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Abstract 

Current state-of-the-art gasoline direct-injection (GDI) engines use multiple injections as one of the key technologies 

to improve exhaust emissions and fuel efficiency. For this technology to be successful, secured adequate control of 

fuel quantity for each injection is mandatory. However, nonlinearity and variations in the injection quantity can 

deteriorate the accuracy of fuel control, especially with small fuel injections. Therefore, it is necessary to understand 

the complex injection behavior and to develop a predictive model to be utilized in the development process. This study 

presents a methodology for rate of injection (ROI) and solenoid voltage modeling using artificial neural networks 

(ANNs) constructed from a set of Zeuch-style hydraulic experimental measurements conducted over a wide range of 

conditions. A quantitative comparison between the ANN model and the experimental data shows that the model is 

capable of predicting not only general features of the ROI trend, but also transient and non-linear behaviors at 

particular conditions. In addition, the end of injection (EOI) could be detected precisely with a virtually generated 

solenoid voltage signal and the signal processing method, which applies to an actual engine control unit. A correlation 

between the detected EOI timings calculated from the modeled signal and the measurement results showed a high 

coefficient of determination. 

 

Keywords: Machine-learning; Artificial Neural Network (ANN); Gasoline Direct Injection (GDI); Rate of Injection; 

Injection, Gasoline engine  

*Contact information: Heechang Oh, Senior Researcher at Hyundai Motor Company. 

Tel.:+82-10-7425-5009, e-mail: disi@hyundai.com  

  

SAND2022-0722JThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

mailto:disi@hyundai.com


https://doi.org/10.1016/j.fuel.2021.122569 
 

2 
 

Abbreviations 

ANN Artificial neural network  ICE Internal combustion engine 

CFD Computational fluid dynamics  ICLC Injector closed-loop control 

COSI Controlled Solenoid Injection ML Machine-learning 

ECU Engine control unit NVH Noise, vibration, and harshness 

EMF Electromotive force PFI Port fuel injection 

EOI End of injection ROI Rate of injection 

GDI Gasoline direct-injection  SOI Start of injection 

HDA Hydraulischen Druckanstieg Analysator VCI Valve Controlled Injection 

 

Nomenclature 

𝑎𝑎 Speed of sound [m/s] 𝜌𝜌 Density of the fuel [kg/m3] 

ΔP 
Pressure difference across the nozzle 

𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 Solenoid boosting phase [ms] 

m Injected mass [kg] 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  Valve closing delay [ms] 

𝑡𝑡𝐸𝐸𝐸𝐸𝐸𝐸  End of injection timing [ms] 𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜 Solenoid holding phase [ms] 

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 Coil energizing time  [ms] 
(injection command pulse duration) 

𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Solenoid picking phase [ms] 

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 Valve opening delay [ms] 𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 Start of injection timing [ms] 

m Injected mass [kg] 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  Fuel temperature [°C] 

𝑄𝑄stat Static flow rate [g/min] qi,j Regression weight vector at (i,j) [a.u.] 

V fixed volume of the chamber [m3] xk Feature vector for training [a.u.] 

R2 Coefficient of determination   

 

1. Introduction 

Automobile manufacturers are trying to reduce the CO2 emissions from vehicles to meet the tightening emission 

regulations all over the world. As such, manufacturers are increasing the volume of zero tailpipe emission vehicles 

such as battery-electric and fuel cell electric vehicles [1][2]. In addition, hybrid electric vehicles which have both an 
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internal combustion engine (ICE) and an electric propulsion system, are also regarded to be the important solution for 

the cleaner powertrain technology and they are expected to have larger market shares in the near future [3][4]. Since 

hybrid electric vehicles still have ICEs, the improvement of thermal efficiency and emissions from ICEs is essential 

to achieve further reduction of CO2 emissions in the transportation sector [5]. Numerous research activities are focused 

on the optimization of the combustion system and control strategies of ICEs in different aspects. 

One of the most important technologies in modern gasoline engines is gasoline direct injection (GDI). Different from 

the previous fuel delivery method called port fuel injection (PFI), the GDI engines inject fuel directly into the 

combustion chamber. GDI engines have the advantages in reducing knocking combustion thanks to evaporation 

cooling and enhancement of in-cylinder flow and turbulence through fuel injection [6][7]. In particular, in the case of 

the latter effect, great progress has been carried out on the catalyst light-off time reduction under cold-start conditions 

with the GDI technology. Current state-of-the-art GDI engines utilize multiple injections up to 5 times under cold start 

catalyst heating conditions to minimize undesired spray impingement and to ensure combustion stability under the 

aggressively retarded combustion phasing condition by supplying injection-driven flow and turbulence [8][9]. This 

enables the reduction of exhaust emissions during the catalyst heating operation as well as faster catalyst activation 

with minimized vehicle noise, vibration, and harshness (NVH). Optimizations in injector nozzle, spray geometry, and 

injection strategy are crucial in this aspect. However, precise control in injection quantity is of utmost importance in 

advance. To take advantage of the multiple injection strategies, the repeatability and consistency of the injection 

quantity control must be secured. Otherwise, it would fail to control combustion stability and air-fuel ratio. Therefore, 

it is necessary to minimize the variation in the injection quantity for different injection events, different engine 

conditions, and different injectors.  

