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Abstract: Noise and disorder are known, in certain circumstances and for certain
systems, to improve the level of coherence over that of the noise-free system.
Examples include cases in which disorder enhances response to periodic signals, and
those where it suppresses chaotic behavior. We report a new type of disorder-
enhancing mechanism, observed in a model that describes the dynamics of external
cavity-coupled semiconductor laser arrays, where disorder of one type mitigates (and
overcomes) the desynchronization effects due to a different disorder source. Here we
demonstrate stabilization of dynamical states due to frequency locking and
subsequently frequency locking-induced phase locking. We have reduced the
equations to a phase model that illustrates the mechanism behind the misalignment-
induced frequency and phase synchronization.

Synchronization in networks of nonlinear elements, including semiconductor diodes,
has been studied, revealing a variety of spatial and temporal behaviors [1-22]. The
equations describing the dynamics of a semiconductor diodes and diode arrays have
been experimentally verified and extensively tested [3, 23-29]. Nearest neighbor
coupled semiconductor lasers can be phase synchronized [24-26], however, for large
arrays, the in-phase solution destabilizes, and spatiotemporal chaos may occur. This
destabilization occurs because as coupling strength increases, the number of external
cavity modes increases and the coupled lasers chaotically hop between these fixed-
frequency solutions [3, 27, 29].

Although noise and/or spatial disorder typically are expected to reduce coherent
behavior, under certain circumstances they can improve it [30-45]. In one widely
studied class, known as stochastic resonance, dynamical noise enables the influence
of a weak periodic force [30,31]. It has been recently suggested that uncorrelated
noise can promote rather than inhibit coherence in natural systems and that the same
effect can be harnessed in engineered systems [32]. Alternatively, quenched disorder
can suppress or eliminate large deterministic fluctuations of a chaotic system to yield
synchronized behavior [33-41]. Coupled dynamical systems with highly
heterogeneous time delays or other system parameters have been studied [22,46-48].

In this paper, we identify a new mechanism in single-mode semiconductor lasers
whereby the addition of disorder enhances system-wide coherence. We find that one
type of disorder mitigates array desynchronization shaped by a different type of
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disorder and generates a highly ordered dynamical state. While the nature of
disorder-enhanced synchronized states could vary both temporally (i.e., fixed point
solutions, limit cycles, quasiperiodic solutions, etc.) and spatially (external cavity
modes, in-phase solutions, etc.), we focus our attention on states that lead to the high
degree of frequency and phase-locking important for a variety of applications. We
demonstrate a disorder-driven mechanism by which frequency and frequency-
induced phase-locking is achieved.

We begin with a version of the Lang-Kobayashi (LK) equations that has gain
saturation nonlinearity and amplitude-phase coupling. We describe the ith laser field

E.(1) = r.(1)e"" and carrier number N,(¢) in an array of M lasers [49-54]:
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Here, N, =1.5%10® is the number of carriers at transparency, g =1.5x10*ps™' and

s=2x10"" are the differential gain coefficient and the gain saturation coefficient
respectively [50,51], = 0.5ps ™' is the cavity loss, « = 5 is the linewidth enhancement

factor [52,53], 7, =0.5ns”" is the carrier loss rate, J, =ay,(N, —Z) is the pump
8

current, x/ is the feedback strength, [, are complex Gaussian noise,
(F (z‘),FE*j (")) =R,0,0(t-t"), and F, are real Gaussian  noises,
<FN,. (), FNj (")) = }/n]\fi(t)é;jé'(t—t') [54,55]. The frequency detuning of the ith laser is
ow. where @, is a random fixed real number distributed with zero mean and 2r

variance, and o represents the variance of the detuning with units nsl. For
simulations, we use a fourth order Adams-Bashforth-Moulton stochastic integration
method [56]. We note that the effects discussed in this paper occur without noise,
however we include the noise term to illustrate that the phenomenon is robust.

