

BNL-222840-2022-JAAM

The Mosaic Landscape of Algal Metal Transport and Usage

C. E. Blaby-Haas

To be published in "Microbial Metabolism of Metals and Metalloids"

March 2022

Biology Department
Brookhaven National Laboratory

U.S. Department of Energy

USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

1 **Chapter 3:** “The mosaic landscape of algal metal transport and usage”

2

3 Crysten E. Blaby-Haas

4 Biology Department, Brookhaven National Laboratory, Upton, NY 11973 and Department of

5 Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794

6 cblaby@bnl.gov

7

8 **Abstract**

9 Like all other eukaryotes, metal ions are essential nutrients for algae, which must be assimilated from the
10 environment. At the same time, in excess, metal ions are inherently toxic. Reflecting the complex
11 evolutionary relationships among the alga groups, algal genomes encode a variety of widely conserved and
12 unique transport proteins to handle the balance between nutrient and toxin. Each genomic repertoire enables
13 algal species to thrive in environments with unique biogeochemical characteristics compared to non-algal
14 species commonly used as reference organisms for metal homeostasis. As a result, the study of algal metal
15 homeostasis broadens our understanding of how phenotypically and taxonomically divergent eukaryotes
16 have evolved to perform photosynthesis in disparate environments. These niches are as varied as marine
17 versus freshwater, aquatic versus deserts, polar versus tropical, and free-living versus endosymbiotic. While
18 access to genome sequences and predicted gene models is increasing, enabling identification of
19 characterized proteins through computational genomics analyses, the next stage is developing
20 transformation approaches and RNA-guided endonuclease systems for understanding the molecular and
21 biological function of metal-regulated genes unique to algae.

22

23 **Key Words:** transition metals; copper, zinc, iron, manganese, molybdenum, photosynthesis, algae,
24 metalloproteins

25

26 **Section Headings:**

27 1. Introduction

28 2. What are algae and where can they be found?

29 3. Metal usage

30 4. Metal transport

31 4.1. Endocytosis-mediated iron transport

32 4.2 Metal permeases

33 4.2.1 An overview of assimilation

34 4.2.2 An overview of export

35 4.2.4 Permease substrates

36 4.2.4 Metal permease families in algae

37 4.3 Metallochaperones

38 5. Conclusions

39

40 **1. Introduction**

41

42 In the early 1900s, to sum his observations of animal behavior, Victor Shelford wrote “...the habitat is the
43 mold into which the organism fits” (Shelford 1913). This statement holds true across scales from learned
44 behavior down to the selective pressures imparted by environments on genomes. Indeed, the habitat is the
45 mold into which the genome fits. Any organisms that fail to fit that mold are outcompeted and fade from
46 existence in the niche. With the development of whole-genome sequencing technologies, those inherited
47 adaptations that passed the filter of natural selection can be elucidated and compared across lineages and
48 environments. The rise of RNA-guided endonucleases as genetic tools is opening the door to experimental
49 validation of those genome-based insights, providing a means to erase individual adaptative strategies and
50 quantify the impact on condition-specific fitness.

51

52 For metal ions, two filters exist: competition for metal ions and avoidance of their toxicity. Metals provide
53 proteins with chemistry or folding properties that are not easily achieved with just the amino acid sidechains
54 of polypeptides. As a result, metals are essential nutrients. At the same time, metal ions are inherently toxic
55 to biology. Transition metals can accept and donate electrons, a function that biology has capitalized on,
56 but if allowed to react with oxygen or reactive oxygen species, these metals can catalyze oxidative damage
57 to membranes and proteins. Zinc, although not redox active, can bind indiscriminately to proteins either
58 inactivating them by replacing the cognate catalytic metal or by generating protein aggregates. Therefore,
59 metal ions have left their mark on genomes as protein cofactors, and multi-layered strategies for handling
60 deficiency and toxicity exist.

61

62 The guiding principle underlying metal homeostasis is to ensure a supply of metal ions to metal-dependent
63 proteins while avoiding potential toxicity of excess metal ions. Subsequently, both global and local metal
64 bioavailabilities across time have shaped gene repertoires reflected in the resulting lifestyles and
65 metabolism of different algal species. The ability of individual algae to thrive in environments with unique
66 geochemistry, compared to non-algal species commonly used as reference organisms for metal
67 homeostasis, combined with access to their gene and protein sequences, provides an opportunity to broaden
68 our understanding of metal transport and usage across the eukaryotic tree of life. The availability of ‘omics
69 technologies, such as transcriptomics and proteomics, enables genome-wide surveys of gene-specific
70 responses to metal deficiency and excess. These datasets often reveal both conserved responses across algal
71 and non-algal lineages and organism-specific or lineage-specific adaptations. Those genes found to be
72 highly differentially expressed then often become targets for follow-on experimental characterization,
73 largely through reverse genetics and molecular biology techniques. As discussed in this chapter, these

74 studies have revealed commonalities in metal homeostasis with non-algal lineages, including land plants,
75 fungi and animals, and novelty that has contributed to the success of algae in complex and competitive
76 habitats.

77

78 **2. What are algae and where can they be found?**

79 An alga is any eukaryotic organism that can perform photosynthesis and is not a land plant. Because of this
80 pre-molecular (i.e. pre-genome sequencing) definition, the algal group is unified based on phenotype, not
81 molecular phylogenetics. Algae are distributed throughout the eukaryotic tree of life; they do not have a
82 single common ancestor in the traditional sense. Instead, the proverbial saying 'You are what you eat' could
83 never be truer. The major lineages of algae are related through independent instances of endosymbiosis
84 during which a eukaryotic host engulfs and retains either a cyanobacterium, producing a primary plastid,
85 or an established alga, producing a secondary (or tertiary or more complex) plastid. The distinguishing
86 feature of primary plastids compared to the more complex plastids is the number of membranes surrounding
87 the plastid. Primary plastids have two membranes, while complex plastids, with a few exceptions
88 (Wetherbee et al. 2019), have three to four membranes. Many of the stolen genes from the endosymbiont
89 are ultimately transferred to and incorporated into the host's nuclear genome; a process often referred to as
90 endosymbiotic gene transfer. The algal group is, therefore, polyphyletic, because the most recent common
91 ancestor of all eukaryotic algae was not an alga, and many algae are more closely related to non-
92 photosynthetic protists than they are to other algae.

93

94 There are also grey areas in the use of the terms alga and algae. With the advent of DNA sequencing and
95 molecular phylogenetics, the term "non-photosynthetic algae" can now be found in the literature referring
96 to organisms that are phylogenetically embedded in algal lineages but have colorless plastids, because they
97 have lost the ability to perform photosynthesis. These types of algae provide insightful comparator species
98 for phylogenetically profiling gene sets important for photosynthesis (Hadariová et al. 2017; Gawryluk et
99 al. 2019). There are also several organisms that are sometimes referred to as algae but do not have a self-
100 replicating plastid. These acquired phototrophs either have a symbiotic relationship with an alga, such as
101 *Paramecium bursaria* with endosymbiotic *Chlorella* spp. (Karakashian 1975), or are able to engulf and
102 steal plastids from algae (kleptoplasty), such as *Mesodinium rubra* (previously named as *Myrionecta*
103 *rubra*), which acquires plastids from cryptophyte algal prey (Johnson and Stoecker 2005). In these cases,
104 feeding on algae is needed to replenish their supply of plastids.

105

106 Because of these complex evolutionary histories and deep evolutionary roots, the gene repertoires of algae
107 are diverse. The green, red and glaucophyte algae, like their sister lineage the land plants, share genes from

108 their shared last common ancestor, including both genes from the last common ancestor of Archaeplastida
109 and genes from the cyanobacterium-like endosymbiont that became the shared primary chloroplast. This
110 lineage likely dates back to an algal ancestor that existed at least 1.5 billion years ago (Blaby-Haas and
111 Merchant 2019). Algae that do not have a primary plastid, such as diatoms or Euglena, share genes from
112 an ancient protist-like ancestor and genes from a red-alga-like or green-alga-like endosymbiont,
113 respectively, that became their chloroplast. The spread of plastids across the eukaryotic tree of life through
114 endosymbiosis, retention, and endosymbiotic gene transfer has occurred multiple independent times, with
115 some cases of complex serial endosymbiosis (Stiller et al. 2014).

116

117 The lifestyles, environments, and morphology of individual algal subgroups are as diverse as their
118 evolutionary relationships. As an example, the Chlorophyte lineage (also known as the green algae, which
119 share a relatively recent common ancestor with the land plants) contains both the smallest and largest known
120 free-living single-celled eukaryotes, *Ostreococcus tauri* (Courties et al. 1994) and *Caulerpa taxifolia*
121 (Ranjan et al. 2015), respectively. Multicellular green algal species can range from 20 μM (the colonial
122 alga *Tetrabaena socialis* (Arakaki et al. 2013)) to three feet in size (the seaweed *Ulva lactuca* (Steffensen
123 1976)). The largest alga, *Macrocystis pyrifera* (North 1971), a brown alga in the SAR supergroup, can reach
124 200 feet in length. Algae can be found in temperate and tropical soil, fresh water, and the oceans, as well
125 as extreme environments. The halophilic green alga *Dunaliella salina* inhabits the Northern arm of the
126 Great Salt Lake, Utah, where the NaCl concentration is oversaturated (Brock 1975). Red algae in the order
127 *Cyanidiales* thrive at pH 0.5-3 and high temperature (50-55°C) (Castenholz and McDermott 2010).
128 Psychophilic green algae, such as *Chlamydomonas raudensis* (UWO 241), inhabit permanently ice-
129 covered lakes in Antarctica (Pocock et al. 2004), while snow algae often cover glaciers like pink Kool-Aid
130 (because of a red carotenoid pigment) (Bidigare et al. 1993) and diatoms inhabit brine channels in sea ice
131 (Mock and Junge 2007). Because of these and other drastically different algal species, unique adaptations
132 involving metal homeostasis are expected but remain under investigated.