Injection quantity is known to be proportional to the duration of the coil energizing time (electrical command duration) 

applied to the GDI injector. However, for a case using a very small injection quantity such as pilot injections, the 

correlation between coil energizing time and injected fuel amount becomes highly nonlinear and accompanies sample-

to-sample variation as shown in Fig. 1. The nonlinear behavior, which also is related with shot-to-shot variation, are 

mainly caused by the transient behavior of the needle and the armature during valve opening and closing delays. In 

the same manner, sample-to-sample variations can occur under the small injection quantity conditions due to the 

tolerances of the mechanical and the electrical elements of each injector [10][11][12]. To mitigate sample-to-sample 
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variations and to enhance the repeatability of small injection quantities, the injection quantity diagnostics and 

compensation control strategy with solenoid signal feedback has been introduced in the 2010s [13][14]. Many different 

suppliers are using such technology denoted as controlled valve operation (CVO) for Bosch [13], injector closed-loop 

control (ICLC) for Delphi [14], Controlled Solenoid Injection (COSI) for Vitesco, and Valve Controlled Injection 

(VCI) for Hyundai Kefico. The common principle is to measure the actual valve opening and closing delays from the 

solenoid signal and correct the length of injection command pulse to be the actual valve opening period for the target 

injection quantity. This enables the utilization of GDI injectors with the smallest tolerances as well as the minimized 

shot-to-shot variation under various engine operating conditions. This measurement and correction can be performed 

on each injector and cylinder and thus, sample-to-sample and cylinder-to-cylinder variations can be minimized as 

well. These techniques commonly use the solenoid voltage signal to measure valve closing time to perform the 

correction of injection command pulse. When the coil energizing pulse ends, the solenoid driving current supplied 

from the driver falls to zero. As a result, the needle moves toward the valve seat by the spring force while the voltage 

of the solenoid also increased from the negative value. During this stage, solenoid voltage signal shows a transient 

response resulting from a combination of back-electromotive force (EMF) induced by armature movement and a 

natural response of the electrical circuit. Once the needle and armature are seated to default position, the EMF becomes 

zero, and only the natural response component remains. Therefore, there is an inflection point of the solenoid voltage 

curve at the actual valve closing timing and the time difference between this timing and the end of energizing time 

can be identified as valve closing delay. An example showing the injection current and corresponding rate of injection 

(ROI) and solenoid voltage signal are presented in Fig. 2. These detection and compensation techniques have been 

expanded to estimating the valve opening delay as well. These injection quantity control technology is regarded as the 

breakthrough technology to meet the stringent exhaust emission regulations and its technical importance is expected 

to increase even more in the future. 

On the other hand, many automotive manufacturers are recently utilizing various simulation and modeling approaches 

to reduce the time and cost of the powertrain and vehicle development. These activities are increasingly being 

integrated into a ‘powertrain virtual development’ process and include a variety of tasks such as functional 

development of the component, system integration, and preliminary calibration processes beyond the traditional 

simulations [15][16][17]. For these developments, it is essential to develop and integrate accurate and efficient models. 

Among the required models, the fuel injection rate is one of the most important pieces of information needed for 
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engine modeling. Several methodologies have already been implemented for gasoline and diesel injection rate 

modeling.  

One approach is computational fluid dynamics (CFD) simulation for the characterization of the internal-nozzle multi-

phase flow [18][19]. This is a physics-based approach, so it can provide useful information not only on the injection 

rate, but also on also other important spray characteristics. However, it requires high computation cost. Another 

approach is one-dimensional hydraulic modeling of the injector, which has been most widely employed for the rate of 

injection (ROI) simulations due to the good trade-off between accuracy and computation cost [20][21][22][23]. 

However, the 1D modeling is based on the characterization of all components of the fuel injection system, requiring 

detailed understanding of all geometries and physical phenomena in the elements. Finally, there are zero-dimensional 

injector model approaches that employ empirical or mathematical expressions and correlations fitted to experimental 

data to produce reliable ROI estimation [24][25]. The accuracy of the simplified model can be improved through 

validation with the experimental results. The disadvantage of this approach is the high dependency on experimental 

data. Each of these approaches has its pros and cons, while it will be possible to select and use proper methodology 

by considering the purpose and available resources. However, if the development and verification of the injection 

control strategy such as the previously described feedback control algorithm is required in the virtual development 

process, none of the approaches described previously can help since these models cannot replicate the electromagnetic 

behavior of the injector. To predict the electromagnetic behavior of the injector correctly, the electromagnetic model 

should be implemented and coupled with existing ROI models, but this will greatly increase the complexity and the 

difficulty of the modeling. 

