
SANDIA REPORT
SAND2022-0377

Printed January, 2022

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

UQTk Version 3.1.2 User Manual
Khachik Sargsyan, Cosmin Safta, Luke Boll, Katherine Johnston,
Mohammad Khalil, Kenny Chowdhary, Prashant Rai, Tiernan Casey,
Xiaoshu Zeng, Bert Debusschere

SAND2022-0377

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ABSTRACT
The UQToolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in
numerical model predictions. Version 3.1.2 offers intrusive and non-intrusive methods for propagating
input uncertainties through computational models, tools for sensitivity analysis, methods for sparse
surrogate construction, and Bayesian inference tools for inferring parameters from experimental data.
This manual discusses the download and installation process for UQTk, provides pointers to the UQ
methods used in the toolkit, and describes some of the examples provided with the toolkit.

3

ACKNOWLEDGMENT

This work was supported in large part by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Scientific Discovery through the Advanced Computing
(SciDAC) program via the FASTMath Institute.

UQTk has been, and continues to be, the product of collaboration between many people. The key
authors of UQTk are (alphabetical by first name):

• Bert Debusschere

• Cosmin Safta

• Katherine Johnston

• Kenny Chowdhary

• Khachik Sargsyan

• Luke Boll

• Mohammad Khalil

• Prashant Rai

• Tiernan Casey

• Xiaoshu Zeng

Beyond the authors listed above, there is a long and continually growing list of coworkers, students and
visitors who have contributed to UQTk over the years. This list includes, but is not limited to
(alphabetical by first name):

• Habib Najm

• Helgi Adalsteinsson

• Majid Latif

• Olivier Le Maître

• Omar Knio

• Roger Ghanem

• Sarah Castorena

• Sarah de Bord

4

• Xun Huan

Further, we are grateful to all the users of UQTk who through their questions and suggestions are
continually helping us to improve the software.

5

CONTENTS

Revision History 9

1. Overview 11

2. Download and Installation 12
2.1. Requirements . 12
2.2. Download . 12
2.3. Directory Structure . 12
2.4. External Software and Libraries . 14

2.4.1. Required . 14
2.4.2. Optional . 14

2.5. Installation . 15
2.5.1. Configuration flags . 15
2.5.2. Installation example . 16
2.5.3. Setting up External Libraries . 19

3. Theory and Conventions 21
3.1. Polynomial Chaos Expansions . 21

4. Source Code Description 22
4.1. C++ Libraries . 22

4.1.1. mcmc: . 22
4.1.2. amcmc: . 26
4.1.3. tmcmc: . 27
4.1.4. ss: . 28
4.1.5. mala: . 29
4.1.6. mmala: . 30

4.2. C++ Applications . 30
4.2.1. generate_quad: . 31
4.2.2. gen_mi: . 31
4.2.3. gp_regr: . 32
4.2.4. lr_regr: . 33
4.2.5. model_inf: . 36
4.2.6. pce_eval: . 41
4.2.7. pce_quad: . 41
4.2.8. pce_resp: . 44
4.2.9. pce_rv: . 44

7

4.2.10. pce_sens: . 45
4.2.11. pdf_cl: . 45
4.2.12. regression: . 45
4.2.13. sens: . 47

4.3. PythonModules . 48
4.3.1. Bayesian Evidence Estimation . 48

5. Examples 52
5.1. Elementary Operations . 52
5.2. Polynomial Fitting . 55
5.3. Forward Propagation of Uncertainty . 60
5.4. Numerical Integration . 67
5.5. Forward Propagation of Uncertainty with PyUQTk . 76
5.6. Expanded Forward Propagation of Uncertainty - PyUQTk . 83
5.7. Forward Propagation of Uncertainty Using Basis Adaptation . 92
5.8. Bayesian Inference of a Line . 100
5.9. Sampling of Multimodal Posterior PDFs using TMCMC . 103
5.10. Forward Propagation of Uncertainties, Surrogate Construction and Global Sensitivity

Analysis . 106
5.11. Global Sensitivity Analysis via Sampling . 113
5.12. Karhunen-Loève Expansion of a Stochastic Process . 118

6. Support 134

References 135

8

REVISION HISTORY

This manual goes with UQTk version 3.1.2. Previous releases and release dates are listed below along
with the report numbers of the corresponding manuals.

• UQTk 3.1.2: 01/13/22, SAND2022-0377

• UQTk 3.1.1: 03/25/21, SAND2021-3655

• UQTk 3.1.0: 02/28/21, SAND2020-2879

• UQTk 3.0.4: 10/09/17, SAND2017-11051

• UQTk 3.0.3: 05/30/17, SAND2017-5747

• UQTk 3.0.0: 09/16/16, SAND2016-9215

• UQTk 2.1.0: 05/30/14, SAND2014-4968

• UQTk 2.0.0: 10/22/13, SAND2013-9165

9

1. OVERVIEW

The UQToolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in
numerical model predictions. In general, uncertainty quantification (UQ) pertains to all aspects that
affect the predictive fidelity of a numerical simulation, from the uncertainty in the experimental data
that was used to inform the parameters of a chosen model, and the propagation of uncertain parameters
and boundary conditions through that model, to the choice of the model itself.

In particular, UQTk provides implementations of many probabilistic approaches for UQ in this
general context. Version 3.1.2 offers intrusive and non-intrusive methods for propagating input
uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate
construction, and Bayesian inference tools for inferring parameters from experimental data.

The main objective of UQTk is to make these methods available to the broader scientific community
for the purposes of algorithmic development in UQ or educational use. The most direct way to use the
libraries is to link to them directly from C++ programs. Alternatively, command line apps are provided
that allow access to the UQTk functionality from the command line. A comprehensive Python
interface is also provided.

In the examples section, many scripts for common UQ operations are provided, which can be modified
to fit the users’ purposes using existing numerical simulation codes as a black-box.

The next chapter in this manual discusses the download and installation process for UQTk, followed by
some pointers to the UQmethods used in the toolkit, and a description of some of the examples
provided with the toolkit.

11

2. DOWNLOAD AND INSTALLATION

2.1. REQUIREMENTS

The core UQTk libraries are written in C++, with some dependencies on FORTRAN numerical
libraries. As such, to use UQTk, a compatible C++ and FORTRAN compiler will be needed. UQTk is
installed and built most naturally on a Unix-like platform, and has been tested onMac OS X and Linux.
Installation and use onWindows machines has not been tested extensively.

Many of the examples rely on Python, including NumPy, SciPy, and matplotlib packages for
postprocessing and graphing. The UQTk Python utilities are compatible with both Python 2.7.x and
3.7.x. However, Python version version 3.7.x with compatible NumPy, SciPy, and matplotlib is
recommended. Further the use of XML for input files requires the Expat XML parser library to be
installed on your system. Note, if you will be linking the core UQTk libraries directly to your own
codes, and do not plan on using the UQTk examples, then those additional dependencies are not
required.

2.2. DOWNLOAD

The most recent version of UQTk, currently 3.1.2, can be cloned from github at:
https://github.com/sandialabs/UQTk

2.3. DIRECTORY STRUCTURE

After cloning the git repo, you will find the following directories in the repo:

config Configuration files
cpp C++ source code

app C++ apps
lib C++ libraries
tests Tests for C++ libraries

dep External dependencies
ann Approximate Nearest Neighbors library
blas Netlib’s BLAS library (linear algebra)
dsfmt dsfmt library (random number generators)

12

https://github.com/sandialabs/UQTk

figtree Fast Improved Gauss Transform library
lapack Netlib’s LAPACK library (linear algebra)
lbfgs lbfgs library (optimization)
slatec Netlib’s SLATEC library (general purpose math)

doc Documentation
examples Examples with C++ libraries and apps

d_spring_series springs in series to demonstrate dimensionality reduction
through basis adaptation

dfi Example of Data Free Inference (DFI)
fwd_prop forward propagation with a heat transfer example
iuq surrogate-enabled inverse UQworkflow
kle_ex1 Karhunen-Loeve expansion example
line_infer calibrate parameters of a linear model
muq interface betweenMUQ and UQTk
num_integ quadrature andMonte Carlo integrations
ops operations with Polynomial Chaos expansions
pce_bcs construct sparse Polynomial Chaos expansions
polynomial polynomial model fit with MCMC
sensMC Monte-Carlo based sensitivity index computation
surf_rxn surface reaction example for forward and inverse UQ
tmcmc_bimodal use TMCMC to sample from a 3-dimensional posterior

that is aproduct of a Gaussian prior and a bimodal likelihood
uqpc construct Polynomial Chaos surrogates for multiple

outputs/functions
window extended version of the fwd_prop heat transfer example

PyUQTk Python scripts and interface to C++ libraries
bcs interface to Bayesian compressive sensing library
inference PythonMarkov ChainMonte Carlo (MCMC) scripts
kle interface to Karhunen-Loeve expansion class
mcmc interface to MCMC class
pce interface to Polynomial Chaos expansion class
plotting Python plotting scripts
pytests Python unit tests
quad interface to Quad class
sens Python global sensitivity analysis scripts
tmcmc Interface to tMCMC class
tools interface to UQTk tools
uqtkarray interface to array class
utils interface to UQTk utils

13

2.4. EXTERNAL SOFTWARE AND LIBRARIES

2.4.1. Required

The following software and libraries are required to compile UQTK

1. C++/Fortran compilers. Please note that C++ and Fortran compilers need to be compatible with
each other. Most of our development happens on either Mac OS X or Linux with the GNU
Compiler Suite. For OS X these compilers were installed either usingMacPorts, or Homebrew, or
directly built from source code. We have also successfully compiled with Intel compilers on
Linux.

2. CMake. We switched to a CMake-based build/install configuration in version 3.0. The
configuration files require a CMake version 3.0 or higher.

3. Expat library. The Expat XML Parser is installed together with other XCode tools on OS X. It is
also fairly common on Linux systems, with installation scripts available for several platforms.
Alternatively this library can be downloaded from http://expat.sourceforge.net

4. LAPACK and BLAS. UQTk will use system installed versions of LAPACK and BLAS if possible.
If not found, UQTk will use a self contained version.

5. SUNDIALS. UQTk requires SUNDIALS version 5.0.0 or higher (older versions may work also
but have not been tested.) If SUNDIALS is not yet installed on your system, the UQTk build
process will automatically download it from https://github.com/LLNL/sundials,
configure it, and build it. To use a version of SUNDIALS that is already installed, specify the
path to it as indicated in the installation section below.

2.4.2. Optional

The following additional software and libraries are not required to compile UQTK, but are necessary
for the full Python interface to UQTk called PyUQTk.

1. Python, NumPy, SciPy, andMatplotlib. We have successfully compiled PyUQTk with Python
2.7.x and Python 3.7.x. Note that it is important that the Python, NumPy, SciPy, andMatplotlib
packages be compatible with each other. Sometimes, your OS may come with a default version of
Python but not SciPy or NumPy. When adding those packages afterwards, it can be hard to get
them to all be compatible with each other. To avoid issues, it is recommended to install Python,
NumPy, and SciPy all from the same package manager (e.g. get them all throughMacPorts or
Homebrew on OS X).

2. Pybind11. PyUQTk has been tested with Pybind 2.6.2. Instructions for the installation of
Pybind11 can be found at: Pybind Installation Instructions. It can be installed via pip, homebrew,
or macports.

14

http://expat.sourceforge.net
https://github.com/LLNL/sundials
https://pybind11.readthedocs.io/en/stable/installing.html

2.5. INSTALLATION

We define the following keywords to simplify build and install descriptions in this section.

• sourcedir - directory containing UQTk source files, i.e. the top level directory mentioned in
Section 2.3.

• builddir - directory where UQTk library and its dependencies will be built. This directory should
not be the same as sourcedir.

• installdir - directory where UQTk libraries are installed and header and script files are copied

The following set of commands, on a high level, generates the build structure, compiles, tests, and
installs UQTk:

(1) >mkdir builddir ; cd builddir
(2) > cmake<flags> sourcedir
(3) >make
(4) > ctest
(5) >make install

The next sections explain some of the finer details in this process.

2.5.1. Configuration flags

A (partial) list of configuration flags that can be set at step (2) above is provided below:

• CMAKE_INSTALL_PREFIX : set installdir.

• CMAKE_C_COMPILER : C compiler

• CMAKE_CXX_COMPILER : C++ compiler

• CMAKE_Fortran_COMPILER : Fortran compiler

• CMAKE_SUNDIALS_DIR : Path to install directory for SUNDIALS

• IntelLibPath: For Intel compilers: path to libraries if different than default system paths

• PyUQTk : If ON, then build PyUQTk’s Python to C++ interface. Default: OFF

• PYTHON_EXECUTABLE : Path to the Python program

• PYTHON_LIBRARY : Path to the Python library

• pybind11_DIR:FILEPATH : Path to the directory for Pybind11

15

Several pre-set config files are available in the “sourcedir/config” directory. These scripts set the
configuration flags mentioned above for some common situations and can be used as a template for
your platform. Some of these shell scripts also accept arguments, e.g. config-options.sh, to switch
between several configurations. Type, for example config-options.sh --help to obtain a list of
options. For a basic setup using default system settings for GNU compilers, see “config-gcc-base.sh”.
The user is encouraged to copy of one these script files and edit to match the desired configuration.
Then, step no. 2 above (cmake<flags> sourcedir) should be replaced by a command running a
particular shell script from the command line, e.g.

(2) > ../UQTk/config/config-gcc-base.sh

In this example, the configuration script is run from the build directory, while it is assumed that the
configuration script still sits in the configuration directory of the UQTk source code tree.

If all goes well, there should be no errors. Two log files in the “config” directory contain the output for
Steps (2) and (3) above, for compilation and installation on OS X 10.9.5 using GNU 4.8.3 compilers:

(2) >
../UQTk/config/config-options.sh -c gnu -p ON >& cmake-mac-gnu.log

(3) > make >& make-gnu.log ; make install >>& make-gnu.log

After compilation ends, the installdirwill be contain the following sub-directories:

PyUQTk Python scripts and, if PyUQTk=ON, interface to C++ classes
bin app’s binaries
cpp tests for C++ libraries
examples examples on using UQTk
include UQTk header files
lib UQTk libraries, including for external dependencies

To use the UQTk libraries, your program should link in the libraries in installdir/lib and add
installdir/include/uqtk and installdir/include/dep directories to the compiler include
path. The apps are standalone programs that perform UQ operations, such as response surface
construction, or sampling from random variables. For more details, see the Examples section.

2.5.2. Installation example

In this section, we will take the user through the installation of UQTk and PyUQTk on aMac OSX
10.11 system with the GNU compilers. The following example uses GNU 6.1 installed under
/opt/local/gcc61. For the compilation of PyUQTk, we are using Python version 2.7.10 with SciPy
0.14.0, Matplotlib 1.4.2, NumPy 1.8.1, and Pybind 2.6.2.

It will be cleaner to keep the source directory separate from the build and install directories. For
simplicity, we will create a UQTk-build directory in the same parent folder as the source directory,
UQTk . While in the source directory, create the build directory and cd into it:

16

$ mkdir ../UQTk-build
$ cd ../UQTk-build

It is important to note that the CMake compilation uses the cc and c++ defined compilers by default.
This may not be the compilers you want when installing UQTk. Luckily, CMake allows you to specify
which compilers you want, similar to autoconf. Thus, we type

$ cmake -DCMAKE_INSTALL_PREFIX:PATH=$PWD/../UQTk-install \
-DCMAKE_Fortran_COMPILER=/opt/local/gcc61/bin/gfortran-6.1.0 \
-DCMAKE_C_COMPILER=/opt/local/gcc61/bin/gcc-6.1.0 \
-DCMAKE_CXX_COMPILER=/opt/local/gcc61/bin/g++-6.1.0 ../UQTk

Note that this will configure CMake to compile UQTk without the Python interface. Also, we specified
the installation directory to be UQTk-install in the same parent directory at UQTk and UQTk-build.
Figure 2-1 shows what CMake prints to the screen. To turn on the Python interface just set the CMake

Figure 2-1. CMake configuration without the Python interface.

flag, PyUQTk, on, i.e.,

$ cmake -DPyUQTk=ON \
-DCMAKE_INSTALL_PREFIX:PATH=$PWD/../UQTk-install \
-DCMAKE_Fortran_COMPILER=/opt/local/gcc61/bin/gfortran-6.1.0 \
-DCMAKE_C_COMPILER=/opt/local/gcc61/bin/gcc-6.1.0 \
-DCMAKE_CXX_COMPILER=/opt/local/gcc61/bin/g++-6.1.0 ../UQTk

17

Figure 2-2. CMake configuration with the Python interface.

Figure 2-2 shows the additional output to screen after the Python interface flag is turned on.

If the CMake command has run without error, you are now ready to build UQTk. While in the build
directory, type

$ make

or, for a faster compilation using N parallel threads,

$ make -j N

where one can replace Nwith the number of virtual cores on your machine, e.g. 8. This will build in the
UQTK-build/ directory. The screen should look similar to Figure 2-3 with or without the Python
interface when building.

Figure 2-3. Start and end of build without Python interface.

To verify that the build was successful, run the ctest command from the UQTK-build/ directory to
run the C++ and Python (only if building PyUQTk) test scripts.

$ ctest

The output should look similar to Figure 2-4.

If all looks good, you are now ready to install UQTk. While in the build directory, type

18

Figure 2-4. Result of ctest after successful build and install.
Note that if you do not build PyUQTk, those tests will not be run.

$ make install

which installs the libraries, headers, apps, examples, and such in the specified installation directory.
Additionally, if you are building the Python interface, the install command will copy over the python
scripts and Pybind modules (*.so) over to PyUQTk/.

As a reminder, commonly used configure options are illustrated in the scripts that are provided in the
“sourcedir/config” folder.

2.5.3. Setting up External Libraries

2.5.3.1. Python

Cmake will very often find the correct python path. However, sometimes cmake cannot identify the
correct path and may fail to build or fail the python tests. In this case, you can specify the python library
filepath as in the example below.

If the Python tests fail, even though the compilation went well, a common issue is that the configure
script may have found a different version of the Python libraries then the one that is used when you
issue Python from the command line. To avoid this, specify the path to your Python program and
libraries to the configuration process. For example (on OS X):
cmake -DCMAKE_INSTALL_PREFIX:PATH=$PWD/../UQTk-install \

-DCMAKE_Fortran_COMPILER=/opt/local/gcc61/bin/gfortran-6.1.0 \
-DCMAKE_C_COMPILER=/opt/local/gcc61/bin/gcc-6.1.0 \
-DCMAKE_CXX_COMPILER=/opt/local/gcc61/bin/g++-6.1.0
-DPYTHON_EXECUTABLE:FILEPATH=/opt/local/bin/python \
-DPYTHON_LIBRARY:FILEPATH=/opt/local/Library/Frameworks/Python.framework/Versions/3.7/lib/libpython3.7.dylib \
-DPyUQTk=ON \
../UQTk

19

2.5.3.2. SUNDIALS

If you would like to use a version of SUNDIALS that you have already installed on your system (rather
than have UQTk download the latest version from github), use the variable CMAKE_SUNDIALS_DIR to
specify the path to its install folder. For example, your config script may look as follows:

cmake -DCMAKE_INSTALL_PREFIX:PATH=$PWD/../install \
-DCMAKE_SUNDIALS_DIR=/Users/myusername/Packages/SUNDIALS/install \
-DCMAKE_Fortran_COMPILER=gfortran \
-DCMAKE_C_COMPILER=gcc \
-DCMAKE_CXX_COMPILER=g++ \
-DPyUQTk=ON \
../UQTk

Note, if your UQTk configuration links to the dynamically linked version of the SUNDIALS library,
you will also need to add the location of those libraries to your dynamic library path on your platform
(e.g. the DYLD_LIBRARY_PATH environment variable onMac OS X).

2.5.3.3. Pybind11

Pybind11 is a requirement for the usage of the PyUQTkmodules. Cmake will often find the correct
Pybind path. However, sometimes cmake cannot identify the correct path and may fail to build or fail
the python tests. In this case, you can specify the Pybind11 library filepath as in the example below.
Additionally, if errors such as, fatal error:pybind11/pybind11.h: No such file or directory, occur, ensure
that Pybind11 is installed in the same directory as the python library being used by CMake. For example,
your config script may look as follows:
PYTHON_DIR=/opt/local/Library/Frameworks/Python.framework/Versions/3.9/lib
cmake -DCMAKE_INSTALL_PREFIX:PATH=$PWD/../UQTk-install \

-DCMAKE_Fortran_COMPILER=/opt/local/gcc61/bin/gfortran-6.1.0 \
-DCMAKE_C_COMPILER=/opt/local/gcc61/bin/gcc-6.1.0 \
-DCMAKE_CXX_COMPILER=/opt/local/gcc61/bin/g++-6.1.0 \
-DPYTHON_EXECUTABLE:FILEPATH=/opt/local/bin/python \
-DPYTHON_LIBRARY:FILEPATH=$PYTHON_DIR/libpython3.9.dylib \
-Dpybind11_DIR:FILEPATH=$PYTHON_DIR/python3.9/site-packages/pybind11/share/cmake/pybind11 \
-DPyUQTk=ON \
../UQTk

Note, some users have found that by installing Pybind11 using pip has made the need for specifying the
Pybind11 path unnecessary. Additionally, after a successful build warnings about weak symbols will
appear. These can be ignored as they do not prevent the correct implementation of the PyUQTk
modules.

20

3. THEORY AND CONVENTIONS

UQTk implements many probabilistic methods found in the literature. For more details on the
methods, please refer to the following papers and books on Polynomial Chaos methods for uncertainty
propagation [4, 18], Karhunen-Loève (KL) expansions [8], numerical quadrature (including sparse
quadrature) [14, 3, 10, 32, 7], Bayesian inference [31, 5, 19], Markov ChainMonte Carlo [6, 9, 11, 12],
Bayesian compressive sensing [1], and the Rosenblatt transformation [24].

Below, some key aspects and conventions of UQTk Polynomial Chaos expansions are outlined in order
to connect the tools in UQTk to the broader theory.

3.1. POLYNOMIAL CHAOS EXPANSIONS

• The default ordering of PCE terms in the multi-index in UQTk is the canonical ordering for total
order truncation

• The PC basis functions in UQTk are not normalized

• The Legendre-Uniform PC Basis type is defined on the interval [-1, 1], with weight function 1/2

21

4. SOURCE CODE DESCRIPTION

For more details on the actual source code in UQTk, HTML documentation is also available in the
doc/doxy/html folder.

4.1. C++ LIBRARIES

The following libraries are included in UQTk (source code in cpp/lib)

} mcmc :Markov ChainMonte Carlo Base Class

} amcmc :Adaptive Markov ChainMonte Carlo

} tmcmc :Transitional Markov ChainMonte Carlo

} ss : Single Site Markov ChainMonte Carlo

} mala :Metropolis-adjusted Langevin algorithm

} mmala :Manifold-variant of MALA

4.1.1. mcmc:

This directory features the common functionality between the different flavors of Markov Chain
Monte Carlo in UQTk. The functions within this base class are:

• MCMC(double (*logposterior)(Array1D<double>&, void *), void *postinfo) :
Constructor that takes in a pointer to a log posterior function and an additional pointer to
information about the posterior

• MCMC(LogPosteriorBase& L) : Constructor that takes in a LogPosteriorBase object

• MCMC() : Dummy constructor, used exclusively for TMCMC

• void setWriteFlag(int I) : Sets the value of the MCMC object’s write flag, which
determines if the MCMCwill be written to the screen, via an integer. A value of 1 indicates that
the MCMCwill be written to the screen, all other integers will not be

• void setFcnAccept(void (*fcnAccept)(void *)) : Sets the accept function given a
pointer to the function

22

• void setFcnReject(void (*fcnReject)(void *)) : Sets the reject function given a
pointer to the function

• void setChainDim(int chdim) : Sets the chain dimensionality given an integer

• void initChainPropCov(Array2D<double>& propcov) : Sets the proposal covariance
matrix given a 2d-array. For AMCMC, this matrix is used only before adaptivity starts

• void initChainPropCovDiag(Array1D<double>& sig) : Sets the proposal covariance
matrix given a 1d-array. For AMCMC, this matrix is used only before adaptivity starts

• void setOutputInfo(string outtype, string file,int freq_file, int
freq_screen) : Sets the output information for the MCMC given the type of file, the file
name, the frequency that the MCMC should print to the file, and the frequency that the MCMC
should print to the screen

• void namesPrepended() : Sets the MCMC so the names of the parameters are prepended in
the output file

• void setSeed(int seed) : Sets the seed for random generation

• void setLower(double lower, int i) : Set lower bound of MCMC as a double at the
index of i

• void setUpper(double upper, int i) : Set upper bound of MCMC as a double at the
index of i

• void setDefaultDomain() : Set the default unbounded domain for MCMC

• void setPostInfo(void *postinfo) : Set the posterior information given a pointer to the
posterior information

• void getChainPropCov(Array2D<double>& propcov) : By passing a 2d-array into the
function it sets it equal to the proposal covariance matrix

• string getFileName() : Gets the output file name as a string

• int getWriteFlag() : Gets the write flag for the MCMC object as an integer. A value of 1
indicates that the MCMCwill be outputted to the screen

• void getSamples(int burnin, int every,Array2D<double>& samples) : Gets a
selective number of the MCMC samples by passing in an integer for the index after the burn-in
phase of MCMC has occurred and an integer for how often the chain’s samples are added. The
samples are then added to a 2D-array that is passed into the function

• void getSamples(Array2D<double>& samples) : Gets the full chain of MCMC samples
as a 2D-Array that is passed in

• void getFcnAccept(void (*fcnAccept)(void *)) : Gets the accept function of the
MCMC

• void getFcnReject(void (*fcnReject)(void *)) : Gets the reject function of the
MCMC

23

• string getOutputType() : Get the type of file, either binary or text

• . int getFileFreq() : Gets how frequently the MCMC prints its output to the file

• . int getScreenFreq() : Gets how frequently the MCMC prints its output to the screen

• bool getNamesPrepended() : Gets whether or not the names of the parameters are
prepended as a bool

• int getSeed() : Gets the seed for random generation as an integer

• double getLower(int i) : Gets the lower bound limit of the MCMC chain based on an
integer index i

• double getUpper(int i) : Gets the upper bound limit of the MCMC chain based on an
integer index i

• bool getDimInit() : Gets if the chain’s dimensionality has been set as a bool

• void getPostInfo(void *post) : Gets the posterior information given a pointer passed
into the function