133

134 3. Metal usage

135 Because of their role in enzyme catalysis and protein folding, metal ions are essential nutrients, but which
136 metals and at what concentrations are needed by an individual algal species can vary. Based on studies of
137 reference algal species with sequenced nuclear genomes (Table 1), algae have a relatively large requirement
138 for iron as the most abundant and irreplaceable inorganic cofactor for linear electron transport during
139 photosynthesis and respiration. In addition to iron, algae require several metals from the d-block of the
140 periodic table, specifically zinc, copper, manganese, and molybdenum. Some algae, such as the
141 prasinophytes, use nickel for urease (Collier et al. 2009), while cobalt, in the form of cobalamin (vitamin

142 B_{12}), is needed for one of two classes of methionine synthase (Helliwell et al. 2011). Since no alga is known
143 to be able to synthesize B_{12} , this vitamin must be acquired from bacteria (Croft et al. 2005).

144

145 Table 1. Common reference algal species for metal homeostasis with sequenced nuclear genomes.

Species	Lineage	Environment	Type of plastid	Genome
<i>Chlamydomonas reinhardtii</i>	Plant	Freshwater/soil	primary	(Merchant et al. 2007; Blaby et al. 2014)
<i>Ostreococcus tauri</i>	Plant	Marine	primary	(Derelle et al. 2006)
<i>Phaeodactylum tricornutum</i>	Diatom	Marine	complex	(Bowler et al. 2008; Rastogi et al. 2018)
<i>Thalassiosira pseudonana</i>	Diatom	Marine	complex	(Armbrust et al. 2004)

146

147 The types of reactions and classes of proteins that bind and utilize specific metal ions is determined by the
148 inherent chemistry of each metal ion. In nature, the zinc ion exhibits a single oxidation state (+2) and is
149 often used as a cofactor to stabilize protein structure or in hydrolytic reactions where it serves as an
150 electrophile. Depending on the specific ligand environment, copper, iron, and manganese ions, which can
151 exist in different oxidation states, are also employed for hydrolytic reactions but, unlike zinc, can function
152 in electron transfer reactions. Molybdenum has only been found in eukaryotes as the constituent of a
153 tricyclic pyranopterin compound named the molybdenum cofactor (Moco) and functions in electron transfer
154 within a small number of proteins. Typically, zinc, copper and manganese are not associated with prosthetic
155 groups. Iron, on the other hand, is versatile, being directly associated with amino acids in some enzymes,
156 as in Fe-dependent superoxide dismutase, and incorporated into organic or inorganic cofactors like heme
157 and Fe-S clusters, as found in the photosynthetic complexes. These iron-bound cofactors associate with
158 proteins as prosthetic groups and provide an additional means for tuning the redox potential of the iron
159 atom to catalyze electron transfer.

160

161 Because individual proteins have evolved to harness the chemistry of specific metal ions, substitution of
162 metal ions for one another is not a common occurrence. Nevertheless, such adaptive mechanisms have been
163 described for algae and examples of nutritive substitution phenomena involving replacement of one metal
164 ion for another are available. In some cases, the underlying genetics is understood. Carbonic anhydrase in

165 eukaryotes is characterized as a zinc-dependent enzyme, but during growth under low zinc conditions with
166 cadmium supplementation, the carbonic anhydrase CDCA1 from the marine diatom *Conticribra weissflogii*
167 (previously *Thalassiosira weissflogii*) is active with cadmium instead of zinc (Lane et al. 2005). The
168 cambialistic (capable of functioning with multiple metal atoms) nature of this enzyme is thought to
169 represent a zinc-sparing mechanism that provides a selective advantage for diatoms growing in zinc-poor
170 ocean waters. In contrast to such promiscuous proteins, interchangeable proteins that require different metal
171 cofactors have also been characterized in algae. The copper-regulated switch between copper-dependent
172 plastocyanin and Fe-dependent cytochrome *c*₆ is a well-characterized strategy for recycling and sparing
173 copper (Kropat et al. 2015). In contrast to these examples, a cobalt/zinc nutritive substitution has been
174 widely described for different types of algae (Sunda and Huntsman 1995; Intwala et al. 2008; Saito and
175 Goepfert 2008), but the underlying genetics and mechanism for this phenotype are not known. Based on
176 the previous examples, zinc and cobalt may be interchangeable cofactors because of the existence of
177 cambialistic proteins, or some algae may have interchangeable sets of zinc-dependent and cobalt-dependent
178 protein isoforms. Discovering the proteins that are responsible for this type of cofactor switch promises to
179 reveal novel proteins and homeostatic regulation unique to algae.

180

181 **4. Metal transport**

182 Like all other eukaryotes, algal cells are surrounded by a plasma membrane with intracellular membranes
183 delineating sub-compartments and organelles. Metal-dependent proteins are found throughout the cell and
184 are typically translocated into organelles as unfolded polypeptides. As such, transporters are needed for
185 passing metals across multiple membranes, either to correct deficiency or toxicity. However, our
186 understanding of metal transporters in the plasma membrane is far more advanced than our understanding
187 of metal transport across the membranes of organelles. Two main types of transport have been described in
188 algae, endocytosis-mediated and permease-mediated.

189

190 **4.1 Endocytosis-mediated iron transport**

191 Endocytosis is a process by which the plasma membrane surrounds a target by invagination to form a vesicle
192 in the cytosol. The cargo is then sorted, often associated with endosomal acidification (Elkin et al. 2016).
193 Although endocytosis may be responsible for the uptake of other metal ions or metal-chelate molecules,
194 only iron uptake by endocytosis has been described for algae. Four separate families of algal proteins have
195 been implicated in endocytosis-mediated iron assimilation: transferrin, phytotransferrin, ISIP1 (iron
196 starvation-induced protein 1), and ferrichrome-binding protein (FBP).

197

198 An animal-like transferrin was first discovered in the unicellular green alga *D. salina* as a salt-induced, 150
199 kDa, plasma membrane bound protein and was initially referred to as p150 (Sadka et al. 1991). Cloning
200 and sequencing of the corresponding cDNA revealed sequence similarity to animal transferrin (Fisher et al.
201 1996). While animal transferrins are composed of two homologous domains, the *D. salina* transferrin has
202 three homologous domains and is often referred to as TTf for triplicated transferrin (Fisher et al. 1998).
203 Like animal transferrins, expression is induced by iron deficiency, and TTf binds and facilitates assimilation
204 of the oxidized ion of iron, Fe³⁺ (Fisher et al. 1998). Unlike animals, TTf forms a complex with a multi-
205 copper ferroxidase (D-Fox), p130b and a second transferrin-like protein, DTf (*D. salina* transferrin) (Paz
206 et al. 2007a). D-Fox is likely responsible for oxidation of Fe²⁺ prior to binding to TTf, as has been suggested
207 for ceruloplasmin (Eid et al. 2014). The function of DTf is unknown since the protein does not bind iron
208 (Schwarz et al. 2003). The function of p130b is also unknown, but it is structurally similar to ISIP1 from
209 the diatom *Phaeodactylum tricornutum*, which is also induced by iron deficiency (Allen et al. 2008). Shared
210 structural features with the low-density lipoprotein receptor LDLR, a cell-surface receptor in humans, led
211 to the original hypothesis that p130b and ISIP1 are iron-deficiency-responsive receptors (Lommer et al.
212 2012). Subsequent characterization in *P. tricornutum* led to the conclusion that ISIP1 is involved in the
213 endocytosis-mediated assimilation of siderophores by FBP1, a protein with sequence similarity to the
214 periplasmic component of the bacterial Fe³⁺-hydroxamate transport system (Sutak et al. 2012; Kazamia et
215 al. 2018). Therefore, by analogy, p130b may function in the endocytosis of TTf in *D. salina*. However,
216 while multiple algal and land plant genomes encode transferrin-like proteins, only diatoms and *D. salina*
217 have a protein similar to p130b or ISIP1 (Figure 1).

218
219 Not only was *D. salina* the first alga for which an animal-like transferrin was found, but this family is also
220 uniquely expanded. At least 10 separate genes encoding proteins with similarity to the transferrin PFam
221 domain PF00405 are present in the available genome assembly (Polle et al. 2020). When other algae and
222 land plants have transferrin, there typically are only one or two. A similarly sized expansion (7 animal-like
223 transferrins) is also found in the genome of the macroalga *Caulerpa lentillifera*, an edible seaweed
224 commonly referred to as sea grapes (Arimoto et al. 2019). For *D. salina*, the unusual number of transferrins
225 may relate to its unique tolerance of hypersaline environments where iron bioavailability is relatively low.
226 *C. lentillifera*, however, is not an extremophile and is often found throughout the coastal Asia-Pacific
227 region. What is unique about *C. lentillifera* and other members of the *Caulerpa* genus is that they appear to
228 be complex plant-like seaweeds with structures analogous to leaves, stems and roots but are actually
229 composed of a single cell with multiple nuclei (Coneva and Chitwood 2015). The absence of
230 compartmentalization afforded by being multi-cellular must come with its own challenges, such as having
231 to rely on diffusion and cytoplasmic streaming for distribution of metal ions across relatively large

232 distances. By assimilating iron with transferrin and endocytosis, these siphonous macroalgae may be able
233 to selectively shuttle iron throughout the expansive cytoplasm with vesicle-mediated trafficking, releasing
234 the iron where and when needed.

