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Abstract. As the growth of data sizes continues to outpace computa-
tional resources, there is a pressing need for data reduction techniques
that can significantly reduce the amount of data and quantify the er-
ror incurred in compression. Compressing scientific data presents many
challenges for reduction techniques since it is often on non-uniform or
unstructured meshes, is from a high-dimensional space, and has many
Quantities of Interests (QoIs) that need to be preserved. To illustrate
these challenges, we focus on data from a large scale fusion code, XGC.
XGC uses a Particle-In-Cell (PIC) technique which generates hundreds
of PetaBytes (PBs) of data a day, from thousands of timesteps. XGC
uses an unstructured mesh, and needs to compute many QoIs from the
raw data, f .

One critical aspect of the reduction is that we need to ensure that QoIs
derived from the data (density, temperature, flux surface averaged mo-
mentums, etc.) maintain a relative high accuracy. We show that by
compressing XGC data on the high-dimensional, nonuniform grid on
which the data is defined, and adaptively quantizing the decomposed
coefficients based on the characteristics of the QoIs, the compression ra-
tios at various error tolerances obtained using a multilevel compressor
(MGARD) increases more than ten times. We then present how to math-
ematically guarantee that the accuracy of the QoIs computed from the
reduced f is preserved during the compression. We show that the error
in the XGC density can be kept under a user-specified tolerance over
1000 timesteps of simulation using the mathematical QoI error control
theory of MGARD, whereas traditional error control on the data to be
reduced does not guarantee the accuracy of the QoIs.

Keywords: lossy compression · error control · quantities of interest ·
XGC simulation data



2 Q. Gong et al.

1 Challenges in Lossy Compression for Physics
Simulations

Storage and I/O capacities have not increased as rapidly as computational power
over the last decade. Storage constraints influence how many files can be output,
their frequency, and how long the output files can be kept in short-term storage
like parallel file systems. With the exascale computing era approaching, there
has been an urgent call for general and reliable reduction techniques that achieve
large compression ratios for scientific applications. The compression of scientific
data is challenging in several aspects. First, most scientific data are stored in 32-
or 64-bit floating-point format. As the low-order bits of floating-point numbers
are essentially random, lossless compression algorithms can only achieve limited
compression ratios on most scientific data [10]. Second, compression algorithms
targeting scientific data must provide guaranteed and quantifiable error bounds
so that scientists can use the reduced data in their investigations and trust the re-
sults. Recently, several lossy compression algorithms for scientific data have been
proposed based on prediction (SZ [11]), block transformation (ZFP [12]), mul-
tilevel decomposition (MGARD [13–15]), and machine learning (VAPOR [16]).
This paper concerns the problem of compression under constraints on the errors
incurred in quantities of interest (QoI), so we limit our study to error-bounded
lossy compressors (i.e., MGARD, SZ, and ZFP).

Ideally, lossy compressors should be flexible with regard to the structure
of the data, generalize to arbitrarily high dimensions, and allow control of er-
rors both in the original degrees of freedom and in downstream QoIs. Scientific
data usually resides on high-dimensional, underlying uniform, nonuniform, or
unstructured grids [1, 4, 9, 22]. Compressing data in the same high-dimensional
space where it is defined can make more of the data’s spatial correlations visible
to the compression algorithm, resulting in higher compression ratios. Similarly,
compression algorithms should make use of as much of the data’s spatial struc-
ture as possible. Compressin nonuniform or unstructured data as though it were
defined on a uniform grid risks obscuring redundancies and patterns in the data,
resulting in lower compression ratios. A third design goal is the control of errors
incurred by compression algorithms. A natural starting point is to bound the
error in the ‘raw’ data—i.e., the difference between the original dataset and the
reduced dataset output by the compression algorithm. Often, though, scientists
are less concerned with the pointwise error in the raw data than with the change
to the QoIs computed from the data. The mathematics required to relate errors
in the raw data to errors in QoIs is nontrivial, especially for QoIs that are non-
linear and/or obtained by complex post-processing. Empirical approaches can
provide estimates for, but not guaranteed bounds on, QoI errors by extrapolating
from previously encountered datasets and QoIs.