• bool getPropCovInit() : Gets if the proposal covariance matrix has been set as a bool

• bool getOutputInit() : Gets if the output information has been set as a bool

• bool getLastWrite() : Gets the last index of the MCMC chain written as an integer

• bool getFcnAcceptInit() : Gets if the accept function is set as a bool

• bool getFcnRejectInit() : Gets if the reject function is set as a bool

• virtual int getNSubSteps() : Gets the number of sub steps for the MCMC object.
Written as virtual to be redefined for single-site MCMC

• int getLowerFlag(int i) : Gets the flag for the lower limit at an integer index of i. A value
of 1 indicates that the lower limit has been set, all other values indicate it has not

• int getUpperFlag(int i) : Gets the flag for the upper limit at an integer index of i. A value
of 1 indicates that the upper limit has been set, all other values indicate it has not

• void getAcceptRatio(double * accrat) : Gets the acceptance ratio of the MCMC
object by passing in a pointer to a double and setting the value of the object the pointer points to
the acceptance ratio

• double getAcceptRatio() : Gets the acceptance ratio as a double

• int GetChainDim() const : Gets the MCMC chain dimensionality

• void resetChainState() : Resets the entire MCMC chain state

• void resetChainFilename(string filename) : Resets the MCMC chain state and resets
the name of the file that theMCMCwill be written to as the string that is passed into the function

24

• void parseBinChain(string filename, Array1D<chainstate>& readchain) :
Parses the binary file, passed in as a string, and produces a 1d array of chain-states and writes them
to the 1d array passed into the function

• void writeFullChainTxt(string filename, Array1D<chainstate> fullchain) :
Writes the passed in 1d array of chainstates to the specific text file passed in as a string

• void getFullChain(Array1D<chainstate>& readchain) : Gets the full MCMC chain
as a passed in 1d array of chainstates

• void appendMAP() : Appends the MAP state to the end of the chain

• double getMode(Array1D<double>& MAPparams) : Gets the MAP parameters as a double
based on the 1d array that is passed into the functions

• int getFullChainSize() : Gets the full size of the MCMC chain as an integer

• void setCurrentStateStep(int i) : Sets the step of the current state as a given integer

• void getCurrentStateState(Array1D<double>& state) : Gets the state of the current
state by assigning it to the passed in 1d array

• double getCurrentStatePost() : Gets the post of the current state as a double

• void setCurrentStateState(Array1D<double>& newState) : Sets the current state’s
state to the passed in 1d array of doubles

• void setCurrentStatePost(double newPost) : Sets the current state’s post to the passed
in double

• void setCurrentStateAlfa(double newAlfa) : Sets the current state’s alfa to the passed
in double

• double getModeStatePost() : Gets the mode state’s post as a double

• void getModeStateState(Array1D<double>& state) : Gets the mode state’s state by
assigning it to the 1d array of doubles passed into the function

• virtual void runOptim(Array1D<double>& start) : Runs the optimization routine
for the MCMC object. Written as a virtual function to be redefined later by derivedMCMC
classes

• virtual void runChain(int ncalls, Array1D<double>& chstart) : Generates the
MCMC chain. A pure virtual function that is defined by the derivedMCMC classes to reflect
their specific MCMC generation variant

• virtual void runChain(int ncalls) : Generates the MCMC chain with a trivial initial
condition. A pure virtual function that is defined by the derivedMCMC classes to reflect their
specific MCMC generation variant

• void runAcceptFcn() : Runs the accept function for the MCMC object

• void runRejectFcn() : Runs the reject function for the MCMC object

25

• bool newModeFound() : Checks to see if a new mode was found during the last call to
runChain and returns it as a bool

• double evalLogPosterior(Array1D<double>& m) : Evaluates the log-posterior based on
the 1d array of doubles passed into the function

• bool inDomain(Array1D<double>& m) : Checks if all of the points in the 1d array are in the
defined domain of the MCMC and returns the evaluation as a bool

• void writeChainTxt(string filename) : Writes the full chain as a text file with the name
of the string passed into the function

• void writeChainBin(string filename) : Writes the full chain as a binary file with the
name of the string passed into the function

• void setNewMode(bool value) : Sets the newmode value to the boolean value passed into
the function

4.1.2. amcmc:

This directory features the functionality and variables for Adaptive Markov ChainMonte Carlo
(AMCMC) in UQTk. AMCMC is the most common version of MCMC in UQTk. The functions
within this class are:

• AMCMC(double (*logposterior)(Array1D<double>&, void *), void *postinfo)
: Constructor for AMCMC that takes in a pointer to a log posterior function and an additional
pointer to information about the posterior. This constructor delegates to the similar constructor
in the MCMC base class

• AMCMC(LogPosteriorBase& L) : Constructor that takes in a LogPosteriorBase object. This
constructor delegates to the similar constructor in the MCMC base class

• void initAdaptSteps(int adaptstart,int adaptstep, int adaptend) :
Initializes the adaptivity step parameters for AMCMC. The start of adaptivity, how often the
MCMC adapts, and when the adaptivity ends are initialized as integers.

• void initAMGamma(double gamma_) : Initializes the scaling factor of gamma for AMCMC
as a double

• void initEpsCov(double eps_cov_) : Initializes the covariance nugget for AMCMC as a
double

• void getAdaptSteps(Array1D<int> adaptstep_) : Gets the adaptivity step parameters
for AMCMC by setting the passed in 1d array of 3 integers equal to the parameters. The first
element is the start of adaptivity. The second element is the step size for adaptivity, or how often
the AMCMC adapts. The third element is the end of the adaptivity of the AMCMC.

• double getGamma() : Gets the coefficient behind the covariance scaling factor for AMCMC as
a double. This is also known as the gamma value

26

• double getEpsCov() : Gets the offset epsilon for Cholesky to be computationally feasible as a
double. This is also known as the covariance nugget

• void printChainSetup() : Prints the chain information on the screen

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates theMCMC chain. This function overrides the pure virtual function in the base class of
the MCMC. It generates the MCMC in the manner specific to AMCMC. It is written as a virtual
function to allow for any additional derived classes that would be based off of AMCMC

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates the MCMC chain based on a trivial initial condition. This function overrides the pure
virtual function in the base class of theMCMC. It generates theMCMC in the manner specific to
AMCMC. It is written as a virtual function to allow for any additional derived classes that would
be based off of AMCMC

4.1.3. tmcmc:

This directory features the functionality and variables for Transitional Markov ChainMonte Carlo
(TMCMC) in UQTk. The functions within this class are:

• TMCMC() : Constructor for TMCMC that takes in no values. This constructor delegates to the
similar dummy constructor in the MCMC base class

• void initDefaults() : Sets the default values for the TMCMC object

• void initTMCMCNprocs(int tmcmc_nprocs) : Initializes the number of processes for
TMCMC as an integer

• void initTMCMCGamma(double tmcmc_gamma) : Initializes the coefficient behind the
covariance scaling factor for TMCMC as a double

• void initTMCMCCv(double tmcmc_cv) : Initializes the maximum allowed coefficient of
variation for the weights in TMCMC as a double

• void initTMCMCMFactor(int tmcmc_MFactor) : Initializes the the multiplicative factor
for chain length to encourage mixing in TMCMC as an integer

• void initTMCMCBasis(bool tmcmc_basis) : Initializes the choice to resample according
to BASIS and CATMIPs in TMCMC as a bool

• void initTMCMCCATSteps(int tmcmc_CATSteps) : Initialize the CATMIPs resampling
parameter for TMCMC as an integer

• int getTMCMCNprocs() : Gets the number of processes for TMCMC as an integer

• double getTMCMCGamma() : Gets the coefficient behind the covariance scaling factor for
TMCMC as a double

• double getTMCMCCv() : Gets the maximum allowed coefficient of variation for the weights in
TMCMC as a double

27

• int getTMCMCMFactor() : Gets the multiplicative factor for chain length to encourage mixing
in TMCMC as an integer

• bool getTMCMCBasis() : Gets the choice to resample according to BASIS and CATMIPs in
TMCMC as a bool

• int getTMCMCCATSteps() : Gets the CATMIPs resampling parameter for TMCMC as an
integer

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates theMCMC chain. This function overrides the pure virtual function in the base class of
the MCMC. It generates the MCMC in the manner specific to TMCMC. It is written as a virtual
function to allow for any additional derived classes that would be based off of AMCMC

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates the MCMC chain based on a trivial initial condition. This function overrides the pure
virtual function in the base class of theMCMC. It generates theMCMC in the manner specific to
TMCMC. It is written as a virtual function to allow for any additional derived classes that would
be based off of TMCMC

4.1.4. ss:

This directory features the functionality and variables for Single Site Markov ChainMonte Carlo (SS) in
UQTk. SS is the most basic and simplest of the types of MCMC in UQTk. The functions within this
class are:

• SS(double (*logposterior)(Array1D<double>&, void *), void *postinfo) :
Constructor for SS that takes in a pointer to a log posterior function and an additional pointer to
information about the posterior. This constructor delegates to the similar constructor in the
MCMC base class

• SS(LogPosteriorBase& L) : Constructor that takes in a LogPosteriorBase object. This
constructor delegates to the similar constructor in the MCMC base class

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates theMCMC chain. This function overrides the pure virtual function in the base class of
the MCMC. It generates the MCMC in the manner specific to SS. It is written as a virtual
function to allow for any additional derived classes that would be based off of SS

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates the MCMC chain based on a trivial initial condition. This function overrides the pure
virtual function in the base class of theMCMC. It generates theMCMC in the manner specific to
SS. It is written as a virtual function to allow for any additional derived classes that would be
based off of SS

• int getNSubSteps() override : Gets the number of sub steps for an SS object. This
overrides the virtual function previous defined in the MCMC base class

28

4.1.5. mala:

This directory features the functionality and variables for Metropolis-adjusted Langevin algorithm
(MALA) in UQTk. The functions within this class are:

• MALA(double (*logposterior)(Array1D<double>&, void *), void *postinfo) :
Constructor for MALA that takes in a pointer to a log posterior function and an additional
pointer to information about the posterior. This constructor delegates to the similar constructor
in the MCMC base class

• MALA(LogPosteriorBase& L) : Constructor that takes in a LogPosteriorBase object. This
constructor delegates to the similar constructor in the MCMC base class

• void initEpsMALA(double eps_mala_) : Initializes the epsilon for MALA as double

• void setGradient(void (*gradlogPosterior)(Array1D<double>&,
Array1D<double>&, void *)) : Sets the gradient function given a pointer to a gradient of a
logPosterior function

• double getEpsMALA() : Gets the epsilon for MALA as a double

• void getGradient(void (*gradlogPosterior)(Array1D<double>&,
Array1D<double>&, void *)) : Gets gradient function by passing in a pointer

• bool getGradientFlag() : Gets if the gradient function is set as a bool

• void evalGradLogPosterior(Array1D<double>& m, Array1D<double>& grads) :
Evaluates the gradient function based on two 1d arrays of doubles

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates theMCMC chain. This function overrides the pure virtual function in the base class of
the MCMC. It generates the MCMC in the manner specific to MALA. It is written as a virtual
function to allow for any additional derived classes that would be based off of MALA

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates the MCMC chain based on a trivial initial condition. This function overrides the pure
virtual function in the base class of theMCMC. It generates theMCMC in the manner specific to
MALA. It is written as a virtual function to allow for any additional derived classes that would be
based off of MALA

• virtual void runOptim(Array1D<double>& start) override : Runs the
optimization routine for the MCMC object. It generates the MCMC in the manner specific to
MALA. It is written as a virtual function to allow for any additional derived classes that would be
based off of MALA

29

4.1.6. mmala:

This directory features the functionality and variables for Manifold variant of Metropolis-adjusted
Langevin algorithm (MALA) in UQTk. MMALA is a derived class of the MALA class. Thus making
the MALA class a base class for MMALA. The functions within this class are:

• MMALA(double (*logposterior)(Array1D<double>&, void *), void *postinfo)
: Constructor for MMALA that takes in a pointer to a log posterior function and an additional
pointer to information about the posterior. This constructor delegates to the similar constructor
in the MALA base class

• MMALA(LogPosteriorBase& L) : Constructor that takes in a LogPosteriorBase object. This
constructor delegates to the similar constructor in the MALA base class

• void setMetricTensor(void (*metricTensor)(Array1D<double>&,
Array2D<double>&, void *)) : Sets the metric tensor function used inMMALA

• void getMetricTensor(void (*metricTensor)(Array1D<double>&,
Array2D<double>&, void *)) : Gets the metric tensor function used inMMALA

4.2. C++ APPLICATIONS

The following command-line applications are available (source code is in cpp/app)

} generate_quad :Quadrature point/weight generation

} gen_mi : Polynomial multiindex generation

} gp_regr :Gaussian process regression

} lr_regr : Low-rank regression

} model_inf :Model parameter inference

} pce_eval : PC evaluation

} pce_quad : PC generation from samples

} pce_resp : PC projection via quadrature integration

} pce_rv : PC-related random variable generation

} pce_sens : PC sensitivity extraction

} pdf_cl :Kernel Density Estimation

} regression : Linear parametric regression

} sens : Sobol sensitivity indices via Monte-Carlo sampling

Below we detail the theory behind all the applications. For specific help in running an app, type
app_name -h.

30

4.2.1. generate_quad:

This utility generates isotropic quadrature (both full tensor product or sparse) points of given
dimensionality and type. The keyword options are:

Quadrature types: -g <quadType>

• LU : Legendre-Uniform

• HG :Gauss-Hermite

• LG :Gamma-Laguerre

• SW : Stieltjes-Wiegert

• JB : Beta-Jacobi

• CC : Clenshaw-Curtis

• CCO : Clenshaw-Curtis Open (endpoints not included)

• NC :Newton-Cotes (equidistant)

• NCO :Newton-Cotes Open (endpoints not included)

• GP3 :Gauss-Patterson

• pdf : Custom PDF

Sparsity types: -x <fsType>

• full : full tensor product

• sparse : Smolyak sparse grid construction

Note that one can create an equidistant multidimensional grid by using ‘NC’ quadrature type and ‘full’
sparsity type.

4.2.2. gen_mi:

This utility generates multi index set of a given type and dimensionality. The keyword options are:

Multiindex types: -x <mi_type>

• TO :Total order truncation, i.e. α = (α1, . . . , αd), where α1 + · · ·+ αd = ||α||1 ≤ p, for
given order p and dimensionality d. The number of multiindices isNTO

p,d = (p+ d)!/(p!d!).

• TP :Tensor product truncation, i.e. α = (α1, . . . , αd), where αi ≤ pi, for i = 1, . . . , d.
The dimension-specific orders are given in a file with a name specified as a command-line
argument (-f). The number of multiindices isNTP

p1,...,pd
=
∏d

i=1(pi + 1).

31

• HDMR :High-Dimensional Model Representation, where, for each k, k-variate multiindices are
truncated up to a given order. That is, if ||α||0 = k (i.e. the number of non-zero elements is
equal to k), then ||α||1 ≤ pk, for k = 1, . . . , kmax. The variate-specific orders pk are given in a
file with a name specified as a command-line argument (-f). The number of multiindices
constructed in this way isNHDMR

p0,...,pkmax
=
∑kmax

k=0 (pk + k)!/(pk!k!).

4.2.3. gp_regr:

This utility performs Gaussian process regression [23], in particular using the Bayesian perspective of
constructing GP emulators, see e.g. [13, 21]. The data is given as pairsD = {(x(i), y(i))}Ni=1, where
x ∈ Rd. The function to be found, f(x) is endowed with a Gaussian prior with meanh(x)Tc and a
predefined covarianceC(x, x′) = σ2c(x, x′). Currently, only a squared-exponential covariance is
implemented, i.e. c(x, x′) = e−(x−x′)TB(x−x′). Themean trend basis vector
h(x) = (L0(x), . . . , LK−1(x)) consists of Legendre polynomials, while c and σ2 are hyperparameters
with a normal inverse gamma (conjugate) prior

p(c, σ2) = p(c|σ2)p(σ2) ∝ e−
(c−c0)

T V−1(c−c0)
2σ2

σ

e−
β

σ2

σ2(α+1)
.

The parameters c0, V
−1 andB are fixed for the duration of the regression. Conditioned on yi = f(xi),

the posterior is a student-t process

f(x)|D, c0, V
−1, B, α, β ∼ St-t(µ∗(x), σ̂c∗(x, x′))

with mean and covariance defined as

µ∗(x) = h(x)T ĉ+ t(x)TA−1(y −H ĉ),
c∗(x, x′) = c(x, x′)− t(x)TA−1t(x′) + [h(x)T − t(x)TA−1H]V ∗[h(x′)T − t(x′)TA−1H]T ,

where yT = (y(1), . . . , y(N)) and

ĉ = V ∗(V −1c0 +HTA−1y) σ̂2 =
2β + cT0 V

−1c0 + yTA−1y − ĉT (V ∗)−1ĉ

N + 2α−K − 2

t(x)T = (c(x, x(1)), . . . , c(x, x(N))) V ∗ = (V −1 +HTA−1H)−1

H = (h(x(1))T , . . . ,h(x(N))T) Amn = c(x(m), x(n))

(4.1)

Note that currently the commonly used prior p(c, σ2) ∝ σ−2 is implemented which is a special case
with α = β = 0 and c0 = 0, V −1 = 0K×K . Also, a small nugget of size 10−6 is added to the diagonal
of matrixA for numerical purposes, playing a role of ‘data noise’. Finally, the covariance matrixB is
taken to be diagonal, with the entries either fixed or found before the regression by maximizing
marginal posterior [21]. More flexibility in trend basis and covariance structure selection is a matter of
current work.

The app builds the Student-t process according to the computations detailed above, and evaluates its
mean and covariance at a user-defined grid of points x.

32

4.2.4. lr_regr:

This module constructs a canonical low rank approximation of a function in a black box setting given
input/output samples.

Canonical-tensor decomposition: A univariate function u(x) can be written approximately
as

u(x) ≈ ũ(x) =

p∑
j=0

vjφj(x), (4.2)

where φj(x) is the jth basis function and vj is the jth expansion coefficient, for j = 0, . . . , pwith some
p > 0. Likewise, a multivariate function u(x) can be expanded as

u(x) ≈ ũ(x) =

p1∑
j1=0

· · ·
pm∑
jm=0

vj1,...,jmφ
(1)
j1

(x1) · · ·φ(m)
jm

(xm), (4.3)

where φ(i)
ji

(xi) is the jith basis function in the ith coordinate, xi. The number of expansion coefficients
{vj1,...,jm} is

∏m
i=1(pi + 1) or anO(pm1) quantity, if p1 = · · · = pm. This exponential increase in the

number of unknowns with dimension is a manifestation of the curse of dimensionality.

A low-rank approximation instead expands u(x) in the form

u(x) ≈ ũ(x) =
r∑

k=1

m∏
i=1

w
(i)
k (xi), (4.4)

with each univariate functionw(i)
k (xi) being represented, in analogy to Eq. (4.2), as

w
(i)
k (xi) =

pi∑
ji=0

w
(i)
k,ji
φ

(i)
ji

(xi). (4.5)

Thus a low-rank approximation of u(x) is given as

u(x) ≈
r∑

k=1

m∏
i=1

{
pi∑
ji=0

w
(i)
k,ji
φ

(i)
ji

(xi)

}
. (4.6)

The number of expansion coefficients {w(i)
k,ji
} is dramatically reduced to r

∑m
i=1(pi + 1), which is an

O(rmp1) quantity, if p1 = · · · = pm, and is linear with dimensionm. The value of r and its scaling
withm is dependent on problem and can only be assessed from applications as demonstrated below.
Next, we describe an algorithm, which is based on alternating least squares, to determine the coefficients
{w(i)

k,ji
}.

33

Alternating-least-squares algorithm: Before explaining the alternating-least-squares (ALS)
algorithm, we first review the standard least-squares method to determine the coefficients {vj} in Eq.
(4.2). Suppose that we have S sample points of x, {xs|s = 1, . . . , S}, at which we evaluate u(x).
Defining an S-by-(p+ 1) matrixΦ by

Φ =

φ0(x1) . . . φp(x
1)

...
φ0(xS) . . . φp(x

S)

 , (4.7)

we can express Eq.(4.2) on the sample points as

u ≈ Φv, (4.8)

where u and v are column vectors defined as (u)i = u(xi), and (v)j = vj . The least-squares method
solves for v that minimizes the variance,

‖u−Φv‖2
2, (4.9)

where ‖ · ‖2 is L2 norm of a vector. Hence, the coefficients {vi} are obtained by performing the
minimization

min
v
‖u−Φv‖2

2, (4.10)

which has a closed-form solution,

v =
(
ΦTΦ

)−1
ΦTu, (4.11)

in the case of real valued basis functions.

In a low-rank approximation of a multivariate function, we determine the expansion coefficients
{w(i)

k,ji
} by minimizing the variance in them-dimensional space,

min
{w}
‖u− ũ‖2

2, (4.12)

where ũ is written as Eq. (4.6). The ALS algorithm consists in performing the standard least-squares
determination of expansion coefficients {w(l)

k,jl
} for one coordinate (say, l = i) at a time, while holding

others (all l except i) fixed, and repeating it for all coordinates cyclically until convergence.

One least-squares iteration for the ith coordinate is carried out as follows. Let the column vector [of
length r(pi + 1)] in the matrix of expansion coefficients corresponding to the ith coordinate be

z(i) =

w
(i)
1
...

w
(i)
r

 , (4.13)

wherew
(i)
k = [w

(i)
k,0, . . . , w

(i)
k,pi

]T is a column vector of length pi + 1. We also define an S-by-r(pi + 1)

matrixΦ(i) as

Φ(i) =
[
Φ

(i)
1 · · ·Φ

(i)
r

]
, (4.14)

34

with

Φ
(i)
k =

c
(i)
k,1φ

(i)
0 (x1

i) . . . c
(i)
k,1φ

(i)
pi (x1

i)
...

c
(i)
k,Sφ

(i)
0 (xSi) . . . c

(i)
k,Sφ

(i)
pi (xSi)

 , (4.15)

where

c
(i)
k,s =

m∏
l=1,l 6=i

w
(l)
k (xsl) (4.16)

=
m∏

l=1,l 6=i

[
φ

(l)
0 (xsl) . . . φ

(l)
pl

(xsl)
]
·w(l)

k , (4.17)

is the part of the multivariate function held fixed in this iteration.

According to Eq. (4.11), we find

z(i) =
(
Φ(i)TΦ(i)

)−1

Φ(i)Tu. (4.18)

Starting with some initial guess of z(i) for all i’s (1 ≤ i ≤ m), we iterate the least-squares determination
of z(i) for one (the ith) dimension at a time, until the L2 norm of difference of z(i) in consecutive
iterations falls below a small tolerance or the maximum iteration count is reached.

Implementation: The syntax of the main script is

lr_regr -x <xfile> -y<yfile> -b <basistype> -r <rank> -t <xcheckfile>
-o <order> -i<maxiter> -s<strpar> -v %-l<dblpar>

• -x <xfile> : A file containing input sample points {xs|s = 1, . . . , S} at which the function
was evaluated (matrix of size S ×m). Default is xdata.dat

• -y <yfile> : A file containing output sample points u(xs) (A vector of length S). Default is
ydata.dat

• -b <basistype> : Type of basis φ(i)
ji
. Current implementation allows only one basis type for all

dimensions. There are two options.

– PC corresponds to Polynomial Chaos basis. Type of polynomial chaos is indicated by -s
option (see below)

– POL corresponds to monomial basis i.e. 1, x, x2 . . .

• -r <rank> : An integer as Maximum rank of approximation (i.e. r in Eq. (4.4))

35

• -t <xcheckfile> : A file containing input sample points at which the approximation is tested
for validation or plotting purposes. The output of low rank surrogate evaluation is stored in
ycheck_k.dat files where 1 ≤ k ≤ r. If xcheckfile.dat is not provided, xdata.dat is
used instead.

• -o <order> : An integer as order of basis function (i.e. pi in Eq. (4.5)). In the current
implementation, we use the same order in all dimensions. The default order is 4.

• -i <maxiter> : An Integer for maximum iterations in ALS. The default value is 50.

• -s <strpar> : A string for type of polynomial chaos (for PC basis). The default used here is
Legendre basis for standard uniformmeasure.

• -v : Verbosity flag to control display on screen during run time. Do not use it if you want only
the bare minimum.

4.2.5. model_inf:

This utility perform Bayesian inference for several generic types of models. Consider a dataset
D = {(x(i), y(i))}Li=1 of pairs of x-y measured values from some unknown ‘truth’ function g(·), i.e.
y(i) = g(x(i))+meas.errors. For example, y(i) can be measurements at spatial locations x(i), or at time
instances x(i), or x(i) = i simply enumerating several observables. We call elements of x ∈ IRS design
or controllable parameters. For simplicity, assume y(i) is a scalar, but the code accepts multiple replica
data for each x(i). Assume, generally, that g is not deterministic, i.e. the vector of measurements y(i) at
each i containsR instances/replicas/measurements of the true output g(x). Furthermore, consider a
model of interest f(λ;x) as a function ofmodel parameters λ ∈ IRD producing a single output. We are
interested in calibrating the model f(λ;x)with respect to model parametersλ, seeking an approximate
match of the model to the truth:

f(λ;x) ≈ g(x). (4.19)

The full error budget takes the following form

y(i) = f(λ;x(i)) + δ(x(i)) + εi, (4.20)

where δ(x) is the model discrepancy term, and εi is the measurement error for the i-th data point. The
most common assumption for the latter is an i.i.d Gaussian assumption with vanishing mean

εi ∼ N(0, σ2), for all i = 1, . . . , L. (4.21)

Concerning model error δ(x), we envision three scenarios:

• when the model discrepancy term δ(x) is ignored, one arrives at the classical construction
y(i) − f(λ;x(i)) ∼ N(0, σ2) with likelihood described below in Eq. (4.29).

• when the model discrepancy δ(x) is modeled explicitly as a Gaussian process with a predefined,
typically squared-exponential covariance term with parameters either fixed apriori or inferred as
hyperparameters, together with λ. This approach has been established in [16], and is referred to
as “Kennedy-O’Hagan”, koh approach.