The delay time between the i and j lasers has an offset £z, = £(77, +7,), the vector 7 is

a random vector of time-delays drawn from a positive half-normal distribution with zero
. 2 .. ) .
mode, variance (1-—), &7, and en,are positive (and hence 7, is positive). The value of
ju .

time delay (7 =3ns) is large enough not to consider multiple reflections from the
misaligned facets [57, 58]. The parameter ¢ is related to the variance of the delay
misalignment and has units of ns. Here, we note that typically a phase factor proportional

to the time-delay and carrier frequency ¢'*” multiplies the feedback term. For a typical

. ... 27 .. .
diode laser, the period is =~ 10°ns, whereas the misalignment of the i th laser is &7, ~
a)O

107" ns, consequently, the misalignment parameters can be slightly adjusted by less than a



wavelength to negate the phase-shift without significantly changing the delay time

.. . . ) 2r
misalignment. Therefore, we assume that £77; is an integer multiple of — . We note that
a)O
disorder does not have to be random: engineered or random engineered disorder can lead
to very similar outcomes promoting synchrony in the system. We therefore do not include
the phase factor. We have numerically confirmed in several examples that adding e to
the feedback term does not change the main results of our paper and will only make the

mathematical description of the underlying mechanism more complicated.

We consider the decayed nonlocal coupling matrix K whose ij elementis K, = d'
where d_<(0,1). In the case of a 2-dimensional array, the matrix element coupling
the ik laser with the ji laser is K, =d.”'d)”", where d_d, €(0,1). This matrix

corresponds in principle to many external cavity designs because the mode structure
is similar to that of a resonator with "good" properties [14,21,59,60].

In an array of identical lasers (o = 0 ) coupled with decayed nonlocal coupling K and
no misalignment (& =0), phase locking occurs as a form of array-wide transverse

mode selection, where the dynamics of the mode selected by the array are similar to
!

the dynamics of a single laser with an effective feedback constant k' = Kﬁﬂl where 4

is the largest eigenvalue of K [61,62]. This phase locked state is robust to small

amounts of frequency detuning and the phase-locking persists even in chaotic

parameter ranges [61]. However, when detuning becomes too large, the lasers begin

to desynchronize. If a laser in the array has a frequency o, thatis far from the central

frequency ﬁz , , then it becomes unlikely for the laser to participate in the phase-
j

locked state.

Even when natural frequencies of individual lasers are far enough apart to cause
desynchronization, we find that introduction of facet misalignment causes all lasers
to converge perfectly to a single frequency. In Figure 1 we show cos(¢,) fora 10x10

diode laser array without and with facet misalignment, and corresponding power
spectra. We have tested different size arrays, 1-dimensional and 2-dimensional, and
confirmed that the results in Figure 1 are typical for different sizes and parameters.



Figure 1: (a, ¢) cos¢ (blue is -1 and yellow

is +1) as a function of time (x-axis) and laser
number (y-axis) for a two-dimensional array
of M =100 lasers with d, =d, =0.95 and
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} the facets are perfectly aligned € = 0 , and for

the bottom figures, the facet is misaligned so
that £ = 0.1.
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We observe that with ¢ =0 the power spectrum of all lasers is broad, indicating
chaotic behavior. Further, detuning is large enough that average phase
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synchronization improves to almost perfect phase synchrony and all lasers lock to a
single frequency. We have tested disorder-enhanced frequency-locking for 100
different misalignment disorder realizations and random-phase, zero-amplitude
initial conditions and find very similar results.

synchronization <§ >=< > is low. With facet misalignment, phase

It is well-known that for a single laser, the Lang-Kobayashi equations’ solution-space
is determined by the stability properties of the External Cavity Mode (ECM) solutions
[63-68]. Each solution is a fixed-frequency fixed-intensity solution. As feedback
strength to a laser is increased, the number of ECMs increases [64]. It has been shown
[61,62] that coupled array (without misalignments) can synchronize on a collective
mode and undergo the same feedback-induced bifurcation cascade as a single laser.
For weak to moderate feedback, this synchrony is stable. However, for sufficiently
large feedback strength that is required to phase-locking moderately frequency-
detuned arrays, the chaotic behavior destabilizes synchrony [61,62]. In this strong
feedback regime, "attractor hopping" takes place where the frequencies of the
individual lasers slowly hop between the ECM frequencies [61,62,64,69,70]. The
power spectrum for £ =0 in Figure 1(b) indicates chaotic behavior with many
frequencies, in contrast to a single dominant frequency for & # 0 seen in Figure 1(d).
The presence of misalignment destabilizes all but a single fundamental frequency for
the system, even though each laser has a detuned central frequency.

We begin by changing Equation (1) to polar coordinates such that E.(¢) = r,(¢)e”” and

use G(N,,r)= (g];]:r;srj\g)—y). Since J, is much higher than threshold, all the ECM

i
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solutions that we consider are within the gain bandwidth for the system, so we will
not need to use the carrier number equation for this analysis. We now consider
dynamics on the timescale of the ECM frequencies. In diode lasers ECM frequencies
are much lower than relaxation oscillation frequencies [64,69-71]. Therefore, in our
derivation the effects of carrier dynamics will be effectively treated as fluctuations
about ECM solutions. We also assume constant (or fluctuating around constant) value
for field amplitudes 7. These assumptions are further justified in the Supplement S1.

