #1 while the modeled injection quantity curve was
derived from the results of 5 different injectors. It can be seen that the model matches well with the experimental
results. In particular, it was confirmed that the model can simulate the injection quantity characteristics, which were
categorized according to the length of the energizing time. Figure 13 (b) shows ROIs according to various energizing
time injection periods for the model and the experiments. In Fig. 13(b), the modeled and measured ROIs almost
overlap each other so it is believed that the detail of ROI according to the length of the energizing time could be

accurately predicted.

The trend of modeled ROI according to pressure difference across the nozzle for various coil energizing times is

shown in Figs. 14 and 15. In particular, Fig. 14 shows the modeled and measured ROIs for the relatively long

energizing time of 700us and the modeled and measured curves almost overlap for various conditions. Therefore, it

can be confirmed that accuracy of the prediction is significantly high compared to previous 0D and 1D studies which
showed some inconsistency in the valve opening and closing periods for various injection conditions [22][23][25]. In
Figs. 14 and 15, The trend observed in the test results is well confirmed in the modeled ROI. In particular, it was
shown that the effect of pressure difference on valve closing delay according to the length of the energizing time
matched well with the experimental results. In the previous discussion, the effect of the injection pressure on the valve
closing delay was identified that it shows different behaviors according to the length of the energizing time. If the
energizing time is long enough to have the linearity of the injection quantity, the valve closing delay decreases as the
pressure difference increases, while the opposite trend could be shown for the shorter energizing time . The accurate
modeling of these complex effects was possible as shown in Fig. 15. Some modeled ROI cases showed a slight
quantitative difference with the measured ROI near the end of injection timing, particularly for short events, but the
overall trend and injected mass matches well with the experimental results. In particular, it can be confirmed that the
accuracy and effectiveness of the approach in this study is superior compared to the 1D and 0D models in the previous

studies, which had difficulties in modeling or scored low accuracy in the ballistic region [23][25].

As discussed in the previous experimental results section, as the injector temperature increases, the injection rate is

slightly decreased due to the decreased fuel density, and the decreased viscosity decreases the delay of valve closing

13
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and opening. The ROI model shown in Fig.16 follows these trends. Although the model was developed from relatively
smaller number of fuel temperature tests, reliable predictions are shown at intermediate temperatures with no evidence

of overfitting, including conditions excluded from the training dataset.

Figure 17 shows the modeled ROI according to the static flow rate of the injector. Comparing the test results and the
modeled prediction, it was confirmed that the trend of ROI for the static flow rate was predicted very accurately and
the measured and predicted curves almost overlap in Fig. 17. In addition, the model could provide an appropriate
prediction without overfitting or misbehavior under conditions where the experiments were not carried out. This
indicates that the approach introduced in this study can be used not only to develop a model for a particular injector
but also as a universal injector model applicable to the nominally identical injector family that have deviations from

designed flow rates. This is a feature that is considered to be very useful in a virtual development environment.

A comparison of the measured solenoid voltage signal and the virtual signal generated by the regression model is
shown in Fig. 18 (a). As shown in the figure, the solenoid voltage signal can be predicted accurately through the
modeling described in 2.2. In particular, the inflection point of the modeled voltage signal is close to that of the
measured voltage. A key outcome of this finding is the modeled voltage is available for verification of injection control
logic in the virtual development environment. As discussed previously in Fig. 10, the measured inflection point of the
solenoid voltage, or the second derivative of the voltage signal, becomes zero at the actual EOI timing. Fig. 18 (b)
shows the first and second-order derivatives of voltage signals from both the measurement result and the model. In
Fig. 18(b), it was identified that the same signal processing method can be applied as in the actual ECU. The inflection
point of the modeled voltage signal and the identified valve closing delay are close to those of the measured signal.
Figure 19 shows the comparison of the EOI timings calculated through the model and measurement results for various
test conditions. From Fig. 19, it is confirmed that there is a strong correlation between the EOI timings obtained

respectively from the model and the measurement results.

The above discussions show that both the injection rate and the solenoid voltage signal can be modeled with high
correlation to the actual measurement result. In addition, it was confirmed that the virtually generated signal can be
processed through the same signal processing method which applies to an actual ECU, in the same manner as the
actual signal. Therefore, as suggested in the Introduction, the model proposed in this study can be used for the

development, verification, and preliminary calibration of ECU injection logic in a virtual development environment.
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The actual application of these models in a virtual development environment will be carried out as the authors’ future

study.

Based on the ML and ANN approach, the models produced demonstrate superior accuracy for predicting ROI and
voltage signals, much closer to actual measurement results, than any other modeling techniques introduced in previous
studies. In particular, most of the previous studies have reported difficulty in accurate modeling under short energizing
time conditions in which the needle doesn’t reach the full lift position during the injection. On the contrary, reliable
modeling was possible even under such conditions in this study using ML and ANN. Since these conditions are
regarded as the most important conditions in actual engines for realizing reliable and repeatable application of injection

strategy, the usefulness of the proposed approach in this study can be recognized.