36

• embedded model error approach is a novel strategy when model error is embedded into the
model itself. For detailed discussion on the advantages and challenges of the approach, see [27].
This method leads to several likelihood options (keywords abc, abcm, gausmarg, mvn, full, marg),
many of which are topics of current research and are under development. In this approach, one
augments some of the parameters in λwith a probabilistic representation, such as multivariate
normal, and infers parameters of this representation instead. Without loss of generality, and for
the clarity of illustration, we assumed that the firstM components ofλ are augmented with a
random variable.

One embedding option is the first-order Gauss-Hermite PC expansion. In other words,λ is
augmented by a multivariate normal random variable as

λ→ Λ = λ+ A(α)~ξ, (4.22)

where

A(α) =



α11 0 0 . . . 0
α21 α22 0 . . . 0
α31 α32 α33 . . . 0
...

...
...

αM1 αM2 αM3 . . . αMM

0 0 0 . . . 0
...

...
...

0 0 0 . . . 0
0 0 0 . . . 0


D×M

, and ~ξ =


ξ1

ξ2
...
ξM

 (4.23)

Here ~ξ is a vector of independent identically distributed standard normal variables, and
α = (α11, . . . , αMM) is the vector of sizeM(M + 1)/2 of all non-zero entries in the matrixA.
The set of parameters describing the random vectorΛ is λ̂ = (λ,α) The full data model then is
written as

y(i) = f(λ+ A(α)~ξ;x(i)) + εi (4.24)
or

y(i) = fλ̂(x(i); ~ξ) + σ2ξM+i, (4.25)

where fλ̂(x; ~ξ) is a random process induced by this model error embedding. The mean and
variance of this process are defined as µλ̂(x) and σ2

λ̂
(x), respectively. To represent this random

process and allow easy access to its first two moments, we employ a non-intrusive spectral
projection (NISP) approach to propagate uncertainties in f via Gauss-Hermite PC expansion,

y(i) =
K−1∑
k=0

fik(λ,α)Ψk(~ξ) + σ2ξM+i, (4.26)

for a fixed order p expansion, leading toK = (p+M)!/(p!M !) terms.

The parameter estimation problem forλ is now reformulated as a parameter estimation for
λ̂ = (λ,α). This inverse problem is solved via Bayesian machinery. Bayes’ formula reads

p(λ̂|D)︸ ︷︷ ︸
posterior

∝ p(D|λ̂)︸ ︷︷ ︸
likelihood

p(λ̂)︸︷︷︸
prior

, (4.27)

37

where the key function is the likelihood function

LD(λ̂) = p(D|λ̂) (4.28)

that connects the prior distribution of the parameters of interest to the posterior one. The options for
the likelihood are given further in this section. For details on the likelihood construction, see [27]. To
alleviate the invariance with respect to sign-flips, we use a prior that enforces αMi > 0 for
i = 1, . . . ,M . Also, one can either fix σ2 or infer it together with λ̂.

Exact computation of the potentially high-dimensional posterior (4.27) is usually problematic, therefore
we employMarkov chainMonte Carlo (MCMC) algorithm for sampling from the posterior. Model f
and the exact form of the likelihood are determined using command line arguments. Below we detail
the currently implemented model types.

Model types: -f <modeltype>

• prop : for x ∈ IR1 andλ ∈ IR1, the function is defined as f(λ;x) = λx.

• prop_quad : for x ∈ IR1 andλ ∈ IR2, the function is defined as f(λ;x) = λ1x+ λ2x
2.

• exp : for x ∈ IR1 andλ ∈ IR2, the function is defined as f(λ;x) = eλ1+λ2x.

• exp_quad : for x ∈ IR1 andλ ∈ IR3, the function is defined as f(λ;x) = eλ1+λ2x+λ3x2 .

• const : for any x ∈ IRn andλ ∈ IR1, the function is defined as f(λ;x) = λ.

• linear : for x ∈ IR1 andλ ∈ IR2, the function is defined as f(λ;x) = λ1 + λ2x.

• bb : the model is a ‘black-box’ run via system-call of a script named bb.x that takes
files p.dat (matrixR×D forλ) and x.dat (matrix L× S for x) and returns output y.dat
(matrixR× L for f). This effectively simulates f(λ;x) at anyR values ofλ and L values of x.

• heat_transfer1 : a custommodel designed for a tutorial case of a heat conduction problem:
for x ∈ IR1 andλ ∈ IR1, the model is defined as f(λ;x) = xdw

Awλ
+ T0, where dw = 0.1,

Aw = 0.04 and T0 = 273.

• heat_transfer2 : a custommodel designed for a tutorial case of a heat conduction problem:
for x ∈ IR1 andλ ∈ IR2, the model is defined as f(λ;x) = xQ

Awλ1
+ λ2, whereAw = 0.04 and

Q = 20.0.

• frac_power : a custom function for testing. For x ∈ IR1 andλ ∈ IR4, the function is defined
as f(λ;x) = λ0 + λ1x+ λ2x

2 + λ3(x+ 1)3.5.

• exp_sketch : exponential function to enable the sketch illustrations of model error
embedding approach, for x ∈ IR1 andλ ∈ IR2, the model is defined as f(λ;x) = λ2e

λ1x − 2.

• inp : a function that produces the input components as output. That is f(λ;x(i)) = λi, for
x ∈ IR1 andλ ∈ IRd, assuming exactly d values for the design variables x (these are usually
simply indices xi = i for i = 1, . . . , d).

• pcl : the model is a Legendre PC expansion that is linear with respect to coefficientsλ, i.e.
f(λ;x) =

∑
α∈S λαΨα(x).

38

• pcx : the model is a Legendre PC expansion in both x andλ, i.e. z = (λ,x), and
f(λ;x) =

∑
α∈S cαΨα(z)

• pc : the model is a set of Legendre polynomial expansions for each value of x: i.e.
f(λ;x(i)) =

∑
α∈S cα,iΨα(λ).

• pcs : same as pc, only the multi-index set S can be different for each x(i), i.e.
f(λ;x(i)) =

∑
α∈Si cα,iΨα(λ).

Likelihood construction is the key step and the biggest challenge in model parameter inference.

Likelihood types: -l <liktype>

• classical :No α, orM = 0. This is a classical, least-squares likelihood

logLD(λ) = −
L∑
i=1

(y(i) − f(λ;x(i)))2

2σ2
− L

2
log (2πσ2), (4.29)

• koh :Kennedy-O’Hagan likelihood with explicit additive representation of model
discrepancy [16].

• full :This is the exact likelihood

LD(λ̂) = πhλ̂(y(1), . . . , y(L)), (4.30)

wherehλ̂ is the random vector with entries fλ̂(x(i); ~ξ) + σ2ξM+i. When there is no data noise,
i.e. σ = 0, this likelihood is degenerate [27]. Typically, computation of this likelihood requires a
KDE step for each λ̂ to evaluate a high-d PDF πhλ̂(·).

• marg :Marginal approximation of the exact likelihood

LD(λ̂) =
L∏
i=1

πhλ̂,i(y
(i)), (4.31)

wherehλ̂,i is the i-th component ofhλ̂. This requires one-dimensional KDE estimates
performed for allN dimensions.

• mvn :Multivariate normal approximation of the full likelihood

logLD(λ̂) = −1

2
(y − µλ̂)TΣ−1

λ̂
(y − µλ̂)− L

2
log (2π)− 1

2
log (det Σλ̂), (4.32)

where mean vectorµλ̂ and covariance matrix Σλ̂ are defined asµ
i
λ̂

= µλ̂(x(i)) and
Σλ̂

ij = E(hλ̂,i − µλ̂(x(i)))(hλ̂,j − µλ̂(x(j)))T , respectively.

• gausmarg :This likelihood further assumes independence in the gaussian approximation,
leading to

logLD(λ̂) = −
L∑
i=1

(y(i) − µλ̂(x(i)))2

2
(
σ2
λ̂
(x(i)) + σ2

) − 1

2

L∑
i=1

log 2π
(
σ2
λ̂
(x(i)) + σ2

)
. (4.33)

39

• abcm :This likelihood enforces the mean of fλ̂ to match the mean of data

logLD(λ̂) = −
L∑
i=1

(y(i) − µλ̂(x(i)))2

2ε2
− 1

2
log (2πε2), (4.34)

• abc :This likelihood enforces the mean of fλ̂ to match the mean of data and the
standard deviation to match the average spread of data around mean within some factor γ

logLD(λ̂) = −
L∑
i=1

(y(i) − µλ̂(x(i)))2 +
(
γ|y(i) − µλ̂(x(i))| −

√
σ2
λ̂
(x(i)) + σ2

)2

2ε2
−1

2
log (2πε2),

(4.35)

Input files:

For the complete list, type model_inf -h

• -x <xdatafile> : L× S matrix of x

• -y <ydatafile> : L× E matrix of y, usuallyE = 1, but one can provide more than one
data point per design parameter x

• -t <xpredfile> : L′ × S matrix of x values used for posterior prediction, L′ 6= L in
general. Defaults value (i.e. no flag given) is xpredfile=xdatafile. Most frequently, this is a
file with a dense grid in the x-space.

Output files:

• fmeans.dat : L′ × 2 mean predictions. The first column is the posterior mean, the second
column is the MAP.

• fvars.dat : L′ × 3 prediction variance components. The first column is the posterior
mean of the variance, the second column is the posterior variance of the mean, and the third
column is the MAP of the variance.

• pmeans.dat : d× 2 mean parameter values. The first column is the posterior mean, the
second column is the MAP.

• pvars.dat : d× 3 parameter variance components. The first column is the posterior mean
of the variance, the second column is the posterior variance of the mean, and the third column is
the MAP of the variance.

• datavars.dat : L× 2 data variance values. The first column is the posterior mean,
while the second column is MAP.

• chain.dat : The rawMCMC chain file of sizeNMCMC × (d′ + 3). The first
column is simply the MCMC step number, the last two are the Metropolis-Hastings’ ratio α and
the log-posterior value, while the rest of the columns are the chain parameters. Chain
dimensionality is d′.

40

• pchain.dat : P × d′ ‘thinned’ posterior samples, where P = int(NMCMC/ne),
and the thinning factor ne is given by the input -n <every>

• mapparam.dat : d′ × 1 vector of chain’s MAP values

• fmeans_sams.dat : L′ × P ‘thinned’ posterior samples of the mean predictions

• parampccfs.dat : K × P ‘thinned’ posterior samples of the input PC coefficients

4.2.6. pce_eval:

This utility evaluates PC-related functions given input file xdata.dat and return the evaluations in an
output file ydata.dat. It also provides gradient information in an output file gdata.dat for only LU
PC function type. The keyword options are:

Function types: -f <fcn_type>

• PC : Evaluates the function f(~ξ) =
∑K

k=0 ckΨk(~ξ) given a set of ~ξ, the PC type, dimensionality,
order and coefficients.

• PC_mi : Evaluates the function f(~ξ) =
∑K

k=0 ckΨk(~ξ) given a set of ~ξ, the PC type, multiindex
and coefficients.

• PCmap : Evaluates ‘map’ functions from a germ of one PC type to another. That is PC1 to PC2 is
a function ~η = f(~ξ) = C−1

2 C1(~ξ1), whereC1 andC2 are the cumulative distribution functions
(CDFs) associated with the PDFs of PC1 and PC2, respectively. For example, HG→LU is a map
from standard normal random variable to a uniform random variable in [−1, 1].

4.2.7. pce_quad:

This utility constructs a PC expansion from a given set of samples. Given a set ofN samples {x(i)}Ni=1

of a random d-variate vector ~X , the goal is to build a PC expansion

~X '
K∑
k=0

ckΨk(~ξ), (4.36)

where d is the stochastic dimensionality, i.e. ~ξ = (ξ1, . . . , ξd). We use orthogonal projection method,
i.e.

ck =
〈 ~XΨk(~ξ)〉
〈Ψ2

k(
~ξ)〉

=
〈~G(~ξ)Ψk(~ξ)〉
〈Ψ2

k(
~ξ)〉

. (4.37)

41

The denominator can be precomputed analytically or numerically with high precision. The key map
~G(~ξ) in the numerator is constructed as follows. We employ the Rosenblatt transformation,
constructed by shifted and scaled successive conditional cumulative distribution functions (CDFs),

η1 = 2F1(X1)− 1

η2 = 2F2|1(X2|X1)− 1

η3 = 2F3|2,1(X3|X2, X1)− 1 (4.38)
...

ηd = 2Fd|d−1,...,1(Xd|Xd−1, . . . , X1)− 1.

maps any joint random vector to a set of independent standard Uniform[-1,1] random variables.
Rosenblatt transformation is the multivariate generalization of the well-known CDF transformation,
stating that F (X) is uniformly distributed if F (·) is the CDF of random variableX . The shorthand
notation is ~η = ~R(~X). Now denote the shifted and scaled univariate CDF of the ‘germ’ ξi byH(·), so
that by the CDF transformation reads as ~H(~ξ) = ~η. For example, for Legendre-Uniform PC, the germ
itself is uniform andH(·) is identity, while for Gauss-Hermite PC the functionH(·) is shifted and
scaled version of the normal CDF. Now, we can write the connection between ~X and ~ξ by

~R(~X) = ~H(~ξ), or ~X = ~R−1 ◦ ~H︸ ︷︷ ︸
~G

(~ξ) (4.39)

While the computation of ~H is done analytically or numerically with high precision, the main challenge
is to estimate ~R−1. In practice the exact joint cumulative distribution F (x1, . . . ,xd) is generally not
available and is estimated using a standard Kernel Density Estimator (KDE) using the samples available.
GivenN samples {x(i)}Ni=1 , the KDE estimate of its joint probability density function is a sum ofN
multivariate gaussian functions centered at each data point x(i):

p ~X(x) =
1

Nσd(2π)d/2

N∑
i=1

exp

(
−(x− x(i))T (x− x(i))

2σ2

)
(4.40)

or

p ~X1,..., ~Xd
(x1, . . . ,xd) =

1

Nσd(2π)d/2

N∑
i=1

exp

(
−(x1 − x(i)

1)2 + · · ·+ (xd − x(i)
d)2

2σ2

)
, (4.41)

where the bandwidth σ should be chosen to balance smoothness and accuracy, see [29, 30] for
discussions of the choice of σ. Note that ideally σ should be chosen to be dimension-dependent,
however the current implementation uses the same bandwidth for all dimensions.

42

Now the conditional CDF is KDE-estimated by

Fk|k−1,...,1(xk|xk−1, . . . ,x1) =

∫ xk

−∞
pk|k−1,...,1(x

′

k|xk−1, . . . ,x1)dx
′

k

=

∫ xk

−∞

pk,...,1(x
′

k,xk−1, . . . ,x1)

pk−1,...,1(xk−1, . . . ,x1)
dx
′

k

≈ 1

σ
√

2π

∫ xk

−∞

N∑
i=1

exp

(
− (x1−x(i)

1)2+···+(x
′
k−x

(i)
k)2

2σ2

)
N∑
i=1

exp

(
− (x1−x(i)

1)2+···+(xk−1−x
(i)
k−1)2

2σ2

)dx′k

=

∫ xk

−∞

N∑
i=1

exp

(
− (x1−x(i)

1)2+···+(xk−1−x
(i)
k−1)2

2σ2

)
× 1

σ
√

2π
exp

(
− (x

′
k−x

(i)
k)2

2σ2

)
N∑
i=1

exp

(
− (x1−x(i)

1)2+···+(xk−1−x
(i)
k−1)2

2σ2

) dx
′

k

=

N∑
i=1

exp

(
− (x1−x(i)

1)2+···+(xk−1−x
(i)
k−1)2

2σ2

)
× Φ

(
xk−x

(i)
k

σ

)
N∑
i=1

exp

(
− (x1−x(i)

1)2+···+(xk−1−x
(i)
k−1)2

2σ2

) , (4.42)

where Φ(z) is the CDF of a standard normal random variable. Note that the numerator in (4.42) differs

from the denominator only by an extra factor Φ

(
xk−x

(i)
k

σ

)
in each summand, allowing an efficient

computation scheme.

The above Rosenblatt transformation maps the random vector x to a set of i.i.d. uniform random
variables ~η = (η1, . . . , ηd). However, the formula (4.39) requires the inverse of the Rosenblatt
transformation. Nevertheless, the approximate conditional distributions are monotonic, hence they are
guaranteed to have an inverse function, and it can be evaluated rapidly with a bisection method.

With the numerical estimation of the map (4.39) available, we can proceed to evaluation the numerator
of the orthogonal projection (4.37)

〈~G(~ξ)Ψk(~ξ)〉 =

∫
~ξ

~G(x)Ψk(x)π~ξ(
~ξ)d~ξ, (4.43)

where π~ξ(~ξ) is the PDF of ~ξ. The projection integral (4.43) is computed via quadrature integration∫
~ξ

~G(~ξ)Ψk(~ξ)π~ξ(
~ξ)d~ξ ≈

Q∑
q=1

~G(~ξq)Ψk(~ξq)wq =

Q∑
q=1

~R−1(~H(~ξq))Ψk(~ξq)wq, (4.44)

where (~ξq, wq) are Gaussian quadrature point-weight pairs for the weight function π~ξ(~ξ).

43

4.2.8. pce_resp:

This utility performs orthogonal projection given function evaluations at quadrature points, in order to
arrive at polynomial chaos coefficients for a Total-Order PC expansion

f(~ξ) ≈
∑
||α||1≤p

cαΨα(~ξ) ≡ g(~ξ). (4.45)

The orthogonal projection computed by this utility is

cα =
1

〈Ψ2
α〉

∫
~ξ

f(~ξ)Ψα(~ξ)π~ξ(
~ξ)d~ξ ≈ 1

〈Ψ2
α〉

Q∑
q=1

wqf(~ξ(q))Ψα(~ξ(q)). (4.46)

Given the function evaluations f(~ξ(q)) and precomputed quadrature (~ξ(q), wq), this utility outputs the
PC coefficients cα, PC evaluations at the quadrature points g(~ξ(q)) as well as, if requested by a
command line flag, a quadrature estimate of the relative L2 error

||f − g||2
||f ||2

≈

√√√√∑Q
q=1 wq(f(~ξ(q))− g(~ξ(q)))2∑Q

q=1wqf(~ξ(q))2
. (4.47)

Note that the selected quadrature may not compute the error accurately, since the integrated functions
are squared and can be higher than the quadrature is expected to integrate accurately. In such cases, one
can use the pce_eval app to evaluate the PC expansion separately and compare to the function
evaluations with an `2 norm instead.

4.2.9. pce_rv:

This utility generates PC-related random variables (RVs). The keyword options are:

RV types: -w <type>

• PC :Generates samples of univariate random variable
∑K

k=0 ckΨk(~ξ) given the PC type,
dimensionality, order and coefficients.

• PCmi :Generates samples of univariate random variable
∑K

k=0 ckΨk(~ξ) given the PC type,
multiindex and coefficients.

• PCvar :Generates samples ofmultivariate random variable ~ξ that is the germ of a given PC type
and dimensionality.

44

4.2.10. pce_sens:

This utility evaluates Sobol sensitivity indices of a PC expansion with a given multiindex and a
coefficient vector. It computes main, total and joint sensitivities, as well as variance fraction of each PC
term individually. Given a PC expansion

∑
I cαΨα(~ξ), the computed moments and sensitivity indices

are:

• mean:m = c~0

• total variance: V =
∑
α 6=~0 c

2
α〈Ψ2

α〉

• variance fraction for the basis termα: Vα = c2α〈Ψ2
α〉

V

• main Sobol sensitivity index for dimension i: Si = 1
V

∑
α∈ISi

c2
α〈Ψ2

α〉, where ISi is the set of
multiindices that include only dimension i.

• total Sobol sensitivity index for dimension i: STi = 1
V

∑
α∈ITi

c2
α〈Ψ2

α〉, where ITi is the set of
multiindices that include dimension i, among others.

• joint-total Sobol sensitivity index for dimension pair (i, j): STij = 1
V

∑
α∈ITij

c2
α〈Ψ2

α〉, where ITij
is the set of multiindices that include dimensions i and j, among others. Note that this is
somewhat different from the conventional definition of joint sensitivity indices, which presumes
terms that include only dimensions i and j.

4.2.11. pdf_cl:

Kernel density estimation (KDE) with Gaussian kernels given a set of samples to evaluate probability
distribution function (PDF). The procedure relies on approximate nearest neighbors algorithm with
fast improved Gaussian transform to accelerate KDE by only computing Gaussians of relevant
neighbors. Our tests have shown 10-20x speedup compared to Python’s default KDE package. Also, the
app allows clustering enhancement to the data set to enable cluster-specific bandwidth selection -
particularly useful for multimodal data. User provides the samples’ file, and either a) number of grid
points per dimension for density evaluation, or b) a file with target points where the density is
evaluated, or c) a file with a hypercube limits in which the density is evaluated.

4.2.12. regression:

This utility performs regression with respect to a linear parametric expansions such as PCs or RBFs.
Consider a dataset (x(i), y(i))Ni=1 that one tries to fit a basis expansion with:

y(i) ≈
K∑
k=1

ckPk(x
(i)), (4.48)

for a set of basis functions Pk(x). This is a linear regression problem, since the object of interest is the
vector of coefficients c = (c1, . . . , ck), and the summation above is linear in c. This app provides
various methods of obtaining the expansion coefficients, using different kinds of bases.

45

The key implemented command line options are

Basis types: -f <basistype>

• PC : Polynomial Chaos bases of total-order truncation

• PC_MI : Polynomial Chaos bases of custommultiindex truncation

• POL :Monomial bases of total-order truncation

• POL_MI :Monomial bases of custommultiindex truncation

• RBF :Radial Basis Functions, see e.g. [22]

Regression methods: -f <meth>

• lsq : Bayesian least-squares, see [26] and more details below.

• wbcs :Weighted Bayesian compressive sensing, see [28].

Although the standard least squares is commonly used and well-documented elsewhere, we detail here
the specific implementation in this app, including the Bayesian interpretation.

Define the data vector y = (y(1), . . . , y(N)), and themeasurement matrix P of sizeN ×K with
entriesPik = Pk(x

(i)). The regularized least-squares problem is formulated as

arg min
c
||y − Pc||2 + ||Λc||2︸ ︷︷ ︸

R(c)

(4.49)

with a closed form solution
ĉ = (P TP + Λ)−1︸ ︷︷ ︸

Σ

P Ty (4.50)

whereΛ = diag(
√
λ1, . . . ,

√
λK) is a diagonal matrix of non-negative regularization weights

λi ≥ 0.

The Bayesian analog of this, detailed in [26], infers coefficient vector c and data noise variance σ2, given
data y, employing Bayes’ formula

Posterior︷ ︸︸ ︷
p(c, σ2|y) ∝

Likelihood︷ ︸︸ ︷
p(y|c, σ2)

Prior︷ ︸︸ ︷
p(c, σ2) (4.51)

The likelihood function is associated with i.i.d. Gaussian noise model y − Pc ∼ N(0, σ2IN), and is
written as,

p(y|c, σ2) ≡ Lc,σ2(y) = (2πσ2)−
N
2 exp

(
− 1

2σ2
||y − Pc||2

)
(4.52)

Further, the prior p(c, σ2) is written as a product of a zero-mean Gaussian prior on c and an
inverse-gamma prior on σ2:

p(c, σ2) =

(
K∏
k=1

λk
2π

) 1
2

exp

(
−1

2
||Λc||2

)
︸ ︷︷ ︸

p(c)

(σ2)−α−1 exp

(
− β

σ2

)
︸ ︷︷ ︸

p(σ2)

(4.53)

46

The posterior distribution then takes a form of normal-scaled inverse gamma distribution which, after
some re-arranging, is best described as

p(c|σ2,y) ∼ MVN(ĉ, σ2Σ), (4.54)

p(σ2|y) ∼ IG

α +
N −K

2︸ ︷︷ ︸
α∗

, β +
R(ĉ)

2︸ ︷︷ ︸
β∗

 (4.55)

where ĉ andΣ, as well as the residualR(·) are defined via the classical least-squares problem (4.49) and

(4.50). Thus, the mean posterior value of data variance is σ̂2 =
β+

R(ĉ)
2

α+N−K
2
−1
. Also, note that the residual

can be written asR(ĉ) = yT
(
IN − P

(
P TP + Λ

)−1
P T
)
y. One can integrate out σ2 from (4.53)

to arrive at a multivariate t-distribution

p(c|y) ∼MV T

(
ĉ,
β∗

α∗
Σ, 2α∗

)
(4.56)

with a mean ĉ and covariance α∗

α∗−2
Σ.

Now, the pushed-forward process at new values xwould be, definingP (x) = (P1(x), . . . , Pk(x)), a
Student-t process with mean µ(x) = P (x)ĉ, scaleC(x, x′) = β∗

α∗
P (x)ΣP (x′) and

degrees-of-freedom 2α∗.

Note that, currently, Jeffrey’s prior for p(σ2) = 1/σ2 is implemented, which corresponds to the case of
α = β = 0. We are currently implementing more flexible user-defined input for α and β. In particular,
in the limit of β = σ2

0α→∞, one recovers the case with a fixed, predefined data noise variance σ2
0 .

4.2.13. sens:

This utility performs a series of tasks for for the computation of Sobol indices. Some theoretical
background on the statistical estimators employed here is given in Chapter 5.11. This utility can be used
in conjunction with utility trdSplswhich generates truncated normal or log-normal random samples.
It can also be used to generate uniform random samples by selecting a truncated normal distribution
and a suitably large standard deviation.

In addition to the -h flag, it has the following command line options:

• -a <action>: Action to be performed by this utility

– splFO: assemble samples for first order Sobol indices

– idxFO: compute first order Sobol indices

– splTO: assemble samples for total order Sobol indices

– idxTO: compute total order Sobol indices

– splJnt: assemble samples for joint Sobol indices

47

– idxJnt: compute joint Sobol indices

• -d <ndim>: Number of dimensions

• -n <ndim>: Number of dimensions

• -u <spl1>: name of file holding the first set of samples, nspl×ndim

• -v <spl2>: name of file holding the second set of samples, nspl×ndim

• -x <mev>: name of file holding model evaluations

• -p <pfile>: name of file possibly holding a custom list of parameters for Sobol indices

4.3. PYTHON MODULES

4.3.1. Bayesian Evidence Estimation

This capability is currently within the UQTk inference Python module, and the file is located at
PyUQTk/inference/evidence_solvers.py.

