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ABSTRACT
This document presents tests from the Sierra Structural Mechanics verification test suite.
Each of these tests is run nightly with the Sierra/SD code suite and the results of the test
checked versus the correct analytic result. For each of the tests presented in this document
the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code
results to the analytic solution is provided. This document can be used to confirm that a
given code capability is verified or referenced as a compilation of example problems.
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EXECUTIVE SUMMARY

Verification and validation (V&V) of scientific computing programs are important at
Sandia National Labs due to the expanding role of computational simulation in managing
the United States nuclear stockpile. The complexities of structural response calculations
used to analyze physical problems, the varieties of codes applied to the calculations, and
the importance of accurate predictions when assessing field conditions demand confidence
in the consistency and accuracy of computer codes. Confidence in the accuracy of the
predictions arising from computer simulations must ultimately be gained through
verification and validation.

The Sierra structural dynamics analysis code (Sierra/SD) plays a central role in the
qualification of weapon systems and components for normal and hostile environments
throughout the Stockpile-to-Target Sequence. Sierra/SD is used:

• To redesign weapon components.

• To certify weapon components and systems for target environments such as
hypersonic vehicles.

• To certify that components will survive the thermal mechanical shock loads
associated with hostile environments.

• To evaluate current stockpile issues, including issues associated with uncertainty
quantification.

• To address many other problems that are encountered in stockpile management.

Furthermore, Sierra/SD is an engineering code that is used at Los Alamos National
Laboratories (LANL), and elsewhere.

This document describes the verification plan for the Sierra/SD code. Additionally
detailed description is provided for several key verification tests. The verification tests
assure that the mathematics and numerical algorithms associated with functionality
describing engineering phenomena in Sierra/SD are implemented correctly. The suite of
verification tests will evolve as the functionality of Sierra/SD evolves.

Sierra/SD is developed in accordance with a set of Software Quality Engineering (SQE)
practices.11 These procedures conform to those outlined in,58 but are tailored to
Sierra/SD development. It is important to understand the role that these SQE practices
play in the overall verification and validation effort.
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1. PROCEDURES

1.1. Overview

This document contains a verification overview for the software package Sierra/SD. In
contrast to the User’s Manual,46 which demonstrates how to use the code, and the Theory
Manual,47 which details the underlying mathematics of the code, the verification manual is
a list of well documented verified examples demonstrating how the code performs on a
subset of verification problems. In additional to the verification tests detailed in this
document high confidence in the correctness of Sierra/SD is maintained by an extensive
test suite, several code quality tools, and rigorous team processes. The intent is to verify
each capability in Sierra/SD. This manual should be used to gain a level of confidence in
the rigor for which Sierra/SD is verified for high consequence analysis. However, quality
verification is a journey of continuous improvement. There may be gaps in the verification
coverage. If there is a clear gap in the verification coverage that is essential to analysis, the
Sierra/SD team should be contacted at sierra-help@sandia.gov.

1.2. Code Development Practices

The first step to a well verified code is code development practices that ensure all new code
features are properly tested. The Sierra/SD team follows the laws of test driven
development (TDD) coding practice as outlined in Clean Code.35 The three laws of TDD
are

1. You may not write production code until a failing unit test is written.

2. You may not write more of a unit test than is sufficient to fail.

3. You may not write more production code than is sufficient to fix the currently failing
test.

Following these laws ensures that all new capability is covered by tests, and that all
capability modified through user stories or corrected by user support is also covered by
tests. However, these practices fail to ensure that all legacy capability is adequately
covered, or that all permutations of capability are well verified. The Sierra/SD process for
covering permutations of capability is outlined in 1.8. In addition to the enumerated TDD
practices the Sierra/SD development team also uses code reviews, pair programming, and
external beta testing as additional safeguards to prevent coding errors.
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1.3. Overview of testing Pyramid

To efficiently maintain code quality, a test pyramid is needed. Most tests are fast and test
individual capabilities. The pyramid is capped by a few large and complex tests. There are
many types of tests for Sierra/SD: Unit, Fast (Continuous), Performance, Verification,
Regression, and Acceptance. For tests to have value they most be run regularly and in an
automated fashion. With the exception of a few large acceptance tests the entire
Sierra/SD test suite is run nightly.

• Unit Tests: a test of an individual source code function. Unit tests are generally run
through the Google GTEST framework. A unit test can be used to verify a given
function has the correct behavior for every possible input. Unit tests are fast.
Sierra/SD currently uses many thousand unit tests.

• Fast Tests: a test that must run in under ten seconds. Fast tests are run every hour
on the release branch of the Sierra code base. This high run frequency allows quickly
pinpointing any issues introduced into the code base. The fast test suite is designed
to give a broad coverage of all core Sierra/SD features. Sierra/SD uses about a
thousand fast tests.

• Verification Tests: a test that compares test outputs to an analytic result or confirms
the test has some expected property (such as a convergence rate.) Verification tests
are one of the most valuable test types and the verification test suite will continue to
be expanded over time. Sierra/SD maintains about a thousand verification tests.

• Regression Tests: a test confirming that the code produces an expected output, but
without rigorous mathematical demonstration that the output is indeed correct.
Generally a test case is produced and then engineering judgment used to confirm the
test case is behaving as expected. The test then confirms this approved behavior is
maintained. An example would be the modal decomposition of a complex shape part.
Currently Sierra/SD uses several thousand regression test. Regression tests are a
necessity, but the Sierra/SD development team is moving over time to a larger
balance of tests in the more valuable unit and verification categories.

• Performance Tests: a test used to confirm Sierra/SD maintains acceptable runtime
and memory use bounds. These tests are expensive and Sierra/SD maintains about
a hundred.

• Acceptance Tests: a test of an analysis use case provided by an analyst. Acceptance
tests are the largest and most complex tests in the system. An acceptance test
ensures the work flow for an entire complex analysis chain maintains functionality.
As acceptance tests are expensive Sierra/SD maintains about a dozen to cover the
most important and commonly used work flows.
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1.4. User Support Process

The key to credible capability is a user support process that identifies, patches, and tests
against any bugs found by Sierra/SD analysts. When a bug report is submitted a
minimal representative example of the bug is produced by the developers and added as a
test to the nightly test suite. After necessary development is done to resolve the issue the
new nightly test ensures that the bug will not reappear in future releases.

1.5. Verification Policy for New Features

When new capability is added to Sierra/SD, the code development processes outlined in
Clean Code35 and Test Driven Development are followed. The new development always
begins with a unit testing of new functionality. After completing the unit test, a
self-documenting verification test is added that demonstrates the capability reproduces an
analytical result. Additionally, regression tests may added that exercise the range of inputs
of the capability. Once these tests are in place, an acceptance model, received from key
analyst stakeholders, is run to ensure the capability behaves as expected and gives an
acceptable result.

The Sierra/SD team migrated to a structure of individual test documentation maintained
in the test repositories in 2013. The legacy formats are also included in this document, and
eventually will be migrated to the new format. Thus though all verification tests are
verified to a high level of rigor, not all verification tests are included in this verification test
manual.

1.6. Nightly Testing Process

Every night the entire code base is compiled on multiple platforms with multiple compilers.
Some subset of the nightly tests are run on each platform. Every fast and nightly test is
run on the development platform, compiled with both debug/release and gcc/intel
compilers. Additionally, all nightly tests are run on the Trinity surrogate (both Haswell
and Knights Landing chips). The entire test suite (including performance tests) are run on
intel-release on the primary HPC production platform dedicated to Nuclear Deterrence.
Some subsection of the tests are run on experimental platforms, such as Darwin
(MAC-OS), Broadwell, and Ride (GPU). These tests are useful because they may identify
software quality issues that don’t cause problems in the production platforms, but could in
the future as new platforms move into production.

1.7. Other SQA Tools

In addition to the nightly testing process, other software quality tools are run nightly to
check for possible code errors or gaps in testing coverage. These tools include the memory
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checker Valgrind, the Feature Coverage Tool (FCT), and the Line Coverage Tool
(LCOV).

1.7.1. Valgrind

Valgrind is a tool used to check for memory leaks and memory errors. A memory leak is
when memory is allocated, but never freed while the program is still running. The
existence of memory leaks within loops can lead to a simulation taking an increasing
amount of memory as simulation time increases, eventually leading to code failure. A
memory error represents the executable accessing memory that has not been allocated, or
is otherwise out of bounds. A memory error generally results in unpredictable behavior,
and can lead to fatal segmentation faults. Valgrind is run nightly on both the "nightly" and
"fast" tests. All memory leaks and errors are eliminated for every sprint snapshot and
release version of Sierra/SD.

1.7.2. LCOV

The coverage tool For Sierra/SD, LCOV, measures the code source line coverage of unit,
fast, and nightly testing. The LCOV tool reports how many times each line of code is
called for the respective test suite. For each file, folder, and executable in Sierra LCOV
reports the percentage of lines in the code that are covered by at least one test. For
example, as of the 4.56 release, unit tests cover 49.5% and all tests cover 87.9% of the code
base. It is up to the development team to ensure that all new features are well covered.
The Sierra/SD development team strives to improve test code coverage over time.
However, 100.0% coverage is not always practical. Some uncovered code is either
non-released research capability or deprecated legacy capability. Additionally, many error
messages do not have a test that hits the error message, therefore the line of code with the
error message may be uncovered.

1.8. FCT

For Sierra/SD the Feature Coverage Tool (FCT) creates three documents from an input
file; the annotated input file, the two-way coverage graph and the list of best matching
tests. The FCT can be used by analysts to assess the Sierra/SD verification rigor for a
specific analysis. Additionally the Sierra/SD development team can use output of the
FCT prioritize needs for verification test suite improvement.

The annotated input file shows the features (corresponding to input deck lines) that are
used in verification tests (in green), regression tested (yellow) or untested (red). Developers
and analysts can use this tool to see if for an analysis in question untested features are
used and take action to mitigate or explain them. One mitigation strategy is to create a
new verification test for the feature. An explanation is needed if the FCT has indicated a
false positive (the FCT tool is helpful, but still in development).
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The second document produced by FCT is the two-way coverage chart. The two-way
coverage chart indicates for any two features if a verification or regression test exists that
uses both of those features simultaneously. It can be impractical to add a verification test
every possible feature combination. However, the two-way coverage report can be used to
see if certain key feature combinations are tested together, such as damping in a transient
analysis or strain output on shell elements. Lack of a two-way coverage test may indicate
additional verification testing is needed, though engineering judgment must be applied to
identify the most critical feature combinations.

The third FCT output is a of list the top 5 verification tests nearest to (in the sense of
using the same capabilities) as used in the input file. If an analysis has a closely matching
rigorous verification test is gives high confidence that the entire use case of the analysis and
all feature combinations used are well verified in conjunction.
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2. TESTS

2.1. Craig Bampton Reduction

The goal of the test is to verify both generation of a Craig-Bampton (CB) reduction and
associated matrix sensitivities as well as the Taylor series expansion of the resulting
matrices to generate a point evaluation of a parameter.

2.1.1. One Hex Models

The model is shown in Figure 1-1. There are two hex elements in the structure. The
element on the right of the figure will be reduced to a superelement. The element on the
left is the “residual structure,” which uses the previously generated superelement. It is
clamped on the left surface. Analysis is performed in two stages. First, the CB reduction is
performed and sensitivity matrices dKr/dp and dMr/dp are generated. The reduction is
performed in two ways: by constant vector, and by finite difference approaches. Following
sensitivity analysis and model reduction, a system analysis is performed where those
matrices are used in a Taylor series expansion.

For this analysis, we use the material density as the sensitivity parameter. The model is
selected so there are no repeated frequencies.

Figure 1-1. – One Hex superelement model
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2.1.2. Analysis

2.1.2.1. Analytic Analysis

For a constant vector sensitivity analysis, the reduced order matrices are given by,

k̃o = T To K(po)To (2.1.1)
k̃1 = T To K(po+ ∆p)To (2.1.2)
dk̃

dp
≈ k̃1− k̃o

∆p (2.1.3)

Here,

To is the transformation matrix evaluated at po,
po is the nominal value of the sensitivity parameter,
∆p is the change of the sensitivity parameter,
k̃ is the reduced stiffness matrix, and
K() is the unreduced stiffness matrix.

Identical relations exist for the mass matrix.

In our example, the density of a single element is the only sensitivity parameter. The
density has no impact on the stiffness matrix, so k̃1 = k̃o, and dk̃/dp= 0. There is a change
in the mass matrix, which will affect the system eigen frequencies.

For a finite difference sensitivity analysis, the relations are somewhat different.

k̃o = T To K(po)To (2.1.4)
k̂1 = T T1 K(po+ ∆p)T1 (2.1.5)
dk̃

dp
≈ k̂1− k̃o

∆p (2.1.6)

Here,

T1 is the transformation matrix evaluated at po+ ∆p,

Because T1 depends on the density, the reduced stiffness matrix is affected by the
transformation. Interestingly enough, the reduced mass matrix is impacted less because of
normalization of the fixed interface nodes, which counter the effect of increased mass. The
1,2 and 2,2 sections of the matrix do change.
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2.1.2.2. Numerical Results

Figure 1-2 shows a comparison of the system level solutions as a function of density. Three
curves are shown. The exact solution shows results obtained by rebuilding the superelement
using the parameter, and without sensitivities. The other two curves evaluate dk/dp at the
nominal value, and estimate the superelement contribution using a Taylor series expansion.
Results are shown for mode 3. A comparison of the error is shown in Figure 1-3
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Figure 1-2. – Modal Frequency Variation with Density
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Figure 1-3. – Modal Frequency Error with Density

2.1.3. Summary

These analyses compare results for application of sensitivity matrices to superelement
analysis. In this extremely simple example, the constant vector method is exact, while
finite difference methods introduce a slight error. That is not a general case. For input
deck see Appendix 11.4.
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2.2. Superelement Damping

A superelement can have block proportional damping in Sierra SD.1 A model was created
consisting of two steel blocks acting as a cantilever beam. To incorporate block
proportional damping into a system two parameters may be used, blkalpha and blkbeta.
Blkalpha is mass proportional damping and blkbeta is stiffness proportional damping. For
this model stiffness damping has the largest impact on the system. The damping
parameters are set low enough for energy to enter block two, but high enough to absorb
energy. A pressure load is applied on the top surface of block 1. A transient analysis is run
with and without superelements and compared. Block 2 is reduced to a superelement and
contains block proportional damping. The damping parameters for the superelement run
are entered in the block section of the input deck during the CBR solution. Figure 2-5

Figure 2-4. – Initial model and model with superelement

consists of three curves including the undamped full system solution, the damped solution
with no superelements, and the damped solution with superelements. The damped model
with superelements traces the damped model without superelements well. A full
convergence study was not preformed as the two damped models will not match perfectly
due to model truncation. For input deck see Appendix 11.5.

1System proportional damping does not create a damping matrix and cannot be used to generate a reduced
order damping matrix.
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Figure 2-5. – Superelement Damping Results. Damped and undamped response of full system
models compared with damped model of the reduced order model.
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2.3. SierraSM to Sierra/SD Coupling

2.3.1. Deflection of Axially Loaded Beam

This verification test computes deflections of beams with axial preload. Comparisons are
made between analytic solutions, nonlinear static Sierra/SM analysis, and linear static
Sierra/SD analysis with geometric stiffness from preload.

The idealized beam model is shown in Figure 3-6. The finite element model geometry is
shown in Figure 3-7. The red block is a uniform elastic material. The green dots represent
nodes at which boundary conditions are applied. The left node is fixed in x and y to
represent a pin. The right node is fixed in y and has the applied axial force P . The whole
model is fixed in z. The gray blocks on each end of the beam are a very stiff material used
to prevent large local deformations around the pinned nodes. The small yellow sideset at
the center of the beam is used for applying a traction to generated the applied lateral force
F .

Figure 3-6. – Idealized Model Setup

Figure 3-7. – Meshed Beam
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Verification checks of the model vs. analytic solutions are made looking at the maximum
lateral deformation δ under various conditions. This maximum lateral deformation always
occurs at the beam mid-span. Deflections are kept small in order to approximate the
linearized simple beam equations. The specific geometry and loads considered are given in
Table 3-1. The test directory contains a Mathematica notebook file that gives the beam
analytic solutions and detailed numeric results for the specific geometry and loads
considered.

Table 3-1. – Model Parameters

Parameter Value Description
L 20 Beam Length in X direction
H 1 Beam Height in Y direction
W 0.1 Beam Width in Z direction
E 7.8e+7 Material Young’s Modulus
F 2000 Lateral Force
P -5000, 0, or 5000 Axial Force

2.3.1.1. Basic Beam Deflection

The beam moment of inertial I is given by Equation 2.3.1.

I = WH3

12 (2.3.1)

In absence of an axial load, the expected beam deflection δbend is given by Equation 2.3.2.

δbend = FL3

48EI (2.3.2)

The expected numeric result for the geometry is δbend = 0.512. Sierra/SM computes a
value of 0.521 and Sierra/SD a value of 0.516. The discrepancy is due to limited mesh
resolution and small deviations between idealized Euler-Bernoulli beam theory and the 3d
model. Generally, the comparison is good, indicating that the finite element model closely
aligns with the beam theory assumptions.

2.3.1.2. Beam Deflection with Axial Preload

With the addition of an axial preload P , an additional P − δ effect becomes relevant. A
lateral deformation at the end of the beam causes the axial force P to generate an extra
moment on the beam. When P is compressive, this extra moment magnifies the lateral
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displacement. When P is tensile, the this extra moment reduces the lateral displacement.
The analytic solution can be found by considering half the beam as a cantilever as shown
in Figure 3-8. The equation for the displacement of a cantilever beam with an end load is
given in Equation 2.3.3.

Figure 3-8. – Cantilever Beam With Axial Load

δbend(x) = 3FLx2−Fx3

6EI (2.3.3)

The axial preload applied to the deformed shape generates a distributed moment given in
Equation 2.3.4.

M1(x) = P
dδbend(x)

dx
= PF (2L−x)x

2EI (2.3.4)

The additional increment of deformation δ1 of a cantilever subjected to the extra moment
from Equation 2.3.4 is given in Equation 2.3.5.

δ1(x) =
∫ ∫ M1(x)

EI
d2x=−FP (20L3x2−5Lx4 +x5)

120E2I2 (2.3.5)

This additional deformation causes additional cycles of moment and deflection given in
Equations 2.3.6 and 2.3.7.

Mn+1(x) = P
dδn(x)
dx

(2.3.6)
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δn+1(x) =
∫ ∫ Mn+1(x)

EI
d2x (2.3.7)

The exact result for expected deformation can be found by summing the series shown in
Equation 2.3.8.

δ(x) = δbend(x) + δ1(x) + δ2(x) + ...+ δn(x) (2.3.8)

This series converges to a high-precision value after a few terms (unless P is above the
buckling load, in which case the series diverges). The Mathematica notebook included in
the test directory sums many terms of the series to produce an exact analytic solution. The
analytic and computed solution for tensile and compressive preload are given in
Table 3-2.

The Sierra/SM nonlinear static solution can directly solve for the preloaded beam
deflection. To solve in Sierra/SD, first Sierra/SM is used to apply the axial preload.
The preload stress state is imported into Sierra/SD with the receive_sierra_data
solution case. A lateral load is then applied as a linear static load in Sierra/SD. The
preloaded stress state alters the element geometric stiffness allowing the correct ultimate
deflection to be extracted in Sierra/SD.

Table 3-2. – Max Displacement Preloaded Beam

Analytic Sierra/SM Sierra/SD after
Result Sierra/SM Preload

Compressive Preload 0.741 0.757 0.748
Tensile Preload 0.392 0.399 0.394

A close match is obtained using both the direct Sierra/SM solution method and the
Sierra/SM axial preload followed by Sierra/SD lateral load on the preloaded structure.

2.3.1.3. Preload Equilibrium and Preload Options

By default, the Sierra/SD receive_sierra_data solution case imports the preload stress
state and computes the initial internal force produced by that stress state. The internal
force computed from a stress state should be in equilibrium with the external force that
caused that stress state. If Sierra/SD imports a stress state and applies the same external
loads as were applied in Sierra/SM, the model should be in equilibrium and compute zero
displacement in the Sierra/SD solution. The result for this case is given in the first row of
Table 3-3. Some small deformation happens in Sierra/SD, but it is small compared to the
nominal displacement of the system (0.512). The small discrepancy is related to
incompatibilities in element formulation between Sierra/SM and Sierra/SD as well as
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minor geometric nonlinearities in the Sierra/SM solution that cause the Sierra/SM
equilibrium state to not exactly match the Sierra/SD equilibrium state.

As a corollary to maintaining equilibrium, if the preloaded stress state is read into
Sierra/SD using default options, but no loads are applied in Sierra/SD, then the initial
forces computed from the stress preload should snap the deformation back to the unloaded
state. This result is given in the second row of Table 3-3. The comparison is good, with
small discrepancies related to the formulation differences between Sierra/SD and
Sierra/SM.

The option include_internal_force for the receive_sierra_data solution case controls
whether the internal force associated with the stress state is added to the solution right
hand side. By default, this option is true and this force is included, which accounts for the
expected results in the first two columns of Table 3-3. This option can be turned off, in
which case the resultant internal force from integrating the stress state is not included. If a
model is preloaded in Sierra/SM and the preload-causing external forces are not included
in the Sierra/SD model definition, then the include_internal_force option should be
set to off. Effectively, this asserts that the preloaded state should be treated as an exact
equilibrium state. The check on this result is given in the third row of Table 3-3. When the
initial model state is treated as an exact equilibrium, exactly no displacement is produced
in the unloaded Sierra/SD model.

A second check of the include_internal_force option is given in the fourth row of
Table 3-3. In this example, a tensile preload is applied in Sierra/SM, and Sierra/SD
imports this stress state. The Sierra/SD model turns off the initial internal force
calculation, and consistent with that, does not apply the tensile external force. When this
Sierra/SD model is subjected to lateral force, it produces the expected deformation of a
cantilever with axial tension.

Table 3-3. – Equilibrium Test Cases

Loads Options Analytic Expected Computed
Max Displacement Sierra/SD
Sierra/SD Result Result

Lateral load in Sierra/SM Defaults 0.0 0.0023
same Sierra/SD

Lateral load in Sierra/SM, Defaults -0.512 -0.513
no load in Sierra/SD

Lateral load in Sierra/SM, include_internal_force=off 0.0 0.0
no load in Sierra/SD

Tensile load in Sierra/SM, include_internal_force=off 0.392 0.395
lateral load inSierra/SD
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2.3.1.4. Geometric Stiffness Options

Usually, the primary reason to include preload is to take into account the geometric stiffing
or softening effects of that preload stress. Sierra/SD has an option no_geom_stiff to
ignore this effect. This option can be used to debug models and to see whether the
geometric stiffness is causing issues for solvers. Sufficiently large compressive stress can
cause stiffness to go negative (physically buckling). Such states will often not solve or could
cause stability problems. With the geometric stiffness turned off, Sierra/SD will still
import the deformed shape and parameters that relate to the the material tangent stiffness.
A check of the no_geom_stiff option is given in Table 3-4. Here, the deformation of the
beam ignoring geometric stiffness is nearly the deformation of a beam without any axial
preload. The slight deviation between the tensile and compressive preload state relates to
reading the initial model geometry from the Sierra/SM-deformed shape, which is slightly
different for the compressive and tensile preloads. This result demonstrates that for this
example, correct calculation of geometric stiffness is very important to obtain analytic
results, while use of the deformed state has very little effect.

Table 3-4. – Geometric Stiffness Test Cases

Loads Options Analytic Expected Computed
Max Displacement Sierra/SD Result
Sierra/SD Result

No preload, lateral 0.512 0.516
Sierra/SD load

Compressive Sierra/SM preload, no_geom_stiff 0.741 0.515
lateral Sierra/SD load

Tensile Sierra/SM preload, no_geom_stiff 0.392 0.517
lateral Sierra/SD load

For input deck see Appendix 11.20.1.
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2.3.2. Preloaded Beam Eigen Mode, Abaqus Comparison

This is a verification test comparing Abaqus to Salinas using selective deviatoric hex8
elements. The geometry of this model can be seen in Figure 3-9. The model is a bar that is
fixed on one end and constrained in the y and z direction on the other. A prescribed
displacement is applied in the x direction in Adagio, and then a modal analysis is
performed in Salinas. For verification, the first 4 modes are compared to the Abaqus finite
element code. The Eigenvalue results are shown in Table 3-5.

Figure 3-9. – Geometry of Bar

Table 3-5. – Beam Preload Verification

Mode Number Salinas Abaqus
1 1834.47 1834.50
2 10175.2 10176.0
3 12469.1 12472.0
4 12469.1 12472.0

2.3.3. Preloaded Plate Eigen Mode, Abaqus Comparison

This example is a similar to the previous model, except that it has the geometry of a plate,
as shown in Figure 3-10. The plate consists of selective deviatoric hex8 elements and is
fixed on one side and constrained in the y and z directions on the other. A prescribed
displacement is applied in the x direction in Adagio, and then a modal analysis is
performed in Salinas. For verification, the first 5 modes are compared to the Abaqus finite
element code. The Eigenvalue results are shown in Table 3-6.
The path to these verification tests is
Salinas_rtest/verification/adagio_coupling/barModelPreload.

For input deck see Appendix 11.20.2.
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Figure 3-10. – Geometry of plate

Table 3-6. – Plate Preload Verification

Mode Number Salinas Abaqus
1 1380.37 1406.60
2 1834.47 1834.50
3 5208.10 5212.80
4 7234.86 7236.60
5 8911.89 8914.00
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2.4. Eigenvalue Restart with Virtual Nodes and Elements

A transient restart model was created and tested including virtual nodes and elements, tied
joints and superelements. The model is shown in Figure 4-12. For restart analysis two
solution cases and input decks are needed. First, a restart=write solution where the desired
amount of steps are analyzed and a output file is created with results. Second, a
restart=read solution where the output file that was created is now read in and analyzed to
the new desired amount of steps. For this test the write file had 10 steps and the read in
file had 20 steps. This test includes superelements, infinite elements, and tied joints. A
truth model was constructed with no restart and used for verification. Figure 4-11 shows
the comparison of the truth model with no restart and the model with restart.
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Figure 4-11. – Comparison between truth model and restart

In Figure 4-11 the 20th node in the y direction was compared between the two cases. The
error is on the magnitude of 10−13 which is expected due to the solvers, therefore,
validating transient restart capability in Sierra-SD.

2.4.1. Eigen Restart

This model was also analyzed using an eigen restart capability. The difference in this
model is that there are no infinite elements only superelements and tied joints. This model
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was compared to a truth model and is showing accurate results. The transient and eigen
restart tests were created and run in serial and in parallel.

Figure 4-12. – Restart Model Geometry. “Ninjabot”

For input deck see Appendix 11.25.
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2.5. Filter Rigid Modes from Loads

2.5.1. Introduction and Purpose

For some analyses, it is advantageous to remove the rigid body component of a solution.
This is the case for a reentry body for example, which may have a static preload followed
by a transient response with applied random pressures. The static preload is a singular
system if the force is not properly self-equilibriated. The transient response is also
troublesome. The true physics is complicated and includes a fluid structure interaction
with random pressures as well as flight dynamics which stabilize the structure from
rotation. The numerical analyst may represent that physics by a random pressure load.
Unfortunately, that load can cause the body to rotate wildly, which is both nonphysical
and distracting. As a solution, we filter the input forces to the body so that only
self-equilibriated forces are applied. Because of the singularity, and small contributions to
various linear solvers, a rigid body displacement may be generated. This component is
filtered out after the solve, leaving a displacement that has no rigid body component.

2.5.2. Description of the Test

In this test, a small beam of Hex8 elements has a load applied transverse to one end. See
Figure 5-13. Because there are no boundary conditions, the resulting system is singular for
a statics solution. Figure 5-14 indicates the equilibriated forces applied to the structure,
and the resulting deformation.

Verification requires determining the following:

1. The loads are properly equilibriated.

2. The output displacement vector contains no rigid body components.

Figure 5-13. – Beam Loading
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Figure 5-14. – Filtered Beam Forces and Displacements

2.5.3. Evaluation

The verification is done by Matlab. Forces and Displacements are loaded into the Matlab
engine and simple calculations are performed.

1. The sum of each force component is zero (1.7e-6). This confirms that the
translational portion of the force has been equilibriated.

2. The sum of cross terms is zero (1.25e-5).

nodes∑
i

~Fi×~xi = 0

This confirms that the net moments are zero. Thus, the loads have been properly
equilibriated.

3. We confirm that the output displacement vector contains no rigid body components
as follows.

The net output translational components are summed for each component.

nodes∑
i

~ui = 0

These components are less than 1e-10.

We also confirm that the net moment is zero.
nodes∑
i

~ui×~xi = 0

The net moment is less than 1.1e-5.

Thus, we have confirmed that the loads are self equilibriated, and that the resulting
displacements are orthogonal to rigid body translation and rotation.

For input deck see Appendix 11.26.
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2.6. Sensitivity to Parameters

Sensitivity to parameters is available for multiple solution types. The primary application
is in eigen analysis where the semi-analytic solutions can provide significant computation
and accuracy benefit over a finite difference approach. A script was developed for testing
different parameters using the finite difference method in Sierra-SD. The script checks that,
as the step size decreases, the finite difference approximation to the modal sensitivity
converges to the value provided in the code. A simple model was developed and analyzed
for verification. This model is two hex elements that are connected via a tied joint. The
Kz = elastic1e7 +/−10 parameter in the Joint2G block is where the sensitivity analysis is
preformed. Figure 6-15 is a plot of the results and shows this capability. The Eigenvalue
sensitivity information can be found in the result file and matches the value shown in
Figure 6-15.

Figure 6-15. – dLambda/dp vs. dp

Figure 6-16 shows the frequency vs. dp. For input deck see Appendix 11.28.

Figure 6-16. – Frequency vs.dp
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2.7. Sensitivity Analysis with a Superelement

The goal of the test is to verify both generation of a Craig-Bampton (CB) reduction and
associated matrix sensitivities as well as the Taylor series expansion of the resulting
matrices to generate a point evaluation of a parameter. In this example, a more complex
model is evaluated with two parameters. While the geometry of the model is more complex
the structure still is linear in the parameters of interest.

2.7.1. Blade Model

The model is shown in Figure 7-17. The full model (including superelement and residual
structure) is shown on the left. The next cut away shows only the residual structure in
gray. A portion of that model is provided only for visualization. On the right is the model
of the superelement which consists of quadrilateral and triangular shells. The interface
nodes are in red. Analysis is performed in two stages. First, the CB reduction is performed
and sensitivity matrices dKr/dp and dMr/dp are generated. The reduction is performed in
two ways: by constant vector, and by finite difference approaches. Following sensitivity
analysis and model reduction, a system analysis is performed where those matrices are used
in a Taylor series expansion.

For this analysis, we use the material density and Young’s modulus as the sensitivity
parameters. There are no repeated frequencies, which avoids any issue of mode mixing for
finite difference sensitivity.
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Figure 7-17. – Blade superelement model

2.7.2. Analysis

2.7.2.1. Analytic Analysis

For a constant vector sensitivity analysis, the reduced order matrices are given by,

k̃o = T To K(po)To (2.7.1)
k̃1 = T To K(po+ ∆p)To (2.7.2)
dk̃

dp
≈ k̃1− k̃o

∆p (2.7.3)

Here,

To is the transformation matrix evaluated at po,
po is the nominal value of the sensitivity parameter,
∆p is the change of the sensitivity parameter,
k̃ is the reduced stiffness matrix, and
K() is the unreduced stiffness matrix.

Identical relations exist for the mass matrix.
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For a finite difference sensitivity analysis, the relations are somewhat different.

k̃o = T To K(po)To (2.7.4)
k̂1 = T T1 K(po+ ∆p)T1 (2.7.5)
dk̃

dp
≈ k̂1− k̃o

∆p (2.7.6)

Here,

T1 is the transformation matrix evaluated at po+ ∆p,

Because T1 depends on the density and Young’s modulus, the reduced stiffness matrix is
affected by the transformation.

2.7.2.2. Numerical Results

Figure 7-18 shows a comparison of the system level solutions as a function of design
parameter. We vary the density and Young’s modulus together. Three curves are shown.
The exact solution shows results obtained by rebuilding the superelement using the
parameter, and without sensitivities. The other two curves evaluate dk/dp at the nominal
value, and estimate the superelement contribution using a Taylor series expansion. Results
are shown for mode 3. A comparison of the error is shown in Figure 7-19
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Figure 7-18. – Modal Frequency Variation with Density
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Figure 7-19. – Modal Frequency Error with Density

2.7.3. Summary

These analyses compare results for application of sensitivity matrices to superelement
analysis. In this example, for which the superelement matrices vary linearly with the
parameter, the constant vector method works extremely well. While not shown here,
variations of a single parameter by itself returns very similar results.

One point of interest is that for large variations of the parameter, the finite difference
method of computing sensitivities resulted in indefinite matrices that caused the
eigensolver to fail. For input deck see Appendix 11.29.
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2.8. Shock Tube

Analysis Type Nonlinear Acoustics
Element Type Hex8
Boundary Conditions absorbing, fixed velocity
Keywords nonlinear acoustics, run time compiler

2.8.1. Problem Description

This is the verification test of nonlinear acoustics.

2.8.2. Verification of Solution

The SierraSD nonlinear acoustics equation is the Kuznetsov equation. In the SierraSD
Verification manual, see section 10.2 and specifically the subsection 10.3. Fubini’s exact
solution to a wave guide is used. A Matlab script, shocktube_exact_solution.m
generates the exact solution.
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Figure 8-20. – Shock Tube

For input deck see Appendix 11.30.
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2.9. Beam-Beam with Craig-Bampton Reduction

This model exercises CBR reductions on a beam. The full model consists of 200 beam
elements, each of length 0.01, for a total length of 2 units. The beam is free floating in the
X direction, but constrained in all other directions. It is driven by a simple force on the
left (x= 0) end. The load is a saw tooth force with a period and duration of 1.5ms. The
system is integrated with a fixed time step of 0.1ms.

An “equivalent” model is generated by separating the model into two equal sections of 100
elements each. The right hand side segment is converted into a superelement, and then
attached to the left hand structure. The superelement includes the single fixed dof on the
left end, and 90 internal generalized dofs representing most of the modes of the system.
The loading and integration are identical to the full structure.

Figure 9-21 compares the X component of displacement on node 101 of both models. Node
101 is located at the junction of the superelement. Clearly the superelement and residual
structure represent the solution very well. Figure 9-22 shows the difference of the
solutions.

For comparison, Figure 9-23 compares results with a CBR model that includes no
generalized dofs. As anticipated, the results are not nearly as good.

Figure 9-21. – Comparison of Full Model with CBR Reduction

For input deck see Appendix 11.36.
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Figure 9-22. – Error in CBR reduction

Figure 9-23. – Comparison of Full Model with Guyan Reduction. Without the generalized
dofs, the comparison is poor.
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2.10. Modal Force Loading

Modal Forces provide an alternative, body-based loading to a structure which can be useful
for some solutions. These modal forces are the conjugate of modal force output in the
modaltransient solution method.

Verification is performed by use of the modal transient method, and is shown in Figure
10-24. The model used is shown in Figure 10-25. The model is first run using physical
inputs, and produces two output files: 1) the modal forces, and 2) the output
displacements. The second run uses modal force as the input. Finally, the output
displacements of the two modal transient runs are compared. Results are identical (except
for round-off errors).

Modal Transient

Modal Transient

Physical

Displacement

Physical

Displacement

Physical
Loads

Modal
Loads Comparison

Figure 10-24. – Verification Process for Modal Force

Figure 10-25. – Biplane Model

For input see Appendix 11.39
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2.11. Lighthill Analogy - Helmholtz Resonator

The Lighthill tensor provides a source term for noise generation in aeroacoustic
simulations. The Lighthill tensor captures noise generated by unsteady convection in flow
in a fluids simulation. Sierra/SD produces a source term from the Lighthill tensor that is
applied as a nodeset load in the pressure formulation of acoustics. Sierra/SD produces the
Lighthill loading by reading in the time varying divergence of the Lighthill tensor using the
readnodalset function. The divergence of the Lighthill tensor is used to create an
equivalent elemental force vector. The divergence of the Lighthill tensor is provided from a
Fuego incompressible fluids simulation.

Verification of the Lighthill loading is performed for the Helmholtz resonator shown in
Figure 11-26 which has an analytic resonant frequency of 120Hz. The discretized mesh,
material properties, initial and boundary conditions used in the Fuego simulation are
shown in Figure 11-27. Fuego then calculates the divergence of the Lighthill tensor and
writes this out to exodus as nodal data at variable time steps.
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e f

r

Min	element 0.2 cm

Max	element 1.72	cm

a 150	cm
b 50 cm
c 20 cm
d 1	cm
e 30 cm
f 50 cm
r 100	cm

Figure 11-26. – Dimensions of Helmholtz resonator

Inflow

P

Periodic

Single	element	depth	of	1	cm
Number	of	elements		=	27352		
Number	of	nodes							=	55640
Inflow	=	2700	cm/s
P	=	1.01325e06	dynes/cm^2
Time	=	0.3	sec
Time	step	~3e-5	- 6e-5	sec
CFL	=	0.9
Equations:

Continuity
X/Y/X	Momentum
Turbulent	Kinetic	Energy
Turbulent	Frequency

Figure 11-27. – Boundary and initial conditions for Fuego simulation

The Fuego output is used as input in Sierra/SD with the same discretization of the
Helmholtz resonator shown in Figure 11-26 with an additional semi-circular domain in
order to apply an acoustic boundary condition. Absorbing boundary conditions are applied
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to the edge sideset of the semi-circular region, highlighted in red in Figure 11-27. boundary
with absorbing boundary conditions eliminate the rigid body modes from the solution
which can cause a which linear linear growth in the pressure field. The nodal DivT data on
the Fuego domain is converted to nodeset data using the ejoin flag
-convert_nodal_to_nodesets. The distribution factors for the new nodeset data are
changed from 0 to 1. The Sierra/SD simulation reads in the time varying nodeset data
from Fuego and interpolates it to the nearest time step either linearly or using the closest
time step. The double divergence of the Lighthill tensor is then calculated and applied as a
source term in the Sierra/SD transient acoustic simulation. Results for the Sierra/SD
acoustic simulation using Lighthill loading are shown in Figure 11-28 for acoustic pressure
versus time. An FFT of the pressure data is shown in Figure 11-29 with peaks at 61, 121,
and 183. These resonances were also observed in the pressure data sampled in the rigid
chamber of the Fuego simulation. The main peak is close to the analytic resonant
frequency of 120Hz.
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Figure 11-28. – Sierra/SD time history of pressure for Lighthill loading.

For input see Appendix 11.40
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Figure 11-29. – FFT of Sierra/SD pressure data shown in Figure 11-28
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2.12. Lighthill Tensor Verification

The Lighthill tensor provides a source term for noise generation in aeroacoustic
simulations. The Lighthill tensor, T, captures noise generated by unsteady convection in
flow in a fluids simulation. Sierra/SD produces a source term from the Lighthill tensor that
is applied as a nodeset load in the pressure formulation of acoustics. Sierra/SD produces
the Lighthill loading by reading in the time varying divergence of the Lighthill tensor using
the readnodalset function. The divergence of the Lighthill tensor, ∇·T, is used to create
an equivalent elemental force vector.

In this verification example we compare Lighthill loading to Point Volume Acceleration
loading for a 1-D waveguide shown in Figure 12-30a). The Lighthill and pointVolAcc
load functions are applied to the nodeset indicated by the yellow region. For this example
the divergence of the Lighthill Tensor varies only in the x-direction and is given by

(∇·T)x =
(

1 + cos
(
πx

20

))
sin2

(
πt

40

)
for t≤ 40s (2.12.1)

where x is the location along the x-axis and t is time. Only a single load pulse is simulated,
t≤ 40s. The simulation is run for a total time of 550s, giving the pressure pulse time to
propagate away from the nodeset. The y and z components of ∇·T are zero. This form for
Lighthill loading makes (∇·T)x = 0 at the end of the nodeset, x=±20.

The same pressure response as that given in equation 2.12.1 is produced with a scalar
nodal load equal to ∇· (∇·T) properly scaled by the number of nodes and area it is acting
over. For the ∇·T used in this example,

∇· (∇·T) =− π

20

(
sin
(
πx

20

))
sin2

(
πt

40

)
for t≤ 40s (2.12.2)

and the scalar nodal force applied using Point Volume Acceleration is 1
4∇· (∇·T) for the

uniform linear hexahedral mesh shown in Figure 12-30b where each element is 1x1x1.

Figure 12-31 shows the pressure output at t=75s over the length of the waveguide for
Lighthill and pointVolAcc loading given by equations 2.12.1 and 2.12.2, respectively,
applied to the uniform mesh shown in Figure 12-30b. These are compared to the analytical
result shown by the black line. The results are given after the pressure pulse has been
applied, showing the propagation of the pressure wave through the acoustic medium. The
percent difference in pressure between the two loading methods and the analytical result is
shown in Figure 12-32 at t=75s. The L1 error of the pressure over the domain is shown at
each simulation time step in Figure 12-33. This plot shows the L1 error increasing over the
duration of the Lighthill or pointVolAcc load (t < 40s) and then remaining steady.

The geometry in Figure 12-30a) was also discretized with an unstructured linear
tetrahedral mesh shown in Figure 12-30c) and Lighthill loading was applied to the
domain. Results for these simulations are also shown in Figures 12-31-12-33 and show the
same error as the uniform hexahedral mesh with Lighthill loading.

For input see Appendix 11.41
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a)

b) Uniform hex mesh

c) Unstructured tet mesh

1000x1x1 -20<nodeset<20

x

y

Figure 12-30. – a) Schematic of 1000x1x1 waveguide geometry. Geometry extends from
x=±500. Yellow region contains the nodeset being loaded. b) Regular hex mesh used to
compare Lighthill and Point Volume Acceleration loading. c) Unstructured tet mesh used for
Lighthill loading. Yellow nodes in b) and c) indicate nodes in nodeset being loaded.
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Figure 12-31. – Pressure output for 3 load cases compared to analytical result at t=75s.
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Figure 12-32. – Percent difference in pressure between the three load cases and the analytical
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2.13. Acoustic Point Source in Frequency Domain

Figure 13-34. – Acoustic Point Source – Coarse Example

Consider an acoustic point source in a sphere of acoustic elements, shown in Figure 13-34.
An absorbing boundary condition is applied at radius 2, representing an unbounded
acoustic domain. The source is understood as a pulsating sphere with volume V and time
derivative Q= dV/dt. The value for Q is specified using the keyword
point_volume_vel.

In the frequency domain, with ω the circular frequency of the wave and k = ω/c the wave
number, the pressure at a distance r = |x| from the source is given by

p= iωρQ
e−ikr

4πr ; (2.13.1)

see the section “Point Acoustic Sources” in the theory manual for a detailed explanation.

Figure 13-35 shows a two dimensional slice of the result for a frequency of 91 Hz. At a
point on the outside of the sphere, with radius r = 2 from the point source, the exact and
computed solutions are compared. For the SierraSD solutions, a damping term of
β = 1.0e−5 was added to facilitate solver convergence.

On the boundary of the mesh, with r = 2, and a frequency of 91 Hz, the exact answer is
Apressure = -5.623 and ImagAPressure = -28.873. For the mesh shown in Figure 13-34,
which is relatively coarse, SierraSD calculates Apressure = -4.826 and ImagApressure =
-28.600. For the refined mesh shown in Figure 13-35, SierraSD calculates Apressure =
-5.513 and ImagAPressure = -28.580.

The verification test suite verifies both nodal point source and element point source
options. For input see Appendix 11.42
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Figure 13-35. – Acoustic Point Source – Refined Example
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2.14. Acoustic Point Source in Time Domain

In order to verify the transient acoustic point source (Point_Volume_Vel) in Sierra/SD,
we consider a spherical domain with a point source at the center. The spherical domain is
given absorbing boundary conditions around its boundary, so as to make the space look
infinite in all directions. With this arrangement, we have the problem of a point source in
an infinite domain.

The analytical solution to this problem is given by Pierce [41], as follows

p(R,t) = ρ

4πRQ̇(t− R
c

)H(t− R
c

) (2.14.1)

where p(R,t) is the pressure at a distance R from the source and at time t, ρ is the fluid
density, c is the speed of sound, H(t) is the Heaviside function, and Q(t) is the time
derivative of volume change of the source, i.e.

Q= dV

dt
(2.14.2)

In this problem, we chose Q(t) = sin(50πt), and we examined the solution at the exterior
boundary of R = 2. Inserting this into Equation 2.14.1 gives

p(R,t) = 50ρ
8 cos(50π(t− 2

343))H(t− 2
343) (2.14.3)

Figure 14-36 shows a comparison of the Sierra/SD results for this problem compared
against Equation 2.14.3. Excellent agreement is obtained, except for the initial time where
the numerical solution shows some difficulty resolving the abrupt change in the exact
solution, which comes from the Heaviside function in Equation 2.14.3. We can also verify
the "Point_Volume_Accel" point source with an input of Q̇(t) = 50π cos(50πt), and get the
same solution.

Two variants of the problem are included in the verification test suite. The first variant
uses a node-based point source at a single node at the center of the sphere. The second
variant uses a element-based point source at a single element at the center of the sphere.
Both variations produce nearly identical results on a relatively coarse mesh and converge to
the same analytic solution with refinement. For input see Appendix 11.43
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Figure 14-36. – Transient Verification of a PointSource in an Infinite Medium
Comparison of computed and exact solution for a point source in an infinite medium.
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2.15. Acoustic Plane Wave Scattering in Frequency Domain

Consider an acoustic plane wave traveling in the +x-direction. In the frequency domain,
with ω = 2πf describing the angular frequency and k = ω/c0 describing the wavenumber,
the pressure at every point in space is

p= p0e
ikx . (2.15.1)

Now, consider scattering of a plane wave incident on a steel cylinder in air. Due to the
cylindrical symmetry of the problem, it is useful to expand the spatial dependence of the
incident plane wave via an infinite series as

eikx = eikr cosθ =
∞∑
n=0

inεnJn(kr)cos(nθ) . (2.15.2)

where r is the distance from the origin, θ is the azimuthal angle, εn is the Neumann factor
(equal to 1 for n= 0 and 2 otherwise), and Jn(kr) are Bessel functions of order n. The
scattered pressure field can then be written as

psc = p0
∞∑
n=0

inεnAnH
(1)
n (kr)cos(nθ) , (2.15.3)

where An are scattered field coefficients and H(1)
n (kr) are Hankel functions of order n.

Hereafter, the superscript will be dropped for notational convenience. Similar expansions
can be written for the displacement fields (both longitudinal and transverse) in the cylinder
itself, but those are omitted here.

Continuity of radial displacement, continuity of radial stress, and continuity of tangential
stress must be enforced at the surface of the cylinder to find An. Since fluids cannot
support shear stress, the tangential stress must therefore be zero at the boundary. These
boundary conditions are straightforward to enforce, but they result in complicated
expressions for the scattered field coefficients. While the general expressions can be viewed
in elastic_cylinder_fluid_medium.m, the scattered field coefficients for a rigid and
immovable cylinder are sufficient in this case because steel is acoustically rigid compared
with air. These coefficients are

An =− J
′
n(kR)

H ′n(kR) . (2.15.4)

For a plane wave of frequency f = 1 kHz incident on a cylinder of radius R = 0.1, the
scattered pressure field is shown in Figure 15-37. A PML boundary condition is applied at
radius 0.8, representing an unbounded acoustic domain. The pressure amplitude p0 is
specified to be unity. At the point (x,y) = (0.2,0), the exact solution answer is Apressure
= 0.7072 and ImagAPressure = 0.1875, and For a mesh size of 0.01, SierraSD calculates
Apressure = 0.7037 and ImagAPressure = 0.1896. For input see Appendix 11.44
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Figure 15-37. – Acoustic Plane Wave Scattering from a Cylinder
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2.16. Superelement Superposition

A four truss, 1-D problem provides a simple verification of Craig-Bampton Reduction
(CBR) and superposition based reconstruction. As illustrated in Figure 16-38, the model is
clamped on the left end, and constrained to admit only translations in the X direction on
the remaining four nodes. A transient load acts in the X direction for this problem, so the
model is fully one-dimensional.2 The verification proceeds as follows.

1. Compute the full system (4 element) static load due to a point load on the center
node. This is used as the truth model.

2. Split the model into two pieces, each composed of two elements each. The CBR
model is floating in the X direction, where load is applied.

3. Approximate solution uses CBR methods to reduce the last two elements (3 nodes)
to two dofs.

4. The “residual solution” computes the system statics solution based on the left hand
side (unreduced) model connected to the CB reduced right hand side system. Results
in the residual are compared with step 1.

5. One output of the system transient solution is “endtruss-out.ncf”. This file
contains the modal amplitudes and the interface amplitudes for the superelement.
These amplitudes, together with the modal bases computed in step 2 above, provide
the information necessary to compute the physical degrees of freedom in the portion
of the structure on the right. The model is generated using the “superposition”
solution method. This model is then compared with the results from the right hand
portion of the truth model.

Figure 16-39 provides a comparison of the solutions using the full model, and the
individual components.

Reduced ModelResidual Model

Figure 16-38. – Four Truss Geometry

Theory. A CB model generates a transformation matrix consisting of a combined set of
fixed interface and constraint modes. These modes may be stored in an exodus file. We call
this “se-base.exo”. A netcdf file, “se.ncf” is also created at this time. Subsequently, this
reduced model is inserted into a residual model for superelement analysis, say a transient
analysis. That analysis outputs the standard exodus results, “resid-out.exo” and results

2The CBR reduction must use lumped masses for consistency with the statics solutions.
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Figure 16-39. – Results of Superposition Problem

on the netcdf file, “se-out.ncf”. The point is to recover the response on the original
interior degrees of freedom of the superelement.

The transient response on the interior degrees of freedom is,

uk(tn) =
nmodes∑

i

qi(tn)φik +
nconstraint∑

j

wj(tn)ψjk (2.16.1)

where,

uk(tn) = is the displacement at interior dof k
tn = is the time step
qi = is the amplitude of a generalized dof for mode i
φik = is the fixed interface mode i at dof k
wj = is the amplitude of interface dof j
ψjk = is the constraint mode j at dof k

The amplitudes qi and wj are found in “se-out.ncf”, while the mode shapes, φik and ψjk
are found in “se-base.exo”. Super_superp simply combines these results and writes a new
output file containing the results.

For input see Appendix 11.45
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2.17. Superelement Inertia Tensor and Mass Inertia Matrix

The inertia tensor provides a means of applying initial conditions to the interior dofs of a
superelement. General boundary conditions are not supported, but initial conditions that
include linear combinations of rigid body motion can be readily managed. As these are the
most common boundary conditions, there is great utility in computing the inertia tensor as
part of the Craig-Bampton (CB) reduction process.

There are two matrices associated with CB reduction and rigid body applications. The
inertial tensor, Iv = T TR, is used to establish initial velocity. Here T is the CB reduction
matrix and R is a six column rigid body vector in the physical space. The mass inertia
matrix, Im = T TMR, can be used to apply gravity or other body loads. M is the mass
matrix in the physical system.

2.17.1. Inertia Tensor, Iv = T TR

The development of the inertia tensor was used for use in LS-Dyna. LS-Dyna also has the
reduction process. Verification involves comparison of the output of the two codes. The
LS-Dyna output is in DMIG format. We compare with a previous Matlab output from
Sierra/SD which was compared by hand with the LS-Dyna results. Also, Sierra/SD
outputs the fixed interface modes first, while LS-Dyna puts them last. The model is shown
in Figure 17-40.

The overall comparison of the values is very good with a relative L2 norm about 6%.
Figure 17-41 compares the values of the matrix. There are 3 rigid body modes
(corresponding to each of the three translations). There are 10 fixed interface modes and
12 constraint modes, for a total of 22 columns in the inertia tensor. There is significant
difference for mode 10, but that is expected because it is the last mode, and the next mode
is very near in frequency.
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Figure 17-40. – LS-Dyna and Sierra/SD Inertia Tensor Model. The model is colored by the
parallel decomposition.
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Figure 17-41. – LS-Dyna and Sierra/SD Inertia Tensor Terms
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2.17.2. Mass Inertia Matrix, Im = T TMR

The Mass Inertia matrix, Im, is determined by a comparison with an independent
MatlabTM calculation, using the following steps.

1. Use the single processor input, and enable “mfile” output.

2. Run Sierra/SD to reduce the model and generate the mass inertia matrix.

3. Read in the fixed interface modes, φ, and constraint modes, ψ, from Sierra output.

4. Form the transformation matrix.

T =
(
φ ψ
0 I

)

5. Read the partitioned components of the mass matrix (Mvv, Mcc, and Mcv) from
Sierra output. Generate a mass matrix that includes all dofs of interest.

M =
(
Mvv Mvc

Mcv Mcc

)

6. Compute and compare the reduced mass matrix computed by the two methods.
M̂ = T TMT .

7. Compute the Nx3 rigid body matrix. Only translational components are included.

8. Compare the Sierra computed Inertia Tensor, Iv = T TR, with the LS-Dyna stored
values. This is a code-to-code comparison. This is also compared with a Matlab
solution.

9. Compute the Mass Inertia matrix, Iv = T TMR, and compare results with those
output from Sierra. A comparison of the results is shown in Figure 17-42.

10. Results are compared in serial and in parallel.

These steps found in the Matlab script, massInertiaTensorCompare.m.

For input see Appendix 11.46.
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Figure 17-42. – Mass Inertia Matrix. Values (left) and Differences (right).
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2.18. Nastran/Sierra/SD Interoperability with Superelements

2.18.1. Needs and Requirements

There is often a need to exchange data with external collaborators. Most often these
collaborators use commercial products for finite element analysis. One of the varieties of
NASTRAN is the most commonly used exchange format. Sierra/SD has been designed to
interface to these formats through its superelement capability. Export through a
NASTRAN superelement may be done directly in Sierra/SD as part of the CBR method,or
it may be accomplished through the “ncfout” application which translates the model into
either DMIG or output4 format. In addition, Sierra/SD may import certain DMIG
formatted models using Nasgen.

Such export/import capabilities provide the basis of interaction with collaborators, and it
is important that the process be simple and accurate. However while significant effort has
been put into these tools, testing has been rather limited because of challenges in running
NASTRAN in the Sierra test harness. Without regular testing, capabilities can not be
trusted for crucial collaborations. The intent of this verification is to provide a well defined
testing strategy to ensure persistent capability. These tests may need to be run manually,
but the tests should ensure capability.

This test does NOT regularly run NASTRAN. Section 2.18.7 contains in-
structions for running NASTRAN by hand to fully verify current analysis.
The nightly test runs Sierra, and compares results carefully with previ-
ously completed analyses which had been compared with NASTRAN.

2.18.1.1. Scope of Evaluation

The focus of these tests is evaluation of the CBR exchange capability. In particular, we
focus on the following.

1. Compatibility of the data format for exchange of reduced order stiffness and mass
matrices.

2. Bi-directional capability, i.e. output of superelements from Sierra/SD in DMIG
format, and input through Nasgen.

3. A clear, well defined process for generating and using these reduced order models (or
ROM).

4. Support for damping matrices, and output transfer matrices (OTM).

5. Support for inertia mass matrix export. The inertia mass matrix is not currently
supported for boundary conditions in Sierra/SD. As such, it cannot be tested for
import.

To keep the focus, we explicitly limit the following.
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• No element comparisons. NASTRAN element formulations clearly differ from
Sierra/SD capabilities. That is expected, and not tested here. Convergence of these
elements to proper solutions is performed elsewhere.

• Nasgen translation of most data. There are extensive tests for translation of the
model. With the exception of the superelement capabilities, these lie outside the
scope of this set of testing.

2.18.2. Model Evaluation

The model must be evaluated for suitability for comparison. In particular, the solutions of
the unreduced models (NASTRAN and Sierra), must be close enough to allow code to code
comparison of reduced models.

The model is illustrated in Figure 18-43. There are three primary areas of consideration.

Base The support at the base provides the fixed boundary condition and the attachment
location for the two tuning tines. It is part of the residual.

Load Tine The leftmost tine (red) is also part of the residual. Force/Pressure boundary
conditions may be applied to this tine.

ROM Tine The rightmost tine (yellow) is the portion of the model to be reduced. The
interface to the residual is the element at the base of the tine. There is a single point
on the end of the tine that serves as a location for OTM evaluation.