Equations (1) reduce to:

S
0=2G+5 S K, cos(@ (1~ +67,)-§) + L R(E, ™)

P 1 (2)
F=2G 100+ K, sin(g,(t—1+67,)-¢) +—I(F,e ™)
2 M 5 ’ ’ ! r i

Combining these, we arrive at a time-delayed phase equation with added noise
similar to that in [73]:

i
é‘: ow, +%\/1+a2 ZK” sin(g, (t —7+7,;) — 4, —tan”' ()
J
Vi+a?

| F, |sin(arg(F, )— ¢ —tan"' (@)
‘ 1 (3)

We simplify the noise term as:

V1+a? 1+a?

| F; | sin(arg(F} ) — f}iﬁ,

R
where F,, is real Gaussian white noise: (F, (#),F, (t’))z%é‘ijé(t—t’). We then

rewrite Equation (3) as:

F, (4)

S / 2
é‘: o, +Kﬁ\/1+a2 ZK[]. sin(p, (1 —7+¢7,)— ¢, —tan"'(a)) + lta
J

We can now consider fluctuations of the central frequency of each laser, rather than
the phase. This treatment is similar to thatin [69,72]. We assume, as in the simulation,
that the individual laser frequencies vary on a time scale longer than 7. Then the
frequency of ith laser can be approximated by Q. (¢)~ (4,(t)—¢,(t—7))/7 and the

evolution of €, can be written as S&i = (é(t) — (/§(t -7))/7:
s
& - 0—@+A’2—T\/1+a2 K, sin(g, (¢ +27,)—¢, ~tan” (@)
J

T

1+“2i_‘/§(t_7) (5)
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The time scale of variation of the frequency Q, is much larger than 7. We then
approximate the instantaneous frequency #(;-r), assuming it resides on a single

frequency during a delay interval (which is substantiated by our numerical
experiments in this parameter range) [72]:
Vi+a?

Hi-1)~ ¢i(t)_¢i(f—r)+\/r
4 r

2
a
F(t-71)=Q,+

£, (t-1) (6)

According to the simulations presented here and the results of [61,62], the steady
state solutions of the array in the case of small o and ¢ =0 are similar to the ECM
solutions for a single laser, which satisfy Q =+ x/\/1+a? sin(-Qr —arctan(r)) . For

an array of lasers, the array solutions are similarly ECM solutions of a single laser with
a modified effective coupling [61,62]. We therefore approximate the feedback term in
the case of & =0 usingsin(g,(r —7) - ¢,(t) —tan"'(@)) = sin(-Q,7 —tan"' () :

sin(g,(t—7+¢7,) - 4,(t) —tan”' @)

~sin(g; — ¢, — tan”' ) + grl.jé.‘r cos(¢; — ¢, — tan”' ) 2
sin(¢; — ¢, — tan” o)+ gri/é‘f cos(¢; — ¢, — tan”' a) ®

~sin(-Q7—tan™ @) +67,(Q, - Q)

The first approximation in (7) is simply a first-order expansion. We make the stronger
approximation (8) as an ansatz. This stronger approximation seems to work for the
set of parameters and system considered in this paper and has been numerically
verified (see Supplement S2).

We then arrive at the expression:

Mz J=1
Nixa? F(0-F,(-1)
r T

T

éj = l(awz -Q)
T
| 2 M / 2 M
s Y1 > K, sin(-Q,7 —tan ™ (@) +ex’ Ira D K7, (Q,-Q) (9)
, =

Since the noise sources F, () and F, (t—z) are uncorrelated, we can replace their

1+a?

sum with F, () having magnified diffusion coefficient 2R, (which is four

r
times that of F, ) [72]. The fully reduced system is:

\/f Z K, (Sin(—Q,-T —tan'(a)) +£7,(Q; - Qi)) *Fo, (1)

& = Liow-q)+x’
T
(10)
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When ¢ =0, the €2 are essentially uncoupled. This does not imply that the actual

laser dynamics is uncoupled. For & =0 the only frequency-locking mechanism could

be related to the coupling matrix termZKij that would be almost equal for large
J

arrays. This coupling term may be too small to overcome the random detuning,

leading to poor frequency - and thus phase-locking. Equation 10 shows that

misalignment affects coupling and as demonstrated in Figure 1, can induce frequency

locking.