235
236 Animal-like transferrins have only been identified in plants and green algae in the chlorophyte and
237 streptophyte lineages (Bai et al. 2016; Blaby-Haas and Merchant 2017), while most algae contain proteins
238 similar to phytotransferrin (pTF) from *P. tricornutum* (Figure 1). The use of the “phyto” prefix may be
239 confusing since this family is not found in land plants. Instead, phytotransferrin homologs are specific to
240 algae and can be found as soluble proteins, such as the FEA (Fe-assimilating) proteins in the green alga
241 *Chalmydomonas reinhardtii* (Allen et al. 2007), or membrane-bound proteins, such as Ot-FEA1 in the green
242 alga *O. tauri* (Lelandais et al. 2016; Scheiber et al. 2019). The first member of this alga-specific family to
243 be discovered was *HCR1* from *Alvikia littoralis* (previously *Chlorococcum littorale*), a marine green alga
244 from the chlorophyte lineage. The gene was isolated as a high-CO₂ and iron-deficiency induced transcript
245 (Sasaki et al. 1998). Subsequently, a homolog from the freshwater/soil green alga *C. reinhardtii*, originally
246 named *H43*, was identified as a cadmium- and iron-deficiency induced transcript (Rubinelli et al. 2002).
247 After the identification of a second iron-deficiency-induced *H43*-like gene in *C. reinhardtii*, these proteins
248 were renamed FEA (Merchant et al. 2006; Allen et al. 2007). In *C. reinhardtii*, the FEA proteins are
249 secreted, and in a cell-wall-less strain, FEA1/FEA2 are lost to the supernatant correlating with increased
250 sensitivity to iron deficiency (Allen et al. 2007). The mechanism responsible for FEA-mediated iron
251 assimilation is uncharacterized, but recombinant expression of *FEA1* in *Arabidopsis thaliana* and cassava
252 leads to increased root iron content (Narayanan et al. 2011; Ihemere et al. 2012).

253
254 Phytotransferrin was originally named ISIP2 and was discovered in an iron-responsive transcriptomics
255 study in *P. tricornutum* (Allen et al. 2008). Follow-on characterization of this protein resulted in increasing
256 evidence for a function analogous to transferrin leading to the name phytotransferrin (Morrissey et al. 2015;
257 McQuaid et al. 2018). Recent analysis of protein-protein interactions and microscopy suggests that after
258 endocytosis phytotransferrin may be directly sorted to the chloroplast with vesicle trafficking together with
259 ISIP1 and FBP1 (Turnšek et al. 2021). Whether such vesicle-mediated transport of iron and potentially
260 other metal ions to the chloroplast exists outside diatoms is currently unknown. *D. salina*, which has a
261 primary plastid like other chlorophytes, appears to internalize iron into acidic compartments, which are
262 thought to act as an intermediary storage station, as in animals (Paz et al. 2007b). Therefore, the functional
263 analogy between transferrins and phytotransferrins in algae may end after internalization. In contrast to land
264 plants and algae with primary plastids, the chloroplast of diatoms is surrounded by four membranes, where
265 the outer envelope (called the chloroplast endoplasmic reticulum (CER)) is continuous with the nuclear

266 envelope and is proposed to have originated from the host endomembrane. Vesicle-mediated iron transport
267 within the endomembrane system may have been an adaption necessary for supplying nutrients to the
268 engulfed alga ancestor of the plastid, and this strategy has been maintained.

269

270 **4.2 Metal permeases**

271 Metal permeases are membrane-spanning proteins that provide routes for metal ions to cross biological
272 membranes. Some permeases form a selective channel for metal ions to travel through the membrane while
273 leveraging concentration gradients to drive transport. Other permeases leverage ATP hydrolysis or
274 protonmotive force. Based largely on characterization of non-algal homologs, metal permeases can be
275 divided into two main functional groups based on their direction of transport relative to the cytosol.
276 Transporter families typically fall into one group or the other, but exceptions to such broad classifications
277 often occur in the literature. These exceptions may be due to functional divergence within a transporter
278 family or, in some cases, may be a consequence of relying solely on phenotypes of gene knockouts without
279 additional information, such as transporter localization or orientation in the membrane, with which to
280 contextualize reverse-genetics data. Therefore, the following generalizations are a useful jumping-off point
281 for functional annotation, but experimentation is critical for establishing functional capabilities, since
282 diversification is central to the evolution of adaptive mechanisms.

283

284 **4.2.1 An overview of assimilation**

285 Members of group A typically transport metal ions into the cytoplasm, either across the plasma membrane
286 during assimilation or across intracellular membranes for release of intracellular stores. Expression of the
287 corresponding genes often, but not always, increases during metal deficiency. Group A permeases include
288 the NRAMP, ZIP, FTR, CTR, MOT1, and MOT2 families (Figure 2). The NRAMP family was named after
289 the first member to be studied, Natural-Resistance-Associated Macrophage Protein 1, from mouse (Vidal
290 et al. 1993). NRAMPs are most often found to function in iron and manganese uptake as proton-metal
291 symporters. The ZIP (Zrt-, Irt-like Proteins) family is named after the first members to be characterized,
292 the zinc transporters Zrt1p (Zhao and Eide 1996a) and Zrt2p (Zhao and Eide 1996b) from the yeast
293 *Saccharomyces cerevisiae* and IRT1, the major iron-uptake protein in *A. thaliana* roots (Eide et al. 1996).
294 Those ZIP transporters characterized to date transport divalent metal ions, and most play biological roles
295 in either zinc or iron transport. The FTR (Fe transporter) family was first identified as part of a high-affinity
296 iron transport complex containing Fet3p, a multi-copper oxidase (MCO), in *S. cerevisiae* (Stearman et al.
297 1996). Unlike NRAMP and ZIP, which can transport ferrous iron, FTR transports ferric iron. CTR (Cu
298 transporter) was also first discovered in *S. cerevisiae* (Dancis et al. 1994). Unlike the three transporters

299 described so far, CTRs transport monovalent cations. MOT1 and MOT2 (Molybdenum transporters) are
300 independent families of oxianion molybdate (MoO_4^{2-}) transporters (Tejada-Jiménez et al. 2007, 2011).

301

302 **4.2.2 An overview of export**

303 Members of group B typically transport metal ions out of the cytoplasm. Within this group are distributive
304 transporters, which provide metal for organelle-localized metalloproteins that are either synthesized in
305 organelles or imported as unfolded polypeptides. When present in the endomembrane system, group B
306 transporters pump metal into membrane-delineated compartments for storage or efflux out of the cell. These
307 families are also often found in the vacuole's boundary membrane. Since not all algae have vacuoles as
308 described for yeast and plants, these transporters may be found in other lysosome-like organelles that
309 function to detoxify and store metal ions (Blaby-Haas and Merchant 2014). Expression of the corresponding
310 genes often, but not always, increases during metal excess. Exceptions are the distributive transporters
311 PAA1 (P-type ATPase of *Arabidopsis* 1) and PAA2 (P-type ATPase of *Arabidopsis* 2) from the Cu-ATPase
312 family, which supply copper for the biogenesis of plastocyanin in the chloroplast. The genes encoding these
313 transporters are down-regulated in the shoots of *A. thaliana* plants when exposed to excess copper (del Pozo
314 et al. 2010). Members of group B include the CDF, P_{IB} -type ATPases, GDT1, ferroportin, and Ccc1/VIT1
315 families (Figure 2). The first member of the CDF (Cation Diffusion Facilitator) family was identified in *S.*
316 *cerevisiae* as a gene responsible for zinc tolerance, *ZRC1* (zinc resistance conferring) (Kamizono et al.
317 1989). Comparison of this protein with a second protein from yeast responsible for cobalt tolerance, Cot1p
318 (Conklin et al. 1992), and a bacterial protein involved in tolerance to multiple metals, CzcD (Nies 1992),
319 led to the hypothesis that these make up a family of metal transporters responsible for metal resistance (Nies
320 and Silver 1995). P_{IB} -type ATPases couple ATP hydrolysis to monovalent (copper) or divalent metal
321 transport (zinc, cadmium, or iron) depending on the specific subfamily and sequence determinants (Purohit
322 et al. 2018). Members of the GDT1 family (formerly named UPF0016) were first described as Ca^{2+} effluxers
323 (Demaegd et al. 2013; Wang et al. 2016), but were later found to also function as Mn^{2+} transporters in
324 different organisms and different cellular compartments (Fisher et al. 2016; Schneider et al. 2016; Potelle
325 et al. 2016). Ferroportins (Fpn) are most often described as iron exporters, but a plant homolog, IREG2 is
326 thought to detoxify Ni^{2+} (Schaaf et al. 2006). Ccc1p, the founding member from *S. cerevisiae*, and VIT1,
327 the founding member from *A. thaliana*, both mediate transport of Fe^{2+} into the vacuole (Li et al. 2001; Kim
328 et al. 2006).