In this paper we focus our attention on XGC [1, 2], a leadership-class applica-
tion in the fusion community which simulates high-dimensional data (five phase
space dimensions + time) on an unstructured mesh and whose output is used to
compute many simple and complicated, linear and nonlinear QoIs. XGC is a full-
f gyrokinetic particle-in-cell (PIC) code which specializes in simulating kinetic
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transport in edge tokamak plasmas, where strong particle and energy sources and
sinks drive the plasma away from thermal equilibrium. The code represents par-
ticles as samples with specific positions, velocities and weights [21] and solves the
gyrokinetic equations for a 5-dimensional particle distribution function f . XGC
can run in parallel on supercomputers such as the Oak Ridge Leadership Com-
puting Facility’s (OLCF) Summit [20], fully utilizing all of the CPUs and GPUs.
Although the parallel code enables fusion scientists to model more complicated
tokamak experiments at finer resolution and for longer timescales, the data gen-
erated is too large for permanent storage on the parallel file system at OLCF.
To give an idea of the scale, a simulation modelling ITER-scale [6] problems will
typically contain trillions of particles and run for thousands of timesteps and
can each day produce over 200 petabytes of data [5], which would, if stored in
its entirety, fill 80% of the storage capacity of Summit’s parallel file system.

core

edge

Fig. 1: Coordinates of the XGC 5D distribution function f(φ, θ, r, v‖, v⊥) in a
tokamak device. To reduce the particle data, the output routine in XGC dis-
cretizes the 3D space {φ, θ, r} into cross-sections uniformly spaced across the
toroidal direction φ and groups the particles on each cross-section into histograms
in 2D velocity space v = {v‖, v⊥}.

Direct compression of the XGC simulation data at such enormous scale is
unrealistic due to the extreme compression ratio required. Instead, compression
is preceded by a discretization and binning step in the XGC output routine. As
shown in Figure 1, XGC discretizes the 3D space x = {r, z, φ} into radial-poloidal
cross-sections (RZ planes) [7]. An unstructured mesh is used to model the com-
mon geometry of the RZ planes, and XGC groups the particles on each plane
into volumes around the nodes of the mesh. The particles at each mesh node
are further sorted into bins in the 2D Cartesian velocity space v = {v‖, v⊥} [8].
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The code then outputs a particle distribution histogram defined on this five-
dimensional, nonuniform, unstructured grid, reducing the output size from hun-
dreds of petabytes to hundreds of terabytes per run. This histogram data must
be further reduced by compression techniques before being written to storage.

To shed light on the relationship between compression errors and downstream
QoIs, we investigate in this paper the impacts of errors in the histogram data on
five physical quantities specified by XGC scientists. The QoIs we consider are
density (n), parallel temperature (T‖), perpendicular temperature (T⊥), flux sur-
face averaged density (n0 avg), and flux surface averaged temperature (T0 avg).
The density, n, is computed by integrating f over the mesh nodes,

n(x, t) =

∫
f(x, v, t)

vox(x)
dv‖ dv⊥, (1)

where t represents the timestep and vox(x) is the volume of the mesh node at
x. T‖ and T⊥ are integrals of parallel and perpendicular kinetic energy, mv2,

T⊥(x, t) =
1

2

∫
mv2⊥f(x, v, t)

n(x, t)
dv‖ dv⊥,

T‖(x, t) =
1

2

∫
m(v‖ − u‖)2f(x, v, t)

n(x, t)
dv‖ dv⊥,

where m is the mass of atomic particles corresponding to f and u‖ is the par-
allel flow, computed using u‖(x, t) =

∫
v‖f(x, v, t)/n(x, t) dv⊥ dv‖. Finally, the

flux surface averaged density and temperature are computed by averaging the
density and temperature over a thin volume between toroidal magnetic flux sur-
face contours. For brevity, we omit the equations for the flux surface averaged
quantities [3]. These five physical quantities represent different types of QoIs.
Among these, density is a linear function of f , T⊥ and T‖ are nonlinear quanti-
ties, and n0 avg and T0 avg represent QoIs that are smoothed over the space.
Throughout the paper, we measure the error using the Normalized Root Mean
Square Error (NRMSE), defined as follows:

NRMSE(u, ũ) =

√∑N
i=0(ui − ũi)2/N

max(u)−min(u)
,

where u is the original data, ũ is the reconstructed data, and N is the number of
degrees of freedom in u. To ensure the integrity of scientific discovery, the down-
stream analysis of XGC requires that f and the above five physical quantities
have errors no larger than 10−3.