Let λ denote uncertain model parameters that we are interested in inferring, y the observation data, and
M the assumed model. Bayes’ Theorem for the parameter λ conditioned on using the modelM is

p(λ|y,M) =
p(y|λ,M)p(λ|M)

p(y|M)
, (4.57)

where, with some abuse of notation, p(·) denotes either probability density function (PDF) for a
continuous random variable or probability mass function (PMF) for a discrete random variable. Here,
p(λ|M) is known as the prior, p(y|λ,M) the likelihood, p(λ|y,M) the posterior, and p(y|M) the
evidence.

The evidence is very important for Bayesian model selection. Given a candidate modelMk, we can
write Bayes’ rule for themodel as

p(Mk|y) =
p(y|Mk)p(Mk)

p(y)
. (4.58)

The ratio of model posteriors between modelsM1 andM2 is then

p(M1|y)

p(M2|y)
=
p(y|M1)p(M1)

p(y|M2)p(M2)
. (4.59)

If further assuming uniform prior across the models (i.e., p(M1) = p(M2)), it reduces to

p(M1|y)

p(M2|y)
=
p(y|M1)

p(y|M2)
. (4.60)

48

The RHS of (4.60), being the ratio of model likelihoods (which is also the ratio of evidence terms as
defined in (4.57)) is called Bayes factor betweenM1 andM2.

Since it is often more numerically stable to work with log values of Bayes’ Theorem terms, this module
seeks to estimate the natural logarithm of the evidence, ln p(y|M), given a modelM. We describe the
available functions below.

4.3.1.1. LikelihoodMC_PriorSamples:

This function estimates the evidence via Monte Carlo marginalization of the likelihood using prior
sampling:

p(y|M) =

∫
λ

p(y|λ,M)p(λ|M) dλ ≈ 1

N

N∑
i=1

p
(
y|λ(i),M

)
. (4.61)

Here λ(i) ∼ p(λ|M) are samples drawn from the prior.

Notes: Requires likelihood values for prior samples. May be inefficient if posterior is very “small”
compared to prior, adaptive importance sampling recommended.

Inputs:

• ln_likelihood—vector ofN values of ln p(y|λ(i),M) corresponding to the prior samples
λ(i)

Outputs:

• ln p(y|M) estimate

4.3.1.2. ImportanceLikelihoodMC_PosteriorSamples:

This function estimates the evidence via Monte Carlo marginalization of the likelihood using
importance sampling:

p(y|M) =

∫
λ

p(y|λ,M)
p(λ|M)

pb(λ|M)
pb(λ|M) dλ ≈ 1

N

N∑
i=1

p
(
y|λ(i),M

) p (λ(i)|M
)

pb (λ(i)|M)
. (4.62)

Here pb(λ|M) is a biasing distribution. In this implementation, we choose it to be a Gaussian
approximation to the posterior constructed using posterior sample moments, i.e.,
pb(λ|M) = pG(λ|y,M) ∼ N (µ̃p, Σ̃p) where µ̃p and Σ̃p are sample mean and covariance computed
from posterior samples. λ(i) ∼ pb(λ|M) are samples drawn from this biasing distribution.

Notes: Requires posterior samples, and the ability to evaluate prior and likelihood PDFs at new
points.

The function works in two stages. The first stage involves constructing the biasing distribution and
generating samples from that distribution.

Stage 1 inputs:

49

• posterior_samples—array of posterior samples (each row is a sample)

• n_importance_samples—number samples requested from the biasing distribution

• stage— set to 1 for stage 1

Stage 1 outputs:

• importance_samples—array of samples from the biasing distribution (each row is a sample)

• importance_samples_ln_PDF—vector of ln pb(λ
(i)|M) values corresponding to these

samples

At this point, the user needs to externally compute and provide the ln-prior and ln-likelihood values for
these samples and pass them back into the function. The second stage can then estimate the
ln-evidence.

Stage 2 inputs:

• ln_prior—vector of ln p(λ(i)|M) values corresponding to the biasing samples generated in
stage 1

• ln_likelihood—vector of ln p(y|λ(i)|M) values corresponding to the biasing samples
generated in stage 1

• ln_importance_input—pass back in the output importance_samples_ln_PDF
generated from stage 1 without modifications

• stage— set to 2 for stage 2

Stage 2 outputs:

• ln p(y|M) estimate

4.3.1.3. PosteriorGaussian_PosteriorSamples:

This function estimates the evidence via Gaussian approximation using posterior sample moments:

p(y|M) =
p(y|λ,M)p(λ|M)

p(λ|y,M)
≈ p(y|λ,M)p(λ|M)

p̃(λ|y,M)
. (4.63)

Here, p̃(λ|y,M) is an estimate to the posterior constructed from a Gaussian approximation using
posterior sample moments, i.e., pb(λ|M) = pG(λ|y,M) ∼ N (µ̃p, Σ̃p) where µ̃p and Σ̃p are sample
mean and covariance computed from posterior samples. The above expression is valid for any λ, and we
can evaluate it for each posterior sample we already have; the function returns the mean value of 4.63
evaluated for all such samples.

Notes: Requires posterior samples, and the prior and likelihood PDF values for those samples.

Inputs:

• posterior_samples—array of posterior samples (each row is a sample)

50

• ln_prior—vector of ln p(λ(i)|M) values corresponding to the posterior samples

• ln_likelihood—vector of ln p(y|λ(i)|M) values corresponding to the posterior samples

Outputs:

• ln p(y|M) estimate

4.3.1.4. Harmonic_PosteriorSamples:

This function estimates the evidence via the Harmonic approximation formula:

p(y|M) ≈

{
1

N

N∑
i=1

1

p (y|λ(i),M)

}−1

. (4.64)

Here λ(i) ∼ p(λ|y,M) are samples from the posterior.

Notes: Requires likelihood values for posterior samples. Poor numerical stability observed, often yields
NaN.

Inputs:

• ln_likelihood—vector of ln p(y|λ(i)|M) values corresponding to the posterior samples

Outputs:

• ln p(y|M) estimate

51

5. EXAMPLES

The primary intended use for UQTk is as a library that provides UQ functionality to numerical
simulations. To aid the development of UQ-enabled simulation codes, some examples of programs that
perform common UQ operations with UQTk are provided with the distribution. These examples can
serve as a template to be modified for the user’s purposes. In some cases, e.g. in sampling-based
approaches where the simulation code is used as a black-box entity, the examples may provide enough
functionality to be used directly, with only minor adjustments. Below is a brief description of the main
examples that are currently in the UQTk distribution. For all of these, make sure the environment
variable UQTK_INS is set and points upper level directory of the UQTk install directory, e.g. the
keyword installdir described in the installation section. This path also needs to be added to
environment variable PYTHONPATH to access the Python scripts.

5.1. ELEMENTARY OPERATIONS

Overview

This set of examples is located under examples/ops. It illustrates the use of UQTk for elementary
operations on random variables that are represented with Polynomial Chaos (PC) expansions.

Description

This example can be run from the command-line:

./Ops.x

followed by

./plot_pdf.py samples.a.dat

./plot_pdf.py samples.loga.dat

to plot select probability distributions based on samples from Polynomial Chaos Expansions (PCE)
utilized in this example.

Another example compares the Taylor series to the integration approach for computing the natural
logarithm of a PCE:

52

./LogComp.x

followed by

./plot_logs.py

to plot the comparison in the pdf of the natural log of a.

The script test_all.sh runs through all of these commands.

Ops.x step-by-step

• Wherever relevant the PCSet class implements functions that take either “double *” arguments or
array container arguments. The array containers, named “Array1D”, “Array2D”, and“Array3D”,
respectively, are provided with the UQTk library to streamline the management of data
structures.

1. Instantiate a PCSet class for a 2nd order 1D PCE using Hermite-Gauss chaos.
int ord = 2;
int dim = 1;
PCSet myPCSet("ISP",ord,dim,"HG");

2. Initialize coefficients for HG PCE expansion â given its mean and standard deviation:
double ma = 2.0; // Mean
double sa = 0.1; // Std Dev
myPCSet.InitMeanStDv(ma,sa,a);

â =
P∑
k=0

akΨk(ξ), a0 = µ, a1 =
σ√
〈ψ2

1〉
, a2 = a3 = . . . = 0

3. Initialize b̂ = 2.0ψ0(ξ) + 0.2ψ1(ξ) + 0.01ψ2(ξ) and subtract b̂ from â:
b[0] = 2.0;
b[1] = 0.2;
b[2] = 0.01;
myPCSet.Subtract(a,b,c);

The subtraction is a term by term operation: ck = ak − bk

4. Product of PCE’s, ĉ = â · b̂:
myPCSet.Prod(a,b,c);

ĉ =
P∑
k=0

ckΨk(ξ) =

(
P∑
k=0

akΨk(ξ)

)(
P∑
k=0

bkΨk(ξ)

)

ck =
P∑
i=0

P∑
j=0

Cijkaibj, Cijk =
〈ψiψjψk〉
〈ψ2

k〉

The triple productCijk is computed and stored when the PCSet class is instantiated.

53

5. Exponential of a PCE, ĉ = exp(â) is computed using a Taylor series approach
myPCSet.Exp(a,c);

ĉ = exp(â) = exp(a0)

(
1 +

NT∑
n=0

d̂n

n!

)
(5.1)

where

d̂ = â− a0 =
P∑
k=1

ak (5.2)

The number of termsNT in the Taylor series expansion are incremented adaptively until an error
criterion is met (relative magnitude of coefficients compared to the mean) or the maximum
number of terms is reached. Currently, the default relative tolerance and maximum number of
Taylor terms are 10−6 and 500. This values can be changed by the user using public PCSet
methods SetTaylorTolerance and SetTaylorTermsMax, respectively.

6. Division, ĉ = â/b̂:
myPCSet.Div(a,b,c);

Internally the division operation is cast as a linear system, see item 4, â = b̂ · ĉ, with unknown
coefficients ck and known coefficients ak and bk. The linear system is sparse and it is solved with a
GMRES iterative solver provided by NETLIB

7. Natural logarithm, ĉ = log(â):
myPCSet.Log(a,c);

Currently, two methodologies are implemented to compute the logarithm of a PCE: Taylor series
expansion and an integration approach. For more details see Debusschere et. al. [4].

8. Draw samples from the random variable â represented as a PCE:
myPCSet.DrawSampleSet(aa,aa_samp);

Currently “Ops.x” draws sample from both â and log(â) and saves the results to files
“samples.a.dat” and “samples.loga.dat”, respectively.

9. The directory contains a python script that computes probability distributions from samples via
Kernel Density Estimate (KDE, also see Lecture #1) and generates two plots, “samples.a.dat.pdf”
and “samples.loga.dat.pdf”, also shown in Fig. 5-1.

54

1 2 3 4 5 6 7

â

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
D
F
(â

)

optimal
optimal/2
optimal*2

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

log(â)

0

1

2

3

4

5

6

7

8

9

P
D
F
(l
o
g(
â
))

optimal
optimal/2
optimal*2

Figure 5-1. Probability densities for â and log(â) computed via
KDE. Results generated using several KDE bandwidths. This
feature is available in the Python’s SciPy package starting with
version 0.11

5.2. POLYNOMIAL FITTING

Overview

This example is located in polynomial. It contains codes to generate a random polynomial data with
noise, fit a set of polynomial models to the data using Markov ChainMonte Carlo, comparing the
models to each other using model evidence, calculate the derivatives of the models with uncertainties,
and produce other plots about the model fits.

Implementation

This workflow has 3 main steps:

1. Getting the data from a random polynomial

• Ran in get_data.py

• Picks random coefficients for a third order polynomial, randomly picks 15 points, and adds
Gaussian noise.

• Relevant flags include:

– --ix <input.xml> the name of the input xml file. Default is <input.xml>

– -g flag to show a plot with the chosen polynomial and the data points

– -e flag to run with the same coefficients used in this example

2. Fitting the model to the data

• Ran in fit.py

• Uses Markov ChainMonte Carlo (MCMC) to fit the models to the data

55

• Relevant flags include:

– --ix <input.xml> the name of the input xml file. Default is input.xml

– -w <output_file> the name of the output file. Results will be printed to this file
along with the command line. Default is output.txt.

3. Postprocessing

• Ran in post.py

• Makes various types of plots and performs various calculations from theMCMC results.

• Relevant flags include:

– --ix <input.xml> the name of the input xml file. Default is <input.xml>

– -p flag to show the posterior plots

– -g flag to show the parameter graphs

– -d flag to calculate the derivatives and their uncertainties, and to make a plot.

– -v <verbosity> verbosity level. Default is 1

– --interactive flag to show plots interactively. Default is False

– --jpeg flag to save all plots as .jpg. Default is to save as .pdf

– --evidence flag to calculate the evidence values of each model and to make a plot of
all

• Plots to view:

– polynomial_all_fits.pdf shows the fits of all the models, along with the true
solution and the data used to fit the model.

– polynomial_all_fits_with_error.pdf shows the fits of all the models with
error bars visualizing standard deviation.

– polynomial_all_fits_with_error_shaded.pdf shows the fits of all the
models with shaded regions visualizing standard deviation, the true solution, and the
data used to fit the model.

– polynomial_derivatives.pdf shows the derivatives of all the models, with mean
and standard deviation.

– polynomial_importance_evidence.pdf shows the log evidence values of all the
models as calculated using Importance sampling.

– *_parameter_graphs.pdf shows the MCMC chains of all the parameters, after the
burnin and with the stride.

– *_model_data_agreement_xy_with_real.pdf shows the model with the MAP
parameters, the real polynomial, and the data points.

56

Figure 5-2. Example output of get_data.py -g -e

Other relevant files include:

• input.xml

– The input xml file where all relevant information for the fitting is stored.

• tools.py

– File where all tools for fitting are stored.

– Most notable is the class for the models.

• graph_tools.py

– File where all helper functions to plot different graphs are stored.

– These functions are general enough to be used for a variety of applications.

• full_run.sh

– Example of entire workflow run. Has all necessary flags to run the complete example

Example Outputs

This example run will do all components of full_run.sh step by step. You can run each part
individually or full_run.sh to perform all components at once.

Start in /run

57

Figure 5-3. Command line output of get_data.py

Figure 5-4. Command line output of fit.py

• ../scripts/get_data.py --ix input.xml -g -e For the example, the coefficients are
fixed to [0, 0.15,−0.65, 0.5], running without the -e flag will give 4 random integers in the
range [−10, 10] for the coefficients. It will then choose 15 random points from the range [0, 1]
and add Gaussian noise. Fig (5-2) shows the sample graph of the polynomial and chosen data
points. From the sample output shown in Fig (5-3). You can see the files that the outputs are
stored in and the real coefficients of the polynomial.

• ../scripts/fit.py --ix input.xml -w output.txt

This will use MCMC to fit all the models to the data. Fig (5-4) shows a sample output for one of
the models. A very similar output will also print out for all other tested models. This script will
also produce the files MCMC_samples_polynomial_mA.dat for all models. These files store the
MCMC sample that will be processed in the next stop.

• ../scripts/post.py -p -g --evidence -d

This will run the post processing with all of the common flag options. Many plots will be
produced including fitting graphs, derivatives graphs, and evidence value graphs. Figs (5-5) and
(5-6) show some examples. There are also many more types of graphs that are produced. See
"Plots to view" in the implementation section for a description of all plots produced.

Troubleshooting

• If get_data.py does not produce a good example polynomial:

58

m
od

el
_A

m
od

el
_B

m
od

el
_C

m
od

el
_D

m
od

el
_E

10

5

0

5

10

15

20

25

30

lo
g

ev
id

en
ce

Importance Evidence Values for polynomial

Figure 5-5. Importance Evidence Values for the Polynomial
Model. As you can see, model C has the highest evidence value,
implying the best fit. This is good because our true solution is
of order 3.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

y

Uncertainty of the fit
polynomial

True solution
model_A
model_B
model_C
model_D
model_E

Figure 5-6. Here is the fitted models with uncertainties for all
models. The shaded regions show 1 standard deviation. You
can also see the true solution and the data used.

59

– Try running get_data.py a few times

– Try changing error_level in the .xml file, probably to a lower value

– Try changing the size_range in the .xml file

• If the MCMC chain is not mixing well, accepting too many/few samples:

– This is a very common place that adjustments will need to be made. Because we are
considering random data that is different each time, there many be a considerable amount
of variability in the acceptance rates and mixing of the chains.

– Try changing the value of gamma, increasing gamma will typically decrease your acceptance
rate, and decreasing gamma will typically increase your acceptance rate.

– Try increasing the number of samples, and making a longer burn-in period.

– Try changing the initial stating point of the chain

Customizing the code to your model

To customize this workflow to your own model, you only need to change input.xml and
tools.py.

In input.xml, you need to enter all relevant information about the case and the model. Follow the
same format, and see comments in file for all necessary information.

In tools.py, you need to make a new class for your models. To make a model with the same format as
the example models, all you need to do is make a child class of model_letter, with your desired
prediction function. If desired, you can also add the compute_derivative function to calculate the
derivative of the model. This function can also be edited to calculate any other desired derived quantity.
You also need to edit the make_model_object function in order to make the appropriate type of
model object.

5.3. FORWARD PROPAGATION OF UNCERTAINTY

Overview

• Located in examples/surf_rxn

• Several examples of propagating uncertainty in input parameters through a model for surface
reactions, consisting of three Ordinary Differential Equations (ODEs). Two approaches are
illustrated:

– Direct linking to the C++ UQTk libraries from a C++ simulation code:

60

* Propagation of input uncertainties with Intrusive Spectral Projection (ISP), Non
Intrusive Spectral Projection (NISP) via quadrature , and NISP via Monte Carlo (MC)
sampling.

* For more documentation, see a detailed description below

* An example can be run with ./forUQ_sr.py

– Using simulation code as a black box forward model:

* Propagation of uncertainty in one input parameter with NISP quadrature approach.

* For more documentation, see a detailed description below

* An example can be run with ./forUQ_BB_sr.py

Simulation Code Linked to UQTk Libraties

The example script forUQ_sr.py, provided with this example can perform parametric uncertainty
propagation using three methods

• NISP: Non-intrusive spectral projection using quadrature integration

• ISP: Intrusive spectral projection

• NISP_MC: Non-intrusive spectral projection using Monte-Carlo integration

The command-line usage for this example is

./forUQ_sr.py <pctype> <pcord> <method1> [<method2>] [<method3>]

For example

./forUQ_sr.py HG 3 ISP NISP

The script requires the xml input template file forUQ_surf_rxn.in.xml.templ. In this template, the
default setting for param_b is uncertain normal random variable with a standard deviation set to 10%
of the mean.

The following parameters are defined at the beginning of the file:

• pctype: The type of PC, supports ’HG’, ’LU’, ’GLG’, ’JB’

• pcord: The order of output PC expansion

• methodX: NISP, ISP or NISP_MC (More than one can be specified)

• nsam: Number of samples requested for NISPMonte-Carlo (currently hardwired in the script)

61

Description of Non-Intrusive Spectral Projection utilities (SurfRxnNISP.cpp and SurfRxnNISP_MC.cpp)

f(~ξ) =
∑
k

ckΨk(~ξ) ck =
〈f(~ξ)Ψk(~ξ)〉
〈Ψ2

k(
~ξ)〉

〈f(~ξ)Ψk(~ξ)〉 =

∫
f(~ξ)Ψk(~ξ)π(~ξ)d~ξ ≈

[∑
q

f(~ξq)Ψk(~ξq)wq

]
︸ ︷︷ ︸

NISP

or

[
1

N

∑
s

f(~ξs)Ψk(~ξs)

]
︸ ︷︷ ︸

NISP_MC

These codes implement the following workflows

1. Read XML file

2. Create a PC object with or without quadrature

• NISP: PCSet myPCSet("NISP",order,dim,pcType,0.0,1.0)

• NISP_MC: PCSet myPCSet("NISPnoq",order,dim,pcType,0.0,1.0)

3. Get the quadrature points or generate Monte-Carlo samples

• NISP: myPCSet.GetQuadPoints(qdpts)

• NISP_MC: myPCSet.DrawSampleVar(samPts)

4. Create input PC objects and evaluate input parameters corresponding to quadrature points

5. Step forward in time

- Collect values for all input parameter samples

- Perform Galerkin projection or Monte-Carlo integration

- Write the PCmodes and derived first two moments to files

Description of Intrusive Spectral Projection utility (SurfRxnISP.cpp)

This code implement the following workflows

1. Read XML file

2. Create a PC object for intrusive propagation
PCSet myPCSet("ISP",order,dim,pcType,0.0,1.0)

3. Represent state variables and all parameters with their PC coefficients

• u→ {uk}, v → {vk},w → {wk}, z → {zk},

• a→ {ak}, b→ {bk}, c→ {ck}, d→ {dk}, e→ {ek}, f → {fk}.

62

4. Step forward in time according to PC arithmetics, e.g.
a · u→ {(a · u)k}with

a · u =

(∑
i

aiΨi(~ξ)

)(∑
j

ujΨj(~ξ)

)
=
∑
k

(∑
i,j

aiuj
〈ΨiΨjΨk〉
〈Ψ2

k〉

)
︸ ︷︷ ︸

(a·u)k

Ψk(~ξ)

Postprocessing Utilities - time series

./plSurfRxnMstd.py NISP

./plSurfRxnMstd.py ISP

./plSurfRxnMstd.py NISP_MC
These commands plot the time series of mean and standard deviations of all three species with all three
methods. Note, these scripts assume that the model has first been run with the methods requested so
that the corresponding data files are available. Sample results are shown in Fig. 5-7.

0 200 400 600 800 1000
Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
ci

e
s

M
a
ss

 F
ra

ct
io

n
s

[-
]

Method NISP

u v w

0 200 400 600 800 1000
Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
ci

e
s

M
a
ss

 F
ra

ct
io

n
s

[-
]

Method ISP

u v w

0 200 400 600 800 1000
Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
ci

e
s

M
a
ss

 F
ra

ct
io

n
s

[-
]

Method NISP_MC

u v w

Figure 5-7. Time series of mean and standard deviations for u,
v, and w with NISP, ISP, and NISP_MC, respectively.

Postprocessing Utilities - PDFs
./plPDF_method.py <species> <qoi> <pctype> <pcord> <method1> [<method2>] [<method3>]
e.g.

./plPDF_method.py u ave HG 3 NISP ISP

This script samples the PC representations, then computes the PDFs of time-average (ave) or the final
time value (tf) for all three species. Sample results are shown in Fig. 5-8.

Simulation Code Employed as a Black Box

The command-line usage for the script implementing this example is given as

./forUQ_BB_sr.py --nom nomvals -s stdfac -d dim -l lev -o ord -q sp --npdf npdf
--npces npces

Note that all arguments have a default value, to the script can be run without specifying any arguments.
If desired, the following parameters can be controlled by the user through the argument list.

63

0.0 0.1 0.2 0.3 0.4 0.5
QoI: average u

0

20

40

60

80

100

120

140

P
D

F(
u
)

NISP

ISP

NISP_MC

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
QoI: average v

0

100

200

300

400

500

600

P
D

F(
v
)

NISP

ISP

NISP_MC

0.4 0.5 0.6 0.7 0.8 0.9 1.0
QoI: average w

0

20

40

60

80

100

120

P
D

F(
w

)

NISP

ISP

NISP_MC

0.0 0.1 0.2 0.3 0.4 0.5
QoI: u @ final time

0

2

4

6

8

10

12

P
D

F(
u
)

NISP

ISP

NISP_MC

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
QoI: v @ final time

0

5

10

15

20

25

P
D

F(
v
)

NISP

ISP

NISP_MC

0.4 0.5 0.6 0.7 0.8 0.9 1.0
QoI: w @ final time

0

5

10

15

20

25

P
D

F(
w

)

NISP

ISP

NISP_MC

Figure 5-8. PDFs for u, v, and w; Top row shows results for
average u, v, and w; Bottom row shows results corresponding
to values at the last integration step (final time).

• nomvals: List of nominal parameter values, separated by comma if more than one value, and no
spaces. Default is one value, 20.75

• stdfac: Ratio of standard deviation/nominal parameter values. Default value: 0.1

• dim: number of uncertain input parameters. Currently this example can only handle dim = 1

• lev: No. of quadrature points per dimension (for full quadrature) or sparsity level (for sparse
quadrature). Default value: 21.

• ord: PCE order. Default value: 20

• sp: Quadrature type “full” or “sparse”. Default value: “full”

• npdf: No. of grid points for Kernel Density Estimate evaluations of output model PDF’s. Default
value 100

• npces: No. of PCE evaluations to estimate output density. Default value 105

Note: This example assumes Hermite-Gauss chaos for the model input parameters.

This script uses the following utilities, located in the bin directory under the UQTk installation path

• generate_quad: Generate quadrature points for full/sparse quadrature and several types of rules.

• pce_rv: Generate samples from a random variable defined by a Polynomial Chaos expansion
(PCE)

• pce_eval: Evaluates PCE for germ samples saved in input file “xdata.dat”.

64

• pce_resp: Constructs PCE by Galerkin projection

Sequence of computations:

1. forUQ_BB_sr.py
saves the input parameters’ nominal values and standard deviations in a diagonal matrix format in
file “pcfile”. First it saves the matrix of nominal values, then the matrix of standard deviations.
This information is sufficient to define a PCE for a normal random variable in terms of a standard
normal germ. For a one parameter problem, this file has two lines.

2. generate_quad:
Generate quadrature points for full/sparse quadrature and several types of rules. The usage with
default script arguments generate_quad -d1 -g’HG’ -xfull -p21 > logQuad.dat

This generates Hermite-Gauss quadrature points for a 21-point rule in one dimension.
Quadrature points locations are saved in “qdpts.dat” and weights in “wghts.dat” and indices of
points in the 1D space in “indices.dat”. At the end of “generate_quad” the run, file “qdpts.dat” is
copied over “xdata.dat”

3. pce_eval:
Evaluates PCE of input parameters at quadrature points, saved previously in “xdata.dat”. The
evaluation is dimension by dimension, and for each dimension the corresponding column from
“pcfile” is saved in “pccf.dat”. See command-line arguments below.
pce_eval -x’PC’ -p1 -q1 -f’pccf.dat’ -sHG >> logEvalInPC.dat

At the end of this computation, file “input.dat” contains a matrix of PCE evaluations. The
number of lines is equal to the number of quadrature points and the number of columns to the
dimensionality of input parameter space.