329

330 **4.2.3 Permease substrates**

331 Unlike endocytosis-mediated transport that appears to be specific to iron, metal permeases are often able to
332 transport multiple different metal ions. For instance, although characterized members of the NRAMP family

333 have specificity against Ca^{2+} and Mg^{2+} , they can transport several d-block divalent metal ions with a
334 preference for Fe^{2+} and Mn^{2+} over Zn^{2+} (Illing et al. 2012; Bozzi et al. 2016). Other metal permeases that
335 transport divalent metal ions have an analogous lack of selectivity when comparing first row transition
336 metals and zinc. Ferroportin is best known as a $\text{H}^+/\text{Fe}^{2+}$ antiporter (Pan et al. 2020), but can also transport
337 Co^{2+} , Zn^{2+} and Ni^{2+} (Schaaf et al. 2006; Mitchell et al. 2014). Since these permeases often have a broad
338 spectrum of substrates, the biologically relevant substrate is typically predicted based on the conditions
339 under which the permease is expressed. For instance, members of the ZIP family are predicted to be
340 responsible for zinc transport when the gene is expressed during zinc deficiency, or iron when expressed
341 during iron deficiency. However, even though structural and mechanistic models are now available for the
342 ZIPs, sequence determinants for substrate preference or whether a preference exists are unknown (Hu
343 2020). Since the assimilation of non-limiting metal ions during zinc- or iron-deficiencies would lead to mis-
344 metallation of apo-proteins, such knowledge gaps point to the possibility that additional factors, such as
345 periplasmic metal-binding proteins, exist in the cell to mediate substrate specificity.

346
347 Indeed, such proteins are co-expressed with ZIPs during zinc deficiency in algae. In *C. reinhardtii*, a protein
348 structurally similar to AztD, a WD40-like periplasmic zinc chaperone characterized in bacteria (Handali et
349 al. 2015; Neupane et al. 2019), is induced during zinc limitation (Malasarn et al. 2013). Based on the recent
350 reference genome assembly (Goodstein et al. 2012; Blaby et al. 2014), the gene encoding this protein is
351 head-to-head with *ZRT1* that encodes one of the main zinc transporters from the ZIP family in *C. reinhardtii*. This proximity suggests that the two genes could share a bi-directional promoter, and evolution
352 has selected for tight co-regulation of this putative zinc chaperone and the zinc transporter. A protein similar
353 to TroA, a zinc-binding component of a bacterial ATP-binding cassette transport system (Lee et al. 1999),
354 is expressed during zinc limitation in *Emiliania huxleyi*, a unicellular alga from the haptophyte lineage,
355 which is commonly found in zinc-depleted open-ocean waters (Shire and Kustka 2021). Whether these
356 algal proteins function in an analogous way to their bacterial counterparts is unknown. Like other
357 eukaryotes, algae do not contain multi-subunit ABC transport complexes, such as ZnuABC from bacteria.
358 Therefore, if these proteins do function as secreted zinc chaperones in algae, they may interact with and
359 lend substrate specificity to the ZIPs.

360
361
362 Selectivity of metal ion transport has been achieved to a certain extent by the CTR family and Cu-ATPases
363 that transport Cu^{1+} and the MCO/FTR complex that transports Fe^{3+} (Figure 2). These transporters can
364 electrochemically separate the monovalent cuprous ion and trivalent ferric ion, respectively, from the other
365 potentially competing divalent metal ions, such as zinc that only exists in nature as a divalent ion. However,
366 the CTR family can also transport Ag^{1+} , and, as a result, under conditions that these transporters are

367 expressed, such as copper-deficiency, cells are sensitive to Ag¹⁺ toxicity (Howe and Merchant 1992).
368 Presumably, from the point-of-view of natural selection, the cost associated with increased Ag¹⁺ toxicity is
369 offset by the benefit afforded by excluding divalent metal ions. A similar bargain likely exists for the
370 MCO/FTR transporter, since analogous ferric transporters from bacteria can also transport Ga³⁺ and Al³⁺
371 (Anderson et al. 2004).

372

373 **4.2.4 Metal permease families in algae**

374 With some notable exceptions, much of our understanding of algal metal permeases is derived from
375 bioinformatic analyses. Membrane-spanning transporters are often difficult to work with *in vitro* and, for
376 those algae that are genetically tractable, genetic redundancy due to overlapping gene functions often
377 obfuscates phenotypes of gene-specific mutants. Robust bioinformatic analyses rely on the availability of
378 high-quality algal genome sequences and gene models (Blaby-Haas and Merchant 2019; Hanschen and
379 Starkenburg 2020). With these resources in hand, sequence similarity and phylogenetics of metal permease
380 families can be used to leverage experimentally defined knowledge from reference organisms, such as *S.*
381 *cerevisiae* and *A. thaliana*, for understanding metal transport in algae. One consequence is that much of our
382 understanding of algal metal transport comes from experimental results with similar proteins in non-algal
383 species. Therefore, a key step in leveraging protein family knowledge derived from other organisms is
384 contextualizing that information with experimentation in algae and shedding light on functional divergence
385 and tailoring that has occurred during evolution. Depending on the genetic tractability and culturability of
386 a target algal species, such experimentation could be as simple as assaying condition-specific gene
387 expression or as complex as reverse genetic analyses. Algal genomes also encode metal transport proteins
388 that have yet to be found in non-algal genomes. These proteins are often found through metal-responsive
389 transcriptome and proteome analyses. The algal-specific FEA (Rubinelli et al. 2002; Allen et al. 2007) and
390 phytotransferrin families (McQuaid et al. 2018) discussed above, highlight the need for experimentation in
391 algae beyond omics-based technologies.

392

393 Genes encoding ancient metal transport families shared with other eukaryotes or with bacteria are found in
394 algal genomes. As a result, close homologs may be found in either the plant, fungal, animal, protist or
395 bacterial lineages (Hanikenne et al. 2005; Blaby-Haas and Merchant 2012). Even within the same
396 transporter family, algal genomes often encode some members that are closely related to fungal sequences
397 and other members that are more closely related to plant sequences, reflecting the complex evolution that
398 has resulted in modern-day algal genomes. An example is the CTR family in the green alga *C. reinhardtii*.
399 Two homologs, CTR1 and CTR2, are similar to available fungal sequences, while the homolog COPT1 is
400 similar to land plant sequences (Page et al. 2009). *C. reinhardtii* also has members of transport families that

401 are more similar to bacterial sequences, such as the divalent metal ion permeases, NRAMP1 and NRAMP2,
402 which are members of the MntH-like subfamily (Blaby-Haas and Merchant 2012). Because of such
403 evolutionary relationships at the protein family level, an understanding of protein phylogeny can help
404 determine which functional knowledge, for instance derived from fungal, bacterial, or plant homologs, may
405 be more relevant to understanding the function of a particular algal protein.

406

407 **4.3 Metallochaperones**

408 In addition to membrane-bound transporters, soluble proteins are responsible for transporting metal ions.
409 These proteins, referred to as metal chaperones or metallochaperones, ensure that the correct metals are
410 delivered to the right proteins. Like other eukaryotes, algal genomes encode Atx1-like copper chaperones
411 (Pufahl et al. 1997; Merchant et al. 2020) and, for those algae that have a Cu-Zn superoxide dismutase, a
412 CCS-like copper chaperone (VC et al. 1997; Foflonker and Blaby-Haas 2020). Green algae also share a
413 plant-specific copper chaperone that delivers copper to the chloroplast (Blaby-Haas et al. 2014). Unlike
414 other eukaryotes, algae have an unusually large number of nucleotide-dependent metallochaperones
415 (NMCs) that are often expressed only during zinc limitation.

416

417 The molecular function of the NMC family (also referred to as CobW or COG0523 (Haas et al. 2009)) is
418 not yet fully resolved. Most homologs contain conserved GTPase and metal-binding motifs. This family
419 has shared ancestry with HypB and UreG, two GTPases involved in nickel insertion in Ni-Fe hydrogenase
420 and Ni-urease, respectively (Haas et al. 2009). This shared ancestry plus the conservation of GTPase and
421 metal-binding suggests that these putative chaperones also function in metalloprotein biogenesis. Most
422 eukaryotic genomes only contain one homolog, with some gene expansion in human (5 homologs) and
423 plants (3 to 4 homologs). Algal genomes, however, can encode upwards of 27 NMCs as found for *E.*
424 *huxleyi*. Three of these NMCs are significantly increased in abundance during zinc deficiency (Shire and
425 Kustka 2021). The *C. reinhardtii* genome encodes 12 NMCs. Of these, *ZCP1* and *ZCP2* respond
426 specifically to zinc, and these 2 proteins are the two most abundant soluble proteins during zinc limitation
427 (Haas et al. 2009; Hsieh et al. 2013; Malasarn et al. 2013). Although *E. huxleyi* and *C. reinhardtii* are both
428 algae and share some genes, because of endosymbiotic gene transfer from a red alga in an ancestor of *E.*
429 *huxleyi*, their last common ancestor likely dates to the first eukaryotes, suggesting that the large number of
430 NMCs in these algae is due to convergent evolution. Clearly, the NMCs are providing important metal-
431 related functions for algae from different environments and with different evolutionary backgrounds.