In this paper, we demonstrate the use of compression accounting for high
dimension, various grid structures, and error control for different types of QoIs.
Our application driver is data generated by XGC. We show that higher com-
pression quality can be achieved when compressing in high dimension, allowing
high-dimensional correlations to be utilized. We next show that the compression
quality can be further improved when the decorrelation and quantization steps
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of the compression algorithm are adapted to the nonuniform grid structure and
to characteristics of QoIs to be preserved. Lastly, we show the importance of
mathematically guaranteed error control for derived QoIs and how to achieve
this control using MGARD.

The rest of the paper is organized as follows. In Section 2, we introduce the
three error-controlled compressors that are evaluated in this work. In Section 3,
we demonstrate the impact of utilizing high-dimensional decorrelation. In Sec-
tion 4, we show how the grid can be leveraged to improve compression ratios
using MGARD. In Section 5, we demonstrate how to adaptively compress the
data for desired QoIs and how to guarantee the accuracy of the QoIs computed
from the reduced data. In Section 6, we discuss future work. We conclude the
paper in Section 7.

2 Background of Error-Controlled Lossy Compression

Compression techniques have been extensively studied as a direct way to re-
duce data size. Traditional lossless compressors [23–25] can recover full precision
data but usually suffer from low compression ratios on floating-point scientific
data [10]. Although lossy compressors widely used in the image processing com-
munity [32, 33] are able to trade off precision for higher compression ratios, they
are not preferred in the scientific computing community as the errors are dif-
ficult to quantify. Hence, error-controlled lossy compression [13–15, 11, 12] was
proposed as an alternative to significantly reduce the size of scientific data with
guaranteed error control on the reconstructed data.

There are two popular categories of error-controlled lossy compressors, namely
prediction- and transform-based models. The models differ in the method used to
decorrelate the original data. Prediction-based models decorrelate the data using
prediction or approximation techniques such as curve fitting, while transform-
based models use domain transforms such as discrete cosine and wavelet trans-
forms. After the decorrelation stage, data is quantized and then encoded for the
actual byte reduction. In this paper, we focus on three error-controlled lossy
compressors – SZ, ZFP, and MGARD – as they are recognized as the state of
the art according to recent studies [27, 28, 26].

SZ leverages a general prediction-based lossy compression pipeline. Specif-
ically, it first performs data decorrelation based on a multi-algorithm predic-
tor, followed by error-controlled linear-scaling quantization and lossless encod-
ing. ZFP is a transform-based lossy compression method. It splits d-dimensional
data into blocks of size 4d and compresses each independently. Data in a block
is aligned to the same exponent, converted to a fixed-point format, and then
decorrelated using a customized invertible transform. The transform coefficients
are ordered by energy and encoded using embedded encoding. MGARD provides
another elegant method for reducing scientific data. Due to the space limit, here
we only sketch the key steps of the algorithm. MGARD decomposes the original
data into a sequence of multilevel components using L2 projection and multilin-
ear interpolation. The multilevel coefficients encoding the multilevel components
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are then quantized adaptively based on the target error metric. A more detailed
introduction is available in [28] and the full mathematical treatment can be
found in [14].

The unique features of MGARD include compression over nonuniform co-
ordinate space, compression optimized for QoI preservation, and compression
with mathematically guaranteed error control on certain linear QoIs. SZ and
ZFP make predictions and transformations based on the assumption that the
data are defined on a uniformly spaced d-dimensional Cartesian grid. MGARD
does not rely on this assumption in its decorrelation step. Rather, it carries out
the requisite projections and interpolations using the actual distances between
mesh nodes and quantizes the multilevel coefficients using their actual volumes
in the multilevel subgrid space. Moreover, MGARD can adaptively improve the
compression quality of certain QoIs by tuning a smoothness parameter s. This
parameter controls the bin widths used to quantize the multilevel coefficients,
allowing more aggressive quantization of coefficients that will have little impact
on the accuracy of the QoI. The smoothness parameter s can be further com-
bined with the operator norm of the QoI to provide guaranteed error control [14]
as follows:

|Q(u)−Q(ũ)| ≤ Υs(Q)
( L∑
l=0

22sl
∑

x∈N∗l

vol(x)|u_mc[x]− ~u_mc[x]|2
)1/2

(2)

where Q is the target bounded linear operator, Υs(Q) is its operator norm, vol(x)
is the volume of the level l element centered at x, N ∗l is the collection of nodes
in level l but not level l − 1, and u_mc[x] and ~u_mc[x] are the original and
quantized multilevel coefficients at node x, respectively.