4. Model evaluations:
funcBB("input.dat","output.dat",xmltpl="surf_rxn.in.xml.tp3",

xmlin="surf_rxn.in.xml")
The Python function “funcBB” is defined in file “prob3_utils.py”. This evaluates the forward
model at sets of input parameters in file “input.dat” and saves the model output in “output.dat”.
For each model evaluation, specific parameters are inserted in the xml file “surf_rxn.in.xml”
which is a copy of the template in “surf_rxn.in.xml.tp3”. At the end “output.dat” is copied over
“ydata.dat”

5. pce_resp:
pce_resp -xHG -o20 -d1 -e > logPCEresp.dat

Computes a Hermite-Gauss PCE of the model output via Galerkin projection. The model
evaluations are taken from “ydata.dat”, and the quadrature point locations from “xdata.dat”.
PCE coefficients are saved in “PCcoeff_quad.dat”, the multi-index list in “mindex.dat” and these
files are pasted together in “mipc.dat”

65

0 5 10 15 20 25 30 35 40

b

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u
ss
(b

)

model
quadrature points

(average u as a function of parameter b values. Location of quadrature points is shown with
circles.)

6. pce_rv:
pce_rv -w’PCvar’ -xHG -d1 -n100 -p1 -q0 > logPCrv.dat

Draw a 100 samples from the germ of the HG PCE. Samples are saved in file “rvar.dat” and also
copied to file “xdata.dat”

7. pce_eval:
pce_eval -x’PC’ -p1 -q1 -f’pccf.dat’ -sHG >> logEvalInPCrnd.dat See item 3 for details.

Results are saved “input_val.dat”.

8. Evaluate both the forward model (through the black-box script “funcBB”, see item 4) and its PCE
surrogate (see item 3) and save results to files “output_val.dat” and “output_val_pc.dat”.
Compute L2 error between the two sets of values using function “compute_err” defined in
“utils.py”

9. Sample output PCE and plot the PDF of these samples computed using either a Kernel Density
Estimate approach with several kernel bandwidths or by binning:

0.0 0.1 0.2 0.3 0.4 0.5 0.6

PC surrogate
0

1

2

3

4

5

6

P
D

F

optimal
(1/2 * optimal)
(2 * optimal)
binning

66

5.4. NUMERICAL INTEGRATION

Overview

This example is located in examples/num_integ. It contains a collection of Python scripts that can be
used to perform numerical integration on six Genz functions: oscillatory, exponential, continuous,
Gaussian, corner-peak, and product-peak. Quadrature andMonte Carlo integration methods are both
employed in this example.

Theory

In uncertainty quantification, forward propagation of uncertain inputs often involves evaluating
integrals that cannot be computed analytically. Such integrals can be approximated numerically using
either a random or a deterministic sampling approach. Of the two integration methods implemented in
this example, quadrature methods are deterministic while Monte Carlo methods are random.

Quadrature Integration

The general quadrature rule for integrating a function u(ξ) is given by:

∫
u(ξ)dξ ≈

Nq∑
i=1

qiu(ξi) (5.3)

where theNq ξ
i are quadrature points with corresponding weights qi.

The accuracy of quadrature integration relies heavily on the choice of the quadrature points. There are
countless quadrature rules that can be used to generate quadrature points, such as Gauss-Hermite,
Gauss-Legendre, and Clenshaw-Curtis.

When performing quadrature integration, one can use either full tensor product or sparse quadrature
methods. While full tensor product quadrature methods are effective for functions of low dimension,
they suffer from the curse of dimensionality. Full tensor product quadrature integration methods
requireNd quadrature points to integrate a function of dimension dwithN quadrature points per
dimension. Thus, for functions of high dimension the number of quadrature points required quickly
becomes too large for these methods to be practical. Therefore, in higher dimensions sparse quadrature
approaches, which require far fewer points, are utilized. When performing sparse quadrature
integration, rather than determining the number of quadrature points per dimension, a level is selected.
Once a level is selected, the total number of quadrature points can be determined from the dimension
of the function. For more information on quadrature integration see reference here.

67

Monte Carlo Integration

One random sampling approach that can be used to evaluate integrals numerically is Monte Carlo
integration. To use Monte Carlo integration methods to evaluate the integral of a general function u(ξ)
on the d-dimensional [0, 1]d the following equation can be used:∫

u(ξ)dξ ≈ 1

Ns

Ns∑
i=1

u(ξi) (5.4)

TheNs ξ
i are random sampling points chosen from the region of integration according to the

distribution of the inputs. In this example, we are assuming the inputs have uniform distribution. One
advantage of using Monte Carlo integration is that any number of sampling points can be used, while
quadrature integration methods require a certain number of sampling points. One disadvantage of
using Monte Carlo integration methods is that there is slow convergence. However, thisO(1√

Ns
)

convergence rate is independent of the dimension of the integral.

Genz Functions

The functions being integrated in this example are six Genz functions, and they are integrated over the
d-dimensional [0, 1]d . These functions, along with their exact integrals, are defined as follows. The
Genz parameterswi represent weight parameters and ui represent shift parameters. In the current
example, the parameterswi and ui are set to 1, with one exception. The parameterswi and ui are instead
set to 0.1 for the Corner-peak function in the sparse_quad.py file.

Model Formula: f(λ) Exact Integral:
∫

[0,1]d
f(λ)dλ

Oscillatory cos(2πu1 +
d∑
i=1

wiλi) cos (2πu1 + 1
2

d∑
i=1

wi)
d∏
i=1

2 sin(
wi
2

)

wi

Exponential exp(
d∑
i=1

wi(λi − ui))
d∏
i=1

1
wi

(exp(wi(1− ui))− exp(−wiui))

Continuous exp(−
d∑
i=1

wi|λi − ui|)
d∏
i=1

1
wi

(2− exp(−wiui)− exp(wi(ui − 1)))

Gaussian exp(−
d∑
i=1

w2
i (λi − ui)2)

d∏
i=1

√
π

2wi
(erf(wi(1− ui)) + erf(wiui))

Corner-peak (1 +
d∑
i=1

wiλi)
−(d+1) 1

d!
d∏
i=1

wi

∑
rε{0,1}d

(−1)||r||1

1+
d∑
i=1

wiri

Product-peak
d∏
i=1

w2
i

1+w2
i (λi−ui)2

d∏
i=1

wi(arctan(wi(1− ui)) + arctan(wiui))

Implementation

The script set consists of three files:

• full_quad.py: a script to compare full quadrature andMonte Carlo integration methods.

68

• sparse_quad.py: a script to compare sparse quadrature andMonte Carlo integration methods.

• quad_tools.py: a script containing functions called by full_quad.py and
sparse_quad.py.

full_quad.py

This script will produce a graph comparing full quadrature andMonte Carlo integration methods. Use
the command ./full_quad.py to run this file. Upon running the file, the user will be prompted to
select a model from the Genz functions listed.

Please enter desired model from choices:
genz_osc
genz_exp
genz_cont
genz_gaus
genz_cpeak
genz_ppeak

The six functions listed correspond to the Genz functions defined above. After the user selects the
desired model, he/she will be prompted to enter the desired dimension.

Please enter desired dimension:

The dimension should be entered as an integer without any decimal points. As full quadrature
integration is being implemented, this script should not be used for functions of high dimension. If you
wish to integrate a function of high dimension, instead use sparse_quad.py.

After the user enters the desired dimension, she/he will be prompted to enter the desired maximum
number of quadrature points per dimension.

Enter the desired maximum number of quadrature points per dimension:

Again, this number should be entered as an integer without any decimal points. Several quadrature
integrations will be performed, with the first beginning with 1 quadrature point per dimension. For
subsequent quadrature integrations, the number of quadrature points will be incremented by one until
the maximum number of quadrature points per dimension, as specified by the user, is reached. For
example, if the user has requested a maximum of 4 quadrature points per dimension, 4 quadrature
integrations will be performed: one with 1 quadrature point per dimension, another with 2 quadrature
points per dimension, a third with 3 quadrature points per dimension, and a fourth with 4 quadrature
points per dimension.

Next, the script will call the function generate_qw from the quad_tools.py script to generate
quadrature points as well as the corresponding weights.

69

Then, the exact integral for the chosen function is computed by calling the integ_exact function in
quad_tools.py. This function calculates the exact integral according to the formulas found in the
above Theory section. The error between the exact integral and the quadrature approximation is then
calculated and stored in a list of errors.

Now, for each quadrature integration performed, a Monte Carlo integration is also performed with the
same number of sampling points as the total number of quadrature points. To account for the random
nature of the Monte Carlo sampling approach, tenMonte Carlo integrations are performed and their
errors from the exact integral are averaged. To perform these Monte Carlo integrations and calculate the
error in these approximations, the function find_error found in quad_tools.py is called.
Although we are integrating over [0, 1]d, the sampling points will be uniformly random points in
[−1, 1]d. We do this so the same function func can be used to evaluate the model at these points and
the quadrature points, which are generated in [−1, 1]d. The function func takes points in [−1, 1]d as
input and maps these points to points in [0, 1]d before the function is evaluated at these new points

Finally, the data from both the quadrature andMonte Carlo integrations are plotted. A log-log graph is
created that displays the total number of sampling points versus the absolute error in the integral
approximation. The graph will be displayed and will be saved as quad_vs_mc.pdf as well.

sparse_quad.py

This script is similar to the full_quad.py file and will produce a graph comparing sparse quadrature
andMonte Carlo integration methods. Sparse quadrature integration rules should be utilized for
functions of high dimension, as they do not obey full tensor product rules. Use the command
./sparse_quad.py to run this script. Upon running the file, the user will be prompted to select a
model from the Genz functions listed.

Please enter desired model from choices:
genz_osc
genz_exp
genz_cont
genz_gaus
genz_cpeak
genz_ppeak

After the user selects the desired model, he/she will be prompted to enter the desired dimension.

Please enter desired dimension:

The dimension should be entered as an integer without any decimal points. After the user enters the
desired dimension, she/he will be prompted to enter the maximum desired level.

Enter the maximum desired level:

70

Again, this number should be entered as an integer without any decimal points. Multiple quadrature
integrations will be performed, with the first beginning at level 1. For subsequent quadrature
integrations, the level will increase by one until the maximum desired level, as specified by the user, is
reached.

Next, the script will call the function generate_qw from the quad_tools.py script to generate
quadrature points as well as the corresponding weights.

Then, the exact integral for the chosen function is computed by calling the integ_exact function in
quad_tools.py. The error between the exact integral and the quadrature approximation is then
calculated and stored in a list of errors.

Now, for each quadrature integration performed, a Monte Carlo integration is also performed with the
same number of sampling points as the total number of quadrature points. This is done in the same
manner as in the full_quad.py script.

Lastly, the data from both the sparse quadrature andMonte Carlo integration are plotted. A log-log
graph is created that displays the total number of sampling points versus the absolute error in the
integral approximation. The graph will be displayed and will be saved as sparse_quad.pdf.

quad_tools.py

This script contains four functions called by the full_quad.py and sparse_quad.py files.

• generate_qw(ndim,param,sp=’full’,type=’LU’): This function generates quadrature
points and corresponding weights. The quadrature points will be generated in the d-dimensional
[−1, 1]d.

– ndim: The number of dimensions as specified by the user.

– param: Equal to the number of quadrature points per dimension when full quadrature
integration is being performed. When sparse quadrature integration is being performed,
param represents the level.

– sp: The sparsity, which can be set to either full or sparse. The default is set as sp=’full’,
and to change to sparse quadrature one can pass sp=’sparse’ as a parameter to the
function.

– type: The quadrature type. The default rule is Legendre-Uniform (’LU’). To change the
quadrature type, one can pass a different type to the function. For example, to change to a
Gauss-Hermite quadrature rule, pass type=’HG’ to the function. For a complete list of the
available quadrature types see the generate_quad subsection in the Applications
section of Chapter 3 of the manual.

• func(xdata,model,func_params): This function evaluates the Genz functions at the
selected sampling points.

71

– xdata: These will either be the quadrature points generated by generate_qw or the
uniform random points generated in the find_error function. The points specified as
xdata into this function will be in [−1, 1]d and thus will first be mapped to points in [0, 1]d

before the function can be evaluated at these new points.

– model: The Genz function specified by the user.

– func_params: The parameters,wi and ui, of the Genz function selected. In the
full_quad.py file, all Genz parameters are set to 1. In the sparse_quad.py file, all Genz
parameters are set to 1 for all models except genz_cpeak. For the genz_cpeakmodel, the
Genz parameters are set to 0.1.

• integ_exact(model,func_params): This function computes the exact integral
∫

[0,1]d
f(λ)dλ

of the selected Genz function, f(λ).

– model: The Genz function selected by the user.

– func_params: The parameters,wi and ui, of the Genz function selected. In the
full_quad.py file, all Genz parameters are set to 1. In the sparse_quad.py file, all Genz
parameters are set to 1 for all models except genz_cpeak. For the genz_cpeakmodel, the
Genz parameters are set to 0.1.

• find_error: This function performs 10Monte Carlo integrations, and returns their average
error from the exact integral. The function takes inputs: pts, ndim, model, integ_ex, and
func_params.

– pts: The number of uniform random points that will be generated. Equal to the total
number of quadrature points used.

– ndim: The number of dimensions as specified by the user.

– model: The Genz function selected by the user.

– integ_ex: The exact integral
∫

[0,1]d
f(λ)dλ of the selected Genz function returned by the

integ_exact function.

– func_params: The parameters,wi and ui, of the Genz function selected. In the
full_quad.py file, all Genz parameters are set to 1. In the sparse_quad.py file, all Genz
parameters are set to 1 for all models except genz_cpeak. For the genz_cpeakmodel, the
Genz parameters are set to 0.1.

72

Sample Results

Try running the full_quad.py file with the following input:

Please enter desired model from choices:
genz_osc
genz_exp
genz_cont
genz_gaus
genz_cpeak
genz_ppeak

genz_exp
Please enter desired dimension: 5
Enter the desired maximum number of quadrature points per dimension: 10

Your graph should look similar to the one in the figure below. Although the Monte Carlo integration
curve may vary due to the random nature of the sampling, your quadrature curve should be identical to
the one pictured.

100 101 102 103 104 105

Total number of Sampling Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

A
b
so

lu
te

 E
rr

o
r

in
 I
n
te

g
ra

l
A

p
p
ro

x
im

a
ti

o
n

Full Quadrature

Monte Carlo

Comparison of Full Quadrature and Monte Carlo Integration
for Genz Exponential Model with Dimension 5

Figure 5-9. Sample results of full_quad.py

73

Now try running the sparse_quad.py file with the following input:

Please enter desired model from choices:
genz_osc
genz_exp
genz_cont
genz_gaus
genz_cpeak
genz_ppeak

genz_cont
Please enter desired dimension: 14
Enter the maximum desired level: 4

While the quadrature integrations are being performed, the current level will be printed to your screen.
Your graph should look similar to the figure below. Again, the Monte Carlo curve may differ but the
quadrature curve should be the same as the one pictured.

101 102 103 104 105

Total Number of Sampling points

10-7

10-6

10-5

10-4

10-3

A
b
so

lu
te

 E
rr

o
r

in
 I
n
te

g
ra

l
A

p
p
ro

x
im

a
ti

o
n

Sparse Quadrature

Monte Carlo

Comparison of Sparse Quadrature and Monte Carlo Integration
for Genz Continuous Model with Dimension 14

Figure 5-10. Samples results of sparse_quad.py

Next, try running full_quad.pywith a quadrature rule other than the default Legendre-Uniform.

74

Locate the line in full_quad.py that calls the function generate_quad. It should read:

xpts,wghts=generate_qw(ndim,quad_param)

Now, change this line to read:

xpts,wghts=generate_qw(ndim,quad_param, type= ’CC’)

This will change the quadrature rule to Clenshaw-Curtis. Then run the file with input:
genz_gaus, 5, 10. Sample results can be found in the figure below.

100 101 102 103 104 105

Total number of Sampling Points

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

A
b
so

lu
te

 E
rr

o
r

in
 I
n
te

g
ra

l
A

p
p
ro

x
im

a
ti

o
n

Full Quadrature

Monte Carlo

Comparison of Full Quadrature and Monte Carlo Integration
for Genz Gaussian Model with Dimension 5

Figure 5-11. Sample results of full_quad.py with Clenshaw-
Curtis quadrature rule.

75

5.5. FORWARD PROPAGATION OF UNCERTAINTY
WITH PYUQTK

Overview

This example is located in examples/fwd_prop. It contains a pair of Python scripts that propagate
uncertainty in input parameters through a heat transfer model using both a Monte Carlo sampling
approach and a non-intrusive spectral projection (NISP) via quadrature methods.

Theory

Heat Transfer

Glass	

T2	

T1	

Q	

Wall	

Ti	

To	

TA	

In this example, the heat transfer through a window is calculated using samples of seven uncertain
Gaussian parameters. These parameters, along with their means and standard deviations are defined
below.

Parameter Mean Standard deviation (%)
Ti: Room temperature 293 K 0.5
To: Outside temperature 273 K 0.5
dw: Window thickness 0.01 m 1
kw: Window conductivity 1 W/mK 5
hi: Inner convective heat transfer coefficient 2 W/m2K 15
ho: Outer convective heat transfer coefficient 6 W/m2K 15
TA: Atmospheric temperature 150 K 10

76

Once we have samples of the 7 parameters, the following forward model is used to calculate heat flux
Q:

Q = hi(Ti − T1) = kw
T1 − T2

dw
= ho(T2 − To) + εσ(T 4

2 − T 4
A)

T1 represents the inner window temperature and T2 represents the outer window temperature. ε is the
emissivity of uncoated glass, which we take to be 0.95, and σ is the Stefan-Boltzmann constant.

Polynomial Chaos Expansion

In this example, the forward propagation requires the representation of heat flux Q with a
multidimensional Polynomial Chaos Expansion (PCE). This representation can be defined as follows:

Q =
P∑
k=0

QkΨk(ξ1, ..., ξn)

• Q: Random variable represented with multi-D PCE

• Qk: PC coefficients

• Ψk: Multi-D orthogonal polynomials up to order p

• ξi: Gaussian random variable known as the germ

• n: Dimensionality = number of uncertain model parameters

• P + 1: Number of PC terms = (n+p)!
n!p!

Non-Intrusive Spectral Projection (NISP)

Having specified a PCE form for our heat flux Q, we must determine the PC coefficients. We do so
through a non-intrusive Galerkin Projection. The coefficients are determined using the following
formula:

Qk =
〈QΨk〉
〈Ψ2

k〉
=

1

〈Ψ2
k〉

∫
QΨk(ξ)w(ξ)dξ

In this example we use quadrature methods to evaluate this projection integral to determine the PC
coefficients.

Kernel Density Estimation

Once we have a large number of heat flux samples, to obtain a probability density function (PDF)
curve, a kernel density estimation (KDE) is performed. When performing KDE, the following formula
is used to evaluate the PDF at point Q:

PDF (Q) =
1

Nsh

Ns∑
i=1

K

(
Q−Qi

h

)

77

Qi are samples of the heat flux,Ns is the number of sample points, K represents the kernel, a
non-negative function, and h > 0 is the bandwidth. In this example we use the Gaussian kernel,
K(x) = 1√

2π
e
−x2
2 . The results rely heavily on the choice of bandwidth, and there are many rules that

can be used to calculate the bandwidth. In our example, the built-in SciPy function employed
automatically determines the bandwidth using Scott’s rule of thumb.

Implementation

The script set consists of two files:

• rad_heat_transfer_atm_pce.py: the main script

• heat_transfer_pce_tools.py: functions called by rad_heat_transfer_atm_pce.py,
mainly contains problem specific functions

• pce_tools.py: functions called by rad_heat_transfer_atm_pce.py, contains more
general functions for PCEs.

rad_heat_transfer_atm_pce.py

This script will produce a graph comparing PDFs of heat flux generated using NISP full and sparse
quadrature methods and aMonte Carlo sampling method. Use the command
./rad_heat_transfer_atm_pce.py to run this file.

This file can take a number of flags that are useful to consider. Please use -h for more details.

• --no_verbose, Flag to turn off intermediate print statements

• -r, --no_compute_rad: Flag set not include radiation; Default to include. Note, radiation is
used, the nonlinear solver in Python sometimes has a hard time converging, in which case you
will see a warning message pop up.

• --nord: the order of the PCE, default is 3

• --ndim: the number of dimensions of the PCE, Default at 7 when radiation is computed and 6
when radiation is not computed.

• --pc_type: indicates the polynomial type and weighting function. The default is set to "HG",
Hermite-Gauss. (And this is currently the only option for which the code will produce the
correct results.)

• -a, pc_alpha and -b, pc_beta: Free parameters greater than -1. Used with Gamma-Laguerre and
Beta-Jacobi PC types. Defaults are alpha = 0.0 and beta = 1.0

• --param: The parameter used for quadrature point generation. Equal to the number of
quadrature points per dimension for full quadrature or the level for sparse quadrature methods.
This parameter is generally set to nord + 1 in order to have the right polynomial exactness.
Default is nord + 1.

78

• --n_MC: Number of random samples to use in MC sampling (of the full problem or of the PCE
of the solution) Default is 100000.

Monte Carlo Sampling Methods
The script begins by assigning the input parameters and their means and standard deviations. Using this
information, a large number of random parameter samples (default is 100,000) is generated. With these
samples and our forward model, the function compute_heat_flux then calculates the heat flux
assuming that no radiative heat transfer occurs. This simply requires solving a system of three linear
equations. Then, using the values ofQ, T1, and T2 obtained from compute_heat_flux as initial
guesses, the function r_heat_flux calculates the total heat flux (including radiative heat transfer)
using the SciPy nonlinear solver optimize.fsolve. Using the heat flux samples, a kernel density
estimation is then performed using function KDE.

NISP Quadrature Methods
After the Monte Carlo sampling process is complete, forward propagation using projection methods
will take place. At the beginning of this section of the script, the following variables are defined:

While running the file, a statement similar to the following will print indicating that PC objects are
being instantiated.

Instantiating PC Objects

Generating 4^7 = 16384 quadrature points.
Used 4 quadrature points per dimension for initialization.
Level 0 / 4
Level 1 / 4
Level 2 / 4
Level 3 / 4
Level 4 / 4

Instantiation complete

These PC objects contain all of the information needed about the polynomial chaos expansion, such as
the number of dimensions, the order of the expansion, and the sparsity (full or sparse) of the
quadrature methods to be implemented.

Next, a NumPy array of quadrature points is generated, using the function UQTkGetQuadPoints.
Then, the quadrature points in ξ are converted to equivalent samples of the input parameters, taking
advantage of the fact that the inputs are assumed to be Gaussian. If we let µ represent the mean of an
input parameter, σ represent its standard deviation, and qdpts be a vector of quadrature points, the
following equation is used to convert these samples in ξ to equivalent samples of the input parameter:

parameter_samples = µ+ σ(qdpts)

79

Now that we have samples of all the input parameters, these samples are run through the forward model
to obtain values of Q using the function fwd_model. Then the actual Galerkin projection is performed
on these function evaluations to obtain the PC coefficients, using the function
UQTkGalerkinProjection.

Next, to create a PDF of the output Q from its PCE, germ samples are generated and the PCE is
evaluated at these sample points using the function UQTkDrawSamplesPCE. Lastly, using our PCE
evaluations, a kernel density estimation is performed using function KDE

This entire process is done twice, once with full tensor product quadrature points and again with sparse
quadrature points.

Printing and Graphing
Next, statements indicating the total number of sampling points used for each forward propagation
method will be printed.

Monte Carlo sampling used 100000 points
Full quadrature method used 16384 points
Sparse quadrature method used 6245 points

Finally, a graph is created which displays the three different heat flux PDFs on the same figure. It will be
saved under the file name heat_flux_pce.pdf.

heat_transfer_pce_tools.py

This script contains several functions called by the rad_heat_transfer_atm_pce.py file.

• compute_heat_flux(Ti, To, dw, kw, hi, ho): This function calculates heat flux Q,
assuming no radiative heat transfer occurs.

– Ti, To, dw, kw, hi, ho: Sample values (scalars) of the input parameters

• r_heat_flux(Ti,To,dw,kw,hi,ho,TA,estimates): This function calculates heat flux Q,
assuming radiative heat transfer occurs. The SciPy non-linear solver optimize.fsolve is
employed.

– Ti, To, dw, kw, hi, ho, TA: Sample values (scalars) of the input parameters

– estimates: Estimates ofQ, T1, and T2 required to solve the nonlinear system. For these
estimates, we use the output of the function compute_heat_flux, which solves the
system assuming no radiative heat transfer occurs.

• fwd_model(Ti_samples,To_samples,dw_samples,kw_samples,hi_samples,
ho_samples,verbose):

This function returns a NumPy array of evaluations of the forward model. This function calls
the functions compute_heat_flux and r_heat_flux.

80

– Ti_samples, To_samples, dw_samples, kw_samples, hi_samples, ho_samples: 1D NumPy
arrays (vectors) of parameter sample values.

• fwd_model_rad(Ti_samples,To_samples,dw_samples,kw_samples,hi_samples,
ho_samples,TA_samples,verbose):

Same as fwd_model but with radiation enabled, and an extra argument for the samples of TA.

• KDE(fcn_evals): This function performs a kernel density estimation. It returns a NumPy
array of points at which the PDF was estimated, as well as a NumPy array of the corresponding
estimated PDF values.

– fcn_evals: A NumPy array of evaluations of the forward model (values of heat flux Q).

pce_tools.py

This script is stored in PyUQTk/PyPCE. This script contains several, not problem specific, functions
called by the rad_heat_transfer_atm_pce.py file.

• UQTkGetQuadPoints(pc_model): This function generates a NumPy array of either full tensor
product or sparse quadrature points. Returns number of quadrature points, totquat, as well.

– pc_model: PC object with information about the PCE, including the desired sparsity for
quadrature point generation.

• UQTkGalerkinProjection(pc_model,f_evaluations): This function returns a 1D
NumPy array with the PC coefficients.

– pc_model: PC object with information about the PCE.

– f_evaluations: 1D NumPy array (vector) with function to be projected, evaluated at the
quadrature points.

• UQTkDrawSamplesPCE(pc_model,pc_coeffs,n_samples): This function draws a given
number of samples from the germ and evaluates the samples at the PCE. This function returns a
1D NumPy array with PCE evaluations.

– pc_model: PC object with information about the PCE.

– pc_coe�s: 1D NumPy array with PC coefficients. This array is the output of the function
UQTkGalerkinProjection

– n_samples: number of samples to evaluate

81

Sample Results

Run the file rad_heat_transfer_atm_pce.pywith the default settings. You should expect to see
the following print statement, and your graph should look similar to the one found in the figure
below.