432

433 **5 Conclusions**

434 Largely through ‘omics-based experiments, significant progress has been made in identifying conserved
435 and unique metal-transport strategies in algae. Transporters encoded in these genomes can be identified by
436 similarity based techniques, aided by high-quality genome assemblies and gene model predictions.
437 Likewise, technologies, such as RNAseq and iTRAQ-based proteomics, are available to quantify gene
438 expression at the genome-wide scale in response to metal ion availability. However, the intracellular
439 location of most metal transporters and substrate preferences are unknown. Development of reverse-genetic
440 techniques enabled by RNA-guided endonucleases, such as CRISPR-Cas9, and the characterization of
441 mutants defective in genes identified in ‘omics experiments are expected to yield considerable new
442 discoveries. Insights into novel functional capabilities and adaptions that have evolved are critical for
443 understanding the role of taxonomically diverse algae in distinct ecosystems. There are notable interactions
444 between metals, such as the need for increased copper transport to metallate FOX1 during iron deficiency,
445 which can complicate the interpretation of loss-of-function phenotypes for ascribing molecular function.
446 Therefore, inter-disciplinary studies are needed to understand the role of predicted algal proteins at both the
447 molecular and biological levels. The number of genes of unknown or uncertain function that are predicted
448 in algae genomes points to yet-to-be discovered strategies (Blaby-Haas and Merchant 2019). As algae are
449 increasingly the focus of biotechnological innovation in bioenergy and bioproduction, understanding these
450 processes will also provide novel resources for engineering algal metabolism.

451

452 **6 Acknowledgments**

453 CB is supported by the US Department of Energy, Office of Science, Office of Biological, and
454 Environmental Research, as part of the Quantitative Plant Science Initiative SFA at Brookhaven National
455 Laboratory and under Award Number DE-SC0018301.

456

457

458

459

460 References

461 Allen AE, LaRoche J, Maheswari U, et al (2008) Whole-cell response of the pennate diatom

462 *Phaeodactylum tricornutum* to iron starvation. Proc Natl Acad Sci U S A 105:10438–10443.

463 <https://doi.org/10.1073/pnas.0711370105>

464 Allen MD, Del Campo JA, Kropat J, Merchant SS (2007) FEA1, FEA2, and FRE1, encoding two

465 homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1

466 and FTR1 in iron-deficient *Chlamydomonas reinhardtii*. Eukaryot Cell 6:1841–1852.

467 <https://doi.org/10.1128/EC.00205-07>

468 Anderson DS, Adhikari P, Nowalk AJ, et al (2004) The hFbpABC transporter from *Haemophilus*

469 *influenzae* functions as a binding-protein-dependent ABC transporter with high specificity and

470 affinity for ferric iron. J Bacteriol 186:6220–6229. <https://doi.org/10.1128/JB.186.18.6220-6229.2004>

472 Arakaki Y, Kawai-Toyooka H, Hamamura Y, et al (2013) The simplest integrated multicellular organism

473 unveiled. PLoS One 8:e81641

474 Arimoto A, Nishitsuji K, Higa Y, et al (2019) A siphonous macroalgal genome suggests convergent

475 functions of homeobox genes in algae and land plants. DNA Res 26:183–192.

476 <https://doi.org/10.1093/dnares/dsz002>

477 Armbrust EV, Berges JA, Bowler C, et al (2004) The genome of the diatom *Thalassiosira Pseudonana*:

478 Ecology, evolution, and metabolism. Science (80-) 306:79–86.

479 <https://doi.org/10.1126/science.1101156>

480 Bai L, Qiao M, Zheng R, et al (2016) Phylogenomic analysis of transferrin family from animals and

481 plants. Comp Biochem Physiol Part D Genomics Proteomics 17:1–8

482 Bidigare RR, Ondrusek ME, Kennicutt MC, et al (1993) Evidence a photoprotective for secondary

483 carotenoids of snow algae. J Phycol 29:427–434. <https://doi.org/10.1111/j.1529-8817.1993.tb00143.x>

485 Blaby-Haas CE, Merchant SS (2017) Regulating cellular trace metal economy in algae. Curr Opin Plant

486 Biol 39:88–96. <https://doi.org/10.1016/j.pbi.2017.06.005>

487 Blaby-Haas CE, Merchant SS (2012) The ins and outs of algal metal transport. Biochim Biophys Acta -

488 Mol Cell Res 1823:1531–1552. <https://doi.org/10.1016/j.bbamcr.2012.04.010>

489 Blaby-Haas CE, Merchant SS (2019) Comparative and Functional Algal Genomics. Annu. Rev. Plant

490 Biol. 70:605–638

491 Blaby-Haas CE, Padilla-Benavides T, Stübe R, et al (2014) Evolution of a plant-specific copper

492 chaperone family for chloroplast copper homeostasis. Proc Natl Acad Sci U S A 111:E5480–E5487.

493 <https://doi.org/10.1073/pnas.1421545111>

494 Blaby-Haas CECE, Merchant SSS (2014) Lysosome-related organelles as mediators of metal
495 homeostasis. *J Biol Chem* 289:28129–28136. <https://doi.org/10.1074/jbc.R114.592618>

496 Blaby IK, Blaby-Haas CE, Tourasse N, et al (2014) The *Chlamydomonas* genome project: A decade on.
497 *Trends Plant Sci* 19:. <https://doi.org/10.1016/j.tplants.2014.05.008>

498 Bowler C, Allen AE, Badger JH, et al (2008) The *Phaeodactylum* genome reveals the evolutionary history
499 of diatom genomes. *Nat* 2008 4567219 456:239–244. <https://doi.org/10.1038/nature07410>

500 Bozzi AT, Bane LB, Weihofen WA, et al (2016) Conserved methionine dictates substrate preference in
501 *Nramp*-family divalent metal transporters. *Proc Natl Acad Sci U S A* 113:10310–10315.
502 <https://doi.org/10.1073/pnas.1607734113>

503 Brock TD (1975) Salinity and the ecology of *Dunaliella* from Great Salt Lake. *Microbiology* 89:285–292

504 Castenholz RW, McDermott TR (2010) The Cyanidiales: ecology, biodiversity, and biogeography. In:
505 Red algae in the genomic age. Springer, pp 357–371

506 Collier JL, Baker KM, Bell SL (2009) Diversity of urea-degrading microorganisms in open-ocean and
507 estuarine planktonic communities. *Environ Microbiol* 11:3118–3131

508 Coneva V, Chitwood DH (2015) Plant architecture without multicellularity: quandaries over patterning
509 and the soma-germline divide in siphonous algae. *Front Plant Sci* 0:287.
510 <https://doi.org/10.3389/FPLS.2015.00287>

511 Conklin DS, McMaster JA, Culbertson MR, Kung C (1992) COT1, a gene involved in cobalt
512 accumulation in *Saccharomyces cerevisiae*. *Mol Cell Biol* 12:3678–3688.
513 <https://doi.org/10.1128/MCB.12.9.3678-3688.1992>

514 Courties C, Vaquer A, Troussellier M, et al (1994) Smallest eukaryotic organism. *Nature* 370:255

515 Croft MT, Lawrence AD, Raux-Deery E, et al (2005) Algae acquire vitamin B 12 through a symbiotic
516 relationship with bacteria. *Nature* 438:90–93

517 Dancis A, Yuan DS, Haile D, et al (1994) Molecular characterization of a copper transport protein in *S.*
518 *cerevisiae*: An unexpected role for copper in iron transport. *Cell* 76:393–402.
519 [https://doi.org/10.1016/0092-8674\(94\)90345-X](https://doi.org/10.1016/0092-8674(94)90345-X)

520 del Pozo T, Cambiazo V, González M (2010) Gene expression profiling analysis of copper homeostasis in
521 *Arabidopsis thaliana*. *Biochem Biophys Res Commun* 393:248–252.
522 <https://doi.org/10.1016/j.bbrc.2010.01.111>

523 Demaegd D, Foulquier F, Colinet AS, et al (2013) Newly characterized Golgi-localized family of proteins
524 is involved in calcium and pH homeostasis in yeast and human cells. *Proc Natl Acad Sci U S A*
525 110:6859–6864. <https://doi.org/10.1073/pnas.1219871110>

526 Derelle E, Ferraz C, Rombauts S, et al (2006) Genome analysis of the smallest free-living eukaryote
527 *Ostreococcus tauri* unveils many unique features. *Proc Natl Acad Sci* 103:11647–11652.