We conclude this section with a concrete description of the dataset used in
our experiments. The particle distribution function f output by XGC comprises
a velocity histogram at each node of each unstructured RZ plane mesh. SZ, ZFP,
and MGARD all require data to be given on Cartesian grids or very particular
triangulation/tetrahedration mesh structure [15], so none of the three can com-
press the XGC output in its original format. To enable the application of the
compressors, we unroll the meshes in 2D unstructured RZ planes by radius, as
the magnetic field in a tokamak tends to expand the plasmas outward along the
major diameter. The spacing of the 1D grid is determined by the edge lengths
of each unstructured mesh. This conversion changes the distribution function
f from 5D to 4D: {φ,mesh nodes, v⊥, v‖}. We conduct our experiments using
a coarse resolution XGC dataset with 1000 simulation timesteps, each contain-
ing {8, 16395, 39, 39} double-precision floating-point values. With the exception
of the resolution, the dataset was generated using the same parameters and
settings as high-resolution production runs. Throughout the paper, we always
perform compression on f rather than on any QoI computed from f . We reduce
f with a prescribed NRMSE tolerance, record the compression ratio, and com-
pute the achieved NRMSE in either f or a QoI. The reported NRMSE is this
observed error rather than the initial prescribed tolerance. If a figure calls for
the compression ratio at an achieved NRMSE that is not exactly observed in our



Title Suppressed Due to Excessive Length 7

experiments, we compute an estimate by linearly interpolating the compression
ratios at the neighboring measurements.

3 Error-Controlled Lossy Compression in
High-Dimensional Space

This section demonstrates how the compression of f can be improved by uti-
lizing data correlations in high-dimensional space. In our first experiment, we
apply SZ, ZFP, and MGARD to the 700th timestep of f , an array with dimen-
sions {8, 16395, 39, 39}. ZFP currently supports 1D, 2D, 3D, and 4D input, and
MGARD supports input of arbitrary dimension, so these compressors can be ap-
plied to the dataset without modification. SZ currently supports 1D, 2D, and 3D
input, so we interpret the dataset as an array with dimensions {8×16395, 39, 39}
when applying SZ. Whether compressing in 3D or 4D, we must also decide how
to handle the spacing between the data values. SZ and ZFP always interpret their
input as an array defined on a uniform Cartesian grid. Because this experiment
is focused on the impact of dimensionality, not spacing, we also use uniform node
spacing in MGARD. Figure 2a shows the compression ratios achieved by each
compressor. When the NMRSE level is low, e.g. 10−6, the compression ratios of
the three methods are similar, as the tight error bound does not provide enough
flexibility for the algorithms to reduce the data. When the NMRSE is at the
range of [10−5, 10−4], ZFP 4D achieves better compression ratios than SZ 3D
and worsen compression ratios than MGARD 4D. When the measured NRMSE
keeps increasing, SZ 3D obtains better compression ratios than ZFP 4D but still
worsen compression ratios than MGARD 4D. In our second experiment, we in-
vestigate the effect of dimension on the compression ratio achieved by MGARD.
The results are shown in Figure 2b. When compressing in 4D plus time, we use
timesteps 700 to 770. Across all tested NRMSE levels, the compression ratio
increases with the dimension used for compression.

4 Error-Controlled Lossy Compression on Nonuniform
Grids

In this section, we demonstrate that compressing using nonuniform grid can
improve the accuracy of QoIs computed from the reduced data. We begin with
a description of the nonuniform grid used. XGC uses an unstructured mesh,
shown in Figure 3a, to model the complex RZ plane geometry and a nonuniform
Cartesian grid, shown in Figure 3b, to discretize the velocity space. As described
in Section 2, we unroll the unstructured mesh into a nonuniform 1D grid to allow
compression of the data by existing methods. The result is a Cartesian grid with
coordinates {φ,mesh nodes, v⊥, v‖} which is nonuniform in all coordinates except
φ. SZ and ZFP do not support nonuniform grids, so we only use MGARD for
the experiments in this section. Within MGARD, the nonuniform grid spacing
impacts the decorrelation, where the central operations of L2 projection and
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Fig. 2: Illustration of the improvement in compression ratios achieved by com-
pressing f in high-dimensional space. a shows the compression ratios achieved
when compressing the 700th timestep of f with SZ, ZFP, and MGARD using
the highest dimension supported by each compressor. b shows the compression
ratios achieved using MGARD in 2D, 3D, 4D, and 4D plus time.

