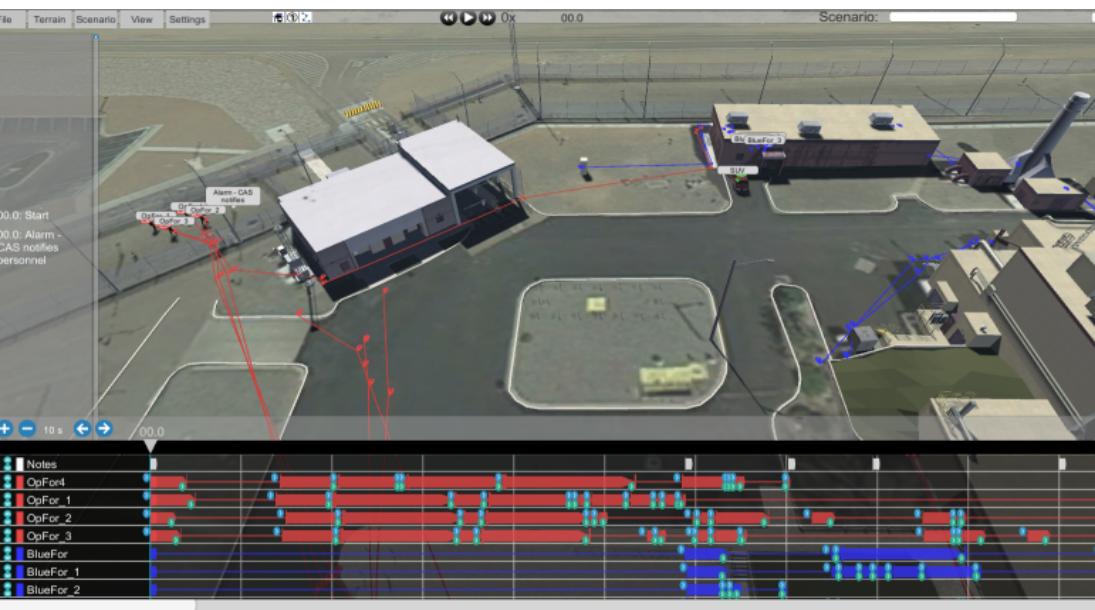




SAND2021-2896PE

# Update on Advanced Reactor Security Activities


**Presenter:** Douglas M. Osborn, PhD

**Contributors:** Sandia National Laboratories, Los Alamos National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory



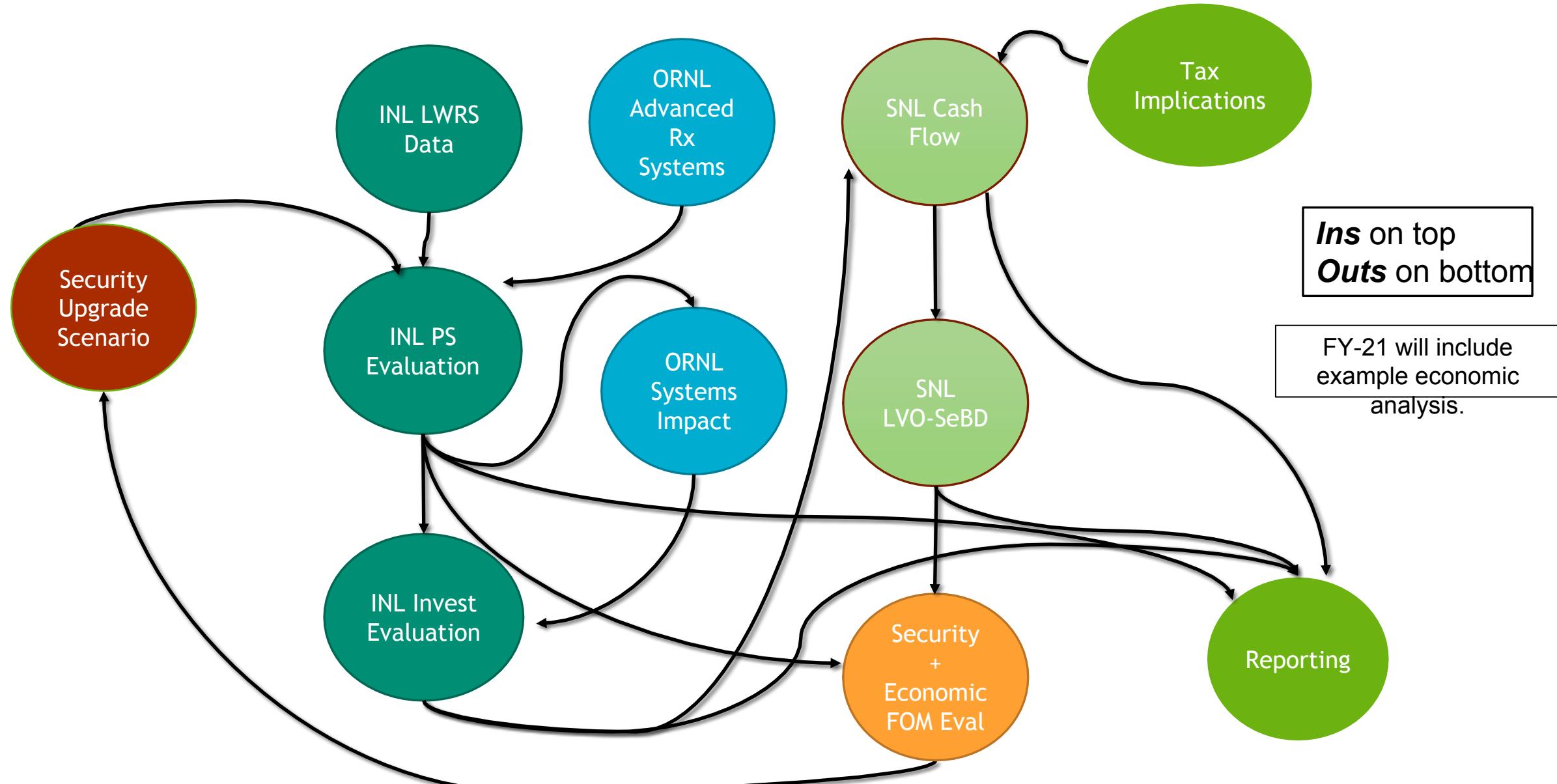
## 2 Overview Discussion

- Advanced Reactor Target Set Identification
- Security Economics Tool
- SMR / Advanced Reactor Testing and Training (SMARTT) Platform
- Online Security Training



- Static Level 1 PRA does not do sufficient job capturing *passive safety* or FLEX equipment
  - Passive safety ≠ Passive Security
  - Integrated Cyber-Physical Assessments
  - FLEX equipment can include onsite portable backup equipment
  - Duration of threat vs. time to core damage
- Investigation into new methods:
  - Dynamic event/fault tree analysis
  - System Theoretic Process Analysis (STPA)
  - Consider the integration of *timing* from reactor system response and security analyses
- Leverage System Theoretic Process Analysis (STPA) to inform target set identification
  - Current method uses Level 1 PRA for vital area identification and ultimately target set identification for direct and indirect sabotage *only*
  - Theft is not considered in current target set identification
  - Cyber is not considered in current target set identification

The overall goal of this work is to create an approach which U.S.-based advanced reactor vendors can identify and evaluate theft/sabotage target sets and vulnerabilities for a given protection strategy.


## Objectives:

- This effort will help identify gaps in modeling physical protection strategies by linking advanced reactor system response modeling with vulnerability assessment (VA) modeling and applying current security design methodologies.
- Consideration will be given to advancements in detection, assessment, delay, lethal/non-lethal denial and application of off-site response forces to assist U.S.-based vendors in decreasing overall security costs.
- This work will allow for a first order estimate to determine if off-site response force is adequate for protection strategies of advanced reactors and if such a concept could ever be applied.

## Security Economic Tool – Overall Project Goal and Objectives

**Goal:** Develop a capability and tool that vendors and utilities can use to perform an economic analysis for design features which have the purpose of reducing O&M costs related to nuclear security

- The tool will be generic enough to be used on multiple AR/SMR designs and will be flexible enough to consider labor cost differences in different countries
  - Value of capital will be incorporated into all calculations
- Example;
  - There may be a benefit to designing a barrier system for an SMR that will be deployed in the U.S., due to the high cost of security personnel
  - This same SMR deployed in another part of the world may not show a cost benefit if labor costs in that region are much less than the U.S.
- This is a multi-year effort;
  - Activities started in FY-20 and expected to be completed in FY-22.
  - Industry input will be sought in FY-21 to ascertain interest in this work
  - FY-22 effort will depend on level of industry interest