528 https://doi.org/10.1073/PNAS.0604795103

529 Eid C, Hémadi M, Ha-Duong NT, El Hage Chahine JM (2014) Iron uptake and transfer from
530 ceruloplasmin to transferrin. *Biochim Biophys Acta - Gen Subj* 1840:1771–1781.
531 https://doi.org/10.1016/J.BBAGEN.2014.01.011

532 Eide D, Broderius M, Fett J, Guerinot M Lou (1996) A novel iron-regulated metal transporter from plants
533 identified by functional expression in yeast. *Proc Natl Acad Sci U S A* 93:5624–5628.
534 https://doi.org/10.1073/pnas.93.11.5624

535 Elkin SR, Lakoduk AM, Schmid SL (2016) Endocytic pathways and endosomal trafficking: a primer.
536 *Wiener Medizinische Wochenschrift* 2016 1667 166:196–204. https://doi.org/10.1007/S10354-016-
537 0432-7

538 Fisher CR, Wyckoff EE, Peng ED, Payne SM (2016) Identification and characterization of a putative
539 manganese export protein in *Vibrio cholerae*. *J Bacteriol* 198:2810–2817.
540 https://doi.org/10.1128/JB.00215-16

541 Fisher M, Gokhman I, Pick U, Zamir A (1996) A structurally novel transferrin-like protein accumulates in
542 the plasma membrane of the unicellular green alga *Dunaliella salina* grown in high salinities. *J Biol
543 Chem* 272:1565–1570

544 Fisher M, Zamir A, Pick U (1998) Iron Uptake by the Halotolerant Alga Dunaliella Is Mediated by a
545 Plasma Membrane Transferrin. *J Biol Chem* 273:17553–17558

546 Foflonker F, Blaby-Haas CE (2020) Co-locality to co-functionality: Eukaryotic gene neighborhoods as a
547 resource for function discovery. *Mol Biol Evol*. https://doi.org/10.1093/molbev/msaa221

548 Gawryluk RMR, Tikhonenkov D V., Hehenberger E, et al (2019) Non-photosynthetic predators are sister
549 to red algae. *Nat* 2019 5727768 572:240–243. https://doi.org/10.1038/s41586-019-1398-6

550 Goodstein DM, Shu S, Howson R, et al (2012) Phytozome: A comparative platform for green plant
551 genomics. *Nucleic Acids Res* 40:. https://doi.org/10.1093/nar/gkr944

552 Haas CE, Rodionov DA, Kropat J, et al (2009) A subset of the diverse COG0523 family of putative metal
553 chaperones is linked to zinc homeostasis in all kingdoms of life. *BMC Genomics* 10:1–21.
554 https://doi.org/10.1186/1471-2164-10-470

555 Hadariová L, Vesteg M, Hampl V, Krajčovič J (2017) Reductive evolution of chloroplasts in non-
556 photosynthetic plants, algae and protists. *Curr Genet* 2017 642 64:365–387.
557 https://doi.org/10.1007/S00294-017-0761-0

558 Handali M, Roychowdhury H, Neupane DP, Yukl ET (2015) AztD, a Periplasmic Zinc Metallochaperone
559 to an ATP-binding Cassette (ABC) Transporter System in *Paracoccus denitrificans*. *J Biol Chem*
560 290:29984–29992. https://doi.org/10.1074/JBC.M115.684506

561 Hanikenne M, Krämer U, Demoulin V, Baurain D (2005) A comparative inventory of metal transporters

562 in the green alga *Chlamydomonas reinhardtii* and the red alga *Cyanidioschizon merolae*. *Plant*
563 *Physiol* 137:428–446. <https://doi.org/10.1104/pp.104.054189>

564 Hanschen ER, Starkenburg SR (2020) The state of algal genome quality and diversity. *Algal Res*
565 50:101968. <https://doi.org/10.1016/J.AL GAL.2020.101968>

566 Helliwell KE, Wheeler GL, Leptos KC, et al (2011) Insights into the evolution of vitamin B12
567 auxotrophy from sequenced algal genomes. *Mol Biol Evol* 28:2921–2933

568 Howe G, Merchant S (1992) Heavy metal-activated synthesis of peptides in *Chlamydomonas reinhardtii*.
569 *Plant Physiol* 98:127–136. <https://doi.org/10.1104/pp.98.1.127>

570 Hsieh SI, Castruita M, Malasarn D, et al (2013) The proteome of copper, iron, zinc, and manganese
571 micronutrient deficiency in *Chlamydomonas reinhardtii*. *Mol Cell Proteomics* 12:65–86.
572 <https://doi.org/10.1074/mcp.M112.021840>

573 Hu J (2020) Toward unzipping the ZIP metal transporters: structure, evolution, and implications on drug
574 discovery against cancer. *FEBS J*. <https://doi.org/10.1111/FEBS.15658>

575 Ihemere UE, Narayanan NN, Sayre RT (2012) Iron biofortification and homeostasis in transgenic cassava
576 roots expressing the algal iron assimilatory gene, *FEA1*. *Front Plant Sci* 3:171.
577 <https://doi.org/10.3389/fpls.2012.00171>

578 Illing AC, Shawki A, Cunningham CL, Mackenzie B (2012) Substrate profile and metal-ion selectivity of
579 human divalent metal-ion transporter-1. *J Biol Chem* 287:30485–30496.
580 <https://doi.org/10.1074/jbc.M112.364208>

581 Intwala A, Patey TD, Polet DM, Twiss MR (2008) Nutritive substitution of zinc by cadmium and cobalt
582 in phytoplankton isolated from the Lower Great Lakes. *J Great Lakes Res* 34:1–11

583 Johnson MD, Stoecker DK (2005) Role of feeding in growth and photophysiology of *Myrionecta rubra*.
584 *Aquat Microb Ecol* 39:303–312

585 Kamizono A, Nishizawa M, Teranishi Y, et al (1989) Identification of a gene conferring resistance to zinc
586 and cadmium ions in the yeast *Saccharomyces cerevisiae*. *Mol Gen Genet MGG* 1989 2191
587 219:161–167. <https://doi.org/10.1007/BF00261172>

588 Karakashian MW (1975) Symbiosis in *Paramecium bursaria*. *Symp Soc Exp Biol* 145–173

589 Kazamia E, Sutak R, Paz-Yepes J, et al (2018) Endocytosis-mediated siderophore uptake as a strategy for
590 Fe acquisition in diatoms. *Sci Adv* 4:eaar4536. <https://doi.org/10.1126/SCIADV.AAR4536>

591 Kim SA, Punshon T, Lanzilotti A, et al (2006) Localization of iron in *Arabidopsis* seed requires the
592 vacuolar membrane transporter VIT1. *Science* (80-) 314:1295–1298.
593 <https://doi.org/10.1126/science.1132563>

594 Kropat J, Gallaher SD, Urzica EI, et al (2015) Copper economy in *Chlamydomonas*: Prioritized allocation
595 and reallocation of copper to respiration vs. Photosynthesis. *Proc Natl Acad Sci U S A* 112:2644–

596 2651. <https://doi.org/10.1073/pnas.1422492112>

597 Lane TW, Saito MA, George GN, et al (2005) A cadmium enzyme from a marine diatom. *Nature* 435:42

598 Lee Y-H, Deka RK, Norgard M V., et al (1999) *Treponema pallidum* TroA is a periplasmic zinc-binding

599 protein with a helical backbone. *Nat Struct Biol* 1999 67 6:628–633. <https://doi.org/10.1038/10677>

600 Lelandais G, Scheiber I, Paz-Yepes J, et al (2016) *Ostreococcus tauri* is a new model green alga for

601 studying iron metabolism in eukaryotic phytoplankton. *BMC Genomics* 17:1–23

602 Li L, Chen OS, Ward DMV, Kaplan J (2001) CCC1 Is a Transporter That Mediates Vacuolar Iron

603 Storage in Yeast. *J Biol Chem* 276:29515–29519. <https://doi.org/10.1074/jbc.M103944200>

604 Lommer M, Specht M, Roy A-S, et al (2012) Genome and low-iron response of an oceanic diatom

605 adapted to chronic iron limitation. *Genome Biol* 2012 13 13:1–21. <https://doi.org/10.1186/GB-2012-13-7-R66>

606

607 Malasarn D, Kropat J, Hsieh SI, et al (2013) Zinc deficiency impacts CO₂ Assimilation and disrupts

608 copper homeostasis in *Chlamydomonas reinhardtii*. *J Biol Chem* 288:10672–10683.

609 <https://doi.org/10.1074/jbc.M113.455105>

610 McQuaid JB, Kustka AB, Oborník M, et al (2018) Carbonate-sensitive phytotransferrin controls high-

611 affinity iron uptake in diatoms. *Nature* 555:543–537. <https://doi.org/10.1038/nature25982>

612 Merchant SS, Allen MD, Kropat J, et al (2006) Between a rock and a hard place: Trace element nutrition

613 in Chlamydomonas. *Biochim Biophys Acta - Mol Cell Res* 1763:578–594.

614 <https://doi.org/10.1016/j.bbamcr.2006.04.007>

615 Merchant SS, Prochnik SE, Vallon O, et al (2007) The Chlamydomonas genome reveals the evolution of

616 key animal and plant functions. *Science* (80-) 318:245–250

617 Merchant SS, Schmollinger S, Strenkert D, et al (2020) From economy to luxury: Copper homeostasis in

618 Chlamydomonas and other algae. *Biochim Biophys Acta - Mol Cell Res* 1867:118822.

619 <https://doi.org/10.1016/j.bbamcr.2020.118822>

620 Mitchell CJ, Shawki A, Ganz T, et al (2014) Functional properties of human ferroportin, a cellular iron

621 exporter reactive also with cobalt and zinc. *Am J Physiol - Cell Physiol* 306:C450–C459.