All sections of the model use the same material properties (aluminum), and all use Hex20
elements, as these are expected to be very similar between the two applications. We
evaluate the model for lowest eigenvalues and for a modal frequency response function
(FRF) to an impulse on the side of the loading tine. The FRF provides a useful
comparison, even when the time history data would suffer from phase errors introduced by
small differences in the element formulations.

Figure 18-43. – Tuning Fork Model

Table 18-7 provides a comparison of the frequencies for vibration of the structure.
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# Description Sierra/SD NASTRAN Diff %
1 base bending 532.07 527.84 0.8%
2 symmetric bending 937.07 926.53 1.1%
3 asymmetric bending 2956.4 2891.84 2.2%
4 symmetric 2nd bending 4733.4 4630.10 2.2%

Table 18-7. – Vibrational Frequency Comparison

Figure 18-44 compares the modal FRF solutions for the Sierra and NASTRAN solutions.
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Figure 18-44. – FRF Solutions with 3% damping. Sierra/SD and NASTRAN.

The model is considered suitable for evaluation.

2.18.3. Superelement Reduction and Insertion

2.18.3.1. Sierra/SD Model reduction and Insertion

In Sierra/SD, the following steps are followed to compute the system response by
superelement reduction techniques.

1. The ROM section of the exodus model is pulled out separately. This can be
accomplished using grepos.

2. The CB reduction input is generated. This is similar to the full system model, with
additions of a CB section.

3. Sierra/SD is run on the CBR input. This generates a netcdf output.

4. The residual model is generated. Like step 1, we use grepos and delete the block
associated with the ROM.

5. A “socket” is created for the superelement, using “mksuper”.

6. A residual input is created. This is very similar to the original full system model, but
now contains entries for the new superelement block.

7. Sierra/SD is run on the residual input.

57



Commands for some of these operations are shown in Figure 18-45. A comparison of the
eigenvalues with the full system eigenvalues is shown in Table 18-8. With no internal
modes, significant errors are introduced. Four modes in the ROM represents the system
well.

Mode Full Model 4-Mode ROM 0-Mode ROM
1 532.065 532.066 551.163
2 937.066 937.066 1107.19
3 2956.37 2956.87 3758.39
4 4733.4 4734.76 6022.09

Table 18-8. – Eigen Value Comparison - SierraSD full model and with ROM
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1. The ROM section of the exodus model is pulled out separately.

grepos tuningforkx.exo rom.exo « EOF
delete block 11
delete block 31

EOF

2. The CB reduction input is generated. The solution and cbmodel sections look like the
following.

SOLUTION
CBR
nmodes=4

END
cbmodel

nodeset 41
format=netcdf
file=rom.ncf
inertia_matrix=yes

end

3. Sierra/SD is run on the CBR input. This generates a netcdf output.

4. The residual model is generated. This is identical to step 1, but deletes block 21.

5. A “socket” is created for the superelement, using “mksuper”.

mksuper tmp.exo « EOF
add nodeset
41
write residual.exo
quit

EOF

6. A residual input is created. Copy full model input to residual.inp. Comment out block
definition for block 21, and add definition for block 32.

7. Sierra/SD is run on the residual input, and compared with original model.

Figure 18-45. – Running Sierra/SD solution with Superelement
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2.18.3.2. NASTRAN Model reduction and Insertion

In MSC or NX NASTRAN, one approach to compute the system response by superelement
reduction techniques is described in the following steps.

1. The ROM section of the NASTRAN mesh file is pulled out separately. This was
accomplished using the Altair HyperMesh preprocessor. The residual structure’s node
and element definition are saved as a separate bulk data file residual_struct.bulk.

2. The CB reduction input is generated in cbr.bdf. This requires using the EXTSEOUT
card in the case control section. Also required is the definition of a BSET card that
contains the interface nodes (a-set dofs) to be constrained during the dynamic
reduction step. A QSET card is used to define the generalized dofs (q-set) to be used
for the reduction. Lastly, a SPOINT card is necessary to define scalar points for the
generalized dofs. Note that the number of generalized dofs requested should not be
excessive – otherwise, the reduced matrices will have null columns for unused q-set
dofs and may result in a performance degradation.

3. NASTRAN solves the eigenvalue problem (SOL 103). The EXTSEOUT card in the case
control section has many options for the type and format of superelement information
generated. In this example, the EXTSEOUT card was specified to request a punch
(.pch) file cbr.pch that contains the reduced stiffness and mass DMIG matrices.
Additional superelement information (e.g., DMI matrices and DTI tables that are
associated with the OTM) which may not be necessary for subsequent use is also
generated by default.

4. The resulting punch file cbr.pch is then cleaned up by removing all the information
within it except the stiffness and mass DMIG matrices. The names of the DMIG
matrices were also renamed to something more convenient. This updated punch file
can be saved as cbr_dmig.pch.

5. The residual (residual structure with the superelement attached) input is created.
This is very similar to the original full system model, but contains additional cards
that insert the superelement via DMIG input. The stiffness and mass DMIG matrices
are called in using the K2GG and M2GG cards, and the SPOINT card must be
included to define the generalized dofs.

6. NASTRAN is run on the residual input.

Additional details of NASTRAN’s superelement functionality can be found in Reference
[51] (MSC NASTRAN 2017 Superelements User’s Guide). Eigenvalues of the full model
and the residual model with superelement are shown in Table 18-9. The results are
practically identical.

Figure 18-46 compares the input displacement of the Sierra/SD and MSC/NASTRAN
ROM on a Sierra/SD residual. Data on the output (ROM) tine is not available with these
methods because the basis vectors of the ROM are available only internal to NASTRAN.
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MSC NASTRAN 2016 MSC NASTRAN 2016
(full Model) (NASTRAN based DMIG)

Mode Natural Frequency [Hz] Natural Frequency [Hz] Difference [%]
1 528 528 0.00
2 927 927 0.00
3 2,892 2,892 0.00
4 4,630 4,630 0.00
5 6,078 6,078 0.00
6 6,446 6,446 0.00
7 8,118 8,119 0.01
8 12,863 12,864 0.01
9 14,426 14,427 0.01
10 17,672 17,681 0.05

Table 18-9. – : Eigenanalysis Comparison – MSC NASTRAN Full Model with ROM
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Figure 18-46. – Modal Transient Comparison. The input displacement of the Sierra/SD and
MSC/NASTRAN ROM on a Sierra/SD residual
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2.18.4. Using Sierra/SD Superelements in NASTRAN

It is also informative to compare the eigenvalues to assess the equivalence of the DMIG
matrices generated by Sierra/SD and NASTRAN. In one case, DMIG matrices are
exported by Sierra/SD and then used within NASTRAN to attach to the residual structure
for an eigenvalue problem. In the second case, DMIG matrices are generated entirely
within NASTRAN. These results, shown in Table 18-10, indicate that within practical
frequencies of interest, Sierra/SD produces very similar reduced matrices to NASTRAN.
Results of a modal frequency response analysis for the full NASTRAN model and the
residual model with superelement are shown in Figure 18-47. The output is located at node
14, which lies at the boundary between the residual mesh and the superelement. The
results are practically identical.3

MSC NASTRAN 2016 MSC NASTRAN 2016
(Sierra/SD based DMIG) (NASTRAN based DMIG)

Mode Natural Frequency [Hz] Natural Frequency [Hz] Difference [%]
1 528 528 -0.04
2 931 927 -0.52
3 2,916 2,892 0.84
4 4,675 4,630 0.95
5 6,144 6,078 1.07
6 6,499 6,446 0.83
7 8,292 8,119 2.09
8 13,209 12,864 2.62
9 14,972 14,427 3.64
10 17,796 17,681 0.65

Table 18-10. – Eigenanalysis Comparison – Sierra/SD -generated DMIG and NASTRAN-
generated DMIG. Residual and Superelement are employed in each analysis.

Sierra/SD computes a superelement using a Craig-Bampton reduction. That reduced order
model may be written in several formats. For use in Sierra/SD, we write this as a
netcdf/exodus file. It may alternatively be written as a DMIG4 compatible with
NASTRAN. More flexibly, we can convert the netcdf/exodus file to several formats
(including DMIG and Output4) using the ncfout application.

For application of a DMIG to a NASTRAN model, the interface node numbers must be
consistent. Figure 18-48 illustrates the nodes on an interface, together with the first few
lines of the DMIG, which define a portion of the reduced stiffness matrix. Each row and
column is indicated by the GRID/CID pair.

The original BDF file must be modified as follows.

1. Copy original, and remove the five elements in the ROM region.
3Sierra/SD has recently added a higher precision DMIG output. This uses 16 character “long” format
NASTRAN fields, and is selected with the “FMT=dmig*” option.

4Direct Matrix Input at Grid points
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Figure 18-47. – Modal FRF Comparison: Full Model (solid line) and Residual Model with
Superelement (solid markers)

DMIG K2GG 6 1 6 1 1.6896+6
6 2 -197648. 14 1 726510.

14 2 36078.7 47 1 899966.
47 2 63681.1 47 3 90702.2
55 1 750185. 55 2 58875.3
55 3 -67421.3 97 1 -2.141+6
97 2 -115178. 97 3 -275194.

111 1 -454831. 111 2 45753.7
113 1 -1.028+6 113 2 156507.
113 3 -587.767 116 1 -442113.
116 2 -48070.2 116 3 -202927.

DMIG K2GG 6 2 6 2 2.0542+6
14 1 -36078.7 14 2 1.0384+6

Figure 18-48. – DMIG example. On the left, the interface nodes and orientation from the
model is shown. The extract from the DMIG on the right illustrates the first row of the stiffness
matrix. The index to each value is the GRID and CID pair for that column.
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2. Add SPOINTS corresponding to the DMIG

3. Include the new DMIG data.

4. Add commands to include K2GG and M2GG in the case control.

Table 18-11 compares the eigenvalues of the full NASTRAN model to the eigenvalues of
the reduced order model from Sierra/SD. The solution with four fixed interface modes
provides good accuracy.5

Mode Full Model 4-Mode ROM 0-Mode ROM
1 527.842 528.046 546.461
2 926.535 931.379 1098.845
3 2891.837 2916.451 3681.061
4 4630.102 4674.563 5980.433

Table 18-11. – Eigen Value Comparison - NASTRAN full model and with Sierra/SD ROMs.

2.18.5. Using NASTRAN Superelements in Sierra/SD

The NASTRAN superelement model is translated using Nasgen. This tool translates the
model and superelement simultaneously, with the superelement written to a netcdf file.
NASTRAN uses a different element formulation, and orders the modes differently from
Sierra/SD, so we may not reasonably directly compare the matrices output in the
translation. It is possible to simply run the translated analysis using Sierra/SD. The
compared eigenvalues are shown in Table 18-12. The results are very reasonable.

Mode Sierra/SD (Hz) NASTRAN (Hz)
1 530.594 527.8421
2 932.069 926.5357
3 2930.28 2891.865
4 4692.38 4630.148

Table 18-12. – Comparison of NASTRAN and Sierra/SD Eigenvalues using NASTRAN
Superelement

2.18.6. Superposition Methods for Output of Internal Data

The Craig-Bampton method necessarily removes internal physical degrees of freedom from
the superelement. Sometimes results on those internal dofs are required. The

5The default data width for a DMIG is 8 characters. There may be a significant loss of accuracy in
truncating data to this size. We have recently added the option to output 16 character DMIG using the
DMIG* format.
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displacements, accelerations and velocities on these locations may be readily obtained
through post-processing using the super_superp tool.

Figure 18-49 compares the output of the sample on nodeset 41, at the tip of the unloaded
tine, from the full model with the results obtained using the reduced model. Both models
are run in Sierra/SD for consistency. The left tine is loaded with an impulse. Figure 18-50
illustrates the deformation of the full model, compared with the residual and superimposed
superelement.
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Figure 18-49. – Comparison of Output Displacements. The plot on the left compares dis-
placements of the full and reduced order models at the input location. The plot on the right
compares displacements on the unloaded tine after the selem_superp tool is used to extract
the displacement from the reduced model.
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Figure 18-50. – Superposition Solution and Full Deformation, t = 2ms. The full model (in
blue background) is compared with the residual and the post-processed superelement.

2.18.7. Related NASTRAN Analyses Required for Verification

The NASTRAN inputs for these analyses are included in the test repository, but are not
run as part of the nightly test process. To evaluate these models, the following steps may
be followed.

2.18.7.1. Eigen Problem

NASTRAN approximates the eigenvalues of the entire model by running:

workstation> nastran tuningfork.bdf

The resulting output in tuningfork.f06, may be evaluated for the appropriate normal
mode frequencies.

2.18.7.2. Modal FRF

The analysis may be modified to run a modal frequency response. Most modifications are
in the case control section. Analyze with,

workstation> nastran tuningforkfrf.bdf

Output analysis is a relatively easy using NASTRAN aware tools, or the PCH file may be
mined to garner the data.
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2.18.7.3. Insertion of a ROM from Sierra/SD

There are relatively few changes required to the original BDF file required to include a
DMIG from Sierra/SD. See the example in se.bdf, which includes the DMIG for the
rightmost tine.

workstation> nastran se.bdf

Output of this analysis is the normal modes solution (as in section 2.18.7.1), but with the
ROM of the right tine. Comparison of the modal frequencies provides validation of the
analysis.

2.18.7.4. Insertion of a ROM from NASTRAN

The eigen_se.bdf file provides the input for NASTRAN analysis using the NASTRAN
generated superelement. The superelement (in DMIG format) is read using an ‘include’
command. Analysis is performed using this command.

workstation> nastran eigen_se.bdf

The eigenvalues are found in the .f06 output file and may be compared with the
Sierra/SD results of section 2.18.5.

For input see Appendix 11.47.
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2.19. Sierra/SD Superelement File Formats

In this section, we consider the tuning fork model (figure 18-43) described in section 2.18.
We modify the workflow shown in figure 18-45 so as to compare the full model (without
CB reduction) against the superelement results using both format=netcdf and
format=dmig*: for each file format, the superelement is written to disk and read back in to
be used in the analysis. The results (c.f. table 18-7) are shown in table

# Description Full Model Rel. Diff. (netcdf) Rel. Diff. (DMIG)
1 base bending 532.07 1.69649e-08 1.60495e-08
2 symmetric bending 937.07 4.47213e-09 4.36792e-09
3 asymmetric bending 2956.4 4.08084e-06 4.08064e-06
4 symmetric 2nd bending 4733.4 6.50282e-06 6.50278e-06

Table 19-13. – Vibrational Frequency Comparison

For input see Appendix 11.48.
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2.20. Transient Reaction Forces

The response of a simple transient system is demonstrated. This test is used in particular
to verify the transient time integrator, output of kinematic quantities from transient
solution, and output of reaction force quantities from transient solution. A through
derivation of expected quantities is provided in the Mathematica input file included in the
test directory.

2.20.1. Finite Element Model

The model consists of four Spring-Dashpot elements connected to a central concentrated
mass as shown in Figure 20-51.

Figure 20-51. – Reaction Force Model

Dashpots 1 and 2 act only in the X direction. Dashpots 3 and 4 act only in the Y
direction. Each Dashpot has a unique stiffness and damping coefficient given by
Table 20-14. The central conmass has a mass of 2.5.

Block Stiffness Damping
1 1.1 0.7
2 1.2 0.8
3 1.3 0.9
4 1.4 1.0

Table 20-14. – Dashpot Element Properties

The model can be treated as two independent single degree of freedom systems. One
system involving the sum of the stiffness and damping of Dashpots 1 and 2 acting in the X
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direction and a second system involving the sum of stiffness and damping of Dashpots 3
and 4 acting in the Y direction. The Z degree of freedom of all nodes is fixed as is the far
end of each Dashpots.

2.20.2. Damped Vibration Due to Initial Conditions

The input deck ’initCond.inp’ applies an initial velocity (10, 20, 0) to the conmass and
then solves for the resultant system response. At standard textbook response is used for
vibration of a single degree of freedom damped system given in the equations 2.20.1 to
2.20.4. K is the stiffness given by the sum of the two Dashpot stiffness. M is the mass of
the concentrated mass. C is the sum of the two Dashpot damping coefficients. Initial
conditions of displacement are given by d0 and velocity by v0

ω =
√
K

M
(2.20.1)

ζ = C

2∗M ∗ω (2.20.2)

ωdamped = ω
√

1− ζ2 (2.20.3)

d(t) = e−ζω∗t(d0cos(ωdampedt) + sin(ωdampedt)
v0 + ζωd0
ωdamped

) (2.20.4)

In Sierra/SD the dynamics are integrated through time using the Newmark-Beta time
integrator. A small time step is used so that the results have a high degree of time
accuracy. The tests checks equivalence between the analytic and Sierra/SD results
kinematic quantities at specific time steps in the solution.

The expected reaction forces can be found by considering the fundamental system equation
given in 2.20.5.

Ku+Cu̇+Mü= f (2.20.5)

2.20.3. Prescribed Acceleration

A second tested case involves constant prescribed acceleration on the central node. The
velocity and displacement of the central node can be found via integration of the
acceleration. Based on the kinematic motion the forces are given 2.20.5. For the prescribed
acceleration case the total damping matrix is formed from the C of the Dashpot and mass
proportional (0.1) and stiffness proportional (0.2) damping coefficients.
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For input see Appendix 11.49.
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2.21. Relative Displacement PSD

A common requirement for random vibration analysis is understanding the probability of
interference of two nodes. This use case is discussed in subsubsection RMS Output,
subsection Random Vibration, section Solution Procedures of the Theory Manual, and
details about usage can be found in the User’s Manual, in the Outputs section in the
Relative_Disp subsection.

In the following examples, we consider a 1D problem. Specifically, we investigate the
relative displacement output of a joint2G element in response to two conmass nodes.

2.21.1. In Phase Response

In this example, the motion of both nodes is precisely in phase (see figure 21-52). In that
case, the difference of the two nodes should report no response, as seen in figure 21-53.
This test verifies that the gap differencing element does not report the rigid motion of the
element.

Figure 21-52. – Both nodes moving in phase: diagram

Figure 21-53. – Both nodes moving in phase: results
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2.21.2. Opposite Phase Response

In this example, the motion of the two nodes are precisely out of phase with each other
(see figure 21-54). This is a direct test of the gap differencing element’s measurement of the
difference in motion between two points. In the time domain, this condition would result in
the gap element reporting twice the response at each node. Likewise, in the frequency
domain the gap element should report 4 times the response. This relation is seen in
figure 21-55.

Figure 21-54. – Nodes moving exactly out of phase: diagram

Figure 21-55. – Nodes moving exactly out of phase: results

2.21.3. One Node Fixed Response

In this example, one node is fixed, and the other is free (see figure 21-56). The expected
behavior in this case is that the difference in motion between two nodes is equal to the
motion of the free node, which can be seen in figure 21-57.

Figure 21-56. – Left node fixed; right free: diagram
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Figure 21-57. – Left node fixed; right free: results

2.21.4. Tuning fork response

In this test, we verify the gap calculation from Sierra/SD by directly computing the
expected gap PSD from modal displacements. This test also involves several overlapping
tied joints, as shown in figure 21-58.

Figure 21-58. – Tuning fork with multiple overlapping tied joints

The PSD, G(ω) ∈ R34×34, is given by

G=HSffH
∗ (2.21.1)

where Sff (ω) ∈ R34×34 is the forcing PSD, and the transfer function H(ω) ∈ R34×34 is
given by

H = ΦH̃ΦT (2.21.2)
where Φ ∈ R34×12 is the matrix of mode shapes (dofs x mode shapes), and the modal
transfer function H̃(ω) ∈ R12×12 is a diagonal matrix given at each mode n as

H̃nn = 1
ω2
n+ 2i∗ωγωn−ω2 (2.21.3)
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For input see Appendix 11.50.
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3. CONTACT, CONSTRAINTS AND MPCS

3.1. Parallel Distribution of Load through Rbars

The purpose of the verification is to ensure that loads may be properly distributed through
a “spider” collection of Rbar elements onto a concentrated mass. The model is shown in
Figure 1-1. This is a model of a conmass connected to a hex by spiders using Rbars.
Verification that the model works the same running with one processor or six processors.

Figure 1-1. – Model for Parallel Distribution of Load through Rbars

For input deck see Appendix 11.1.
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3.2. Rigidset Compared to Rbar

The purpose of this test is to verify Rigidsets. Verification means that the Rigidsets do the
same thing as an equivalent block of Rbars.

A Rigidset is a tool to define a set of nodes as completely Rigid. It is done by creating a
sideset (or a nodeset, but sidesets are preferred) and defining that sideset as a Rigidset in
the input deck. While Rbars can be used to produce the same rigidity, the process with
Rigidsets is much easier. Setting up an equivalent block of Rbars involves creating a block
of beams that are not redundant, which gets trickier with more nodes. This step can take
more time than desired. Then the block is defined with Rbars in the input deck. Rigidsets
are much easier to use and produce similar results.

While the results are the same, the means of obtaining them are different. This can be seen
through the MPCs (Multi-Point Constraint equations). Consider the single hex model in
Figure 2-2. Since this meshed model contains only a single hex, it only has eight nodes. A
sideset has been assigned to one of the hex surfaces, shown in green in Figure 2-2. This
sideset is used to define the Rigidset. Rbars are defined by three of the edges on this
surface, constrained as a block of BEAM elements.

As previously mentioned, the Rigidset is defined by a sideset. A wireframe of the single
hex’s Rigidset can be seen in Figure 2-3. There are 18 MPCs and three node connections
that are used in the constraint equations. The node connections here are between nodes 3
and 4, 2 and 1, 3 and 1, as represented by the dashed red lines in Figure 2-3. There are 6
constraint equations for each of these connections. Together, these constraint equations
make a perfectly rigid surface.

The MPCs for the block of Rbars also create a perfectly rigid surface, but the equations
and node connections differ from those used in the Rigidset. Figure 2-4 shows the block of
Rbars created from three edges of the surface. Notice that there cannot be a connection
between nodes 3 and 4. A connection between nodes 3 and 4 would require an Rbar there,
which would cause redundancy in the constraint equations. One of the difficulties in
creating a block of Rbars is making sure there are no redundancies. As shown by the
dashed red lines, the connected nodes here are 4 and 1, 1 and 2, 2 and 3. Each connection
still has 6 constraint equations, making 18 MPCs in all. The result is the same as
Rigidsets, but the means of getting there is different.

Rigidsets and Rbars use different constraint equations, but both can create a rigid set of
nodes with the same eigenvalues. This means that Rigidsets can be verified by comparing
the results to Rbars. For input deck see Appendix 11.2.
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Figure 2-2. – A model of a single hex.

Figure 2-3. – A wireframe view of the sideset used for the Rigidset in Figure 2-2.
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Figure 2-4. – A wireframe view of the block of beams used for the Rbar collection in Figure 2-
2.
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3.3. Multiple Tied-Surfaces and Curved Surfaces

The purpose of this test is to verify the behavior of multiple tied surfaces. The model is
shown in Figures 3-5 through 3-12. Included are several figures that show the model
broken down into blocks and the relationships between the surfaces and blocks. Note that
Block 3 is actually Block 10 in the input files.

We verify that the eigen analysis retains 6 rigid body modes, and that the structure is
appropriately tied on the planar and curved surfaces. Note that 6 rigid body modes are not
calculated due to poor conditioning of the constraint matrix if con_tolerance 1e-3 is
commented out in the GDSW solver block. Figure 3-13 shows mode 15 of the solution,
with a large degree of deformation.

Figure 3-5. – All three blocks from an above angle.

For input deck see Appendix 11.3.
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Figure 3-6. – All three blocks from a below angle.

Figure 3-7. – Block 1 and Surface 1.
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Figure 3-8. – Block 1 and Surface 3.

Figure 3-9. – Block 2 and Surface 2.
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Figure 3-10. – Block 3 and Surface 103.

Figure 3-11. – Block 3 and Surface 102.
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Figure 3-12. – Block 3 and Surface 101.

Figure 3-13. – Mode 15. Showing sideset Tying
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3.4. Contact Verification

In this section we provide a series of verification tests for a conceptually monolithic bar
created by tying together separate element blocks. This verification test documents the
solution convergence rate for a contiguous mesh versus a discontinuous mesh tied along
planar or curved boundaries. Additionally the test investigates the effect of tied data gap
removal and face/node pairings. Evidence based usage guidelines for tied data are provided
based on the results.

3.4.1. Description of the Test

Three load cases are considered: A gravity load on a cantilever beam (Figure 4-14(a), a bar
fixed at one and with a traction load on the other (Figure 4-14(b), and free-free eigen. To
ensure planar notionally 2D results, the Poisson’s ratio of the material is set to zero and
boundary conditions constrain motion to the xy plane.

The mesh is generated with Hex8 elements. The geometries used are pictured in figure
4-15. The top mesh is a contiguous mesh to be used as a comparison baseline, and refined
significantly for a “truth” solution. The middle mesh uses straight interfaces between the
block partitions. The bottom mesh uses curved interfaces between the block partitions.

a)																																																												b)

Figure 4-14. – Beam under (a) gravity loading and (b) traction loading.
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Figure 4-15. – Mesh Geometry

3.4.2. Expected Results

The eigen modes, cantilever beam displacement, and axial pull solution all have
approximate solution based on beam theory. However, as the meshed beam has finite
thickness, ultimate verification is done against a “truth” solution generated by a highly
refined contiguous mesh.

For the free-free eigen case, the first three modes should be rigid body modes. These tests
investigate the preservation of rigid body modes with tied data and the convergence of the
first three flexible modes. For the cantilever beam problem, the quantity of interest is tip
displacement and total strain energy, again compared versus a highly refined contiguous
truth solution. For the axial bar pull analysis the quantity of interest is maximum stress,
which is expected to be artificially high when tied interfaces are used. The axial bar pull
analysis is effectively a patch test that should produce an exactly known uniform stress
state. Any deviation from this expected stress state is considered error.

3.4.3. Evaluation of Free-Free Eigen Load Case

The bar is constrained to deform in plane only. Thus, the bar should have three rigid body
modes: two translational, and one rotational. The expected mode shapes for the first three
flexible modes are shown in Figures 4-16(a) ( 535.5 Hz), (b) ( 1272.6 Hz), and (c) ( 1453.9
Hz).
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a)

b)

c)

Figure 4-16. – Flexible mode shapes (a) mode 1 (b) mode 2 and (c) mode 3 (non-uniform
axial elongation)

3.4.3.1. Convergence Rate for Eigen Values

The mesh convergence for the first three flexible modes are shown in Figures 4-17(a)-(c).
Note the third flexible mode is the axial bar extension mode. This mode approaches the
correct solution with very few elements due to the complete lack of any bending in the
mode shape. As a result, the convergence plot is not particularly informative, but is shown
here for completeness. Generally second order convergence rates are achieved with or
without contact. The contiguous mesh tends to have moderately less absolute error at any
given refinement.
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a) b)

c)

Figure 4-17. – Convergence rates for flexible modes. (a) First elastic mode converges to 534.5
Hz (b) Second elastic mode converges to 1272.6 Hz (c) Third elastic mode converges to 1453.9
Hz.
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3.4.3.2. Invariance to Rigid Body Rotation

Figure 4-18 shows how accurately the rigid body rotation mode is preserved. Ideally, this
rigid body rotation mode will have zero stiffness. In practice there is a very small stiffness
due to round-off errors and finite solver convergence tolerance. However, for the curved
contact case with gap removal off there is a very significant error in the rigid body rotation
mode. Using the faceted curved cuts, there are finite gaps between the nodes and faces on
the two sides of the contact interface. When tied contact constraints are defined across
finite gaps, the constraints artificially constrain rotations. The smaller the gap, the less
artificial constraint is produced. As the mesh is refined the node to face gap shrinks, and
the solution converges toward the exact solution. However, as seen in both the rigid body
rotation mode, and the results for the flexible modes, the error from these constraints with
gaps is large.

Figure 4-18. – Error in rigid body rotation mode relative to first flexible mode

3.4.3.3. Effect of Node Face Interaction Pairing

For optimal accuracy, it is imperative to chose the correct surface for tied data interactions.
The previous results were made with the recommended setting of using the finer meshed
surface as the node surface, and the coarser surface as the face (faces). The face and node
surfaces are selected by the order of surfaces in the tied data section of te input deck. As
an example, the below syntax selects the nodes of surface 101 as the nodes and the faces of
surface 100 as the face.

TIED DATA
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SURFACE 100, 101
END

The opposite face node pairing is given by:

TIED DATA
SURFACE 101, 100

END

If face and node surfaces are selected properly, MPC_Status, which is specified by the
constraint_info output option, will appear as shown in figure 4-19(a). If the wrong surface
is chosen as face, then the results appear as shown in figure 4-19(b). Notice that many
nodes on the tied surfaces have begun to separate from, or penetrate into, the opposing
surface. This is a result of the relative refinements between the two surfaces. In the
incorrect example, the more refined surfaces were chosen as the face surface, and many
interactions were missed.
The reason for this lies in the way that tied data functions; specifically, tied data requires
that all nodes on the node surface lie on the faces of the face surface, but does not impose
the same requirement on the nodes of the face surface. If both surfaces are at
approximately the same refinement, it does not matter which side is the face surface, but
when the face surface is at a significantly higher refinement than the node surface, there
will be some faces of the face surface which are not constrained to any nodes, and are
allowed to move without any stiffness contribution from the node surface.
Note that the MPC_Status variable is not a foolproof check of correct interactions. It
clearly shows the issues on the small circular region, but is not a sufficient check on the
larger arc.

a)

b)

Figure 4-19. – MPC Status (a) correct and (b) incorrect.

The eigen mode convergence with reversed face/node interactions is shown in
Figure 4-20(a)-(c). With the non-recommended face/node pairing the convergence rate
becomes sporadic. The eigen shape solution will contain obvious errors local to the contact
interface. A decent eigen value solution can sometimes be obtained when these errors
cancel. On the whole though, the eigen value solutions are much worse with the
non-recommended face/node pairings.

90



a) b)

c)

Figure 4-20. – Flexible mode convergence rates with reversed face/node. (a) First flexible
mode converged to 534.5 Hz. (b) Second flexible mode converged to 1272.6 Hz. (c) Third
flexible mode converged to 1453.9 Hz.
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3.4.4. Evaluation of Cantilever Beam Static Results

The result for contiguous cantilever beam is shown in Figure 4-21.

Figure 4-21. – Cantilever Beam Deformed result (greatly magnified)

3.4.4.1. Convergence Rate

The mesh convergence of tip displacement for the cantilever beam is shown in Figure 4-22.
Convergence is quadratic with or without contact. As in the eigen mode solution, addition
of contact does add some error for a given mesh density. Likewise, the presence of finite
gap constraints introduces additional error into the solution.

Figure 4-22. – Cantilever Beam Convergence For Tip Displacement
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3.4.4.2. Symmetric Contact

It is possible to inadvertently add symmetric contact to a model. In symmetric contact the
nodes of surface one are constrained to the faces of surface two while simultaneously the
nodes of surface two are constrained to the faces of surface one. For example, including
both the following tied data sections in an input deck would add symmetric contact to a
model:

TIED DATA
SURFACE 101, 100

END
TIED DATA

SURFACE 100, 101
END

Symmetric contact is not expected to work correctly. Symmetrically constrained interfaces
are over constrained. Such interfaces can rotate, stretch, and shear, but they cannot bend.
The convergence of the cantilever bar with symmetric constraints is shown in Figure 4-23.
With symmetric constraints there is no convergence to the correct solution. As seen in
Figure 4-24 the symmetric contact interfaces cannot bend, leading to a completely spurious
displacement and stress result.

Figure 4-23. – Cantilever Beam Convergence with Symmetric Constraints
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Figure 4-24. – Incorrect Cantilever Beam Result with Symmetric Contact

3.4.5. Evaluation of Axial Pull Results

Figure 4-25. – Axial Pull Convergence for Maximum Stress

The axial pull results should produce an exact uniform XX direction stress of 1000,
however the nature of tied contact constraints produces artificial stress concentrations at
the contact interface. The convergence of stress is shown in Figure 4-25 and the
distribution of stress on two mesh resolutions shown in Figure 4-26. The magnitude of tied
data stress concentrations are not remedied by mesh refinement. The stress concentrations
do become somewhat more localized with mesh refinement.
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a)

b)
Figure 4-26. – Spurious Local Stress Concentrations with (a) coarse and (b) fine meshes.

3.4.6. Usage Guidelines

Used carefully, tied data can greatly simplify the model creation process by eliminating the
need for contiguous meshes. However, there are a number of significant areas for concern
when setting up tied data.

• Models using tied data can achieve quadratic convergence for both eigen modes and
static displacement. However, results will generally by at least mildly inferior to a
contiguous mesh at the interface.

• Using gap removal will significantly improve the accuracy of contact at curved
interfaces.

• For optimal accuracy, the finer meshed surface should be used as the ’nodes’ of tied
data interactions and the coarser surface the ’faces’.

• Symmetric contact constraints should always be avoided as they lead to major errors
and a non-convergent solution.

• Tied contact introduces irresolvable local stress concentrations at the tied interface. If
an accurate stress is needed near the tied interface, a contiguous mesh should be used.

For input see Appendix 11.51
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3.5. Periodic Boundary Conditions

In material characterization through simulation of representative volume elements, periodic
boundary conditions are needed on the opposite faces, with imposed stretch and/or
distortion. Similarly, in the context of phononic crystals and acoustic/elastic
metamaterials, imposing periodic boundary conditions is a key functionality needed for
computation of dispersion curves and band structure. Sierra-SD facilitates the imposition
of such periodic boundary conditions.

In this section, we provide the verification of the capability by simulating an infinite bar
with linear array of spherical voids, with imposed overall tensile strain. We do not attempt
to compare with any analytical/reference solutions, but confirm the consistency of results
from applying periodic boundary conditions in two different ways. Specifically, we consider
an infinite bar of unit (1x1) square cross-section, with spherical voids of radius 0.4,
dispersed uniformly with unit spacing. A global strain of 0.015 is applied along the axis (x
direction), and the resulting stresses are to be analyzed (the Young’s modulus is 1e4). Such
an analysis can be carried out by modeling a periodic cell, which can be any 1x1x1 block
along the length of the bar. Correctly implemented periodic boundary conditions must give
the same results independent of the choice of the periodic cell. Given this, we compare the
results from analyses of two separate periodic cells, one with the spherical void at the
center of the periodic cell, and the other with the periodic cell boundaries on both ends
cutting through the centers of two adjacent voids. A differential x-displacement of 0.015
units is applied between two edges of the periodic cells to simulate the global strain of
0.015. Rigid body displacements are eliminated through appropriate statically determinate
boundary conditions on the center section of the cell. Figure 5-27 contains the meshes for
the two periodic cells. Note that each half has identical meshes, indicating that identical
discrete systems are being solved, thus eliminating the role of the discretization error and
leading to the expectation of almost exact match.

Figure 5-27. – Meshes for two different periodic cells
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The stresses are examined at three different locations on the surface of the spherical void,
at the intersection with x,y and z axes respectively. To be precise, the results are obtained
at element centroids closest to the three locations, which are shown in table 5-1. Only one
set of results is shown since the computed stresses are identical between the two models, up
to 10 significant digits, clearly verifying the implementation of periodic boundary
conditions.

Table 5-1. – Stresses near the surface at points cutting various axes

Stress y axis z axis x axis
σxx 281.0494288 273.0301545 -1.7271636
σyy -8.0119751 0.5224045 -0.2133664
σzz -0.2935124 23.5932137 -0.8396841
σxy 14.8824683 14.2929051 -9.3081820
σyz -0.3275614 0.3518104 2.0719204
σxz 16.8660510 28.2491021 -9.8072644

In addition to the above example, we tested the implementation on homogeneous block
with straight and curved surfaces under uniform stretch, resulting in expected uniform
stress state with correct values. The details are not presented in this document, but can be
found in the test repository. For input see Appendix 11.73
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3.6. Multi-directional Periodic BC: Periodic Volume Elements

Representative volume element (RVE) modeling is a standard approach in computing
macroscopic materials properties from materials with microstructure. In the context of
regular periodic microstructure, RVE reduces to a periodic unit cell of the microstructure,
referred to as the periodic volume element (PVE). The boundary conditions for modeling a
PVE of a 3D solid would be periodic boundary conditions in all three directions, or in all
the directions in which the PVE repeats. This requires multiple begin-periodic blocks, each
connecting the faces on the opposite surfaces. The surfaces in one begin-periodic would
intersect with surfaces in other periodic blocks, thus testing the associated functionality in
Salinas.

We consider the example in Section 3.6, and expand to 3D setting. Specifically, we consider
a homogeneous matrix with regularly spaced spherical inclusions in all three directions.
There are multiple ways to defined a PVE, and we consider two such PVEs, both cubic in
shape. In the first PVE, the void is at the center of the cube, while in the second, the void
is split into eight quarters, each centered at each of the vertices of the cube. The schematic
of the idea, in 2D settings, is illustrated in Figure 6-28. The actual, discretized PVEs are
shown in Figure 6-29, where the meshing is done in a consistent way to eliminate the
differences due to discretization.

Figure 6-28. – 2D schematic of the two simulated periodic volume elements (PVEs)

Both PVEs are subjected to the same global strain, or equivalently symmetric deformation
gradient:

ε=∇u =

 −1.50 1.00 0.50
1.00 −1.00 0.25
0.50 0.25 −0.50

 (3.6.1)

Note that since the entire strain is associated with deformation gradient, implicitly, there is
no (global) rotation of the PVE. Relative displacement vector for each begin-periodic block
is determined by the above tensor applied on the geometric offset vector. Since the
geometric offsets are unit vectors in x, y and z directions for each of the three
begin-periodic blocks, the relative displacements are essentially the three columns of the
deformation gradient (see the input file). Note that the imposition periodic BC in three
different directions automatically prevent rigid body rotations, but the translation is not
restrained. We eliminate the rigid body translations by fixing the center in the second PVE
(and correspondingly vertex in the first PVE), in all three directions.
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Figure 6-29. – Meshes for two different periodic volume elements

The deformed shape, along with contours of von Mises stresses are shown in Figure 6-30,
which visually confirm that the results are the same between the two PVEs.

For quantitative comparison, the stresses are examined at three different locations: at
-(0.1,0.5,0.5), -(0.5,0.1,0.5), -(0.5,0.5,0.1), relative to the center of the spherical inclusion.
To be precise, the results are obtained at element centroids closest to the three locations,
which are shown in table 6-2. Only one set of results is shown since the computed stresses
are identical between the two models, clearly verifying the efficacy of the PVE modeling in
Salinas.

Table 6-2. – Stresses computed from PVE model

Location -(0.1,0.5,0.5) -(0.5,0.1,0.5) -(0.5,0.5,0.1)
σxx 114.9294 92.5208 112.5307
σyy 75.9910 77.9703 7.0164
σzz 37.4338 0.2489 41.6507
σxy -48.9834 -79.2754 -101.6064
σyz 2.5491 20.0710 16.3110
σxz -7.1000 -75.8791 -43.3911

In addition to the above example, we tested the implementation on homogeneous block
under specified deformation gradient, resulting in expected uniform stress state with
correct values (including Poisson’s effect). The details are not presented in this document,
but can be found in the test repository. For input see Appendix 11.76
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Figure 6-30. – Meshes for two different periodic volume elements
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3.7. Moving Mesh MPCs: 1D Balloon Pop waveguide

This verification test demonstrates the use of acoustic multipoint constraints (MPC) to tie
together two waveguides at different pressures. The waveguide configuration and boundary
and initial conditions used in this test mimic a balloon popping in 1D. The purpose of this
test is to verify the correction used to equilibriate a multipoint constraint as described in
the theory document. This test will verify that the pressure jump between the two
structures is in equilibrium after three steps and equilibriates to the average pressure of the
two domains. This is verified in the test file by using compare values to ensure both nodes
across the interface are equal after three time steps.

a)

b)

Figure 7-31. – a) Schematic of two 4.0 x 0.5 x 0.1m wave guides with block 1 in red at 4Pa
and block 2 in yellow at 2Pa. (b) Close-up of the gap where constraints will tie together the
pressure across the interface.

The waveguide configuration shown in figure 7-31 represents a 1-D equivalent of a balloon
popping with mirror symmetry at the centerline of the balloon. The over pressured block
in red represents the balloon containing air at a high pressure and the surrounding lower
pressure atmosphere is shown in yellow. A free surface boundary condition is used on the
end of the red domain and absorbing conditions are placed on the end of the yellow
domain. The initial conditions for the red block is 4Pa and the yellow block is at 2Pa. At
time t=0, the balloon is popped and the pressure waves will propagate away from the
red-yellow interface. When the pressure waves reach the end of the red domain they will
reflect with opposite phase.

Each block of the wave guide in figure 7-31 is 4.0 x 0.5 x 0.1 meters meshed with 0.1m
Hex8 elements. The blocks are separated by a 1cm gap. The purpose of the gap is for
visualization only, it has no effect on how the inhomogeneous MPCs tie together the two
domains. By including the gap, it is clear that no nodes are being shared between the
blocks. The initial pressure of block 1 is set to 4 Pa and block 2 is set to 2 Pa using an
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initial-conditions block with acoustics = by_block in the input file. The acoustics
initial condition refers to applying an initial condition on the primary variable. For the
pressure form of the acoustic equation used in this test, the primary variable is pressure. A
block by block application of the initial conditions is set using by_block, and each block in
the input file that an initial condition is applied to must have the keyword acoustics
followed by its value. The LOAD block is used to apply an acoustic_accel that is zero for
all time. This switches the acoustics formulation to use pressure as the primary variable
instead of the velocity potential. A similar two block conformally meshed waveguide using
the same input file is used to verify the results.
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Figure 7-32. – Pressure profiles measured across the length of the waveguide are shown at
the times given in the legend shown in (c). (a) and (b) show far and near field pressure profiles
for the contiguously/conformally meshed waveguide. (c) and (d) show pressure profiles for the
mesh containing a gap and constraints.

Figure 7-32 shows the first time steps after the balloon is popped for the conformal mesh
and mesh containing a gap with constraints. Data for these plots is obtained using
linesample with 1000 sample points taken between −1≤ x≤ 1. The location of the
interface is shifted by half an element (0.05m) for the conformal mesh because of where the
nodal pressure initial conditions are applied. The pressure profiles for the conformal mesh
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t=1e-4s t=2e-4s t=3e-4s t=4e-4s

(Pa)

X=0X=0X=0X=0

a) b) c) d) 

e) f) g) h) 

Figure 7-33. – Nodal pressure output shown on the meshed geometry for the time steps
plotted in figure 7-32. (a)-(d) are for the conformal mesh and (e)-(f) are for the constrained
mesh containing a gap. The dashed line indicates x=0 for both meshes.

are shown in figure 7-32 (a) and (b). For the conformal mesh, the nodal pressure at x=0 is
initially 2Pa and increases to 3Pa over 3 time steps while the nodal pressure at x=0.1m is
initially at 4Pa and drops to 2Pa. The interpolated pressure in the element at x=-0.05 is
held constant at 3Pa for the time steps shown. Nodal pressures for the conformally meshed
geometry are shown visually in figure 7-33 (a)-(d).

The nodal pressures for the gap mesh with MPCs is shown visually in figure 7-33 (e)-(h).
The different nodal pressure across the gap can be seen for (e)t=1e-4s and (f)2e-4s. The
blue pressure profiles for t=1e-4s and 2e-4s in figure 7-32 (d) show the size of the pressure
jump across the interface. The MPC correction brings the nodal pressures into equilibrium
across the interface in three steps as shown by the nodes being the same color in figure 7-33
(g) for t=3e-4s. Pressure equilibrium is shown by the continuity of the cyan line in figure
7-32 (c) and (d).

The pressure profiles between the two meshes in figure 7-32 are nearly identical once
equilibrium is enforced. The delayed enforcement of equilibrium caused by the MPC
correction leads to smaller pressure oscillations at later times. The delay in pressure
enforcement also causes a small delay in the pressure pulse. The delay can be reduced by
reducing the time step as shown in figure 7-34. The peak of the pressure profiles for the
conformally meshed waveguide at t=0.015s is approximately at x=-2.6m. This is nearly the
same value for dt=5e-5 and is 0.1m ahead of dt=1e-4 and 0.3m ahead of dt=2e-4.

Increasing the time step is also shown to smooth out the profile of the wave. For the
largest time step of dt=1e-3 shown in figure 7-34, the wave would travel nearly 1m or 10
elements over the three steps required by the MPC’s to reach equilibrium.

For input see Appendix 11.74
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Figure 7-34. – Effect of time step on the pressure profile for the MPC mesh containing a gap
compared to the contiguous/conformal mesh at the top.
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4. SOLUTIONS

4.1. Waterline of a ship

A code to code comparison was performed between Sierra-SD and the Navy’s finite element
code Float. This is a ship model, that utilizes the waterline solution case in Sierra-SD. An
image of the model is shown in Figure 1-1. Three key parameters were analyzed between

Figure 1-1. – uhwmGeometry

the two codes the draft which is the distance from the bottom of the ship to the waterline,
the pitch which is the rotation about the y-axis, and the roll which is the rotation about
the x-axis. The results can be seen in Table 1-1. For input deck see Appendix 11.21.

Table 1-1. – Sierra-SD solution vs. Float (Navy code)

Sierra-SD Float
Draft 187.0580 187.0579

Pitch (about y-axis) 0.0503 0.0497
Roll (about x-axis) -0.0001 0.0000
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4.2. Transient Convergence

A verification test was created for temporal convergence of the transient solution. A
vertical load was applied at the end of a cantilever beam, and the vertical displacement at
the end of the beam after 4.5 seconds was calculated.

Figure 2-2 shows the final displacement of the deformed beam.

Figure 2-2. – Verification Problem - Beam

Figure 2-3 shows the time history result for the problem, solved at three different
time-steps.

Figure 2-3. – Time History of Transient Verification Problem

Figure 2-4 shows the Richardson Convergence of the problem. Convergence values n= 2
implies second order convergence.

For input deck see Appendix 11.22.
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Figure 2-4. – Richardson Extrapolation of Transient Verification Problem
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4.3. Modal Transient Temporal Convergence

The modal transient temporal convergence The test consists of a 100 element cantilevered
beam that is loaded using a triangle pulse function. The modal transient test was run
using 3 different time steps, and the results of these tests are compared to the results
obtained from the same tests run using the direct transient method.

Figure 3-5 shows the plot of the deformed beam. The loading for the three tests is the
same and it consists of a ramp load applied at the free end of the beam. The load has a
duration of 2 seconds and a max value of 1 at 1 second.

Figure 3-5. – Verification Problem - Beam

Figure 3-6 shows the time history of the beam end point for the problem for three time
steps.

Figure 3-6. – Time History of Modal Transient Verification Problem

The Richardson convergence was used as a means of determining the order of convergence
for the modal transient method. Figure 3-7 shows the Richardson Convergence of the
problem. Convergence values n= 2 implies second order convergence. This results is very
similar to the Richardson convergence obtained from the direct transient method.

The modal transient tests were run using only 3 modes for verification purposes. Figure 3-8
shows the difference in displacement at the end of the beam between the direct transient
method and the modal transient method for ∆t= 0.001.
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Figure 3-7. – Richardson Extrapolation of Modal Transient Verification Problem

It should be noted that this difference decreases as the number of modes used in the modal
transient method are increased. The three modes retained are sufficient to approximate
most of the solution for this low frequency loading. This corresponds well to the analysis
use case where modal transient is used to represent the lower frequency response of
complex systems. Temporal convergence depends on adequate modal basis. A similar
study with high frequency input could not be expected to converge without a much larger
modal basis.

Figure 3-8. – Displacement Difference for Modal and Direct Transient Solutions

For input deck see Appendix 11.23.
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4.4. Transient Restart

Analysts should be able to restart from any of the transient analysis capabilities into any of
the others. Of course, there are differences in the solutions with respect to accuracy, and
output quantities. For example, the nonlinear transient integrator outputs the number of
nonlinear steps as a global output variable. This is unavailable for modal transient. In
addition, there are internal variables associated with nonlinear elements and viscoelastic
materials which may not be propagated across the restart boundary.

Verification of this use case involves the following steps.

1. Computation of 40 normal modes.

2. Computation and output of 30 ms of time history with the first integrator.

3. Exit Sierra/SD, and start a new Sierra/SD analysis.

4. Restart read the previous normal modes.

5. Restart read the previous time history data, and computation of the next 10ms of
data.

6. Check of the .rslt to ensure that the time history data was restarted (as opposed to
recomputed from scratch).

7. Check the history file for accuracy. Note that the tolerances are loose on this check.
Each integrator provides a somewhat different solution (as expected).

8. Visual comparison of the results.

Table 4-2 indicates the tests that have been performed. Nonlinear transient as the first
integrator is not currently tested. Figure 4-9 provides the data for the second row of Table
4-2, which includes all cases where the direct transient was the first integrator. Likewise,
figure 4-10 shows data for modaltransient as the initial integrator.

Integrator NLtransient transient modaltrans Explicit modaltrans
NLtransient Untested Untested Untested Untested NA
transient TESTED TESTED TESTED TESTED NA
modaltransient TESTED TESTED TESTED TESTED NA
Explicit TESTED TESTED Untested TESTED NA
modaltrans NA NA NA NA NA

Table 4-2. – Tested restart capabilities for transient integrators in Sierra/SD.

For example inputs, see Appendix 11.24. The model is shown in Figure 4-12.
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Figure 4-9. – Restart from Direct Transient Analysis. In each case, 30ms of analysis is
completed using a direct transient run, and is followed by a restart.
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Figure 4-10. – Restart from Modal Transient Analysis. In each case, 30ms of analysis is
completed using a Modal transient run, and is followed by a restart.
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4.5. Modal Transient

The modal solution method is a standard Newmark-beta integrator that is applied in
parallel on the modal space. It is limited to boundary conditions that are space/time
separable, and all outputs must fit on single processor. Verification is applied to four
cases.

1. Constant force on a floating body, with limited modal interaction. The behavior is
rigid body only, and analytic solutions are trivial.

2. Repeat the above, but eliminate the rigid body motion. A comparison with the
standard modal solution provides the verification.

3. We repeat case 2, but add modal damping. Again, the analytic solution is
straightforward.

4. A complex loading.

The above examples exercise the primary elements of the software. All are run in parallel.
The model is shown in Figure 5-11. It consists of a thin cylinder with beams on one end
attaching to a large mass. The loading is applied to the mass.

Figure 5-11. – Q Modal Verification Model
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4.5.1. Constant Force Applied to Floating Structure

In this example the load activates only a rigid body mode, and the body behaves as a point
mass. The analytic solution for a constant force applied to a point mass is,

a(t) = Fo
m

(4.5.1)

v(t) =
∫ t

o
a(t′)dt′ (4.5.2)

= Fo
m
t (4.5.3)

d(t) =
∫ t

o
v(t′)dt′ (4.5.4)

= Fo
2mt2 (4.5.5)

The dimensionless load is set to 105 in the input file, and the result file indicates that the
total dimensionless mass of the structure is 1001.25 ·wtmass=2.5932375.

Figure 5-12 compares the analytic and numerical solutions for displacement. Figure 5-13
provides similar results for acceleration. While the agreement is excellent, a small
discrepancy is observed if differencing the solutions. This occurs because the numerically
integrated solution tends to lag the analytic solution by a half step.
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Figure 5-12. – Response of Rigid Body Mode

This example ensures that the modal force is being computed properly for rigid body
modes. As they are identical to elastic modes, that follows as well. It verifies the behavior
of the integrator, except that there are contributions from the damping matrix which are
not considered.
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Figure 5-13. – Acceleration Response of Rigid Body Mode. The analytic acceleration is a
constant of F/m≈ 38561.8. The error in the figure is much smaller than this, and represents the
elastic response of higher frequency elastic modes, that are just slightly active in the analysis.

4.5.2. A single Elastic Mode

While the analytic expression for an analytic mode is not quite as complete as for a rigid
body response, we may still proceed with verification. We assume that the eigenvalues are
computed correctly. We also assume that the modal force, fq(t) = φT f(x,t), has been
verified. The previous example addresses this. Then, the analytic response may be
computed.

a(t) = Foαcos(ωit) (4.5.6)

v(t) =
∫ t

o
a(t′)dt′ (4.5.7)

= Foωiα sin(ωit) (4.5.8)

d(t) =
∫ t

o
v(t′)dt′ (4.5.9)

= Fo
ω2
i

α(1− cos(ωit)) (4.5.10)

where α represents the modal contribution from mode i at natural frequency ωi, i.e.
α = φ2

ij . The analytic and numeric results for this case are shown in Figure 5-14.
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Figure 5-14. – Step Function response of Undamped Oscillator

4.5.3. Damped Simple Harmonic Oscillator

The solution of the previous solution can be neatly modified by applying damping. The
phase φ satisfies cosφ= ζ. The analytic solution is,

x(t) = A

1− e−ζωit
sin(

√
1− ζ2)ωit+φ

sin(φ)

 (4.5.11)

Results for the analytic and numeric solutions are shown in Figure 5-15.
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Figure 5-15. – Step Function response of Damped Oscillator
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4.5.4. Complex Loading

The last verification example (case 4) utilizes code to code comparison. We apply a
triangle pulse of unit amplitude and duration 1 ms. Comparison is with the standard
modaltransient method. This boundary condition is essentially an impulse which causes a
linear increase in displacement. There is no difference between the modaltrans and
modaltrans solutions.

For input deck see Appendix 11.27.
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4.6. Fluid Structure Interaction Added Mass

The following test is used to determine to what extent that SierraSD accounts for an added
fluid mass to a structure when computing the angular frequencies. The test consists of a
hollow steel sphere with a spring attached to the outer surface. Tests were run with the
steel sphere submerged in water as shown in Figure 6-16 and a steel sphere with no added
mass. The fluid is an acoustic medium.

Figure 6-16. – Model of the hollow sphere and spring submerged in water

4.6.1. Analytical solution

The analytical solution for this test is based on the natural frequency equation of an object
attached to an oscillating spring. Assuming that the spring is ideal and massless with no
damping ω =:

ω =
√
K

m
(4.6.1)

When the fluid is added around the sphere and is submerging the spring, the added mass
must be accounted for. This changes ω to:

ω =
√

K

m+ma
(4.6.2)

The formulas for various shapes are documented[10]. In the case of a spherical structure,
the added mass is given by:

ma = 2
3πρa

3 (4.6.3)

The first mode computed in SierraSD should match the analytical solution.
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There are several parameters for this test. The steel sphere is fixed in the x and y direction
so that displacements were only allowed in the z direction (direction of the spring). Also,
the steel sphere is constrained from rotating. The outer surface of the fluid region follows
the Dirichlet boundary conditions where p=0. The node attached to the end of the spring
is fixed for no translation. The only displacement allowed in the system is in the direction
of the spring. As a result the global structure has no rigid body modes. The steel sphere
has a high modulus of elasticity to ensure a very stiff structure. For this verification
problem the steel sphere is essentially rigid.

4.6.2. Computational Approach

The eigenfrequencies of the coupled structural acoustic system require computation of a
quadratic eigenvalue problem (QEVP).

(K+Cλ+λ2m)u= 0 (4.6.4)

where K is the stiffness matrix, m the mass matrix, and C is the gyroscopic coupling
matrix. The solutions to the equation include only purely imaginary eigenvalues λ= iω.
Two methods for computing QEVP are applied. SA_eigen uses a modal projection to
reduce the dimension of the problem and solve dense QEVP using LAPACK routines. The
QEVP/Anasazi method is a custom solution solving the full problem without the
approximation of a modal projection.

Shell elements were investigated in particular detail. When analyzing shell elements the
thickness of the inner sphere was as thin as 0.0001. The test was run using SA-eigen and
Anasazi. The number of modes, refinements, and test parameters varied to maximize
accuracy of the results. A collection of results using SA-eigen and Anasazi with various
thicknesses is shown in Table 6-3.

Table 6-3. – Frequency results for SA-eigen, Anasazi, and analytical results
Model Frequencies
Sphere size 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 0.00025 0.0001
analytic 0.1529 0.1945 0.2385 0.2881 0.3136 0.3293 0.3400 0.3438 0.3458 0.3470
sa-eigen 0.1522 0.2040 0.2628 0.3381 0.3825 0.4123 0.4340 0.4419 0.4459 0.4480
anasazi 0.1477 0.1934 0.2412 0.2955 0.3237 0.3412 0.3532 0.3574 0.3595 0.3605

A visual representation of the frequencies in SierraSD using SA-eigen and Anasazi
compared to the analytical solution is shown in Figure 6-17. For Anasazi, when the shell
begins to get thick (above 0.010), the parameters have to be changed in order for the test to
converge. The conditioning of the matrices begins to act up, so changing parameters such
as young’s modulus will help this. SA-Eigen will work for all models and parameters.