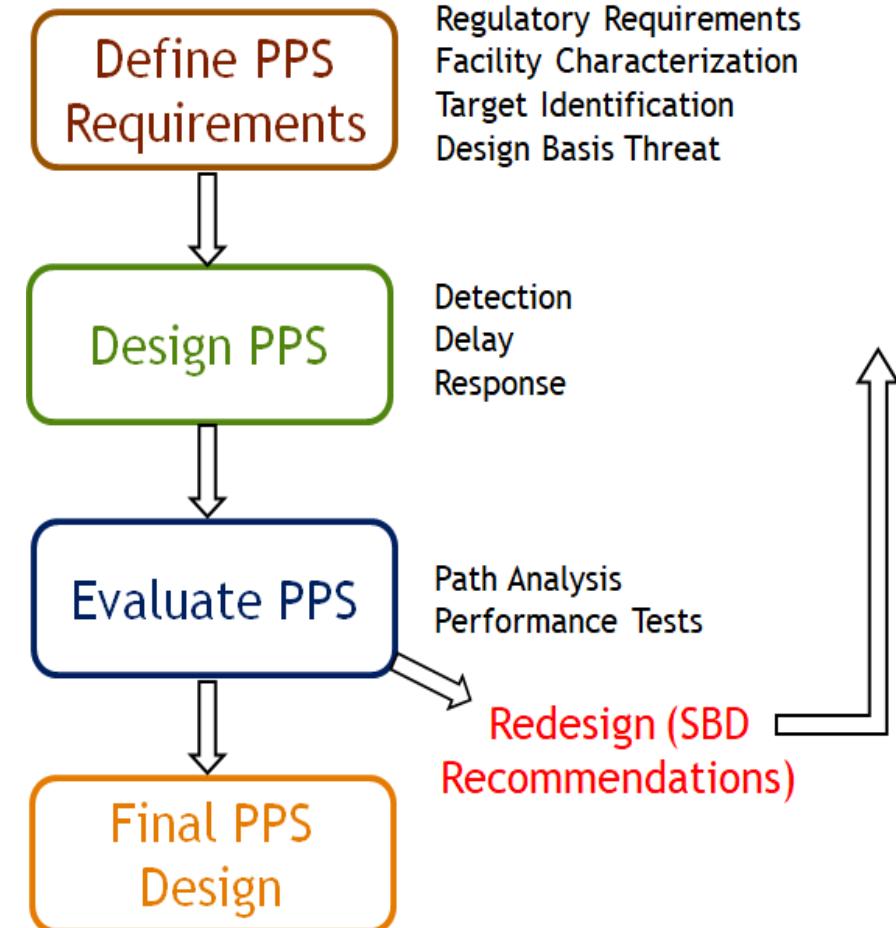


## Overall Goals of SMARTT Platform

**Summary:** Small Modular Reactor & Advanced Reactor Testing and Training (SMARTT) Platform will provide the USG ability to **engage** domestic and international partners on integration of cyber & physical security system concepts and technologies for nuclear infrastructure of the future.

- Provide **testing platform** for advanced security technologies to improve security systems applied to SMRs and advanced reactor facilities.
  - Small facility footprint
  - Technical basis for limited or no onsite security personnel
  - Early detection and assessment (prior to facility fence line)
  - Active/Passive delay systems
  - Active & Final denial systems
- Provide **training platform** on various SMR/AR security concepts for U.S. industry:
  - Advancements and proof-of-concepts of security-by-design (SeBD) in Target set and Vital Area identification with considerations of physical & cyber security
  - Novel concepts and approaches for Access controls for SMR/AR facilities with consideration of remote operations and monitoring
  - Novel concepts and approaches for Access delay and Active Denial for SMR/AR facilities with consideration of remote operations and monitoring

- Raise Technology Readiness Level of security system technologies for Small Modular and Advanced Reactors
- Platform for technical exchanges on topics relating to the protection of nuclear facilities with small footprint
  - Physical Protection;
  - Cybersecurity;
  - Sabotage Mitigation;
  - Insider Threat Mitigation; etc.
- Expand real-time demonstrations and hands-on training exercises with partners
  - Place personnel in a “feels like” real-world environment to advance technical training, testing, and evaluation of security systems
  - When you can see it, feel it, and sometimes smell it, attracts Fruition and Ideas of Others
- Integration of SMARTT with other aspects of ISF




## Define physical protection system (PPS) requirements -

Study the existing facility and its plans to learn all of the operations, conditions, and important physical features that affect the PPS. Then conduct a detailed study of the range of adversaries that the physical protection system must successfully counter. Finally, identify the most important areas or materials that must be protected from the adversary.

**Design a PPS** - Either identify the existing physical protection elements for potential upgrading or design a new protection system using elements of detection, delay, and response that are effective against the capabilities of the potential adversary.

**Evaluate the PPS design** - Given the information about the facility, threat, targets, and physical protection system, use accepted analysis techniques to obtain a measure of the protection system's effectiveness. Redesign and reanalysis may be required if the measure of effectiveness is not satisfactory.



The Design Evaluation Process Outline (DEPO) is a systems engineering method that has been applied to nuclear security since the 1970's. DEPO is a performance-based methodology to design and evaluate physical protection systems (PPS) against the threat of unauthorized removal of nuclear materials or radiological sabotage.

- Traditional DEPO training is a 5-day in-person training course with field exercises
- The classroom lecture materials were converted into a 16 module (~14 hour) online training course

<https://nstc.sandia.gov/training/smr-depo-course>

| MODULE | TITLE                                       |
|--------|---------------------------------------------|
| 1      | Intro to the DEPO Process                   |
| 2      | Overview of Physical Protection Principles  |
| 3      | Regulatory Requirements and Risk Management |
| 4      | Target and Vital Area Identification        |
| 5      | Threat Definition                           |
| 6      | Facility Characterization                   |
| 7      | Intro to Design of PPS                      |
| 8      | Intrusion Detection Systems                 |

| MODULE | TITLE                                       |
|--------|---------------------------------------------|
| 9      | Alarm Assessment Systems                    |
| 10     | Delay System Design                         |
| 11     | Access Control                              |
| 12     | Prohibited Items                            |
| 13     | Alarm Communications & Display and Response |
| 14     | Computer Security                           |
| 15     | Performance Testing                         |
| 16     | Intro to Evaluation of PPS                  |

# Questions