multilinear interpolation depend on the grid, and the quantization, where errors
are prorated according to the spacing at each node.
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a Unstructured RZ plane mesh.

non-uniform 
bins at the 

edge

…

uniform bins 
in the center

b Nonuniform velocity space grid.

Fig. 3: Illustration of the unstructured mesh and nonuniform grid on which the
XGC data are defined. XGC uses an unstructured mesh to model the complex
geometry of radial-poloidal planes and Cartesian bins to model the discretized
velocity space. The nodes of the 2D unstructured RZ plane mesh are linearized
to a 1D nonuniform grid and combined with the velocity space for compression.

In our first experiment, we establish a baseline by measuring the QoI errors
when compressing using uniform grid spacing. We apply MGARD 4D to the
700th timestep of the XGC data with a variety of error tolerances, yielding a
collection of reduced datasets with different achieved compression ratios. For
each reduced dataset, we compute the five QoIs described in Section 1 and cal-
culate the achieved NRMSEs. These achieved NRMSEs are generally different,
so that the compression ratios at which the QoIs meet a given NRMSE level
are likewise generally different. The results of the experiment are shown in Fig-
ure 4a. At all NRMSE levels tested, the achieved compression ratio is lowest
for T‖. This is the consequence of T‖ generally exhibiting the highest NRMSE
for a given reduced dataset, as a result of its non-linear computation and the
complicated structure of the large parallel velocity components. To ensure the
fidelity of downstream analysis, the physicists using XGC require that all QoIs
simultaneously satisfy appropriate error bounds. If the prescribed NRMSE tol-
erance is the same for all QoIs, the results of this experiment suggest that the
achievable compression ratio will be determined by the error in T‖.

Our second experiment is identical to the first except that we compress us-
ing nonuniform grid spacing. Providing the spacing information to MGARD
allows the quantizer to adjust the error bound used for a node according to
the volume of the corresponding element. Larger elements result in tighter error
bounds; see Equation (2). Accordingly, the coefficients that represent variations
over small regions will be compressed more heavily than the coefficients that
represent variations over large regions. We expect that this adaptive, nonuni-
form error quantization will benefit the errors observed in the QoIs. The results
of the experiment are shown in Figure 4b. Using nonuniform grid spacing in the
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compression lifts the compression ratios at which all five QoIs meet the NRMSE
levels, and the benefit increases as the NRMSE grows larger.
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pressed on a uniform Cartesian grid with MGARD 4D. The color of each bar indicates
the QoI. The horizontal position indicates the achieved NRMSE in the QoI. The height
indicates the achieved compression ratio.
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Fig. 4: Comparison between using uniform and nonuniform spacing when com-
pressing the 700th timestep of f with MGARD 4D. a shows the results ob-
tained using uniform spacing; b compares those results with those obtained using
nonuniform spacing.
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5 Error-Controlled Lossy Compression for QoIs

In this section we show how adapting MGARD’s compression algorithm (specif-
ically, the quantization stage) to a QoI can reduce the error incurred in that
QoI at a given compression ratio. This adaptive quantization is a unique feature
of MGARD. The multilinear decomposition of MGARD decorrelates the data
using a mesh hierarchy. The low and high frequency components of the data
are represented by the multilevel coefficients on the coarse and fine levels of the
hierarchy, respectively. A smoothness parameter s can be used to change the bin
widths used to quantize the multilevel coefficients on the different levels. s = 0
is the baseline. When s < 0, MGARD imposes relatively tighter error bounds
on the coarse level coefficients (low frequency components) and relatively looser
error bounds on the fine level coefficients (high frequency components); see Equa-
tion (2). As a result, taking s < 0 tends to yield larger compression ratios for
QoIs that are determined by low frequency components. Conversely, taking s > 0
generally benefits QoIs that are sensitive to high frequency components.