On the contrary to the model-based approaches described above, there is a recent trend to apply artificial neural 

network (ANN) and machine-learning (ML) algorithms in the fuel spray research area [26][27][28][29]. Advances in 

experimental and data analysis are constantly accelerating the massive production of data across all fields. The analysis 

of those data through ANN and ML is offering novel breakthroughs in a wide variety of disciplines. As previously 

discussed, the physical or mathematical modeling for the prediction of ROI and solenoid electrical signals will be 

challenging tasks and it will require the complex modeling of coupled behavior of electromagnetic, hydraulic, and 

mechanical components. However, predictive models can be developed without physical modeling for complex 

systems through ML instead. Moreover, the ROI and the solenoid voltage signal have a small number of input 
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variables that can be simply expressed with numerical values and have the characteristic of a surjective function of 

which outputs have the form of a simple 1D curve. Therefore, they are believed that the difficulty of inductive 

regression modeling through ML is not high.  

The primary objective is to establish a framework to predict ROI and solenoid voltage signal using a ML algorithm. 

We develop an ANN network for time-resolved ROI and voltage signals without any time-marching simulations. For 

the training, experimental data of various injectors having different Qstat under various injection conditions such as 

coil energizing time, fuel temperature, and the pressure difference across the nozzle were utilized. Inputs were 

composed of 4 parameters including Qstat and injection conditions. Based on the measurement results, independent 

models for ROI and solenoid voltage were separately developed and validated. To the best of the authors’ knowledge, 

this is the first study in the literature to introduce a ML based methodology suitable for predicting and quantifying the 

injection rate and solenoid voltage signal of a state-of-the-art GDI injector under various operating conditions. In 

addition, the value of this study is to propose a useful methodology for fuel injection modeling that can be applied to 

the virtual powertrain development process. Since the model proposed in this study can predict not only the ROI but 

also the feedback signal required for the precise injection quantity control, The developed model can be used as a sub-

model for the development, verification, and calibration of GDI injection control logic virtually and this will greatly 

reduce development time and cost. 

2. Experimental set up and condition 

2.1. Test injectors and fuel 

Five GDI injectors having different Qstat were tested for the ROI and solenoid voltage signal measurement. Tested 

injectors are the state-of-the-art injector available in the market of which the maximum injection pressure is 350 bar. 

Specification for the test injectors are summarized in Table 1. The static flow rate shown in Table 1 is defined as the 

steady-state mass flow rate of the injector when n-heptane is injected with 100 bar of injection pressure under room 

temperature and atmospheric pressure conditions. All injectors share identical geometry for components such as valve 

seat, needle, armature, internal flow channel, and electromagnetic coil except for the number and size of nozzle holes 

to achieve different Qstat varying from 250 to 415 g/min.  
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To perform the test under the realistic conditions mimicking the gasoline engine, multi-component surrogate fuel for 

United State market fuel (E10 gasoline) was used instead of single component fuel, not representative of real gasoline, 

widely used in the ROI measurement. The surrogate fuel was developed under the Department of Energy’s 

‘Partnership for Advanced Combustion Engines (PACE), A light-duty national laboratory combustion consortium’ 

project. Detailed components and properties of the fuel are listed in Table 2. 

2.2. Experimental set up and conditions  

A schematic diagram of the injection rate measurement is shown in Fig. 3. The measurement system is composed of 

the test injector, high-pressure pump, the injection rate meter, and a function generator that sends command to the 

injector driver and injection rate meter synchronously. The injection pressure was controlled using a high-pressure 

syringe pump (Teledyne 30D). Genotec’s universal injector driver (Solenoid Injector Power Amplifier V2) was used 

to generate the solenoid driving current profile supplied by the manufacturer. The solenoid voltage and current were 

measured from analog outputs of the injector driver. The Moehwald HDA (hydraulischen druckanstieg analysator) 

which is a commercially available injection rate measurement device was used in this study. Details of HDA and its 

measurement principle are well described in an earlier study [30]. HDA uses Zeuch’s method that measures the change 

in hydraulic pressure that results from injecting fuel into a fuel-filled constant volume chamber while the sound speed 

of the fuel is also measured by the equipped ultrasonic sensor. The injection mass flow rate can be calculated by the 

following equation. 

dm
𝑑𝑑𝑑𝑑

= V 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑉𝑉
𝑎𝑎2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (eq-1) 

Where dm
𝑑𝑑𝑑𝑑

 is the injected mass flow rate, V is the fixed volume of the measuring chamber, 𝜌𝜌 is the density of the fuel, 