This figure shows that the impact of the fluid loading is largest for thin shells. The
QEVP/Anasazi method tracks the analytical solution very well. The QEVP/SA_eigen
solution is not as accurate, but the solution is still much better then the coupled solution.
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Figure 6-17. – Frequencies in SierraSD compared to the analytical solution.

Validation of the SierraSD code is most visible when the size of the inner steel sphere is the
thinnest. When the steel sphere is very thin the added mass has a greater impact on the
results. The weight of the steel sphere will be considerably less then the weight of the
surrounding fluid and the ratio between the mass added and the mass of the structure has
an immense impact on the frequencies of the system. Figure 6-18 shows the comparison of
having an added mass to your system and shows the results between SierraSD and the
analytical solution.

Figure 6-18. – Frequencies in SierraSD vs the mass ratio of the system.

This model was also investigated using using hexahedral and tetrahedral solid elements
with a QEVP/SA-eigen solution case. For thicker models using either solid element
produced more accurate results. However, the overall system was to be modeled as a rigid
body and when using the solid elements this process increased complexity as the steel
sphere became increasingly thin. The number of elements increased exponentially with the
thinner the structure. Also, adjustments to the parameters of the model had to be
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constantly maintained to ensure a stiff structure. For the shell elements, the thickness is
defined in the input deck and the stiffness is easily accounted for. For input deck see
Appendix 11.31.
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4.7. Fluid Structure Cavitation

An important class of fluid-structure interaction (FSI) problems involve the numerical
calculation of the response of a structure that is excited by a transient acoustic pressure
wave. These complex models have been created and well represented with the development
of the doubly asymptotic approximations that describe the fluid-structure interaction in
terms of a radiation boundary that truncates the fluid-volume mesh to finite extent. In
Sierra-SD we do not use the DAA, but apply a volumetric acoustic mesh with infinite
elements representing the radiation boundary. A model was created in Sierra-SD that
represents a solution that has already been obtained[9]. This is a one-dimensional problem,
which involves a flat plate initially resting on the surface of a half space of fluid. An
acoustic pressure wave is prescribed on the plate causing excitations that consist of a
step-exponential plane wave superimposed upon an ambient hydrostatic pressure field.
Figure 7-19 is an illustration of the model.

Figure 7-19. – 1D FSI Plate Shell Model in SD
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This model consists of a single structural rectangular plate 1.5 in by 1 in. The plate
consists of a QuadT shell element with a thickness of one. The fluid volume is 300 hex
elements of similar rectangular dimensions. The boundary of the fluid mesh has infinite
elements to serve as absorbing boundary conditions, as well as far-field calculators. The
physical properties used for the analysis were in imperial units. The mass density of the
plate was 5.329686e−4 lb sec2in4, while that of the fluid was 9.3455e−5 lb sec2in−4. The
speed of sound of the fluid was 57120 in/sec.

A peak pressure of the incident wave that is applied to the plate is 103 psi with a decay
time of 0.9958e−3 sec. For the transient analysis, 1200 time steps were used, with an
intergration time step of 1.313e−5 sec.

The Sierra-SD results were compared to and verified against published results [21]. Figure
7-20 of the y component of velocity versus time reproduces the published results.

Figure 7-20. – Velocity vs Time, Results from Felippa and DeRuntz

The model without cavitation was reproduced in Sierra-SD and compared to [21]. This is
shown in Figure 7-21. The actual velocities in in/sec can be obtained by multiplying by
57.12, while the time scale is given in decay time units. The decay time units can be
expressed as t= 1/λ∗ (time). The velocity of the plate is essentially zero by six decay
times.

Comparisons of the models is very good. For input deck see Appendix 11.32.
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Figure 7-21. – Velocity vs Time, Results from Sierra-SD
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4.8. Buckling of Constant Pressure Ring

Most analytic solutions for linear buckling are derived using Euler-Bernoulli beam theory.
These solutions are ideal for meshes built with beam and shell elements, but are only
approximate verification examples for 3D solid meshes. In this section we present the
buckling analytic solution of buckling of a circular ring. We only present the results using
3D solid elements. The model is shown in Figure 8-22.

Figure 8-22. – Buckling Ring Example. Model parameters

Diameter: 40

Material: aluminum

Cross Section I: 1/12

Cross Section Area: 2.0

Cross Section Thickness: 1.0

In this example, we consider buckling of a circular ring subjected to a uniform, external
pressure. The critical buckling pressure is given [54] as

Pcr = 3EI
R3 (4.8.1)

For the geometry of the problem, the critical buckling load is predicted to be

Pcr =
3×107× 1

12
203 = 312.5 (4.8.2)
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The computed buckling load was 395.408. Since the exact solution is for Euler-Bernoulli
beam theory we expect some difference, however this may be a little too high. We will
re-try with beam elements once they are on-line for buckling.

For input see Appendix 11.52
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4.9. Buckling of a Cantilever Beam

The buckling of a cantilever beam modeled using solid elements is verified. The geometry
for this example consists of a cantilever beam with one end clamped, and with the other
subjected to a compressive load P . Euler-Bernoulli beam theory predicts the critical
buckling load to be

Pcr = 2.4674EI
L2 (4.9.1)

A simple mesh of this example was created, consisting of a 2×2×20 hex elements. The
critical buckling load is predicted to be

Pcr =
2.4676×30×106× 1

12
102 = 61675 (4.9.2)

The computed buckling load was 61370.1. The model is shown in Figure 9-23.

Figure 9-23. – Buckling Cantilever Beam Example. Model parameters

Material: steel

Length: 20

Area: 2×2

For input see Appendix 11.53
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5. ELEMENTS

5.1. Euler Beam Bending

The Beam2 element is a simple Euler Beam. The beam bending equation for a point load,
P , on the end of a cantilever beam of length, L, is,

w(x) = Px2(3L−x)
6EI

Figure 1-1 shows the comparison with the analytic solution for a beam of length L= 1,
E = 10e6, and bending moment I1 = 0.2 for a 100 element beam. Figure 1-2 shows the
convergence as a function of the number of elements in the beam. The solutions here are
performed with a direct solver, sparsepak, and with the GDSW solver with 2 processors.
The lack of convergence to the analytic solution is expected, and indicates the increased
numerical error as the matrices become more ill conditioned. As the number of elements
increases, the matrix condition worsens. Even the serial solver accuracy suffers, but parallel
iterative solvers are particularly vulnerable to reduced accuracy for poorly conditioned
systems.1

In some sense, the lack of convergence is pathological in this example. The exact solution is
a cubic, which can be met exactly by a single element of the beam. Thus, increasing the
beam count is not required to improve accuracy. The example illustrates both the
correctness of the solution for a low element count, and the effect of matrix condition and
solver on the solution.

For input deck see Appendix 11.6.

1Note that for this example we have used standard solver parameters for GDSW. With care, the solution
can be forced to be more accurate.
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Figure 1-1. – Comparison of Beam2 Bending
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Figure 1-2. – Beam2 Bending “Convergence”. The plot shows the L2 Norm of the error in
w, divided by the L2 norm of w as a function of the number of elements. Properly conver-
gent solutions would decrease as the number of elements increase. While this solution is very
accurate, it is not converging to the analytic solution as the number of elements increases.
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5.2. Euler Beam Properties

The following test verifies that Sierra SD uses the I1 and I2 properties defined in the input
deck in the manner outlined by the user’s documentation. The problem was analyzed using
a thin long cantilevered beam with a rectangular cross-section made up of 100 Beam2
elements with the following geometry:

Figure 2-3. – Geometry of Beam

Table 2-1. – Beam Cross-Sectional Properties

Width 0.1 Height 0.3
Length 100 Area 0.03

I1 0.09 I2 0.01

The beam’s cross-sectional properties were chosen to give a very long slender beam with a
good separation between bending axes.

5.2.0.1. Analytical Solution

A MATLAB script was created to calculate the modal frequencies for a single span
cantilevered beam using the following formula from Blevins:

fi = λ2
i

2πL2

(
EI

m

) 1
2

(5.2.1)

fi Natural Frequency
λi Natural Frequency Parameter (Tabular Values)
E, I, m, A, and L are the usual physical properties of the beam

5.2.0.2. Computational Approach

The beam was analyzed using both Sierra-SD and NASTRAN. The NASTRAN results
were used as a reference for comparison along with the analytical solution results obtained
previously. It is important to note that both the analytical solution and the NASTRAN
solution do not calculate twisting modes, while the Sierra-SD model did. These modes were
not compared.
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The natural frequencies for all 3 modes are shown in Table 2-2

Table 2-2. – Natural Frequency [Hz] results for Analytical, Sierra-SD and NASTRAN models,
Displacement Axis Comparison for NASTRAN and Sierra-SD models

Mode Analytical NASTRAN Sierra-SD NASTRAN Sierra-SD
1 0.1022 0.1021669 0.102161 Z-Axis Z-Axis
2 0.3065 0.3065007 0.306484 Y-Axis Y-Axis
3 0.6403 0.640269 0.640129 Z-Axis Z-Axis
4 1.7928 1.792772 1.79205 Z-Axis Z-Axis
5 1.9208 1.920807 1.92039 Y-Axis Y-Axis
6 3.5131 3.513118 3.51092 Z-Axis Z-Axis
7 N/A N/A 4.90285 N/A N/A
8 5.3783 5.378316 5.37615 Y-Axis Y-Axis
9 5.8074 5.807436 5.80229 Z-Axis Z-Axis
10 N/A 7.905694 7.90561 Z-Axis Z-Axis

Natural frequencies that show N/A are twisting modes. Figure 2-4 shows the differences in
calculated natural frequencies.
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Figure 2-4. – Frequency Comparison

5.2.0.3. I1 and I2 Verification

After testing that natural frequencies were in agreement for all three models, the
displacements of the Sierra-SD model were compared to the displacements of the
NASTRAN model to confirm that the orientations of I1 and I2 were correct. The following
table 2-2 shows the comparison results.

5.2.0.4. References

Blevins, Robert D. “Formulas for Natural Frequencies and Mode Shape “, Krieger
Publishing Company, 1984

For input deck see Appendix 11.7.
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5.3. A Navy Beam

The following test was used to verify that Sierra SD is using the I1 and I2 properties
defined in the input deck in the manner outlined by the user’s documentation. The
problem was analyzed using a thin long cantilevered beam with a rectangular cross-section
made up of 100 Nbeam elements with the following geometry:

Figure 3-5. – Geometry of Beam

Table 3-3. – Beam Cross-Sectional Properties

Width 0.1 Height 0.3
Length 100 Area 0.03

I1 0.09 I2 0.01

The beam’s cross-sectional properties were chosen to give a very long slender beam with a
good separation between bending axes.

5.3.0.1. Analytical Solution

A MATLAB script was created to calculate the modal frequencies for a single span
cantilevered beam using the following formula [10]

fi = λ2
i

2πL2

(
EI

m

) 1
2

(5.3.1)

fi Natural Frequency
λi Natural Frequency Parameter (Tabular Values)
E, I, m, A, and L are the usual physical properties of the beam

5.3.0.2. Computational Approach

The beam was analyzed using both Sierra-SD and NASTRAN. The NASTRAN results
were used as a reference for comparison along with the analytical solution results obtained
previously. It is important to note that both the analytical solution and the NASTRAN
solution do not calculate twisting modes, while the Sierra-SD model did. These modes were
not compared.

133



Table 3-4. – Natural Frequency [Hz] results for Analytical, Sierra-SD and NASTRAN models,
Displacement Axis Comparison for NASTRAN and Sierra-SD models

Mode Analytical NASTRAN Sierra-SD NASTRAN Sierra-SD
1 0.1022 0.1021669 0.102161 Z-Axis Z-Axis
2 0.3065 0.3065007 0.306484 Y-Axis Y-Axis
3 0.6403 0.640269 0.640129 Z-Axis Z-Axis
4 1.7928 1.792772 1.79205 Z-Axis Z-Axis
5 1.9208 1.920807 1.92039 Y-Axis Y-Axis
6 3.5131 3.513118 3.51092 Z-Axis Z-Axis
7 N/A N/A 4.90285 N/A N/A
8 5.3783 5.378316 5.37615 Y-Axis Y-Axis
9 5.8074 5.807436 5.80229 Z-Axis Z-Axis
10 N/A 7.905694 7.90561 Z-Axis Z-Axis

The natural frequencies for all 3 modes are shown in Table 3-4

Natural frequencies that show N/A are twisting modes. Figure 3-6 shows the differences in
calculated natural frequencies.
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Figure 3-6. – Frequency Comparison

5.3.0.3. I1 and I2 Verification

After testing that natural frequencies were in agreement for all three models, the
displacements of the Sierra-SD model were compared to the displacements of the
NASTRAN model to confirm that the orientations of I1 and I2 were correct. The following
table 3-4 shows the comparison results. For input deck see Appendix 11.8.
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5.4. Two Layered Hexshell

5.4.1. Problem Description

This example demonstrates that the automatic verification documentation is viable. Static
analyses of a sequence of layered plates problems are solving using the hexshell element

Analysis Type Statics
Element Type Hexshell
Dimensions [−1/2,1/2]× [−1/2,1/2]× [−5/2,5/2]
Keywords layered

5.4.2. Verification of Solution

The mesh consists of a hexahedron of dimension [−1/2,1/2]× [−1/2,1/2]× [−5/2,5/2].
The example is a step in a study of deflection versus layer thickness. Results have been
compared to documented results [23],[22] in the past. For input deck see Appendix 11.9.
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5.5. Preloaded Beam

5.5.1. Beam Elements

The following test was used to verify that Sierra SD accurately accounts for an axial
preload on a beam. This test was verified using three different references, two different
analytical solutions (Shaker, 1975), (Carne, 1982), and an Abaqus benchmark problem.
The problem was first analyzed with no preload using the same analytical solution and
then modeled to verify that the system is functioning appropriately.

We use an Abaqus verification problem for the modes of a prestressed beam. A cantilever
beam, one hundred elements, is on the x axis. An axial force is applied in the x direction.

The beam was analyzed with and without the static preload. Figure 5-7 shows the
geometry of the model.

Figure 5-7. – Geometry of Beam

An equivalent test was created and analyzed in Sierra-SD. The test had three solution
cases static, tangent, and eigen analysis. The cantilever beam is partitioned into one
hundred beam elements. The frequencies were compared between Abaqus and Sierra-SD
and shown in table 5-5.

Table 5-5. – Results Abaqus vs. Sierra-SD (beam elements)

Abaqus Sierra-SD
Without Preload

Mode 1 212.4 212.818
Mode 2 1330.8 1333.49
Mode 3 3727.2 3733.11

With Preload
Mode 1 1137.9 1136.8
Mode 2 3624.4 3616.07
Mode 3 6694.1 6667.12

The results are consistent for the benchmark problem.
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5.5.2. References

Carne, Thomas G., Donald W. Lobitz, Arlo R. Nord, and Robert A. Watson. "Finite
Element Analysis and Modal Testing of a Rotating Wind Turbine." (1982): 8-9. Sandia
Report. Web.
Shaker, Francis J. "Effect of Axial Load on Mode Shapes and Frequencies of Beams." Lewis
Research Center (1975): 1-9. Web.
For input deck see Appendix 11.12.
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5.5.3. Prescribed displacement

The following test was used to verify that Sierra SD accurately accounts for an axial
preload on a beam. This test was verified using three different references, two different
analytical solutions (Shaker, 1975), (Carne, 1982), and an Abaqus benchmark problem.
The problem was first analyzed with no preload using the same analytical solution and
then modeled to verify that the system is functioning appropriately.

5.5.4. Test One

Test one is a verification of the analytical solution using beam elements. All parameters
were incorporated using SI units. The beam parameters are:

Figure 5-8. – Geometry of Beam

The beam is pinned on both ends (pinned pinned), with an axial preload in the x direction.
This test was analyzed using a tensile and compressive preload.

5.5.4.1. Analytical Solution

An axial preload has limited verification due to lack of closed form solutions, however; in
the paper (Carne, 1982) an analytical solution can be used. Assuming pinned pinned
constraints on the beam the natural frequencies are:

Vn =
(
nπ

L

)2(EI
ρA

) 1
2
[
1− PL2

EIn2π2

] 1
2

(5.5.1)

n represents the mode number;
P is the axial load;
E, I, ρ, A, and L are the usual physical properties of the beam

A similar analytic solution for non dimensional natural frequency of a pinned pinned beam
under axial preload can be found at (Shaker, 1975). Also, a Matlab file is in the test
repository under beam preload verification that solves the two analytical solutions.
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5.5.4.2. Computational Approach

This test case was modeled using Sierra SD.The eigenfrequencies of a beam under an axial
preload require a multicase solution set including static, tangent, and eigen. The static
case applies the preload. The tangent case is used following the linear solution step, where
the stiffness matrix is recomputed based on the current value of displacement. Finally, the
eigen case is used to output eigenfrequencies. The beam was partitioned into one hundred
elements.

There are several parameters for this test. In order to model the beam with pinned pinned
constraints and an axial displacement due to preload the beam was treated with pin roller
constraints (where y=0) first. The preload was applied in the x direction at the roller and
the max displacement was found. This Max displacement was then used in the pin pin
model as a boundary condition of x at the location of the pin and preload.This extra step
needs to be done for a pin pin case because an axial preload is being applied at the pin
where x=0 as a boundary condition, so the beam has zero displacement in the x direction.
Also, the length of the beam had the following constraints: z = 0, rotx = 0, and roty = 0.
These constraints are used to ensure that the appropriate bending modes are analyzed.

A summary of the results where compared and shown in Table 5-6.

Table 5-6. – Natural Frequency results for Analytical and Sierra SD solution

Sierra SD Analytical
# P=N/A P = 1e3 P = 1e7 P = 1e10 P=N/A P = 1e3 P = 1e7 P = 1e10
1 43.8041 43.8041 43.8041 51.3605 43.8048 43.805 43.805 51.948
2 175.207 175.207 175.207 181.575 175.219 175.220 175.220 183.905
3 394.18 394.18 394.18 397.775 394.244 394.244 394.244 403.046
4 700.677 700.677 700.677 700.268 700.878 700.878 700.878 709.723
5 1094.63 1094.63 1094.63 1089.04 1095.122 1095.122 1095.122 1103.987
6 1575.96 1575.96 1575.96 1564.04 1576.976 1576.976 1576.976 1585.852
7 2144.55 2144.55 2144.55 2125.15 2146.439 2146.44 2146.44 2155.322
8 2800.29 2800.29 2800.29 2772.26 2803.512 2803.513 2803.513 2812.399
9 3543.03 3543.03 3543.03 3505.24 3548.196 3548.196 3548.196 3557.085
10 4372.62 4372.62 4372.62 4323.94 4380.489 4380.489 4380.489 4389.381

All modes are within 1.5 percent error between the analytical solution and Sierra SD.

5.5.5. References

Carne, Thomas G., Donald W. Lobitz, Arlo R. Nord, and Robert A. Watson. "Finite
Element Analysis and Modal Testing of a Rotating Wind Turbine." (1982): 8-9. Sandia
Report. Web.
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Shaker, Francis J. "Effect of Axial Load on Mode Shapes and Frequencies of Beams." Lewis
Research Center (1975): 1-9. Web.
For input deck see Appendix 11.12.1.
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5.6. Partial Cylinder Patch

This verification example checks the strain output on shell elements. The model is a partial
cylinder under axial stretch, with a radius r = 2.0, height h= 1.0 and thickness t= 0.01,
shown in Figure 6-9. The material has a Young’s modulus of E = 106 and a Poisson’s ratio
of ν = 0.3. An axial displacement of daxial = 0.01 is applied to the cylinder.

The analytical axial strain and hoop strains are:

εaxial = 0.010 (5.6.1)

εhoop = 0.003. (5.6.2)
The analytical axial stress and hoop stress are:

σaxial = εaxial ∗E = 104 (5.6.3)

σhoop = 0.0. (5.6.4)
The analytical strain energy density and total strain energy are:

SEdensity = 0.5∗σaxialεaxial = 50 (5.6.5)

SE = SDdensity ∗
2htπ ∗ r

4 = 1.570754. (5.6.6)

Post processing scripts are used to transform the shell strain results to the hoop and axial
directions. Special care has been taken to ensure that the mesh is general, and to verify
strain output for arbitrary shape elements. Figure 6-10 shows the axial strain for each
element type. Figure 6-11 shows the strain energy density for each element type. Figure
6-12 shows the axial stress for each element type. For input deck see Appendix 11.13.

Figure 6-9. – Partial Cylinder under Axial Stretch
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Hex8 Quad4 Quad8

Tri3 Tri6
Figure 6-10. – Axial Strain for Partial Cylinder
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Hex8 Quad4 Quad8

Tri3 Tri6
Figure 6-11. – Strain Energy Density for Partial Cylinder
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Hex8 Quad4 Quad8

Tri3 Tri6
Figure 6-12. – Axial Stress for Partial Cylinder
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5.7. Membrane Geometrical Stiffness

We wish to evaluate the geometric stiffness for a simple unit square, with pre-stress in the
Y direction. As described in the theory manual, the geometric stiffness is given by,

Eg = t
∫
A
σlm

( ∂δuuu
∂xm

)T
∂uuu

∂xl
− 1

2

2∑
γ=1

(
eeeγ
∂δuuu

∂xl
+ eeel

∂uuu

∂xγ

)(
eeeγ
∂δuuu

∂xm
+ eeem

∂uuu

∂xγ

)dA (5.7.1)

5.7.1. Development

Let nodes 1, 2, 3 and 4 have coordinates (0,0), (1,0), (0,1), and (1,1). The shape functions
for the nodes are given by

N1 = (1−x)(1−y) (5.7.2)
N2 = x(1−y) (5.7.3)
N3 = (1−x)y (5.7.4)
N4 = xy. (5.7.5)

The shape function derivatives are then

N1,x = y−1 (5.7.6)
N1,y = x−1 (5.7.7)
N2,x = 1−y (5.7.8)
N2,y =−x (5.7.9)
N3,x =−y (5.7.10)
N3,y = 1−x (5.7.11)
N4,x = y (5.7.12)
N4,y = x (5.7.13)

We have
uuu=

3∑
i=1

(u1,iN1 +u2,iN2 +u3,iN3 +u4,iN4)eeei, (5.7.14)

where eeei is a unit vector in global direction i. We then obtain

uuu,x =
3∑
i=1

(u1,iN1,x+u2,iN2,x+u3,iN3,x+u4,iN4,x)eeei (5.7.15)

uuu,y =
3∑
i=1

(u1,iN1,y +u2,iN2,y +u3,iN3,y +u4,iN4,y)eeei (5.7.16)

When σ = σ22, and all other components are zero, we can write,

Eg = t
∫
A
σ22uuu

T
,yuuu,y+
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− 1
2t
∫
A
σ22 [(eee1uuu,y + eee2uuu,x)(eee1uuu,y + eee2uuu,x) + (eee2uuu,y + eee2uuu,y)(eee2uuu,y + eee2uuu,y)]dA (5.7.17)

or,
Eg
tσ22

=
∫
A
uuuT,yuuu,ydA (5.7.18)

−1
2

∫
A

(eee1uuu,y)2dA (5.7.19)

−
∫
A

(eee1uuu,y)(eee2uuu,x)dA (5.7.20)

−1
2

∫
A

(eee2uuu,x)2dA (5.7.21)

−2
∫
A

(eee2uuu,y)2dA (5.7.22)

5.7.1.1. K1,1 entry

We will examine the 1,1 entry of the stiffness matrix first. This can be found by setting
uuuj,i = 0 unless i= j = 1, and uuu1,1 = 1. This is often called “probing”. Then,

uuu,x =N1,xeee1 (5.7.23)
uuu,y =N1,yeee1 (5.7.24)

Then,

Eg
tσ22

=
∫
A

N2
1,y
2 dA (5.7.25)

=
∫
A

(x−1)2

2 dxdy (5.7.26)

= (x−1)3

6

∣∣∣∣∣
1

0
(5.7.27)

=1
6 (5.7.28)

5.7.1.2. Other Entries

Computing the remaining terms in the matrix is tedious, but straightforward. A maple
script can be used to accomplish this. From that script, we determine the following.

K11 = tσ22/6 (5.7.29)
Kg22 =−tσ22/2 (5.7.30)
Kg33 = tσ22/3 (5.7.31)
Kg12 = tσ22/8 (5.7.32)

(5.7.33)

The maple script is available.

147



5.7.1.3. Rotations

The test in this directory runs only on a unit square in the xy plane. However, a related
verification test rotates that structure generally, and compares eigen responses for that
rotation with an unrotated square. Having identical eigenvalues assures us that rotations
are an issue. For input deck see Appendix 11.14.
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5.8. Membrane Quad

A verification test was created for membrane elements in Sierra-SD. The geometry of this
test is shown in Figure 8-13.

Figure 8-13. – membraneGeometry

There is a total of four membrane elements in the model with the following boundary
conditions. The three bottom and top nodes are fixed in the x and y direction. This is an
eigen solution case with a total of fourteen modes. For verification the test in Sierra-SD
was compared to the Abaqus finite element code. The Eigenvalue results are shown in
Table 8-7. All modes are compared. There are nine rigid body modes in the model.

For input deck see Appendix 11.15.
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Table 8-7. – Sierra-SD and Abaqus Eigenvalue Comparison

Mode Number Sierra-SD Abaqus
1 -6.70788E-09 0.0
2 -6.70788E-09 0.0
3 0.0 0.0
4 0.0 0.0
5 0.0 0.0
6 0.0 3.7945E-08
7 6.70788E-09 3.7945E-08
8 9.48637E-09 8.8049E-05
9 1.16184E-08 1.1743E-04
10 2607.7 2607.7
11 4237.42 4237.4
12 4723.49 4723.5
13 4723.49 4723.5
14 5164.01 5164.0
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5.9. QuadM membrane Patch

A patch test that was created for a SierraSD membrane element. The geometry of this test
is shown in Figure 9-14. There are a total of five boundary conditions constraining the

Figure 9-14. – Patch Test Geometry

model. First, all nodes are fixed in the z direction, which is the direction normal to the
plane of the model. Second, the top left corner node is fixed in all directions. Third, the
nodes on the left side of the geometry are constrained in the x direction. Fourth, the nodes
on the top of the geometry are constrained in the y direction. Finally, the nodes on the far
right side of the geometry have a prescribed displacement of 0.1 in the positive x direction.
The test was analyzed by verifying constant strain throughout the geometry. The results
from this test can be seen in Table 9-8.

Table 9-8. – Strain for Membrane Elements

Node Number Strain
1 Fixed = 0
2 0.0250
3 0.0250
4 Fixed = 0
5 0.0250
6 Fixed = 0
7 0.0250
8 Fixed = 0
9 0.0250
10 0.0250
11 0.0250
12 0.0250
13 0.0250
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5.9.1. Eigen

The model was also tested using an eigen solution. In this case only the out-of-plane
boundary conditions were applied, resulting in a model that should have three rigid body
modes. The number of rigid body modes was to be verified in accordance with the
boundary conditions. The test case outputs three rigid body modes as expected.

5.9.2. Rotated Patch Test

Further verification was performed using the same patch test by rotating the test out of the
XY plane, shown in Figure 9-15.

Figure 9-15. – Test Geometry

The model is constrained by MPC’s to impose exactly the same boundary conditions as
were described in the previous section, except that they were defined with respect to the
rotated coordinate system. With these boundary conditions the model has no rigid body
modes. The first 10 modes for the rotated test are compared to the in plane patch test.
The Eigenvalue results are shown in Table 9-9. As expected, the modes are the same in
both cases and are invariant with respect to the rotation of the model.
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Table 9-9. – Rotated Patch Test

Mode Number No-rotation Rotated
1 627.172 627.172
2 818.997 818.997
3 924.864 924.864
4 1471.59 1471.59
5 1869.91 1869.91
6 2187.29 2187.29
7 2429.53 2429.53
8 2574.91 2574.91
9 2931.04 2931.04
10 3073.42 3073.42

5.9.3. Hex Elements

For verification, the model was also created using the default hex8 elements. The same
geometry was used as the membrane element, but the surface was extruded with a
thickness of 1. The same boundary conditions were used as well. The results can be seen in
table 9-10. The strain is constant for every node through out the model, therefore,
verifying the patch test is working.

153



Table 9-10. – Strain for Hex Elements

Node Number Strain
1 Fixed = 0
2 Fixed = 0
3 0.0250
4 0.0250
5 Fixed = 0
6 Fixed = 0
7 0.0250
8 0.0250
9 0.0250
10 Fixed = 0
11 0.0250
12 Fixed = 0
13 Fixed = 0
14 Fixed = 0

Nodes 15-26 0.0250

5.9.4. Orthotropic Material Properties

In this test, we consider a 2×2 mesh of an orthotropic membrane model where the
material elasticity tensor only provides stiffness in the x direction, with zero stiffness in the
remaining directions. In addition, we constrain the out-of-plane motion to be zero. With
these conditions, we expect 12 rigid body modes, since each of the nodes in the mesh is free
to move in the y direction with no resistance. This test involves a coupled Sierra-SM and
Sierra-SD analysis, where Sierra-SM produces an output exodus file that contains the
necessary material properties. Sierra-SD uses this output exodus file and performs a modal
analysis. For verification, the first 18 modes are compared to the Abaqus finite element
code. The eigenvalue results are shown in Table 9-11. There are 12 rigid body modes in
the model, and the remaining modes show an acceptable comparison of the two codes.

The direction of the fibers in the material properties were also changed from the y direction
to the x direction. The modes were verified to match exactly and were independent of the
fiber direction as expected. For input deck see Appendix 11.16.
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Table 9-11. – Orthotropic Material Patch Test

Mode Number Abaqus Sierra-SD
1 0.0000 -3.63305E-03
2 0.0000 -2.86194E-03
3 2.18886E-03 -2.33876E-03
4 4.74120E-02 -9.21049E-04
5 6.70089E-02 9.91374E-05
6 6.70388E-02 5.23966E-04
7 6.70477E-02 9.29529E-04
8 6.70864E-02 1.14456E-03
9 6.71252E-02 1.45159E-03
10 8.20846E-02 1.71789E-03
11 8.20859E-02 2.19313E-03
12 9.47649E-02 2.70663E-03
13 1.08203E+05 1.08184E+05
14 1.53022E+05 1.52995+05
15 1.53022E+05 1.52995+05
16 1.87413E+05 1.87379+05
17 2.16406E+05 2.16367+05
18 2.65042E+05 2.64994+05
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5.10. QuadS_GY Shear Membrane Shell

Verification of the QuadS_GY Element. The existing Salinas membrane element used for
eigenmode/linear analysis is a quad with three extensional degrees of freedom: u, v, and w.
The new shell finite element draws on the Reissner-Mindlin plate theory, as described in
Chapter 5 of Ref.[31]. This element has six degrees of freedom per node; three infinitesimal
displacements: u, v, w; and three infinitesimal rotations: θx, θy, and θz. Selective reduced
integration is used in this bilinear element. Bending and membrane strains are integrated
with the 2-by-2 Gauss rule. Shear deformation is integrated with the 1-by-1 Gauss rule.
Under integration avoids locking attributed to the shear interpolation. Uncoupled drilling
stiffness is added to curb in-plane rotation θz. This stiffness is set internally and prevents
the solution from containing meaningless null eigenvalues.
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Figure 10-16. – Transverse shear strains βx and βy allow cross sections to not remain on
a plate perpendicular to fiber direction. This relaxation of the Kirchhoff hypothesis enables
accurate study of thick plates and shells.

5.10.1. Eigenvalue analysis: Verification on a flat shell

In this section, we verify the new element using two procedures: a) The existing Salinas
element QuadT is used to generate reference data; b) Analytical solutions are used. Note
that whereas the element QuadT captures only bending, the new QuadS_GY captures
bending and shear deformations, in addition to membrane modes. The shell used for
verification has dimensions of 1m by 1m, the modulus of elasticity is E = 30MPa, the
Poisson ration is 0.3, and density is 0.288 kg/m3.

5.10.1.1. Isotropic

In this subsection, the behavior of Quad_T (bend. + memb.) and QuadS_GY (bend. +
memb. + shear) are compared to bending analytical results (Kirchhoff-Love). A general
formula for obtaining the natural frequencies of a flat plate for various boundary conditions
is as follows

fij =
λ2
ij

2πa2

[
Eh3

12γ(1−ν2)

] 1
2
, (5.10.1)

where λ is a parameter that depends on the shell dimensions and its boundary conditions,
a is the first dimension of the rectangular shell, E is the isotropic modulus of elasticity, h is
the thickness, γ is the mass per unit area of the shell, and ν is the Poisson ration. The λij
values for specific boundary conditions, relative dimensions, and mode number are given in
the literature (see Ref. [10]).
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5.10.1.1.1. Fixed-Fixed-Fixed-Fixed (FFFF) The bending eigenfrequencies of the plate
for two different thickness values are reported in Tables 10-12 and 10-13. The
shear-deformable shell element (QuadS_GY) results naturally diverge from bending theory
for increasingly thicker sections.

Table 10-12. – Eigenfrequencies for FFFF flat shell of thickness 0.001m. Frequencies are in
Hertz and discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
1st mode 347.620 347.466 347.669

(Ref.) (0.04) (0.01)
2nd mode 709.052 708.562 709.363

(Ref.) (0.07) (0.04)
3rd mode 709.052 708.579 709.406

(Ref.) (0.07) (0.05)
4th mode 1046.048 1044.239 1045.507

(Ref.) (0.17) (0.05)
5th mode 1271.098 1270.185 1272.846

(Ref.) (0.07) (0.17)
6th mode 1276.893 1276.245 1278.894

(Ref.) (0.05) (0.15)

Table 10-13. – Eigenfrequencies for FFFF flat shell of thickness 0.01m. Frequencies are in
Hertz and discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
hline 1st mode 3476.203 3474.659 3463.921

(Ref.) (0.04) (0.35)
2nd mode 7090.527 7085.620 7048.431

(Ref.) (0.07) (0.60)
3rd mode 7090.527 7085.790 7048.851

(Ref.) (0.07) (0.59)
4th mode 10460.48 10442.393 10361.58

(Ref.) (0.17) (0.94)
5th mode 12710.98 12701.847 12598.886

(Ref.) (0.07) (0.88)
6th mode 12768.93 12762.453 12661.539

(Ref.) (0.05) (0.84)

5.10.1.1.2. Free-Free-Free-Free(FrFrFrFr) Tables 10-14 and 10-15 show natural
frequency results of the same plate with the four edges free. Rigid body motion has been
disregarded. Only deformation modes are reported in this subsection.
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Table 10-14. – Eigenfrequencies for FrFrFrFr flat shell of thickness 0.001m. Frequencies are
in Hertz and discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
1st mode 130.297 129.818 129.919

(Ref.) (0.37) (0.29)
2nd mode 191.147 188.996 189.086

(Ref.) (1.12) (1.08)
3rd mode 235.964 233.438 234.240

(Ref.) (1.07) (0.73)
4th mode 338.251 333.017 335.625

(Ref.) (1.54) (0.78)
5th mode 338.251 335.954 335.756

(Ref.) (0.68) (0.74)
6th mode 594.306 582.394 589.133

(Ref.) (2.00) (0.87)

5.10.1.1.3. Simply supported-Free-Free-Free (SFrFrFr) The natural frequencies
associated with the lowest-frequency deformation modes are shown in Tables 10-16
and 10-17.
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Table 10-15. – Eigenfrequencies for FrFrFrFr flat shell of thickness 0.01m. Frequencies are
in Hertz and discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
1st mode 1302.97 1316.80 1263.69

(Ref.) (1.06) (3.01)
2nd mode 1911.48 2167.89 1938.90

(Ref.) (13.41) (1.43)
3rd mode 2359.65 2353.98 2632.25

(Ref.) (0.24) (11.55)
4th mode 3382.51 3359.54 3331.60

(Ref.) (0.68) (1.50)
5th mode 3382.51 4489.73 3331.81

(Ref.) (32.73) (1.50)
6th mode 5943.06 5891.27 5873.92

(Ref.) (0.87) (1.16)

Table 10-16. – Eigenfrequencies for SFrFrFr flat shell of thickness 0.001m. Frequencies are
in Hertz and discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
1st mode 64.212 64.152 64.177

(Ref.) (0.09) (0.05)
2nd mode 145.075 143.874 143.905

(Ref.) (0.83) (0.81)
3rd mode 246.203 244.989 244.650

(Ref.) (0.49) (0.63)
4th mode 252.384 250.912 249.830

(Ref.) (0.58) (1.01)
5th mode 470.480 467.576 467.594

(Ref.) (0.62) (0.61)
6th mode 491.150 488.143 487.013

(Ref.) (0.61) (0.84)
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Table 10-17. – Eigenfrequencies for SFrFrFr flat shell of thickness 0.01m. Frequencies are in
Hertz and discrepancies from theory are given in percentage between parenthesis.

Analytical QuadT QuadS_GY
1st mode 642.117 641.523 635.558

(Ref.) (0.09) (1.02)
2nd mode 1450.752 1438.741 1437.167

(Ref.) (0.83) (0.94)
3rd mode 2462.029 2449.891 2426.925

(Ref.) (0.49) (1.42)
4th mode 2523.845 2509.117 2486.897

(Ref.) (0.58) (1.46)
5th mode 4704.803 4675.760 4639.690

(Ref.) (0.62) (1.38)
6th mode 4911.501 4881.430 4841.552

(Ref.) (0.61) (1.42)
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5.10.1.2. Orthotropic

For an orthotropic material model, we use a clamped-clamped shell with the following
arbitrary orthotropic properties: Ex = 30MPa, Ey = 0.5MPa, νxy = 0.3, Gxy = 0.5MPa,
ρ= 7.46 g/m3, and thickness is 1mm. It is assumed that the fiber is aligned with the
element frame of reference, i.e., fiber angle α = 0deg. Both analytical and QuadT results
disregard shear dynamics, whereas shear is present in the computations of the QuadS_GY.
The effect of transverse shear tends to be negligible for small relative thickness values.
Analytical results are obtained by applying a similar expression to 5.10.1, also provided in
Ref. [10]. Results are summarized in Table 10-18. A graphical comparison of the (32) mode
for two SD elements is shown in Fig. 10-17.

Table 10-18. – Eigenfrequencies for clamped-clamped orthotropic flat shell of thickness
0.001m. Frequencies are in Hertz and discrepancies from theory are given in percentage be-
tween parenthesis.

Analytical QuadT QuadS_GY
11 mode 209.022 210.144 210.365

(Ref.) (0.54) (0.64)
12 mode 226.154 226.862 227.138

(Ref.) (0.31) (0.43)
13 mode 266.218 266.395 266.738

(Ref.) (0.06) (0.19)
21 mode 572.750 571.523 572.802

(Ref.) (0.21) (0.01)
22 mode 585.382 583.755 585.204

(Ref.) (0.28) (0.03)
23 mode 611.422 609.315 611.004

(Ref.) (0.34) (0.07)
31 mode 1118.82 1115.867 1120.096

(Ref.) (0.26) (0.11)
32 mode 1130.410 1126.535 1131.111

(Ref.) (0.34) (0.06)
33 mode 1152.056 1147.003 1152.097

(Ref.) (0.43) (0.00)

For input deck see Appendix 11.17.
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(a) QuadT (memb.+ bend.) (b) QuadS_GY (memb.+ bend. + shear)

Figure 10-17. – Comparison of (32) modes resulting from orthotropic material model (see Ta-
ble 10-18).
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5.11. QuadS_GY Shear Membrane Shell - Geometric Stiffness and Preload

Verification of the QuadS_GY Geometric Stiffness matrix and SierraSM Preload.

5.11.1. Verification of geometric stress stiffness matrix

A cantilever beam modeled by shear-deformable shell elements used to test other Sierra-SD
shell elements is used here too. One end of the beam is clamped. An axial pressure is
applied to the other end. The beam is 0.127m (length) by 0.0044504m (width) by
0.0044504m (thickness). The modulus of elasticity is 187GPa, ν = 0.3, and
ρ= 8015.19 kg/m3. A linear pressure of -2245852908.28N/m is applied to the free end,
which yields an axial displacement of 1.5656243mm. The effect of an axial load stiffens the
system thus increasing the beam’s natural frequencies. The following table summarizes the
behavior of the new element:

Table 11-19. – First three natural frequencies of a beam with applied axial pressure.
Abaqus SD shell QuadS_GY Difference (%)

Without Preload
Mode 1 212.4 212.793 215.574 1.49
Mode 2 1330.8 1327.73 1345.831 1.12
Mode 3 3727.2 3689.86 3740.46 0.36

With Preload
Mode 1 1137.9 1141.66 1111.647 2.31
Mode 2 3624.4 3621.86 3536.431 2.42
Mode 3 6694.1 6636.30 6507.385 2.79

Two methods are used to obtain the eigenfrequencies reported in Table 11-19:

• SD shell. In Sierra-SD, the pressure load is applied to the shelled beam and, with
the resulting displacements, the system stiffness is updated. After that, eigenvalue
analysis on the beam is performed considering the updated stiffness.

• QuadS_GY. The eigenfrequencies of the preloaded system is computed in a
two-step process. First, we applied a prescribed displacement in Sierra-SM to achieve
a beam stress state analogous to the SD shell. Then we write those stress to an
Exodus output file. This file is used in Sierra-SD to read the geometry of the system
and its stresses, which are then used to compute the natural frequencies of the
preloaded beam.

This difference in methodology is justified by the way tire eigenanalysis is performed: First
a complex nonlinear system is solved in Sierra-SM. With the resulting stresses, a geometric
stress stiffness matrix is built to account for the preloaded state of the tire. Finally
eigenvalue analysis is performed in Sierra-SD. Note that the process used for the
QuadS_GY shell involves some approximation: Only one integration point is used to carry
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stresses from Sierra-SM to Sierra-SD, whereas membrane and bending deformation is
spatially integrated on a 2-by-2 grid – this may be the reason for the slight discrepancies
reported in Table 11-19.

5.11.2. Verification Sierra-SM–Sierra-SD for small deformation

This section compares small deformation results between Sierra-SM and Sierra-SD. For the
GY fiber shell, several fiber angles are chosen in order to verify that element frames of
reference and orientation match.

5.11.2.1. Isotropic shell

A clamped shell on one edge, of dimensions 150mm by 100mm is used to compare the
displacement results of Sierra-SM and Sierra-SD for small deformation. The shell thickness
is 0.4409m, its modulus of elasticity is 187MPa, and its Poisson ration, 0.3. One of the
short edges is fully clamped and a force of 200N/node is applied on the other short edge.
The same shell is defined in both, the quasistatic nonlinear code Sierra-SM and the linear
solver Sierra-SD. Results in terms of axial and lateral displacements may be observed in
Figs. 11-18 and 11-19. The axial displacement on the solicited edge center for Sierra-SM is
5.9924 ·10−5 mm, whereas for Sierra-SD is 5.9908 ·10−5 mm. Similarly, for lateral
displacement, the values are 1.0332 ·10−6 mm for Sierra-SM, and 1.0409 ·10−6 mm for
Sierra-SD.

For input deck see Appendix 11.18.
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(a) Axial displacement in Sierra-SM (b) Axial displacement in Sierra-SD

Figure 11-18. – Comparison of axial displacement.
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(a) Lateral displacement in Sierra-SM (b) Lateral displacement in Sierra-SD

Figure 11-19. – Comparison of lateral displacement.

167



5.12. Hex Membrane Sandwich

5.12.1. Isotropic Material

A simple plate model was constructed and analyzed using hex and membrane elements,
shown in Figure 12-20.

Figure 12-20. – Test Geometry

The first test using this plate model had no preload. It consisted of isotropic membrane
elements sandwiched in between hex elements. The model is fixed on one end and
constrained in the Y and Z direction on the other end. The Eigenvalue results are shown in
Table 12-20.

Table 12-20. – Isotropic-Nopreload

Mode Number Abaqus Sierra-SD
1 1472.5 1472.46
2 1994.5 1994.48
3 5231.2 5231.19
4 6787.4 6787.39
5 8958.0 8957.96
6 11674.0 11674.2

For a preloaded model, this test was stretched with large deformations in Sierra-SM and a
representative Exodus file was outputted. This Exodus file was used in Sierra-SD for a
subsequent eigen analysis. For verification, all modes were compared to the Abaqus finite
element code. As in the first case, the plate is fixed on one end and is constrained in the Y
and Z direction on the other end. The Eigenvalue results are shown in Table 12-21.
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Table 12-21. – Isotropic-Preload

Mode Number Abaqus Sierra-SD
1 1420.8 1410.79
2 1798.3 1808.77
3 5212.8 5208.10
4 6765.5 6765.63
5 8914.0 8911.89
6 11638 11636.50

5.12.2. Orthotropic Material

The same plate model was tested using orthotropic material properties. The material
elasticity tensor only provides stiffness in the x direction, with zero stiffness in the
remaining directions. The first test had no preload. The modal results are shown in Table
12-22.

Table 12-22. – Orthotropic-Nopreload

Mode Number Abaqus Sierra-SD
1 4776.10 4772.99
2 5231.20 5231.19
3 8152.20 8149.91
4 8958.00 8957.96
5 10998 10970.90

For the second test, the same model was used, except that a uniaxial preload in the
x-direction was applied using Sierra-SM. An output Exodus file was then passed to
Sierra-SD for the modal analysis. For verification, all modes were compared to the Abaqus
finite element code. The Eigenvalue results are shown in Table 12-23.

Table 12-23. – Orthotropic-Preload

Mode Number Abaqus Sierra-SD
1 4600.30 4451.72
2 5212.80 5208.10
3 7821.60 7919.50
4 8914.00 8911.89
5 9878.40 9227.89

For input deck see Appendix 11.19.
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5.13. Higher Order Hex Acoustic Element Convergence

This section demonstrates a convergence study for the phex element, up to order 4. We
verify that the convergence rates approach the theoretically predicted ones in the limit of
small enough element size.

The geometry of the model is shown in Figure 13-21. It consists of an acoustic waveguide
of length L= 10.0(m), and cross sectional dimensions of 1.0(m). The walls were assigned
as rigid around the boundaries of the waveguide, including the endcaps. The speed of
sound was given as c= 332.0ms . With these parameters, the exact frequencies of vibration
of the air in the waveguide are given as

fn = nc

2L = 16.6,33.2, ... (5.13.1)

Figure 13-21. – Waveguide Model for Convergence Study of P-hex elements.
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Figure 13-22 shows the convergence plot for the hex element for orders 2−4. The theory
predicts that the modal frequencies should converge at a rate of h2p, where h is the element
size, and p is the order. Thus, on a log-log plot, the slopes of the convergence lines should
be 4, 6, and 8, respectively. In Figure 13-22 we show the relative errors in the 10th modal
frequency. Similar results were obtained for the other modes, and so we only show the 10th
modal frequency for brevity. In addition to the errors, we show lines that have slopes of 4,
6, and 8, respectively for comparison with the error curves. As seen, for each order, the
correct slope is obtained in the limit of small h, (or large 1

h).

Figure 13-22. – Convergence Study of P-hex elements.

For input deck see Appendix 11.33.
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5.14. Higher Order Tet Acoustic Element Convergence

This section demonstrates a convergence study for the ptet element, up to order 4. We
verify that the convergence rates approach the theoretically predicted ones in the limit of
small enough element size.

The geometry of the model is shown in Figure 14-23. It consists of an acoustic waveguide
of length L= 10.0(m), and cross sectional dimensions of 1.0(m). The walls were assigned
as rigid around the boundaries of the waveguide, including the endcaps. The speed of
sound was given as c= 332.0ms . With these parameters, the exact frequencies of vibration
of the air in the waveguide are given as

fn = nc

2L = 16.6,33.2, ... (5.14.1)

Figure 14-23. – Waveguide Model for Convergence Study of P-tet elements.
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Figure 14-24 shows the convergence plot for the tet element for orders 2−4. The theory
predicts that the modal frequencies should converge at a rate of h2p, where h is the element
size, and p is the order. Thus, on a log-log plot, the slopes of the convergence lines should
be 4, 6, and 8, respectively. In Figure 14-24 we show the relative errors in the 10th modal
frequency. Similar results were obtained for the other modes, and so we only show the 10th
modal frequency for brevity. In addition to the errors, we show lines that have slopes of 4,
6, and 8, respectively for comparison with the error curves. As seen, for each order, the
correct slope is obtained in the limit of small h, (or large 1

h).

Figure 14-24. – Convergence Study of P-tet elements.

For input deck see Appendix 11.34.
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5.15. Tied-Joint with Joint2G and Spring. Slip and Rigid

Figure 15-25. – Tied-Joint Model Geometry

5.15.1. Purpose

The “Tied Joint” structure is a meta structure that provides an efficient and robust means
of modeling a joint structure. The purpose of this document is to verify that both the
tied-joint and conventional methods produce the same solution. Showing the results are
the same encourages the use of tied-joints rather than the more tedious conventional
method which involves replicating nodes and the use of multi-point constraints (MPCs).
Generally, the input file for the tied-joint method is much simpler since all of the
constraints are accounted for, rather than having to list them by hand. Also, for the
tied-joint input files the necessary constraints become included in the method itself,
resulting in a simpler model for the input geometry file.

5.15.2. Lap Joint Comparison

5.15.2.1. Model Geometry

The lap joint model used for both the conventional and tied-joint tests consists of two
partially overlapping rectangular blocks, as seen in Figure 15-25. The end of one of the
blocks is fixed, while the opposite end of the other block is loaded with a constant applied
force. The particular model seen here and used in the following results was created using
Cubit and exported as an exodus file.
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5.15.2.2. Building the Tied-Joint model

5.15.2.3. Non-slip

Tied Joint
Normal Definition = none

surface 1,2
Shear Definition

side = rigid
connect to Block 33

end

Block 33
Spring

Kz = Elastic 1e9
Kx = Elastic 1e9
Ky = Elastic 1e9

end

Figure 15-26. – Tied-Joint Non-Slip Input

The exodus file of the original model as described in 5.15.2.1 is the geometry file used for
the tied-joint input. The non-slip tied joint model requires the use of a new block. The
relevant portions of the input file for the Tied-joint model are seen in Figure 15-26. Using
the tied-joint model results in two virtual nodes being created. The exodus output file
obtained from using the tied-joint approach is then used as the input geometry file for the
conventional non-slip method, and the extra nodes are included using MPCs as explained
later.

5.15.2.4. Slip

The geometry file used for the tied-joint slip input is also the original exodus file created
from Cubit. However, some changes to the Sierra/SD input file are made in order to
incorporate slipping. In the Tied-Joint block the normal definition is set to slip and the
side is set equal to “rrod” under the shear definition. Everything else in the file is kept the
same, as seen in Figure 15-27. The output of the tied-joint slip file creates two extra blocks
that constrain the overlapping surfaces from stretching, allowing the surfaces to move
together as one. This output is in turn used in the input file of the conventional slip model,
as described later.
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Tied Joint
Normal Definition = slip

surface 1,2
Shear Definition

side = rrod
connect to Block 3

end

Block 3
Spring

Kx = Elastic 1e9
Ky = Elastic 1e9
Kz = Elastic 1e9

end

Figure 15-27. – Tied-Joint Slip Input

5.15.3. Building the Conventional Model

5.15.3.1. Non-slip

The input model used for the conventional approach is the output of the tied-joint model.
The tied-joint model produces an additional block to connect the virtual nodes that are
created internally, and thus an additional block with spring or joint2g properties is
explicitly added to the input file of the conventional method. The difference between the
joint2g and the spring properties, is that the joint2g includes rotational degrees of freedom,
everything else within the input file remain the same. The input file requires rigidsets and
MPCs linking the duplicate nodes that the tied-joint model creates to the “original” nodes
on the corresponding faces. The rigidset input section with the spring connection is seen in
Figure 15-28.
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Rigidset
sideset 1

end
Rigidset

sideset 2
end

Block 33
Spring

Kz = Elastic 1e9
Kx = Elastic 1e9
Ky = Elastic 1e9

end

Figure 15-28. – Conventional Non-Slip Input

5.15.3.2. Slip

The geometry file used for the conventional slip input is the output from the tied-joint slip
input. The extra blocks created from the tied-joint slip output are defined "dead" for this
input file when using a spring. In their place, a new section called Tied Data is added in
order to incorporate slipping. When a joint2g is used, these extra blocks are defined as
"rbe3", replacing the use of MPCs. This can be seen in Figure 15-29. The Tied Data is
specified to be a transverse slip that applies to the overlapping surfaces. Rrodsets are also
added instead of the rigidsets that are seen in the conventional non-slip input file. Figure
15-30 shows a section of the input file when using a spring connection for conventional slip.
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Rrodset
sideset 1

end
Rrodset

sideset 2
end

Block 3
Joint2G

Kx = Elastic 1e9
Ky = Elastic 1e9
Kz = Elastic 1e9
Krx = Elastic 1e9
Kry = Elastic 1e9
Krz = Elastic 1e9

end
Block 4

rbe3
method=new

end
Block 5

rbe3
method=new

end

Tied Data
surface 1,2
transverse slip

end

Figure 15-29. – Conventional Slip Input with Joint2G
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Rrodset
sideset 1

end
Rrodset

sideset 2
end

Block 3
Spring

Kx = Elastic 1e9
Ky = Elastic 1e9
Kz = Elastic 1e9

end

Tied Data
surface 1,2
transverse slip

end

Figure 15-30. – Conventional Slip Input with Spring
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5.15.4. Comparison of Results

Exodiff was used to compare the tied-joint and the conventional model for both the slip
and non-slip models. While the results from using the tied-joint method and the
conventional method were not exactly the same, they were extremely close. These results
show that the tied-joint method is just as accurate as the conventional approach. This, in
addition to the previously mentioned advantages of offering the user a simpler input and
model definition, make the case for the continued use of Tied-Joints in Sierra/SD.

For input deck see Appendix 11.35.1 and Appendix 11.35.2.
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5.16. Slide RBE2. Selected DOFS

This test exercises the RBE2 element as a slider. The model and results are shown in
Figure 16-31. The base plate is clamped. The perpendicular plate is clamped on the left,
and pulled from the right. We are interested in the behavior of the RBE2 links that
connect the two plates.

In this example, the RBE2 (which are translated as RBARS in Nasgen) provide a
connection in only selected dofs. In particular, the 13456 dofs are constrained, while the 2
is left free. This leaves translation in the Y axis unconstrained.

Figure 16-31 indicates a uniform displacement in the Y direction on the loaded side of the
perpendicular plate. This is in agreement with the NASTRAN results. NASTRAN results
indicate a maximum displacement of 0.00213, while the QuadT displacement is
0.0023220022994. The discrepancy is expected based on the difference in element
formulations. The results indicate that the plate is free to translate, but constrained in the
other directions.

Figure 16-32 uses an identical geometry but the load is augmented with a Z component of
load. As can be seen in the example, addition of an orthogonal loading does not restrict
the sliding behavior.

Figure 16-31. – Model and Results of Selective DOF RBE2 Test

For input see Appendix 11.37
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Figure 16-32. – Model and Results of Orthogonally loaded Test
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5.17. Thin Plate Bending

The model, shown in Figure 17-33, is a flat rectangular plate of dimension 48×24×0.5. The
normal is in the Z coordinate direction. A uniform pressure is applied to the plate.
Analytic expressions for the maximum displacement are found in Roark for the thin plate
approximation, to which this should apply. The edges are clamped (no rotations for
translations).

Table 17-24 compares the solutions from various methods and elements for this example.

Figure 17-33. – Thin Plate Bending. Geometry and Deformation

Roark NASTRAN %error NQuad %error QuadT %error
0.02451 0.02459 -0.33 0.02376 3.05 0.024497 0.05

Table 17-24. – Thin Plate Bending Center Point Solutions

For input see Appendix 11.38
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5.18. Perfectly Matched Layers: Offset Sphere

In this section, we describe the verification of the offset sphere problem for the Ellipsoidal
PML formulation. Further background, verification, results, and implications are available
in [12]. An acoustic source is placed asymmetrically in a spherical domain.