Our first experiment focuses on the effect of the smoothness parameter s on
the errors. We apply MGARD with s = −1, 0, 1 to f and measure the com-
pression ratios at which the QoIs meet various NRMSE levels. The results are
shown in Figure 5. For all five QoIs, taking s = −1 leads to the best results,
with the average quantities n0 avg and T0 avg benefiting most from that choice
of smoothness parameter. This outcome may be explained by the relative insen-
sitivity of the QoIs considered to the high frequency components of the data;
as seen in Section 1, all can be written as convolutions with functions that
are not highly oscillatory. As was the case with nonuniform compression in the
experiment in Section 4, the improvement from adaptive quantization is more
significant at higher NRMSE levels.

Our next experiment compares MGARD 4D with nonuniform spacing and
s = −1, ZFP 4D, and SZ 3D. Recall that ZFP and SZ support compression
in up to four and three dimensions, respectively. As before, we compress f and
measure the errors in the QoIs. The results are presented in Figure 6. As seen
in Figure 6a, MGARD 4D achieves higher compression ratios than ZFP 4D at
the same NRMSE level. MGARD 4D also outperforms SZ 3D in this example,
as seen in Figure 6b, with the discrepancy being larger. In both comparisons,
the advantage increases as the NRMSE becomes larger.

In our third experiment, we compare MGARD 4D with nonuniform spacing
and s = −1 to MGARD 2D with uniform spacing and s = 0, the baseline
configuration. The results are shown in Figure 7. For each configuration and
each of four NRMSE levels, we measure the maximum compression ratio at
which all five QoIs meet the prescribed error level. These maximum compression
ratios for MGARD 4D with nonuniform spacing and s = −1 are improved 1.24×,
1.47×, 4.62×, and 21.6× over the baseline at NRMSE levels 10−5, 10−4, 10−3,
and 10−2, respectively. The degree of improvement increases with the NRMSE
level and is more significant for the average quantities n0 avg and T0 avg.

Most state-of-the-art compression algorithms, with the exception of MGARD
in certain linear cases, only support error bounds set on the ‘raw’ data. If users
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Fig. 5: Illustration of the effect of the smoothness parameter s when compress-
ing the 700th timestep of f with MGARD 4D with nonuniform spacing. For
s = −1, 0, 1, we compress f and measure the compression ratios at which the
QoI meet various NRMSE levels. a shows the ratios of the compression ratios
obtained when using s = −1 to those obtained when using s = 0; b shows the
ratios of the compression ratios obtained when using s = 1 to those obtained
when using s = 0.

want the errors in QoIs to stay below a certain threshold, they have to estimate
the corresponding error bound on the raw data through empirical studies. Empir-
ical relations, though, may not continue to hold as the data distribution changes.
Our fourth experiment concerns the relationship between the error bound on the
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Fig. 6: Comparison between MGARD, SZ, and ZFP on the 700th timestep of f .
Each compressor is used with its best settings: for MGARD, 4D, nonuniform
spacing, and s = −1; for ZFP, 4D and uniform spacing; and for SZ, 3D and
uniform spacing. a compares ZFP to MGARD; b compares SZ to MGARD.

raw data and the measured error in QoIs. We apply MGARD to each of the 1000
timesteps of f with an NRMSE tolerance of 10−4. We then compute the NRMSE
of f and two QoIs, density n and parallel temperature T‖. The results are shown
in Figure 8. The error in f stays below the prescribed error bound, but the er-
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Fig. 7: Illustration of the improvement in compression ratios due to compressing
f in high-dimensional, nonuniform space and catering the error quantization to
the characteristics of the QoIs. CR(MG-uniform) is obtained with MGARD 2D
using uniform spacing and s = 0. CR(MG) is obtained with MGARD 4D using
nonuniform spacing and s = −1.

rors in density and temperature rise above 10−4 and 10−3 over time. It is not
entirely unexpected to observe these increased errors in the QoIs, since the dis-
tribution functions become more complicated as the turbulence builds up, but
it does make empirical error control challenging. The data generated by many
scientific experiments and simulations, including XGC, would be costly or even
impossible to reproduce if the errors in QoIs were later found to be unaccept-
able, so compressors should mathematically guarantee that the errors in QoIs
will respect user-specified tolerances.