The modeling proposed in this study has the disadvantage that it depends completely on experimental ROI data. Also,
unlike CFD prediction, it can’t provide referenceable results other than preset output values. Therefore, the approach
proposed in this study won’t be suitable for the fundamental injector researches to understand the injection
phenomenon and analyzes the detail of spray characteristics. On the other hand, this approach will be suitable for agile
modeling for practical engine development. In particular, it is believed that engineers performing these tasks have
already have accumulated test results of ROI and solenoid signals for the previous injection control logic development
and calibration. Therefore, it is believed that the simple and accurate ROI and solenoid signal models can be developed
using the methodology introduced in this study based on the existing injection data and utilized for the virtual

powertrain development.

4. Conclusion

In this study, a machine-learning algorithm was implemented to predict injection rate of the state-of-the-art GDI
injectors. Experimental data measured under various injection conditions were utilized for algorithm training. The

major findings from this study can be summarized as follows.

1) Rate of injection (ROI) measurement confirmed the non-linear behavior of fuel injection rate according to coil
energizing time and pressure difference across the nozzle. Near the ballistic region, the injection quantity did not

increase with longer coil energizing time while a stagnation point was observed. In addition, end of injection
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2)

3)

4)

(EOI) were advanced with higher pressure difference in the general manner while non monotonic trend was shown
under some conditions due to complex effects of pressure difference on internal flow and needle behavior.
Simple regression model without time-marching simulation using the artificial neural network (ANN) technique
was developed in this study. The model was able to capture detailed characteristics in rate of injection (ROI) and
solenoid voltage signal with 4 input features, pressure difference, coil energizing time, fuel temperature and static
flow rate of the injector respectably. The model has significantly reduced requirements for input information and
computational resource compared to CFD approach.

The ANN model showed also advantages on the accuracy of the prediction. Despite non-linear characteristics in
the injection rate, the training showed high coefficient of determination over 0.975. The quantitative comparison
between machine-learning model and experimental data showed that the ANN model is capable of predicting not
only general features of the injection rate trend but also non-linear behaviors shown in ROI measurement results.
The end of injection (EOI) could be detected precisely with virtually generated solenoid voltage signal and same
signal processing method which applies to an actual engine control unit. Correlation between the detected EOI
timings calculated from the modeled signal and the measurement results showed the very high coefficient of
determination of 0.998. The ROI and solenoid voltage model developed in this study is enough to be utilized for
the development, verification, and pre-calibration of the injection control logic in a virtual powertrain

development environment.
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Table 1. Specification of test injectors

Injector

Static flow rate [g/min]

Number of holes

#1

#2

#3

#4

#5

415

380

350

270

250
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Table 2 properties and components of PACE20, the surrogate fuel for research-grade E10 gasoline

component Volume fraction Property Specification
ethanol 0.0955 Molecular weight 93.18
n-pentane 0.1395 RON 92.1
cyclopentane 0.105 MON 84.5
1-hexene 0.0541 H:C 1.964
n-heptane 0.1153 Density [g/mL] 3 0.742
toluene 0.0919 Particulate Matter Index 1.5
iso-octane 0.2505 ASTM D86 T10 [°C] 57.7
1,2,4-tri methylbenzene 0.1187 ASTM D86 T50 [°C] 101.4
tetralin 0.0295 ASTM D86 T90 [°C] 158.3
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Table 3. Experimental conditions

Parameter Conditions
Injection pressure [bar] 50-380
Chamber(back) pressure [bar] 15
Fuel temperature [°C] 25-100
Coil energizing time [ps] 200 - 5000
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Table 4. Coefficient of determination for ML algorithms.

Models R? Value

ROI0.3ms < t;»; < 0.7ms  0.997
ROI0.7ms < t;n; < 2ms 0.997
ROI 2ms < tij < 5ms 0.995
Solenoid voltage 0.996
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Figure 15. Modeled ROIs for different pressure difference under longer coil energizing time conditions.

39



https://doi.org/10.1016/j.fuel.2021.122569

Q4t.t=250g/min, AP=180 bar, t;;=1000us

10
| g -
— 8 ! ]
L : I: 1 Tfuel
A= I : !
o Bt + - - -30C -Model||
© : :: 1 |—30C-Exp
= 4 Al : - = =50C -Model
= : r i |--=-70C -Model
D 2t il L |- - -90C -Model|
IS : g I |——90C -Exp
A i) /
T W
0 1 2 3

Time after injection command [ms]

10 10
a g -Ifuel

— 8 — 8
2 Toe 2 - - =30C -Model
o 6 R ———d ) 6L = —30C -Exp
= < T - - =50C -Model
= -~ -30C Modell| =, N\ - - -70C -Model ]
S e IS \ - - -90C -Model
3 -~ 790C-Model) | "o ——90C -Ex
L2 - --70C -Modell] & 2 . P 1
= - --90C -Model|| — .

0 ——90C -Exp 0 =

0.2 0.3 0.4 0.5 0.6 1.2 1.3 1.4 1.5 1.6

Time after injection command [ms] Time after injection command [ms]

Figure 16. Modeled ROIs for different pressure difference under longer coil energizing time conditions.
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Figure 17. Modeled ROIs for different pressure difference under longer coil energizing time conditions.
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Figure 18. Validation of modeled solenoid voltage signal

42



https://doi.org/10.1016/j.fuel.2021.122569

(@)

R? = 0.998

~

N

EOI from Voltage Exp.[ms]

o

2 4 6
EOI from Voltage ML [ms]

o

Figure 19. Correlation between end of injection timings from modeled and measured voltage signals

43