𝑎𝑎 is the speed of sound measured by the ultrasonic sensor, and P is the chamber pressure. The thermo-regulator 

integrated in HDA allowed controlling the measurement system temperature, including the injector and fuel 

temperatures. The pressure of the main chamber is controlled by pressure regulating valves installed in the chamber 

and the chamber pressure (back-pressure from the perspective of injector) was set to15 bar for all experimental 

conditions.  This is higher than the ambient pressure condition of GDI engine with normal early injection timing as 

well as the lowest operative chamber pressure of HDA. However, the value was chosen to minimize test errors and 
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noise caused by cavitation generated by high velocity fuel injection as reported in the earlier study on Zeuch method 

ROI characterization [31]. In additions, it was reported in in the earlier studies [24] [32] that effect of back pressure 

on ROI is relatively small while ROI is mainly affected by the square root of the pressure difference across nozzle. 

The test conditions are summarized in Table 3.. The duration of injection command pulse (coil energizing time) was 

varied between 200 µs, the shortest pulse width that fuel can be injected , and 5 ms which is the usual maximum 

injection duration in a GDI engine considering the intake stroke injection at rated rpm. The fuel injection pressure was 

varied from 50 bar to 380 bar while the back pressure was fixed at 15 bar. It should be noted that the pressure difference 

across the nozzle which is the value of subtracting the back pressure from the injection pressure, will be the discussed 

as an important injection factor in this study. Fuel temperature was varied from 25 ℃ to 100 ℃. In order to characterize 

the ROI of the injector in practical for the purpose of engine development and calibration, it is very important to 

perform the measurement at a temperature as low as -30 C, where the viscosity of the fuel increases significantly. 

However, in this study, the test could not be performed at a temperature lower than the room temperature due to the 

limitations of the test equipment and facility. 

Combining the conditions described above, experiment was conducted for a total of 570 conditions. Fig. 4 shows the 

summarized test conditions. The fuel was injected at 2 Hz repetition rate and the ROI data were acquired with a 

sampling rate of 100 kHz. The data were acquired for 100 injections and the ensemble-averaged data were post-

processed by noise filtering. Measured ROI data using Zeuch method can be contaminated by measurement errors and 

noise due to pressure fluctuations in the fuel chamber and mechanical vibrations of the injection system. In particular, 

high-frequency noise has been reported and measures for noise filtering has been applied to improve signal quality in 

earlier studies [30] [31].  In this study, moving averaging over 9 consecutive data points was applied considering 

capability of effective noise reduction and retaining of sharp step response as well as its simplicity and ease of 

implementation.  

2.3. Machine-learning methodology and computational setup 

In the present work, a machine learning function installed in the MATLAB program was utilized as a mean of 

regression to predict fuel injection rate and solenoid voltage signal. A built-in ANN code using the Bayesian 

regularization algorithm was applied, following the schematic diagram shown in Fig. 5. The Bayesian regularization 
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is a mathematical process that converts a nonlinear regression into a “well-posed” statistical problem in the manner 

of ridge regression. This algorithm is known to be more robust than standard back-propagation methods because it 

can reduce the need for a lengthy cross-validation process. Thus, it is one of the commonly used algorithms for 

engineering problems. The building block of an ANN is the layers and neurons that represent the smallest processing 

element [33][34]. In the neuron, it can have one or more inputs of xi, which comes from the environment or other 

neurons. These inputs then are multiplied with a weight wi and are shifted by a bias w0 to provide the intermediate 

value of y as presented in the following equation, eq-2. 

𝑦𝑦 = ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑤𝑤0𝑁𝑁
𝑖𝑖=1  (eq-2) 

The y from each neuron is transferred through an activation function to provide the output. The activation function 

can be in various forms such as linear, Gaussian, Heaviside, ramp, or sigmoid. In the present work, sigmoid is used as 

an activation function for all hidden layers and linear the output layer because it demonstrated the best performance 

both in terms of prediction and training. As described above, the training on measured ROI and solenoid voltage was 

performed using 4 inputs such as the pressure drop across the nozzle [bar], the coil energizing time (injection command 

pulse) [μs], fuel temperature [℃], and Qstat [g/min] with 100 iterations. The output size was 500 by 1 column that 

covers 0 to 5 ms after the start of the coil energizing time. It was essential to perform the so-called training where the 

weights and biases of all involved neurons are determined before using the ANN. This task was carried out as an 

optimization process to minimize the error in predicting the desired output for the input vector of a known dataset. 