MGARD allows error bounds set on scalar, linear QoIs Q. To enable this, the
operator norm Υs(Q) is first computed using a procedure developed in [14]. Υs(Q)
represents the maximum growth from the compression error ‖f − f̃‖s to the QoI
error |Q(f) −Q(f̃)|. By reducing f using an error bound of ε/Υs(Q), MGARD
can then ensure that the error in Υs(Q) is no more than ε. Our final experiment
is identical to the timestep experiment described above except that we set the
error bound on density rather than on f . We compute the operator norm Υs(Q)
for density, set ε=10−3, then use ε/Υs(Q) to compress f in the 2D velocity
space and compute density and parallel temperature from the reduced data. To
measure the error, here we use the relative L∞ norm, another commonly used
error metric, which is given by ‖f−f̃‖L∞/[max(f)−min(f)] (and likewise for the
QoIs). Note that by keeping the relative L∞ error smaller than ε we guarantee
that the NRMSE of the density field will be smaller than ε as well. The results
are shown in Figure 9. The density is successfully preserved to within the error
tolerance at every timestep. We also plot the error in a nonlinear QoI, T‖, which
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Fig. 8: Illustration of the error in f , density n, and parallel temperature T‖
when compressing 1000 timesteps of f using MGARD with an NRMSE tolerance
of 10−4. The NRMSE of f stays relatively flat over the simulation, but the
NRMSE of density and temperature increase as the turbulence builds up. The
compression ratio of f ranges from 25× to 50× and rises over time.

MGARD cannot control. As expected, bounding the error in density does not
guarantee that the error in T‖ will stay below the requested error tolerance.

6 Future Work

State-of-the-art compressors that support compression on arbitrary unstruc-
tured meshes do not exist. To enable the compression of XGC data, we con-
vert the unstructured 2D RZ plane to nonuniform 1D grid, potentially lower-
ing the compression efficacy. In the previous work [15], we develop compression
algorithms for data defined on meshes formed by particular types of triangula-
tions/tetrahedrations. We plan to expand that work to support data defined on
arbitrary unstructured meshes.

Furthermore, the different error trend of f and QoIs, as shown in Figure 8,
suggests that empirically error control for QoIs is unreliable. In our previous
work on MGARD, we develop algorithms that guarantee the preservation of
certain linear QoIs, but the error control for complicated nonlinear QoIs (e.g.,
T‖ in Figure 9) remains to be understood and developed. Our future work will
include formulating new theories to provide guaranteed error bounds for multiple
and nonlinear QoIs.

This work does not discuss the throughput performance of lossy compres-
sors as the trade-offs between throughput and reduction ratios is not the focus
of the paper. Our evaluations in this paper were conducted using sequential
implementations, but compression techniques can be accelerated on different
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Fig. 9: Illustration of the error in density n and parallel temperature T‖ when
compressing 1000 timesteps of f using MGARD with an error bound set on
density. The L∞ error in density remains under the requested threshold and
is relatively flat. The L∞ error in T‖, which is a nonlinear QoI that MGARD
cannot control, rises above the requested error tolerance. The compression ratio
ranges from 16.5× to 19.5× and decreases over time.

hardware [29–31]. Due to the page limit, we leave the evaluation on accelerated
lossy compression to the future work.

7 Conclusion

Lossy compression can be used to reduce the cost of scientific data transmis-
sion and storage. To ensure that the lossy compression does not weaken the
integrity of downstream analysis, the compression must be able to control the
uncertainties in both ‘raw’ data and derived QoIs. In this paper we focus on
the data generated by XGC, which is high in dimension, nonuniform in spacing,
and can be used to compute many simple and complex, linear and nonlinear
QoIs. Choosing the particle distribution function f and its five derived QoIs
as the example, we show that the better compression quality can be achieved
when high-dimensional data correlation is utilized, and the decorrelation and
quantization steps of the compression algorithm are adapted to the nonuniform
grid structure and to the characteristics of QoIs. We discuss the importance of
having mathematically guaranteed error control for linear and nonlinear QoIs.
We demonstrate that we can conserve the accuracy of linear QoI (i.e., density)
over 1000 timesteps of XGC simulation using the QoI error control theory of
MGARD, whereas the empirical studies with error control on ‘raw’ data cannot
guarantee the error in QoIs.
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