622 <https://doi.org/10.1152/ajpcell.00348.2013>

623 Mock T, Junge K (2007) Psychrophilic Diatoms. Springer, Dordrecht, pp 343–364

624 Morrissey J, Sutak R, Paz-Yepes J, et al (2015) A Novel Protein, Ubiquitous in Marine Phytoplankton,

625 Concentrates Iron at the Cell Surface and Facilitates Uptake. *Curr Biol* 25:364–371.

626 <https://doi.org/10.1016/J.CUB.2014.12.004>

627 Narayanan NN, Ihemere U, Chiu W, et al (2011) The iron assimilatory protein, FEA1, from

628 *Chlamydomonas reinhardtii* facilitates iron-specific metal uptake in yeast and plants. *Front Plant Sci*

629 2:67. <https://doi.org/10.3389/fpls.2011.00067>

630 Neupane DP, Fullam SH, Chacón KN, Yukl ET (2019) Crystal structures of AztD provide mechanistic
631 insights into direct zinc transfer between proteins. *Commun Biol* 2019 21:1–12.
632 <https://doi.org/10.1038/s42003-019-0542-z>

633 Nies DH (1992) CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and
634 cadmium (czc system) in *Alcaligenes eutrophus*. *J Bacteriol* 174:8102–8110.
635 <https://doi.org/10.1128/JB.174.24.8102-8110.1992>

636 Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. *J Ind Microbiol* 1995
637 142 14:186–199. <https://doi.org/10.1007/BF01569902>

638 North WJ (1971) Growth of individual fronds of the mature giant kelp, *Macrocystis*. *Nov hedwigia*
639 Beihefte

640 Page MD, Kropat J, Hamel PP, Merchant SS (2009) Two *Chlamydomonas* CTR copper transporters with
641 a novel cys-met motif are localized to the plasma membrane and function in copper assimilation.
642 *Plant Cell* 21:928–943. <https://doi.org/10.1105/tpc.108.064907>

643 Pan Y, Ren Z, Gao S, et al (2020) Structural basis of ion transport and inhibition in ferroportin. *Nat*
644 *Commun* 11:1–11. <https://doi.org/10.1038/s41467-020-19458-6>

645 Paz Y, Katz A, Pick U (2007a) A Multicopper Ferroxidase Involved in Iron Binding to Transferrins in
646 *Dunaliella salina* Plasma Membranes. *J Biol Chem* 282:8658–8666.
647 <https://doi.org/10.1074/jbc.M609756200>

648 Paz Y, Shimoni E, Weiss M, Pick U (2007b) Effects of Iron Deficiency on Iron Binding and
649 Internalization into Acidic Vacuoles in *Dunaliella salina*. *Plant Physiol* 144:1407–1415.
650 <https://doi.org/10.1104/PP.107.100644>

651 Pocock T, Lachance M-A, Pröschold T, et al (2004) Identification of a psychrophilic green alga from
652 Lake Bonney Antarctica: *Chlamydomonas raudensis* Ettl. (UWO 241) *Chlorophyceae*. *J Phycol*
653 40:1138–1148

654 Polle JEW, Calhoun S, McKie-Krisberg Z, et al (2020) Genomic adaptations of the green alga *Dunaliella*
655 *salina* to life under high salinity. *Algal Res* 50:101990.
656 <https://doi.org/10.1016/J.ALGAL.2020.101990>

657 Potelle S, Morelle W, Dulary E, et al (2016) Glycosylation abnormalities in Gdt1p/TMEM165 deficient
658 cells result from a defect in Golgi manganese homeostasis. *Hum Mol Genet* 25:1489–1500.
659 <https://doi.org/10.1093/hmg/ddw026>

660 Pufahl RA, Singer CP, Peariso KL, et al (1997) Metal ion chaperone function of the soluble Cu(I)
661 receptor Atx1. *Science* (80-) 278:853–856. <https://doi.org/10.1126/science.278.5339.853>

662 Purohit R, Ross MO, Batelu S, et al (2018) Cu⁺-specific CopB transporter: Revising P1B-type ATPase
663 classification. *Proc Natl Acad Sci* 115:2108–2113. <https://doi.org/10.1073/PNAS.1721783115>

664 Ranjan A, Townsley BT, Ichihashi Y, et al (2015) An intracellular transcriptomic atlas of the giant
665 coenocyte *Caulerpa taxifolia*. PLoS Genet 11:e1004900

666 Rastogi A, Maheswari U, Dorrell RG, et al (2018) Integrative analysis of large scale transcriptome data
667 draws a comprehensive landscape of *Phaeodactylum tricornutum* genome and evolutionary origin of
668 diatoms. Sci Reports 2018 8:1–14. <https://doi.org/10.1038/s41598-018-23106-x>

669 Rubinelli P, Siripornadulsil S, Gao-Rubinelli F, Sayre RT (2002) Cadmium- and iron-stress-inducible
670 gene expression in the green alga *Chlamydomonas reinhardtii*: Evidence for H43 protein function in
671 iron assimilation. Planta 215:1–13. <https://doi.org/10.1007/s00425-001-0711-3>

672 Sadka A, Himmelhoch S, Zamir A (1991) A 150 kilodalton cell surface protein is induced by salt in the
673 halotolerant green alga *Dunaliella salina*. Plant Physiol 95:822–831

674 Saito MA, Goepfert TJ (2008) Zinc-cobalt colimitation of *Phaeocystis antarctica*. Limnol Oceanogr
675 53:266–275

676 Sasaki T, Kurano N, Miyachi S (1998) Cloning and characterization of high-CO₂-specific cDNAs from a
677 marine microalga, *Chlorococcum littorale*, and effect of CO₂ concentration and iron deficiency on
678 the gene expression. Plant Cell Physiol 39:131–138.
679 <https://doi.org/10.1093/oxfordjournals.pcp.a029349>

680 Schaaf G, Honsbein A, Meda AR, et al (2006) AtIREG2 encodes a tonoplast transport protein involved in
681 iron-dependent nickel detoxification in *Arabidopsis thaliana* roots. J Biol Chem 281:25532–25540.
682 <https://doi.org/10.1074/jbc.M601062200>

683 Scheiber IF, Pilátová J, Malych R, et al (2019) Copper and iron metabolism in *Ostreococcus tauri* – the
684 role of phytotransferrin, plastocyanin and a chloroplast copper-transporting ATPase. Metallomics
685 11:1657–1666. <https://doi.org/10.1039/C9MT00078J>

686 Schneider A, Steinberger I, Herdean A, et al (2016) The evolutionarily conserved protein
687 PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the
688 thylakoid membrane in *Arabidopsis*. Plant Cell 28:892–910. <https://doi.org/10.1105/tpc.15.00812>

689 Schwarz M, Sal-Man N, Zamir A, Pick U (2003) A transferrin-like protein that does not bind iron is
690 induced by iron deficiency in the alga *Dunaliella salina*. Biochim Biophys Acta - Proteins
691 Proteomics 1649:190–200. [https://doi.org/10.1016/S1570-9639\(03\)00185-7](https://doi.org/10.1016/S1570-9639(03)00185-7)

692 Shelford VE (1913) Animal Communities in Temperate America: As Illustrated in the Chicago Region: a
693 Study in Animal Ecology, 2nd edn. University Press, Chicago, IL

694 Shire DM, Kustka AB (2021) Proteomic responses of the coccolithophore *Emiliania huxleyi* to zinc
695 limitation and trace metal substitution. Environ Microbiol. <https://doi.org/10.1111/1462-2920.15644>

696 Stearman R, Yuan DS, Yamaguchi-Iwai Y, et al (1996) A Permease-Oxidase Complex Involved in High-
697 Affinity Iron Uptake in Yeast. Science (80-) 271:1552–1557.

698 <https://doi.org/10.1126/SCIENCE.271.5255.1552>

699 Steffensen DA (1976) Morphological variation of *Ulva* in the Avon-Heathcote Estuary, Christchurch.
700 New Zeal J Mar Freshw Res 10:329–341

701 Stiller JW, Schreiber J, Yue J, et al (2014) The evolution of photosynthesis in chromist algae through
702 serial endosymbioses. Nat Commun 2014 51 5:1–7. <https://doi.org/10.1038/ncomms6764>

703 Sunda WG, Huntsman SA (1995) Cobalt and zinc interreplacement in marine phytoplankton: Biological
704 and geochemical implications. Limnol Oceanogr 40:1404–1417

705 Sutak R, Botebol H, Blaiseau P-L, et al (2012) A Comparative Study of Iron Uptake Mechanisms in
706 Marine Microalgae: Iron Binding at the Cell Surface Is a Critical Step. Plant Physiol 160:2271–
707 2284. <https://doi.org/10.1104/PP.112.204156>

708 Tejada-Jiménez M, Galván A, Fernández E (2011) Algae and humans share a molybdate transporter. Proc
709 Natl Acad Sci U S A 108:6420–6425. <https://doi.org/10.1073/pnas.1100700108>