Different combinations of dataset ratios for training, validation, and testing were explored. The best performance was 

found in 70%, 20%, 10%, and 60%, 20%, 20% for injection rate and solenoid voltage, respectively. Meanwhile, a 

parametric investigation showed the best agreement with 2 layers that have 10 and 30 neurons, 2 layers that have 9 

and 10 neurons for injection rate and solenoid voltage, respectively. Considering the trend of injection quantity and 

the number of training set, ROI data sets were divided into 4 parts based on the coil energizing time of 0-300µs, 300-

700µs, 700-2000µs, and 2000-5000µs regimes. One set was assigned for the ballistic region with energizing time less 

than 300µs for to predict accurately its injection quantity feature. Another set was assigned for the energizing time 

from 300µs where ballistic region ends to 700µs which correspond the induced time of the peak current. This was 

applied to reflect the slight difference in ROI depending on whether the holding phase was applied. For longer 

energization times with the holding phase, no particular trend is observed except for clear proportional increase with 
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energization time. However, in the case of the longer energizing time than 2000µs, less measurements were conducted 

compared to other test conditions due to its linearity. Therefore, a separate regime was assigned for energizing time 

longer than 2000µs.    

3. Results and discussion 

3.1 Discussions on ROI and solenoid voltage measurement results 

In this section, the detailed characteristics of measured ROI and solenoid voltage signal will be discussed. Fig. 6 shows 

the ROI trend according to the coil energizing time. It is shown that trend of ROI is not consistent with the energizing 

time and it can be divided into three regimes showing distinct characteristics. Region A shown in Fig. 6 is known as 

the ballistic region. In this region, needle motion follows a parabolic trajectory without reaching the upper position 

due to the short energizing time [10]. The duration and the amplitude of the ROI increase linearly with energizing 

time in this region. However, with increasing energizing time, the ROI shows less change, identified as region B in 

Fig. 6. In this region, the needle lift approaches the mechanical limit therefore, even if the energizing time increases, 

the needle lift barely changes while the bouncing motion of the needle can occur. As a result, the actual injection 

quantity does not increase with the increased energizing time while non-linearity of injection quantity arises due to 

the dynamic behavior of the needle motion as depicted in Fig. 1. On the other hand, with the further increase in coil 

energizing time, the needle reaches the maximum lift and maintains its position till the end of the coil energizing time. 

Thus, the injection quantity increases as the energizing time increases again. The relatively proportional relationship 

between the energizing time and the injection quantity is observed in this region. This corresponds to ‘linear’ region 

C in Fig 6. As discussed so far, the injection rate shows a distinguishable behavior according to the coil energizing 

time and injection pressure. It will be evaluated whether the regression model can reflect these behaviors seen in the 

measurement results.  

Fig. 7 shows the effect of pressure difference across the nozzle on ROI. As the pressure difference increases, the peak 

ROI increases and the ramp during start and end of injection has a higher slope. In particular, the fast ramp-down 

slope shorten the closing period and the end of injection. However, this trend is shown under Region C conditions of 

longer coil energizing time where the needle lift reaches its maximum limit. A more complex tendency can be shown 

when short energizing time is applied. An example is illustrated in Fig. 8 where  the ROIs were obtained for various 

pressure difference with the coil energizing time of 250μs. It is confirmed in Fig.8 that the valve closing delay 
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decreases as the pressure difference increases from 200 to 350 bar. However, the valve closing delay increases when 

the pressure difference increases from 100 to 200 bar. Similar trends were also shown in different injectors with a 

shorter energizing time. Such behavior is the manifestation of non-monotonic effect of pressure difference during the 

valve closing period. In general solenoid type GDI injectors, if the pressure difference is high, the hydraulic force of 

the pressurized fuel pressing the needle ball increases as presented in earlier study [35]. As a result, the needle descends 

towards the seat faster, shortening the closing delay. However, if there is no effect of accelerating the closing motion 

of the ball and needle by the pressurized fuel, ROI will only depend on the pressure difference and fixed effective area 

of the nozzle. As a result, the closing delay can increase as the pressure difference increases. Under the condition of a 

short energizing time near the ballistic region and some pressure difference condition, the energizing time ends when 

the needle lift is small and the hydraulic force due to pressurized fuel is small compared to the spring force. As a result, 

higher pressure difference can increase the valve closing delay as shown in Fig. 8. The non-monotonic trend observed 

for the relationship between pressure difference and valve closing delay will be included in a checklist for the 

verification of the model's accuracy. 

Fig. 9 shows the impact of fuel temperature on ROI. The slight decrease of the peak ROI can be seen with higher 

temperature, even though the difference is almost negligible. The valve opening and closing delay were also slightly 

reduced as the temperature increased. This is because of density and viscosity decrease as the fuel temperature 

increases, reducing the friction that the needle motion is subject to. It is worthwhile to reiterate that the ROI test was 

not performed under very cold conditions below zero such as -30 degrees, where the viscosity of the fuel increases 

significantly [36][37]. Therefore, the influence of fuel temperature was shown to be very small and the accuracy and 

the importance of the modeling is expected to be relatively low if it were to extrapolate to cold temperature conditions. 

However, as one of the test conditions, an evaluation will be performed to check if the model can predict the effect of 

fuel temperature on ROI to be small as shown in the experimental results.  