Figure 18-34. – Solution for Offset Sphere (50 Hz)

Figure 18-34 shows the numerical solution for the offset sphere problem. The radius of the
outer sphere is 5 meters, and the radius of the inner sphere is 1 meter. An acoustic velocity
of V0 = 1 is applied to the normal surface of the inner sphere, to create a monopole
excitation. The sphere is composed of 850,000 TET4 elements, and 145,000 nodes. The
material modeled is air, where ρ= 1.293 kg

m3 , c0 = 332.0ms .

A 2D representation of the spherical result cut along the plane y=0 is shown. Note that
the solution is spherically symmetric about the acoustic source. The exact solution is given
as

P (r) = iV0Ωρa2

r(1 + ika)e
ik(r−a) (5.18.1)

where r is the distance from the center of the inner sphere to a point in the mesh, and a is
the radius of the inner sphere.

The relationship between the thickness of the PML boundary, the discretization of the
elements within the PML boundary, and the selection of loss parameters is investigated on
the Offset Sphere example. The discrete L2 error norm of the solution at every degree of
freedom is compared between the PML formulations, the absorbing boundary conditions,
and infinite elements of various orders. We also examine the performance of the iterative
solver on these problems, and compare the effects of PML and infinite elements on linear
solver performance.

Figure 18-35 shows the results for the offset sphere at a frequency of 50Hz. For this case,
the outgoing waves are not perpendicular to the boundary surface, and the spherical wave
absorbing boundary condition gives very inaccurate results. The infinite element solution
has converged around order 4, and the remaining error compared to the analytic solution
corresponds to the discretization error for the mesh. Both the ellipsoidal and spherical
PML formulations converge to the discretization error of the mesh. The PML layer
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converged with 12 layers of elements, a loss parameter of 600, and a thickness of 2 meters.
Figure 18-36 shows the magnitude of acoustic pressure in the PML layer of the offset
sphere, showing the rapid decay to zero magnitude towards the outer-most boundary of the
PML layer. Note that the ellipsoidal PML formulation is the only supported or accessible
formulation in SierraSD.

Figure 18-35. – Parameter Studies for OffsetSphere (50 Hz). Note: Ellipsoidal PML is the
only supported capability, Cartesian and Spherical have been removed.

Figure 18-36. – Acoustic Pressure in PML Layer for offset sphere, showing the rapid decay
to zero magnitude near the outermost boundary of the PML layer.

For input deck see Appendix 11.10.
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5.19. Thermally Induced Elastic Waves: Hollow Sphere

This test compares thermally induced elastic vibrations in a hollow sphere with an analytic
solution from the 1965 paper Thermal Stress-Wave Propagation in Hollow Elastic Spheres
by Tsui and Kraus. The inner surface is heated suddenly while the outer surface is held at
the initial temperature, causing an elastic wave to propagate from the inner surface to the
outer surface. It should be noted that the properties chosen are implausible for real
materials: the elastic wave speed is unphysically low, and the thermal diffusivity is
unphysically high. Thus, the time required for the temperature to reach equilibrium is on
the order of the time required for the elastic wave to travel to the outer surface. This results
in a more challenging dynamic test because the quasi-static approximation is not valid.

Table 19-25. – Parameter Definitions in Tsui and Kraus
a sphere inner radius
b sphere outer radius
µ shear modulus
ν Poisson ratio
β density
α coefficient of thermal expansion
κ thermal diffusivity

We begin by describing the solution found in the paper, with key parameter definitions
given in table 19-25. The temperature T (r, t) solves the heat equation

∂T

∂t
= κ∇2T (5.19.1)

T (a,t) = Ta (5.19.2)
T (b, t) = 0 (5.19.3)
T (r,0) = 0, (5.19.4)

where κ is the thermal diffusivity. The Sierra code Aria is used to compute T , but it solves
an energy conservation equation which reduces to the heat equation provided that the
specific heat capacity Cp, density β, and thermal conductivity k are related to the thermal
diffusivity κ in the heat equation as follows:

κ= k

βCp
. (5.19.5)

The change from zero temperature induces a thermal strain εii = αT , which drives the
elastodynamic equations.

Tsui and Kraus introduce a dimensionless “inertia” parameter

γ = κ

ca
, (5.19.6)
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Figure 19-37. – This is figure 1 from Tsui and Kraus. Plotted are the dimensionless radial
displacement u∗, which is related to the physical displacement by u∗ = [(1−ν)/(aαTa∗(1+ν))]u
against the dimensionless radius ρ= r/a. We are interested in the dynamic case (solid line) at
dimensionless times τ = 0.05,0.15, where τ = κt/a2.
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Figure 19-38. – Overlay of Sierra SD results on figure 19-37.

where the propagation speed of elastic pressure waves is given by

c=

√√√√2(1−ν)µ
β(1−2ν) . (5.19.7)

In figure 19-37, the analytic solution of Tsui and Kraus is plotted for γ = 1/5, b/a= 2, and
ν = 1/3. Note that values of γ are much smaller than this for real materials, e.g.,
approximately 10−8 for steel. We choose a= 1, κ= 1, and c= 5 so that γ = 1/5 as in the
paper. We set c= 5 by choosing µ= 25/4, and β = 1. The temperature parameters are
chosen with α = 10−2, and Ta = 1. These choices imply (see the definitions in the caption
of figure 19-37) that ρ= r, τ = t, and u∗ = 50u.

Results using Sierra SD are shown in figure 19-38. We do not make a direct numerical
comparison for two reasons: the analytical formula in Tsui and Kraus is based on series
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solutions, and is very challenging to evaluate. Furthermore, they provide no table of the
values computed using the analytic solution, so the best that we can do is scale the graphs
by hand to line up the axes. Agreement is excellent, except for the kink at the propagating
wavefront, which could presumably be better resolved with a finer mesh or finer initial
timesteps.

For input deck see Appendix 11.11
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6. SOLUTIONS IN ROTATING COORDINATE FRAMES

Sierra/SD supports solutions in a rotating coordinate frame. Tests in this section address
this verification.

6.1. Rotating Dumbbell Statics

6.1.1. Model Description and Purpose

The model consists of a symmetric bar 6 units long with equal masses on either end. The
bar is stationary in a rotating coordinate frame. To avoid singularities, the center point of
the bar is clamped. The bar is massless. See Figure 1-1.

The test evaluates a very simple geometric problem, and insures that centrifugal forces are
correctly applied to concentrated masses. It insures that rotations will work properly about
the default coordinate axis.

Figure 1-1. – Dumbbell Geometry

Analysis Type linear statics
Element Type Hex8
Loading centrifugal
Keyword centrifugal force

6.1.2. Analytic Results

Each mass on either end of the rotating bar should experience only centrifugal boundary
conditions. The left hand side includes the centrifugal softening matrix (but no geometric
stiffening). The magnitude of the loading is,

Faxial = Ω× (Ω×~r)∆M

where,

Ω = 1.1 in the Z direction.

~r is 3.0, radial direction.
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∆M is 2.0

The resulting force is 7.26 units in the radial direction. It is applied only at the end nodes
where the concentrated masses are located, as the other points are massless. For input
deck see Appendix 11.54.
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6.2. Rotating Beam Statics

Consider a beam of length L with constant cross-sectional area A, elastic modulus E, and
mass density ρ. The root of the beam is at x= 0 and its tip at x= L. The axis of rotation
passes through the origin and is in the z-direction. Further, the angular velocity is constant
and denoted by Ω.

With the assumption of all mass being concentrated along the axis of the beam, the net
force in the x-direction at radial position r is given by

F = Ω2
∫ L

r
xdm

= Ω2
∫ L

r
xρAdx

= ρAΩ2(L2− r2)/2. (6.2.1)

Thus, the axial stress at r is

σ(r) = F/A= ρΩ2(L2− r2)/2. (6.2.2)

The axial strain is assumed constant across each cross section and given by

ε(r) = σ(r)/E = ρΩ2(L2− r2)/(2E). (6.2.3)

The axial displacement is obtained by integrating the axial strain. Since the axial
displacement vanishes at x= 0, we obtain

u(r) =
∫ r

0
ε(x)dx

= ρΩ2/(2E)
∫ r

0
(L2−x2)dx

= ρΩ2/(2E)(L2x−x3/3)|r0

= ρΩ2L3

6E [3(r/L)− (r/L)3]. (6.2.4)

For input deck see Appendix 11.55.
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6.3. Rotating Shell Statics

The rotating shell example is similar to the rotating beam 6.2 with E = 19.5×1010, L= 10,
ρ= 7700, A= 1, and Ω = 5. Three different finite element meshes of the beam were
constructed. The first one is a HEX8 mesh with 50 elements in the x-direction and 5
elements in both the y and z-directions (the dimensions of the beam in the three
coordinate directions are 10, 1, and 1). The second one is a quadrilateral shell mesh with
50 elements in the x-direction and 5 elements in the y-directions. The third one is a mesh
of beams with 50 elements in the x-direction. Comparisons of axial deformations for three
finite element analyses are shown in Figures 3-2 and 3-3. Notice that all three finite
element results are close to the exact solution, with the QUADT results being the least
accurate. We note that much more accurate results were obtained when the QUADT
elements were replaced by NQUAD elements. We think that the less accurate predictions for
the mesh of QUADT elements is caused by anisotropies introduced by representing each
quadrilateral element as the union of two triangular elements.

For input deck see Appendix 11.56.
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Figure 3-2. – Comparisons of axial deformations with exact solution for a beam.
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Figure 3-3. – Zoomed in view of Figure 3-2 showing differences for QUADT elements.
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6.4. Rotating Ring Statics

6.4.1. Introduction and Purpose

This test examines a simple ring in a rotating frame. Verification of the forces is made here.
We intentionally do not verify displacements as these depend on the element formulation.

The ring, shown in Figure 4-4 is a two unit radius thin structure. A constant angular
velocity, ~Ω, is applied at 1.1 radians per second in the Z direction. The ring is not centered
on the origin, but is centered on a user defined coordinate system.

6.4.1.1. Analytical Results

The resulting forces are given by,

~F =
∫
ρ~Ω× ~Ω×~rdV (6.4.1)

= 1.122.0(ρVn) r̂ (6.4.2)

Where ρVn represents the mass associated with a node. For this model, there are 148 nodes
on the ring which each share equally the total ring mass of 12.5626 units. The resulting
force is 0.2054 units outward.

For the Euler force,

~F =
∫
ρ
d

dt
~Ω×~rdV (6.4.3)

= 1.12.0(ρVn) r̂ (6.4.4)

and the resulting force is 0.2054/1.1 units outward.

196



Figure 4-4. – Rotating Ring Geometry and Results
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6.4.2. What is tested

The test evaluates the following:

• The centrifugal force in a rotating system.

• The force on shells with rotational degrees of freedom. The moment should be zero.

• A coordinate translation.

It does not test,

• Coordinate rotation.

• Solid or point mass elements.

• Solution when there is no symmetry.

For input deck see Appendix 11.57.
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6.5. Rotating Ring Acceleration

This is a variation on the static analyses of a rotating ring described in section 6.4. Here an
angular acceleration is applied instead of the angular velocity in 6.4. By hand, the angular
acceleration is .2054/1.1 force units. For input deck see Appendix 11.58.
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6.6. Rotating Superelement Statics

Models (including superelements) must be loaded by centrifugal forces if they are to be
analyzed in a rotating coordinate frame. However, as discussed in the analysis section,
there are inherent problems in loading a superelement with a centrifugal force. In this test,
we examine one case where the loading is exact.

The model is a single hex element which is rotated about an edge. The unreduced model
force may be computed as,

Fcentrifugal = ~Ω× (~Ω×~r) (6.6.1)
= [Ω]T [M ][Ω][r] (6.6.2)

where ~Ω is the angular velocity vector, [Ω] is a rotation matrix, [M ] is the mass matrix and
[r] represents the position coordinates. This solution is as accurate as possible for a finite
element representation of the continuous model. See details in the theory manual.

The geometry is shown in Figure 6-5.

Figure 6-5. – Rotating Hex Geometry

6.6.1. Tests

We evaluate several steps of the test.

1. We look at the loading of a single hex in rotation. This is our truth model.

2. We insure that the model reduction process is consistent.
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3. We examine the loading of a superelement equivalent to the single hex element.

Each of these tests is described in a little more detail in what follows.

Single Hex Rotation

Equation 6.6.2 describes the load calculation for a single hex in a coordinate frame rotating
at a constant angular velocity. The results of the loading have been examined visually for
reasonable response, but no strict verification of these results are available. The loading
vectors are not entirely radial (as expected).

The analysis is singular, i.e. the body has a zero energy mode and is free to rotate about
the axis of rotation. Because of this, only the forces are evaluated - comparison of
displacements could result in errors from inaccurate solution of the singular system. The
force response is shown in Figure 6-6.

Figure 6-6. – Rotating Hex Response

6.6.1.1. Superelement Reduction

A critical part of this evaluation is “reduction” of the hex to a superelement. In most such
reductions, a combination of interior “fixed interface” modes are combined with interface or
“constraint” modes to generate a reduced basis. Here we have no interior modes and all the
interface nodes are retained. One of those nodes has only 2 degrees of freedom, so there is
a slight reduction. As a consequence, the superelement model is of dimension 23, while the
original hex has 24 degrees of freedom. The most important point is that the superelement
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model may now be run through the software, which follows an entirely different path from
the original.

6.6.1.2. Loading of a Superelement

In the final stage, the superelement is inserted into a new model. In this case, we re-use the
original mesh. However, the block definitions are those of a superelement. The
superelement is loaded using the centrifugal force routines. The result must be identical to
the original test.

6.6.2. Analysis

Superelements are problematic for computation of internal integrals. Typically, all the
internal shape functions and data are available only during the superelement reduction
stage. During subsequent analyses, only the interface information and reduced order
matrices are retained.

For computation of the centrifugal force, an integral must be evaluated over the volume of
the element.

~f = ρ
∫
element

~Ω× (~Ω×~r)dV

When the full shape functions are available, this can be evaluated as a discretized linear
algebra system (equation 6.6.2). However, the model reduction process condenses out
information from the interior of the superelement to the nodes of the interface. The total
mass is conserved, but information required to compute the interior integrals is no longer
available. This verification test is structured so that no internal information is lost and the
integrals may be computed exactly.

This set of tests insures the following:

• The software can successfully exercise a superelement.

• Identical results are obtained to the original hex, indicating no transposing of degrees
of freedom.

• All of the nodes on the interface are being exercised.

• Superelements are supported with other than 3 dofs on a node. Node 1 has 2 degrees
of freedom, and there are 23 degrees of freedom total.

However, because of the details of the test, we do not evaluate the following:

• Superelements with internal degrees of freedom.

• Superelements with a reduced set of interface nodes.

For input deck see Appendix 11.59.
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6.7. Rotating Superelement Beam Statics

We build on the analysis of a rotating hex beam. As shown in the hex beam example, the
analytic solution can be written,

u(r) =
∫ r

0
ε(x)dx

= ρΩ2/(2E)
∫ r

0
(L2−x2)dx

= ρΩ2/(2E)(L2x−x3/3)|r0

= ρΩ2L3

6E [3(r/L)− (r/L)3]. (6.7.1)

We next consider an example with E = 19.5×1010, L= 10, ρ= 7700, A= 1, and Ω = 5. A
superelement is generated by extracting all the nodes down the center of the beam. There
are 101 nodes retained in the superelement, with 40 generalized degrees of freedom
associated with fixed interface modes. Comparison of axial deformations for the finite
element analysis is shown in Figure 7-7. Finite element results are close to the exact
solution, but there differences because the superelement integration is not fully accurate for
computation of centrifugal force moments.

For input deck see Appendix 11.60.
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Figure 7-7. – Comparisons of axial deformations with exact solution for a beam.
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6.8. Point Mass in a Rotating Frame

It is useful to verify a simple point mass in a rotating frame. We consider a system rotating
at a constant angular velocity ~Ω = Ωk̂. The angular acceleration is zero. A single point
mass, m, is observed in the rotating frame. The point mass is frictionless. The geometry is
illustrated in Figure 8-8.

x

xo

z
y

W

Figure 8-8. – Rotating Frame Geometry

6.8.1. Mass at Rest in Inertial Frame

This is by far, the simplest case. In the inertial frame we have a mass located at (xo,0). It
does not move. In the rotating frame, r = xo and θ′ =−Ωt’, or in the Cartesian rotating
frame,

x′ = xo cos(−Ωt) (6.8.1)
y′ = xo sin(−Ωt) (6.8.2)

6.8.2. Mass Initially at Rest in Rotating Frame

We consider a mass initially at the point (xo,0) with an initial velocity of ~v = Ωxoêy. In the
rotating frame this mass appears initially at rest at location (x′o,0). However, because of
the rotation of the frame, the mass will begin to move away from the center of the rotating
frame.
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6.8.2.1. Without Coriolis Contribution

In the rotating frame, the only force acting on the body is the centrifugal force,
~Ω× (~Ω×~r). As all the forces are in the radial direction, the differential equation reduces to
a single degree of freedom system.

mr̈ = Ω2r

This equation is very similar to that of a harmonic oscillator. With the given initial
conditions the solution is,

r = xocosh(Ωt)
where cosh() is the hyperbolic cosine.

This solution is not physical, as there is no Coriolis force. At time progresses, the velocity
continues to grow unbounded, but the angular position remains zero.

6.8.2.2. With Coriolis Contribution

We solve this by computing the solution in the inertial coordinate system, and
transforming back to the rotating frame.

In the inertial frame, there are no forces acting on the body. The solution in Cartesian
frame is,

x = xo (6.8.3)
y = vot (6.8.4)

= xoΩt (6.8.5)

This may be transformed to polar coordinates, still in the inertial frame.

r =
√
x2 +y2 (6.8.6)

= xo
√

1 + (Ωt)2 (6.8.7)
θ = tan−1 (y/x) (6.8.8)

= tan−1 (Ωt) (6.8.9)

We use the relation that θ′ = θ−Ωt and r′ = r. Then,

θ′ = tan−1 (Ωt)−Ωt

This solution may then be transformed to rotating cartesian frame in the usual way.
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Small Angle Approximations

For solutions with Ωt << 1 the solutions in this section may be compared with the previous
section. We use,

tan−1(θ) ≈ θ− θ
3

3 + θ5

5 + ... (6.8.10)√
1 + ε2 ≈ 1 + ε2

2 (6.8.11)

(6.8.12)

For both solutions,

r′ ≈ xo
(

1 + (Ωt)2

2

)
,

while θ′ = 0 with no Coriolis term. Including the Coriolis term we obtain,

θ′ ≈ −(Ωt)3

3

Figure 8-9 shows the solution to this problem. Both analytic and finite element solutions
are shown. A good degree of agreement is obtained even for a very large displacement.

Figure 8-9. – Point Mass initially at rest in rotating frame

6.8.3. Mass Moving in the X axis

This example starts at the same location, i.e. (xo,0) in the inertial frame, but the initial
velocity in the inertial frame is −2xoΩ/πêx. Thus, at time Ωt= π/2, the mass will be at
the origin. At time Ωt= π, the particle will be located at (−xo,0). In the inertial frame,

y = 0 (6.8.13)
x = xo(1−2Ωt/π) (6.8.14)

207



or,

r = xo(1−2Ωt/π) (6.8.15)
θ = 0 (6.8.16)

In the rotating frame, r′ = r and θ′ =−Ωt. The Cartesian description is therefore,

x′ = xo(1−2Ωt/π)cos(Ωt) (6.8.17)
y′ = xo(1−2Ωt/π)sin(Ωt) (6.8.18)

For input deck see Appendix 11.61.

208



7. INVERSE METHODS

7.1. Force Identification from Structural Acoustic Frequency Responses

The structural-acoustic frequency domain force identification capability is demonstrated
using the synthetic response at three frequencies. The geometry of this test is shown in
Figure 1-1.

Figure 1-1. – Force Inversion Test Geometry

The model contained three regions, as shown in Figure 1-1: two steel regions, represented
by the red and green blocks, and a region of air, represented by the yellow block. Tied
constraints were assigned at the steel-steel and steel-air interfaces to connect these regions.
A concentrated mass, represented in cyan, was placed at one end of the model and was
connected with a spring connection. Acoustic loading was applied to one side of the air
region, shown in blue in Figure 1-2. The frequency of the acoustic loading was varied
between 10 Hz, 20 Hz, and 30 Hz.

Synthetic input data was generated by performing a forward problem on the coupled
air-steel model using known acoustic velocity amplitudes for two loading functions, F1 and
F2. Displacement values were determined for a node set on the end of the green steel block,
while acoustic pressure values were determined for a node set on the side of the air region.
The data was then used in the inverse problem to verify that the code could recover the
original acoustic velocity inputs for the two acoustic loading functions. The test, which
used a full Newton algorithm with analytic Hessians, was analyzed by comparing the
obtained acoustic velocity amplitudes to the expected values. Table 1-1 compares the
expected acoustic velocity values to values obtained through the inverse problem
(Exp/Obt).
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Figure 1-2. – Side of model with applied acoustic loading represented in blue

Table 1-1. – Acoustic Velocity Values

Frequency (Hz) F1 (Exp/Obt) F2 (Exp/Obt)

10 4.0/4.0 5.0/5.0

20 4.0/4.0 5.0/5.0

30 4.0/4.0 5.0/5.0

At each frequency tested, acoustic velocity values obtained in the inverse problem matched
expected values of 4.00 and 5.00 for forcing functions F1 and F2, respectively. The test was
performed both in serial and parallel. For each run, the ROL optimization performed three
iterations, providing appreciable convergence for the objective function and gradient.
Figure 1-3 shows the convergence behavior of the objective function and gradient values for
the serial run; optimization results for the parallel run matched the serial run results.

For input deck see Appendix 11.62.
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Figure 1-3. – ROL Optimization of Objective Function and Gradient
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7.2. Force Identification from Frequency Responses

The frequency domain force identification capability is demonstrated using the synthetic
response and three frequencies. The cubic geometry of this test is shown in Figure 2-4.

Figure 2-4. – Force Inversion Test Geometry

One boundary condition constrained the model. An absorbing boundary was specified on
one side, emulating a non-reflecting condition. Acoustic loading was applied to the
opposite side, applied at frequencies of 1, 2, and 3 Hz. Figure 2-5 indicates sides of the
model with specified boundary conditions:

Figure 2-5. – Sides with absorbing boundary side (green) and with acoustic loading (orange)

The model was discretized using 64 Hex-8 elements, arranged in a 4×4×4 cube. Synthetic
input data for the inverse problem was generated by running a forward problem with the
amplitudes shown in Table 2-2, and was comprised of acoustic pressure values specified at
element nodes. This data was then used in the inverse problem to verify that the code could
recover the original acoustic velocity inputs. The test, which used a full Newton algorithm
with analytic Hessians, was analyzed by comparing obtain acoustic velocity amplitudes of
three loading functions–F1, F2, and F3– to the expected values. The expected values and
obtained results (Exp/Obt) for the acoustic loading functions are shown in Table 2-2.
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Table 2-2. – Acoustic Velocity Values

Frequency (Hz) F1 (Exp/Obt) F2 (Exp/Obt) F31 (Exp/Obt)

1 10.0/10.0 5.0/5.0 1.0/1.0

2 10.0/10.0 5.0/5.0 2.0/2.0

3 10.0/10.0 5.0/5.0 3.0/3.0

Acoustic velocity for loading functions F1 and F2 matched the expected values of 10.0 and
5.0, respectively. The acoustic velocity of loading function F3 demonstrated linear
dependence on frequency, also as expected. Optimization using ROL allowed for
appreciable convergence of the objective function and gradient; the convergence history of
the objective function and gradient, minimized in three iterations, is illustrated in Figure
2-6:

Figure 2-6. – ROL Optimization of Objective Function and Gradient

For input deck see Appendix 11.63.
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7.3. Force Identification from Temporal Pressures

The temporal force identification capability is demonstrated using synthetic displacement
data generated from a 1 Hertz pressure field. The cubic geometry of this test is shown in
Figure 3-7.

Figure 3-7. – Pressure Inversion Test Geometry

The model consists of 64 Hex-8 elements, arranged in a 4×4×4 cube , and was assigned as
a solid material. One boundary condition constrained the model, with one side assigned as
a fixed boundary. A distributed pressure load acted normal to the side opposite of the fixed
side. Figure 3-8 shows the sides with boundary (yellow) and loading (pink) conditions.

Figure 3-8. – Fixed (yellow) and pressure-loaded (pink) sides in model

Synthetic input data was generated by performing a forward problem on the model, using a
periodic distributed pressure load function with a known magnitude of 1 and frequency of 1
Hz. The data generated represented elastic displacements measured at element nodes. The
data was used in the inverse problem to verify that the code could recover the original time
history of the pressure loading. The test, which used a full Newton method with cubic
interpolation linesearch, was analyzed by comparing the obtained pressure loading
time-history with the original loading function. Figure 3-9 compares the inverse-problem
results with the original function.
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Figure 3-9. – Inverse-problem results for elastic pressure loading time-history

As shown in Figure 3-9, the inverse problem results nearly exactly matched the original
forcing function. The optimization method ran through four iterations and achieved
significant convergence for the objective function and gradient. The test was conducted in
both series and parallel; Figure 3-10 shows the convergence history for the serial run,
though parallel results essentially matched the serial results.

For input deck see Appendix 11.64.
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Figure 3-10. – ROL Optimization of Objective Function and Gradient
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7.4. Force Identification from Temporal Tractions

The temporal force identification capability is demonstrated using synthetic displacement
data generated from a 1 Hertz traction field. The cubic geometry of this test is shown in
Figure 4-11.

Figure 4-11. – Force Inversion Test Geometry

The model consists of 64 Hex-8 elements, arranged in a 4×4×4 cube , and was assigned as
a solid material. The model was constrained by one boundary condition, one side assigned
as a fixed boundary. A traction load, including a normal component and two orthogonal
shear components, acted on the side opposite of the fixed side and had a direction of
(x= 1,y = 2, z = 3). Figure 4-12 shows the sides with boundary (green) and loading
(orange) conditions.

Figure 4-12. – Fixed boundary (yellow) and traction loaded (pink) sides in model

Synthetic input data was generated by performing a forward problem on the model, using a
periodic traction load with a known magnitude of 1 and frequency of 1 Hz. The data
generated represented displacements measured for element nodes. The data was then used
in the inverse problem to verify that the code could recover the original time history of the
traction load. The test, which used a full Newton method with analytic Hessians, was
analyzed by comparing the obtained traction load time-history with the original loading
function. Figure 4-13 compares the inverse-problem results with the original function:
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Figure 4-13. – Inverse-problem results for traction loading time-history

As shown in Figure 4-13, the inverse problem results exactly matched the original forcing
function. Optimization using ROL provided for significant convergence of the objective
function and its gradient. The test was conducted in both series and parallel, each run
undergoing three iterations; Figure 4-14 shows the convergence history for the serial run.

For input deck see Appendix 11.65.
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Figure 4-14. – Convergence History for ROL Optimization of Transient Traction Load Inver-
sion
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7.5. Force Identification from Temporal Acoustic Pressures

The temporal force identification capability is demonstrated using synthetic displacement
data generated from a 1 Hertz acoustic pressure field. The cubic geometry of this test is
shown in Figure 5-15.

Figure 5-15. – Force Inversion Test Geometry

The model consists of 64 Hex-8 elements, arranged in a 4×4×4 cube, and was specified as
air for its material. One boundary condition constrained the model: one side was assigned
with an absorbing boundary, creating a non-reflecting condition. Acoustic loading was
applied to the opposite side, and consisted of one forcing function. Sides with boundary
(green) and loading (orange) conditions are shown in Figure 5-16.

Figure 5-16. – Side of model with applied acoustic loading represented in blue

Synthetic input data was generated by performing a forward problem on the model, using a
forcing function with a known amplitude of 1 and frequency of 1 Hz. The data generated
represented acoustic pressures measured for element nodes. The data was then used in the
inverse problem to verify that the code could recover the original time history of the
acoustic loading. The test, which used a full-Newton method with analytic Hessians, was
analyzed by comparing the obtained acoustic loading time-history with the original loading
function. Figure 5-17 compares the inverse-problem results with the original function:
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Figure 5-17. – Transient Acoustic Pressure Identification

As shown in Figure 5-17, the inverse problem results exactly matched the original forcing
function. The optimization of the objective function and gradient, run in both serial and
parallel, performed four iterations and achieved appreciable convergence in both runs.
Figure 5-18 shows the convergence history for the serial run.

For input deck see Appendix 11.66.
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Figure 5-18. – ROL Optimization of Objective Function and Gradient
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7.6. Force Identification using Modal Transient

The temporal force identification capability for modal transient is demonstrated using
synthetic displacement data generated from a 1 Hertz traction field, using the direct
transient forward solution method. The cubic geometry of this test is shown in Figure
6-19.

Figure 6-19. – Force Inversion Test Geometry

The model consists of 64 Hex-8 elements, arranged in a 4×4×4 cube , and was assigned as
a solid material. The model was constrained by one boundary condition, one side assigned
as a fixed boundary. A traction load, including a normal component and two orthogonal
shear components, acted on the side opposite of the fixed side and had a direction of
(x= 1,y = 2, z = 3). Figure 6-20 shows the sides with boundary (yellow) and loading (pink)
conditions.

Figure 6-20. – Fixed boundary (yellow) and traction loaded (pink) sides in model

Synthetic input data was generated by performing a forward problem (direct transient) on
the model, using a periodic traction load with a known magnitude of 1 and frequency of 1
Hz. The data generated represents displacements measured for element nodes. The data is
then used in the modal-transient inverse problem to verify that the code can recover the
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original time history of the traction load. The test, which used a full Newton method with
analytic Hessians, was analyzed by comparing the obtained traction load time-history with
the original loading function. Figure 6-21 compares the inverse-problem results with the
original function, with increasing numbers of modes. Note that as the number of modes
increase the ability for the modal transient solution to match the direct transient solution
increases, and the magnitude of the objective function drops.

Figure 6-21. – Inverse-problem results for traction loading time-history

Figure 6-22 shows the convergence of the final objective function with increased number of
modes. Note that for this case, the objective function does not converge to zero, as not all
of the modes can be calculated, so some truncation error exists in the problem. One
possible solution is to use the modal transient optimization solution as the initial guess for
a direct transient run. Figure 6-22 shows the convergence for the serial run. Note that the
Tikhonov Parameter is used to maintain stability in the early time period.

Figure 6-22. – Convergence of Final Objective Function with Increasing Number of Modes

For input deck see Appendix 11.67.
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7.7. PSD Identification using Modal FRF

To verify the implementation of PSD inversion, we consider a dynamical system that is
simple yet captures the essential complexities of a general PSD inversion problem: (a)
coupling between degrees of freedom, and (b) complex-valued PSD and dynamic stiffness
matrices arising from real (damped) dynamical systems. The system includes a unit mass
supported by a generalized (coupled) spring. All three transnational degrees of freedom are
active. The stiffness elements are chosen to be Kxx = 10, Kyy = 20, Kzz = 40, Kxy = 5,
Kxz = 10, and Kyz = 15. Damping is introduced through mass and stiffness proportional
damping that exists in Sierra-SD, i.e.

C = αK +βM, (7.7.1)

where,K,M are stiffness and mass matrices, and α and β are chosen as 0.5.

For this system, the frequency-dependent dynamic stiffness matrix is given by:

H =

 10 + 4.5iω−ω2 5 + 2.5iω 10 + 5iω
5 + 2.5iω 20 + 9.5iω−ω2 15 + 7.5iω
10 + 5iω 15 + 7.5iω 40 + 19.5iω−ω2

 (7.7.2)

The system is subjected to random excitaton with load PSD of,

Sff =

 1.0 0.5i 0.25i
−0.5i 1.0 −0.5i
−0.25i 0.5i 1.0

 , (7.7.3)

which is Hermitian positive definite matrix. The corresponding response PSD is computed
using,

Srr = HSffH∗. (7.7.4)
Specifically, the response PSD matrices for ω = 1.0 is given by:

Srr =

 5.80518248610408 −0.20186636551875 −0.94581281856099
−0.20186636551875 2.93198109071619 −1.81697259423814
−0.94581281856099 −1.81697259423814 1.71390964877432



+ i

 0 1.03255582876588 −0.12062608555571
−1.03255582876588 0 −0.31481273538822
0.12062608555571 0.31481273538822 0


(7.7.5)

And for ω = 2, the response PSD is given by:

Srr =

 0.40600284323792 −0.01261108737714 −0.01763921194869
−0.01261108737714 0.23973256506857 −0.15691809860232
−0.01763921194869 −0.15691809860232 0.19193866893329



+ i

 0 0.09743252750327 0.00483348116274
−0.09743252750327 0 −0.05282964809931
−0.00483348116274 0.05282964809931 0


(7.7.6)
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The above response PSD matrices are in turn is used as an input into a PSD inversion
algorithm implemented in Sierra-SD, and is verified that inverted load PSD matches with
the expected load PSD in Equation 7.7.3.

For input deck see Appendix 11.68.
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7.8. Orthotropic Material Identification

To verify orthotropic elastic material-id in fully three-dimensional setting, we consider a
2×3×4 deep beam that is fixed on one edge. The beam is excited on one of the side faces
with Heaviside force that is uniformly distributed in space. The traction has equal
components in all three directions, thus exciting in all directions, making the response
sensitive to all of the material parameters. The material properties are chosen as:

Eactual =



4 1 2 0 0 0
1 5 3 0 0 0
2 3 6 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


(7.8.1)

The synthetic data is taken as the three displacement components computed on the free
end of the cantilever beam. The data is in turn used to perform inversion using Sierra-SD.
The initial estimate of the modulus matrix assumed to be invariant to the three directions
and is chosen as,

Einitial =



3 1 1 0 0 0
1 3 1 0 0 0
1 1 3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(7.8.2)

Sierra-SD implementation of the above problem converges to the expected orthotropic
material modulus shown in Equation 7.8.1. For input deck see Appendix 11.69.
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8. HIGH CYCLE FATIGUE AND DAMAGE

8.1. Fatigue Output of Single DOF in Random Vibration

A single hex (and single degree of freedom) model is used to verify the computations of the
random vibration problem. Four nodes of the 8 node brick are clamped. The remaining
nodes are constrained to move in only the X direction. In addition, multipoint constraints
tie three nodes to a single master node. The model has only one active degree of freedom,
and a single element. Each of the results may be examined individually without a need for
a summation over mode shapes.

Comparison is made to a MatlabTM calculation found in “byhand.m”. Each result is listed
in following paragraphs.

8.1.1. Ensure Normalization of Eigenvectors

From the output of Maa.m, the mass is 8.6333e-5. The eigenvector, φ, is of length 1, and
value 107.6244. Then,

φTmφ= 107.6244 ·8.6333e-5 ·107.6244 = 1
The eigenvalues and vectors may be compared with results in onehex-eig.exo.

8.1.2. Determine the modal transfer functions, Hi

The physical force, F , is transformed to modal space by premultipling by φT . The modal
transfer function at frequency ω describes the contribution of one mode to the resulting
displacement.

u =
Nmodes∑

i

Hi(ω)Fi(ω) (8.1.1)

where (8.1.2)

Hi(ω) = 1
ω2−ω2

i

(8.1.3)

In our example the sampling frequency is 10:100 Hz, while the modal frequency is 62,846.
Thus ωi >> ω. We can approximate,

Hi = 1/(2π ·62846)2 ≈ 6.4133e-12
Thus, the modal amplitude, ui, is given by ui =HiFi ≈ φTF/ω2

i ≈6.2121e-9. The modal
amplitude for FRF is not directly output, but the physical amplitude is output.
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8.1.3. Determine the physical transfer function, H(ω) and Displacement

Physical space is simply related to modal space, x= φq. Likewise,

U =HF

or,
H(ω) = φHi ≈ φ2/(2πf)2

Thus, the physical transfer function, H ≈ 7.4286E-8. Likewise, the amplitude is the
transfer function multiplied by the force. U(ω) =H(ω)∗Force≈ φFφT /ω2

i ≈ 6.6857E-7
and is essentially independent of frequency. This physical amplitude may be compared
with results in onehexran-frf.frq.

Salinas computes: 6.6857E-07.

Likewise the acceleration response can be predicted. The acceleration is simply ω2 times
the displacement. At f = 10, Ü = 4π2φ2F/ω2

i . At f = 10, Ü(10) = 0.0026394. At the the
top end of frequency band, Ü(100) = 0.26394.

Salinas computes 0.0026394 and 0.26394.

8.1.4. Determine the Displacement and Acceleration Spectral Density

The output is generated by a computation of a modal sum.

Xrms =

√√√√√Nmodes∑
i,j

φiφjΓij

Here Γ contains the integral of the frequency component of the load.

Γij =
∫ ∞

0
Hi(ω)Hj(ω)S(ω)dω

And, S is the PSD of the input force. A similar relation exists for acceleration, but the
integration includes ω4, i.e.

ΓAij =
∫ ∞

0
ω4Hi(ω)Hj(ω)S(ω)dω

We use a simple trapezoidal integration strategy. Thus, we can weight the final and initial
intervals at half the value of the central intervals.

Γ ≈ 2π
∑
f

H2
qS∆fwi (8.1.4)

≈ 2πH2
q 9.0[510101010101010105] (8.1.5)

≈ 2π(2.7249e-8)2(9.0)(90) (8.1.6)
≈ 3.7789e-12 (8.1.7)
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Likewise

ΓA ≈ (2π)5∑
f

H2
qSf

4∆fwi (8.1.8)

≈ (2π)5H2
q 9.0[102030405060708090100]4[510101010101010105]

≈ (2π)5(2.7249e-8)2(9.0)2.0332e9
≈ 0.13306 (8.1.9)

The ratio of GammaA/Gamma is 3.5211e10. This same ratio should be found in the
square of Arms/Xrms found in the random vibration output of onehex-ran.exo.

Salinas has: Xrms = 1.4799E-5. Arms = 2.7770. These are found in onehex-ran.exo. The
ratio (Arms/Xrms)2 = 3.5212E10.

8.1.5. Fatigue Parameters

For fatigue life predictions, we are interested in several parameters. The first of these is the
stress moments, Mo, M2 and M4. These are important as the ratios of these moments
provide information on the rate of zero crossing, ν+

o , and the number of zero crossings,
nc = ν+

o τ .

The ratio of Vrms2/Vrms is related to ratios of moments. In particular,
V RMS2/V RMS =

√
M2/Mo. These are related to the ratios of Γv/Γ.

ΓV ≈ (2π)4∑
f

H2
qSf

2∆fwi (8.1.10)

≈ (2π)3H2
q 9.0[102030405060708090100]2[510101010101010105]

≈ 5.5447E-7 (8.1.11)

Salinas has V RMS = 1.1384E2 and V RMS2 = 4.3607E4. Therefor
(V RMS2/V RMS)2 = 1.4673E5, which can be compared to the closed form ratio
5.5447E-7 / 3.7789E-12 = 1.4673E5.

This is Salinas_rtest/verification/fatigue/onedof/onehexran.test.

8.1.6. Fatigue Solution

We verify the fatigue analysis on a single, 1x1x1 Hex8 element. This is an entirely
contrived example, with material properties invented to simplify the calculation. Results
from within Sierra/SD are compared to independent Matlab computations.
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Variable Value
Vrms 113.8421029
Vrms2 4.360736489E+04
Vrms4 2.136176695E+07

Table 1-1. – Input Moments

8.1.6.1. Assumptions

We begin the solution with a previously verified random vibration solution with results in
Table 1-1.

We also construct a fictitious material with fatigue parameters (i.e. S-N curves) that make
computation simple. The S-N curve is represented in Figure 1-1. It is constructed such
that with an RMS value of stress equal to 113.8421029, a solution of N of 1 million is
obtained. The associated material parameters are listed in Table 1-2.

Log(S)

Log(N)10

113.84

slope=−3

Log(N) = A1 + A2 Log(S)

6

Figure 1-1. – S-N Curve for Fictitious Material

Variable Value
A2 -3
m 3
A1 Log(N)-A2*Log(113.84)

≈ 12.1

Table 1-2. – Fatigue Material Parameters
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8.1.6.2. Damage Rate Calculation

The narrow band damage rate is,

DNB = ν+
o

10A1

(√
2Vrms

)m
Γ(1 +m/2)

This may be evaluated in terms of the above parameters.

ν+
o = Vrms2

2πVrms
≈ 61.0

10A1 ≈ 1.475×1012

(
√

2Vrms)m ≈ 4.173×106

Γ(1 +m/2) = Γ(2.5) ≈ 1.3293

For which we have DNB ≈ 2.2919×10−4.

This is the test Salinas_rtest/verification/fatigue/onedof/onehexfatigue.test
onehexran.test. For input deck see Appendix 11.70.

8.1.7. Fatigue Stress Scaling

We verify the fatigue analysis scaling on a single, 1x1x1 Hex8 element. This is an entirely
contrived example, with material properties invented to simplify the calculation. The
model is identical to a fatigue example previously verified, we simply scale the geometry
and loads, and verify the solution. The experimental material data is unchanged.

8.1.7.1. Model Definition and Scaling

• The model is a 1x1x1 in3 cube. It is scaled to SI units 0.0254 meters on a side.

• Input pressure is 7 psi, multiplied by a frequency function. In SI units, this becomes
7 × 6894.76 = 48263.32 pascals, multiplied by the same function.

• Young’s Modulus of 1e7 psi becomes 68.947573e9 pascals. Handbook value is 69GPa.

• Density of 0.000259 slinch/in3 (0.1000776 lbm/in3) becomes 2770.138 kg/m3.
Handbook values of 2700 kg/m3.
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8.1.7.2. Results

The damage rate and stress must be independent of units. This is ensured by using the
same comparison file for both. In addition, we have the following correspondence.

Result English Units SI Units Status
Eigen Frequency 62846.1Hz 62820.8Hz X
max(Axrms) 2.7770 in/s2 0.070537m/s2 X

Vrms 113.84 psi 0.78492×106 Pa X
ZeroCrossingRate 60.965 60.965 X
PeakFrequency 77.965 77.965 X
NbDamageRate 2.2923E-13 2.2923E-13 X
DamageRate 1.9324E-13 1.9324E-13 X
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8.2. Fatigue Output of Dogbone Test

8.2.1. Scope:

Verification of Sierra/SD in the frequency domain builds upon a verification of “Siesta”, a
python post-processing tool for evaluation of high cycle fatigue damage. These solutions
represent evaluation of the same damage quantities through a variety of means. Sierra/SD
will evaluate the damage using frequency domain methods only.

Siesta has been evaluated using both the time domain and frequency domain.
Computations were performed to individually compare both domains to an analytical
solution for the simple case of a 5Hz sine wave input. Two additional computations were
conducted with the same model verifying that time domain and frequency domain both
result in the same solution when provided more complex inputs. These evaluations were
conducted on an element by element basis, and so some discrepancies to the single DOF
analytical solution are expected.

8.2.2. Methodology:

The dog-bone specimen described by Anes et al.[4] was chosen as a sufficiently simple
model to solve damage analytically, with the additional benefit that experimentally derived
results were available for our load case. Note that calculations were done using English
units: IPS in Salinas, converted to Ksi during import into Siesta.

34

12 6.3

34

R50

101

Figure 2-2. – Dog-bone Specimen Dimensions (mm)

Figure 2-3. – Boundary conditions of mesh

For all tests, the mesh is constrained via two points at either end of the specimen. Both
points are fixed in all degrees of freedom except axial translation, and affixed to the mesh
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by rigid elements to the surfaces of the mesh near the ends. Results are output only for the
narrow highlighted potion at the center of the model. Forces are applied at the end points
with equal and opposite magnitudes. There are no point masses in the system; frequency
domain input PSDs are truly provided as force squared per Hz.

To verify the results in both time domain and frequency domain, three test scenarios were
evaluated, as illustrated by the PSDs shown in Figure 2-4, with details in Tables 2-3
through 2-5. The first was a 5Hz fully reversed sine wave with 3141 lbf peak magnitude,
the second was an example input matching a test specification with relatively narrow band
frequency content, and the third was an example test specification with a wide band of
frequency content. Note that the first elastic mode of the system occurs at 929Hz, and
modal random vibration solves included calculation of 150 modes to capture what is
effectively a static solution at 5Hz. Modes are computed to about 340KHz.

10 0 10 1 10 2 10 3 10 4

Frequency (Hz)

10 -4

10 -3

10 -2

10 -1

10 0

P
S

D
 (

lb
s

2
/H

z
)

5 Hz

Narrow Band

Wide Band

Figure 2-4. – Power Spectral Density of Input Force

In the absence of an easy way to define a single-frequency PSD, the 5Hz test was
represented in the frequency domain using a PSD with the appropriate RMS magnitude,
centered around 5Hz, and with a band width of 1Hz. Time domain realizations of the
wide and narrow band test PSDs were generated such that their RMS values could not
differ from the specification by more than 1 dB, the PSD of the generated signals could not
differ by more than 6 dB at any frequency, and could not differ by more than 3 dB over
80% of the frequency range.

Table 2-6 shows the preliminary results of the 5Hz test of frequency and time domains.
Sierra/SD and Siesta results are very close for this model. However, it is important to note
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Frequency (Hz) PSD (lbs2/Hz)
4.00 1e-13
4.49 1e-13
4.50 4.93128e6
5.50 4.93128e6
5.51 1e-13
6.00 1e-13

Table 2-3. – 5Hz PSD representation

Frequency (Hz) PSD (lbs2/Hz)
10 0.1400
12 0.4000
23 0.4000
37 0.0110
102 0.0110
153 0.0002
500 0.0002

Table 2-4. – Narrow-Band PSD

Frequency (Hz) PSD (lbs2/Hz)
10 0.0200
28 0.0200
41 0.0400
72 0.0400
112 0.0029
221 0.0029
237 0.0060
265 0.0060
285 0.0029
581 0.0029
650 0.0075
1000 0.0075
1200 0.0200
1700 0.0200
2200 0.0800
3000 0.0800

Table 2-5. – Wide-Band Force PSD
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Domain Damage
Model

Vrms
(ksi)

Cycling
Rate (Hz)

Damage Rate

Time Minor’s
Rule

44.3-47.1 4.17 1.8E-6 - 4.2E-6

Frequency
Steinberg

42.9-46.3 5.01
3.0E-3 - 8.7E-3

Narrow
Band

9.4E-3 - 2.7E-2

Wirsching-
Light

4.8e-3 - 1.4e-2

Documentation Experiment 46.36 5.00 5.0E-6

Table 2-6. – Preliminary 5Hz Results. Ranges indicate spatial changes.

that neither domain’s damage formulations are intended to be used on a sine input.
Because this is a sine input, three adjustments must be made to the raw data.

1. The rainflow algorithm consistently misses one half cycle on the input, and interprets
a 0.6 second 5Hz tone as a 4.17Hz tone instead. As the time history in increased in
length, the recorded cycling rate converges to 5Hz, so we will act as though it
detected 5Hz. It is recommended that you use the longest time history feasible,
preferably 50-100 cycles of the lowest frequency.

2. Narrow band damage, and Wirsching-Light by extension, includes a scale factor of
Γ(1 +m/2) on the damage, where Γ is the gamma function, and m is the fatigue
exponent. For a sine input, this is not appropriate, as it makes the calculated damage
wildly conservative, so we will reduce the damage by this same factor.

3. The Steinberg method for calculating damage includes the assumption that the
magnitude of Vrms is a one sigma event, and adjusts the damage to reflect the
influence of 2-sigma and 3-sigma events as well. These cycles do the majority of the
damage on a system, and so this approach is not appropriate for modeling a strictly
controlled experiment with 100% of the cycles at the same value.

After adjusting the results and removing Steinberg from the chart, we are left with Table
2-7. It is worth noting that the Wirsching-Light damage metric is intended to compensate
for conservatism on wide-band signals; as this signal is very narrowband, the correction is
unnecessary. In summary, the narrow band results are as expected.

X The preliminary results for Siesta and Sierra/SD agree very well.

X With appropriate corrections, these results are consistent with both rainfall
computations and with experiment.
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Domain Damage
Model

Vrms
(ksi)

Cycling
Rate (Hz)

Damage Rate

Time Minor’s Rule 44.3-47.1 5 2.2E-6 - 5.0E-6

Frequency Narrow Band 42.9-46.3 5.01 1.7E-6 - 5.0E-6
Wirsching 0.9E-6 - 2.5E-6

Anes Experiment 46.36 5.00 5.0E-6

Table 2-7. – 5Hz test after adjustments. Ranges indicate spatial variation.

8.2.2.1. Narrowband and Wide-Band Evaluation

Tables 2-8 and 2-9 show the results under representative wide and narrow-band PSD
inputs. Narrow band damage represents the time domain solution well, and is strictly
conservative in our selected band of elements, but the wide band test revealed that the
frequency domain is only an estimate of damage expected from the time domain analysis
under wide-band loading. Why this discrepancy exists is not well understood, but may be
caused by the shape of the wide-band PSD used. It may be possible to better represent the
wide-band test with 2-3 narrow band tests under the order-independent assumption of
Minor’s rule, but this was not tested.

As with the 5Hz test, the rainflow algorithm used in the time domain calculated an
inaccurate cycling frequency when provided with a narrow-band signal. This is not
considered to be a problem because the overall damage appears to be well accounted for.

Domain Damage
Model

Vrms (ksi) Cycling
Rate (Hz)

Damage Rate

Time Minor’s Rule 0.046-0.049 532 5.6E-43 - 1.7E-42

Frequency
Steinberg

0.051-0.055 47
2.0E-43 - 5.8E-43

Narrow Band 6.3E-43 - 1.8E-42
Wirsching 2.9E-43 - 8.4E-43

Table 2-8. – Narrow-Band Test Results. Ranges indicate spatial variation.

Narrow-band and Wide-band results are very similar for Siesta and Sierra/SD, but they
are not identical. We expect that there are round off errors and integration differences
leading to those differences. These are particularly difficult in an undamped system with
numerical integration crossing peak resonance. Table 2-10 compares these results. Overall,
the comparison is good, and well within the differences of the other methods.
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Domain Damage
Model

Vrms (ksi) Cycling
Rate (Hz)

Damage Rate

Time Minor’s Rule 0.22 - 0.24 2486 - 2487 21E-33 - 56E-33
Siesta results

Frequency
Steinberg

0.20 - 0.22 2293
2.2E-33 - 6.3E-33

Narrow Band 6.8E-33 - 20E-33
Wirsching 3.1E-33 - 9.0E-33

Sierra/SD results

Frequency Narrow Band 0.201 - 0.217 2293 6.5E-33 - 19E-33
Wirsching 3.0E-33 - 8.6E-33

Table 2-9. – Wide-Band Test Results. Ranges indicate spatial variation.

Parameter Narrow-Band Wide-Band
Siesta Sierra Diff Siesta Sierra Diff

Vrms (psi) 55 55.45 0 220 220 0%
ν+
o 47 47 0 2293 2293 0%
NB Damage 1.8e-42 1.74-e42 3% 2.0e-32 1.9E-32 5%

Table 2-10. – Maximum of Siesta and Sierra/SD Computations

8.2.2.2. Integration and Damping

The PSD spectrum is integrated through frequency to determine the RMS stress and the
stress moments. For undamped systems, that function is singular at the resonance points.
Two factors influence the accuracy of that solution. First, damping removes the singularity
in the solution. Second, the size of the frequency step addresses the accuracy of the
integral.

Figure 2-5 provides some information on the convergence of the solution as these
parameters are varied. The figure on the left shows variation of the narrowband damage,
DNB, as damping is increased. For damping below 1%, there is no significant impact on
the solution. The graphic on the right illustrates the same data, sliced another way. We
observe that the frequency step, ∆F , has a significant affect on the solution. For our
problem, independent of damping, the frequency step should be below 1Hz. However, with
no damping and a small frequency step, very different (non-convergent) results are
obtained. This is consistent with numerical integration across a singularity. For input deck
see Appendix 11.71.
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Figure 2-5. – Convergence of PSD Integration

8.3. Fatigue Output of Pinned Shell

Both a narrowband and wideband example are evaluated. The verification test ensures the
following.

• The stress is evaluated at all three surfaces (top, middle, bottom), and the larger of
these values is used for evaluation of damage.

• The zero crossing and peak frequency make sense in the context of the PSD inpt.
This is easier to evaluate for narrowband processes.

• Von Mises stress is consistent between modalranvib and FRF solutions.

• The von Mises stress is consistent with a static solution.

• Damage Rate is consistent with independent Matlab calculations.

We do not have a comparison with time domain rain fall calculations. We also have no
convergence study, either with mesh, or with modes.

8.3.1. Narrow Band Pinned Plate

The model is a simple rectangular plate, shown in Figure 3-6. The plate is 10 units in X, 1
unit in Y , 0.01 units thick, and all deformation is in the Z direction. In modal analysis,
only the first mode is retained, which is a bending mode, shown in the lower portion of
Figure 3-6. The +/- X surfaces are pinned, with no other Dirichlet boundary conditions.
Loading is a uniform pressure in the −Z direction. The narrowband loading in shown in
Figure 3-7, where the entire loading is in the 4Hz to 5Hz range. The first mode is at about
8.9Hz, so this loading is below that first mode.

240



Figure 3-6. – Pinned Plate Geometry, and First Mode

Figure 3-7. – Pinned Plate. Random Vibration Loading
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8.3.1.1. Statics:

The static response on the bottom surface, to a uniform pressure load is shown in Figure
3-8. Stress on the top surface is the negative of this, and there is no stress on the midplane.

Figure 3-8. – Pinned Plate. Statics Response

8.3.1.2. FRF:

The input is modified, and a modal FRF computed from 0.01 to 8Hz, as shown in Figure
3-9. The stress response is very similar to the static solution, as evidenced in Figure 3-10.
There are expected deviations, as the FRF response includes only a single mode. However,
the stresses are as expected, and they increase at the sample frequency of 4.55Hz, as the
solution approaches resonance.

X FRF and Statics displacements and stresses are consistent.

242



Figure 3-9. – Pinned Plate. Modal FRF Response
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Figure 3-10. – Pinned Plate. Comparison of Static and FRF Solutions
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8.3.1.3. Random Vibration Analysis:

The next step of the computation is evaluation of the RMS von Mises stress through the
modal random vibration analysis. The peak value of this stress is 1.037×106, which occurs
in the center of the structure. This value is consistent with the stresses computed in the
FRF and Statics portions of the analysis. The following are confirmed.

X The zero crossing and peak frequency, determined from Vrmsi, are both about 4.5Hz,
consistent with the narrow band sweep in this analysis.

X RMS stresses are consistent with the FRF values. Note however, that these are all
axial stresses.

8.3.1.4. Fatigue Damage Analysis:

The final step is the fatigue analysis. Output of this analysis confirms,

X The zero crossing and peak frequency are correct.

X Damage rates are consistent with hand calculations.

DNB = ν+
o

A
(
√

2σsFSS)mΓ
(
m

2 + 1
)

For our structure, DNB ≈ 5 in the center of the plate.

A1 = 12.1689
A = 10A1 = 1.475×1012

m = 3
FSS = 0.0001
ν+
o = 4.534

Γ(5/2) = 1.3293
σ ≈ 1.0377×106

DNB = 1.2911×10−5 (from hand calcs)

The value from the output is DNB = 1.291125933×10−5.

8.3.2. Wideband Calculations

Wideband calculations use the same model as narrowband. Only a single mode is retained
as shown in Figure 3-6, however the band selected is from 10 -100Hz. Figure 3-11 shows
the displacement response over this band, with a 1% damping. Above the 8.9Hz mode, the
response rolls off.

For this model, the zero crossing rate at all locations is ν+
o = 12.351. The peak frequency is

somewhat higher (as expected), at νp = 20.115Hz. Both reflect the much higher energy at
lower frequency because the dominant mode is at 8.9Hz.
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Figure 3-11. – Pinned Plate. Wide Band FRF Response

X The zero crossing and peak frequency are reasonable.

The peak Damage occurs in the middle of the plate. Peak values for NbDamageRate and
DamageRate are 6.8259×10−4 and 5.6715×10−4 respectively.

The RMS von Mises stress can be computed in two ways. First, the modal random
vibration method can be used. Second, a frequency response method is used. Each of these
methods is applied here for the element 51, which is found at the center of the plate where
the stress is maximum.

ModalRanVib: This method, described in the Sierra/SD manuals, computes the RMS von
Mises stress. The value from the method is V̂RMS = 2.7886×106.