Monte Carlo sampling used 100000 points
Full quadrature method used 16384 points
Sparse quadrature method used 6245 points

20 40 60 80 100 120 140

Total Heat Flux (W/m2)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
D

F

NISP full quadrature method

Monte Carlo Sampling

NISP sparse quadrature method

Heat Transfer Through a Window

Figure 5-12. Sample results of rad_heat_transfer_atm_pce.py

Now trying changing one of the default settings. Try adding the flag --nord 2. This will change the
order of the PCE to 2, rather than 3. You should expect to see the following print statement, and a
sample graph is found in the figure below.

Monte Carlo sampling used 100000 points
Full quadrature method used 2187 points
Sparse quadrature method used 1023 points

82

20 40 60 80 100 120 140

Total Heat Flux (W/m2)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
D

F

NISP full quadrature method

Monte Carlo Sampling

NISP sparse quadrature method

Heat Transfer Through a Window

Figure 5-13. Sample results of rad_heat_transfer_atm_pce.py
with nord = 2

5.6. EXPANDED FORWARD PROPAGATION OF
UNCERTAINTY - PYUQTK

Overview

This example is contains two pairs of python files, each pair consists of a main script and a tools file that
holds functions to be called from the main script. They are located in UQTk/examples/window. This
example is an expanded version of the previous forward propagation problem, it utilizes a more
complex model that provides additional parameters. One pair of scripts produces a probability density
function of the heat flux for a twelve dimension model, using fourth order PCE’s and sparse quadrature.
The other pair produces a probability density function of the heat flux for a fifth dimension model,
using fourth order PCE’s. This script compares the results of using sparse and full quadrature, as well as
Monte Carlo sampling. It also produces a separate plot showing the spectral decay of the PC
coefficients.

83

Theory

Heat Transfer - Dual Pane Window

The heat flux calculations are implemented using random samples from the normal distribution of each
of the uncertain Gaussian parameters. The standard deviations assigned are estimates. These parameters
are defined in the table below:

Parameter Definition Mean Value Standard Deviation %

Ti Inside temperature 293K 0.5
To Outside temperature 273K 0.5
Ts Sky Temperature[1] 263K 10
kw Conduction constant for glass 1W/m2K 5
ka Conduction constant for air 0.024W/m2K 5
hi Inside convection coefficient 2W/m2K 15
ho Outside convection coefficient 6W/m2 15
dw Width of the glass 5mm 1
da Width of the air gap 1 cm 1
µ Viscosity or air 1.86x10−5 kg/m s 5
ρ Density of air 1.29 kg/m3 5
β Thermal expansion coefficient 3.67x10−31/K 5

The forward model that was developed relies on the same set of steady state heat transfer equations
from the first example, with the addition of a combined equation for conduction and convection for the

84

air gap. This is defined as conductance, and was implemented in order to provide an alternative to
determining the convection coefficient for this region, which can be challenging[2].

Q = hi(Ti − T1) = kw
T1 − T2

dw
= 0.41

ka
da

[(
gβρ2da

3

µ2

)
|T2 − T3|

]0.16

(T2 − T3) = kw
T3 − T4

dw

= ho(T4 − To) + εσ(T 4
4 − T 4

s)

[1] Leonard, John H. IV, Leinhard, John H. V. A Heat Transfer Textbook - 4th edition. pg 579.
Phlogiston Press. 2011 [2] Rubin, Michael.Calculating Heat Transfer Through Windows. Energy
Research. Vol. 6, pg 341-349. 1982.

T1 represents the glass temperature of the outer facing surface for the first glass layer, and T2 represents
the temperature of the inner surface for the first glass layer, T3 represents the temperature of the inner
surface of the second glass layer, T4 represents the outer facing surface of the second glass layer. ε is the
emissivity of uncoated glass, which we take to be 0.95, and σ is the Stefan-Boltzmann constant.

Polynomial Chaos Expansion*

Non-Intrusive Spectral Projection (NISP)*

Kernel Density Estimation*

*Please see previous example.

Implementation

The first set of scripts:

• 5D_fwd_prop.py: the main script

• fwd_prop_tools.py: functions called by 5D_fwd_prop.py

5D_fwd_prop.py

This script will produce a plot comparing the probability density function of the heat flux using three
methods. Non-intrusive spectral projection full and sparse quadrature methods, andMonte Carlo
sampling. It also produces a plot showing the spectral decay of the PC coefficient magnitude in relation
to the PC order. This plot illustrates the how the projection converges to give a precise representation of
the model. Changing the order of this script (nord) may alter the results of the second plot, since it has
elements that are not dynamically linked. Use the command python 5D_fwd_prop.py to run this
file from the window directory.

The second set of scripts:

85

Figure 5-14. Increase in number of samples with change in order.

• highd_sparse.py: the main script

• tools_conductance_dp_pce_wrad.py: functions called by highd_sparse.py

highd_sparse.py

This script will produce of the probability density function of the heat flux in twelve dimensions, using
only non-intrusive spectral projection with sparse quadrature. Use the command
python highd_sparse.py to run this file from the window directory. Adjustments may be made
to nord if desired, though the number of points produced increases dramatically with an increase in
order, as illustrated by figure 5.9.

Monte Carlo Sampling Methods
This is very similar to the previous example with the exception of compute_heat_flux producing T1,
T2, T3, T4 and Q. This function consists of a solved set of five linear equations, our forward model
neglecting convection for the air gap and radiative heat transfer, which are evaluated for the parameter
samples. The values obtained are used as initial inputs for r_heat_flux, which calculates the total heat
flux for all heat transfer modes, using the SciPy nonlinear solver optimize.fsolve. Using the heat
flux samples, a kernel density estimation is then performed using function KDE.

86

NISP Quadrature Methods
Please see previous example.

Printing and Graphing
Next, statements indicating the total number of sampling points used for each forward propagation
method will be printed. The number of Monte Carlo points is fixed, but the number of points
produced by quadrature method will vary with the number of uncertain parameters and the order of
the PCE.

Monte Carlo sampling used 100000 points
Full quadrature method used xxxxxxx points
Sparse quadrature method used xxxxxxx points

Finally, a graph is created which displays the three different heat flux PDFs on the same figure. It will be
saved under the file name heat_flux_pce.pdf.

fwd_prop_tools.py and tools_conductance_dp_pce_wrad.py

This scripts contain several functions called by the 5D_fwd_prop.py and highd_sparse.py files.
The five dimension example uses the five parameters with the highest uncertainty, Ts,hi,ho,kw,ka.

• compute_heat_flux(Ti,To,dw,da,kw,ka,hi,ho): This function calculates heat flux Q,
assuming no radiative heat transfer occurs and no convective heat transfer occurs in the air gap.

– Ti, To, dw, da, kw, ka, hi, ho: Sample values (scalars) of the input parameters

• r_heat_flux(Ti,To,Ts,dw,da,kw,ka,hi,ho,beta,rho,mu,estimates): This
function calculates heat flux Q, assuming radiative heat transfer, and convective heat transfer for
the air gap occurs. The SciPy non-linear solver optimize.fsolve is employed.

– Ti, To, Ts, dw, da, kw, ka, hi, ho, beta, rho, mu: Sample values (scalars) of the input
parameters

– estimates: Estimates ofQ, T1, T2, T3, and T4 are required to solve the nonlinear system. For
these estimates, we use the output of the function compute_heat_flux, which solves the
system assuming no radiative or convective heat transfer for the air gap occurs.

• get_quadpts(pc_model,ndim)*

• fwd_model(Ti_samples,To_samples,Ts_samples,dw_samples,da_samples,kw_samples,
ka_samples,hi_samples,ho_samples,beta_samples,rho_samples,mu_samples):

This function returns a NumPy array of evaluations of the forward model. This function calls
the functions compute_heat_flux and r_heat_flux.

– Ti_samples, To_samples,Ts_samples, dw_samples, da_samples, kw_samples, ka_samples,
hi_samples, ho_samples, beta_samples, rho_samples, mu_samples: 1D NumPy arrays
(vectors) of parameter sample values.

87

• GalerkinProjection(pc_model,f_evaluations)*

• evaluate_pce(pc_model,pc_coeffs,germ_samples)*:

• KDE(fcn_evals)*:

• get_multi_index(pc_model,ndim)This function computes the multi indices to be used in
the inverse relationship plot.

– pc_model: Contains information about the PC set.

– ndim: Number of model dimensions.

• plot_mi_dims(pc_model,c_k,ndim)This function produces the inverse relationship plot
using the multi indices produced in the previous function, and the value of the PC coefficients.

– pc_model: Contains information about the PC set.

– ndim: Number of model dimensions.

– c_k: Numpy array of PC coefficients.

*Please see previous example.

Sample Results

Run the file highd_sparse.pywith the default settings. You should expect to see the following print
statement, and your graph should look similar to the one found in the figure below. This sample is for a
problem with twelve dimensions, the PCE is fourth order. The following will print to the terminal:

Sparse quadrature method used 258681 points

The next two figures show the two results of the five dimension example with a fourth order PCE. The
following will print to the terminal:

Monte Carlo sampling used 100000 points
Full quadrature method used 3125 points
Sparse quadrature method used 10363 points

88

Figure 5-15. Sample results of highd_sparse.py

89

Figure 5-16. Sample results of 5D_fwd_prop.py

90

Figure 5-17. Sample results of 5D_fwd_prop.py

91

5.7. FORWARD PROPAGATION OF UNCERTAINTY
USING BASIS ADAPTATION

Overview

This example is located in examples/d_spring_series. It contains several Python scripts that
propagate uncertainty in input parameters through a series springs model using basis adaptation
approach, and is compared withMonte Carlo sampling method and non-intrusive spectral projection
(NISP) via sparse quadrature method.

Theory

Effective Modulus for d Springs in Series

In this example, the effective modulus for d springs in series is represented as:

f(x1, x2, ..., xd) =
d

1 + b

∏d
i=1(1 + axi + bx2

i)∑d
i=1

∏d
j=1
j 6=i

(1 + axj + bx2
j)

(5.5)

each spring has modulus (1 + axi + bx2). Where d is the dimension, a and b are coefficients. In our
example, we have springs with {xi, i = 1, ..., 7} independent Gaussian distribution, where
xi ∼ N (5.0, 0.6) with i = 1, ..., 4 and xi ∼ N (4.0, 0.5) with i = 5, ..., 7. Associated coefficients are
a = 0.5 and b = 1.0.

Basis Adaptation

By emphasizing the mathematical structure on Gaussian Hilbert spaces, a reduced order is obtained,
which capture the Gaussian probabilistic information of QoI and maintains its dependence on the
original parameter space.

LetA be an isometry onRd and η be:

η = Aξ, AAT = I (5.6)

• ξ = (ξ1, ..., ξd): Gaussian random variable know as the germ

Since η is another basis just like ξ, the orthogonal basis in η span the orthogonal basis in ξ. Letting
ΨA
k (η) = Ψk(ξ), and we have the equivalent PCEs:

Q(ξ) =
P∑
k=0

QkΨk(ξ), QA(η) =
P∑
l=0

QlΨ
A
l (η), (5.7)

92

LettingQ(ξ) , QA(η), yields:

Ql =
P∑
k=0

Qk〈Ψk(ξ)ΨA
l (η)〉 (5.8a)

Qk =
P∑
l=0

Ql〈ΨA
l (η)Ψk(ξ)〉 (5.8b)

This provides us with a tool to compare coefficients of two PCEs of full dimension.

After the projection ofA, suppose that important probabilistic information of QoI is concentrated to
the first several components of η, then we can use these components to form a lower dimensional PCE.
One of the options would be lettingA be such that:

η1 =
d∑
i=1

Qeiξi (5.9)

• ei: subset of multi-indices with 1 at ith location and zeros elsewhere

• Qei : first order expansion coefficients of d dimension

so that first component of η captures the complete Gaussian components ofQ. Letting the first row of
Ã be the Gaussian components, the remaining parts of Ã can be constructed in two approaches. The
first one is putting 1 in the diagonal zeros elsewhere, the second one is put the largest Gaussian
component in the second row with column position the same as it appears in the first row, and put the
second largest in the third row with column position the same as it appears in the first row too, so on so
forth. We call the second approach “sort by importance" method. ThenA is constructed by the
Gram-Schmidt (or other orthogonalization) of matrix Ã.

We first perform the 1 dimensional reduction and obtain associated PC coefficients. Then the 2
dimensional reduction and compare the coefficients with the 1 dimensional PC coefficients, stop if
converged or proceed to 3 dimensional reduction if not, so on so forth. To compare coefficients of
different dimensional PCEs, say di dimensional and dj dimensional with di < dj , we need first project
coefficient fromCα (α ∈ Idi,p) toCβ (β ∈ Idj ,p), where Id,p denote the set of all d-dimensional
multi-indices of degree less than or equal to p. This is easily done by letting:

Cα̃ =

{
Cα α̃(1, ..., di) = α and α̃(di + 1, ..., dj) = 0

0 otherwise
(5.10)

• α̃: multi-indices ∈ Idj ,p
• Cα̃: projected coefficients ofCα

This provides a convergence criterion.

We can also compare any dimensional PCE in η space (rotated space) with PCE in ξ space. Which is
done by first projecting coefficients of, say d0 dimensional, PCE in η space to coefficients of d
dimensional PCE in η space by equation 5.10, and then projecting coefficients in η space to ξ space by
equation 5.8. Then we can judge the accuracy of reduced PCE with respect to full dimensional PCE by
comparing the coefficients, in ξ space.

93

Implementation

The script set contains three files:

• run_d_springs.py: the main script

• d_springs_tools.py: function called by run_d_springs.py, mainly contains classical PCE
needed modules and forward model

• adaptation_tools.py: function called by run_d_springs.py, contains modules that deal
with the basis adaptation. This function is a library files located at “${install} /PyUQTk /PyPCE"

exec_d_springs.py

This scripts will produce two figures, the first figure compare the projected coefficients of 2 dimensional
PCE and full dimensional PCE in ξ space, the second figure compares PDFs of effective modulus of the
7 dimensional series springs model generated by 2d Gaussian adaptation method, Monte Carlo
sampling method and NISP full dimension sparse quadrature method.

Some of the important input parameters are:

• nord: The order of PCE

• ndim: The dimension of PCE, set to 7 in our example

• pc_type: Polynomial type and weighting function. Hermite-Gauss, “HG", is selected in
adaptation method

• param: Quadrature level, usually set to nord+1 to have the right polynomial exactness

• method: Method used to generateAmatrix. The default one,method = 0, is using
Gram-Schmidt of Ã,method = 1 is using orthogonal decomposition of ÃÃT ,method = 2 is
using orthogonal decomposition of the Householder matrix, and the last one,method = 3, is
using “sort by importance" method. The default method ismethod = 0, which is satisfying for
most problems, if not, then we recommend to usemethod = 3

• a: a = 0.5 in our example

• b: b = 1.0 in our example

There are also other fixed parameters. One is nord0, which is equal to 1, denoting the PC order used to
compute first order coefficients, while the quadrature level parameter param0 is equal to 1 too.

The first step of the work flow for adaptation PCE is to compute the Gaussian coefficients (first order
coefficients) of the associated QoI. Then, Gaussian coefficients are used to construct rotation matrixA.
Starting from 1 dimension, the reduced PCEs are then obtained until coefficients of two successive
dimensional PCEs are converged.

94

Printing and Graphing
The statements indicating the total number of sampling points used for each forward propagation
method will be printed. The number of Monte Carlo points and number of points produced by sparse
quadrature points are fixed, but the number of total quadrature points produced in the adaptation
method depends on when the convergence is reached.

Monte Carlo sampling used 100000 points
Sparse quadrature method used 6245 points
Adaptation method used 244 points

Note that the points used in the adaptation method include points in calculating Gaussian coefficients,
1d adaptation of PCE, and 2d adaptation of PCE (used to ensure the convergence of 1d adaptation). So
actually, only 1d adaptation is enough to get a good result.

Then two graphs are generated. The first figure is a verification of 2d Gaussian adaptation with full
dimension PCE by comparing the coefficients, coefficients of 2d Gaussian adaptation are projected to
full dimensional PCE space. The second figure gives the PDFs of effective modulus generated by
different methods.

d_springs_tools.py

This script contains several functions called by run_d_springs.py file.

• fwd_model(xx, a, b): This function compute the effective modulus of the d series springs,
and the output is a NumPy array with dimension the size of samples.

– xx:Nsamples × dNumPy array, whereNsamples is the size of samples

– a, b: Input parameters in the d series springs model.

• KDE(fcn_evals)∗

• EvaluatePCE(pc_model,pc_coeffs,germ_samples): This function evaluate QoI using
the PCE model and coefficients at customized samples.

– pc_model: Known PCEmodel

– pc_coefficients: Feed in PC coefficients

– germ_samples: Germ samples used to evaluate

*Please see previous examples.

95

adaptation_tools.py

This script contains functions related to Gaussian adaptation method.

• gauss_adaptation(c_k, ndim, method = 0): Function to obtain rotation matrixA
from first order PC coefficients.

– c_k: First order PC coefficients with size equal the dimension of the problem

– ndim: Same as before, the dimension of the problem

– method: Methods used to construct matrixA, defaultmethod = 0 refers to Gram-Schmidt
procedure on matrix Ãwith Gaussian coeffs (normalized) at its first row, and ones along
diagonal zeros elsewhere for other rows. Andmethod = 1 refers to orthogonal
decomposition of ÃÃT ,method = 2 refers to orthogonal decomposition of Householder
matrixH = I − 2ÃÃT

‖Ã‖2 , andmethod = 3 refers to “sort by importance" method.

• eta_to_xi_mapping(eta, A, zeta = None): This function maps lower dimensional η
space to full dimensional ξ space.

– eta: η array with sizeNsamples × d

– A: Rotation matrix

– zeta: Provides an option to specify augment matrix of η to match the size of ξ. Augment
matrix is 0 if not specified

•
mi_terms_loc(d1, d2, nord, pc_type, param, sf, pc_alpha=0.0, pc_beta=1.0):
Find multi-indices “locations" of d1 dimensional PCE in d2 dimensional PCE. Where the
“locations" refers to locations of multi-indices in d2 dimensional PCE, where the first d1 terms of
which equal to multi-indices of d1 dimensional PCE and the remaining terms equal to 0, as
described in equation 5.10. This function is called by l2_error_eta(.) function in file
adaptation_tools.py.

– d1, d2: Dimensions of PCEs with d1 < d2

– nord, pc_type, param, sf : Parameters of the polynomial basis and quadrature method,
where nord refers to order, pc_type refers to polynomial type, param refers to quadrature
level, and sf refers to choice of “sparse" or “full" quadrature

– pc_alpha, pc_beta*

•
l2_error_eta(c_1, c_2, d1, d2, nord, pc_type, param, sf, pc_alpha=0.0, pc_beta=1.0):
Function to compute the l2 error of coefficients of d1 dimensional PCE and d2 dimensional
PCE, where coefficients of d1 dimensional PCE are projected to d1 dimensional PCE. The
projected coefficients of d1 dimensional PCE are also returned.

– c_1, c_2: Coefficients of two different dimensional PCEs

– d1, d2: Dimensions of PCEs

96

– nord: Order of PCEs

– pc_type, param, sf, pc_alpha, pc_beta *

•
transf_coeffs_xi(coeffs, nord, ndim, eta_dim, pc_type, param, R, sf="sparse", pc_alpha=0.0, pc_beta=1.0):
Transfer coefficients from η space to ξ space. Only make sense when etadim = ndim.

– coe�s: Coefficients in η space

– eta_dim: Dimension of η

– R: Rotation matrix

– nord, ndim, pc_type, param, sf, pc_alpha, pc_beta *

*Same as mentioned before in this example.

Sample Results

Run the file run_d_springs.pywith the default settings. One should obtain the two figures as
below:

Note that y axis of Figure 5-18 is plot in log scale, so the dominant coefficients of these two are very close.
The PDF showed in Figure 5-19 proves that the basis adaptation method can achieve high accuracy.

Here we use 2 dimension adaptation to make a comparison, but 1 dimension adaptation is already very
accurate (PC coefficients of which are converged to the 2 dimension values).

97

0 20 40 60 80 100 120
PCE terms

10 4

10 3

10 2

10 1

100

101

Co
ef

fic
ie

nt
s o

f P
CE

 te
rm

s

full dimension PCEs
2 dimension adapt PCEs

Figure 5-18. Coefficients comparison of adaptation method and
full dimension PCE

98

6 7 8 9 10 11 12 13 14
Effective modulus

0.0

0.1

0.2

0.3

0.4

0.5

PD
F

of
 e

ffe
ct

iv
e

m
od

ul
us

Monte Carlo Sampling
NISP sparse quadrature method
NISP 2d linear adaptive method

Figure 5-19. PDFs of effective modulus generated with different
methods

99

5.8. BAYESIAN INFERENCE OF A LINE

Overview

This example is located in examples/line_infer It infers the slope and intercept of a line from noisy
data using Bayes’ rule. The C++ libraries are called directly from the driver program. By changing the
likelihood function and the input data, this program can be tailored to other inference problems.

To run an example, type ./line_infer.py directly. This file contains quite a bit of inline
documentation about the various settings and methods used. To get a listing of all command line
options, type ./line_infer.py -h". A typical run, with parameters changed from command-line, is
as follows:

./line_infer.py --nd 5 --stats

This will run the inference problem with 5 data points, generate plots of the posterior distributions, and
generate statistics of the MCMC samples. If no plots are desired, also give the --noplots argument.

More details

After setting a number of default values for the example problem overall, the line_infer.py script
sets the proper inference inputs in the file line_infer.xml, starting from a set of defaults in
line_infer.xml.templ. The file line_infer.xml is read in by the C++ code line_infer.x,
which does the actual Bayesian inference. After that, synthetic data is generated, either from a linear, or
cosine model, with added noise.

Then, the script calls the C++ line inference code line_infer.x to infer the two parameters (slope
and intercept) of a line that best fits the artificial data. (Note, one can also run the inference code directly
by manually editing the file line_infer.xml and typing the command ./line_infer.x)

The script then reads in the MCMC posterior samples file, and performs some postprocessing. Unless
the flag --noplots is specified, the script computes and plots the following:

• The pushed-forward and posterior predictive error bars

– Generate a dense grid of x-values

– Evaluate the linear model y = a+ bx for all posterior samples (a, b) after the burn-in

– Pushed-forward distribution: compute the sample mean and standard deviation of using
the sampled models

– Posterior predictive distribution: combine pushed-forward distribution with the noise
model

• TheMCMC chain for each variable, as well as a scatter plot for each pair of variables

100

1.0 0.5 0.0 0.5 1.0
x

3.5

4.0

4.5

5.0

5.5

6.0

6.5

y

Mean prediction

Data

Figure 5-20. The pushed forward posterior distribution (dark
grey) and posterior predictive distribution (light grey).

• The marginal posterior distribution for each variable, as well as the marginal joint distribution for
each pair of variables

If the flag --stats is specified, the following statistics are also computed:

• The mean, MAP (MaximumA Posteriori), and standard deviations of all parameters

• The covariance matrix

• The average acceptance probability of the chain

• The effective sample sizes for each variable in the chain

Sample Results

101

0 50000 100000 150000 200000
MCMC step

4.8

4.9

5.0

5.1

5.2

a

0 50000 100000 150000 200000
MCMC step

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

b

4.8 4.9 5.0 5.1 5.2
a

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

b

Figure 5-21. MCMC chains for parameters a and b, as well as a
scatter plot for a and b

102

4.8 5.0 5.2

a

1.4 1.2 1.0 0.8

b

4.8 5.0 5.2

1.4

1.2

1.0

0.8

Figure 5-22. Marginal posterior distributions for all variables, as
well as marginal joint posteriors

5.9. SAMPLING OF MULTIMODAL POSTERIOR PDFS
USING TMCMC

Overview

This example is located in examples/tmcmc_bimodal. It generates samples distributed according to
an underlying 3-dimensional bimodal posterior PDF, being a product of a Normal prior PDF and a
bimodal likelihood PDF. It utilizes the TransitionalMarkov chainMonte Carlo (TMCMC)method [2],
a variant of a class of MCMC algorithms known as tempering methods, which also provides an estimate
of the model evidence at no extra computational cost (i.e. no further evaluations of likelihood and/or
prior PDFS). The C++ libraries are called directly from the driver program. By changing the likelihood
function and prior PDF (in bimodal.cpp), along with providing consistent samples from the prior
PDF in tmcmc_prior_samples.dat, this program can be tailored to other problems. It utilizes shell
scripts to spawn multiple processes for parallel evaluation of likelihood and prior PDFs.

To run an example, type ./tmcmc_bimodal.py directly. To get a listing of all command line options,
type ./tmcmc_bimodal.py -h. A typical run is as follows:

./tmcmc_bimodal.py

103

This will run the TMCMC sampler, starting with 5000 samples from the prior PDF, generate plots of
the posterior distributions along with intermediate samples (artifacts of TMCMC). If no plots are
desired, also give the --noplots argument.

More details

TMCMC combines aspects of simulated annealing optimization withMarkov chainMonte Carlo,
creating an algorithm that has strong capacity for parallelism, and provides an estimate of model
evidence, a component of Bayesian model selection. It starts with samples from the prior distribution
Pr(θ), and utilizes importance sampling (with a resampling step) to provide samples from intermediate
PDFs given by Pr(D|θ)β Pr(θ) while introducing diversity throughMCMC steps. Pr(D|θ) is the
likelihood function and β is the temperature parameter that monotonically increases from 0 to 1, with
step sizes chosen adaptively (i.e. varying from one step to the next) such that the coefficient of variation
of the importance sampling weights does not exceed a threshold (see [34] for a relevant discussion).

In general, the performance of TMCMC as implemented in UQTk heavily depends on the maximum
allowable coefficient of variation of the sample weights. This can be controlled using the MCMC class
member function initTMCMCCv. Based on numerical experiments, the UQTk default value of 0.1
should be adjusted down whenever the apparent bias in the resulting posterior samples is insufficiently
high (i.e. when the generated ensemble does not adhere to the structure inherent in the posterior PDF).
This situation seems to arise whenever the discrepancy between the prior and posterior PDFs is high (as
dictated by the likelihood). However, the need to adjust the coefficient of variation is reduced with (a)
greater number of TMCMC samples, and/or (b) longer MCMC chains (to encourage mixing as
controlled via the initTMCMCMFactormember function).