As an additional piece of ROI modeling, the effect of the static flow rate of each injector on the ROI is shown in Fig. 

10. It can be seen that the maximum injection flow rate increases linearly as the static flow rate increases as expected. 

Five injectors having different Qstat as shown in the table were tested in the study, and it will be discussed later 

whether the model can predict the ROI trend according to the Qstat in the model validation section. 
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Fig. 11 shows the correlation between the timing when inflection point in the solenoid voltage signal is observed and 

the actual EOI timing calculated from ROI. The inflection point of the solenoid voltage shown in Fig. 11 was found 

as the value at which the second derivative of injection driving voltage became zero. This is the method that was 

applied to the actual logics in engine control unit (ECU) as shown in earlier study [12] even more advanced methods 

are now applied to reduce errors and variations. In Fig. 11, it is confirmed that the inflection point of the solenoid 

voltage and actual EOI timing have a strong correlation as explained in the introduction. If the ROI and solenoid 

voltage can be accurately predicted through regression modeling, it will be possible to develop, validate and pre-

calibrate the injection control logic in ECU using these models for a virtual development environment. The possibility 

will be discussed later in the model validation section. 

3.2. Regression model development and evaluation 

To validate the model, the correlation between the predicted data from the ANN and experimental data was evaluated 

for both ROI and solenoid voltage models. Table 4 shows the R2 for all of the training, validation, and test data sets 

for the model. Both models show a high R2 which indicates the quality of regression is sufficient to make a prediction 

for ROI and solenoid voltage signal. Most of the training score reached over 0.99 except for the short energizing time 

(0-300µs) case due to the inherent non-linearity in ROI discussed in the previous section. This shows that superior  

accuracy of the model could be achieved compared to the previous study previous study that performed 1D hydraulic 

simulations on a GDI injector and reported an R2 of 0.92 under linear injection quantity condition [22]. Other than 

the training data set, new inputs that were not even included in the training, validation, and test procedure were tested 

as shown in Fig. 12. The comparison between ROI prediction by the machine-learning algorithm and experimental 

result indicates the models can predict ROI features of not only quasi steady-state but also transient dynamics. The 

machine-learning algorithm is able to detect SOI, and EOI precisely by showing closely matching those timings with 

the experimental result regardless of injectors’ pressure difference, coil energizing time, fuel temperature, and static 

flow rate. The details of ROI, for example, decrease in ROI during needle lift-up, fluctuations in early injection period, 

and even after needle close were well replicated with the machine-learning algorithm. Again, it is emphasized that the 

conditions in Fig. 12 were excluded in any training dataset but utilized for the evaluation of the models.  

3.3. Model validation and discussions 
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Comparison of the injection quantity calculated by integrating ROI trace for both model and experimental result is 

shown in Fig. 13. (a). Experimental symbols shown in Fig.13 (a) may seem insufficient to derive the modeled curve 

but it can be noted that they are experimental results form injector #1 while the modeled injection quantity curve was 

derived from the results of 5 different injectors. It can be seen that the model matches well with the experimental 

results. In particular, it was confirmed that the model can simulate the injection quantity characteristics, which were 

categorized according to the length of the energizing time. Figure 13 (b) shows ROIs according to various energizing 

time injection periods for the model and the experiments. In Fig. 13(b), the modeled and measured ROIs almost 

overlap each other so it is believed that the detail of ROI according to the length of the energizing time could be 

accurately predicted. 

The trend of modeled ROI according to pressure difference across the nozzle for various coil energizing times is 

shown in Figs. 14 and 15. In particular, Fig. 14 shows the modeled and measured ROIs for the relatively long 

energizing time of 700μs and the modeled and measured curves almost overlap for various conditions. Therefore, it 

can be confirmed that accuracy of the prediction is significantly high compared to previous 0D and 1D studies which 

showed some inconsistency in the valve opening and closing periods for various injection conditions [22][23][25]. In 

Figs. 14 and 15, The trend observed in the test results is well confirmed in the modeled ROI. In particular, it was 

shown that the effect of pressure difference on valve closing delay according to the length of the energizing time 

matched well with the experimental results. In the previous discussion, the effect of the injection pressure on the valve 

closing delay was identified that it shows different behaviors according to the length of the energizing time. If the 

energizing time is long enough to have the linearity of the injection quantity, the valve closing delay decreases as the 

pressure difference increases, while the opposite trend could be shown for the shorter energizing time . The accurate 

modeling of these complex effects was possible as shown in Fig. 15. Some modeled ROI cases showed a slight 

quantitative difference with the measured ROI near the end of injection timing, particularly for short events, but the 

overall trend and injected mass matches well with the experimental results. In particular, it can be confirmed that the 

accuracy and effectiveness of the approach in this study is superior compared to the 1D and 0D models in the previous 

studies, which had difficulties in modeling or scored low accuracy in the ballistic region [23][25]. 