FRF: This method uses the transfer functions. From the output of the modalFRF
calculation,

V̄ 2
RMS =

∫ ∞
0

H†(ω)SFF (ω)H(ω)dω

where H(ω) is a stress transfer function, and SFF is the force input power spectral
density. For element 51, V̄RMS = 2.8695×106. Here we assume that the stress is
uniaxial, and H applies to σxx, the axial portion of the stress. The Matlab code to
approximate this integral is,

h1 = evar23(51,:) + sqrt(-1)*evar01(51,:);
h1 = h1.’;
df = 0.1;
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Sff = 1;
Vrms2 = h1’*Sff*h1*df;
Vrms = sqrt(Vrms2)

The difference between these two values is about 3 percent. That would appear to be too
large. However, evaluation of convergence as the frequency step is decreased indicates
much less error in the modal random vibration solution. See Figure 3-12. The RMS stress
depends on damping. Setting the damping ratio to 50%, results in stresses of 1.2721e6 and
1.262251e6 using an FRF and random vibration method respectively. As expected, the
integration error is lower for these values, and relative error is about 0.8%.

X Computation of the RMS stress is consistent between the two methods.
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Figure 3-12. – Convergence of Frequency Integrals

For input deck see Appendix 11.72.
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8.4. Nodal Loading vs Sideset Loading for Modal Random Vibration

Modal random vibration verification test of the flat plate of hexshells is shown in Figure
4-13 for pressure loading on the top surface. The plate is fixed at nodeset 3 and nodeset 4
and is fixed in the "z" direction at nodeset 1 and 2.

Figure 4-13. – Schematic of flat plate geometry with nodesets and sidesets labeled. A pressure
load is applied to the top surface on sideset 1 and a force load is applied to the top surface on
nodeset 10. Frequency output shown in Figure4-14 is taken at nodeset 5.

The pressure loading is compared to three other loading scenarios for verification. The four
solutions to this problem are presented in Figure 4-14 for measurements taken at the center
node of the plate, nodeset 5 in Figure 4-13.

The four solutions are:

1) Modalranvib with pressure applied to the top surface of the plate, sideset 1 in Figure
4-13. Results are shown in blue in Figure 4-14.

2) Modalranvib with nodal forces applied to the entire top surface, nodeset 10 in Figure
4-13. The load is scaled to be equivalent to the pressure load in case 1. Note that the
exodus mesh for nodeset 10 has a distribution factor of 0.5 so the force load is scaled by 2
in the input file. Results are shown in red in Figure 4-14. Note that their are no noticeable
differences for cases 1 and 2.

3) A time history solution post-processed to give the power spectral density shown in red.

4) NASTRAN solution for modalranvib shown in green.

All of the input files and matlab scripts required to run these simulations are in the test
directory.
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The Salinas results for pressure loaded modalranvib are the same as the other solution
methods.

For input deck see Appendix 11.75.

249



9. COUPLED ELECTRO-MECHANICAL PHYSICS

9.1. Static Response for Electric Field Induced Beam Deformation

In this section, we verify the electro-mechanical coupling in the stiffness matrix using the
static response of two bimorph beam models (1-1) that were presented in work by X.D.
Zhang and C.T. Sun [59]. The first test verifies the part of the stiffness matrix that couples
the electric field to transverse strain, and the second verifies the coupling of the electric
field to shear strain. To verify, we compared the transverse displacements generated from
Sierra/SD with the analytic solutions derived in the referenced paper [59].

9.1.1. Bimorph Beam in Bending

The first model is an aluminum cantilevered beam pressed between two piezoelectric strips
(Figure 1-1a). The piezoelectric strips are PZT5H and are polarized in the direction
parallel to their thickness (z-axis). The constitutive properties of the piezoelectric and
aluminum materials are presented in Table 1-1. Ten volt voltages (Vin = Vout = 10) are
prescribed to the outermost surfaces parallel to the length of the beam and the aluminum
core is grounded (Vg = 0). Figure 1-2 presents the analytic and Sierra/SD generated
transverse displacements over the length of the beam.

Table 1-1. – Material Properties for PZT5H [59]
PZT5H Al

GPa C/m2 GPa
c11 c12 c13 c33 c44 e31 e33 e15 E ν
126 79.5 84.1 117 23 -6.5 23.3 17 70.3 0.345
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Figure 1-1. – Cantilevered bimorph beams with piezoelectric layer (hatch) and aluminum
layer (solid). Model (a) verifies the electric field transverse strain coupling, and model (b)
verifies the electric field shear strain coupling
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Figure 1-2. – The FE and analytic transverse displacements along the length of the bimorph
beam from Figure 1-1a
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9.1.2. Sheared Bimorph Beam

The second model is a piezoelectric cantilevered beam pressed between two aluminum strips
(Figure 1-1b). The piezoelectric material is PZT5H and it is polarized in the direction
parallel to the length of the beam (x-axis). A twenty volt voltage (Vin = 20) is prescribed
to the upper interface between the aluminum and piezoelectric strip, while the lower
interface is grounded (Vg = 0). Figure 1-3 presents the analytic solution superimposed over
the transverse displacements generated from Sierra/SD over the length of the beam.

0 0.02 0.04 0.06 0.08 0.1

-1

-0.5

0
10 -7

Sierra

Analytic

Figure 1-3. – The FE and analytic transverse displacements along the length of the shear
beam from Figure 1-1b
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9.2. Transient Response for Electric Field Induced Beam Deformation

In this section, we verify the transient solution method for a piezoelectric model subject to
prescribed time-varying voltage boundary conditions. The details of the bimorph beam are
provided in Figure 1-1a and section 9.1. A constant voltage of 20 volts (Vin = 20) is
prescribed to the top surface, and the aluminum core is grounded. An equipotential surface
is enforced at the bottom surface (Vout) with a voltage rigid set. In other words, the
voltage is spatially constant along the equipotential surface. The piezoelectric material is
isotropic in permittivity where its permittivity is set to the permittivity of free space.

To verify the transient solution method, we performed a transient solve using an identical
model with the FE software COMSOL [14] and compared its generated time-histories with
those generated from Sierra/SD. Figure 2-4 presents the displacement time-history of the
output node (see Figure 1-1a) in the transverse direction (z-axis) and the axial direction
(x-axis). Figure 2-5 presents the voltage time-history at (Vout). We observe excellent
agreement between Sierra/SD and COMSOL.
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Figure 2-4. – Time-histories of transverse (z) and axial (x) displacements generated from
COMSOL (dashed) and Sierra/SD (solid)
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Figure 2-5. – Voltage time-history of Vout generated from COMSOL (dashed) and Sierra/SD
(solid)
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9.3. Frequency Response for Electric Field Induced Beam Deformation

The frequency response of the bimorph beam subjected to a prescribed frequency
dependent voltage boundary condition is verified. The details of the bimorph beam are
provided in Figure 1-1a and section 9.1. In this example, a voltage of 20 volts is prescribed
to the top surface of the beam (Vin = 20) and the aluminum core is grounded. Like the
transient example, we enforce an equipotential surface at the bottom surface of the beam
(Vout) using a voltage rigid set. Stiffness proportional damping, with coefficient β = 8e−7,
is prescribed to the piezoelectric blocks. The aluminum core is undamped.

To verify the direct frequency response solution method, we performed a frequency domain
solve using an identical model with the FE software COMSOL [14] and compared its
solution with the solution generated from Sierra/SD. Figure 3-6 presents the response
amplitudes of the output node (see Figure 1-1a) for the following: 1) the transverse
direction (z-axis), 2) the axial direction (x-axis), and 3) the voltage at Vout. We observe
excellent agreement between Sierra/SD and COMSOL.
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Figure 3-6. – The frequency response amplitudes generated from Sierra/SD and COMSOL
for 1) the transverse direction (z-axis), 2) the axial direction (x-axis), and 3) the voltage at
Vout
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9.4. Eigenvalue Verification of a PZT5A Disc

This section verifies eigen-analysis for coupled electro-mechanical physics. The following
verification is based on the example available in the referenced paper by Guo, Cawley, and
Hitchings [25]. The specified problem is a PZT5A disc with D/T ratio of 20. The
properties used are in Table 4-2. The disc is 40.10mm in diameter and 2.03mm thick,
giving it a D/T ratio of 20, which is the same ratio as many transducers. The piezoelectric
material is polarized in the Z (or 3) axis.

Table 4-2. – Properties of PZT-5A [25]
Property Units PZT-5A
ε0 F/m 8.854×10−12

εS11/ε0 916
εS33/ε0 830
cE11 1010N/m2 12.1
cE33 1010N/m2 11.1
cE12 1010N/m2 7.54
cE13 1010N/m2 7.52
cE44 1010N/m2 2.11
cE66 1010N/m2 2.26
e31 C/m2 -5.4
e33 C/m2 15.8
e15 C/m2 12.3
ρ 103kg/m3 7.75

Thus the elasticity matrix:

CE = 1010 ×



12.1 7.54 7.52 0 0 0
7.54 12.1 7.52 0 0 0
7.52 7.52 11.1 0 0 0

0 0 0 2.11 0 0
0 0 0 0 2.11 0
0 0 0 0 0 2.26


N/m2 (9.4.1)

the dielectric matrix:

εS = 8.854 × 10−12 ×

 916 0 0
0 916 0
0 0 830

F/m (9.4.2)

and the piezoelectric coupling matrix:

e =

 0 0 0 0 12.3 0
0 0 0 12.3 0 0
−5.4 −5.4 15.8 0 0 0

C/m2 (9.4.3)
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Figure 4-7. – PZT5A disc verification problem

Figure 4-8. – First Radial Model of PZT-Disk. Literature 49.56 kHz, Sierra/SD 49.603 kHz.
Red shows undeformed disk, blue shows radial extension mode shape.

The referenced paper [25] uses radially symmetric elements, thus only the radially
symmetric modes are presented. Additionally, the authors claim that the bending modes
can not be used to excite the mechanical system, so only the radial extension modes are
presented [25] . Sierra/SD calculated all modes, including radially symmetric bending
modes, as well as non-symmetric modes. In the referenced paper[25], the first two radial
extensional modes occur at 49.56 kHz and 128.1 kHz. From the Sierra/SD runs, the first
radial mode is represented by the 35th eigenpair, and has a natural frequency of 49.603
kHz. The second radial mode is represented by the 104th eigenpair, and has a natural
frequency of 128.757 kHz. It should be noted that when the material is modeled as a
purely elastic orthotropic material, with no consideration of the piezoelectric effect, these
modes also appear at the same frequencies. In the pure elastic-orthotropic case, other
modes change frequency, ordering and numbering, but the radial modes remain at the same
frequency. Figure 4-8 shows the first radial extension mode calculated in Sierra/SD, and
Figure 4-9 shows the second radial extension mode calculated in Sierra/SD.
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Figure 4-9. – First Radial Model of PZT-Disk. Literature 128.1 kHz, Sierra/SD 128.757 kHz.
Red shows undeformed disk, blue shows radial extension mode shape.
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10. LEGACY TESTS

10.1. Element Verification Tests

The purpose of this section is to report the verification calculations that have been
performed on the Sierra/SD software. Test models and calculations were performed to
ensure that Sierra/SD performs as required. Element patch tests are described,
convergence studies for the elements are performed, and code to code comparisons are
made to ensure that the software meets the requirements for analysis of hypersonic vehicles
used in Sandia National Labs’s nuclear weapons program.

The tests described in this document were performed in support of release 1.1 of
Sierra/SD. This covers capabilities for linear structural dynamics, linear statics, and
linear transient dynamics. Specifications and requirements for this release are identified in
the Requirements document,36 and summarized in a technical report.43

Verification tests can never cover the full aspects of the software. Analysis shows that there
are too many paths through the software to ever adequately cover all such paths (see
Beizer6 or Myers40). However, these tests are essential to provide confidence that with
proper input, solutions to the fundamental equations of mechanics are solved properly.

Note that verification tests address mesh discretization indirectly.

10.1.1. Element Patch Tests

The element patch tests in this study are derived from MacNeal’s monograph.34 These
tests are designed to ensure that the element formulations are independent of element
orientation, and that the elements are capable of solving exactly the equations on which
they are based. As a minimum, elements should be able to represent a constant strain field
exactly since the linear shape functions of the elements are the minimum required to do
this exactly.

All of the 2D and 3D elements in the Sierra/SD element library are tested. The 2D
elements are: QuadT, Tria3, TriaShell, and Tria6. The 3D elements are Hex8b, Hex8,
Hex20, Wedge6, Tet4, and Tet10. The 2D elements are tested using a membrane patch test
and a bending plate patch test. The 3D elements are tested using the solid patch test.
These patch tests are defined in MacNeal.34

All the 2D elements pass the membrane and bending patch tests. All the 3D elements pass
the solid patch test. These patch test problems are located in the Salinas_test repository
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in the Salinas_test/patch_tests subdirectory. The results for the patch tests are shown in
Table 1-1.

Table 1-1. – Patch Test Results.
Element Type Patch Test

Membrane Bending Solid
QuadT Passed Passed N/A
Tria3 Passed Passed N/A

TriaShell Passed Passed N/A
Tria6 Passed Passed N/A
Hex8 N/A N/A Passed
Hex8b N/A N/A Passed
Hex20 N/A N/A Passed
Wedge6 N/A N/A Passed
Tet4 N/A N/A Passed
Tet10 N/A N/A Passed

10.1.2. Element Accuracy Tests

Accuracy tests are designed to stress test elements. These are not convergence tests. The
purpose of the test is to provide information about how badly the element performs in
common (but under meshed) environments. It can be noted in the results below that Tet4
elements are way too stiff in almost all loadings. This is expected, and the test results are
provided to help analysts determine the applicability of this element for their analysis.
Below are test results for the accuracy tests (Tables 8 through 15 of MacNeal [34]). All
tabulated results are the ratio of the numerical solution to the exact solution, i.e. a value
of 1.00 is a perfect result. The test problems are described and illustrated in the reference,
Figures 4 through 10.

The first test from MacNeal is a straight beam with a length of 6.0, an in-plane cross
sectional dimension of 0.2 and an out of plane cross sectional dimension of 0.1. There is a
single element at any given point along the length of the beam and total of 6 elements
along the length of the beam. The Young’s Modulus, E = 107, the Poisson ratio, ν = 0.30,
and the loading is a unit force at the free end of the beam. Reported table values refer to
displacement at the loaded tip of the beam. Tables 1-2, 1-3 and 1-4 show results for
rectangular, trapezoidal, and parallelogram shaped elements, respectively.

In the tables Hex8 denotes the Hex8U element.

Table 1-5 below shows results for a curved beam, also with a 6 by 1 element mesh. The
inner radius is 4.12, the outer radius 4.32, the arc 90 degrees, and the thickness 0.1. The
Young’s Modulus is E = 107 , the Poisson ratio is 0.25. The tip load is of unit magnitude.
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Table 1-2. – Straight Beam – Rectangular Elements.
Element Type Extension In Plane Out of Plane Twist

Hex20 0.994 0.970 0.961 0.904
Hex8b 0.988 0.978 0.973 0.892
Hex8 0.986 9.22 2.50 89.2
Tet10 0.998 0.960 0.959 0.910
Tet4 0.979 0.0219 0.0119 0.00264

Wedge6 0.991 0.0326 0.0882 0.0257
QuadT 0.839 1.05 0.979 0.704
Tria6 0.999 1.00 0.988 0.716
Tria3 1.01 1.06 0.978 0.704

TriaShell 0.966 0.224 .0978 0.720

Table 1-3. – Straight Beam – Trapezoidal Elements.
Element Type Extension In Plane Out of Plane Twist

Hex20 0.977 0.731 0.714 0.863
Hex8 0.988 0.734 0.307 51.4
Hex8b 1.009 0.0475 0.03 0.623
Tet10 0.999 0.277 0.208 0.667
Tet4 0.978 0.0144 0.00691 0.00755

Wedge6 0.992 0.0187 0.0302 0.0546
QuadT 1.00 0.559 0.980 0.0226
Tria6 0.999 1.00 0.988 0.716
Tria3 0.999 0.733 0.980 0.705

TriaShell 0.996 0.208 0.979 0.721

Table 1-6 shows results for a cantilever beam that twist a total of 90 degrees along the
length of the beam. The beam length is 12.0, the in-plane cross sectional dimension 0.32
and the out of plane cross sectional dimension is 1.1. The Young’s Modulus is 29.0e6 and
the Poisson ratio 0.22. The tip load is of unit magnitude.

Tables 1-7 through 1-10 show results for a rectangular plate with either simply supported
or clamped boundary conditions and either a point load of 4x104 at the center of the plate
or a uniform pressure of 1x104 over the plate. The plate has either a width-to-height aspect
ratio of 1.0 or 5.0. The plate height is 4.0. The plate thickness is 0.01 for solid elements
(Hex20, Hex8, Hex8b, Tet10, Tet4, and Wedge6) and 0.0001 for shell elements (QuadT,
Tria6, Tria3, and TriaShell). The Young’s Modulus is 1.7472x107 and the Poisson ratio 0.3.
The quantity N in these tables denotes the number of node spaces on half the edge of the
plate. If the element has midside nodes, e.g., the Hex20, Tet10, or Tria6, then the number
of elements along this portion of the edge of the plate is half the value of N. These tests are
unsuitable for the Tet elements (Tet10 and Tet4) as the aspect ratios of the elements is
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Table 1-4. – Straight Beam Tests – Parallelogram Elements.
Element Type Extension In Plane Out of Plane Twist

Hex20 1.01 0.404 0.280 0.758
Hex8 0.983 1.60 0.943 38.68
Hex8b 0.977 0.623 0.528 1.27
Tet10 0.998 0.289 0.213 0.744
Tet4 0.981 0.0122 0.00708 0.00779

Wedge6 0.991 0.0148 0.0558 0.154
QuadT 0.985 0.407 0.981 0.141
Tria6 0.998 0.816 0.988 0.716
Tria3 1.00 0.535 0.978 0.702

TriaShell 0.996 0.190 0.978 0.720

Table 1-5. – Curved Beam Tests.
Element Type In Plane Out of Plane

Hex20 0.874 0.937
Hex8 7.06 22.8
Hex8b 0.879 0.952
Tet10 0.839 0.776
Tet4 0.0174 0.00738

Wedge6 0.0255 0.0557
QuadT 1.09 0.867
Tria6 .167 0.276
Tria3 1.07 0.864

TriaShell 0.185 0.895

large due to the small thickness. Nastran’s Tet10 performs in a similar fashion to
Sierra/SD’s Tet10 on the remaining problems in this section.

Table 1-11 shows the results for the Scordelis-Lo Roof tests. This test involves a curved
plate. The radius of curvature is 25.0 and the associated arc 80 degrees. The length of the
plate is 50.0 and the thickness 0.25. The straight edges of the plate are free and the curved
edges are constrained to not to move in the plane in which the curved edge is contained.
The loading is a traction in the z-direction on the face of the plate of magnitude 90.0 per
unit area. The Young’s Modulus is 4.32e8 and the Poisson ratio 0.0. The quantity N still
represents the number of node spaces along half of one of the edges of the plate.

Table 1-12 gives the results for the spherical shell tests. This is a semi-spherical shell with a
hole cut out of the top. The angular size of the hole is 36 degrees. The radius is 10.0. The
thickness is 0.04. The Young’s Modulus is 6.825e7. The Poisson ratio is 0.3. The loading is
made up of four equally spaced radial point loads of magnitude 2.0 at the equator. Two of
these point loads are radial inward and two are radially outward. The quantity N

263



Table 1-6. – Twisted Beam Tests.
Element Type In Plane Out of Plane

Hex20 .996 0.987
Hex8 14.3 11.0
Hex8b 0.744 0.740
Tet10 1.01 1.01
Tet4 0.0949 0.162

Wedge6 0.0846 0.243
QuadT .998 1.01
Tria6 19.7 15.5
Tria3 30.9 24.6

TriaShell 11.4 8.99

Table 1-7. – Rectangular Plate with Simple Supports and Uniform Pressure Load, Aspect
Ratio 1.0

Element Type N=2 N=4 N=6 N=8
Hex20 0.0167 0.691 0.831 0.976
Hex8 0.220 0.904 2.02 3.11
Hex8b 0.04 0.412 0.782 0.92
Tet10 0.00116 0.00331 0.00752 0.015
Tet4 4.42e7 8.00e6 4.10e5 1.29e4

Wedge6 0.228 0.0824 0.0568 0.0543
QuadT 0.966 0.922 0.997 0.998
Tria6 1.01 0.974 0.987 0.992
Tria3 0.978 0.992 0.997 0.998

TriaShell 0.958 0.987 0.994 0.997

represents the number of node spaces along a quarter of one of the edges of the shell.

The next table (Table 1-13) shows the results for the thick walled cylinder tests. This is a
donut shaped, thick plate of thickness 1.0, inner radius 3.0, and outer radius 9.0. The
Young’s Modulus is 1000, and the Poisson ratio is either 0.49, 0.499, or 0.4999. The loading
is a unit radial pressure on the inner radius. The mesh has five elements along the radius
at 10 degree intervals and one element through the thickness, for a total of 180 elements.
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Table 1-8. – Rectangular Plate with Simple Supports and Uniform Pressure Load, Aspect
Ratio 5.0

Element Type N=2 N=4 N=6 N=8
Hex20 0.503 0.649 1.04 1.02
Hex8 0.130 0.515 19.21 2.03
Hex8b 0.024 0.302 1.10 0.917
Tet10 0.000702 0.00181 0.00424 0.00852
Tet4 1.57e7 2.52e6 1.28e5 4.05e5

Wedge6 0.179 0.0977 0.0474 0.0470
QuadT 0.978 0.993 0.994 0.999
Tria6 0.658 1.02 1.01 1.00
Tria3 0.945 0.991 0.997 0.999

TriaShell 0.960 0.995 0.999 0.999

Table 1-9. – Rectangular Plate with Clamped Supports and Concentrated Load, Aspect Ratio
1.0

Element Type N=2 N=4 N=6 N=8
Hex20 0.00106 0.072 0.553 0.822
Hex8 0.120 0.578 1.33 2.36
Hex8b 0.0195 0.246 0.614 0.824
Tet10 0.00110 0.00329 0.00624 0.0109
Tet4 1.46e6 2.31e5 1.15e4 3.52e4

Wedge6 0.0037 0.0186 0.0373 0.0561
QuadT 1.08 1.03 1.02 1.01
Tria6 1.06 1.17 1.01 1.01
Tria3 0.778 1.03 1.02 1.01

TriaShell 0.860 1.02 1.01 1.01
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Table 1-10. – Rectangular Plate with Clamped Supports and Concentrated Load, Aspect
Ratio 5.0

Element Type N=2 N=4 N=6 N=8
Hex20 8.51e4 0.0396 0.220 0.374
Hex8 0.0362 0.138 0.551 0.992
Hex8b 0.00585 0.083 0.247 0.415
Tet10 3.39e4 0.00141 0.00282 0.00475
Tet4 2.26e7 3.60e6 1.80e5 5.61e5

Wedge6 0.00320 0.0181 0.0241 0.0297
QuadT 0.613 0.919 1.00 1.01
Tria6 0.606 0.910 0.998 1.01
Tria3 0.603 0.915 1.00 1.01

TriaShell 0.666 0.945 1.01 1.02

Table 1-11. – Scordelis-Lo Roof Tests.
Element Type N=2 N=4 N=6 N=8 N=10

Hex20 0.0583 0.276 0.645 0.870 0.956
Hex8 .563 1.43 2.17 2.73 3.16
Hex8b 0.125 0.574 0.889 0.967 0.981
Tet10 0.0198 0.0526 0.0770 0.101 0.149
Tet4 0.00599 0.0108 0.0196 0.0333 0.0472

Wedge6 0.017 0.0289 0.0642 0.08 0.093
QuadT 1.58 1.13 1.06 1.02 1.00
Tria6 1.45 1.13 1.06 1.02 1.00
Tria3 1.45 1.13 1.06 1.02 1.00

TriaShell 1.35 1.04 1.01 0.995 0.984

Table 1-12. – Spherical Shell Tests.
Element Type N=2 N=4 N=6 N=8 N=10 N=12

Hex20 – 0.00129 0.00662 0.0209 0.0500 0.0974
Hex8 0.00573 0.0547 0.133 0.238 0.371 0.531
Hex8b .000303 0.0104 0.056 0.162 0.319 0.491
Tet10 – 2.21e4 3.83e4 6.73e4 0.00107 0.00167
Tet4 2.22e5 3.18e5 3.78e5 4.46e5 5.62e5 6.94e5

Wedge6 0.0153 0.00447 0.00645 0.00660 0.00708 0.00781
QuadT 0.0423 0.0834 0.263 0.502 0.697 0.820
Tria6 0.0194 0.0879 0.263 0.502 0.697 0.819
Tria3 0.0445 0.0891 0.266 0.499 0.693 0.816

TriaShell 0.436 0.199 0.226 0.378 0.560 0.708
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Table 1-13. – ThickWalled Cylinder Tests.
Element Type ν = .4900 ν = .4990 ν = .4999

Hex20 1.03 1.04 1.04
Hex8 0.445 0.437 0.406
Hex8b 0.437 0.437 0.437
Tet10 0.444 0.442 0.442
Tet4 0.393 0.356 0.349

Wedge6 0.408 0.399 0.398
QuadT 0.416 0.414 0.413
Tria6 0.438 0.436 0.436
Tria3 0.419 0.417 0.417

TriaShell 0.425 0.423 0.423
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10.1.3. Element Convergence Tests

Mesh convergence studies establish confidence that the accuracy of the solution increases
as the mesh is refined. They also establish the rate of convergence of the solution. They
may be performed with or without a known analytical solution for the problem.
Fortunately, for many structural dynamics problems, analytic solutions are available.

In structural dynamics, unstructured grids are necessarily used. While standard
Richardson extrapolation44 is not directly applicable to unstructured meshes, related
methods can be used to determine truncation error (see Alvin3 for example). Some detail is
provided in Appendix 13.

Convergence testing is used either to explore the properties of newly designed elements or
to assure the adequacy of a candidate mesh. Use of it to verify the correct implementation
of an element is not universally done; instead the patch test and the accuracy tests are
considered sufficient. Convergence testing is performed as part of this verification suite to
provide consistency with verification efforts in other Sandia National Labs codes.

In its simplest form, convergence analysis involves performing an analysis with at least
three levels of mesh fineness and assessing the rate at which the error goes to zero. For the
elements under consideration, convergence is known to be geometric: quadratic for the low
order elements and quartic for the high order elements once the elements are small
enough.

The convergence tests for the Hex8 elements was the static deformation of a cantilevered
beam. The meshes employed are shown in Figure 1-1 and the appropriate plot of
convergence error is show in Figure 1-2. It was seen that the convergence slope increased in
magnitude as the meshes were refined and that for both the fully integrated and the
selectively integrated element, the slopes found through this numerical experiment
approximate the theoretical value of −2. Fine meshes are required to achieve this
geometric convergence. Requiring convergence at a single point was a mistake.

Element convergence for Hex20 and Tet10 elements was preformed focusing on the
calculated first eigenvalues. The resulting convergence plot for the Hex20 is shown in
Figure 1-3. Here we see that the convergence rate is -3.8, close to the theoretical value.

Refining a general mesh through sectioning to create new elements all of approximately the
same size increases the aspect ratios compared to the coarser mesh. This prevents standard
convergence tests of Tet elements. A BCC mesh can be uniformly refined, but it was too
difficult to implement. Instead several independent meshes were created. The resulting
slope of the log-log error plot (shown in Figure 1-4 is the theoretical value, −4.
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Figure 1-1. – Meshes for convergence test for Hex8 elements.
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Figure 1-2. – As the meshes are progressively refined, the slope of the log-log plot of the error
approaches -2, as predicted by theory.
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Figure 1-3. – The convergence plot of the Hex20 element for the first eigenvalue shows a slope
close to the theoretical value of -4.
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Figure 1-4. – The convergence plot of the Tet10 element for the first eigenvalue shows a slope
close to the theoretical value of -4
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The convergence rates of the various elements are listed in Table 1-14.

Table 1-14. – Element Convergence Rates.
Element Type Ideal Measured Comments

Rate Rate
Hex8 2 2 Beta=1.0, Alpha=1−

√
1−2ν

Tria3 2
TriaShell 2
QuadT 2 derived from Tria3
Quad8T 2 derived from Tria3. First order.
Beam2 2
Tet4 2
Hex20 4 4 using eigen analysis
Tet10 4 4 using eigen analysis
Tria6 2 derived from Tria3. First order.

10.1.4. RBE3 - comparison with Nastran

Verification of the RBE3 pseudo-element necessarily requires comparison with Nastran,
because no physical model exists. The RBE3 is designed to function like the Nastran
pseudo element. A simple model was constructed for evaluation of an RBE3 link. The
structure consisted of a cube placed on the end of a beam. The beam terminates in the
center of the cube, and is connected to the eight corners of the cube with an RBE3 as
illustrated in Figure 1. The model is named BoxOnBarRbe3.inp. The test is
Salinas_rtest/test_tool/fast_regression_tests/mpc/BoxOnBarRbe3.test.

There are slight differences in the beam models used by Nastran and by Sierra/SD. A
summary of the modes is included in the table. As can be seen in the table, the agreement
is good. All the modes of the structure are preserved by the RBE3.

# Nastran Sierra/SD Description
Frequency Frequency

1 2354.8 2354.4 1st bending
2 2354.8 2354.4 1st bending
3 6833 6832.7 Pogo Stick, axial mode
4 9942 9939.4 2nd bending
5 9942 9939.4 2nd bending
6 13697 13335 torsion
7 22367 22365 hex deformations

> 20,000 > 20,000 hex deformations
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Figure 1-5. – Box on a Bar test object.

10.1.5. Verification of hexshells

In this section we list the results of several verification examples for hexshell elements.
These verification examples were taken from Professor Carlos Felippa, the developer of the
element, (see reference23). The goal here was to reproduce the results obtained in that
report.

10.1.5.1. Example 1

This example corresponds to section 9.5 in the report,23 and consists of a circular ring
subjected to equal and opposite forces acting along the vertical direction. The exact
solution for this problem is given in both reference57 and reference53 as

π2−8
4π

PR3

EI
(10.1.1)

We note that this solution is the total change in diameter for the ring.

By symmetry a quarter ring with appropriate boundary conditions suffices. We note three
details for comparing the results to the exact solution. First, the exact solution as given is
for the total change in diameter for the ring. For a quarter ring, this result is halved.
Second, since the ring is cut at the top surface and we are applying a point load on the
symmetry plane, the applied load P will produce twice the deflection in a quarter ring as in
the full ring. This is explained in more detail in reference.53 However, since there is a need
to both divide by two and multiply by two, these factors effectively cancel one another out,
and thus equation 10.1.1 is the solution for comparison in the case of a quarter ring.

The results obtain by Sierra/SD are compared with those of Dr. Felippa in Table 1-15.

For this example, Dr. Felippa also reported results for a two-ply case. Since we do not have
an analytical solution to compare with, and since the reported results are normalized by
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Table 1-15. – Normalized Deflections for the Pinched Composite Ring.
Ne

R
h = 20 Felippa R

h = 20 Sierra/SD R
h = 100 Felippa R

h = 100 Sierra/SD
4 .5746 .5771 .0062 .062
6 .4322 .4376
8 .9582 .9631 .7813 .7971
16 .9896 .9947 .9659 .9886
32 .9955 1.00072 .9753 .9981

the exact solution, we have no reference point and thus we did not run the two-ply case.
We did, however, run a two-ply example where the modulus and Poisson’s ratio were the
same in both plies. The results were the same as running a single ply with those same
material properties. This provided a weak verification of the multi-ply implementation.

10.1.5.2. Example II

This was the pinched cylindrical shell example (section 9.6). Only one eighth of the shell
was considered. The computed results were divided by four to account for the fact that the
load was applied to a quarter section. The results are shown in Table 1-16.

Table 1-16. – Normalized Deflections for the Pinched Cylindrical Shell.
mesh Felippa Sierra/SD
4x4 .0762 .1
8x8 .2809 .45
16x16 .5366 .81
32x32 .8029 .87
128x128 .897

10.1.5.3. Example III. Scordelis-Lo Roof

A quarter of the roof is modeled. The applied load is a gravity load. The boundary
conditions at the rigid diaphragms were incorrectly reported in.23 The correct ones are
ux = uz = 0. With these conditions, the results as shown in Table 1-17 agree well with the
expected values.
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Table 1-17. – Normalized Deflections for Scordelis-Lo Roof example.
mesh Carlos Sierra/SD
2x2 1.2928 1.29
4x4 1.0069 1.011
8x8 .9844 .984
16x16 .9772 .979

10.1.5.4. Example IV

This is the twisted beam model. The normalized results, compared with those of Carlos,
are given in Table 1-18.

Table 1-18. – Normalized Deflections pretwisted beam example.
mesh Carlos Sierra/SD

in plane out of plane in plane out of plane
1x6 1.0257 .9778 1.014 .929
2x12 1.0041 .9930 .985 .975

10.1.6. Verification of TriaShells for Composite Modeling

Laminate composites modeling in Sierra/SD is implemented by coupling Allman’s
triangle2 with the DKT triangle.5 Combining these elements together does not capture the
coupling that can occur between bending degrees of freedom and membrane degrees of
freedom. An additional stiffness that couples these degrees of freedom is generated as
documented in References19 and.1

In the next sections we list the results of several verification examples for composite
TriaShell elements.

10.1.6.1. Example 1

The first verification example is taken from Reference.19 A rectangular plate with
dimensions 6" x 1" x 0.005" is modeled using 2 triangular elements (Figure 1-6). In figure
1-6, the left side is clamped (nodes 1 and 3) while node 4 has a unit load in the positive
z-direction, and node 2 has a unit load in the negative z direction. Each element is
composed of 3 layers. Each layer has the following orthotropic material properties:
E1 = 10e6, E2 = 0.3e6, ν12 = 0.25, and G12 = 4e6. The fiber orientation for each layer is
45◦,0◦, and −45◦, respectively.

This mesh is refined 6 times to create 6 other test cases. The convergence of the
displacements and rotations at nodes 2 and 4 is compared with the STRI3 element in
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Figure 1-6. – Two Element Test.

ABAQUS as shown in figures 1-7 through 1-12 These figures show that the convergence of
the Allman/DKT element is good. Both elements have similar convergence rates as the
mesh is refined with the exception of the drilling degree of freedom. Figures 1-13 and 1-14
compare the x, y, z, θx, θy, and θz displacements at nodes 2 and 4 (see figure 1-6. Again,
the Allman/DKT element compares well with the STRI3 element as the mesh is refined.
The exception is the drilling degree of freedom.

The 4th mesh refinement model is stored as a test in the
“Salinas/test_tool/fast_regression_tests/triashell” subdirectory, and is named
“mesh4_test”.
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Figure 1-7. – Comparison Of X-displacement Between Sierra/SD and ABAQUS
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Figure 1-9. – Comparison Of Z-displacement Between Sierra/SD And ABAQUS
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Figure 1-10. – Comparison Of Rotation About X-axis Between Sierra/SD And ABAQUS
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Figure 1-11. – Comparison Of Rotation About Y-axis Between Sierra/SD And ABAQUS

281



10
0

10
−8

10
−7

10
−6

10
−5

10
−4

1/h

u
−

u
c

Convergence Of Rotation About Z−axis At Node 2

Figure 1-12. – Comparison Of Rotation About Z-axis Between Sierra/SD And ABAQUS
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Figure 1-13. – Convergence Of Displacements and Rotations At Node 2.
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Figure 1-14. – Convergence Of Displacements And Rotations At Node 4.
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10.1.6.2. Example II

The second verification example for laminate composite modeling is taken from
Reference.27 A rectangular plate is subjected to a uniform pressure load of q = 0.003 psi.
The plate, shown in figure 1-15 has dimensions 12 in. x 8 in. and is simply supported on
each edge. The antisymmetric angle-ply stacking sequence is [ -30/30 -30/30 -30/30
-30/30]. Each layer has a thickness of 0.01 in. The orthotropic material properties for each
layer are: E1 = 26.25e6psi, E2 = 1.49e6psi, nu12 = 0.28, and G12 = 1.04e6 psi.

The transverse displacement at the center of the plate is compared with the analytical
solution developed in reference.27 Sierra/SD calculates a value of -2.377e-4, while the
analytical solution is -2.38e-4. Again, the DKT/Allman triangle produces a good
comparison with the analytical solution.

This test is kept in the Salinas_test repository in the verification/composite subdirectory
and is named plate_test.
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Figure 1-15. – Finite Element Model Of A Flat Plate.
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10.1.6.3. Example III

This verification example for laminate composite modeling is also taken from Reference.27

A cylindrical panel is subjected to a uniform pressure load of q = 0.003 psi. The cylindrical
panel (1

4 of model is shown in figure 1-16) has a length of 80 in., while the arc length of the
other side is 41.89 in. corresponding to an angle of φ= 24◦ and radius of 100 in. The
stacking sequence is [0/90/90/0]. Each layer has a thickness of 0.08 in. The orthotropic
material properties for each layer are: E1 = 18e6psi, E2 = 1.4e6psi, nu12 = 0.34, and
G12 = 0.9e6 psi.

The transverse displacement of the free corner is compared with the analytical solution
developed in reference.27 Sierra/SD calculates a value of 6.958e-4, while the analytical
solution is 6.945e-4. Again, the DKT/Allman triangle produces a good comparison with
the analytical solution.

This test is kept in the Salinas_test repository in the verification/composite subdirectory
and is named cyl_panel_test.
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Figure 1-16. – Finite Element Model Of A Cylindrical Panel.

10.1.7. Joint Modeling: Joint2g Element with Iwan Constitutive Model

The Joint2g element permits independent specification of the constitutive relations between
each of the relative displacements. Currently, the most prominent of the constitutive
equations employed for the “whole joint” modeling approach is the 4 parameter Iwan
model. The Joint2g element and the Iwan constitutive model are documented in User’s
Manual and Sandia National Labs reports specifically addressing the 4 parameter model.

There exists a closed form expression for the energy dissipation per cycle resulting from
harmonic excitation imposed on a joint of this nature. That expression (presented in
SAND2002-382849 ) is,

D = rχ+3 4Fsφmax(χ+ 1)
(β+ χ+1

χ+2(χ+ 2)(χ+ 3)
(10.1.2)

where β, χ, φmax, and Fs are model parameters, and r satisfies

Fo
Fs

= r
(β+ 1)− rχ+1/(χ+ 2)
β+ (χ+ 1)/(χ+ 2) , (10.1.3)

where Fo is the amplitude of the harmonic excitation. Comparison of the exact solution
and Sierra/SD predictions is presented in Figure 1-17.
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Figure 1-17. – Sierra/SD Iwan Element: Comparison to Analytic Solution.
The Sierra/SD predictions for unidirectional load on a simple joint agrees with the exact
solutions.
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Figure 1-18. – Significance of Number of Spring-Slider Pairs Used.
The number of spring-slider pairs necessary to demonstrate sensitivity to given levels for
load in Sierra/SD is that predicted by theory.

Fmin ≈KTφmax
α−1
αN −1

There is one integration parameter in Sierra/SD, the number of spring-slider pairs used
to approximate the continuous distribution of Jenkins elements. The relevant SAND report
provides guidance as to the number of elements necessary to manifest proper dissipative
response to loads of given size. Figure 1-18 shows that desired accuracy is achieved with
the number spring slider pairs predicted by theory.

10.1.7.1. Iwan Macroslip

To evaluate the Iwan model in Sierra/SD when it hits macro-slip, a 1D MATLAB test
case involving macro-slip and simple dynamics was developed. It was compared with the
results of the corresponding 1D Sierra/SD analysis. Here is a sketch of the model.
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Figure 1-19. – MATLAB and Sierra/SD calculation of M2 acceleration.

source k=9.74e5

m1

Iwan Model
m2

Here the source is a 100g wavelet base excitation, m1 = 0.05 lb, and m2 = 4 lb.

Analysis is performed both within Sierra/SD and MATLAB. The acceleration of the
four pound mass for each analysis method is compared in figure 1-19. We see agreement,
though the MATLAB result better resolves macro-slip.

The stretch of the Iwan joint is another good indicator of agreement, and is shown in figure
1-20. The stretch is the relative displacement across the Iwan element. Again, the
agreement is good, but not perfect.

In both analyses, the acceleration of the spring mass shows significant high frequency
response (or hash) as shown in figure 1-21. The high frequency noise is undesirable, but is
a feature of the model constructed of a finite number of slider/spring elements. As the
elements begin to slide, high frequency noise is generated.
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Figure 1-20. – MATLAB and Sierra/SD calculation of joint extension.
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Figure 1-21. – Sierra/SD calculation of M1 acceleration.
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10.1.8. Verification of Membrane Elements

Membrane elements are similar to shells, except that they have no rotational degrees of
freedom, and have no out-of-plane stiffness in the unstressed state. When they are pulled
in tension, an out-of-plane stiffness appears, and takes the form of a geometric stiffening.
In the following test cases, we examine the response of the membrane element to both
in-plane and out-of-plane deformation. We consider these two loading cases separately.

The first example consists of a square membrane of dimension 1x1, which is subjected to a
uniform tension T in both in-plane directions. After the application of the tension, the
membrane boundaries are either fixed, or placed on rollers, and an modal analysis is
performed about the stressed state. Since these elements are intended to be used in
transfers between Adagio and Sierra/SD, we perform the static preload in Adagio, and
then transfer the stresses and displacements to Sierra/SD. In this way, we also exercise
the transfer capabilities for these elements.

The exact eigenvalues for stretched square membranes are given in.32 In the case of a
membrane that is clamped along all boundaries, the frequencies are

fnm = ωnm
2π = c

2

√√√√( n

Lx

)2
+
(
m

Ly

)2
(10.1.4)

where c=
√

T
ρs

is the speed of sound in the membrane, T is the tension per unit length in
the membrane, and ρs is the surface density. Note that in the case of a square membrane
Lx = Ly. Also, the indices m= 1,2,3, ... and n= 1,2,3, .... In the case of a free-free
membrane, the expression for the frequencies is the same, except that both m and n start
at 0. In this way, they allow for a rigid body mode.

Table 1-19 shows a comparison of the first three exact and computed eigenvalues of the
square clamped membrane, and Table 1-20 shows the same for the free-free membrane. In
both cases, good agreement is seen. For the free-free case, we do not compare rigid body
modes in the table, but we verified that they came out to be numerically zero. Note that
for both cases, repeated modes are observed.

Since they are coupled tests, they have to be located in the tempo test are under sierra. In
a tempo project checked out under sierra, these tests are located in the following
directories

exact (Hz) computed
13.178 13.230
20.83 21.126
20.83 21.126

Table 1-19. – Eigenvalue convergence for a fixed-fixed, prestressed membrane. The values
given are the natural frequencies, in Hz.
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exact (Hz) computed
9.3169 9.3553
13.178 13.230
18.634 18.941
18.634 18.941

Table 1-20. – Eigenvalue convergence for a free-free, prestressed membrane. The values given
are the natural frequencies, in Hz.

tempo/tempo/rtest/tempo/membrane_free_free
tempo/tempo/rtest/tempo/membrane_free_free_par
tempo/tempo/rtest/tempo/membrane_clamped
tempo/tempo/rtest/tempo/membrane_clamped_par

For in-plane loading, there are 2 verification tests located at

Salinas_test/patchtests/quadt/quadt-patch8_test
Salinas_test/patchtests/quadt/quadt-patch9_test

These tests use in-plane tension, and verify the corresponding deformation of the
membrane.

10.1.9. Verification of Tangent Stiffness Matrix for Sierra Transfers

In this section, we present numerical experiments to confirm the implementation of the
tangent stiffness matrix following a Sierra transfer. We note that the tangent stiffness
matrix is the sum of contributions from internal and external forces. In some texts, the
contributions from the former is referred to as the material/geometric stiffness, while the
former is referred to as the follower stiffness. In the following experiments, all components
of the stiffness matrix are being exercised.

10.1.9.1. A Cantilever Beam Subjected to Large Deflection Via End Load

In this example we consider a cantilever beam that is subjected to a large deflection from a
concentrated end load. We note that in this case, the follower stiffness is zero, since the
load does not depend on the deformation. In this example, Adagio was used to model the
deformation of the beam to the large deflection state, and then the results were passed to
Sierra/SD for modal analysis. Table 1-21 shows the modal frequencies of the beam in the
deformed state, compared with those obtained from Abaqus. Excellent agreement is seen
between the two codes.
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Table 1-21. – Comparison of Sierra/SD and Abaqus modal results for a cantilever beam
subjected to large deflection via point load.

mode Abaqus Sierra/SD % difference
1 56.219 56.236 0.029
2 245.720 246.106 0.154
3 274.010 274.159 0.054
4 358.280 358.316 0.010
5 400.030 399.916 0.028
6 630.540 630.113 0.058
7 649.890 650.113 0.034
8 803.580 803.389 0.024
9 933.100 933.198 0.011
10 1069.80 1070.180 0.036

10.1.9.2. A Cantilever Beam Subjected to Large Deflection Via Pressure Load

In this section, we consider the same cantilever beam as in the previous example, except in
this case the beam is loaded with a distributed pressure load. Since the pressure will follow
the beam’s deformation, we expect a contribution from the follower stiffness in this case.
Table 1-22 shows the comparison of Sierra/SD with Abaqus for the first ten modes of the
pressure-loaded beam. In this case, follower stiffness was not included in the Sierra/SD
results. Some significant differences in the frequencies is observed.

Including the follower stiffness matrix in the Sierra/SD tangent stiffness matrix
calculation (table 1-23) agrees with Abaqus. We note that this example is included in the
Sierra/SD test suite, in the following location

Salinas_test/verification/follower/beam_test
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Table 1-22. – Comparison of Sierra/SD and Abaqus modal results for a cantilever beam
subjected to large deflection via pressure load, with no follower stiffness in the Sierra/SD
tangent matrix.

mode Abaqus Sierra/SD % difference
1 59.015 57.019 3.382
2 60.472 59.858 1.015
3 252.140 230.927 8.413
4 306.200 304.988 0.396
5 322.590 322.217 0.116
6 493.650 492.184 0.297
7 742.200 736.837 0.723
8 770.830 769.096 0.225
9 773.340 771.410 0.250
10 1230.500 1227.530 0.241

Table 1-23. – Comparison of Sierra/SD and Abaqus modal results for a cantilever beam
subjected to large deflection via pressure load, with follower stiffness in the Sierra/SD tangent
matrix.

mode Abaqus Sierra/SD % difference
1 59.015 59.053 0.064
2 60.472 60.470 0.003
3 252.140 252.194 0.021
4 306.200 306.141 0.019
5 322.590 322.651 0.018
6 493.650 493.719 0.013
7 742.200 742.064 0.019
8 770.830 771.112 0.036
9 773.340 773.366 0.003
10 1230.500 1230.25 0.020
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10.1.10. Tied Joint

The tied joint provides a means of connecting two surfaces together while allowing
compliance in the shear behavior. The tied joint allows more flexibility in the specification
of the normal behavior than previous methods that required a fully rigid surface pair to
which a whole joint model (such as a Joint2g) is attached.

A first step in developing the tied joint is replicating the old model behavior. This is done
with the two test cases “2x2tied” and “2x2whole”. The first of these couples a block of
elements using the new methodology. The “2x2whole” example uses the old approach. The
solutions are shown to be identical.

Next, we present transient simulations on a single-leg model. This single leg model was
taken from a more complicated three-leg model. The surfaces that join the two pieces are
modeled with a tied joint, and then we compare those results with a truth model where the
constraints on the interface were implemented manually using the “old" approach of an
RBE3 element.

The first example compares the two approaches in the case when the tied joint model is
modeled with the following block

TIED JOINT
normal definition = slip
side = free

. . .
END

Figures 1-22, 1-23, 1-24 shows the comparison of the X, Y , and Z displacements as a
function of time, for the tied joint and truth models. Excellent agreement is observed.

The second example compares the tied joint and truth model approaches when the tied
joint model is modeled with the following block

TIED JOINT
normal definition = none
side = rigid

. . .
END

Figures 1-25, 1-26, 1-27 shows the comparison of the X, Y , and Z displacements as a
function of time for this case, for the tied joint and truth models. Excellent agreement is
observed.

These tests are located in the verification test suite in the directory

Salinas_rtest/verification/tiedjoint
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Figure 1-22. – X displacement comparison for tied joint versus truth model, tied=slip,
side=free
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Figure 1-23. – Y displacement comparison for tied joint versus truth model, tied=slip,
side=free
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Figure 1-24. – Z displacement comparison for tied joint versus truth model, tied=slip,
side=free
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Figure 1-25. – X displacement comparison for tied joint versus truth model, tied=none,
side=rigid
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Figure 1-26. – Y displacement comparison for tied joint versus truth model, tied=none,
side=rigid
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Figure 1-27. – Z displacement comparison for tied joint versus truth model, tied=none,
side=rigid
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10.1.11. Rrodset

The Rrodset mimics a kevlar type material in that in does not oppose bending in any way,
but it does oppose tension. Fundamentally, it is identical to placing a collection of Rrods
along every edge of a surface. One use is to distribute the shear loading of a tied joint.

To verify that it does not oppose bending, a simple example with 2 connected plates on top
of each other was created. The left side was fixed and the right side had loads applied. The
top plate was pulled while the bottom plate was pushed with equal force, causing a pivot
around the center where the Rrodset can be placed. It was shown that a statics solution
produced the same results whether or not an Rrodset was placed in the middle. The test is
in the fast regression tests suite and is called Rrodset. The test is
Salinas_rtest/test_tool/fast_regression_tests/traction/rrodset.test.

10.1.12. Elements Provided by the Navy

As part of the Navy/CREATE program,39,42 various elements are being introduced to
Sierra/SD. These elements fall into two categories: specialty connector element and
legacy elements pulled from Nastran.

The legacy elements are designed to exactly mimic elements in the Nastran capabilities.
Typically these come from the open literature. Because of the nature of these elements,
verification is naturally a code to code comparison.

Connector elements are all two node elements provided to enhance special Navy needs. For
example, connection of rafts to a hull is best defined using a nonlinear spring dashpot.

The names for all Navy provided elements begins with “N”. For example, the navy beam
element is the “NBeam”.

10.1.12.1. NBeam

The NBeam is both a connector and a legacy element. The Beam2 element has most of
the same functionality, but does not include offset moments (I12) or shear factors. The
static tests included are detailed in Table 1-24. Table 1-25 summarizes some of the results
of the tests. In this section of tests, the Nastran results are treated as the truth model.
Models were translated using “Nasgen”.
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Test Section Description
btest1 rectangular simple test of end loaded cantilever
btest2 rectangular tests rotational invariance
btest3 rectangular tests beam tower
btest4 channel tests I12
btest5 channel rotational invariance of I12
btest6 I-beam end loaded offset
btest7 rectangular one element test
btest8 C offset, rotated C beam

Table 1-24. – Static Tests for NBeam.

Test Maximum Error
btest1 0.02%
btest2 0.01%
btest3 0.05%
btest4 %
btest5 %
btest6 %
btest7 %
btest8 %

Table 1-25. – Results of Static Tests for NBeam. The maximum error in deflection is shown.
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The tests are Salinas_rtest/test_tool/navy/nbeam/btest1.test,...,
Salinas_rtest/test_tool/navy/nbeam/btest8.test.

10.2. Acoustics

In the following examples computational results are compared to analytic solutions.

10.2.1 Eigen Analysis of Wave Tube

10.2.2 Eigen Analysis with Multiple Fluids

10.2.3 Eigen Analysis of Elliptic Tank

10.2.5 Direct Frequency Response

10.2.5 Transient Acoustics with Pressure Release

10.2.6 Nonconforming Acoustic-Acoustic Discretizations

10.2.7 Direct FRF of Tied Structural/Acoustics

10.2.8 Radiation from a uniformly-driven spherical shell

10.2.9 Radiation from a spherical acoustic surface

10.2.10 Scattering from a Flat Plate

10.2.11 Transient Scattering from a Flat Plate

10.2.12 Scattering a Plane Step Wave by a Spherical Shell

10.2.13 Infinite Elements on Ellipsoidal Surfaces

10.2.14 Comparison of spherical and ellipsoidal infinite elements

10.2.15 Absorbing Boundary Conditions for Infinite Elastic Spaces.

10.2.16 Impedance Boundary Conditions

10.2.17 Point Acoustic Source

10.2.18 Moving Point Source

10.2.19 Infinite Elements for Transients

10.2.20 Comparison with Absorbing Boundary Conditions

10.2.21 Acoustic-Structure Directfrf with Viscoelastic Material
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(v0)sin(wt)

L=10

rigid termination

Figure 2-28. – Acoustical waveguide with rigid end cap.

exact (Hz) 80 elements 640 elements 5120 elements 40960 elements
16.6 16.61707 16.60426 16.601065 16.600265
33.2 33.33669 33.23414 33.20853 33.20213
49.8 50.26197 49.9153 49.828799 49.8072

Table 2-26. – Eigenvalue convergence for a piston-driven tube with rigid cap at end. The
values given are the natural frequencies, in Hz.

10.2.1. Eigen Analysis of Wave Tube

The first example consists of a convergence study for the natural frequencies of an
acoustical tube that is driven at the left end and has a rigid cap the right end, as shown in
Fig. 2-28. The eigenvalue problem for this configuration was solved by uniformlly refining
a linear hexahedron mesh.

Table 2-26 shows the numerical results, and demonstrates that the first three natural
frequencies approach the exact values. Table 2-27 demonstrates quadratic convergence for
the natural frequencies, as expected for linear elements.

80 elements 640 elements 5120 elements 40960 elements
.0103 .0257 6.415e-3 1.596e-3
.4117 .10283 .0257 6.416e-3
.9277 .2315 .05783 .01446

Table 2-27. – Relative error in computation of natural frequencies for a piston-driven tube
with rigid cap at end. The reduction by a factor of 4 each time the element size is halved
demonstrates quadratic convergence in natural frequencies.
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10.2.2. Eigen Analysis with Multiple Fluids

A subtlety when working with fluids of spatially varying properties is that the linear wave
equation, which is typically written in the form

1
c2
p̈−∆p= 0 (10.2.1)

is no longer valid. Assumptions were made in the derivation of this equation that restricted
its applicability to a homogeneous fluid. When density and speed of sound change with
position in the fluid, the linear wave equation takes the form41

∇·
(

1
ρ
∇p

)
− p̈

B
= 0 (10.2.2)

where ρ is the fluid density, B is the fluid bulk modulus, and p is the acoustic pressure. If
we assume that the speed of sound is c=

√
B
ρ , then this equation can also be written as

ρ∇·
(

1
ρ
∇p

)
− p̈

c2
= 0 (10.2.3)

Next, we consider how the heterogeneous wave equation is implemented in Sierra/SD. We
note that Sierra/SD uses the form in equation 10.2.3. Since we want to allow the density
to vary with position, we have to first divide by density before multiplying by a test
function and integrating by parts. This is because the factor of ρ in front of the first term
in equation 10.2.3 varies with position, and thus we will not be able to move the ∇ symbol
over to the test function. Thus, we have

∇·
(

1
ρ
∇p

)
− p̈

ρc2
= 0 (10.2.4)

We solve for the time derivative of pressure in Sierra/SD. Thus, we substitute p= φ̇ into
equation 10.2.4, and then integrate in time to obtain

∇·
(

1
ρ
∇φ

)
− φ̈

ρc2
= 0 (10.2.5)

The gradient ∇ can be moved to the test function in equation 10.2.5. Thus, this is the
formulation that is used in Sierra/SD to construct the finite element implementation.

In deriving the analytic solution, we note that the analytical solutions to equations 10.2.2,
10.2.3, 10.2.4, and 10.2.5 will all be the same (assuming we converted the final analytic
solution from equation 10.2.5 into pressure), since these equations differ by a scale factor.
Thus, we use equation 10.2.2 to derive the analytical solution. If we consider the eigenvalue
problem, equation 10.2.2 becomes

∇·
(

1
ρ
∇p

)
+λ

p

B
= 0 (10.2.6)
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5 m 5 m

ρ ρ , c2c1 21 ,

Figure 2-29. – Acoustical waveguide containing two fluids.

This equation will serve as the basis for deriving the analytical solution.