To gain further insight into this mechanism, we recast Equation 10 as a potential
system:

& = —erFQ_ (t)
o0 '

Vita® L
——— > YK, cos(Qz +tan™ &)
Mz 5 I=n (11)
K Al+a® ELE

TS T M 22 KT (Q, - Q)

i=1 j=1

r 1 & .
V(Q)=—2—Z(Ua’i—9,») —-K
T ial

There are three components to the potential function (see Figure 2). The first term,
which includes the detuning, leads to a parabolic potential with a minimum (for an

individual laser) at oo, so that the potential minima of two detuned lasers are pulled

apart, as illustrated in Figure 2(a). The second term of the potential can be thought of
as an ECM contribution. The increase in the number of ECM solutions increases the
number of local minima. The third term, proportional to ¢, generates a "spring-like
force" (Figure 2(b)): misalignment ( ¢ # 0) effectively forces the frequencies of lasers
towards one another. The presence of sufficiently large x/ makes it possible for two
lasers' delay coordinates to settle into local minima that have nearly equal frequency;
however, it is nonzero ¢ that induces exact frequency alignment.

potential
potential

frequency frequency

Figure 2: Diagrams of the effective potential functions of two detuned lasers’ delay coordinates for & = 0 (a) and
20 (b). The solid lines denote the potentials for a very small value of x’ and the dash-dotted lines denote

the potentials for increased k.



We illustrate the behavior of the potential model (Eq. (11)) in Figure 3 (left panel),
where approximate steady-state values of ), are plotted as a function of ¢. The data

is from a single simulation that starts with & =0, increasing & by 0.001 ns every 400
time units. It is clear from the figure that as ¢ increases, the frequencies of the lasers

are pulled together. Further, there are clearly discrete frequencies to which the €,

converge. To test that misalignment in the form of nonzero ¢ is the fundamental
cause of frequency locking, we use the full system of equations (Eq. (1)) and follow a
similar procedure to the one shown in the left panel of Figure 3. We consider a system
of 10 lasers that are initially perfectly aligned. In a continuous simulation, every
300ns the misalignment scaling ¢ is increased by 0.001 ns. We record the delay
coordinate for each laser (which should be related to the main frequency of the laser)
at the last 30ns of each time segment and plot the set of points as a function of ¢
(Figure 3, right panel). The arrays have the same instance of frequency disorder with
o =3GHz.
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Figure 3: (left panel), values of €; are plotted for each laser for a potential model (Eq. (11)) simulation of an
array of 10 detuned lasers (o = 3GHz ) with d, = 0.8 . (right panel), phase delay (¢(t) — (¢t — 7)) / 27 is plotted
for each laser in an array of 10 lasers. This plot is generated from a single simulation with 10 detuned lasers (

o =3GHz ) with d, =0.8 and slowly increasing ¢ . The same realizations of T; and @, are used for each

simulation. The coupling strength is x’ =30ns™" . For both figures color represents laser number.

We have seen that random misalignment can cause perfect frequency locking and
improve phase synchronization of an otherwise poorly synchronized diode laser
array. Can engineered disorder achieve a similar effect? Apparently so: Figure 4
shows an example of phase synchronization in a 100-diode two-dimensional array
subject to four different types of disorder. In each panel, the data represent 100
random realizations of disorder, all based on the same disordering principle. Linear
and random disorder result in a high level of synchrony < § >, while sinusoidal and
constant disorder lead to rather poor synchrony. One could interpret the effect of
certain types of spatial disorder as reducing spatial symmetries in the time-delay and
therefore reducing the number of available states to the system (random and linear),
while others (sinusoidal and constant disorder) conserve or only mildly reduce
spatial symmetries in time-delays.
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To summarize, we have demonstrated how one type of disorder can mitigate the
destructive effect of another type. In this case, disorder in time-delay between laser
elements seems to overcome the effects of heterogeneity. The reduced model for
frequency-locking in the system suggests that the mechanism might be relevant in
other types of systems and that the underlying mechanism adds to the list of other
well-known mechanisms. We believe the results presented in this paper pose an
important question about how disorder (random and/or engineered) can be used to
overcome the effects of heterogeneity and improve frequency and phase-locking in
large single-mode semiconductor diode arrays.
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Research.
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