This example involves a driver python script, tmcmc_bimodal.py, that invokes the program (based on
provided C++ code) tmcmc_bimodal.x. This program sets up the MCMC class object, specifying the
dimensionality of the problem, number of samples required, and number of processes for parallel
evaluation of likelihood and prior, along with other algorithmic choices. The TMCMC algorithm
proceeds with loading the user-provided prior PDF samples from tmcmc_prior_samples.dat, and
iterating through the cooling steps. In each step, two shell scripts are invoked to spawn multiple
processes for parallel evaluation of likelihood and prior PDFs, namely tmcmc_getLL.sh and
tmcmc_getLP.sh, respectively. In turn, each process involves running bimodal.x (with
corresponding C++ source bimodal.cpp) which evaluates the prior and/or likelihood for an ensemble
of samples at one particular TMCMC step.

The script then reads in the MCMC posterior samples file, and performs some postprocessing. Unless
the flag --noplots is specified, the script computes and plots the following:

• 2-dimensional scatter plots of posterior samples

• 2-dimensional scatter plots of intermediate TMCMC samples (for intermediate β values)

• The marginal posterior distribution for each variable, as well as the marginal joint distribution for
each pair of variables

104

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

Figure 5-23. 2-dimensional scatter plots of posterior samples

-2 0 2

-3

-2

-1

0

1

2

3

-2 0 2

-3

-2

-1

0

1

2

3

-2 0 2

-3

-2

-1

0

1

2

3

-2 0 2

-3

-2

-1

0

1

2

3

-2 0 2

-3

-2

-1

0

1

2

3

-2 0 2

-3

-2

-1

0

1

2

3

Figure 5-24. 2-dimensional scatter plots of intermediate TMCMC
samples, from prior to posterior

Sample Results

-0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5

-0.5

0

0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PD
F

-0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5

-0.5

0

0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PD
F

-0.5 0 0.5

-0.5

0

0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PD
F

-0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5-25. Marginal posterior distributions for all variables, as
well as marginal joint posteriors

105

5.10. FORWARD PROPAGATION OF UNCERTAINTIES,
SURROGATE CONSTRUCTION AND GLOBAL
SENSITIVITY ANALYSIS

Overview

• Located in examples/uqpc

• A collection of scripts that propagate input parameter uncertainties to output via PC expansions.
As a special, and most commonly used, case the scripts can construct a PC surrogate for a
multi-output computational model. The latter is as a black box simulation code. The workflow
also provides tools for global sensitivity analysis of the outputs of this black box model with
respect to its input parameters or input PC germs.

Theory

Consider a function f(λ;x) where λ = (λ1, . . . , λd) are the model input parameters of interest, while
x ∈ Rm are design parameters with controllable values. For example, x can denote a spatial coordinate
or a time snapshot, or it can simply enumerate multiple quantities of interest. Furthermore, assume the
input parameters are given by a (generally, joint) Polynomial Chaos expansions as

λi =

Kin−1∑
k=0

aikΨk(ξ), for i = 1, . . . , d, (5.11)

where Ψk(ξ) = Ψk(ξ1, . . . , ξd̃) are standard multivariate polynomials, defined as products of
univariate polynomials ψki(ξi) as follows:

Ψk(ξ) = ψk1(ξ1) . . . ψkd(ξd̃). (5.12)

Note that the stochastic input ξ = (ξ1, . . . , ξd̃) does not need to have the same dimensionality as the
parameter vector λ = (λ1, . . . , λd), i.e. d 6= d̃ in general. However, most commonly, it is. For example,
if parameters are given by their ranges only,

λi ∈ [ai, bi] for i = 1,d, (5.13)

one can think of it as first-order Legendre-Uniform PC by the linear transformation

λi =
bi + ai

2
+
bi − ai

2
ξi, for i = 1, . . . , d. (5.14)

The goal is to build a PC representation for each value of design parameter x, i.e. for l = 1, . . . , L,

f(λ;xl) ≈ gc(λ;xl) =
K−1∑
k=0

cklΨk(ξ). (5.15)

106

Note that if inputs are given independently on their respective ranges, λ ∈ [ai, bi], the PC expansion
(5.15) is simply a polynomial surrogate with respect to scaled inputs

ξi =
λi − bi+ai

2
bi−ai

2

∈ [−1, 1] for i = 1,d. (5.16)

A typical truncation rule in (5.15) is defined according to the total order of the basis terms, i.e. only
polynomials with the total order≤ p are retained for some positive integer order p, implying
|k1|+ · · ·+ |kd| ≤ p, andK = (d+ p)!/(d!p!). The scalar index k is simply counting the
multi-indices (k1, . . . , kd).

The three generic methods of finding the PC coefficients ckl are detailed below.

Projection: The basis orthogonality enables the projection formulae

ckl =

∫
Ω

f(λ(ξ);xl)Ψk(ξ)π(ξ)dξ (5.17)

where λ(ξ) simply denotes the PC form (5.13) or the linear scaling relation in (5.14), and π(ξ) is the PDF
of ξ. Note that π(ξ) = 2−d for the linear, Legendre-Uniform PC case.

The projection integral is taken by quadrature integration

ckl ≈
N∑
q=1

wqf(λ(ξ(q));xl)Ψk(ξ
(q)), (5.18)

where ξ(q) are Gaussian quadrature points, andwq are the associated weights. See the description of the
app pce_resp as well.

Bayesian Least-Squares Regression: In cases when model outputs are noisy, or highly
non-linear, or when one can not afford model evaluations at a predefined quadrature locations, it is
convenient to reformulate the coefficient finding as a regression problem. More specifically, consider the
least-squares problem that attempts to solve, for each design condition l = 1, . . . , L,

arg min
c

N∑
s=1

(
f(λ(ξ(s));xl)−

K−1∑
k=0

cklΨk(ξ
(s))

)2

. (5.19)

Due to linearity of the polynomial form with respect to coefficients ckl, the exact solution of this
minimization problem is available via matrix manipulations, see, e.g. [26]. In the description of the app
regression, the Bayesian generalization of this least-squares fit is described.

107

Bayesian Compressive Sensing (BCS): For high-dimensional problems, i.e. when d is
sufficiently large, the number of termsK for a reasonable truncation order in the output PC (5.15) is
large. In such cases, one typically has fewer model evaluations available than the number of basis terms,
i.e. the problem is underdetermined. In such situations, one can employ `1 regularization techniques,
building on the compressive sensing work from image processing community. Here, we have
implemented the Bayesian reformulation of such an algorithm, with approximate and fast procedure of
pruning the unnecessary terms in the PC expansion. See [1, 28] for more details on BCS.

After computing the PC coefficients ckl, one can extract the global sensitivity information, also called
Sobol indices or variance-based decomposition. For example, themain sensitivity index with respect to
the dimension i (or variable ξi) is

Si(xl) =

∑
k∈Ii c

2
kl||Ψk||2∑K−1

k=1 c
2
kl||Ψk||2

, (5.20)

where Ii is the indices of basis terms that involve only the variable ξi, i.e. the one-dimensional
monomials ψ1(ξi), ψ2(ξi), In other words, these are basis terms corresponding to multi-indices with
the only non-zero entry at the i-th location. For further details regarding global sensitivity analysis
(GSA), see the theory side of the description of the “GSA via Sampling” workflow, and the description
of the app pce_sens in Section 4.2.10.

Implementation

The script set consists of the following files:

• uq_pc.py : the main script, see Table 5-1. Also one can run uq_pc.py -h for help in the
terminal.

• model.py : black-box example model. See Figure 5-26 for visual explanation of the expected
input-output structure. Try model.py -h for help in the terminal. The syntax of this script is

model.py -i <input_file> -o <output_file> -m <model_name>

The list of arguments:

-i <input_file> :N × d file that stores the input parameter ensemble ofN samples of
d-dimensional input.

-o <output_file> :N × L file where output f(λ(i), xl) is stored, withN rows
(number of input parameter samples) and L columns (number of outputs, or number of
design parameter values).

-m <model_name> : Name of the model. Options are example (default) and genz.

* example : an example function f(λ;x) =
(∑d

i=1 λi

)(∑d
i=1

λi+λ
2
i

ix

)
is

implemented that also produces the file designPar.dat for design parameters
xj = j for j = 1, . . . , L, with L = 7. The function has d inputs and L = 7 outputs.

108

* genz : this function has two outputs (L = 2): Gaussian and Osccillatory Genz
functions.

User can create a black-box model.pywith similar I/O structure, or augment model.py with
their own function.

• plot_prep.py : plotting before surrogate construction. The syntax of the script is
plot_prep.py <plot_type> <...>.
Try plot_prep.py -h or plot_prep.py <plot_type> -h, where plot_type is

pcoord : Plots the inputs in parallel coordinates.

xx : Plots one input parameter versus another.

xy : Plots one of the outputs versus one of the inputs.

xxy : Surface-plot of one of the outputs versus two inputs.

• plot.py : plotting after surrogate construction, reading the pickle file results.pk
produced by uq_pc.py. The syntax of the script is plot.py <plot_type> <...>.
Try plot.py -h or plot.py <plot_type> -h, where plot_type is

sens : Plots the sensitivity information in a bar-plot. This command also produces
allsens_main.dat or allsens_total.dat, the sensitivity indices in a format r × d,
where each row corresponds to a single value for the design parameter, and each column
corresponds to the sensitivity index of a parameter.

senscirc : Plots sensitivity circular plots for all outputs, and averaged as well.

sensmat : Plots sensitivity matrix for all outputs and for the most important inputs.

dm : Plots model-vs-data for all values of the design parameter (i.e. for all outputs).

idm : Plots model and data values on the same axis, for all the values of the design
parameter.

1d : Plots 1d surrogate (the rest of parameters, if any, at nominal) versus data, for
all outputs.

2d : Plots 2d surrogate (the rest of parameters, if any, at nominal) versus data, for
all outputs.

mindex :Visualizes the multiindex for all outputs.

micf : Plots the multiindex for all outputs in a different way, meaningful only for 2d
and 3d.

pdf : Plots the PDF of the output. Sampling size parameter is hardwired.

senserb1 : Computes sensitivities with errorbars. Not tested enough. Some hardwired
parameters. Requires uq_pc.pymethod (-m) lsq or bcs and prediction mode (-i) msc.
Relies on script model_sens.x as a black-box model-sensitivity evaluator for each fixed
sample pf PC coefficients.

109

senserb2 : Plots the sensitivities with errorbars. Not tested enough. Needs to be run
only after plot.py senserb1.

The user is encouraged to enhance or change the visualization scripts on their own, taking
plot.py as an example of unrolling the surrogate construction output pickle file results.pk.

Both plot_prep.py and plot.pywould accept (but not require!) parameter name file
pnames.txt (d rows) and output names file outnames.txt (r rows) if one wants to have
informative plot labels.

Other auxiliary or example scripts are listed below:

• prepare_inpc.py : Prepares PC coefficient file given marginal PCs or samples.
The output, param_pcf.txt file can be used with flag -c in uq_pc.py.

• generate_inputsamples.py :Auxiliary script to generate example jointly distributed
random samples.

• join_results.py :Auxiliary script as an example of joining a set of surrogate
construction pickle files into a single pickle file results.pk.

• model_sens.x :Auxiliary script as a sensitivity evaluation black-box for given
PC coefficients.

• transpose_file.x :Transpose a given matrix file.
Syntax: transpose_file.x <file_in> > <file_out>

• scale.x : Scale given matrix file to or from a given hypercube to
[−1, 1]d. Syntax: scale.x <input> <to or from> <domain> <output>

• getrange.x :Get parameter ranges of a given set of samples. Syntax:
getrange.x <samples.dat> [cushion_fraction] > <ranges.dat>

• example_0.x :Minimal example workflow. Assumes input.dat
(N × d) and output.dat (N × L) are given.

• example_1.x : Surrogate construction example workflow.

• example_2.x :Uncertainty propagation example workflow.

• example_3.x : Surrogate-for-time-series (i.e. each output is a snapshot)
example workflow.

110

Figure 5-26. Sketch of the expected input-output structure of
the black-box model.

111

Argument Options Description

-r <run_regime> The regime in which the workflow is employed.
online_example Ablack-boxmodel model(...), defined in model.py, is run directly as parameter ensemble becomes avail-

able. User can provide their own model(...)with minimal surgery.
online_bb Ablack-boxmodel scriptmodel.x <input_file> <output_file> is run. The intention is that the user

provides the model.x script with the appropriate I/O.
offline_prep Prepare the input parameter ensemble and store in ytrain.dat and, if validation is requested,

yval.dat. The user then should run the model (model.py ptrain.dat ytrain.dat and perhaps
model.py pval.dat yval.dat) in order to provide ensemble output for the offline_post stage.

offline_post Postprocess the output ensemble, assuming the model is run offline with input ensemble provided in the
offline_prep stage producing ytrain.dat and, if validation is requested, yval.dat. The rest of the
arguments should remain the same as in offline_prep.

-p <domain_file> A file with d rows and 2 columns, where d is the number of parameters and each row consists of the lower and
upper bound of the corresponding parameter.

-c <inpc_file> Input PC coefficient file.

-d <in_pcdim> Input PC stochastic dimension.

-x <pctype> HG,LU,LU_N,
GLG,JB,SW PC type.

-o <in_pcord> Input PC order.

-m <fit_method> The method of finding the PC surrogate coefficients.
proj Projection method outlined in (5.17) and (5.18)
lsq Bayesian least-squares.
bcs Bayesian compressive sensing.

-s <sam_method> The input parameter sampling method.
rand Uniformly random points. To be implemented.
quad Quadrature points. This sampling scheme works with the projection method only, described in (5.18)

-n <nqd> Number of samples requested if sam_method=rand, or the number of quadrature points per dimen-
sion, if sam_method=quad and sparsity=full, or the level of quadrature if sam_method=quad and
sparsity=sparse.

-v <nval> Number of uniformly random samples generated for PC surrogate validation, can be equal to 0 to skip valida-
tion.

-f <sparsity> full, sparse Sparsity, if sam_method=quad.

-t <out_pcord> Output PC order.

-i <pred_mode> m, ms, msc Prediction mode to compute the mean only (m), mean and standard deviation (ms), mean and full covariance
with respect to x (msc).

-e <tolerance> Tolerance parameter (currently for fit_method=bcs only).

-z <cleanup> Flag to cleanup after (be careful: removes *log and *dat files).

Hardwired inputs (also see Figure 5-26)
ptrain.dat N × dmatrix, each row is a d-variate parameter sample
qtrain.dat the same scaled to [-1,1]
wtrain.dat quadrature weights only if sampling method is quadrature
ytrain.dat N × L vector of outputs
pval.dat V × dmatrix, each row is a d-variate parameter sample
qval.dat the same scaled to [-1,1]
yval.dat V × L vector of outputs
Output file
results.pk Python pickle file containing a dictionary with all the results. The visualization plot.py serves as an example

of how to unroll it.

Table 5-1. Arguments of the main script uq_pc.py.

112

5.11. GLOBAL SENSITIVITY ANALYSIS VIA SAMPLING

Overview

• Located in PyUQTk/sens

• A collection of Python functions that generate input samples for black-box models, followed by
functions that post-process model outputs to generate total, first-order, and joint effect Sobol
indices

Theory

LetX = (X1, · · · , Xn) : Ω→ X ⊂ IRn be an n−dimensional Random Variable in L2(Ω,S, P)
with probability densityX ∼ pX(x). Let x = (x1, · · · , xn) ∈ X be a sample drawn from this density,
withX = X1 ⊗X2 ⊗ · · · ⊗ Xn, andXi ⊂ IR is the range ofXi.

LetX−i = (X1, · · · , Xi−1, Xi+1, · · · , Xn) : Ω→ X−i ⊂ IRn−1, where
X−i ∼ pX−i|Xi(x−i|xi) = pX(x)/pXi(xi), pXi(xi) is the marginal density ofXi,
x−i = (x1, · · · , xi−1, xi+1, · · · , xn), andX−i = X1 ⊗ · · · ⊗ Xi−1 ⊗Xi+1 ⊗ · · · ⊗ Xn.

Consider a function Y = f(X) : Ω→ IR, with Y ∈ L2(Ω,S, P). Further, let Y ∼ pY (y), with
y = f(x). Given the variance of f is finite , one can employ the law of total variance1,2 to decompose
the variance of f as

V [f] = Vxi [E[f |xi]] + Exi [V [f |xi]] (5.21)

The conditional mean,E[f |xi] ≡ E[f(X)|Xi = xi], and conditional variance,
V [f |xi] = V [f(X)|Xi = xi], are defined as

〈f〉−i ≡ E[f |xi] =

∫
X−i

f(x)pX−i|Xi(x−i|xi)dx−i (5.22)

V [f |xi] = E[(f − 〈f〉−i)2|xi]
= E[(f 2 − 2f〈f〉−i + 〈f〉2−i)|xi]
= E[f 2|xi]− 2〈f〉−i〈f〉−i + 〈f〉2−i

=

∫
X−i

f(x)2pX−i|Xi(x−i|xi)dx−i − 〈f〉2−i (5.23)

The terms in the rhs of Eq. (5.21) can be written as

Vxi [E[f |xi]] = Exi [(E[f |xi]− Exi [E[f |xi]])2] (5.24)
= Exi [(E[f |xi]− f0)2]

= Exi [(E[f |xi])2]− f 2
0

=

∫
Xi
E[f |xi]2pXi(xi)dxi − f 2

0

1en.wikipedia.org/wiki/Law_of_total_variance
2en.wikipedia.org/wiki/Law_of_total_expectation

113

en.wikipedia.org/wiki/Law_of_total_variance
en.wikipedia.org/wiki/Law_of_total_expectation

where f0 = E[f] = Exi [E[f |xi]] is the expectation of f , and

Exi [V [f |xi]] =

∫
Xi
V [f |xi]pXi(xi)dxi (5.25)

The ratio
Si =

Vxi [E[f |xi]]
V [f]

(5.26)

is called the first-order Sobol index [33] and

ST−i =
Exi [V [f |xi]]

V [f]
(5.27)

is the total effect Sobol index for x−i. Using Eq. (5.21), the sum of the two indices defined above is

Si + ST−i = S−i + STi = 1 (5.28)

Joint Sobol indices Sij are defined as

Sij =
Vxi,xj [E[f |xi, xj]]

V [f]
− Si − Sj (5.29)

for i, j = 1, 2 . . . , n and i 6= j.

Si can be interpreted as the fraction of the variance in model f that can be attributed to the i-th input
parameter only, while Sij is the variance fraction that is due to the joint contribution of i-th and j-th
input parameters. STi measures the fractional contribution to the total variance due to parameter xi and
its interactions with all other model parameters.

The Sobol indices are numerically estimated using Monte Carlo (MC) algorithms proposed by
Saltelli [25] and Kucherenko et al [17]. Let xk = (x1, · · · , xn)k be a sample ofX drawn from pX . Let
x′k−i be a sample from the conditional distribution pX−i|Xi(x′−i|xki), and x′′ki a sample from the
conditional distribution pXi|X−i(x′′i |xk−i).

The expectation f0 = E[f] and variance V = V [f] are estimated using the xk samples as

f0 ≈
1

N

N∑
k=1

f(xk), V ≈ 1

N

N∑
k=1

f(xk)2 − f 2
0 (5.30)

whereN is the total number of samples. The first-order Sobol indices Si are estimated as

Si ≈
1

V

(
1

N

N∑
k=1

f(xk)f(x′k−i ∪ xki)− f 2
0

)
(5.31)

The joint Sobol indices are estimated as

Sij ≈
1

V

(
1

N

N∑
k=1

f(xk)f(x′k−(i,j) ∪ xki,j)− f 2
0

)
− Si − Sj (5.32)

114

For STi , UQTk offers two alternative MC estimators. In the first approach, STi is estimated as

STi = 1− S−i ≈ 1− 1

V

(
1

N

N∑
k=1

f(xk)f(x′′ki ∪ xk−i)− f 2
0

)
(5.33)

In the second approach, STi is estimated as

STi ≈
1

2V

(
1

N

N∑
k=1

(
f(xk)− f(xk−i ∪ x′′ki)

)2

)
(5.34)

Implementation

Directory pyUQTk/sensitivity contains two Python files

• gsalib.py : set of Python functions implementing the MC sampling and estimators for Sobol
indices

• gsatest.py : workflow illustrating the computation of Sobol indices for a toy problem

gsalib.py implements the following functions

• genSpl_Si(nspl,ndim,abrng,**kwargs) : generates samples for Eq. (5.31). The input
parameters are as follows

nspl: number of samplesN ,

ndim: dimensionality n of the input parameter space ,

abrng: a 2-dimensional array n× 2, containing the range for each component xi.

The following optional parameters can also be specified

splout: name of ascii output file for MC samples

matfile: name of binary output file for select MC samples. These samples are used in
subsequent calculations of joint Sobol indices

verb: verbosity level

nd: number of significant digits for ascii output

The default values for optional parameters are listed in gsalib.py

• genSens_Si(modeval,ndim,**kwargs) : computes first-order Sobol indices using Eq. (5.31).
The input parameters are as follows

modeval: name of ascii file with model evaluations,

ndim: dimensionality n of the input parameter space

The following optional parameter can also be specified

115

verb: verbosity level

The default value for the optional parameter is listed in gsalib.py

• genSpl_SiT(nspl,ndim,abrng,**kwargs) : generates samples for Eqs. (5.33-5.34). The
input parameters are as follows

nspl: number of samplesN ,

ndim: dimensionality n of the input parameter space ,

abrng: an 2-dimensional array n× 2, containing the range for each component xi.

The following optional parameters can also be specified

splout: name of ascii output file for MC samples

matfile: name of binary output file for select MC samples. These samples are used in
subsequent calculations of Sobol indices

verb: verbosity level

nd: number of significant digits for ascii output

The default values for optional parameters are listed in gsalib.py

• genSens_SiT(modeval,ndim,**kwargs) : computes total Sobol indices using either
Eq. (5.33) or Eq. (5.34). The input parameters are as follows

modeval: name of ascii file with model evaluations,

ndim: dimensionality n of the input parameter space

The following optional parameter can also be specified

type: specifies wether to use Eq. (5.33) for type = ”type1” or Eq. (5.34) for type 6= ”type1”

verb: verbosity level

The default value for the optional parameter is listed in gsalib.py

• genSpl_Sij(ndim,**kwargs) : generates samples for Eq. (5.32). The input parameters are as
follows

ndim: dimensionality n of the input parameter space ,

The following optional parameters can also be specified

splout: name of ascii output file for MC samples

matfile: name of binary output file for select MC samples saved by genSpl_Si.

verb: verbosity level

nd: number of significant digits for ascii output

The default values for optional parameters are listed in gsalib.py

116

x1 x2 x3 x4
0

0.1

0.2

0.3

0.4

0.5

S
i

(x1 ,x2) (x2 ,x3) (x3 ,x4)
0

0.02

0.04

0.06

S
ij

Figure 5-27. First-order (left frame) and joint (right frame) Sobol
indices for the model given in Eq. (5.35). The black circles show
the theorerical values, computed analytically, and the error bars
correspond to ±σ computed based on an ensemble of 10 runs.

• genSens_Sij(sobolSi,modeval,**kwargs) : computes joint Sobol indices using
Eq. (5.32). The input parameters are as follows

sobolSi: array with values for first-order Sobol indices Si

modeval: name of ascii file with model evaluations.

The following optional parameter can also be specified

verb: verbosity level

The default value for the optional parameter is listed in gsalib.py

gsatest.py provides the workflow for the estimation of Sobol indices for a simple model given by

f(x1, x2, . . . , xn) =
n∑
i=1

xi +
n−1∑
i=1

i2xixi+1 (5.35)

In the example provided in this file, n (ndim in the file) is set equal to 4, and the number of samplesN
(nspl in the file) to 104. Figures 5-27 and 5-28 show results based on an ensemble of 10 runs. To
generate these results run the example workflow:

python gsatest.py

117

x1 x2 x3 x4
0

0.1

0.2

0.3

0.4

0.5

S
T i

Exact

Est.1

Est.2

Figure 5-28. Total-order Sobol indices for the model given in
Eq. (5.35). The red bars shows results based on Eq. (5.33) while
the yellow bars are based on Eq. (5.34). The black circles show
the theorerical values, computed analytically, and the error bars
correspond to ±σ computed based on an ensemble of 10 runs.
For this model, Eq. (5.34) provides more accurate estimates for
STi compared to results based on Eq. (5.33).

5.12. KARHUNEN-LOÈVE EXPANSION OF A
STOCHASTIC PROCESS

• Located in examples/kle_ex1

• Some examples of the construction of 1D and 2D Karhunen-Loève (KL) expansions of a
Gaussian stochastic process, based on sample realizations of this stochastic process.

Theory

Assume stochastic process F (x, ω) : D × Ω→ R is L2 random field onD, with covariance function
C(x, y). Then F can be written as

F (x, ω) = 〈F (x, ω)〉ω +
∞∑
k=1

√
λkfk(x)ξk (5.36)

where fk(x) are eigenfunctions ofC(x, y) and λk are corresponding eigenvalues (all positive). Random
variables ξk are uncorrelated with unit variance. Projecting realizations of F onto fk leads to samples of
ξk. These samples are generally not independent. In the special case when F is a Gaussian random
process, ξk are i.i.d. normal random variables.

118

The KL expansion is optimal, i.e. of all possible orthonormal bases for L2(D × Ω) the above
{fk(x)|k = 1, 2, . . .}minimize the mean-square error in a finite linear representation of F (·). If
known, the covariance matrix can be specified analytically, e.g. the square-exponential form

C(x, y) = exp

(
−|x− y|

2

c2
l

)
(5.37)

where |x− y| is the distance between x and y and cl is the correlation length. The covariance matrix
can also be estimated from realizations, e.g.

C(x, y) =
1

Nω

∑
ω

(F (x, ω)− 〈F (x, ω)〉ω)(F (y, ω)− 〈F (y, ω)〉ω) (5.38)

whereNω is the number of samples, and 〈F (x, ω)〉ω is the mean over the random field realizations at
x.