We consider three cases. All three cases involve the geometry shown in Figure 2-29. An
exact solution for the eigenvalues of the geometry in Figure 2-29 can be derived by
considering each fluid separately and applying appropriate compatibility conditions on the
fluid-fluid interface. The equations are as follows

d2p1
dx2 +λ

ρ1
B1
p1 = 0 0≤ x≤ L

2 (10.2.7)

d2p2
dx2 +λ

ρ2
B2
p2 = 0 L

2 ≤ x≤ L (10.2.8)

(10.2.9)

p1 = p2 x= L

2 (10.2.10)
1
ρ1

dp1
dx

= 1
ρ2

dp2
dx

x= L

2 (10.2.11)

(10.2.12)

where B1 and B2 are the bulk moduli of the two fluids. At the endpoints, there are two
options. Either we could have rigid caps ( dpdx = 0), or we could have pressure release
boundary conditions (p= 0). The solution will have the form

p1(x) = C1 cos
(x− L2 )

√
λρ1
B1

+C2 sin
(x− L2 )

√
λρ1
B1

 0≤ x≤ L

2 (10.2.13)

p2(x) = C3 cos
(x− L2 )

√
λρ1
B1

+C4 sin
(x− L2 )

√
λρ1
B1

 L

2 ≤ x≤ L (10.2.14)

(10.2.15)

Inserting these into equations 10.2.8, applying the compatibility conditions 10.2.11, and
using the appropriate boundary conditions at the endpoints, we get two transcendental
equations that give the exact eigenvalues. For the pressure release (Dirichlet) end cap case,
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exact (Hz) computed, h=1 computed, h=0.5
17.7322 17.7505 17.7333
34.1990 34.3411 34.2079
53.1689 53.6642 53.1998

Table 2-28. – Eigenvalue convergence for a two-fluid system with rigid cap at end. The values
given are the natural frequencies, in Hz.

exact (Hz) computed, h=1 computed, h=0.5
17.0965 17.1143 17.0976
35.4575 35.6039 35.4666
51.3135 51.7932 51.3435

Table 2-29. – Two-fluid eigenvalue convergence with pressure release BC.

we obtain

cos
L

2

√
λρ1
B1

sin
L

2

√
λρ2
B2

=−
√
ρ1B1
ρ2B2

cos
L

2

√
λρ2
B2

sin
L

2

√
λρ1
B1

 (10.2.16)

(10.2.17)

For the rigid (Neumann) case, we obtain

sin
L

2

√
λρ1
B1

cos
L

2

√
λρ2
B2

=−
√
ρ1B1
ρ2B2

sin
L

2

√
λρ2
B2

cos
L

2

√
λρ1
B1

 (10.2.18)

(10.2.19)

Equations 10.2.16 and 10.2.18 can be solved to obtain the exact eigenvalues of the system
shown in Figure 2-29.

First, we consider the case ρ1 = 1.293, ρ2 = 2.5860, c1 = 332.0, c2 = 366.0. Table 2-28 shows
the comparison when rigid walls are placed at either end of the tube, and Table 2-29 shows
the comparison with pressure release conditions at both ends. Convergence is seen in all
cases.

The next case is an impedance matching condition, in which ρ1c1 = ρ2c2. In this case, we
take ρ1 = 2ρ2, and c1 = 0.5c2. Thus, the parameters are different but the impedances are

exact (Hz) computed, h=1 computed, h=0.5
11.0667 11.0797 11.0675
22.1333 22.2632 22.1414
33.2000 33.6067 33.2256

Table 2-30. – Eigenvalue convergence for a two-fluid system with rigid cap at end. The values
given are the natural frequencies, in Hz.
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exact (Hz) computed, h=1 computed, h=0.5
33.1974 33.3341 33.206
66.3825 67.4755 66.4506

Table 2-31. – Eigenvalue convergence for an air/water system with rigid cap at ends. The
values given are the natural frequencies, in Hz.

the same. The computed and theoretical results are shown in Table 2-30. Again, good
convergence behavior is observed.

Finally, we consider a case with air and water. The same two-fluid case from the previous
example was used, with rigid boundary conditions. The comparison between theoretical
and computed eigenvalues is shown in Table 2-31.

10.2.3. Eigen Analysis of Elliptic Tank

This section written by Jerry Rouse.
The acoustic modal analysis capability of Sierra/SD was further verified using a three
dimensional elliptic cylindrical tank. The dimensions of the tank are shown in Figure 2-30.
The verification involved two boundary condition configurations. For the first configuration
all boundaries of the enclosure were rigid, which requires the normal component of acoustic
velocity be zero at all points along the boundary. For the second configuration, the end
caps of the tank were rigid, and the sidewall of the tank was a pressure release surface. A
pressure release boundary requires that the acoustic pressure be zero at the boundary.

Figure 2-30. – Dimensions of the elliptic cylindrical tank model. All dimensions in inches.

To determine theoretically the resonance frequencies for the elliptic cylindrical tank, the
linear wave equation was solved in elliptic cylindrical coordinates. The coordinate system
is illustrated in Figure 2-31. This coordinate system is not commonly encountered, and
therefore the solution of the wave equation is described. The linear wave equation in terms
of acoustic pressure is given by

∇2p+ 1
c2
∂2p

∂t2
= 0. (10.2.20)
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Figure 2-31. – The elliptic cylindrical coordinate system.

In elliptic cylindrical coordinates the Laplacian has the form

∇2 = 1
h2(sinh2(u) + sin2(v))

(
∂2p

∂u2 + ∂2p

∂v2

)
+ ∂2p

∂z2 (10.2.21)

where x= hcosh(u)cos(v), y = hsinh(u)sin(v), and h=
√
a2− b2 with a equal to half the

major axis, and b equal to half the minor axis. For the tank dimensions shown in Figure
2-30 a= 97

2 , b= 24, h= 7
√

145
2 , and u0 = sinh−1

(
48

7
√

145

)
. Assuming the acoustic pressure p

to be harmonic in time p= P (u,v,z)eiωt, which upon substitution into Eq. (10.2.20)
produces the Helmholtz equation:

∇2P +k2P = 0, (10.2.22)

where k = ω/c with ω the angular frequency, and c the phase speed. Using separation of
variables P (u,v,z) = U(u)V (v)Z(z). Substituting this expression into the Helmholtz
equation and dividing the result by UV Z gives

1
h2(sinh2(u) + sin2(v))

(
1
U

d2U

du2 + 1
V

d2V

dv2

)
+ 1
Z

d2Z

dz2 +k2 = 0. (10.2.23)

Equating the term containing U and V to the separation constant −m2 and the term
containing Z to −k2

z gives the system dispersion relation

k2 = k2
z +m2. (10.2.24)

The differential equation for Z,
d2Z

dz2 +k2
zZ = 0, (10.2.25)
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has solution
Z(z) = An cos(kzz) +Bn sin(kzz). (10.2.26)

Simplifying the differential equation for U and V gives:[
1
U

d2U

du2 +m2h2 sinh2(u)
]

+
[

1
V

d2V

dv2 +m2h2 sin2(v)
]

= 0. (10.2.27)

The first term is independent of v and the second term is independent of u, therefore each
term must equal a constant. Letting c represent this constant:

1
U

d2U

du2 +m2h2 sinh2(u) = c→ d2U

du2 −
[
c−m2h2 sinh2(u)

]
U = 0 (10.2.28)

1
V

d2V

dv2 +m2h2 sin2(v) =−c→ d2V

dv2 +
[
c+m2h2 sin2(v)

]
V = 0 (10.2.29)

The trigonometric relations

sinh2(u) = 1
2 (cosh(2u)−1) (10.2.30)

sin2(v) = 1
2 (1− cos(2v)) (10.2.31)

are used to Eq. (10.2.28) and Eq. (10.2.29). Substitution of these relations into the
differential equations for U and V gives:

d2U

du2 −
[(
c+ m2h2

2

)
−m

2h2

2 cosh(2u)
]
U = 0 (10.2.32)

d2V

dv2 +
[(
c+ m2h2

2

)
−m

2h2

2 cos(2v)
]
V = 0. (10.2.33)

Letting a≡ c+ m2h2

2 and q ≡ m2h2

4 gives:

d2U

du2 − [a−2q cosh(2u)]U = 0 (10.2.34)

d2V

dv2 + [a−2q cos(2v)]V = 0 (10.2.35)

These are the canonical forms of the differential equations Mathieu obtained solving for the
vibration of an elliptical membrane. The solution to the differential equation for V is given
by

V = Crcer(a,q,v) +Drser(a,q,v), (10.2.36)
where the Mathieu function of the first kind ce has been termed the ’cosine-elliptic’ and
the Mathieu function of the first kind se has been termed the ’sine-elliptic’ by E. T.
Whittaker. The solution to the differential equation for U is

U = ErCer(a,q,u) +FrSer(a,q,u), (10.2.37)
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where Ce and Se are termed the modified Mathieu functions of the first kind. The
following relates the Mathieu functions to the modified Mathieu functions:

Cer(a,q,z) = cer(a,q, iz) (10.2.38)
Ser(a,q,z) =−iser(a,q, iz), (10.2.39)

where i=
√
−1.

For the majority of the physical problems encountered, the solution in v is periodic by
either π or 2π. This periodicity requires that a relationship exist between q and a for each
cer and ser, such that for each non-zero value of q a characteristic value of a exists allowing
for a periodic solution in v. Common among authors today is to denote the characteristic
values for cer by ar, and the characteristic values for ser by br. Methods for determining ar
and br based on q are presented in McLachlan, and Gradshteyn and Ryzhik, with formulas
for r up to 8 given in Abramowitz and Stegun. For the two cases described here,
Mathematica was used to determine the characteristic values.

For both boundary condition configurations considered, the ends of the elliptical tank were
rigid, i.e. acoustic velocity is zero at z = 0 and z = L. The solution obtained above gives
the acoustic pressure in the tank. To apply the zero velocity boundary condition, the
momentum equation was used to relate acoustic pressure to acoustic velocity. The
momentum equation is

ρ0
∂~u

∂t
=−~∇p, (10.2.40)

where ~u= ~euuu+~evuv +~ezuz. The gradient operator in elliptic cylindrical coordinates
takes the form

~∇= 1
h
√

sinh2(u) + sin2(v)

(
~eu

∂

∂u
+~ev

∂

∂v

)
+~ez

∂

∂z
. (10.2.41)

Substitution of the z component of pressure in Eq. (10.2.26) into Eq. (10.2.40), and
applying the uz = 0 boundary condition gives

Z(z) =
∞∑
n=0

An cos(kzz), (10.2.42)

where kz = nπ
L .

The boundary condition configuration having rigid boundaries on all sides of the elliptic
cylindrical tank requires the ~eu acoustic velocity component be 0 at u= u0. Substitution of
Eq. (10.2.37) into Eq. (10.2.40) and applying this boundary condition gives

∞∑
r=1

Er ∂Cer(a,q,u)
∂u

∣∣∣∣∣
u=u0

cer(a,q,v) +Fr
∂Ser(a,q,u)

∂u

∣∣∣∣∣
u=u0

ser(a,q,v)
= 0, (10.2.43)
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where ∂Ce0(a,q,v)
∂u = 0. To satisfy this equation requires each term of the series equal zero,

giving

∂Cer(ar, qr,u)
∂u

∣∣∣∣∣
u=u0

= 0 (10.2.44)

∂Ser(br, qr,u)
∂u

∣∣∣∣∣
u=u0

= 0, (10.2.45)

where the resonance frequencies are determined from the values of q which satisfy Eqs.
(10.2.44) and (10.2.45). The complete set of resonance frequencies for the elliptic cylindrical
tanker having all boundaries rigid is determined from the dispersion relation using the
values of kz in Eq. (10.2.42) and m= 4√qr

h obtained from Eqs. (10.2.44) and (10.2.45)

f = c

2π

√(
nπ

L

)2
+ 4qr
h2 , (10.2.46)

where c= 58724 in/s. Table 2-32 compares the first 24 resonance frequencies between the
exact determination and the Sierra/SD prediction for the case of rigid boundary
conditions.

The boundary condition configuration having pressure release boundaries p= 0 on the
sidewall of the elliptic cylindrical tank (and rigid end caps) requires the acoustic pressure
be zero at p(u0,v,z). Applying this condition to Eq. (10.2.37) gives

∞∑
r=0

[ErCer(a,q,u0)cer(a,q,v) +FrSer(a,q,u0)ser(a,q,v)] = 0. (10.2.47)

As before, to satisfy this condition each term of the series must equal zero, giving

Cer(ar, qr,u0) = 0 (10.2.48)
Ser(br, qr,u0) = 0, (10.2.49)

where the resonance frequencies are obtained from the values of q which satisfy Eqs.
(10.2.48) and (10.2.49). The complete set of resonance frequencies for the elliptic
cylindrical tanker having rigid end caps and pressure release sidewalls is determined from
Eq. (10.2.46) with c= 58724 in/s. Table 2-33 compares the first 24 resonance frequencies
between the exact determination and the Sierra/SD prediction for this boundary
condition configuration. Note that since Ce0 6= 0 the modes cut-on at a higher frequency
compared to the rigid boundaries configuration.
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Exact (Hz) Sierra/SD Percent Error
248.832 248.832 0
361.1 361.1 0
438.532 438.533 2.28e-4
497.664 497.665 2.00e-4
614.868 614.87 3.25e-4
659.152 659.156 6.07e-4
687.876 687.879 4.36e-4
704.556 704.56 5.68e-4
731.499 731.503 5.47e-4
746.497 746.501 5.36e-4
825.925 825.932 8.48e-4
829.247 829.253 7.24e-4
849.025 849.035 1.18e-3
900.831 900.843 1.33e-3
934.566 934.58 1.50e-3
950.48 950.495 1.58e-3
982.512 982.529 1.73e-3
995.329 995.346 1.71e-3
995.861 995.878 1.71e-3
1015.1 1015.12 2.00e-3
1029.16 1029.18 1.94e-3
1058.81 1058.83 1.89e-3
1072.88 1072.91 2.80e-3
1130.71 1130.74 2.65e-3

Table 2-32. – Comparison between the exact analytical resonance frequencies and Sierra/SD
predictions for the elliptic cylindrical tank with rigid boundary boundaries.
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Exact (Hz) Sierra/SD Percent Error
733.807 733.811 5.45e-4
774.849 774.853 5.16e-4
886.647 886.657 1.13e-3
970.884 970.898 1.44e-3
1002.26 1002.28 2.00e-3
1046.77 1046.8 2.86e-3
1224.69 1224.75 4.90e-3
1225.4 1225.45 4.08e-3
1236.59 1236.65 4.85e-3
1250.41 1250.47 4.80e-3
1322.61 1322.68 5.29e-3
1332.8 1332.89 6.75e-3
1355.83 1355.92 6.64e-3
1390.43 1390.53 7.19e-3
1422.68 1422.81 9.14e-3
1434.88 1434.99 7.67e-3
1444.44 1444.57 9.00e-3
1491.07 1491.19 8.05e-3
1511.69 1511.82 8.60e-3
1527.61 1527.8 1.24e-2
1550.06 1550.23 1.10e-2
1569.9 1570.08 1.15e-2
1571.93 1572.09 1.02e-2
1578.15 1578.34 1.20e-2

Table 2-33. – Comparison between the exact analytical resonance frequencies and Sierra/SD
predictions for the elliptic cylindrical tank having rigid end caps and pressure release boundary
conditions on the sidewall.
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10.2.4. Direct Frequency Response

Next direct frequency response is determined for the previous configuration. The boundary
condition is either the rigidly capped configuration of the previous example (a Neumann
boundary condition), or a pressure release condition (a Dirichlet condition). For the two
types of boundary conditions on the right end,41 gives the exact resonance frequencies.
When the tube is rigidly capped, they are

fn = nc

2L n= 0,1,2,3, ... (10.2.50)

and when the tube is open (pressure release) they are

fn =
(n+ 1

2)c
2L n= 0,1,2, ... (10.2.51)

where fn is in Hz, c is the speed of sound, and L is the length of the tube. In this example,
c= 332.0m/s, and L= 10.0m, which results in the frequencies

fn = 0.0,16.6,33.2,49.8, ... (10.2.52)

and
fn = 8.3,24.9,41.5, ... (10.2.53)

Figures 2-32 and 2-33 show the direct frequency response computations, and it is seen that
the peaks in these plots correspond to the natural frequencies given above, for both types
of boundary conditions.

The pressure at the piston, as a function of frequency, is given in32 as

p=−jρcV0cot(kL) (10.2.54)

In Figure 2-34, we plot the computed and exact pressure at the piston, as a function of
frequency. The two curves are virtually identical, except at the point of resonance. At
resonance, however, the computed solutions are known to be inaccurate, and thus some
difference there is expected.

319



0 10 20 30 40 50 60 70 80
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Frequency (Hz)

P
re

s
s
u

re
 a

t 
E

n
d

 o
f 

T
u

b
e

Figure 2-32. – Direct frequency response of an acoustical waveguide with rigid end cap.
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Figure 2-33. – Direct frequency response of an acoustical waveguide with pressure release
end.
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Figure 2-34. – Direct frequency response of an acoustical waveguide with rigid end cap. A
comparison of computed and exact acoustic pressure at the piston.
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10.2.5. Transient Acoustics with Pressure Release

This example was similar to the previous case, except that the far end of the tube was
assigned a pressure release boundary condition. Also, in this case the velocity of the piston
was assigned as

v(0, t) = vp(t) = sin(ωt) (10.2.55)
where ω = 60π. The exact solution is given in41 as

p(0, t) = ρc

[
vp(t) + 2

∞∑
n=1

(−1)nvp(t−
2nL
c

)
]
. (10.2.56)

The terms in the summation become nonzero if their arguments are positive. This behavior
was implemented in MATLAB using Heaviside functions, and the results were compared
with Sierra/SD. Figure 2-35 shows the results. Excellent agreement between exact and
computed solutions is observed.

323



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−3

−2

−1

0

1

2

3
x 106

Time

P
re

ss
u

re
 a

t 
P

is
to

n

Salinas
exact solution

Figure 2-35. – Transient simulation of an acoustical waveguide with pressure release end
condition.
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10.2.6. Nonconforming Acoustic-Acoustic Discretizations

In this example, we test our simple method for coupling two acoustic domains that have
mismatched meshes on the interface between them. In this case we chose an acoustic
eigenvalue analysis, since the resulting eigen frequencies can be conveniently used in a
convergence analysis. A three-dimensional example consisting of two adjacent acoustic
domains with different discretization densities was investigated, as shown in Fig. (2-36).
The nearly cubic volume having dimensions Lx = 5 m., Ly = 10

√
2/3 m., and

Lz = 15/(2
√

2) m. was used to avoid repeated eigenvalues. The model was divided in half
by an xy-plane located at Lz/2, as shown in Fig. (2-36), and the two halves were connected
together using the inconsistent tied contact approach described in the previous section.
This configuration was chosen to investigate the convergence of inconsistent tied contact
for mode shapes having pressure variations in the plane of the interface. The fluid in both
regions had sound speed c= 343 m/s and fluid density ρ= 1.20 kg/m3. The boundary
condition is a rigid wall (Neumann). The equations in subsubsection Coupled Equations
and Their Discretizations, subsection Coupled Structural Acoustics, section Acoustics and
Structural Acoustics47 were solved with zero forcing on the right hand side, thus
corresponding to the acoustic eigenvalue problem with mismatched meshes on subdomains.

Figure 2-36. – Three-dimensional model.
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Four element size ratios at the interface were investigated: 2:3, 2:4, 3:4, and 4:5. Problems
with convergence can arise in inconsistent tied contact when the face-surface is more finely
discretized than the node-surface, see for example.17,18 In all cases, the face-surface was
chosen as the side with the coarser discretization. The convergence study consisted of
uniformly refining the meshes several times, while keeping these discretization ratios (and
hence element size ratios) at the nonconforming interface fixed. Only linear hexahedrons
were considered. The eigenvalues of the first thirty modes in the model were compared to
the theoretical eigenvalues given by

f = c

2

√√√√N2
x

L2
x

+
N2
y

L2
y

+ N2
z

L2
z
, (10.2.57)

where Nx, Ny, and Nz are non-negative integers. For comparison of the convergence rates,
the eigenvalues of a conforming model were also obtained. In Figs. (2-37)-(2-39) the
convergence plot for the four discretization ratios are shown along with the conforming case.
The horizontal axis is the common logarithm of the largest dimension of the face-surface
side elements. The eigenvalue error is given by 100(λh−λ)/λ. Figures (2-37), (2-38), and
(2-39) illustrate convergence for an axial, tangential and oblique mode, respectively. For
the conforming case, theory predicts that the eigenvalues will converge at a rate of 2.0 for
linear elements. For comparison purposes, an additional line with a slope of 2.0 is added to
the three previous figures, using the triangle symbol. For all of the cases presented, the
convergence rates for the nonconforming meshes are close to those of the conforming
meshes. The exceptional the 2:3 case, in which the nonconforming meshes convergence rate
is greater than 2, is believed to be an abnormality. The theoretical convergence rate of 2.0
is based on conforming theory, and thus does not apply in the nonconforming case.
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Figure 2-37. – Convergence plot for an axial mode (Nx = 1,Ny =Nz = 0).
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Figure 2-38. – Convergence plot for a tangential mode (Nx = 1,Ny = 0,Nz = 1).
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Figure 2-39. – Convergence plot for an oblique mode (Nx =Ny =Nz = 1).
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10.2.7. Direct Frequency Response of Structural Acoustics with Tied Surfaces

This section written by Jerry Rouse.
In this case, the acoustic pressure and structural particle displacement of a one dimensional
structural acoustic model is compared with theory. The model consists of a waveguide of
square cross-section, 0.25 meters on a side, having an overall length of 20 meters. The
length is equally divided between fluid and structure, each of length 10 meters. To the free
end of the fluid is applied a harmonic particle velocity (forcing), and the free end of the
structure is fixed. Inconsistent tied contact is used at the solid-fluid interface, where the
fluid is treated as the independent surface. The model was investigated using the direct
frequency response solution in Sierra/SD running in serial. The Sierra/SD prediction
was verified at the tied interface between the fluid and solid regions.

The theoretical response of the system was obtained by solving the wave equation for
longitudinal wave propagation in the solid and acoustic wave propagation in the fluid. The
two solutions were coupled at the solid-fluid interface through the continuity of elastic
stress and pressure, and the continuity of structural particle displacement and acoustic
particle displacement. The longitudinal wave equation for the solid is given by

∂2u

∂x2 −
1
c2s

∂2u

∂t2
= 0, (10.2.58)

where u is the particle displacement, the phase velocity cs =
√
E
ρs
, E is Young’s modulus,

and ρs is the material density. The coordinate system for the solid was aligned such that
the xs-axis was the center of the waveguide, with xs = 0 at the fixed end of the solid and
xs =−Ls at the solid-fluid interface. The fixed end boundary condition for the solid is
expressed u(xs = 0, t) = 0. Application of this boundary condition to the general solution of
Eq. (10.2.58), expressed in terms of left and right traveling waves, gives

u= Asin(ksxs)eiωt, (10.2.59)

where the wave number ks = ω/cs, i=
√
−1 and A is a frequency dependent coefficient

which shall be determined from the continuity conditions at the solid-fluid interface.

The acoustic wave equation is given by

∂2p

∂x2 −
1
c2
∂2p

∂t2
= 0, (10.2.60)

where p is the acoustic pressure, the phase velocity c=
√
γP0
ρ0

, where P0 and ρ0 are the
undisturbed atmospheric pressure and density, respectively, and γ is the ratio of specific
heats, here equal to 1.4. The coordinate system for the fluid was aligned such that the
xa-axis was the center of the waveguide, with xf = 0 at the forcing end of the fluid and
xf = Lf at the solid-fluid interface. The forcing boundary condition at the free end of the
fluid in terms of the applied particle velocity V0 is expressed

V0 = i

ωρ0

∂p

∂x

∣∣∣∣∣
xf =0

. (10.2.61)
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Application of this boundary condition to the general solution of Eq. (10.2.60) gives

p=
[
V0ωρ0
kf

e−ikfxf +B cos(kf xf )
]
eiωt, (10.2.62)

where the wave number kf = ω/c and B is a frequency dependent coefficient which shall be
determined from the continuity conditions at the solid-fluid interface.

The coupling conditions at the solid-fluid interface ensure no net pressure and no net
velocity across the interface. The continuity condition on pressure is given by

E
∂u

∂x

∣∣∣∣∣
xs=−Ls

=−p
∣∣∣∣∣
xf =Lf

, (10.2.63)

where tensile stress in the solid is considered positive, and the continuity condition on
velocity is given by

∂u

∂t

∣∣∣∣∣
xs=−Ls

= i

ωρ0

∂p

∂x

∣∣∣∣∣
xf =Lf

. (10.2.64)

Substitution of Eqs. (10.2.59) and (10.2.62) into Eqs. (10.2.63) and (10.2.64), and solving
for the frequency dependent coefficients A and B finds

A= iV0ωρ0
ω2ρ0 sin(ksLs)cos(kfLf ) +Ekskf cos(ksLs)sin(kfLf ) , (10.2.65)

and

B =
−V0cρ0 sin(kfLf )e−ikfLf

[
ω2ρ0 + iEkskf cot(ksLs)

]
ω2ρ0 cot(kfLf ) +Ekskf cot(ksLs)

. (10.2.66)

Given these coefficients, the structural particle displacement is

u= iV0ωρ0 sin(ksxs)eiωt
ω2ρ0 sin(ksLs)cos(kfLf ) +Ekskf cos(ksLs)sin(kfLf ) , (10.2.67)

and the acoustic pressure given by

p=
iV0cρ0 sin(kfLf )eiωt

[
ω2ρ0 sin(kf (Lf −xf ))−Ekskf cot(ksLs)cos(kf (Lf −xf ))

]
ω2ρ0 cot(kfLf ) +Ekskf cot(ksLs)

.

(10.2.68)

The Sierra/SD verification was performed with the following properties for the system.
The fluid was modeled as air: c= 343 m/s and ρ0 = 1.2 kg/m3. The solid was modeled as
steel: E = 200 GPa., ρs = 7850 kg/m3, and Poisson’s ratio ν = 0. The value of Poisson’s
ratio was intentional. In Figure 2-40 the Sierra/SD prediction of structural particle
displacement at the solid-fluid interface is compared to the theoretical result given by Eq.
(10.2.67) evaluated at xs =−Ls. The Sierra/SD prediction was obtained over the
frequency range 1 to 60 Hz. using a frequency step of 1 Hz. In Figure 2-41 the Sierra/SD
prediction of acoustic pressure at the solid-fluid interface is compared to the theoretical
result given by Eq. (10.2.68) evaluated at xf = Lf . In both figures the Sierra/SD
prediction shows excellent agreement with the theoretical result.
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Figure 2-40. – Comparison of the Sierra/SD prediction of structural particle displacement
at the solid-fluid interface with the theoretical result.

332



0 10 20 30 40 50 60

−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

2000

4000

6000

A
co

us
tic

 P
re

ss
ur

e,
 P

a.

Frequency, Hz.

 

 

Theoretical
Salinas

Figure 2-41. – Comparison of the Sierra/SD prediction of acoustic pressure at the solid-fluid
interface with the theoretical result.

10.2.8. Radiation from a uniformly-driven spherical shell

In this example, we considered a spherical shell that was surrounded by an infinite acoustic
fluid. The shell was composed of tria3 elements, and the acoustic fluid was modeled with
tet4 elements. On the wet interface, the shell/acoustic meshes were conforming. The radius
of the spherical shell was 1.0(m), and the radius of the truncated acoustic domain was
5.0(m). An absorbing boundary condition was applied to the exterior surface of the
truncated acoustic domain, to simulate the infinite fluid.

A uniform, periodic pressure was applied to the inside surface of the spherical shell, and
the resulting shell displacements and acoustic pressures were measured in the frequency
domain. The analytic solution to this problem was derived in.20 First we define some
physical quantities. The impedance of the shell structure is given as

Zs = i

ω
(ω2ms−ks) (10.2.69)

where ms = 4πa2h, ks = 8πEh
1−ν , h is the thickness of the shell, a is the radius of the shell, E

is Young’s modulus, and ν is Poisson’s ratio. The impedance of the infinite fluid (as seen
by the spherical surface that defines the shell) is

Zf = iωρ4πa3

1 + ika
(10.2.70)
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where k = ω
c is the wavenumber, ρ is the fluid density.

With the above quantities defined, the exact expression for the complex-valued radial
displacement is

d= 4πa2p0
iω(Zs+Zf

) (10.2.71)

Figure 2-42 shows the comparison of the numerical results and analytic solution, for the
real and imaginary components of radial displacement of the shell. The results show good
agreement.
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Figure 2-42. – Direct frequency response of a spherical shell immersed in an infinite fluid.
The real and imaginary parts of the analytical solution are compared against Sierra/SD. The
results show good agreement.
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10.2.9. Radiation from a uniformly driven spherical acoustic surface

This example is similar to the previous example, except that the shell is removed, and we
instead apply a uniform, periodic particle velocity to the inside surface of the spherical
acoustic space. As in the previous example, an absorbing boundary condition is applied to
the exterior surface of the truncated acoustic space, to simulate the infinite fluid. Once
again, the radius of the inner spherical void is 1.0(m).

In this case, the analytic solution for the acoustic pressure on the driven surface is given
by41

P = iv0ωρa2

r(1 + ika)e
ik(r−a) (10.2.72)

where v0 is the amplitude of the imposed particle velocity on the driven surface.

Figure 2-43 shows the comparison of the numerical results and analytic solution, for the real
and imaginary components of the acoustic pressure. The results show good agreement.
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Figure 2-43. – Direct frequency response of a spherical shell immersed in an infinite fluid.
The real and imaginary parts of the analytical solution are compared against Sierra/SD. The
results show good agreement.
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10.2.10. Scattering from a Flat Plate

This example involves scattering from a flat plate. The geometry consists of a uniform,
acoustic tube of length 10(m), which is terminates by a flat plate. The acoustic tube is
discretized with 3D acoustic elements, and the flat plate is discretized with quad shell
elements. Plane waves are initiated inside of the acoustic tube, which then scatter off of
the flat plate.

There is no analytical solution to this problem. However, we can still verify that the
resonances of both the acoustic tube and the plate are excited at the correct excitation
frequencies. This checks that the structural acoustic coupling between the plate and
acoustic fluid is working correctly.

In the first example, we consider the fluid to be air, and the plate to be composed of steel,
with a thickness of 0.1(m). In that case, the plate is a rigid surface to the fluid, and hence
the resonance frequencies of the tube should match exactly that of a tube with rigid end
caps. Figure 2-44 shows the acoustic pressure in the tube as a function of frequency. It is
seen that the first resonance is predicted correctly, which according to theory should be
16.6Hz.

In the second example, we consider a light fluid that has a high speed of sound (ρ= 1.0,
c= 1500.0). We also consider a thin plate, with thickness of 0.001(m). This lowers the
natural frequencies of the plate well below those of the previous example. In this case, the
fluid imparts no added mass effect onto the plate, since its density is low. Also, due to the
high speed of sound, the natural frequencies of the tube are much higher than those of the
plate. Consequently, the resonances of the plate should be the first observed resonances of
the overall system. The first two exact resonances of the plate are at 3.5Hz, and 4.7Hz.
Figure 2-45 shows the displacement of a corner point on the plate as a function frequency.
The numerical results correctly predict the first two resonances of the plate.
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Figure 2-44. – Acoustic scattering from a plate. In the case when the plate is rigid compared
with the fluid, the first resonance of the fluid tube, 16.6Hz, is reproduced well.
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Figure 2-45. – Acoustic scattering from a plate. In the case when the fluid is given a low
density and high speed of sound, the first resonance of the plate appears before the acoustic
tube resonances. In that case, the first two resonances of the plate, 3.5Hz and 4.7Hz, are
reproduced well.
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10.2.11. Transient Scattering from a Flat Plate

In this example, we evaluate transient scattering from a flat plate. The test consists of an
acoustic domain that is a perfect cube of dimensions 1×1×1, which is attached with tied
surfaces to a flat plate of dimension 1×1. The acoustic domain is given properties of air,
and the flat plate is made of steel. Given the material property mismatch between the
structural and acoustic domains, the coupling between these domains is negligible. This
allows us to test the effect that the scattering waves have on the acoustic and structural
components separately, without having to consider coupling.

The structural acoustic system is subjected a harmonic plane wave with frequency of 10Hz.
The wet surface is located at the origin, and thus the incident pressure at the wet surface is
given by

p(t) = cos(ωt) (10.2.73)
The corresponding velocity input on the acoustic domain is given by

v(t) = 1
ρc

cos(ωt) (10.2.74)

An absorbing boundary condition is placed at the far-end of the acoustic domain, and thus
the acoustic response should resemble that of an infinite tube. In that case, the acoustic
pressure response should be equal to the input velocity times ρc. Figure 2-46 shows a
comparison of the analytical and computed acoustic pressure on the wet surface. Excellent
agreement is observed.

In the case of the structural response, we can use a simple force balance to determine the
acceleration response of the plate, since we are ignoring coupling between the structural
and acoustic components. In this case, the total pressure on the plate is equal to the sum
of the incident and scattered pressures. The area of the plate is 1.0, and thus the force is
equal to the pressure. Thus, we can compute the acceleration of the plate as follows

a= F

m
= 2cos(ωt)

770 (10.2.75)

Figure 2-47 shows the comparison of the analytical and computed acceleration of the
plate.

This test case can be found at

Salinas_rtest/verification/acoustic/hexplane.xml
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Figure 2-46. – Comparison of Sierra/SD result with analytical solution of the scattered
acoustic pressure for a simple 1D problem.
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Figure 2-47. – Comparison of Sierra/SD result with analytical solution of the acceleration
for a simple 1D scattering problem.
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10.2.12. Transient Scattering of a Plane Step Wave from a Spherical Shell

Acoustic analysis often includes the concepts of a “scattering” solution. By this, we mean
an analysis where it is easy to specify the incident wave at all points in space, and we solve
for the reflected wave. Such scattering solutions are useful in a variety of contexts. For
example, a submarine in the ocean may be struck by an incident “ping” from a neighboring
ship. Such a ping is nearly a plane wave, and calculation of the outbound wave is the item
of interest. Because the incident wave is known, we do not need to model the vast region of
space between the incident source and the scattering object. This reduces the cost of the
computation.

The theory manual details the formulation. Here we address verification of a simple sphere
in an infinite medium using a problem from a LS-Dyna Verification Manual that is no
longer available. The model includes a steel sphere of radius 10 inches and thickness
0.1 inches immersed in sea water. The parameters of the problem are given in Table 2-34.

parameter value
shell radius 10.0 in

shell thickness 0.1 in
shell modulus 0.29e+ 08 lb

in2

shell density 0.732e−03 lb−sec
2

in4

water density 0.96e−04 lb−sec
in4

water speed of sound 60000 in
sec

step wave amplitude 100 lb
in2

hit point z =−10in

Table 2-34. – Parameters from Verification Model of Spherical Shell Subjected to Plane Step
Wave

The solution is shown in Figure 2-48. There are discrepancies. The FEM solution excites
higher order modes not seen in the analytic solution. There may be reflections from the
boundaries of the fluid mesh. The verification example (found in
verification/acoustic/scattering), is “quarter-sphere”.

We note that the quarter-sphere model described utilized the standard absorbing boundary
condition for the exterior surface of the acoustic mesh. Identical results are obtained using
infinite elements. The location of the test is

Salinas_rtest/verification/acoustic/scattering/quarter_sphereIE.inp
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Figure 2-48. – Sphere Impacted by Step Wave. The incoming step wave arrives from the −Z
direction. Dashed lines are the analytic solution.
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10.2.13. Infinite Elements on an Ellipsoidal Surface - Transient Scattering

It is often advantageous to mesh the area about a structure with an ellipsoidal (or prolate
spheroid) mesh, and use infinite elements on the ellipsoidal boundary to model the effects
of an infinite fluid. This is the case if a submarine is modeled. A spherical mesh about this
long cylindrical structure is larger than an ellipsoidal mesh. To verify the behavior of the
infinite elements on this boundary, we use the spherical structure of section 10.2.12 and
compare with the closed form solutions obtained by Huang,.30 This problem came to our
attention through an LS-Dyna Verification Manual that is no longer available.

The standard formulation of infinite elements is built on radial basis functions. In the case
of a sphere, these basis functions can be defined using a common source location at the
origin of the sphere. When the infinite element surface is an ellipsoid, a common source
location yields basis functions that are not orthogonal to the infinite element surface,
resulting in poor performance and spurious reflections. To alleviate this, the basis functions
for an ellipsoidal can be defined using a variable source location, such that each element
(each node on the surface) has its own source point for expansions of the basis functions.
This ensures that the basis is orthogonal to the ellipsoidal surface.

To evaluate the reflection of the infinite elements, several meshes were composed. Details
of the meshes are shown in Table 2-35. All meshes are quarter symmetry models. A
representative mesh is shown in Figure 2-49. Results from the analyses are shown in
Figures 2-50 through 2-52.

10.2.13.0.1. High Frequencies. There are two reasons why it is necessary to eliminate
high frequencies from the comparison. First, the analytic solution is a series summation
(see equation 1730). It contains the lowest frequency modes in the solution, and filters the
higher frequency solution. Second, high frequencies are introduced through of the mesh
discretization. We observe that while the frequency of these spurious solutions increases
with mesh density, the amplitude typically decreases. It is impractical to refine the mesh
sufficiently to eliminate all such mesh dependent responses.

Name Eccentricity Acoustic Elements
sphere-m1 1:1 672
sphere-m2 1:1 5088
sphere-m3 1:1 40128
sphere-m4 1:1 323856
ellipse-m1 3:1 672
ellipse-m2 3:1 5088
ellipse-m3 3:1 40128
ellipse-m4 3:1 323856

Table 2-35. – Mesh Parameters of Infinite Elements on Ellipsoidal Surfaces.
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Figure 2-49. – Representative Mesh of Quarter Symmetry Sphere in Ellipse.

The higher frequencies could be eliminated in a variety of ways. The input loading can be
filtered to “smooth” the step function and eliminate high frequency excitation. The
integrator could introduce artificial numerical damping which removes high frequency
energy during the computation. Or, the signal could be post-processed by filtering. We use
post-process filtering in this case because it is straightforward to implement and does not
introduce unknown phase shifts. We use the MATLAB “filtfilt” function on a Butterworth
low pass filter of order 6. The cutoff frequency is 10 kHz.

The radial response of an unfiltered and filtered responses is shown in Figure 2-53. Even
with increasing mesh density, high frequency oscillations continue to dominate the
response.

10.2.13.0.2. Dependence on Loading Decay. The analytic solution loadings include an
exponential decay following a step wave response.1 The previous analysis was analysis
performed with no decay. Figures 2-54 and 2-55 show the response for various decay
factors as observed on the leading and trailing edges of the sphere. The analytical solutions
for this case were taken from Sprague and Geers.52

1The pressure can be written as,
P =H(t− τ)exp(−β[t− τ ])

where H() is the Heavyside step function, t is the measurement time, τ represents the travel time from
the source to measurement location and β is the decay constant.
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Figure 2-50. – Filtered Front Node Response and mesh convergence for both a spherical and
ellipsoidal acoustic region.
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Figure 2-51. – Filtered Side Node Response and mesh convergence for both a spherical and
ellipsoidal acoustic region.
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Figure 2-52. – Filtered Back Node Response and mesh convergence for both a spherical and
ellipsoidal acoustic region.

350



0 1 2 3 4 5 6
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time

V
el

oc
ity

Sphere in Ellipse, Side Node: Radial velocity for step wave excited sphere, Undamped

 

 

Analytical Solution

Mesh 1 (coarsest)

Mesh 2

Mesh 3

Mesh 4 (finest)

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time

V
el

oc
ity

 

 

Analytical Solution

Undamped

Filted

Figure 2-53. – Sphere in Ellipsoid. Unfiltered response at 90o location.
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Figure 2-54. – Comparison of Sierra/SD result with analytical solution of the scattered
acoustic pressure on the leading surface of a sphere. Mesh=m4.
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The purposes of these plots is to determine the dependence of the solution on the decay
parameter “beta”. This dependence is in general well represented, but the phase error is
significant. Figure 2-56 compares numeric solution with the analytic solution of Geers and
the results published in the USA verification manual for the case of β = 0. The numeric
results are much closer to the USA prediction. There are some issues here that have not
been identified. The two analytical solutions should be identical, but differ. We can guess
that a different number of terms were retained in the series expansion. The USA solution is
available for β = 0 only.
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Figure 2-56. – Comparison of Sierra/SD numerical result with two differing analytic solu-
tions. Mesh=m4. Prediction on the back surface

10.2.14. A comparison of spherical and ellipsoidal infinite elements on a model
problem

In this section we examine the results of a simple test problem designed to compare the
results of infinite elements on spherical and ellipsoidal meshes. For the purposes of these
comparisons, we will use the results on the spherical meshes as the truth model, and the
goal will be to show that for sufficiently fine acoustic meshes and sufficiently high infinite
element order, the results on the spherical and ellipsoidal meshes are the same.

Figures 2-57 and 2-58 show the geometry of the test case. In the case of the ellipse, two
different aspect ratios were studied, 10 : 1 and 3 : 1. Figure 2-58 shows the aspect ratio of
10 : 1. An acoustic mesh is defined on a spherical (Figure 2-57) and ellipsoidal (Figure
2-58) geometry. In both cases a cylindrical hole is cut out from the mesh, and an applied
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acoustic velocity is applied to the outermost surface of the cutout. The applied velocity is
the same on the entire surface, and consists of the hat function shown in Figure 2-59.

Figure 2-60 shows the results of acoustic pressure along a 45o angle relative to the major
axis, for a spherical mesh and an ellipsoidal mesh of aspect ratio 3 : 1. For the ellipsoidal
meshes, results are shown using two different source location algorithms of the plane-line
intersect method, and the constant offset method. The results from a previous Sierra/SD
release that involved a fixed source location is also shown. Both the plane-line intersect
and constant offset ellipse algorithms replicate the results produced on the sphere, but the
fixed source location algorithm from the previous Sierra/SD release shows significant
differences. This is expected, since that algorithm required a zero mass matrix even when
the mass matrix was non-zero, as in this case. Figure 2-61 shows the same results, but for
an ellipsoidal mesh of aspect ratio 10 : 1. Similarly, the plane-line intersect and constant
offset source location algorithms for the ellipsoidal meshes yield identical results to the
sphere.

Figure 2-62 shows the results of acoustic pressure along the major axis, for a spherical
mesh and an ellipsoidal mesh of aspect ratio 3 : 1. For the ellipsoidal meshes, results are
shown using the two different source location algorithms of the plane-line intersect method,
and the constant offset method. The results involving a fixed source location that was
implemented in a previous Sierra/SD release are also shown. Both the plane-line intersect
and constant offset ellipse algorithms replicate the results produced on the sphere, but the
fixed source location algorithm shows significant differences. This is expected, since that
algorithm required a zero mass matrix even when the mass matrix was non-zero, as in this
case. Figure 2-63 shows the same results, but for an ellipsoidal mesh of aspect ratio 10 : 1.
In this case, the initial behavior of the results on ellipsoidal meshes are identical to that of
the sphere, but later times show some small discrepancies. Further increases in infinite
element order did not resolve these discrepancies. Additional acoustic mesh refinements are
necessary for the results to converge.
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Figure 2-57. – Spherical acoustic mesh for cylindrical cutout problem.

Figure 2-58. – Ellipsoidal mesh with aspect ratio 10:1 for cylindrical cutout problem.
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Figure 2-59. – Amplitude function used to scale input acoustic velocity for cylindrical cutout
problem.
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Figure 2-60. – A comparison of results along a 45o angle from cylindrical cutout problem on
spherical and ellipsoidal meshes of aspect ratios 3:1
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Figure 2-61. – A comparison of results along a 45o angle from cylindrical cutout problem on
spherical and ellipsoidal meshes of aspect ratios 10:1

358



0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
−4

−3

−2

−1

0

1

2
x 105 Major Axis, Aspect Ratio 3

Time

A
p

re
ss

u
re

 

 
Sphere Salinas 4.20.4
Ellipse 3 Salinas 4.20.4
Ellipse 3 Plane Line Intersect
Ellipse 3 Constant Offset

Figure 2-62. – A comparison of results along the major axis from cylindrical cutout problem
on spherical and ellipsoidal meshes of aspect ratios 3:1
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Figure 2-63. – A comparison of results along the major axis from cylindrical cutout problem
on spherical and ellipsoidal meshes of aspect ratios 10:1
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10.2.15. Absorbing Boundary Conditions for Infinite Elastic Spaces.

In this example we consider a perfect cube, of dimensions 1×1×1, which is subjected to a
pressure wave and a shear wave along one of its faces. The opposing face is designated to
be an absorbing boundary condition. In both cases, we apply the loads in the frequency
domain, since we have analytical solutions for the corresponding particle displacements.
We note that for the shear wave loading, we needed to constrain the motion of the space to
be zero in the orthogonal directions in order to match the analytical solution. This is
expected, since this solution assumes no rigid body rotation of the space. We note that
these tests can be found at

Salinas_test/verification/acoustic/infinite_elastic_space_frf_test
Salinas_test/verification/acoustic/infinite_elastic_space_frf2_test

In the case of a pressure wave, the amplitude of the particle displacement at the forcing
boundary is given by

u= P

ωρc
(10.2.76)

where P is the pressure wave amplitude, ω is the circular frequency, ρ is the material
density, and c is the dilatational wave speed in the material. The solution is for the infinite
space. It will test the accuracy of the absorbing boundary condition for pressure waves.
Figure 2-64 shows the comparison of this exact solution with the displacements obtained
by Sierra/SD. The results are indistinguishable.

In the case of a shear wave, the amplitude of the particle displacement at the forcing
boundary is given by

u= T

ωρcs
(10.2.77)

where T is the traction wave amplitude, ω is the circular frequency, ρ is the material
density, and cs is the shear wave speed in the material. The solution is for the infinite
space. It hence will test the accuracy of the absorbing boundary condition for shear waves.
Figure 2-65 shows the comparison of this exact solution with the displacements obtained
by Sierra/SD. The results are indistinguishable.

We also test the verification of the far-field evaluation. In the frequency domain, the exact
solution for an outwardly propagating spherical wave is given by

P = A

r
e−ikr (10.2.78)

If we prescribe the value P = Pa at some value of a, as in the time-domain example
described above, then we have

Pa = A

a
e−ika (10.2.79)

This implies that A= Paae
ika, and thus

P = Pa
a

r
e−ik(r−a) (10.2.80)
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Figure 2-64. – This plot shows the comparison of Sierra/SD prediction with the analytical
solution of particle displacement at the forcing boundary, for a perfect cube subjected to a
pressure load at one end and an absorbing boundary condition at the opposite end.
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Figure 2-65. – This plot shows the comparison of Sierra/SD prediction with the analytical
solution of particle displacement at the forcing boundary, for a perfect cube subjected to a
shear load at one end and an absorbing boundary condition at the opposite end.
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Equation 10.2.80 was used to compute the far-field solution to the frequency-domain
version of the

10.2.16. Impedance Boundary Conditions

A simple impedance boundary condition has been implemented in Sierra/SD. This
boundary condition relates the acoustic pressure and particle velocity on the surface. In
the implementation, it results in a damping matrix with a multiplicative coefficient that
depends on the impedance. For more details, we refer to the theory notes.

We consider an air-filled acoustic waveguide of length L. At the left end, we apply a
prescribed particle velocity V , and at the right end, we apply an impedance boundary
condition with an impedance of Z. The exact solution to this problem is given by Kinsler32

as

p= V ρc∗
Z
ρc + jtan(kL)

1 + j Zρctan(kL)
(10.2.81)

where p is the acoustic pressure at the left end, ρ is the density, c is the speed of sound,
k = ω

c is the wave number, and j is the imaginary number.

We consider an example with the following properties: L= 5, c= 332.0, ρ= 1.293, and
Z = 0.5ρc. Given these parameters, we ran a directfrf analysis in Sierra/SD and
compared in Figure 2-66 the Sierra/SD results against the analytic solution in equation
10.2.81. An excellent agreement is observed.

This example is located in the test suite at

Salina_rtest/verification/acoustic/waveguide_impedance.inp
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Figure 2-66. – This plot shows the comparison of Sierra/SD prediction with the analyt-
ical solution of acoustic pressure, for a piston-driven acoustic wave tube with an impedance
boundary condition at the opposite end.

365



10.2.17. Point Acoustic Source

See Section 2.14.

10.2.18. Moving Point Source

In this section, we study a similar example as the previous one, except that the point
source has a translation superimposed on the sinusoidal volume change. For simplicity, we
assume that the point source is moving in a straight line with velocity V . The exact
solution for this problem is given as38

p(R,t) = ρ

4π
Q̇(t− R

c )
R(1−M cosθ)2H(t− R

c
) +

ρQ(t− R
c )

4π
(cosθ−M)V

R2(1−M cosθ)2H(t− R
c

) (10.2.82)

where Q is the same as the preceding example, M = V
c is the Mach number of the point

source, R is a vector going from the field point of interest to the source location, and θ is
the angle between the direction of motion of the source and the vector R.

We note that in the case when the velocity V = 0 of the source is zero, we have that
M = 0. In that case, the second term in equation 10.2.82 is zero and equation 10.2.82
reduces to equation 2.14.1. Also, we note that equation 10.2.82 is derived by assuming that
the point source is moving subsonically, i.e. that the Mach number M < 1. In the case
M > 1, a similar equation can be derived (see,38 but we will not consider it here.

Figure 2-67 shows the geometry for the test problem in this case. It consists of a single hex
element that moves in the x direction, along the center line of an acoustic half-space. The
second time derivative of the volume of this hex element is mapped to the acoustic space,
creating an image of a moving source. The hex element moves with a constant velocity. Its
volume is given by the equation

Q(t) = 8
3
√

3
(r0 + ∆sin(ωt))3 (10.2.83)

where r0 = 0.01∗
√

(3), ∆ = 0.01, and ω = 100×2π. Two subsequent time derivatives of
this function give the necessary expressions for Q̇ and Q̈ for the time derivatives of volume
that are mapped to the acoustic space. Given these, equation 10.2.82 can be used to
compute the exact solution.

Figure 2-68 shows the comparison of computed and analytical solutions for the case when
the hex is given a velocity of 20ms , and the measurement point is at the bottom of the
acoustic hemisphere. Generally the agreement is good, with both solutions showing
increasing amplitude as the hex approaches the measurement point (at t= 0.025), and
decreasing amplitude as the hex passes and travels away from the measurement point
(0.025< t < 0.05). Better agreement could likely be obtained by refining both the acoustic
and hex meshes, but that is not pursued here. We note that this example can be found in
the performance test suite (it was too large to be placed in the verification suite) at

Salinas_rtest/performance/moving_source.inp
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Figure 2-67. – Geometry for verification example of moving point acoustic source in an
infinite medium.
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Figure 2-68. – Comparison of computed and analytic solutions for verification example of
moving point acoustic source in an infinite medium.
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10.2.19. Infinite Elements for Transients

The infinite element implementation was verified on a single element transient example.
This element was a hex element that was aligned with a spherical surface of radius
a= 100m. A surface acceleration excitation of sin(2πt) was applied to the free face of the
hex element, and a third order infinite element was defined on the opposite face. Since this
element was aligned with a spherical coordinate system, its exact solution should be the
same as that of the sound pressure radiated from a pulsating sphere of the same radius.
This exact solution is given in41 as

φ(t) = a
∫ t

−∞
e−(c/a)(t−τ)vS(τ)dτ (10.2.84)

where a is the radius of the sphere, c is the speed of sound, and vS(t) is the applied surface
velocity on the inner surface of the sphere. Once φ(t) is found, the acoustic pressure can be
recovered as follows

p(r, t) = ρcφ̇

r
(10.2.85)

If we define an input surface acceleration as

aS(t) = sin(2πt) (10.2.86)

Then we have an implied input velocity of

vS(t) = −1
2π cos(2πt) + 1

2π (10.2.87)

Substituting this into equation 10.2.84, we obtain

φ= −a2π

∫ t

−∞
e−(c/a)(t−τ)

[−1
2π cos(2πt) + 1

2π

]
dτ (10.2.88)

Simplifying, and using the identity∫
ec1x cos(c2x) = ec1x

c21 + c22
(c1 cos(c1x) + c2 sin(c2x)) (10.2.89)

we obtain

φ(t) = −a2π
1

( ca)2 + (2π)2

[
c

a
cos(2πt) + (2π)2 sin(2πt)

]
+ 2πa2

c
(
c
a

)2
+ c(2π)2

e
−ct
R (10.2.90)

Inserting this expression into equation 10.2.85, we obtain the exact solution on the surface
of the sphere (R=a)

p(r, t) = ρc(
c
a)2 + (2π)2

) [2πe−ct
a + c

a
sin(2πt)−2π cos(2πt)

]
(10.2.91)
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Figure 2-69. – A comparison of an exact solution for spherical wave radiation and the
Sierra/SD computation using transient infinite elements.
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Figure 2-70. – A schematic of the geometry of a piston mounted on an infinite baffle for
verification of transient infinite elements.

We note that there is both a transient and a steady-state component to the solution in
equation 10.2.91. The transient term dies out after sufficient time, and then the steady
terms persist.

Figure 2-69 shows the comparison of the exact solution of equation 10.2.91 and the
computed solution using Sierra/SD. Excellent agreement is seen between the curves.

A second verification example was considered that consisted of a piston mounted on an
infinite baffle. Figure 2-70 shows a schematic of the geometry. A 3D hemispherical domain
of radius 0.5(m) was constructed and meshed with tetrahedrons. A normal acceleration
boundary condition was applied to a circular portion of the flat face, of radius 0.25(m).
The flat plane of the hemisphere was set at y = 0, as shown in Figure 2-70. The remaining
part of the flat surface was treated as acoustically rigid (zero particle acceleration). Infinite
elements were then applied to the curved surface, thus making the geometry appear to be a
semi-infinite space with a piston mounted on the (rigid) baffle.

The analytical solution to this problem is given as41

p(x,t) = ρ

2π

∫
S

an(xs,yx, t−R/c)
R

dS (10.2.92)

where p(x,t) is the acoustic pressure at an arbitrary point x in space and time t, ρ is the
fluid density, an(xs,yx, t−R/c) is the normal acceleration on the piston surface, xs and ys
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Figure 2-71. – A comparison of computed vs. analytic solution for a piston mounted on an
infinite baffle. Field point is at x= 0, y =−0.5, z = 0.

are points on the piston used in the surface integration,
R =

√
[(x−xs)2 + (y−ys)2 + (z− zs)2] is the distance from a point on the piston surface to

the point x where the solution is desired, and c is the speed of sound. Thus, we see that for
an arbitrary point in space x, and an arbitrary time history of accelerations an, the integral
in equation 10.2.92 must be carried out numerically.

We consider 2 points in space for the comparison with analytical solution. The first point
(point A) is located along the axis of the piston at x= 0, y =−0.5, and z = 0. The second
point (point B) is located off-axis as x= 0.5, y = 0 and z = 0. Figures 2-71 and 2-72 show
comparisons of the analytical and computed solutions for the case when an(t) = sin(200πt),
which corresponds to the case when the piston is rigid and moving harmonically at a
frequency of 100Hz.
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Figure 2-72. – A comparison of computed vs. analytic solution for a piston mounted on an
infinite baffle. Field point is at x= 0.5, y = 0.0, z = 0.
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10.2.20. Variable Order Infinite Element Implementation

Before making comparisons of the infinite element and Kirchhoff integral approaches, we
first examine the dependence of the infinite element approach on the order of the radial
expansion used in the approximation. If the implementation is correct, the computed
solution should converge to the analytical solution for sufficiently high order of radial
expansion in the infinite element approximation.

Figure 2-73 shows the geometry of the mesh used for the baffled piston. It consists of a
hemispherical geometry with a circular surface defining the area over which the piston
makes contact with the air. An applied acceleration time history is given to the piston,
which acts as a Neumann boundary condition. The flat face of the hemisphere is a subset
of the infinite baffled plane. The infinite elements are placed on the curved part of the
hemispherical surface. The piston is given a uniform, time-dependent acceleration in the
direction of its surface normal. We denote this acceleration as aP (t), and the exact form of
the time dependence will take two different forms, as described below.

The exact solution to this problem can be computed from the Kirchhoff integral

p(xxx,t) = ρ

2π

∫
S

aP (xxxSSS , t− R
c )

R
dS (10.2.93)

where p(xxx,t) is the acoustic pressure at point xxx and time t, ρ is the density of the fluid, S
is the surface area over which the piston interacts with the fluid, aP (xxxSSS , t− R

c ) is the
normal acceleration of the piston at the point xxxSSS , and at the delayed time t− R

c ,
R = |xxx−xxxSSS | is the distance from the surface point xxxSSS to the far field point xxx, and c is the
speed of sound. The evaluation of equation 10.2.93 was carried out numerically, and this
provided the exact solution for comparison with the computations.