As discussed in the previous experimental results section, as the injector temperature increases, the injection rate is 

slightly decreased due to the decreased fuel density, and the decreased viscosity decreases the delay of valve closing 
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and opening. The ROI model shown in Fig.16 follows these trends. Although the model was developed from relatively 

smaller number of fuel temperature tests, reliable predictions are shown at intermediate temperatures with no evidence 

of overfitting, including conditions excluded from the training dataset.  

Figure 17 shows the modeled ROI according to the static flow rate of the injector. Comparing the test results and the 

modeled prediction, it was confirmed that the trend of ROI for the static flow rate was predicted very accurately and 

the measured and predicted curves almost overlap in Fig. 17. In addition, the model could provide an appropriate 

prediction without overfitting or misbehavior under conditions where the experiments were not carried out. This 

indicates that the approach introduced in this study can be used not only to develop a model for a particular injector 

but also as a universal injector model applicable to the nominally identical injector family that have deviations from 

designed flow rates. This is a feature that is considered to be very useful in a virtual development environment. 

A comparison of the measured solenoid voltage signal and the virtual signal generated by the regression model is 

shown in Fig. 18 (a). As shown in the figure, the solenoid voltage signal can be predicted accurately through the 

modeling described in 2.2. In particular, the inflection point of the modeled voltage signal is close to that of the 

measured voltage. A key outcome of this finding is the modeled voltage is available for verification of injection control 

logic in the virtual development environment. As discussed previously in Fig. 10, the measured inflection point of the 

solenoid voltage, or the second derivative of the voltage signal, becomes zero at the actual EOI timing. Fig. 18 (b) 

shows the first and second-order derivatives of voltage signals from both the measurement result and the model. In 

Fig. 18(b), it was identified that the same signal processing method can be applied as in the actual ECU. The inflection 

point of the modeled voltage signal and the identified valve closing delay are close to those of the measured signal. 

Figure 19 shows the comparison of the EOI timings calculated through the model and measurement results for various 

test conditions. From Fig. 19, it is confirmed that there is a strong correlation between the EOI timings obtained 

respectively from the model and the measurement results. 

The above discussions show that both the injection rate and the solenoid voltage signal can be modeled with high 

correlation to the actual measurement result. In addition, it was confirmed that the virtually generated signal can be 

processed through the same signal processing method which applies to an actual ECU, in the same manner as the 

actual signal. Therefore, as suggested in the Introduction, the model proposed in this study can be used for the 

development, verification, and preliminary calibration of ECU injection logic in a virtual development environment. 
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The actual application of these models in a virtual development environment will be carried out as the authors’ future 

study.  

Based on the ML and ANN approach, the models produced demonstrate superior accuracy for predicting ROI and 

voltage signals, much closer to actual measurement results, than any other modeling techniques introduced in previous 

studies. In particular, most of the previous studies have reported difficulty in accurate modeling under short energizing 

time conditions in which the needle doesn’t reach the full lift position during the injection. On the contrary, reliable 

modeling was possible even under such conditions in this study using ML and ANN. Since these conditions are 

regarded as the most important conditions in actual engines for realizing reliable and repeatable application of injection 

strategy, the usefulness of the proposed approach in this study can be recognized.  

The modeling proposed in this study has the disadvantage that it depends completely on experimental ROI data. Also, 

unlike CFD prediction, it can’t provide referenceable results other than preset output values. Therefore, the approach 

proposed in this study won’t be suitable for the fundamental injector researches to understand the injection 

phenomenon and analyzes the detail of spray characteristics. On the other hand, this approach will be suitable for agile 

modeling for practical engine development. In particular, it is believed that engineers performing these tasks have 

already have accumulated test results of ROI and solenoid signals for the previous injection control logic development 

and calibration. Therefore, it is believed that the simple and accurate ROI and solenoid signal models can be developed 

using the methodology introduced in this study based on the existing injection data and utilized for the virtual 

powertrain development. 

4. Conclusion 

In this study, a machine-learning algorithm was implemented to predict injection rate of the state-of-the-art GDI 

injectors. Experimental data measured under various injection conditions were utilized for algorithm training. The 

major findings from this study can be summarized as follows. 

1) Rate of injection (ROI) measurement confirmed the non-linear behavior of fuel injection rate according to coil 

energizing time and pressure difference across the nozzle. Near the ballistic region, the injection quantity did not 

increase with longer coil energizing time while a stagnation point was observed. In addition, end of injection 
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(EOI) were advanced with higher pressure difference in the general manner while non monotonic trend was shown 

under some conditions due to complex effects of pressure difference on internal flow and needle behavior. 