The eigenvalues and eigenvectors in Eq. (5.36) are solutions of the Fredholm equation of second kind:∫
C(x, y)f(y)dy = λf(x) (5.39)

One can employ the Nystrom algorithm [20] to discretize of the integral in the left-hand side of
Eq. (5.39)

Np∑
i=1

wiC(x, yi)f(yi) = λf(x) (5.40)

Herewi are the weights for the quadrature rule that usesNp points yi where realizations are provided.
In a 1D configuration, one can employ the weights corresponding to the trapezoidal rule:

wi =


y2−y1

2
if i = 1,

yi+1−yi−1

2
if 2 ≤ i < Np,

yNp−yNp−1

2
if i = Np,

(5.41)

After further manipulation, Eq. (5.40) is written as

Ag = λg

whereA = WKW and g = Wf , withW being the diagonal matrixWii =
√
wi and

Kij = C(xi, yj). Since matrixA is symmetric, one can employ efficient algorithms to compute its
eigenvalues λk and eigenvectors gk. Currently UQTk relies on the dsyevx function provided by the
LAPACK library.

The KL eigenvectors are computed as fk = W−1gk and samples of random variables ξk are obtained by
projecting realizations of the random process F on the eigenmodes fk

ξk|ωl = 〈F (x, ωl)− 〈F (x, ω)〉ω , fk(x)〉x /
√
λk

119

Numerically, these projections can be estimated via quadrature

ξk|ωl =

Np∑
i=1

wi (F (xi, ωl)− 〈F (xi, ω)〉ω) fk(xi)/
√
λk (5.42)

If F is a Gaussian process, ξk are i.i.d. normal RVs, i.e. automatically have first order Wiener-Hermite
Polynomial Chaos Expansions (PCE). In general however, the KL RVs can be converted to PCEs (not
shown in the current example).

1D Examples

In this section we are presenting 1D RFs generated with kl_1D.x. The RFs are generated on a
non-uniform 1D grid, with smaller grid spacing near x = 0 and larger grid spacing towards x = 1. This
grid is computed using an algebraic expression [15]

xi = L
β + 1− (β − 1)ri

ri + 1
, ri =

(
β + 1

β − 1

)1−ηi
, ηi =

i− 1

Np − 1
, i = 1, 2, . . . , Np (5.43)

The β > 1 factor in the above expression controls the compression near x = 0. It results in higher
compression as β gets closer to 1. The examples shown in this section are based on default values for the
parameters that control the grid definition in kl_1D:

β = 1.1, L = 1, Np = 129

Figure 5-29 shows sample realizations for 1D random fields (RF) generated with a square-exponential
covariance matrix employing several correlation lenghts cl. These figures were generated with

./mkplots.py samples 0.05

./mkplots.py samples 0.10

./mkplots.py samples 0.20

(a) cl = 0.05

0.0 0.2 0.4 0.6 0.8 1.0
x

20

10

0

10

20

F
(x
,θ

)

(b) cl = 0.10

0.0 0.2 0.4 0.6 0.8 1.0
x

20

10

0

10

20

F
(x
,θ

)

(c) cl = 0.20

0.0 0.2 0.4 0.6 0.8 1.0
x

20

10

0

10

20

F
(x
,θ

)

Figure 5-29. Sample 1D random field realizations for several
correlation lengths cl.

120

Once the RF realizations are generated the covariance matrix is discarded and a “numerical” covariance
matrix is estimated based on the available realizations. Figure 5-30 shows shaded illustration of
covariance matrices computed using several sets of 1D RF samples. These figures were generated with
./mkplots.py numcov 0.05 512 ./mkplots.py numcov 0.20 512
./mkplots.py numcov 0.05 8192 ./mkplots.py numcov 0.20 8192
./mkplots.py numcov 0.05 131072 ./mkplots.py numcov 0.20 131071

These matrices employ RF samples generated on a non-uniform grid with higher density of points near
the left boundary. Hence, the matrix entries near the diagonal in the upper right corner show larger
values. Grids grow further apart away from the left boundary hence the region near the diagonal grows
thinner for these grid points.

(a) cl = 0.05, Nω = 29 (b) cl = 0.05, Nω = 213 (c) cl = 0.05, Nω = 217

(d) cl = 0.20, Nω = 29 (e) cl = 0.20, Nω = 213 (f) cl = 0.20, Nω = 217

Figure 5-30. Illustration of covariance matrices computed from
1D RF realizations. Red corresponds to large values, close to 1,
while blue corresponds to small values, close to 0.

Figure 5-31 shows the eigenvalue solution of Fredholm equation (5.39) in its discretized form given by
Eq. (5.40). This figure was generated with

./mkplots.py pltKLeig1D 512 131072

For this 1D example problem, 29 = 512 RF realizations are sufficient to estimate the KLE eigenvalue
spectrum. As the correlation length decreases the eigenvalues decrease more slowly suggesting that more
terms are needed to represent RF fluctuations.

Figure 5-32 shows first four KL eigenvectors corresponding to cl = 0.05, scaled by the square rood of
the corresponding eigenvalue. These plots were generated with

121

0 10 20 30 40 50

Eigenvalue #

10-6

10-4

10-2

100

102

E
ig

e
n
v
a
lu

e
 M

a
g
n
it

u
d
e cl =0.05

cl =0.10

cl =0.20

Figure 5-31. KL eigenvalues estimated with two sets of RF real-
izations: 29 = 512 (dashed lines) and 217 = 131072 (solid lines).

./mkplots.py numKLevec 0.05 512 on

./mkplots.py numKLevec 0.05 8192 off

./mkplots.py numKLevec 0.05 131072 off

Unlike the eigenvalue spectrum, the eigenvectors are very sensitive to the covariance matrix entries. For
cl = 0.05, a large number of RF realizations, e.g.Nω = 217 in Fig. 5-32c, are required for computing a
covariance matrix with KLmodes that are close to the ones based on analytical covariance matrix
(analytical modes not shown).

(a) Nω = 29

0.0 0.2 0.4 0.6 0.8 1.0
x

4

2

0

2

4

√ λ
k
f k

f1

f2

f3

f4

(b) Nω = 213

0.0 0.2 0.4 0.6 0.8 1.0
x

4

2

0

2

4

√ λ
k
f k

(c) Nω = 217

0.0 0.2 0.4 0.6 0.8 1.0
x

4

2

0

2

4

√ λ
k
f k

Figure 5-32. Illustration of first 4 KL modes, computed based on
a numerical covariance matrices using three sets of RF realiza-
tions with cl = 0.05

Figure 5-33 shows first four KL eigenvectors corresponding to cl = 0.20, scaled by the square rood of
the corresponding eigenvalue. These plots were generated with

122

./mkplots.py numKLevec 0.20 512 on

./mkplots.py numKLevec 0.20 8192 off

./mkplots.py numKLevec 0.20 131072 off

For larger correlation lengths, a smaller number of samples is sufficient to estimate a covariance matrix
and subsequently the KLmodes. The results based onNω = 213 = 8192 RF realizations, in Fig. 5-33b,
are close to the ones based on a much larger number of realizations,Nω = 217 = 131072 in Fig. 5-33c.

(a) Nω = 29

0.0 0.2 0.4 0.6 0.8 1.0
x

4

2

0

2

4

√ λ
k
f k

f1

f2

f3

f4

(b) Nω = 213

0.0 0.2 0.4 0.6 0.8 1.0
x

4

2

0

2

4

√ λ
k
f k

(c) Nω = 217

0.0 0.2 0.4 0.6 0.8 1.0
x

4

2

0

2

4

√ λ
k
f k

Figure 5-33. Illustration of first 4 KL modes, computed based on
a numerical covariance matrices using three sets of RF realiza-
tions with cl = 0.20

One can explore the orthogonality of the KLE modes to compute samples of germ ξk, introduced in
Eq. (5.36). These samples are computed via Eq. (eq:xirealiz) and are saved in files xidata* in the
corresponding run directories. Using the ξ samples, one can estimate their density via Kernel Density
Estimate (KDE). Figures 5-34 and 5-35. These figures were generated with

./mkplots.py xidata 0.05 512 ./mkplots.py xidata 0.20 512

./mkplots.py xidata 0.05 131072 ./mkplots.py xidata 0.20 131072

Independent of the correlation length, a relatively large number of samples is required for “converged”
estimates for the density of ξ.

Figures 5-36 and 5-37 show reconstructions of select RF realizations. As observed in the figure showing
the decay in the magnitude of the KL eigenvalues, more terms are needed to represents small scale
features occurring for smaller correlation lengths, in Fig. 5-36, compared to RF with larger correlation
lengths, e.g. the example shown in Fig. 5-37. The plots shown in Figs. 5-36 and 5-37 were generated
with

./mkplots.py pltKLrecon1D 0.05 21 51 10

./mkplots.py pltKLrecon1D 0.10 63 21 4

123

(a) Nω = 29

4 2 0 2 4

ξ(θ)

0.0

0.1

0.2

0.3

0.4

P
D
F
(ξ

)

ξ1

ξ2

ξ3

ξ4

(b) Nω = 217

4 2 0 2 4

ξ(θ)

0.0

0.1

0.2

0.3

0.4

P
D
F
(ξ

)

ξ1

ξ2

ξ3

ξ4

Figure 5-34. Probability densities for ξk obtained via KDE using
samples obtained by projecting RF realizations onto KL modes.
Results correspond to cl = 0.05.

(a) Nω = 29

4 2 0 2 4

ξ(θ)

0.0

0.1

0.2

0.3

0.4

P
D
F
(ξ

)

ξ1

ξ2

ξ3

ξ4

(b) Nω = 217

4 2 0 2 4

ξ(θ)

0.0

0.1

0.2

0.3

0.4
P
D
F
(ξ

)
ξ1

ξ2

ξ3

ξ4

Figure 5-35. Probability densities for ξk obtained via KDE using
samples obtained by projecting RF realizations onto KL modes.
Results correspond to cl = 0.20.

2D Examples on Structured Grids

In this section we are presenting 2D RFs generated with kl_2D.x. The RFs are generated on a
non-uniform structured 2D grid [0, Lx]× [0, Ly], with smaller grid spacing near the boundaries and
larger grid spacing towards the center of the domain. This grid is computed using an algebraic
expression [15]. The first coordinate is computed via

xi = Lx
(2α + β)ri + 2α− β

(2α + 1) (1 + ri)
, ri =

β + 1

β − 1

ηi−α
1−α

, ηi =
i− 1

Np − 1
, i = 1, 2, . . . , Nx (5.44)

The β > 1 factor in the above expression controls the compression near x = 0 and x = Lx, while
α ∈ [0, 1] determines where the clustering occurs. The examples shown in this section are based on
default values for the parameters that control the grid definition in kl_2D.x:

α = 1/2, β = 1.1, Lx1 = Lx2 = L = 1, Nx1 = Nx2 = 65

124

(a) Mean

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

0 terms
(b) Mean + 10 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

10 terms
(c) Mean + 20 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

20 terms

(d) Mean + 30 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

30 terms
(e) Mean + 40 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

40 terms
(f) Mean + 50 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

50 terms

Figure 5-36. Reconstructing realizations with an increasing
number of KL expansion terms for cl = 0.05

Figure 5-38 shows the 2D computational grid created with these parameters. This figure was generated
with the Python script “pl2Dsgrid.py”

./pl2Dsgrid.py cvspl2D_0.1_4096

Figure 5-39 shows 2D RF realizations with correlation lengths cl = 0.1 and cl = 0.2. As the correlation
length increases the realizations become smoother. These figure were generated with

./mkplots.py samples2D 0.1 4096 2 (Figs. 5-39a,5-39b)

./mkplots.py samples2D 0.2 4096 2 (Figs. 5-39c,5-39d)
In a 2D configuration the rhs of Eq. (eq:fredint) is discretized using a 2D finite volume approach:

∫
Cov(x, y)f(y)dy ≈

Nx1−1∑
i=1

Nx2−1∑
j=1

(Cov(x, y)f(y)) |ijAij (5.45)

Here,Aij is the area of rectangle (ij)with lower left corner (i, j) and upper right corner (i+ 1, j + 1),
and (Cov(x, y)f(y)) |ij is the average over rectangle (ij) computed as the arithmetic average of values
at its four vertices. Eq. (5.45) can be further cast as

∫
Cov(x, y)f(y)dy ≈

Nx1∑
i=1

Nx2∑
j=1

(Cov(x, y)f(y))i,j wi,j, (5.46)

wherewi,j is a quarter of the area of all rectangles that surround vertex (i, j).

Figures 5-40 and 5-41 shows first 8 KLmodes computed based on covariance matrices that where
estimated from 212 = 4096 and 216 = 65536 number of RF samples, respectively, and correlation
length cl = 0.1 for both sets. The results in Fig. 5-41 are close to the KLmodes corresponding to the
analytical covariance matrix (results not shown), while the results in Fig. 5-40 indicate that 212 RF
realizations is not sufficient to generate converged KLmodes. These figures were generated with

125

(a) Mean

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

0 terms
(b) Mean + 4 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

4 terms
(c) Mean + 8 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

8 terms

(d) Mean + 12 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

12 terms
(e) Mean + 16 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

16 terms
(f) Mean + 20 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

20 terms

Figure 5-37. Reconstructing realizations with an increasing
number of KL expansion terms for cl = 0.10

./mkplots.py numKLevec2D 0.1 4096 (Fig. 5-40)

./mkplots.py numKLevec2D 0.1 65536 (Fig. 5-41)
Figure 5-42 shows first 8 KLmodes computed based on a covariance matrix that was estimated from
212 = 4096 number of RF samples. For these results, with correlation length cl = 0.5, 212 samples are
sufficient to estimate the covariance matrix and subsequently KLmodes that are close to analytical
results (results not shown). The plots in Fig. 5-42 were generated with

./mkplots.py numKLevec2D 0.5 4096

Figures 5-43 and 5-44 show reconstructions of select 2D RF realizations. As observed in the previous
section for 1D RFs, more terms are needed to represents small scale features occurring for smaller
correlation lengths, in Fig. 5-43, compared to RF with larger correlation lengths, e.g. the example shown
in Fig. 5-44. The plots shown in Figs. 5-43 and 5-44 were generated with

./mkplots.py pltKLrecon2D 0.2 3 85 12 (Fig. 5-43)

./mkplots.py pltKLrecon2D 0.5 37 36 5 (Fig. 5-44)

2D Examples on Unstructured Grids

For this example we choose a computational domain that resembles the shape of California. A number
of 212 = 4096 points were randomly distributed inside this computational domain, and a triangular
grid with 8063 triangles was generated via Delaunay triangulation. The 2D grid point locations are
provided in “data/cali_grid.dat” and the grid point connectivities are provided in “data/cali_tria.dat”.
Figure 5-45 shows the placement of these grid points, including an inset plot with the triangular grid
connectivities. This figure shows the grids on a uniform scale in terms of latitude and longitude degrees
and was generated with

./pl2Dugrid.py

126

Figure 5-38. Structured grid employed for 2D RF examples.

(a) cl = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(b) cl = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(c) cl = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(d) cl = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Figure 5-39. Sample 2D random field realizations for cl = 0.1 and
cl = 0.2.

Figure 5-46 shows 2D RF realizations with correlation lengths cl = 0.5◦ and cl = 2◦. These figure were
generated with

./mkplots.py samples2Du 0.5 4096 2 (Figs. 5-46a,5-46b)

./mkplots.py samples2Du 2.0 4096 2 (Figs. 5-46c,5-46d)

Figure 5-47 shows first 16 KLmodes computed based on a covariance matrix that was estimated from
216 = 65536 number of RF samples, with correlation length cl = 0.5◦. The KLmodes corresponding
to an analytically estimated covariance matrix with the same correlation length are shown in Fig. 5-48.
For this example, it seems that 216 samples are sufficient to estimate the first 12 to 13 modes accurately.
Please note that some of the modes can differ up to a multiplicative factor of−1, hence the colorscheme
will be reversed. Higher order modes start diverging from analytical estimates, e.g. modes 14 through 16
in this example. Figure 5-49 shows KLmodes corresponding to a covariance matrix estimated from RF
realizations with cl = 2◦. For this correlation length, 216 samples are sufficient to generate KL modes
that are very close to analytical results (not shown). These figures were generated with

./mkplots.py numKLevec2Du 0.5 65536 (Fig. 5-47)

127

(a) Mode 1

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(b) Mode 2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(c) Mode 3

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(d) Mode 4

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(e) Mode 5

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(f) Mode 6

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(g) Mode 7

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(h) Mode 8

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Figure 5-40. Illustration of first 8 KL modes, computed based
on a numerical covariance matrix estimated using 212 2D RF
realizations with cl = 0.1

./mkplots.py anlKLevec2Du SqExp 0.5 (Fig. 5-48)

./mkplots.py numKLevec2Du 2.0 65536 (Fig. 5-49)

128

(a) Mode 1

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(b) Mode 2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(c) Mode 3

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(d) Mode 4

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(e) Mode 5

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(f) Mode 6

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(g) Mode 7

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(h) Mode 8

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Figure 5-41. Illustration of first 8 KL modes, computed based
on a numerical covariance matrix estimated using 216 2D RF
realizations with cl = 0.1

129

(a) Mode 1

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(b) Mode 2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(c) Mode 3

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(d) Mode 4

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(e) Mode 5

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(f) Mode 6

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(g) Mode 7

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(h) Mode 8

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Figure 5-42. Illustration of first 8 KL modes, computed based
on a numerical covariance matrix estimated using 212 2D RF
realizations with cl = 0.5

(a) Mean

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(b) Mean + 12 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(c) Mean + 24 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(d) Mean + 36 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(e) Mean + 48 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(f) Mean + 60 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(g) Mean + 72 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(h) Mean + 84 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Figure 5-43. Reconstructing 2D realizations with an increasing
number of KL expansion terms for cl = 0.2

130

(a) Mean

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(b) Mean + 5 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(c) Mean + 10 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(d) Mean + 15 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(e) Mean + 20 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(f) Mean + 25 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(g) Mean + 30 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(h) Mean + 35 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Figure 5-44. Reconstructing 2D realizations with an increasing
number of KL expansion terms for cl = 0.5

−124 ◦ −122 ◦ −120 ◦ −118 ◦ −116 ◦

lon

34 ◦

36 ◦

38 ◦

40 ◦

la
t

Figure 5-45. Unstructured grid generated via Delaunay traingu-
lation overlaid over California.

131

(a) cl = 0.5◦

lon

la
t

(b) cl = 0.5◦

lon

la
t

(c) cl = 2◦

lon

la
t

(d) cl = 2◦

lon

la
t

Figure 5-46. Sample 2D random field realizations on an unstruc-
tured grid for cl = 0.5◦ and cl = 2◦.

(a) Mode 1

lon

la
t

(b) Mode 2

lon

la
t

(c) Mode 3

lon

la
t

(d) Mode 6

lon

la
t

(e) Mode 10

lon

la
t

(f) Mode 16

lon

la
t

Figure 5-47. Illustration of select KL modes, computed based
on a numerical covariance matrix estimated using 216 2D RF
realizations on an unstructured grid with cl = 0.5◦.

132

(a) Mode 1

lon

la
t

(b) Mode 2

lon

la
t

(c) Mode 3

lon

la
t

(d) Mode 6

lon

la
t

(e) Mode 10

lon

la
t

(f) Mode 16

lon
la

t

Figure 5-48. Illustration of select KL modes, computed based
on an analytical covariance matrix for 2D RF realizations on an
unstructured grid with cl = 0.5◦ and a square-exponential form.

(a) Mode 1

lon

la
t

(b) Mode 2

lon

la
t

(c) Mode 3

lon

la
t

(d) Mode 6

lon

la
t

(e) Mode 10

lon

la
t

(f) Mode 16

lon

la
t

Figure 5-49. Illustration of select KL modes, computed based
on a numerical covariance matrix estimated using 216 2D RF
realizations on an unstructured grid with cl = 2◦.

133

6. SUPPORT

UQTk is the subject of continual development and improvement. If you have questions about or
suggestions for UQTk, feel free to e-mail the UQTk developers at
uqtk-developers@software.sandia.gov, or share your questions directly with the UQTk Users
list, at uqtk-users@software.sandia.gov. We also maintain an announcement list
uqtk-announce@software.sandia.gov for announcements about UQTk. To sign up for these
mailing lists, please visit the UQTk website at https://www.sandia.gov/UQToolkit/.

134

uqtk-developers@software.sandia.gov
uqtk-users@software.sandia.gov
uqtk-announce@software.sandia.gov
https://www.sandia.gov/UQToolkit/

REFERENCES

[1] S. Babacan, R. Molina, and A. Katsaggelos. Bayesian compressive sensing using Laplace priors.
IEEE Transactions on Image Processing, 19(1):53–63, 2010.

[2] J. Ching and Y.-C. Chen. Transitional markov chain monte carlo method for bayesian model
updating, model class selection, and model averaging. Journal of Engineering Mechanics,
133(7):816–832, 2007.

[3] C.W. Clenshaw and A. R. Curtis. A method for numerical integration on an automatic computer.
Numerische Mathematik, 2:197–205, 1960.

[4] B.J. Debusschere, H.N. Najm, P.P. Pébay, O.M. Knio, R.G. Ghanem, and O.P. Le Maître.
Numerical challenges in the use of polynomial chaos representations for stochastic processes.
SIAM Journal on Scientific Computing, 26(2):698–719, 2004.

[5] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis.
Chapman &Hall CRC, 2 edition, 2003.

[6] Stuart Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
PAMI-6(6):721–741, 1984.

[7] Thomas Gerstner andMichael Griebel. Numerical integration using sparse grids. Numerical
Algorithms, 18(3-4):209–232, 1998. (also as SFB 256 preprint 553, Univ. Bonn, 1998).

[8] R.G. Ghanem and P.D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer Verlag,
New York, 1991.

[9] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in Practice.
Chapman &Hall, London, 1996.

[10] G. H. Golub and J. H. Welsch. Calculation of Gauss quadrature rules. Math. Comp., 23:221–230,
1969.

[11] H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli,
7:223–242, 2001.

[12] Heikki Haario, Marko Laine, Antonietta Mira, and Eero Saksman. Dram: Efficient adaptive
mcmc. Statistics and Computing, 16(4):339–354, 2006.

[13] R.G. Haylock and A. O’Hagan. On inference for outputs of computationally expensive
algorithms with uncertainty on the inputs. Bayesian statistics, 5:629–637, 1996.

[14] F.B. Hildebrand. Introduction to Numerical Analysis. Dover, 1987.

135

[15] K.AHoffmann and S.T. Chiang. Computational Fluid Dynamics, volume 1, chapter 9, pages
358–426. EES, 2000.

[16] M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal of the Royal
Statistical Society: Series B, 63(3):425–464, 2001.

[17] S. Kucherenko, S. Tarantola, and P. Annoni. Estimation of global sensitivity indices for models
with dependent variables. Computer Physics Communications, 183:937–946, 2012.

[18] O.P. Le Maître and O.M. Knio. Spectral Methods for Uncertainty Quantification: With
Applications to Computational Fluid Dynamics (Scientific Computation). Springer, 1st edition.
edition, April 2010.

[19] Y. M. Marzouk and H. N. Najm. Dimensionality reduction and polynomial chaos acceleration of
Bayesian inference in inverse problems. Journal of Computational Physics, 228(6):1862–1902, 2009.

[20] E.J. Nyström. Über die praktische auflösung von integralgleichungen mit anwendungen auf
randwertaufgaben. Acta Mathematica, 54(1):185–204, 1930.

[21] J. Oakley and A. O’Hagan. Bayesian inference for the uncertainty distribution of computer model
outputs. Biometrika, 89(4):769–784, 2002.

[22] Mark Orr. Introduction to radial basis function networks. Technical Report, Center for Cognitive
Science, University of Edinburgh, 1996.

[23] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press,
2006.

[24] M. Rosenblatt. Remarks on a multivariate transformation. Annals of Mathematical Statistics,
23(3):470 – 472, 1952.

[25] A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer Physics
Communications, 145:280–297, 2002.

[26] K. Sargsyan. Surrogate models for uncertainty propagation and sensitivity analysis. In
R. Ghanem, D. Higdon, and H. Owhadi, editors,Handbook of Uncertainty Quantification.
Springer, 2017.

[27] K. Sargsyan, H.N. Najm, and R. Ghanem. On the Statistical Calibration of Physical Models.
International Journal of Chemical Kinetics, 47(4):246–276, 2015.

[28] K. Sargsyan, C. Safta, H. Najm, B. Debusschere, D. Ricciuto, and P. Thornton. Dimensionality
reduction for complex models via Bayesian compressive sensing. International Journal of
Uncertainty Quantification, 4(1):63–93, 2014.

[29] D.W. Scott. Multivariate Density Estimation. Theory, Practice and Visualization. Wiley, New
York, 1992.

[30] B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall,
London, 1986.

[31] D.S. Sivia. Data Analysis: A Bayesian Tutorial. Oxford Science, 1996.

136

[32] S. A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of
functions. Soviet Mathematics Dokl., 4:240–243, 1963.

[33] I. M. Sobol. Sensitivity estimates for nonlinear mathematical models. Math. Modeling and
Comput. Exper., 1:407–414, 1993.

[34] K. M. Zuev and J. L. Beck. Asymptotically independent markov sampling: A newmcmc scheme
for Bayesian inference. In Vulnerability, Uncertainty, and Risk : Quantification, Mitigation, and
Management - CDRM 9, pages 2022–2031. 2014.

137

DISTRIBUTION

Email—Internal

Name Org. Sandia Email Address

CA Technical Library 8551 cateclib@sandia.gov

138

139

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Revision History
	Overview
	Download and Installation
	Requirements
	Download
	Directory Structure
	External Software and Libraries
	Required
	Optional

	Installation
	Configuration flags
	Installation example
	Setting up External Libraries

	Theory and Conventions
	Polynomial Chaos Expansions

	Source Code Description
	C++ Libraries
	mcmc:
	amcmc:
	tmcmc:
	ss:
	mala:
	mmala:

	C++ Applications
	generate_quad:
	gen_mi:
	gp_regr:
	lr_regr:
	model_inf:
	pce_eval:
	pce_quad:
	pce_resp:
	pce_rv:
	pce_sens:
	pdf_cl:
	regression:
	sens:

	Python Modules
	Bayesian Evidence Estimation

	Examples
	Elementary Operations
	Polynomial Fitting
	Forward Propagation of Uncertainty
	Numerical Integration
	Forward Propagation of Uncertainty with PyUQTk
	Expanded Forward Propagation of Uncertainty - PyUQTk
	Forward Propagation of Uncertainty Using Basis Adaptation
	Bayesian Inference of a Line
	Sampling of Multimodal Posterior PDFs using TMCMC
	Forward Propagation of Uncertainties, Surrogate Construction and Global Sensitivity Analysis
	Global Sensitivity Analysis via Sampling
	Karhunen-Loève Expansion of a Stochastic Process

	Support
	References