In all of the following examples, we consider standard conditions for the air surrounding
the piston, ρ= 1.293, c= 332.0. The piston has a radius of 0.25(m). The mesh consists of
1,800,000 linear tetrahedral acoustic elements with an approximate element diameter of
0.0026m. For a wave at 2000Hz, the wavelength is about 0.166m, and thus this consists of
about 50 elements per wavelength. The time step for the transient analysis was taken at
5.0x10−6 s, which is much finer than needed to resolve a frequency of 2000Hz. Thus, we
expect both spatial and temporal resolution to be sufficient to capture the wave response,
and thus allow the infinite element and Kirchhoff solutions for far-field pressures to be
easily compared.

Figure 2-74 shows a comparison of the exact vs. computed transient response at the
particular point x=−0.25, y = 0, z = 0 for increasing order of the infinite element
approximation. In this case, the piston was given an acceleration of the form
aP (t) = sin(2πft)H(t), f = 2000(Hz). As expected, the infinite element solution converges
to the exact solution as the order is increased. For the examples that follow, a similar
approach was taken in that the order was increased until subsequent increases in the order
of the infinite elements made no difference in the obtained results.
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Figure 2-73. – The geometry and mesh of the baffled piston problem.
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Figure 2-74. – A convergence study for infinite element order, demonstrated on the baffled
piston problem
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10.2.21. Coupled Acoustic-Structure Directfrf with Viscoelastic Material

This example compares the solution from ABAQUS with that of Sierra/SD for a coupled
acoustic-structure interaction directfrf problem with a viscoelastic material. The problem
consists of a thick plate fixed on the edges and loaded on one face. The opposite side of the
solid is coupled a prism with a prescribed acoustic pressure equal to zero on the opposite
face. A sketch of the problem domains is shown in Figure 2-75. The pressure contours for
both the Sierra/SD and ABAQUS outputs are shown in Figures 2-77 and 2-76,
respectively, while a comparison of peak values are shown in Table 2-36.

Peak Pressure (Pa) Peak Uy (m)
ABAQUS -10811.5 1.031e-6
Sierra/SD -10818.16 -1.030e-6

Table 2-36. – . Peak pressure and displacement for coupled acoustic-structure interaction
problem with viscoelastic material.
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Figure 2-75. – Problem sketch. The bottom part is the solid, the top part is the fluid
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Figure 2-76. – Vertical displacement distribution from ABAQUS.
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Figure 2-77. – Vertical displacement distribution from Sierra/SD.
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10.3. Nonlinear Acoustics

In Sierra SD nonlinear acoustics is modeled using the Kuznetsov Equation. For verification
purposes, we consider the same sequence of simulations given in29,28 involving a
piston-radiation problem. This example is shown in Figure 3-78. It consists of a long
air-filled tube that has a sinusoidal boundary condition at the left end. This boundary
condition can either be in the form of a pressure (Dirichlet) condition or a velocity
(Neumann) condition, which are given as

p(0, t) = p0 sin(ωt) (10.3.1)

v(0, t) = v0 sin(ωt) (10.3.2)
In order to simulate the infinite condition at the right end of the tube, an absorbing
boundary condition is used. The exact solution to this problem is given by the Fubini
solution (see section 11.2 of41) in the pre-shock regime and by the Fay solution in the
post-shock regime.

(v0)sin(wt)

Tube of infinite length

Figure 3-78. – A wave tube example for verification.

In the case of a plane wave, the distance to shock formation is given as

σ = c(
1 + B/A

2

)
v0k

(10.3.3)

where v0 is the amplitude of the velocity of the source, and k is the wave number. As
expected, for larger amplitude sources, and for more nonlinear fluids (larger B/A), the
shock forms closer to the source. Interestingly, we see that the shocks also form closer to
the source for high frequency waves, since k is in the denominator. In the numerical
experiment, we chose v0 = 20ms , and k = 100

332 = .3, which resulted in a shock formation
distance of σ = 332

1.2∗20∗.3 = 46.1m.

The Fubini solution33,26 is given by

p(x,t) = p0
∞∑
n=1

2
nx̄
Jn(nx̄)sin(nωτ) (10.3.4)

where Jn(x) is the Bessel function of order n, x̄= x
σ , and τ = t− x

c0
. The Fay solution is

p(x,t) = p0
2
Γ

∞∑
n=1

sin(nωτ)
sinh [n(1 +σ)Γ)] (10.3.5)
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where Γ is the ratio of the absorption length to the shock formation distance (see26). The
Fubini solution assumes a lossless media, and is valid for x < σ. For the post-shock regime,
x > 3.5σ, the Fay solution must be used since it accounts for absorption. Transition
solutions have been derived7 that provide exact solutions for σ < x < 3.5σ, but we do not
consider those here.

For all of the results presented next, the fluid is air at ambient conditions, with c= 332.0ms ,
ρ= 1.293Kg

m3 . Accounting for viscosity and thermal conductivity loss mechanisms, the
absorption parameter can be calculated from the following equation41

b

c2
= 1

ρc2

[
4
3η+ (γ−1) k

Cp

]
(10.3.6)

= 1
1.293x3322

[
4
31.846e−5 + (0.4)2.624e−2

1000

]
(10.3.7)

= 7.017e−6x
[
2.461e−5 + 1.0496e−5

]
= 2.46e−10 (10.3.8)

(10.3.9)

For air, b
c2 is too small to affect the results. Note that this estimate neglects additional loss

mechanisms such as molecular relaxation, and wall losses.

Figures 3-79, 3-80, and 3-81 show the solution at x= 0, x= σ, and x= 4σ, respectively. In
all cases, the computed solution is compared with the exact solution, and convergence is
obtained. In these results, three- dimensional linear finite elements were used, with element
diameters of 0.125(m). The time steps were 1.0×10−3, 2.5×10−4, and 1.25×10−4 for
Figures 3-79, 3-80, and 3-81, respectively.

In order to demonstrate the significant difference between linear and nonlinear solutions, in
Figure 3-82 we show the results for the previous problem using linear and Kuznetsov wave
equations. In this case, we plot acoustic pressure with distance along the tube, rather than
with time. It is seen that linear theory is not sufficient for capturing the correct response.

Next, we examine the nonlinear convergence properties of the algorithm. Since we are
using Newton’s method to solve the nonlinear system of equations, we examine the number
of iterations required for convergence. The criteria for convergence is based on a relative
tolerance of 10−6, e.g.

|Resf |
|Fext|

≤ 10−6 (10.3.10)

Also, we mention that the starting point for the Newton iterations is the value of velocity
potential from the previous time step. Figure 3-83 shows the number of Newton iterations
required to satisfy the inequality 10.3.10, for various levels of input velocities of the piston.
As expected, for larger input velocities, more iterations are required for convergence. The
highest level that was considered, 120ms , is beyond the limitations of the Kuznetsov
equation, but we show it anyway to illustrate the divergence of the Newton scheme. For
reasonable levels of piston velocities (i.e. 20ms ), the Newton iterations converge rapidly,
leveling off at about 4 iterations per time step. Interestingly, for source amplitudes that are
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Figure 3-79. – Acoustic radiated pressure at x= 0
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Figure 3-80. – Acoustic radiated pressure at x= σ.
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Figure 3-81. – Acoustic radiated pressure at x= 4σ.
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Figure 3-82. – A comparison of radiated pressure using linear and nonlinear acoustic formu-
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within the range of validity of the Kuznetsov equation, the formation of shocks does not
influence the number of iterations required for convergence.

A test case for the Fubini solution with the shock wave is currently in the verification test
suite

Salinas_rtest/verification/acoustics/shockwave_SI.test for SI units and
Salinas_rtest/verification/acoustics/shockwave_english.test for english units

10.4. Material Identification

These verification problems are too computationally expensive to include in the automatic
verification suite.

10.4.1. Elastic Material Inversion for a Tunnel

In this section, we describe a materials inversion test performed on a hemispherical solid
containing an embedded cylindrical tunnel of different material. Figure 4-84 shows the
geometry of the model.

Figure 4-84. – Force Inversion Test Geometry.

In the model, a hemispherical solid contained a cylindrical tunnel region of a different solid
material. A Dirichlet boundary condition was assigned on the solid, setting a fixed
boundary on the hemispherical face of the model. A periodic structural loading was
applied to a circular region on the flat face of the model. Figure 4-85 shows the side with
the fixed boundary condition (pink) and the region of loading (orange). It was desired to
determine the elastic material properties–the shear (G) and bulk (K) moduli– of the two
material regions

Synthetic input data for the inverse problem was generated by performing a forward run on
the model. The data represented elastic displacements for element nodes caused by the
loading on the hemisphere’s face. In the forward run, the hemispherical and tunnel regions
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Figure 4-85. – Sides with boundary (pink) and loading (orange) conditions.

were assigned their true material properties, {Gh,Kh} and {Gt,Kt}, displayed in Table
4-37. For the inverse run, initial guesses were chosen for the properties of the two material
regions, also shown in Table 4-37. The two regions were designated as having
heterogeneous, isotropic elastic materials, allowing the bulk and shear moduli to vary by
element. The initial guesses, along with the input data, were used to verify that the true
material properties could be recovered by the code. Figures 4-86 through 4-89 show results
of the heterogeneous material-identification; cross-sections of the model are colored by the
computed results for the shear or bulk moduli of the elements in the model. Figures 4-86
and 4-87 show results using a least-squares objective, while figures 4-88 and 4-89 show
results using a Modified Error in Constitutive Equations (MECE) objective functional.

Table 4-37. – True material properties and initial guesses for tunnel-model material identifi-
cation.

Property Exact Initial Guess

Gh 150.0 90.0

Kh 150.0 90.0

Gt 50.0 90.0

Kt 50.0 90.0

As shown in Figures 4-86 and 4-87, the elastic material properties calculated using the
least-squares objective generally differentiate the two blocks and recover the blocks’
original material properties. Due to the heterogeneous conditions on the block elements,
element properties vary through the block volumes and include outliers. The properties
recovered using the MECE objective, shown in Figures 4-88 and 4-89, much more closely
recovered the original material properties of the two regions, though still demonstrated
heterogeneous variations. The least-squares optimization, performed using a BFGS
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Figure 4-86. – Shear modulus values of model elements, using least-squares objective.

Figure 4-87. – Bulk modulus results for model elements, using least-squares objective.
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Figure 4-88. – Shear modulus results, using MECE objective.

Figure 4-89. – Bulk modulus results, using MECE objective.
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method, ran in parallel and underwent 30 iterations. Both the gradient and objective
function were found to converge appreciably, though the objective function achieved much
smaller error terms. Figure 4-90 shows the convergence behavior of the objective function
and gradient for the least-squares optimization. The continuous optimization problem is
solved using the Rapid Optimization Library (ROL) package in Trilinos.

Figure 4-90. – ROL optimization of objective function and gradient, using least-squares
objective.

10.4.2. Frequency Domain Viscoelastic Material Inversion

In this section, we describe a frequency-domain material inversion test performed on a solid
assembly of two steel blocks joined by a region of viscoelastic foam material. Figure 4-91
shows the geometry of the test model.

As shown in Figure 4-91, the model assembly consists of two equally-sized steel blocks,
depicted in yellow and green, joined by a region of viscoelastic foam material, shown in red.
The model was discretized with a finite element mesh of Hex-8 elements. A periodic point
load with a frequency of 500 Hz was applied to the yellow block, also as shown in the
figure. It was desired to calculate the frequency-dependent viscoelastic material properties
of the foam block, including complex values for the bulk (K) and shear (G) moduli.

Synthetic input data for the inverse problem was generated by performing a forward run in
the frequency domain on the model. The data represented elastic displacements for
element nodes caused by the point load acting on the model. Exact values for the foam

392



Figure 4-91. – Foam block model with finite element mesh and force location.

block material properties, shown in Table 4-38, were used to generate the displacement
data. For the inverse run, initial guesses were chosen for the complex valued properties of
the foam block region. The foam block region was designated as isotropic and viscoelastic,
the entire block sharing the same complex-valued material properties. The initial guesses,
along with the input data, were used to verify that the code could recover exact material
properties of the foam block. Results for the computed material properties of the foam
block are also shown in Table 4-38.

Table 4-38. – Exact and computed values for foam block’s complex material properties.

Property Exact Initial Guess Computed

G Real 4000 2000 40000.001556

G Imag. 0 0 -0.005484

K Real 16000 8000 15999.999388

K Imag. 5000 0 5000.000827

As shown in Table 4-38, despite halved initial guesses for the real moduli and poor
assumptions of no damping behavior, the code was able to recover material property values
well. The optimization, performed in parallel using a BFGS method, ran in parallel and
underwent 95 iterations. Both the gradient and objective function were found to converge
appreciably, the error decreasing especially rapidly following 80 iterations. Figure 4-92
illustrates the convergence behavior for the objective function and gradient. The
continuous optimization problem is solved using the Rapid Optimization Library (ROL)
package in Trilinos.

393



Figure 4-92. – Convergence Behavior of Foam Block Material Inversion.

10.5. Solution Procedures

10.5.1. Verification of Time Integration

10.5.1.1. Verification of generalized alpha damping

Though it is not always done in finite element code verification, it was deemed appropriate
to verify that the generalized alpha time integrator13 was implemented correctly. To isolate
that feature, a single degree of freedom simple harmonic oscillator problem was solved. In
this problem, the mass and stiffness were each set to unity. The period of free vibration
would be 2. A unit load was imposed for a half a period and the resulting free vibration
was calculated. The exact solution to this problem is

u(t) = 2cos t

The Sierra/SD results for time steps 2π/200, 2π/400, 2π/800, and 2π/1600 were
computed. The resulting displacements for all four cases are almost identical and are
shown in Figure 5-93.

Values at time 8π were compared and the resulting convergence plot is shown in Figure
5-94. We see that the convergence rate is almost exactly two – the theoretical value.
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Figure 5-93. – The time integrator is tested against a simple harmonic oscillator. Values of
displacement at time 8π are compared and tested for convergence.

Figure 5-94. – Convergence of Simple Harmonic Oscillator.
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10.5.1.2. Verification of prescribed acceleration capability

In this section we present an example of verification for the prescribed acceleration
capability. The example consists of a cantilever beam model 10 meters in length, with a
square cross section of 1 meter dimension. The beam is subjected to an end-loaded
acceleration in the axial direction given by

a(t) = cos(ωt) (10.5.1)

where ω = 2πf , and f = 16Hz. The initial conditions, including initial displacement and
initial velocity of the beam are set to zero. Given these conditions, we can integrate the
acceleration equation twice to obtain the following expression for the displacement at the
loaded end

D(t) = 1
(32π)2 (1− cos(32πt)) (10.5.2)

Figure 5-95 shows a comparison of the analytical solution for displacement against the
Sierra/SD result. Excellent agreement is observed. We note that this example can be
found in the test suite at the following location.

Salinas_rtest/verification/transient/bar_prescribed.xml
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Figure 5-95. – Comparison of Sierra/SD result with analytical solution of a beam with
end-loaded prescribed acceleration.
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10.5.2. Direct Frequency Response

In this section we give two examples of verification of the direct frequency response driver
in Sierra/SD. Both examples involve mass spring systems. The first is a mass spring
system with stiffness proportional damping, and the second is a mass spring system with
mass proportional damping.

The exact solution to this problem is given by equation 4.21a in Craig’s book,.15

Ds = U

U0
= 1√

((1− r2) + (2ζr)2)
(10.5.3)

where U is the displacement of the mass, U0 is the magnitude of the forcing function,
r = ω

ω0
is the ratio of the circular frequency to the fundamental resonant frequency, and

ζ = c
2
√
km

is the level of damping, normalized with respect to the stiffness and mass of the
spring mass system. See Figure 3.1 in Craig15 for a diagram of the problem.

For proportional damping, we have c= αm+βk. The exact solutions corresponding to
equation 10.5.3 were computed and compared with simulations in Sierra/SD for two
cases. In case 1, α = 0.0 and β = 1.0. In case 2, α = 1.0 and β = 0.0. Also, for convenience
we set k =m= U0 = 1 for this problem. In this way, the exact solutions for both mass and
stiffness proportional damping were exactly the same.

Figure 5-96 shows the comparison of the computed and exact solutions for the case of
stiffness proportional damping. The mass proportional damping case was exactly the same,
and thus is not shown. We see that proportional damping decreases the peak of the
resonant frequency, and shifts the frequency to the left. Excellent agreement is seen
between Sierra/SD and the exact solutions.
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10.5.3. Modal Frequency Response

This section presents verification examples for modal frequency response. The truth model
used in these tests is the result from the corresponding direct frequency response analysis.
The convergence of the modal expansion is verified.

The first test involves a free-free beam composed of 2x2x20 hex8 elements. The beam is
subjected to a uniform pressure load on both ends and a modal frequency response solution
is computed. The comparison of the results at a point in the center of the beam, versus the
results from direct frequency response is given in Table 5-39. The modal frequency
response results converge to the direct frequency response results as the number of modes
in the modal expansion increases.

The second test involves the same geometry as the previous test, and instead has one end
fixed and the other subjected to a traction load of 111. Also, in this test, the modal
acceleration method is used instead of modal frequency response. The results, compared
with a direct solution, are given in Table 5-40. The modal frequency response results
converge to the direct frequency response results as the number of modes in the modal
expansion increases. We note that both of these tests are located in the Sierra/SD test
suite under

Salinas_test/verification/frf

Table 5-39. – Convergence of Modal Frequency Response Method.
quantity direct frf modal

14 modes 30 modes 50 modes 100 modes
accx 12.7659 14.28 13.5 13.9 12.79
accy -12.7659 -14.28 -13.5 -13.9 -12.79
accz 117.309 139.0 111.0 118.0 117.353

Table 5-40. – Convergence of Modal Acceleration Method.
quantity direct frf modal accel, 14 modes modal accel, 30 modes
accx -2350.82 -2349.75 -2350.81
accy -2415.098 -2414.12 -2415.097
accz -718.587 -718.321 -711.578
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10.5.4. Eigen Analysis

Eigen analysis is performed as part of the verification of the element quantities. Practically
speaking, it is difficult to verify the analysis independent of the element. For example, the
hex20 and tet10 element convergence studies utilize eigen analysis for the convergence
study. See Figures 1-3 and 1-4 for example.

Similarly, the elastodynamics tests examined in section 10.7.1 are built on the structure of
modal analysis procedures. As these tests correspond to semi-analytic solutions (such as
those from Blevins [10]) they constitute true verification.

10.5.5. Quadratic Eigen Analysis

There are several different solution approaches within the package that computes the
solution to the quadratic eigenvalue problem. Each requires its own verification.

10.5.5.1. QEP – Proportionally Damped

The proportionally damped system is straightforward because the eigenvectors of the real
system diagonalize the complex (or damped) solution. Consider

(K−ω2M)φ= 0 (10.5.4)

For this system φTKφ= Λ is diagonal, and φTMφ= I. The proportional damping matrix
is given by C = αM +βK. Also φTCφ= αI+βΛ.

The solution to the jth mode of the damped system is given by,

Λjj +ω(α+βΛjj) +ω2 = 0 (10.5.5)

All quantities are known from the real eigenvalue analysis, and we can solve in terms of
ω.

ωj =
−(α+βΛjj)±

√
(α+βΛjj)2−4Λjj
2 (10.5.6)

Table 5-41 lists the eigenvalues and errors for a proportionally damped system with α = 0
and β = 0.001. This is a small Hex8 model for which the eigenvalues are known from real
eigen analysis.

These solutions are within the expected round off. Notice that as the natural frequency
increases, the fractional damping is increasing to almost 25%.
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Table 5-41. – Eigenvalues of Proportionally Damped Model.
# Λ

√
Λ/2π ω/2π error

1 5375.07 11.6684 (-0.427735,11.6606) 1.6e-6
2 108926 52.5275 (-8.66809,51.8074) 2.7e-6
3 219052 74.4893 (-17.4316,72.4209) 4.1e-7

10.5.5.2. QEP – Viscoelastically Damped

There are no verification tests yet for this solution.

10.5.5.3. QEP – Discrete Dampers

There are no verification tests yet for this solution.

10.5.6. SA_eigen

Verification of the SA_eigen solution is complicated by the model reduction inherent in the
process. Kinsler32 has a closed form expression for a coupled one dimensional structural
acoustic system. The finite element solution will approach this solution as,

a the finite element mesh converges, and

b the modal truncation is eliminated.

Without both of these considerations, there will be no convergence of the solution.
Unfortunately, while we can show a 1/h type convergence for the FE mesh, no such
convergence can be expected for modal truncation. For some forms of basis functions the
convergence will be rapid. In other cases, convergence may not be acceptable until the
entire space has been spanned.

Because of model size issues, such convergence is demonstrated independently. Thus, we
first show convergence of the mesh to the analytic solution. Then, with a coarse mesh, we
demonstrate convergence as the number of modes in the basis is increased. Figure 5-97
shows the mesh convergence study. We note that for 1/H > 100 the solution no longer
appears to be converging. The polyeig() routine in MATLAB does a full factorization.
Computing accurate modes with polyeig involves techniques that are beyond the scope of
this document.

Figure 5-98 shows the convergence of the reduced model to the first coupled modal
frequency when using 2 structural and 10 acoustic modes. Note that this mode converges
from below to a value 1% higher than the mode of the solution without truncation.

Figure 5-99 shows the convergence of the modal frequency as the number of basis modes is
increased. There is no damping for this system. Introducing radiation damping to the right
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Figure 5-97. – Mesh convergence to 1D Structural Acoustics Example. The example, taken
from Kinsler32 uses a = 1/25 and b = 8/3, where a and b are defined in the reference. The
eigen solution is found using MATLAB’s polyeig() function. The analytical solution from
equation 9.42a of Kinsler[32] is 125.2783.

side of the acoustic system impacts the modal convergence rate. As shown in Figure 5-100,
radiation damping (or non-reflecting boundary conditions), delays convergence and
degrades accuracy.

To examine the dependence of this error on the coupling, we sweep through various
structural mass quantities while holding all other parameters fixed. Sweeping the mass
results in a change of structural resonant frequency. In addition, the type of coupling
experienced by the acoustic cavity changes from approximately unbounded to fixed
boundary conditions. Results shown in Figure 5-101, show variation as the parameter a of
Kinsler is varied. The error is highest, and the coupling is greatest, when the structural
and acoustic domains have similar resonant frequencies.

To examine the effects of impedance matching while maintaining the resonance frequencies,
the structural mass and stiffness are varied together such that the resonance frequency is
maintained at 160Hz, below the acoustic resonance (166Hz). Figure 5-102 provides the
results. The error is largest when the impedance approximates an open acoustic
termination.
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Figure 5-98. – Mesh convergence to 1D Structural Acoustics Example using a modal basis.
The example is that of Figure 5-97. The quadratic eigen solution is computed using 2 structural
and 10 acoustic modes in Sierra/SD.
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Figure 5-99. – Modal convergence to 1D Structural Acoustics Example using a modal basis.
The example is that of Figure 5-97, with 1/h= 80. The quadratic eigen solution is computed
using 2 structural modes, while the number of acoustic modes varied. Computation is in
MATLAB, with selective comparison to Sierra/SD. Convergence is not rapid as a solution
requires components of all axial modes. After about 80 modes, no further improvement is
obtained.
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Figure 5-100. – Mesh convergence to Damped 1D Structural Acoustics Example using a
modal basis. The model is unchanged from Figure 5-99 except that there is a non-reflecting
boundary condition applied on the end opposite to the structure. MATLAB comparisons with
polyeig truth model, with direct verification to Sierra/SD solution.
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Figure 5-101. – Modal convergence of 1D Structural Acoustics Example using a modal basis.
The example is that of Figure 5-97, with h = 1/80. The quadratic eigen solution is computed
using 2 structural modes and 10 acoustic modes in Sierra/SD, while the mass parameter, a
is varied.
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Figure 5-102. – Modal convergence of 1D Structural Acoustics Example using a modal basis
as the impedance is swept. The example is that of Figure 5-97, with h= 1/80. The quadratic
eigen solution is computed while both the mass parameter, a and the stiffness parameter, b,
are varied. We maintain a structural resonance of 160Hz.

10.5.7. Buckling of a Cantilever Beam

The buckling of a cantilever beam modeled using solid elements is verified. The geometry
for this example consists of a cantilever beam with one end clamped, and with the other
subjected to a compressive load P . Euler-Bernoulli beam theory predicts the critical
buckling load to be

Pcr = 2.4674EI
L2 (10.5.7)

A simple mesh of this example was created, consisting of a 2×2×10 hex elements. The
critical buckling load is predicted to be

Pcr =
2.4676×30×106× 1

12
102 = 61675 (10.5.8)

The computed buckling load was 61370.1.

10.5.8. Thermal Expansion

In this section we give verification examples for thermal expansion.
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10.5.8.1. Free beam

This example consists of a free floating beam that is subjected to a uniform temperature
increase of 178o. The built-in end is such that expansion can occur without generating any
stresses. In the end, the beam is stress free but undergoes a uniform expansion. The exact
solution for the tip displacement is

∆L= αL∆T = 0.0001×50×178 = 0.89 (10.5.9)

where α is the coefficient of thermal expansion, and L is the length of the beam.
Sierra/SD gives the exact answer of 0.89. This test is included in the verification test
suite in the following directory

tests/Salinas_rtest/verification/thermal/thermal_beam.xml.

10.5.8.2. Free beam with linear temperature distribution

This is also a free floating beam example, except that the temperature variation is linear
along the length of the beam, instead of the uniform temperature of the previous example.
The exact axial displacement of the end of the beam is given by (thanks to Jason Hales for
the derivation of this equation)

u(x) = α(T0−Ti)x+α(TL−T0) x
2

2L (10.5.10)

where T0 is the temperature of the beam at the fixed end, TL is the temperature of the
beam at the free end, and Ti is the initial (uniform) temperature of the beam. Plugging in
the parameters for this example gives

u(L) = 0.0001∗1∗50 + 0.0001∗1∗25 = 0.0075 (10.5.11)

This example is also included in the verification test suite in the following directory,

tests/Salinas_rtest/verification/thermal/thermal_beam2.xml.

A note about the boundary conditions for these tests may be useful. These examples
simulate free expansion. The boundary conditions are applied at one end to eliminate rigid
body modes which generate solution difficulty. The example with linear temperature
distribution results in a free expansion solution that is concave at the constraint end.
Original boundary conditions constrained that surface to be planar, and resulted in a
solution that was about 1% in error. Relaxing the boundary conditions to the minimal set
results in a much better solution.

10.5.8.2.1. User Evaluation: A code to code comparison for a single thermal load is
described in section 10.8.6.1.
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10.5.9. Thermal/Structural Responses (TSR)

Sierra/SD is not used to compute a thermal solution. However, input temperature or
energy density may be applied to the materials or to determining the thermal stress and
strain We support this interaction as follows.

TSR_preload reads an initial stress and stores it on the body. An internal force response
is computed. No deformation is determined, and the element matrices are not
modified. It is typically followed by a static or transient dynamic response.

Thermal load may be applied to a body. The load may be specified on all nodes, on
element centroids, or on element integration (or Gauss) locations.

Material Properties Temperature dependent material properties are supported. A user
provided function determines the property as a function of temperature.

Energy Density may be used as a thermal input for elements. The energy density is
specified on element centroids or element integration points and converted to
temperature using the specific heat capacity. Energy density may not be specified as
a nodal quantity.

More detailed information is available in the corresponding sections of the SierraSD Users’
Guide. Test Matrix

We would like to generate effective tests that verify that these capabilities are working
properly, and especially that they work together. The test matrix shown in Table 5-42
summarizes the tests. Particular emphasis is paid to combined capabilities.

Section TSR_preload statics NLstatics trans load Material
10.5.9 X
10.5.9 X X
10.5.9 X X X
10.5.9 X X X
10.5.9 X X X
10.5.9 X X X X
10.5.9 X X X X X
10.5.9 X X X X X

Table 5-42. – Thermal/Structural Test Matrix. All tests apply temperature inputs except
10.5.9, which is a repeat of 10.5.9 applying energy inputs.

Thermal Model Definition The model is a perfect unit cube with a uniform thermal
load on a single block. No other boundary conditions are applied. In the following
NLStatics refers to the nonlinear statics solution method.

TSR The model, defined in section 10.5.9, results in a uniform stress throughout the
single hex element. For this solution case, no deformation results. Applying a Young’s
modulus of 30 x 106, and a thermal expansion coefficient, α = 10−6 together with the
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temperature change of ∆T = 5, results in a thermal strain of 5 x 10−6 and a stress of 150.
Note that the total structural strain is zero, as the body cannot deform in this solution.

TSR with Thermal Material Results are identical to section 10.5.9, but the material
properties are determined using a Young’s modulus which depends on temperature.

TSR, with Thermal Material followed with Statics Following the solution of section
10.5.9 with linear statics equilibrium results in a solution with zero stress and a net strain
of 5 x 10−6. Deformations match the strain. The statics solution is only well posed when
the rigid by motion is constrained.

TSR, with Thermal Material followed with NLStatics Following the solution of
section 10.5.9 with nonlinear static equilibrium results in a solution with zero stress and a
net strain of 5 x 10−6. Deformations match the strain. The statics solution is only well
posed when the rigid by motion is constrained.

TSR, with Thermal Material followed with Transient Following the solution of
section 10.5.9 with damped transient equilibrium results in a solution that oscillates about
the solution of section 10.5.9, with a net strain of 5 x 10−6. Deformations match the
strain.

TSR, with Thermal Material followed with Loaded Statics Section 10.5.9
determines an unloaded equilibrium. The same thermal load may be applied with a
negative scale factor, resulting in zero strain – the initial (TSR) stress is exactly balanced
by an opposing stress. To better verify the code, we apply a negative thermal stress that is
three times the original stress, resulting in a solution with zero stress and a net strain of
-10 x 10−6. Deformations match the strain. The statics solution is only well posed when the
rigid by motion is constrained.

TSR, Thermal Material followed with Loaded Statics & Dynamics We follow the
solution of section 10.5.9 with a transient load scaled with the original force. This TSR
pushes the solution out. The statics solution pushes it back in, to a total of twice the strain
of TSR. Dynamics results in a solution that oscillates about 5 x 10−6.

TSR, Thermal Material, Loaded Statics & Dynamics with Energy Specific
energy may be supplied as the input to the TSR and static and dynamic loading. The
specific energy is converted to temperature using the specific heat. Material properties are
determined from the temperature, not the energy in the body.

10.5.10. Direct Energy Deposition at Gauss Points

Energy deposited in the body (as by an X-ray event) can result in an instantaneous change
in temperature. For consistency with other applications, the energy is applied as a specific
energy, i.e. the energy per unit mass, Ẽ =Q/(ρV ). Because such energy typically decays
exponentially, it is important that energy be provided at the Gauss points especially for
larger, higher order elements.
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10.5.10.1. Two Element Linear Variation Hex20

The example consists of two unit Hex20 elements forming a beam of dimension 2x1x1. The
specific energy varies as the long dimension of the beam, X. The geometry is shown in
Figure 5-103. We have verified the following.

1. The specific energy is properly read into Sierra/SD, as verified with line sample
output.

2. The specific energy is properly converted to temperature using the specific heat of
the material.

3. The total energy input is determined properly.

4. Resulting displacements meet the analytic solutions (see Figure 5-104). The
numerical results are obtained by using Ensight to post process the displacements
through the center of the body. The analytic displacement may be obtained by using
the one dimensional ODE generated by the thermal stress.

εthermal = du

dX
= αtT (X) (10.5.12)

= αtX/Cv (10.5.13)
u(x) = αt

2Cv
X2 (10.5.14)
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Figure 5-103. – Simple Energy Deposition Test Geometry.

The example is found in,

tests/Salinas_rtest/verification/thermal/edep_lin.xml.

Resulting displacements are quadratic as from equation 10.5.10, with α = 0.001, and
TL = 1.

A comparison to Abaqus thermal strains is reviewed in Section 10.8.6.1.
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Figure 5-104. – Displacements Resulting from Linear Temperature Profile.

10.5.10.2. Two Element Quadratic Variation Hex20

This test uses the same geometry described in section 10.5.10.1 and Figure 5-103, but with
specific energy variation, Ẽ(x,y,z) = x2 +y2 + z2. The example ensures the following:

1. Exact representation of the energy and temperature as shown in linedata.

2. The total energy is ρ
∫
elem(x2 +y2 + z2)dxdydz, which is 3ρ, where ρ is the density.

3. Ensures numbering of the Gauss points.

4. The displacement is inexact, as the analytic solution is cubic.

10.5.10.3. Two Element Exponential Decay Variation Hex20

This test uses the same geometry described in section 10.5.10.1, but with specific energy
variation, Ẽ(x,y,z) = e−x. The example ensures the following:

1. Approximate representation of the energy and its error can be extracted using line
sample (linesample) data and is represented in Figure 5-105.

2. The total energy is Et = ρ(1− e−2). The solution is approximate, because the energy
is represented by a quadratic in each element, but the error is less than 10−5.

3. The displacement is inexact. The one dimensional thermal strain equation provides
the ODE for the solution. We use T (x) = Ẽ/Cv. Then,

εthermal = du

dX
= αt
Cv

e−γX (10.5.15)
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The solution for this equation is,

u= αt
Cvγ

(
1− e−γX

)
(10.5.16)

Numeric and analytic solutions for this solution are shown in Figure 5-106.

The test is edep_expx.
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Figure 5-105. – Exponential Energy Deposition. Comparison of exact and interpolated
solutions from the Gauss Points.
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Figure 5-106. – Exponential Energy Deposition, computed Displacements. The numerical
results are measured at Gauss points and interpolated within the elements. Displacements are
interpolated from nodal values.

.

10.5.10.4. Two Element, Two Material Hex20

Again, the same geometry is used, but with two different materials for the Hex20 elements.
We require that temperature be a linear function of X, and compute specific energy,
Ẽ = CvT to meet that requirement. This provides a simple solution for the quadratic
displacement. The specific energy is shown in Figure 5-107, as extracted from line sample
(linesample . The resulting quadratic displacement (and corresponding analytic
solutions) is shown in Figure 5-108. For these solutions, the heat capacity is 1 in the first
element, and 2 in the second.
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Figure 5-107. – Linear Deposition on 2 Blocks. The sampled specific energy and temperature
across the two blocks is shown.
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Figure 5-108. – Linear Energy Deposition. The displacement response and associated error
is shown.
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10.5.11. Craig-Bampton Model Reduction

10.5.11.1. OTM Verification

CBR in general and the Output Transfer Matrix (OTM) are discussed in48 and.46 The
following steps are to be used for verification. The model used is the
multi-element/olio_cbr_test.

1. ensure eigenvalues are consistent between models (reduced versus full)

This portion of the test that is evaluated as part of the automated test.

2. check OTM for displacement in serial.

a) Is data consistent with φ and ψ?

This is checked in the debugger.

b) does the product make sense (i.e.)

xk = [OTM ][x1]

x̄k =K−1x1

and,
xk ≈ x̄k

This is done as follows.

a) The model is clamped away from the interface to eliminate the confusion caused
by redundant modes and zero energy modes. The system response is computed
for mode 1 (a flexible mode). This is done by pulling in Kssr and Mssr and
computing the eigenvalues, E, and eigenvectors, V.

b) The reduced model is also computed for mode 1. We do this by computing the
eigenvalues and eigenvectors of Kr and Mr.

[vr, er]=eig(Kr,Mr);

We ensure that the eigenvalues are approximately the same. See figure 5-109.

c) The first eigenvectors is expanded to the system from both systems. The
reduced eigenvectors contain both a physical coordinate and a modal coordinate
component. MATLAB code to do this expansion is shown in Figure 5-111. A
comparison of the two vectors is shown in Figure 5-110. Note that there is a
scale factor difference of -1 in the two vectors. This is acceptable as eigenvector
scaling is arbitrary to that factor.
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Figure 5-109. – Comparison of reduced and full eigenvalues.
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Figure 5-110. – Comparison of reduced and full eigenvectors.
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function [dispgr,nodes]=expandRmodel( cbmap, OTM, OutMap, vr )
% expands a vector in the reduced, Craig Bampton space into the
% full physical space.
% cbmap - map to interface dofs. Output into cbr.m
% OTM - Output transfer matrix. also in cbr.m
% OutMap - map to interior (and interface) nodes in output.
% vr - the reduced space vector.
% vr(1:numeig) is the amplitude of the fixed interface modes
% vr(numeig:end) is the amplitude of the constraint modes (physical
% degrees of freedom).
% results are output sorted by node number. 6 dofs per node are output.

nodes=[cbmap(:,1)’ OutMap];
nodes=unique(nodes);
nout=size(nodes,2);
nr=max(size(vr));
nc=size(cbmap,1);
nmodes=nr-nc;

dispgr=zeros(nout*6,1);
ur=OTM*vr; % compute vector on OTM space, ur

% store components from OTM space.
for i=1:size(OutMap,2)

n=OutMap(i);
k=find(nodes==n);
for cid=1:6
k2=(k-1)*6+cid;
k1=(i-1)*6+cid;
dispgr(k2)=ur(k1);

end
end

% transfer interface dofs directly
for i=1:nc

n=cbmap(i,1);
cid=cbmap(i,2);
k=find(nodes==n);
k2=(k-1)*6+cid;
dispgr(k2)=vr(i+nmodes);

end

Figure 5-111. – MATLAB code to convert from reduced space.
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10.5.12. Residual Vectors

As a small problem to test the residual vector computations in Sierra/SD, two beams are
connected to each other to simulate a longer beam. To keep the overall number of DOFs as
small as possible, the finite element mesh of the beam cross-section is limited to two
elements in each direction. This is the bare minimum required to model bending
vibrations. The physical parameters for the beams are listed in Table 5-43.

Table 5-43. – Physical parameters for the beams.

Parameter Beam 1 Beam 2
Density 7860 Kg/m3 7860 Kg/m3

Poisson Rs Ratio 0.29 0.29
Modulus of Elasticity 200 Gpa 200 Gpa
Width (Y-direction) 0.01 m 0.01 m
Height (Z-direction) 0.005 m 0.005 m

Length 0.25 m 0.225 m

When the two beams are combined the overall length is 0.475 m. Analytical solutions for
the resonance frequencies are available in the book by Weaver, Timoshenko and Young56

for a variety of boundary conditions.

The analysis strategy is standard. Component modes synthesis (CMS) has been in use for
a long time and many variations on the general analysis procedure are available. The basic
idea of all CMS computations is to divide the structure into Scomponents T whose
displacements are represented as a summation of Snormal modes T with the mode sets
truncated above an upper limiting frequency. This representation is adequate to accurately
compute displacements, but not nodal forces or stresses (which represent spatial derivatives
of the displacement field). Thus, some method must be used in a CMS analysis to account
for truncated modes, especially at locations where the forces must be computed accurately.
One simple method is to add Sresidual T or Smodal truncation augmentation T vectors
to the analysis for specified nodal locations and DOFs. An excellent derivation of modal
truncation augmentation vectors is given in.16 The vectors are orthogonal to the normal
modes, have same normalization, and may be added to the basis.

In the most general form of CMS analysis, interfaces are defined between each of the
components and Sinterface modes T are used to represent the connections themselves.
Here, a simplified form of CMS is used where the connections between components is at
discrete nodal locations instead of interfaces. This eliminates the need to compute
Sinterface modes T. It applies to problems (and frequency ranges) where the interfaces can
be considered to vibrate as rigid bodies. For the current example of two connected beams,
rigid elements are used to make all the nodes at the ends of the beams dependent on nodes
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Figure 5-112. – Illustration of a rigid element making all the nodes at the end of the beam
dependent on a single node.

at the beam center line. Figure 104 illustrates the implementation of one of the rigid
elements in NASTRAN.

This is a reasonable assumption for the beams under consideration because modes with
significant variations across the cross-section occur above the frequency range of interest.

As mentioned previously, the user must specify the nodes for the residual vectors
calculations. The connection forces between the components must be computed accurately
in a CMS solution, and thus residual vectors are included in the basis set for all 6 DOFs at
any location where two components are connected to each other. It is often useful to also
include residual vectors for nodal locations where boundary conditions are to be applied
instead of explicitly including the boundary conditions as nodal constraints in the finite
element analysis. The the normal modes and residual vectors are extracted only once, and
a variety of boundary conditions can be applied subsequently. Since forces also have to be
computed accurately at the locations where boundary conditions are to be applied, residual
vectors are also included for all the DOFs at these nodes. For the present case, one end of
each beam connects to the other beam and the other end may possibly be used to apply
boundary conditions. Residual vectors are not extracted for all the nodes at the ends of the
beams. Instead rigid elements are used to make all the nodes dependent on a single node at
the beam centerline. Ultimately, this means that residual vectors are extracted for nodes at
both ends of each beam, thus adding 12 residual vectors to the basis set for each beam.

The computations for the single beam were performed in a variety of ways and validated in
NASTRAN first before proceeding with the component modes synthesis (CMS) analysis.
The goal is to allow 6 DOF for each beam at the connection location and at the ends,
RBar elements are used at the ends of the beams to force all the nodes to move together as
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rigid entities. This representation does not allow the cross-section at the beam ends to
deform. It is first compared to a contiguous model without RBars to verify that it does not
significantly change the resonance frequencies for the bending modes. Table 5-44 lists the
analytical solution for the resonance frequencies assuming free boundary conditions along
with the two NASTRAN computations.

Table 5-44. – Analytical solution for the resonance frequencies of a free-free beam along with
solutions from NASTRAN.

N Primary Direction Analytical Contiguous RBar at Connection
2 Y 114.9 Hz 114.8 Hz 115.0 Hz
2 Z 229.8 Hz 229.3 Hz 229.6 Hz
3 Y 316.7 Hz 316.2 Hz 316.3 Hz
4 Y 621.0 Hz 619.3 Hz 620.0 Hz
3 Z 633.5 Hz 630.0 Hz 630.0 Hz
5 Y 1026.4 Hz 1022.4 HZ 1022.6 Hz
4 Z 1242.0 Hz 1229.5 Hz 1230.7 Hz
6 Y 1533.4 Hz 1525.0 Hz 1526.5 Hz

The integer N in the table lists the number of nodal lines along the beam’s length. The
table does not include N = 0 and N = 1 modes because they represent rigid body
vibrations (and are at 0 Hz). The beam’s width was chosen to be twice its height, and thus
the resonance frequencies in the Z-direction are double those for the Y-direction. The
results show that the mesh is refined enough to give accurate results, although it is not
clear why the resonance frequencies from NASTRAN are lower than those for the
analytical solution.

The next step is to perform the calculations as a CMS analysis with the resonance
frequencies, mode shapes and residual vectors computed separately for each beam. For
both beams in both CMS analyses, 10 normal modes are retained and residual vectors are
included for all 6 DOFs for a single node at both ends of the beams. For reference
purposes, Table 5-45 lists the resonance frequencies for both the normal modes (excluding
rigid body modes) and residual vectors for the two shorter beams.

For the CMS analyses, a separate computer program is used to combine the mode sets and
apply the connections between the components and the boundary conditions. The
calculations are performed in "modal space" similar to that discussed in the NASTRAN
Basic Dynamics User’s Guide.8 The connections and boundary conditions are applied with
user-specified stiffnesses between two nodes or between a single node and ground.
Specifying large stiffnesses (1x1012 N/m for the current analysis) has the effect of rigidly
constraining two nodes to each other or constraining specific DOFs to zero displacement at
a single node.

Once the CMS analysis is set-up, it is possible to rapidly perform the computations for the
beam with a variety of specified boundary conditions. The NASTRAN solution with the

420



Table 5-45. – Resonance frequencies for the normal modes and residual vectors in NASTRAN
and Sierra/SD.

Type Beam 1 Beam 1 Beam 2 Beam 2
NASTRAN Sierra/SD NASTRAN Sierra/SD

Normal Mode 414.5 Hz 414.5 Hz 511.7 Hz 511.7 Hz
825.7 Hz 825.7 Hz 1018.3 Hz 1018.3 Hz
1142.1 Hz 1142.1 Hz 1409.6 Hz 1409.6 Hz
2237.7 Hz 2237.9 Hz 2761.4 Hz 2761.7 Hz

Residual Vector 2335.3 Hz 2335.2 Hz 2877.5 Hz 2877.4 Hz
4030.5 Hz 4030.8 Hz 4976.4 Hz 4976.9 Hz
4684.9 Hz 4684.7 Hz 5767.6 Hz 5767.3 Hz
5521.6 Hz 5520.6 Hz 6133.1 Hz 6131.8 Hz
6181.5 Hz 6182.3 Hz 7634.8 Hz 7636.1 Hz
11174.2 Hz 11164.8 Hz 12422.1 Hz 12410.5 Hz
12270.5 Hz 12265.1 Hz 13622.0 Hz 13615.9 Hz
16403.7 Hz 16399.7 Hz 20131.7 Hz 20126.7 Hz
22639.3 Hz 22627.8 Hz 27801.1 Hz 27789.8 Hz
25214.8 Hz 25151.2 Hz 28060.7 Hz 27981.9 Hz
28419.4 Hz 28412.3 Hz 34774.4 Hz 34766.1 Hz
32990.6 Hz 32980.5 Hz 40458.6 Hz 40453.8 Hz

two beams connected to each other with a rigid RBar element is used as the reference since
the CMS analysis should produce identical results. Table 5-46 Table 5-47 Table 5-48 Table
5-49 list the beam resonance frequencies for various boundary conditions using the
NASTRAN solution with an RBar connection and for the two CMS analyses.

The results in the tables show good agreement between the NASTRAN model and the
CMS analyses that include residual vectors. Without residual vectors, the resonance
frequencies are considerably too high. While the CMS analyses require some extra effort to
set-up, it is possible to perform all the computations with a single model by changing the
stiffnesses applied at the ends of the beams. The NASTRAN computations for the model
required a separate mode extraction analysis for each boundary condition.
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Table 5-46. – Comparison of the NASTRAN solution with an RBar connecting the beams to
the CMS solutions using NASTRAN and Sierra/SD for free-free boundary conditions.

N Primary RBar at CMS, CMS, CMS, NASTRAN
Direction Connection NASTRAN Sierra/SD w/o Residual

Vectors
2 Z 115.0 Hz 115.1 Hz 115.1 Hz 132.4 Hz
2 Y 229.6 Hz 229.8 Hz 229.8 Hz 319.3 Hz
3 Z 316.3 Hz 316.7 Hz 316.7 Hz 319.2 Hz
4 Z 620.0 Hz 621.3 Hz 621.4 Hz 706.1 Hz
3 Y 630.0 Hz 631.3 Hz 631.3 Hz 654.6 Hz
5 Z 1022.6 Hz 1025.9 Hz 1026.0 Hz 1053.9 Hz
4 Y 1230.7 Hz 1235.5 Hz 1235.6 Hz > 2000 Hz
6 Z 1526.5 Hz 1533.7 Hz 1533.9 Hz 1769.0 Hz

Table 5-47. – Comparison of the NASTRAN solution with an RBar connecting the beams
to the CMS solutions using NASTRAN and Sierra/SD for clamped-clamped boundary con-
ditions.

N Primary RBar at CMS, CMS, CMS, NASTRAN
Direction Connection NASTRAN Sierra/SD w/o Residual

Vectors
2 Z 115.2 Hz 115.3 Hz 115.3 Hz 167.3 Hz
2 Y 229.9 Hz 230.0 Hz 230.0 Hz > 2000 Hz
3 Z 317.2 Hz 317.4 Hz 317.4 Hz 411.3 Hz
4 Z 622.0 Hz 622.7 Hz 622.9 Hz 877.8 Hz
3 Y 631.2 Hz 631.8 Hz 631.8 Hz > 2000 Hz
5 Z 1026.1 Hz 1028.2 Hz 1028.4 Hz 1346.5 Hz
4 Y 1232.8 Hz 1235.4 Hz 1235.6 Hz > 2000 Hz
6 Z 1532.0 Hz 1537.0 Hz 1537.4 Hz > 2000 Hz
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Table 5-48. – Comparison of the NASTRAN solution with an RBar connecting the beams
to the CMS solutions using NASTRAN and Sierra/SD for simply supported boundary con-
ditions.

N Primary RBar at CMS, CMS, CMS, NASTRAN
Direction Connection NASTRAN Sierra/SD w/o Residual

Vectors
2 Z 50.7 Hz 50.7 Hz 50.8 Hz 56.5 Hz
2 Y 101.4 Hz 101.4 Hz 101.4 Hz 126.8 Hz
3 Z 202.6 Hz 202.7 Hz 202.8 Hz 203.9 Hz
3 Y 404.4 Hz 404.7 Hz 404.7 Hz 412.8 Hz
4 Z 456.2 Hz 456.7 Hz 456.7 Hz 527 6 Hz
5 Z 809.5 Hz 811.0 Hz 811.1 Hz 839.5 Hz
4 Y 907.7 Hz 909.4 Hz 909.5 Hz > 2000 Hz
6 Z 1264.6 Hz 1268.3 Hz 1268.4 Hz 1444.3 Hz

Table 5-49. – Comparison of the NASTRAN solution with an RBar connecting the beams to
the CMS solutions using NASTRAN and Sierra/SD for clamped-free boundary conditions.

N Primary RBar at CMS, CMS, CMS, NASTRAN
Direction Connection NASTRAN Sierra/SD w/o Residual

Vectors
1 Z 18.1 Hz 18.1 Hz 18.1 Hz 20.4 Hz
1 Y 36.1 Hz 36.2 Hz 36.2 Hz 46.1 Hz
2 Z 113.4 Hz 113.4 Hz 113.4 Hz 148.1 Hz
2 Y 226.3 Hz 226.4 Hz 226.4 Hz 458.6 Hz
3 Z 316.9 Hz 317.2 Hz 317.2 Hz 362.1 Hz
4 Z 621.0 Hz 622.0 Hz 622.1 Hz 798.1 Hz
3 Y 630.9 Hz 631.8 Hz 631.8 Hz > 2000 Hz
5 Z 1024.3 Hz 1027.0 Hz 1027.2 Hz 1172.5 Hz
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10.6. Mass Properties Verification Tests

The following problems were used to verify the mass properties calculations in Sierra/SD.
These problems cover most element types, however superelements are not addressed here.
The tests and results described here were generated with release 2.9.

10.6.1. 0D Verification Test

The following test was used to verify mass properties for conmass elements. The test
consists of an assembly of three conmass elements as shown in Figure 6-113. In the finite
element model, the masses were connected with RBar elements which do not add mass to
the system.

The total mass of the assembly is mtotal = 3m. The center-of-gravity is

xcg = (mb+ 0−mb)/mtotal = 0 (10.6.1)
ycg = (0 +mb+ 0)/mtotal = b/3 (10.6.2)
zcg = (0 +mb+ 2mb)/mtotal = 1 (10.6.3)

The components of the inertia tensor are

Ixx = Īxx+mr2
x (10.6.4)

= Īxx+m
[
(2b)2 + (b2 + b2) + 0

]
= Īxx+ 6mb2 (10.6.5)

Iyy = Īyy +mr2
y (10.6.6)

= Īyy +m
[(
b2 + (2b)2

)
+ b2 + b2

]
= Īyy + 7mb2 (10.6.7)

Izz = Īzz +mr2
z (10.6.8)

= Īzz +m
[
b2 + b2 + b2

]
= Īzz + 3mb2 (10.6.9)

Ixy = Īxy +mdxdy (10.6.10)
= Īxy +m [0 + 0 + 0] = Īxy (10.6.11)

Ixz = Īxz +mdxdz (10.6.12)
= Īxz +m

[
0 + 0−2b2

]
= Īxz−2b2 (10.6.13)

Iyz = Īyz +mdydz (10.6.14)
= Īyz +m

[
0 + b2 + 0

]
= Īyz + b2 (10.6.15)

A comparison between these answers and the Sierra/SD predictions is shown in Table
6-50. Parameters used for this problem were m= 1, b= 1, and
Īxx = Īyy = Īzz = Īxy = Īxz = Īyz = 0.
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Figure 6-113. – Verification problem for conmass elements.

Table 6-50. – Comparison of Sierra/SD with exact solutions for the 0D verification problem.

Property Exact Sierra/SD
mtotal 3.0 3.0
xcg 0.0 0.0
ycg 0.3333 0.3333
zcg 1.0 1.0
Ixx 6.0 6.0
Iyy 7.0 7.0
Izz 3.0 3.0
Ixy 0.0 0.0
Ixz -2.0 -2.0
Iyz 1.0 1.0
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10.6.2. 1D Verification Test

The following test was used to verify mass properties for the 1D elements which include the
Beam2, TiBeam, Nbeam, and truss. This test case consists of a beam offset in all three
dimensions from the coordinate frame as shown in Figure 6-114.

The total mass of the beam is

mtotal = ρV = ρπr2l = 0.60kg (10.6.16)

where V is the volume of the beam, r is the radius of the beam taken to be 5mm, l is the
length of the beam, and ρ is the beam material density taken as 2.8294×10−5kg/mm3 to
give a total mass of 0.6kg. The center-of-gravity is

xcg = 180mm−
(180mm+ 90mm

2

)
= 45mm (10.6.17)

ycg = 150mm (10.6.18)
zcg = 90mm (10.6.19)

The components of the inertia tensor are

Ixx = Īxx+mr2
x (10.6.20)

= 1
2mr

2 +m(d2
y +d2

z) = 18367.5kg ·mm2 (10.6.21)

Iyy = Īyy +mr2
y (10.6.22)

=
[1
4mr

2 + 1
12ml

2
]

+m(d2
x+d2

z) = 9723.75kg ·mm2 (10.6.23)

Izz = Īzz +mr2
z (10.6.24)

=
[1
4mr

2 + 1
12ml

2
]

+m(d2
x+d2

y) = 18363.75kg ·mm2 (10.6.25)

Ixy = Īxy +mdxdy (10.6.26)
= 0 +mdxdy = 4050.0kg ·mm2 (10.6.27)

Ixz = Īxz +mdxdz (10.6.28)
= 0 +mdxdz = 2430.0kg ·mm2 (10.6.29)

Iyz = Īyz +mdydz (10.6.30)
= 0 +mdydz = 8100.0kg ·mm2 (10.6.31)

A comparison between these answers and the Sierra/SD predictions for the 1D elements
is shown in Table 6-51. The finite element model used to generate these results contained
27 elements.
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Figure 6-114. – Verification problem for 1D elements.

Table 6-51. – Comparison of Sierra/SD with exact solutions for the 1D verification problem.

Property Exact Beam2 Nbeam TiBeam Truss
mtotal 0.60 0.60 0.06 0.60 0.60
xcg 45 45 45 44.875 45
ycg 150 150 150 150 150
zcg 90 90 90 90 90
Ixx 18367.5 18367.0 18367.0 18368.0 18360.0
Iyy 9723.75 9732.2 9733.7 9723.8 9720.0
Izz 18363.75 18372.0 18374.0 18358 18360.0
Ixy 4050.0 4050.0 4050.0 4050.0 4050.0
Ixz 2430.0 2430.0 2430.0 2423.3 2430.0
Iyz 8100.0 8100.0 8100.0 8100.0 8100.0
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10.6.3. 2D Verification Test

The following test was used to verify mass properties for the 2D elements which include all
the triangular and quadrilateral elements. This test case consists of an L-shaped plate as
shown in Figure 6-115.