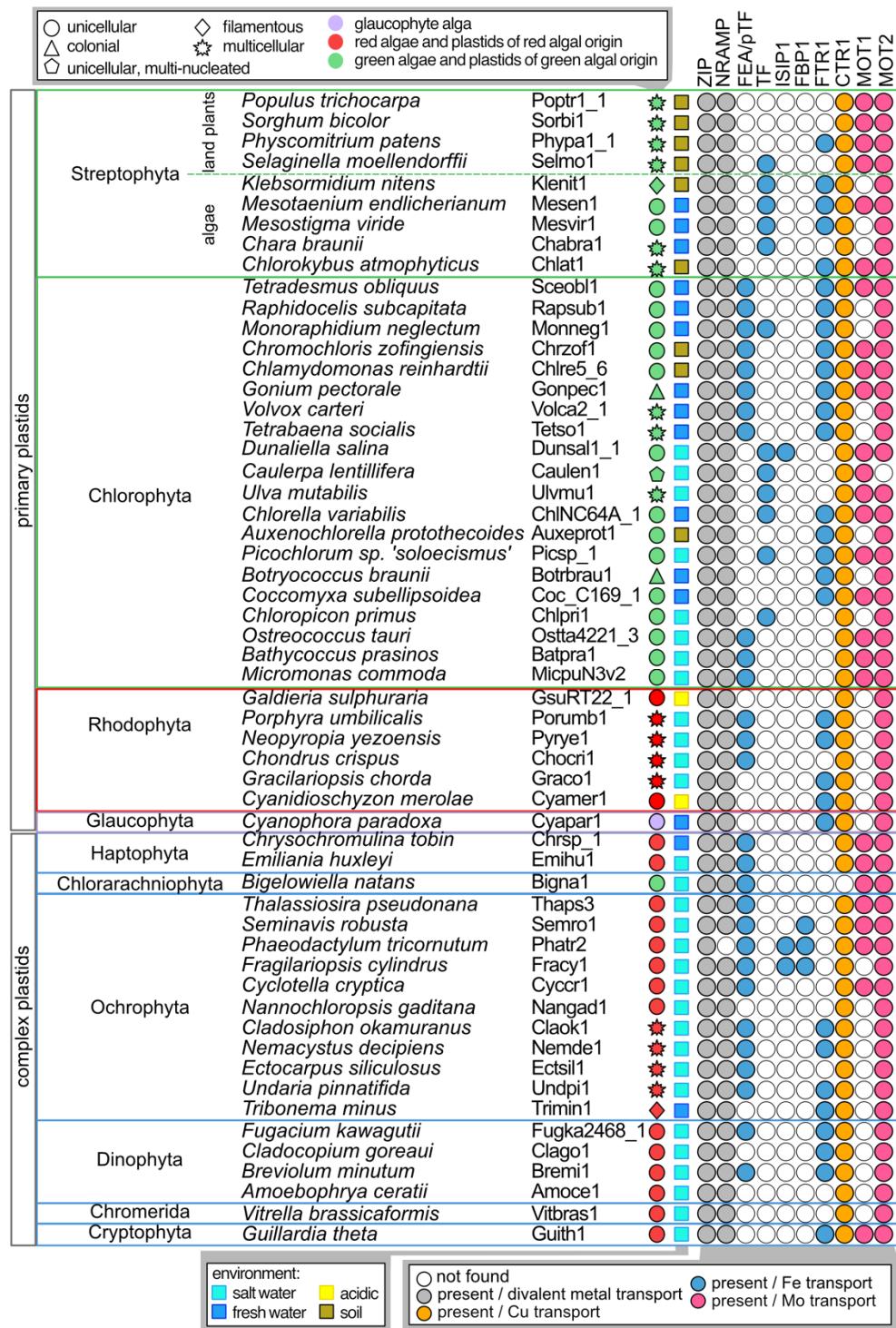
710 Tejada-Jiménez M, Llamas Á, Sanz-Luque E, et al (2007) A high-affinity molybdate transporter in
711 eukaryotes. Proc Natl Acad Sci U S A 104:20126–20130. <https://doi.org/10.1073/pnas.0704646104>

712 Turnšek J, Brunson JK, Martinez Viedma MDP, et al (2021) Proximity proteomics in a marine diatom
713 reveals a putative cell surface-to-chloroplast iron trafficking pathway. Elife 10:1–113.
714 <https://doi.org/10.7554/ELIFE.52770>

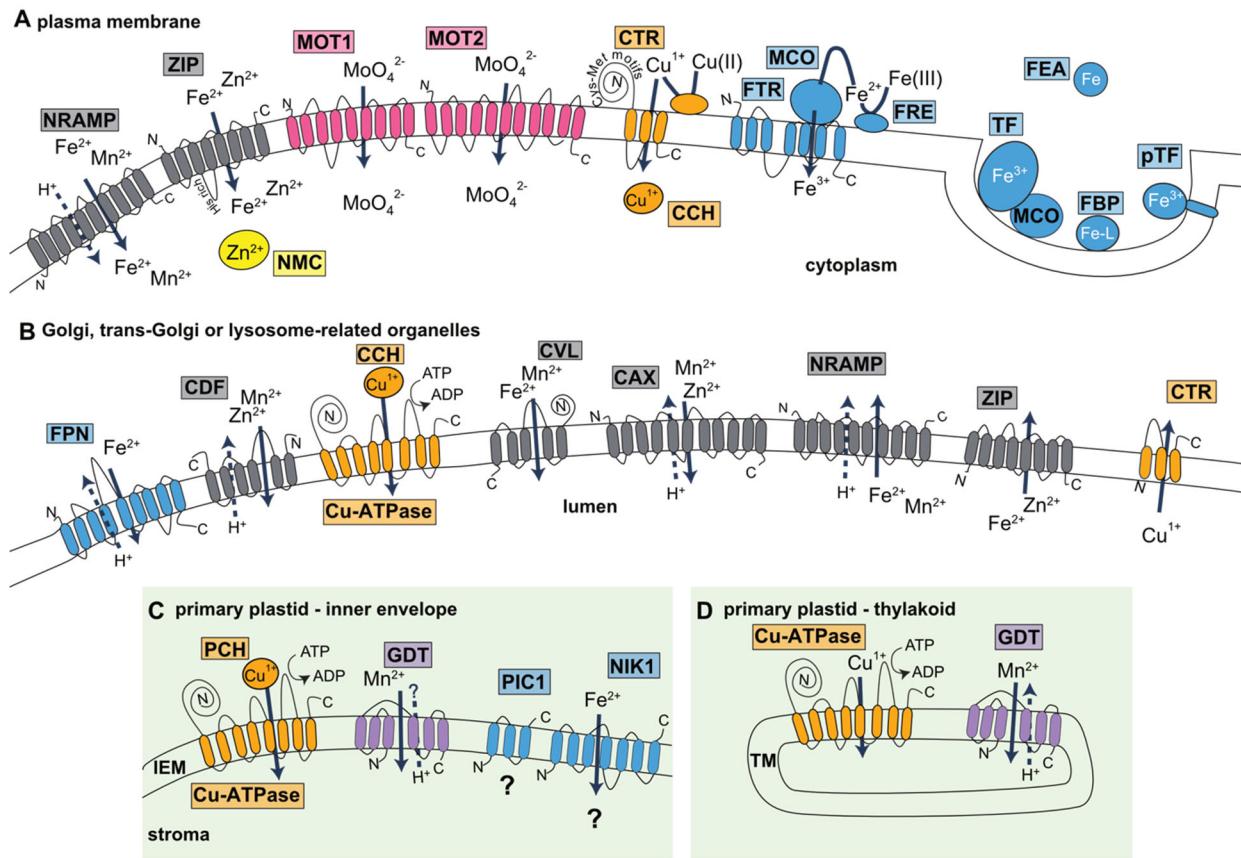
715 VC C, LW K, JS, et al (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272:23469–
716 23472. <https://doi.org/10.1074/JBC.272.38.23469>

717 Vidal SM, Malo D, Vogan K, et al (1993) Natural resistance to infection with intracellular parasites:
718 Isolation of a candidate for Bcg. Cell 73:469–486. [https://doi.org/10.1016/0092-8674\(93\)90135-D](https://doi.org/10.1016/0092-8674(93)90135-D)

719 Wang C, Xu W, Jin H, et al (2016) A Putative Chloroplast-Localized $\text{Ca}^{2+}/\text{H}^+$ Antiporter CCHA1 Is
720 Involved in Calcium and pH Homeostasis and Required for PSII Function in *Arabidopsis*. Mol Plant
721 9:1183–1196. <https://doi.org/10.1016/j.molp.2016.05.015>


722 Wetherbee R, Jackson CJ, Repetti SI, et al (2019) The golden paradox – a new heterokont lineage with
723 chloroplasts surrounded by two membranes. J Phycol 55:257–278.
724 <https://doi.org/10.1111/JPY.12822>

725 Zhao H, Eide D (1996a) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity
726 uptake system induced by zinc limitation. Proc Natl Acad Sci U S A 93:2454–2458.
727 <https://doi.org/10.1073/pnas.93.6.2454>


728 Zhao H, Eide D (1996b) The ZRT2 gene encodes the low affinity zinc transporter in *Saccharomyces*
729 *cerevisiae*. J Biol Chem 271:23203–23210. <https://doi.org/10.1074/jbc.271.38.23203>

730

731

Figure 1 Presence of genes predicted to encode homologs of known metal transport proteins. Proteins were identified using either presence of a corresponding PFam domain or sequence similarity. The taxonomic class, genome identifiers from the Phycosm database, physiological characteristics and environment are indicated.

Figure 2 Metal transport proteins found in algae. A, transport proteins often found to localize to the plasma membrane. B, transporters often found to localize to intracellular membranes of the endomembrane system. C and D, transporters identified in the land plant *Arabidopsis* that are conserved in the green algae. Abbreviations not found in the text: CCH, Cu chaperone; PCH, plastid Cu chaperone; FRE, ferric reductase; CVL, Ccc1/VIT1-like; PIC1, permease in chloroplasts 1; NIK1, nickel transporter family; CAX, cation/proton exchanger.