2) Simple regression model without time-marching simulation using the artificial neural network (ANN) technique 

was developed in this study. The model was able to capture detailed characteristics in rate of injection (ROI) and 

solenoid voltage signal with 4 input features, pressure difference, coil energizing time, fuel temperature and static 

flow rate of the injector respectably. The model has significantly reduced requirements for input information and 

computational resource compared to CFD approach. 

3) The ANN model showed also advantages on the accuracy of the prediction. Despite non-linear characteristics in 

the injection rate, the training showed high coefficient of determination over 0.975. The quantitative comparison 

between machine-learning model and experimental data showed that the ANN model is capable of predicting not 

only general features of the injection rate trend but also non-linear behaviors shown in ROI measurement results.  

4) The end of injection (EOI) could be detected precisely with virtually generated solenoid voltage signal and same 

signal processing method which applies to an actual engine control unit. Correlation between the detected EOI 

timings calculated from the modeled signal and the measurement results showed the very high coefficient of 

determination of 0.998. The ROI and solenoid voltage model developed in this study is enough to be utilized for 

the development, verification, and pre-calibration of the injection control logic in a virtual powertrain 

development environment. 
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 Table 1. Specification of test injectors 

Injector Static flow rate [g/min] Number of holes 

#1 415 6 

#2 380 5 

#3 350 6 

#4 270 5 

#5 250 6 
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Table 2 properties and components of PACE20, the surrogate fuel for research-grade E10 gasoline  

component Volume fraction Property Specification 

ethanol 0.0955 Molecular weight 93.18 

n-pentane 0.1395 RON 92.1 

cyclopentane 0.105 MON  84.5 

1-hexene 0.0541 H:C  1.964 

n-heptane 0.1153 Density [g/mL] 3 0.742 

toluene 0.0919 Particulate Matter Index 1.5 

iso-octane 0.2505 ASTM D86 T10 [°C] 57.7 

1,2,4-tri methylbenzene 0.1187 ASTM D86 T50 [°C] 101.4 

tetralin 0.0295 ASTM D86 T90 [°C] 158.3 
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Table 3. Experimental conditions 

 Parameter Conditions 

Injection pressure [bar] 50-380 

Chamber(back) pressure [bar] 15  

Fuel temperature [°C] 25 - 100 

Coil energizing time [µs] 200 - 5000 



https://doi.org/10.1016/j.fuel.2021.122569 
 

24 
 

Table 4. Coefficient of determination for ML algorithms. 

Models 𝑅𝑅2 Value 
ROI 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 < 0.3𝑚𝑚𝑚𝑚 0.975 
ROI 0.3𝑚𝑚𝑚𝑚 ≤ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 < 0.7𝑚𝑚𝑚𝑚 0.997 
ROI 0.7𝑚𝑚𝑚𝑚 ≤ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 < 2𝑚𝑚𝑚𝑚 0.997 
ROI 2𝑚𝑚𝑚𝑚 ≤ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 < 5𝑚𝑚𝑚𝑚 0.995 
Solenoid voltage 0.996 
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(a) Injection quantity curve and non-linearity 

 

(b) Sample to sample variation  

Fig. 1. Injection quantity non-linearity and sample to sample variation of GDI injectors. 
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Figure 2.  EOI detection using solenoid voltage signal. 
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Figure 3. The schematics of ROI measurement. 

  



https://doi.org/10.1016/j.fuel.2021.122569 
 

28 
 

 

Figure 4. Experimental conditions. 
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Figure 5. Schematics of regression modeling using artificial neural network . 
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Figure 6. Effect of coil energizing time on ROI and injection quantity. 
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Figure 7. Effect of pressure difference on ROI under longer energizing time condition. 
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Figure 8. Effect of pressure difference on ROI under longer energizing time condition. 
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Figure 9. Effect of injector temperature on ROI. 
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Figure 10. Effect of injector static flow rate on ROI. 
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Figure 11 Correlation between end of injection timings calculated from ROI and measured from solenoid voltage 

signal (all measurement results). 
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Figure 12. Examples of the modeled ROI and comparison to the experimental results. 
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(a) Injection quantity from model and measurement results. 

 

(b) Comparison of ROI. 

Figure 13. Comparison of the injection quantity and ROI for model and measurement results. 
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Figure  14. Modeled  ROIs for different pressure difference under longer coil energizing time conditions. 
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Figure 15. Modeled  ROIs for different pressure difference under longer coil energizing time conditions. 
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Figure 16. Modeled  ROIs for different pressure difference under longer coil energizing time conditions. 
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Figure 17. Modeled ROIs for different pressure difference under longer coil energizing time conditions.  
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(a) Comparison of the measured solenoid voltage signal and the virtual signal generated by the regression model 

 

(b) Result of inflection point detection for modeled and measured solenoid voltage signals 

Figure 18. Validation of modeled solenoid voltage signal 
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Figure 19. Correlation between end of injection timings from modeled and measured voltage signals 