The total mass of the plate is

mtotal =m1 +m2 = ρ
(
abt+ 1

2bct
)

(10.6.32)

where m1 and m2 are the masses of the rectangular section and triangular section
respectively. Both sections have the same material density, ρ, and the same thickness, t.
The center-of-gravity is

xcg =− 1
mtotal

[
m1a+m2

(
a+ t

2

)]
(10.6.33)

ycg = 1
mtotal

[
m1

(
b

2

)
+m2

(2
3b
)]

(10.6.34)

zcg = 1
mtotal

[
0 +m2

(
c

3

)]
(10.6.35)
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The components of the inertia tensor are

Ixx =
(
Īxx+m1r

2
x

)
+
(
Īxx+m2r

2
x

)
(10.6.36)

=
(
ρ1t1Īx+m1d

2
y

)
+
[(
Īyy + Īzz

)
+m2

(
d2
x+d2

y

)]
(10.6.37)

=
(
m1b2

12 + m1b2

4

)
+
(
m2c2

6 + m2b2

2

)
(10.6.38)

= m1b2

3 + m2c2

6 + m2b2

2 (10.6.39)

Iyy =
(
Īyy +m1r

2
y

)
+
(
Īyy +m2r

2
y

)
(10.6.40)

=
(
ρ1t1Īx+m1d

2
x

)
+
[
ρ2t2Īx+m2

(
d2
x+d2

z

)]
(10.6.41)

=
(
m1a2

12 + m1a2

4

)
+
(
m2c2

18 + m2c2

9 +m2a
2
)

(10.6.42)

= m1a2

3 + m2c2

6 +m2a
2 (10.6.43)

Izz =
(
Īzz +m1r

2
z

)
+
(
Īzz +m2r

2
z

)
(10.6.44)

=
(
ρ1t1Īz +m1d

2
x

)
+
[(
Īxx+ Īyy

)
+m2

(
d2
x+d2

y

)]
(10.6.45)

=
(
m1a2

3 + m1b2

3

)
+
(
m2b2

18 + 8m2b2

18 +m2a
2
)

(10.6.46)

= m1a2

3 + m1b2

3 + m2b2

2 +m2a
2 (10.6.47)

Ixy =
(
Īxy +m1dxdy

)
+
(
Īxy +m2dxdy

)
(10.6.48)

=
[
0 +m1

(
−a2

)(
b

2

)]
+
[
0 +m2 (−a)

(
2b
3

)]
(10.6.49)

=−m1ab

4 − 2m2ab

3 (10.6.50)

Ixz =
(
Īxz +m1dxdz

)
+
(
Īxz +m2dxdz

)
(10.6.51)

= (0 + 0) +
[
0 +m2 (−a)

(
c

3

)]
(10.6.52)

=−m2ac

3 (10.6.53)

Iyz =
(
Īyz +m1dydz

)
+ρ2t2

∫ b

0

∫ c
by

0
yzdzdy (10.6.54)

= (0 + 0) + ρ2t2c2

2b2
∫ b

0
y3dy (10.6.55)

= m2bc

4 (10.6.56)

A comparison between these answers and the Sierra/SD predictions is listed in Table
6-52. The finite element model of the plate contained 1679 elements. Parameters used for
this problem were a= 40in, b= 50in, c= 30in, t= 0.1in, and ρ= 0.1lb/in3.
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Figure 6-115. – Verification problem for shell elements.

Table 6-52. – Verification of 2D Mass Properties.

Property Exact Tri Triashell QuadTM
mtotal 27.5 27.5 27.5 27.5
xcg -25.4682 -25.455 -25.455 -25.455
ycg 27.2727 27.273 27.273 27.273
zcg 2.7273 2.7273 2.7273 2.7273
Ixx 27167 27178 27167 27167
Iyy 23792 23801 23792 23792
Izz 48708 48726 48708 48708
Ixy -20000 -20000 -20000 -20000
Ixz -3000 -3000 -3000 -3000
Iyz 2813 2812.4 2812.5 2812.5
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10.6.4. 3D Verification Tests

The following tests were used to verify mass properties for the 3D elements which include
the hexahedron, tetrahedron, and wedge elements. Solutions for these problems were
mostly taken from the dynamics text by Meriam and Kraige.37

10.6.4.1. Offset Block

The first 3D test consists of an offset cube as shown in Figure 6-116. The total mass of the
block is given by

mtotal = ρl3 = 3.375. (10.6.57)
where ρ is the density of the block and l is the length of each side of the block. The
center-of-gravity is

xcg = ycg = zcg = 0.8 + 1
2(1.5) = 1.55. (10.6.58)

The components of the inertia tensor are

Ixx = Īxx+mr2
x (10.6.59)

= 1
12m

(
2l2
)

+m
(
d2
y +d2

z

)
= 17.4825 (10.6.60)

= Iyy = Izz (10.6.61)
Ixy = Īxy +mdxdy = 8.1084375 (10.6.62)

= Ixz = Iyz (10.6.63)

A comparison between these answers and the Sierra/SD predictions is listed in Table
6-53. The tet model contained 26,430 elements, and the hex model contained 343 elements.
Parameters used for this problem were ρ= 1.0 and l = 1.5

Y

Z

X

(0.8, 0.8, 0.8)

Cube

1.5×1.5×1.5

! = 1.0
y

z

xCG

Figure 6-116. – Verification problem for solid elements.
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Table 6-53. – Comparison of Sierra/SD with exact solutions for the 3D block.

Property Exact Tet4 Hex8
mtotal 3.375 3.375 3.375
xcg 1.55 1.55 1.55
ycg 1.55 1.55 1.55
zcg 1.55 1.55 1.55
Ixx 17.4825 17.48 17.482
Iyy 17.4825 17.48 17.482
Izz 17.4825 17.48 17.482
Ixy 8.1084 8.1084 8.1084
Ixz 8.1084 8.1084 8.1084
Iyz 8.1084 8.1084 8.1084

10.6.4.2. Half-torus

This test consists of a half-torus as shown in Figure 6-117. The total mass is

mtotal = ρV = ρπr2 (πR) = 0.61685. (10.6.64)

where V is the volume of the body, and r and R are the radii as shown in the problem
figure. The density, ρ, was taken as 1.0 in this non-dimensional problem. The
center-of-gravity is

xcg = ycg = 0 (10.6.65)

zcg = r2 + 4R2

2πR =−0.64657. (10.6.66)

The components of the inertia tensor are

Ixx = Izz = 1
2mR

2 + 5
8mr

2 = 0.3474875 (10.6.67)

Iyy =mR2 + 3
4mr

2 = 0.645765 (10.6.68)

Ixy = Ixz = Iyz = 0. (10.6.69)

A comparison between these answers and the Sierra/SD predictions is listed in Table 6-54.
The tet model contained 175,592 elements. The hex model contained 62,300 elements.
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Figure 6-117. – Verification problem for solid elements.

Table 6-54. – Comparison of Sierra/SD with exact solutions for the 3D half-torus.

Property Exact Tet4 Hex8
mtotal 0.61685 0.6153 0.61634
xcg 0.0 0.0 0.0
ycg 0.0 0.0 0.0
zcg -0.6466 -0.6465 -0.6465
Ixx 0.3475 0.3315 0.3321
Iyy 0.6458 0.6440 0.6451
Izz 0.3475 0.3315 0.3321
Ixy 0.0 0.0 0.0
Ixz 0.0 0.0 0.0
Iyz 0.0 0.0 0.0
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10.6.4.3. Hemispherical Shell

This test consists of a hemispherical shell as shown in Figure 6-118. The total mass is

mtotal = ρV = 1
2

[4
3π
(
r2
o− r2

i

)]
= 0.318348. (10.6.70)

where V is the volume of the body, and ro and ri are the outer and inner radii as shown in
the problem figure. The density, ρ, was taken as 1.0 in this non-dimensional problem. The
center-of-gravity is

xcg = r

2 = 0.25 (10.6.71)

ycg = zcg = 0. (10.6.72)

The components of the inertia tensor are

Ixx = Iyy = Izz = 2
3mr

2 = 0.053058 (10.6.73)

Ixy = Ixz = Iyz = 0. (10.6.74)

A comparison between these answers and the Sierra/SD predictions is listed in Table 6-55.
The finite element model used to generate these results contained 108,000 hex elements.

x

y

z

CG

ri

ro

r

ri = 0.4

r = 0.5

ro = 0.6

Figure 6-118. – Verification problem for solid elements.
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Table 6-55. – Comparison of Sierra/SD with exact solutions for the 3D hemispherical shell.

Property Exact Hex8
mtotal 0.3183 0.3182
xcg 0.25 0.2566
ycg 0.0 0.0
zcg 0.0 0.0
Ixx 0.05306 0.05653
Iyy 0.05306 0.05653
Izz 0.05306 0.05653
Ixy 0.0 0.0
Ixz 0.0 0.0
Iyz 0.0 0.0

10.6.4.4. Tetrahedron

This test consists of a tetrahedron with side lengths of a, b, and c as shown in Figure 6-119.
The total mass is

mtotal = ρV = ρ
1
6abc (10.6.75)

where V is the volume of the tetrahedron. The density, ρ, was taken as 1.0 for this
non-dimensional problem. The center-of-gravity is

xcg = a

4 (10.6.76)

ycg = b

4 (10.6.77)

zcg = c

4 (10.6.78)

435



Figure 6-119. – Verification problem for solid elements.

The components of the inertia tensor are

Ixx = 1
10
(
b2 + c2

)
(10.6.79)

Iyy = 1
10
(
a2 + c2

)
(10.6.80)

Izz = 1
10
(
a2 + b2

)
(10.6.81)

Ixy =
∫
m
xydm= ρ

∫
V
xydV (10.6.82)

=
∫ a

0

∫ 1−x
a

0

∫ 1−x
a−

z
c

0
xydydzdx= 1

20mab (10.6.83)

Ixz =
∫
m
xzdm= ρ

∫
V
xzdV (10.6.84)

=
∫ a

0

∫ 1−x
a

0

∫ 1−x
a−

y
b

0
xzdzdydx= 1

20mac (10.6.85)

Iyz =
∫
m
yzdm= ρ

∫
V
yzdV (10.6.86)

=
∫ b

0

∫ 1−y
b

0

∫ 1−x
a−

y
b

0
yzdzdxdy = 1

20mbc (10.6.87)

A comparison between these answers and the Sierra/SD predictions is listed in Table
6-56. The finite element model used for this problem used tet elements. Two different mesh
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Table 6-56. – Comparison of Sierra/SD with exact solutions for the 3D tetrahedron.

Property Exact Tet4 Coarse Tet4 Fine
mtotal 0.27 0.27 0.27
xcg 0.3 0.3 0.3
ycg 0.225 0.225 0.225
zcg 0.375 0.375 0.375
Ixx 0.08262 0.08249 0.08262
Iyy 0.09963 0.09950 0.09963
Izz 0.06075 0.06062 0.06075
Ixy 0.01458 0.01458 0.01458
Ixz 0.0243 0.02430 0.02430
Iyz 0.01823 0.01823 0.01823

densities were used and results for both are presented. The models contained 3933
elements and 26,650 elements respectively.

437



10.7. Phenomenon Based Testing

Each of the phenomena identified in the Phenomenology Identification and Ranking Table
(PIRT) from the V&V plan has specific tests for evaluation of the predictability of the
software. Details are described in the sections below.

10.7.1. Elastodynamics

The requirements for elastodynamics are detailed in the requirements document and the
computational plan. They may be summarized in Table 7-57. Verification aspects for each
requirement will be detailed in sections of this chapter.
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Table 7-57. – Elastodynamics Requirements.
# Requirement
1 Compute static responses
2 Compute modes for large models (10M DOFS or greater). Include:

- Frequency Response Functions
- Random Vibration inputs and Response
- Shock Spectra

3 Compute Time domain analysis of these models, using direct time in-
tegration. An interface to facilitate time domain analysis using modal
superposition will also be provided.

4 Output Stresses, Strains, Displacements, Velocities and Accelerations
5 Provide a platform for development of additional structural dynamics

capabilities. These will include system identification, design optimiza-
tion, nondeterministic methods, coupled/multi-physics solutions and
others.

6 Provide portability and scalability to allow effective use on ASC plat-
forms, and data file compatibility with other ASC codes.

7 Loads:
- point loads (applied though node sets)
- gravity loads on elements
- pressure loads

8 Support standard elements from FE analysis
- solid elements (Hex,Wedge,Tet)
- shells (Triangle, Quad)
- Beams
- point masses, springs
- MultiPoint Constraints

9 Support linear, elastodynamic material models with anisotropy.
10 Documentation:

- a users manual
-programmers manual
- software engineering practices
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10.7.2. Verification With Respect to Semi-Analytical Static Tests

Analytic and semi-analytic solutions for static deformation problems have been determined
for many geometries and reported in Roark.57 Note that these solutions are for idealized
models. Thus, the beam models are appropriate to Euler Beams, but are exact for beams
made of solid elements only in the limits where shear terms can be neglected.

Tables 7-58 and 7-59 will be used for Beam Elements: For Shell elements Tables 7-60
through 7-62 are used. The reference table is from Roark.57

Table 7-58. – Straight Beam Element Analytic Solutions.
Roark Description Case Max Max
Table Disp Rot.
3 1a cantilever free. Applied point force Roark -13.33 20.0

Beam2 -13.33 20.0
Tria3 -12.13 18.2
Tria3⊥ -13.33 20.0
Hex8 -13.44 N/A

3 1e simply supported simply supported. Roark .6356 2.311
Applied point force Beam2 .6356 2.312

Tria3 .5783 2.104
Tria3⊥ .5785 2.104

3 3b cantilever guided. Roark 4.032 -8.064
Applied point moment Beam2 4.032 -8.064

The “Tria6⊥” model is rotated so a pure membrane deformation occurs. A finer mesh is
required.

Table 7-59. – Curved Beam Element Analytic Solutions.
Roark Description Case Dv
Table
17 1 opposed radial loading on circular ring Roark -5.9513

Beam2 -5.950
17 2 opposed in-line loading on circular ring Roark .8263

(measured at θ = 30o) Beam2 .8259
17 3 opposed moments on circular ring Roark 7.9743

(measured at θ = 30o) Beam2 7.967

For solids, we employ Table 1-7. In addition, examples from the beams and shells may be
computed using solid elements and a suitable discretization.
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Table 7-60. – Annular Plate with Uniform Annular Line Load.
The test of having the outer edge simply supported and the inner edge free cannot be done

at this time because the loading would require a non-cartesian coordinate system.
Roark Description Case Max
Table Disp
24 1a Outer edge simply supported. Inner edge free Roark 0.01701

Tria3 0.01696
24 1b Outer edge simply supported. Inner edge guided Roark .0068853

Tria3 .006885
24 1e Outer edge fixed. Inner edge free Roark .0034952

Tria3 .0034946
24 5a Outer edge simply supported. Inner free

Table 7-61. – Square Plate.
Roark Description Case Max Center
Table Disp Stress
26 1a Simply supported. Roark 5.3280 1.0346e7

Uniform load over plate Tria3 5.3225 1.03327e7
QuadT 5.3225 1.03327e7

26 8a Fixed edges. Roark 1.6560 4.9896e6
Uniform load over entire plate Tria3 1.6590 4.9407e6

QuadT 1.6590 4.9406e6
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Table 7-62. – Thin Walled Pressure Vessels.
The second half of this table cannot be computed at this time because the pressure load

would require using a non-cartesian coordinate system.
Roark Description Case Max Max Comment
Table Disp Stress
28 1a uniform axial load on

cylinder
Roark -4.074e-6 407.4 ∆Z =2.037E-

5
Tria3 -4.626e-6 408.4 ∆Z =2.039E-

5
Hex8 -3.67e-6 408.0 ∆Z =2.057E-

5
28 1b uniform radial pressure

on cylinder
Roark 3.333e-7 10.0 R=1, h=1.5,

t=.1
Tria3 3.333e-7 10.035
Hex8 3.445e-7 10.231

28 3a uniform pressure on
sphere

Roark

Tria3
28 5 uniform pressure on

toroid
Roark

Tria3
30 1a uniform radial force on

edge of partial sphere
Roark

Tria3
30 1b uniform edge moment on

partial sphere
Roark

Tria3

Table 7-63. – Solid Spheres.
Roark Description Exact FE Exact FE
Table Disp Disp Stress Stress
33 1A Sphere on a flat plate
33 1B Sphere on a sphere
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10.7.3. Verification With Respect to Semi-Analytical Eigen Analysis

Analytic and semi-analytic eigenvalue decompositions are known for most simple
geometries. Summaries are available.10 Note however, that these solutions are for idealized
models. For exeThus, the Euler beam models are appropriate to Euler Beams, but are
exact for beams made of solid elements only in the limits where shear terms can be
neglected.

An eigenvector provides information about the global solution. A correct solution requires
both a correct stiffness and mass matrix. Further, accuracy of the solution is easily
determined by examination of the eigenvalues alone. On the other hand, the load vector is
irrelevant, which simplifies the test matrix.

The “truth” model for these analyses are the eigenvalues obtained from analytic and
semi-analytic solutions tabulated in Blevins. Note that the accuracy of the textbook
solutions is limited to about 0.5% in most cases. Spring and Mass analysis matrix is
detailed in Table 7-64. For beam elements, eigenvalues Tablulated in 7-65 through 7-67.
Shell elements use Tables 7-68 through 7-70. Note that beams and shells have simplifying
assumptions which may cause the solid based solutions to differ from the textbook
solutions. For example, the “beams” built of solid elements will contain shear effects that
are not present in a standard beam element. The geometry for these tests is illustrated in
Figure 7-120.

The computational results represent the converged solution. In most cases a Richardson
extrapolation has been performed to arrive at the minimum error due to discretization.

For all the following examples in this section (i.e. Tables 7-64 through 7-70, unless
otherwise noted we use material properties for steel, i.e. E = 30x106 psi, ν = 0.30 and
ρ= 0.288 lbs/in3 (7.4592x10−4 slugs/in3).

In−Plane Extension Mode, Clamped−Clamped

R0α R0

In−Plane Flexural Mode, Pinned−Pinned

α

Figure 7-120. – Blevins Table 9-2.1 and 9-2.2 Geometries.
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Table 7-64. – Spring Mass Vibration.
Blevins Description Sol’n Mode Number
Table Type 1 2 3
6-2 2 two equal masses, Exact .0983632 .2575181 N/A

two equal springs FE .0983632 .2575181 N/A
6-2 18 Three equal masses, Exact .159155 .3183100 .3183100

six equal springs FE .159155 .3183100 .3183100

Note: The Lanczos solver (in ARPACK) cannot find all the modes of the system. Some
modes were found by exporting the matrices and solving in MATLAB

Table 7-65. – Beam Mass Vibration.
Massless beam has square cross section with I1=1, L=20, 100 elements.

Table Description Sol’n Mode 1
6-2 19 End mass on cantilever beam Exact 16.88

FE 16.88
6-2 20 Center mass, pinned-pinned beam Exact 67.52

FE 67.52
6-2 22 Center mass, clamped-clamped beam Exact 135.05

FE 135.05

Table 7-66. – Beam Vibration - Using Beam2.
The sample beam has a square cross section with area=1, length=20. 100 elements. No
torsion spring is yet available.

Blevins Description Sol’n Mode Number
Table Type 1 2 3 4
8-1 1 Free-free bending Exact 515.36 1420.6 2785.0 4603.7

FE 515.15 1419.6 2781.9 4596.9
8-1 2 Free-sliding bending Exact 128.84 696.24 1719.3 3197.0

FE 128.83 696.05 1718.5 3194.7
8-1 3 Clamped-free Exact 80.99 507.56 1421.2 2784.9

FE 80.98 507.44 1420.6 2783.2
8-1 5 Pinned-pinned Exact 227.34 909.37 2046.1 3637.5

FE 227.34 909.29 2045.7 3636.4
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Table 7-67. – Uniform Shaft Torsional.
Note. The discrepancy in this table stems from a mismatch of geometry (which we intend to
clear up soon). The analytic results are for circular cross sections. We have a square cross
section in the FE results. It is clear that the frequencies should be ratios of 1,3,5,7, etc. This
holds for the FE results.

Blevins Description Sol’n Mode Number
Table Type 1 2 3 4
8-19 2 Fixed-Free analytic 1427.93 4283.78 7139.64 9995.5

FE-Beam2 1554.68 4663.66 7771.49 10877.4
FE-Hex8 1545.97 4642.1 7750.76 10880

Table 7-68. – Circular Arcs.

Blevins Description Sol’n Mode Number
Table Type 1 2 3 4
9-2 1 Extension Mode analytic 52632 N/A N/A N/A

Clamped-Clamped FE Beam2 52693 N/A N/A N/A
9-2 2 In-Plane flexural mode analytic 2579.35 13137.2 30989.4 56026.3

Pinned-Pinned FE Beam2 2587.73 13189.5 30671.7 54445.7
9-2 5 Out-of-Plane Flexural analytic 1763.56 N/A N/A N/A

Clamped-Clamped FE Beam2 1741.11 N/A N/A N/A

Table 7-69. – Circular Plates - Bending.
Circular disk made of QuadT elements.

Blevins Description Sol’n Mode Number
Table Type 1 2 3 4
11-1.1 Free edge Exact 126.84 219.35 295.32 495.50

FE 129.31 217.25 300.16 493.72
11-1.2 Simply supported edge Exact 120.18 336.61 619.37 718.61

FE 119.20 335.69 618.69 718.64
11-1.3 Clamped edge Exact 246.78 513.36 842.25 960.32

FE 246.62 513.00 841.97 961.03
11-1.12 Clamped edge with

point
Est. 25.98 N/A N/A N/A

mass at center (M large) FE 25.83 N/A N/A N/A
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Table 7-70. – Rectangular Plates - Bending.
Using Tria3 elements, aspect ratio a/b= 1.5 in all cases.

Blevins Description Sol’n Mode Number
Table Type 1 2 3 4
11-4.1 Free-free-free-free Exact 864.14 927.25 2002.59 2158.85

FE 862.61 919.15 1989.43 2142.13
11-4.21 Clamped-clamped-

clamped-clamped.
Exact 2608.74 4029.22 6387.69 6428.04

FE 2608.29 4027.90 6387.04 6425.11
11-4.16 Simply supported Exact 1377.13 2648.23 4237.00 4765.01

(all 4 edges) FE 1376.97 2648.01 4237.05 4766.57
11-4.6 Clamped-free- Exact 652.94 1103.68 2127.08 2747.82

simply supported-
free

FE 648.82 1100.31 2113.90 2733.90
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10.7.4. Linear MultiPoint Constraints

MultiPoint Constraints (MPCs) are applied in structural dynamics for a number of
reasons. Typical uses include spreading a load over many input nodes, attaching dissimilar
meshes, connecting lumped structures, applying boundary conditions and approximating
rigid structures. The variety of uses for MPCs makes verification of their application
difficult. Only small problems may typically be solved analytically.

Analytic problems for which some degrees of freedom may be eliminated using constraints
will be compared with solutions from Sierra/SD. The problems for which these
comparisons may be made are still to be determined at this time.

In addition to analytic problems, code comparisons for practical problems will be made.
While code comparisons suffer from a number of problems, they have the advantages of
comparing solutions to the type of problems expected in practice, and they provide some
level of verification for components of the software which could otherwise not be tested.
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10.7.5. Linear Viscoelasticity

Linear viscoelasticity is a physics whose implementation in structural dynamics code is not
uncommon. The most conventional implementation is that which employs Prony series (see
Theory and User’s manuals.) Again, the purpose of verification is to assure that the
conventional implementation is done correctly.

For this test, we consider a beam of isochoric, isotropic viscoelastic material subject to
normal displacements in one direction consistent with a uniform compression. The imposed
displacement is ramped up and held at a fixed value. After the material is deformed at a
rate γ̇ for a period ∆t and then held, the resulting stress will be,

σ(t) = γ̇E∞∆t− γ̇
∑
n

(EG−E∞)τn(1− e∆t/τn)e−(t+∆t)/τn (10.7.1)

A plot of the above exact solution and the predictions of Sierra/SD are presented in
Figure 7-121.
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Figure 7-121. – Viscoelastic Relaxation. The Sierra/SD results reproduce the exact solution
viscoelastic relaxation after ramp and hold deformation.
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10.7.6. Code to Code Comparisons

Extreme care must be used when using code to code comparisons. They are no
replacement for more rigorous verification techniques (see Trucano55). However, they may
be useful when the following conditions are met.

• The “truth” model code has been adequately verified.

• The two codes can be determined to solve exactly the same differential equations.

• Comparisons are made to asymptotic quantities, i.e. quantities for which the
accuracy of the truth model code must ultimately converge.

• The value gained by the comparison provides important insight not readily obtained
by solution of analytic problems.

Any method that provides additional examination of the application is valuable.

A number of benchmark problems exist in the literature (see for example MacNeal34).
Some of these benchmark problems will be solved using Sierra/SD and using
MSC/Nastran, an industry standard for elastodynamics. Comparisons of the mesh-refined
solutions will be made. Other codes may be used for other phenomena.

The list of such code to code comparisons will necessarily grow over time. An example
includes a mock-AF&F which was analyzed for eigen response. This is a 500,000 degree of
freedom model designed for optimization studies. It is a real design with the level of detail
anticipated in practical models of this structure. It contains mostly Tet10 elements with
shells constructed of Tria6. Much of the model was constructed using automatic mesh
generation methods. Comparisons of the first 4 modes of this model are shown in Table
7-71.

Table 7-71. – AF&F code to code comparison.

# Description Nastran Sierra/SD Difference
1 Aft plate drum mode 434.3 Hz 437.0 Hz .6%
2 First bending, X 627.4 Hz 629.1 Hz .3%
3 First bending, Y 657.2 Hz 659.2 Hz .3%
4 torsion 793.6 Hz 793.2 Hz .05%

10.7.6.1. Membranes and Transfer from SierraSM

In this case, analyses of a preloaded (inflated) tire from Sierra are compared to AbaqusTM .
The tire model (Figure 7-122) consists of a rim, and multiple layers of rubber and
membranes. The tire is preloaded using Sierra/SM. The Sierra/SD analysis in this test
case involves reading the results from that SM analysis, transferring material parameters,
and computation of the eigenvalues of the system.
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Figure 7-122. – Tire Analysis Model.

Eigenvalue results are shown in Table 7-72. As seen in the table, there is excellent
agreement between Abaqus and Sierra/SD for this problem.
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# Abaqus Sierra % difference
1 39.912 40.3718 1.1
2 53.586 51.3133 4.3
3 55.650 53.5655 3.8
5 75.071 73.3562 2.3
7 97.202 96.6323 0.6
9 98.984 98.6028 0.4
11 119.35 119.045 0.3
13 142.54 142.219 0.2
15 142.56 142.287 0.2
17 167.07 166.891 0.1
19 171.37 171.045 0.2
21 193.59 193.372 0.1
23 193.75 193.540 0.1
25 214.47 214.001 0.2
27 221.77 221.814 0.0
29 235.20 234.640 0.2

Table 7-72. – Comparison of Eigen Frequencies of the Mooney-Rivlin Inflated Tire. For
double modes one frequency is listed.
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10.8. User Evaluations

While not rigorous in the same sense as closed form solutions, most analysts would agree
that evaluation by independent outside analysts is a valuable criteria in determining the
suitability of an analysis package. Such evaluation measures the answers to well-defined
problems, and it provides confidence in the product. For example, if the tools are lacking
to provide a reasonable model, this becomes readily apparent.

Where outside evaluations have been performed, we provide a summary and contact
information.

10.8.1. Newport News Shipyard

Contact: Travis Kerr kerr_te@nns.com and Jay Warren warren_je@nns.com

On two separate occasions, Newport News shipyard has worked with Sandia National Labs
to model their aircraft carriers. In October of 2000, and then again in October of 2002,
they sent analysts to Sandia National Labs to perform a whole ship model eigen and
transient dynamics analysis. Part of the first visit involved evaluation of a suite of tests.
Unfortunately, Sandia National Labs was not provided with any report on this evaluation.
Newport News shipyard has continued interest in using Sierra/SD.

10.8.2. British Atomic Weapons Establishment (AWE)

Contact: Trevor Hensley. Trevor.Hensley@awe.co.uk

From June to December of 2002, Trevor Hensley of the AWE evaluated Sandia National
Labs’s ASC applications in Albuquerque. Sierra/SD was among the first evaluated. One
problem was identified in statics. The displacements converged. Stress is reported in the
element coordinate system.

The AWE is currently negotiating to obtain a copy of Sierra/SD for their analysis at their
site.

10.8.3. NASA

Contact: Lloyd Purves, lpurves@hist.nasa.gov

This evaluation did not go well for several reasons.

1. There was a shortage of manpower. Lloyd had a summer student who was doing
most of the work, but the student did not have sufficient expertise to finish.

2. There were hardware and software installation problems. NASA personnel were not
able to visit us here, nor were Sierra/SD personnel given access to NASA machines.
Thus installation of the software became a real road block.
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3. Probably most importantly, the goals did not match. Sierra/SD is not a plug-in
replacement for NASTRAN. It has a wide variety of elements, but it also lacks
capability that may be unique to NASTRAN. For example, Sierra/SD has no
axially symmetric elements. Other translation issues (such as differences in spring
formulations) caused a good deal of difficulty.

10.8.4. Lockheed Martin – Denver

Contact: Dan Morganthaler, daniel.r.morganthaler@lmco.com

This interaction was funded under the Lockheed Martin shared vision program. It met
limited success. The main impediments were with the difficulty in getting Sierra/SD to
run properly on the parallel platforms. Dan visited Sandia National Labs for a few days.
The runs had not completed by the end of Dan’s visit. Eventually, Dan was able to get the
analysis done using superelement capabilities in Nastran. The report is available in draft
form.50

10.8.5. Advatech Pacific

Contact: Peter Rohl, peter.rohl@advatechpacific.com

Advatech comparing the results of Sierra/SD to NE/Nastran on a variety of structures.
This is available as conference proceedings.45

10.8.6. Sandia National Labs

10.8.6.1. Comparison to Abaqus thermal strains

In December 2005, an analyst compared the Abaqus and Sierra/SD thermal expansions.
This provides a real world comparison. However many would not consider this to be
verification.

Figures 8-123 and 8-124 relate to the analysis of a thin walled frustum for thermal loads.
Two model versions were created, one in Abaqus and the other in Sierra/SD. The energy
deposition data was provided by mapping the data from the element centroids to the nodes
using Paraview. A scaling term was applied to convert energy deposition to equivalent
thermal loads. The figures compare plots of e33 volumetric strains. The two approaches
compare well.

The model is about 135000 degrees of freedom, which is too large for our standard test
suite. However, it is available for comparison purposes.
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Figure 8-123. – Sierra/SD Thermal Strains.
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Figure 8-124. – Abaqus Thermal Strains.
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10.8.6.2. Superelement User Verification

Superelement insertion was examined by Fernando Bitsie, the product manager for
Sierra/SD, and a lead analyst in a sister organization. A nonlinear time domain analysis
was used to compare results between a full model and a reduced superelement model (using
two superelements). Of particular concern is the generation of high frequency response.
The coupling element between the two superelements is an Iwan element, which generates
shot noise as the spring/sliders alternatively open and close. This can be amplified as it is
fed into a superelement. This is a challenging test. The low frequency response of the
reduced order model may be correct. Also loading may generate significant contributions in
the high frequency spectrum.

The full and reduced order models are illustrated in Figure 8-125. In the reduced model,
the top and bottom solid sections are replaced by superelements. There are 8 nodes in the
reduced model, while the full model is composed of about 33,000 nodes.

images currently not available. under review and approval.

Figure 8-125. – Exploded view of 3 Leg structure with the full model on the left and the
reduced model on the right. Iwan elements connect the top and bottom structures of both
models. These Iwan elements are not shown because they connect co-located nodes.

Figure 8-126 shows the acceleration of the top and bottom as a function of time. There is a
much greater response for the superelement than for the full model. This is also illustrated
in Figure 8-127, where the force across the joints is examined in the time domain for both
the full and reduced models. Again, there is a significant difference.

However, examination of the response of the model in the frequency domain reveals that
the differences are primarily in the high frequency. Figure 8-128 shows the frequency
response of the accelerations in Figure 8-126. As seen in the figure, there is good agreement
between the models at lower frequencies. The discrepancies occur at the Nyquist frequency
(50 kHz), and twice that (the sampling frequency). The response at 100 kHz is strong for
the CMS model, and it is this response which is dominating the time response.

Figure 8-129 illustrates the same issue for the loading across the Iwan element. Compare
this with the time domain in Figure 8-127. Again, the low frequency response is accurate,
while there are significant issues at the sampling frequency.

As expected the response of the reduced order model agrees with the full order model at
lower frequencies, and not at higher frequencies.
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Figure 8-126. – Time Domain Acceleration Response of Comparative Model.
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Figure 8-127. – Time Domain Element Force of Comparative Model.
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Figure 8-128. – Frequency Domain Acceleration Response of Comparative Model
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Figure 8-129. – Frequency Domain Element Force of Comparative Model.
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10.9. Other Tests

The goal of any software verification effort is to ensure that the equations are being solved
properly. This includes input and output, and to an extent documentation as well. The
crucial question is whether analysts can trust the results of the calculations. Any test or
evaluation which improves confidence in this process is of value. As stated by Myers,40 “A
good test is one that has a high probability of detecting an as-yet undetected error.”
Interestingly enough, the tests that catch most of our errors are emphatically not those
that have been presented in previous sections!

10.9.1. Regression Tests

Part of the process development for Sierra/SD is a nightly regression test. These are
typically small tests that have been assembled to examine parts of the code. These
examples are results of either artifacts of development, or of bugs that have been identified
and fixed in the code. They are in no way rigorous verification tests; instead they detect if
results change. The changes may be introduced by additions or changes in the software, or
they may be introduced by operating system variations (including new libraries and new
platforms). These regression tests are evaluated and reported on our web site nightly, and
they have been responsible for identifying the vast majority of the issues in the software.

At the time of this writing (October 2003), we evaluate approximately 800 regression
results. Approximately half of these tests are repeated in parallel. Detailing these tests is
beyond the scope of this document. Indeed, the nature of the regression test is different
from the nature of standard verification tests, and it is not simple to sort the tests into
categories that verify element formulations.

10.9.2. Static Tests

Static tests provide a mechanism for evaluating the software outside of the operational
environment. They include source code evaluations and software to test our software.
Source code compliance with standards and dangerous practices may be evaluated.

Our group found that source code evaluations have limited to no value. They are also
resource demanding. As a consequence we have discontinued source code evaluations. We
review source code rarely and only as an aid in our understanding of the development.

However, there has been some evidence of improved software though other static tests. As
specified in our Procedures document, some sections of the code are subjected to this type
of evaluation at each release. To date, we have evaluated the finite element portion of the
code at each release excluding the third party libraries.
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10.9.3. Dynamic Testing

Another important aspect of software testing includes memory errors in the code. As part
of our release process, we run the regression tests through memory checking software before
release. Typically all the regression tests are run through the software, and if the tools are
available, we run through both serial and parallel tests. These tests are also run
periodically through the development process. They are effective in finding bugs that are
not readily apparent through other tests.
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11. INPUT DECKS FOR VERIFICATION TESTS

11.1. Parallel Distribution of Load through Rbars

Refer to section 3.1

solution
case eig

eigen nmodes=4
shift -1e8
enforce_modeshape_residual = false

case out
modalranvib
keepmodes=3 // force modal truncation
lfcutoff=-10

title ’hex and spiders’
end
ranloads

matrix=1
load=1

nodeset 1
force=0 1 0

scale=1000
end
frequency

freq_step=100
freq_min=300
freq_max=1e4
BLOCK=all
accel

end
matrix-function 1

Name=input_psd
symmetry=symmetric
dimension=1x1
data 1,1

real function 1
end
function 1

Name=’psd’
type=loglog
data 1.0 1e-8
data 299 1e-8
data 300 0.01
data 2000 1
data 8000 1.
data 10000 0.01
data 10001 1e-8

end
damping

gamma=0.01
end
parameters
wtmass=0.00259

end
file

geometry_file ’hex_spider.exo’
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end
boundary

nodeset 1
roty=0 rotz=0 rotx=0 x=0 z=0

end
loads
end
outputs

disp
vrms
end
echo

mass=block
mass

end

gdsw
solver_tol 1e-9

end

block 1
material 1

end
block 2

ConMass
Mass=0.7075
Ixx =0
Ixy =0
Iyy =0
Ixz =0
Iyz =0
Izz =0
Offset= 0 0 0 // patran/exo type ’BEAM’/BEAM. Number nodes 2

end
block 10

RBAR // RBE type element
end
material 1

density=0.283
E=29e2
nu=0.3

end
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11.2. RigidSet Compared to Rbar

Refer to section 3.2

//input deck for a rigidset verification test

SOLUTION
solver=gdsw

title ’rigidset verficiation test’
eigen

nmodes 50
shift -1e6

END

PARAMETERS
wtmass=0.00259

END

FILE
geometry_file ’rigidset.exo’

END

OUTPUTS
displacement

END

ECHO
mass block

END

RIGIDSET set1
sideset 1

END

RIGIDSET set2
sideset 2

END

GDSW
max_numterm_C1 500
overlap 2
krylov_method 1

// orthog_option 3
END

BLOCK 1
material 1
hex8b

END

BLOCK 2
dead

END

BLOCK 3
dead

END

MATERIAL 1
density 0.3
E = 3.0e7
nu = 0.3

END
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11.3. Multiple Tied-Surfaces and Curved Surfaces

Refer to section 3.3

SOLUTION
solver=gdsw

title ’tied surface example with holes’
eigen
nmodes 15
shift = -1e8

END
Parameters

RemoveRedundancy=yes
wtmass=0.00259

end

File
geometry_file ’tied_surface.exo’

end
Outputs

displacement
vonmises
Constraint_Info

end

Block 1
material 1

end

Block 2
material 1

end

Block 10
material 1

end

Material 1
E=1.0e7
nu=0.33
density=0.098

end

TIED DATA
surface 2,1
transverse tied
search tolerance 1.e-3
edge tolerance 1.e-5

end
TIED DATA

surface 102,2
gap removal = on
search tolerance 1.e-3
edge tolerance 1.e-6

end
TIED DATA

surface 3,101
search tolerance 1.e-1
edge tolerance 1.e-6

end
GDSW

con_tolerance 1e-2
max_numterm_C1=6

end
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11.4. Craig Bampton Reduction

Refer to section 2.1

SOLUTION
solver=gdsw
eigen nmodes=all
shift = -1e6

END

FILE
geometry_file ’system_plus_se.exo’

END

BOUNDARY
sideset 1

fixed
END

LOADS
END

ECHO
END

OUTPUTS
disp

END

MATERIAL ’steel’
E 30e6
nu 0.3
density 0.288

END
BLOCK 1

material ’steel’
END

BLOCK 2
dead // unused

END

BLOCK 3
superelement
sensitivity_param 1 0.28800
// this will use taylor series expansion to get the matrices
file = ’onehex_super.ncf’
map locations

END
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11.5. Superelement Damping

Refer to section 2.2

SOLUTION
solver=gdsw

transient
time_step 2.0e-5
nsteps 250

END

FILE
geometry_file ’full_system.exo’

END

BOUNDARY
sideset 3

fixed
END

LOADS
sideset 4
pressure = 10.0
function = 1

END

FUNCTION 1
type linear
data 0 0
data 1e-4 1
data 3e-4 -1
data 4e-4 0
data 10 0

END

HISTORY
nodeset 3

disp
stress

END

OUTPUTS
deform

elemeigchecks
END

// the following element block is hex.
// exodus tells us it is an 8-node hex.
// The default integration mode is "UNDER"
// The only required arguement is the material card
BLOCK 1

material "steel"
hex8u

END

MATERIAL "steel"
E 30e6
nu .3
density 0.288

END

BLOCK 3 // Formerly block 2
superelement
file=SE_DampTwoBlock.ncf
map locations

END
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11.6. Euler Beam Bending

Refer to section 5.1

SOLUTION
solver=gdsw

statics
title ’single beam model. 100 elements. xy only’
lumped
END

FILE
geometry_file 100.exo
END

BOUNDARY
nodeset 1
fixed
nodeset 3

x = 0
z = 0
rotx = 0
roty = 0

END

LOADS
nodeset 2
force = 0. .25 0.
END

OUTPUTS
deform

END

ECHO
END

BLOCK 1
material ’Aluminum’
Beam2
Area 0.1
orientation 0 .1 0
I1 .2
I2 .3
J .5
END

Material ’Aluminum’
E 10.0E6
nu 0.33
density 253.82e-6
END
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11.7. Euler Beam Properties

Refer to section 5.2

//salinas input for 100 element beam
SOLUTION

solver=gdsw
title=’multi-element beam modal’
eigen
nmodes=10
shift=-1

END

FILE
geometry_file ’beam2.exo’

END

PARAMETERS
END

BOUNDARY
nodeset 1
fixed

END

LOADS
END

OUTPUTS
disp

END

HISTORY
disp
block ’1’

END

ECHO
mass

END

BLOCK 1
Beam2
material=1
Area=0.03
I1=0.09
I2=0.01
J=0.1
orientation = 1 1 0

END

MATERIAL 1
Isotropic
E = 1e+07
NU = 0.3
density = 1

END
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11.8. A Navy Beam

Refer to section 5.3

//salinas input for 100 element beam
SOLUTION

solver=gdsw
title=’multi-element beam modal’
eigen
nmodes=10
shift=-1

END

FILE
geometry_file ’nbeam.exo’

END

PARAMETERS
END

BOUNDARY
nodeset 1
fixed

END

LOADS
END

OUTPUTS
disp

END

HISTORY
disp
block ’1’

END

ECHO
mass

END

BLOCK 1
Nbeam
material=1
Area=0.03
I1=0.09
I2=0.01
J=0.1
orientation = 1 1 0

END

MATERIAL 1
Isotropic
E = 1e+07
NU = 0.3
density = 1

END
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11.9. Two Layered Hexshell

Refer to section 5.4

SOLUTION
solver=gdsw

title ’Two-ply_rectangular_plate_pressure_A’
statics

END
FILE

geometry_file ’Two-ply_rectangular_plate.g’
end
PARAMETERS

wtmass = 0.00259
end
BOUNDARY

nodeset 1
y = 0.0

node_list_file=node1.txt
x = 0.0
z = 0.0

node_list_file=node2.txt
x = 0.0

end
LOADS

sideset 1
pressure 2.0

end
OUTPUTS

disp
eorient
force

end
ECHO

mass block
disp

end
BLOCK 1

HexShell
tcoord 0 2
layer 1
material 1
thickness .5
layer 2
material 2
thickness .5

end
MATERIAL 1

density 0.1
E 1.0e5
nu 0.25

end
MATERIAL 2

density 0.05
E 1.0e3
nu 0.2

end
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11.10. Perfectly Matched Layers: Offset Sphere

Refer to section 5.18 for details of the test.

SOLUTION
directfrf

end
FILE

geometry_file ’OffsetSphere3.exo’
end
FREQUENCY

freq_min = 100.0
freq_step = 1
freq_max = 101.0
disp
block 1

end
LOADS

sideset 1
acoustic_vel = 1.0
function = 2

end
BOUNDARY

sideset 2
pml_element
use block 57

end
FUNCTION 2

type LINEAR
data 0 1
data 1e6 1

end
OUTPUTS

apressure
end
BLOCK 1

material "air"
end
BLOCK 57

pml_element
stack_depth 5
ellipsoid_dimensions 5 5 5
pml_thickness 1
loss_function = polynomial
loss_params = 0 960 960 0

end
MATERIAL "air"

density 1.293
acoustic
c0 332.0

end
GDSW

precondUpdateFreq 3
end
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11.11. Thermally Induced Elastic Waves: Hollow Sphere

Refer to section 5.19 for details of the test.

11.11.1. Sierra SD Input Deck

SOLUTION
solver=gdsw

case t2
transient
nsteps 200
time_step 1e-3
nUpdateTemperature 1

END

FILE
geometry_file ’hollow_sphere.e’

END

OUTPUTS
force
disp
elmat
temperature
thermal_strain
END

ECHO
END

BOUNDARY
sideset 1

x=0
sideset 2

y=0
sideset 3

z=0
END

PARAMETERS
thermal_exo_var = "TND"

END

DAMPING
alpha 1.0e-3
beta 1.0e-3

END

LOADS
body

thermal
function 8245

END

function 8245
type linear
data 0 1
data 1 1

end

BLOCK 1
material "foo"

END
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// Based on "Thermal Stress-Wave Propagation in Hollow Elastic Spheres" - Tsui and Kraus (1965)
// Parameters are chosen such that their gamma = 1/5 to match figure 1.
// Note that this choice of gamma implies an unphysically small G and/or an unphysically large kappa
// The scaled time tau is the same as physical time, but the displacements are scaled by
// a factor of (1-nu)/(a*alpha*Ta*(1+nu)) = 50, i.e., scale result by 50 to match figure in paper.

// shear modulus: G = 25/4
// Poisson ratio: nu = 1/3
// density = 1
// pressure wave speed: c = sqrt( 2*(1-nu)*G/(density*(1-2*nu)) ) = 5
// inner sphere radius: a = 1 (inner sphere radius)
// thermal diffusivity: kappa = 1
// dimensionless inertia parameter: gamma = kappa/(c*a) = 1/5

MATERIAL "foo"
G = {25/4.0}
density = 1
nu = {1/3.0}
alphat = 1e-2
tref 0.0

END

11.11.2. Aria Input Deck

begin sierra Calore

title heat conduction through concentric sphere, test of dash contact

Begin Aria Material mat1
# kappa = k/(cp*rho)
density = constant rho = 1
specific heat = constant cp = 1
thermal conductivity = constant k = 1
heat conduction = basic

End

BEGIN FINITE ELEMENT MODEL test
Database Name = hollow_sphere.exo
use material mat1 for block_1

END FINITE ELEMENT MODEL test

BEGIN TPETRA EQUATION SOLVER solve_temperature
BEGIN BICGSTAB SOLVER

BEGIN JACOBI PRECONDITIONER
END
CONVERGENCE TOLERANCE = 1.0e-8
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE

END
END

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Simulation Start Time = 0.0
simulation Termination Time = 0.2
begin transient timeblock

advance myRegion1
end

End
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Begin Parameters For Transient TimeBlock
Start Time = 0.0
Begin Parameters For Aria Region myRegion1

Time Step Variation = Adaptive
Time Integration Method = First_Order
Initial time step size = 1e-3
Maximum Time Step Size Ratio = 1.5
minimum resolved time step size = 1.e-4
minimum time step size = 1.e-4
maximum time step size = 1e-2
Predictor Order = 1
Predictor-corrector tolerance = 1e-3
Predictor-Corrector Begin After Step = 4

End
End

End

begin Aria region myRegion1

Begin Results Output Label diffusion output1
database Name = hollow_sphere.e
At Step 0, Increment = 1
Title Aria Dash Tied Contact Test
Nodal Variables = solution->temperature as TND

End

###########################
### boundary conditions ###
###########################

Begin Temperature Boundary Condition t1
temperature = 1.0
add surface surface_1000

End
Begin Temperature Boundary Condition t2

temperature = 0.0
add surface surface_2000

End

IC for Temperature on all_blocks = constant value = 0

use finite element model test
$ model coordinates are model_coordinates
use linear solver solve_temperature

nonlinear solution strategy = newton

maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0e-8
nonlinear relaxation factor = 1.0
use dof averaged nonlinear residual
accept solution after maximum nonlinear iterations = true

EQ Energy for Temperature On all_blocks Using Q1 With Lumped_Mass Diff

end

end procedure myProcedure

end sierra Calore
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11.12. Preloaded Beam

Refer to section 5.5

SOLUTION
case statics

statics
load = 1

case update
tangent

case modal
eigen
nmodes = 10

end
FILE

geometry_file ’kgperm3.exo’
end
LOAD 1

nodeset 2
force 44482 0 0

end
OUTPUTS

disp
force

end
ECHO

mass
mass=block

end
BOUNDARY

nodeset 1
fixed

end
BLOCK 1

beam2
material="steel"
area=0.0000202683
i1 = 3.2690739721e-11
i2 = 3.2690739721e-11
j = 6.5381479442e-11

end
MATERIAL "steel"

E 187e9
nu .3
density 8015.19

end
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11.12.1. Prescribed displacement

Refer to subsection 5.5.3

SOLUTION
solver=gdsw

case statics
statics
load = 1

case update
tangent

case modal
eigen
nmodes = 30

END
FILE

geometry_file ’Beam.exo’
end
LOAD 1

nodeset 2
force 1e10 0 0

end
OUTPUTS

disp
force

end
ECHO

mass
mass=block

end
BOUNDARY

nodeset 1
x=0 y=0

nodeset 3
x=1.3368983957E-01 y=0

nodeset 4
z=0 rotx=0 roty=0

end
BLOCK 1

beam2
material="steel"
area=4
i1=1.33333
i2=1.33333
j=2.6666
orientation 0 0 1

end
MATERIAL "steel"

E 187e9
nu .3
density 8015.19

end
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11.13. Partial Cylinder Patch

Refer to section 5.6

$ Algebraic Preprocessor (Aprepro) version 6.04 (2021/10/26)
SOLUTION

statics
END

FILE
geometry_file ’cyl_q4.g’

END

BOUNDARY
nodeset 100

x=0
nodeset 200

y=0
nodeset 300

z=0
nodeset 301

z=0.01
nodeset 1000

rotx=0
roty=0
rotz=0

END

LOADS
END

OUTPUTS
eorient
strain
stress
disp
energy
genergies

END

ECHO
genergies

END

BLOCK 1000
MATERIAL "STEEL"

$ loop
THICKNESS 0.01

$
$
END

MATERIAL "STEEL"
E 1.0E+6
NU 0.3
DENSITY 1.0E-6

END
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11.14. Membrane Geometrical Stiffness

Refer to section 5.7

SOLUTION
solver=gdsw

case transfer
receive_sierra_data

case eig
eigen nmodes=all
lumped

END

file
geometry_file membrane_geometric.exo

// geometry_file plate101.exo
end

$$
boundary

nodeset 1
y=0

nodeset 4
x=0

nodeset 2
y=0

nodeset 5
z=0

end

boundary
end

loads
end

block 100
QuadM

// thickness=0.1
// thickness = 0.095435875007294

thickness = from_transfer
material=1

end

material 1
e=10.
nu=0.49

// density=1e-9
density = 1.047823996923137e-9

end

outputs
disp
mfile

end
parameters

mfile_format 3column
end
echo

mass
end

479



11.15. Membrane Quad

Refer to section 5.8

SOLUTION
solver=gdsw

case two
eigen
lumped
nmodes 14
shift = -1.e8

END
File

geometry_file ’temp1/Membrane_quad.par’
end
Boundary

nodeset 1 x=0 y=0
nodeset 2 x=0 y=0

end

Loads
end
Outputs

deform
end
Block 100

QuadTM
material "steel"
thickness 0.1

end
Material "steel"

E 10.0
nu 0.49
density 1.0e-9

end
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11.16. QuadM membrane Patch

Refer to section 5.9

SOLUTION
solver=gdsw

statics
END
FILE
geometry_file ’model.exo’
end
BOUNDARY

nodeset 2 fixed
nodeset 3 x=0
nodeset 1 x=0.1
nodeset 4 z=0
nodeset 5 y=0

end
LOADS
end
OUTPUTS
deform
stress
end
BLOCK 1

QuadM
material "steel"
thickness 1.0
end
BLOCK 2

QuadM
material "steel"
thickness 1.0

end
BLOCK 3

QuadM
material "steel"
thickness 1.0

end
BLOCK 4

QuadM
material "steel"
thickness 1.0

end
BLOCK 5

QuadM
material "steel"
thickness 1.0

end
BLOCK 6

QuadM
material "steel"
thickness 1.0

end
BLOCK 7

QuadM
material "steel"

thickness 1.0
end
MATERIAL "steel"
E 30e6
nu 0.3
density 0.288
end
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11.17. QuadS_GY Shear Membrane Shell

Refer to section 5.10

SOLUTION
solver=gdsw

eigen
nmodes = 20
shift = -1.e5
lumped

END

GDSW
solver_tol = 1e-10

end

Parameters
wtmass 0.00259

end

FILE
geometry_file ’mesh_quadt.g’

end

BOUNDARY
nodeset 1 rotx=0 roty=0 rotz=0 x=0 y=0 z=0
nodeset 2 rotx=0 roty=0 rotz=0 x=0 y=0 z=0
nodeset 3 rotx=0 roty=0 rotz=0 x=0 y=0 z=0
nodeset 4 rotx=0 roty=0 rotz=0 x=0 y=0 z=0

end

OUTPUTS
globals

end

ECHO
end

BLOCK 1
QuadS_GY
material "steel"
thickness 0.001
fiber orientation = 0

end

MATERIAL "steel"
orthotropic_layer
E1 = 30e6
E2 = 0.5e6
nu12 = 0.3
G12 = 0.5e6
density 0.288

end
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11.18. QuadS_GY Shear Membrane Shell - Geometric Stiffness and Preload

Refer to section 5.11

SOLUTION
solver=gdsw

case one
receive_sierra_data
lumped

case out
eigen
nmodes = 10

END

FILE
// geometry_file ’shell_beam.exo’

geometry_file ’shell_adagio_salinas.e’
END

LOAD 1
sideset 1
pressure -2245852908.28
// pressure 0

END

OUTPUTS

disp
force

END

ECHO
mass=block

END

BOUNDARY
nodeset 1

fixed
nodeset 3
z=0

// y=0
END

BLOCK 1
material "steel"
QuadS_GY
thickness = 0.004450425122033

END

MATERIAL "steel"
E 187e9
nu 0.3
density 8015.19

END
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11.19. Hex Membrane Sandwich

Refer to section 5.12

SOLUTION
solver=gdsw

statics
END
File
geometry_file ’Model_hex.exo’
end
Boundary

nodeset 2 fixed
nodeset 3 x=0
nodeset 1 x=0.1
nodeset 4 z=0
nodeset 5 y=0

end
Loads
end
Outputs
deform
stress
end

Block 1
Hex8u

material "steel"
end
Block 2

Hex8u
material "steel"

end
Block 3

Hex8u
material "steel"

end
Block 4

Hex8u
material "steel"

end
Block 5

Hex8u
material "steel"

end
Block 6

Hex8u
material "steel"

end
Block 7

Hex8u
material "steel"
end
MATERIAL "steel"
E 30e6
nu 0.3
density 0.288
end
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11.20. Sierra/SM to Sierra/SD Coupling

Refer to section 2.3

11.20.1. Files for Preloaded Static Beam

Sierra/SM input file

begin sierra chatter_contact

begin function ramp1
type is piecewise linear
begin values

0.0 0.0
0.5 1.0
1.0 1.0

end
end

begin function ramp2
type is piecewise linear
begin values

0.0 0.0
0.5 0.0
1.0 1.0

end
end

define direction x with vector 1.0 0.0 0.0
define direction y with vector 0.0 1.0 0.0
define direction z with vector 0.0 0.0 1.0

begin material aluminum
density = 2.59e-2
begin parameters for model neo_hookean

youngs modulus = 7.8e+7
poissons ratio = 0.0

end
end

begin material stiff
density = 2.59e-2
begin parameters for model neo_hookean

youngs modulus = 7.8e+11
poissons ratio = 0.0

end
end

begin finite element model mesh1
Database Name = bar.g
Database Type = exodusII

begin parameters for block block_1
material = aluminum
model = neo_hookean

end
begin parameters for block block_2

material = stiff
model = neo_hookean

end
end finite element model mesh1

begin adagio procedure Apst_Procedure

begin time control
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begin time stepping block p1
start time = 0.0
begin parameters for adagio region adagio

time increment = 0.05
end

end
termination time = 1.0

end time control

begin adagio region adagio
use finite element model mesh1

begin user output
nodeset = nodelist_2
compute global extension as average of nodal displacement

end

begin user output
surface = surface_1000
compute global deflection as average of nodal displacement

end

### output description ###
begin Results Output output_adagio

Database Name = bar_preload_{extensionPressure}_{deflectionPressure}.e
Database Type = exodusII
At Step 0, Increment = 1
nodal Variables = displacement as displ
nodal variables = coordinates
nodal variables = reaction

element variables = stress
element variables = log_strain
component separator character = none

end results output output_adagio

begin history output
database name = bar_preload_{extensionPressure}_{deflectionPressure}.h

at time 1.0 interval = 1.0
global extension
global deflection

end

### definition of BCs ###
begin fixed displacement

node set = nodelist_1
component = xy

end
begin fixed displacement

node set = nodelist_2
components = Y

end
begin fixed displacement

block = block_1 block_2
components = z

end

begin traction
surface = surface_2
direction = x
function = ramp2
scale factor = {extensionPressure}

end

begin traction
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surface = surface_1000
direction = y
function = ramp1
scale factor = {deflectionPressure}

end

begin solver
begin cg

target relative residual = 1.0e-6
begin full tangent preconditioner
end

end
end

end
end

end

Sierra/SD input file for

solution
{ifdef(preload)}
case preload

receive_sierra_data
load = 0
{ifdef(no_geom_stiff)}
no_geom_stiff
{endif}
{ifdef(equilibrium)}
include_internal_force = off
{endif}

{endif}
case static

statics
solver = gdsw
load = 10

end

GDSW
END

file
geometry_file ’{geomFile}’

end

history
database name = ’{historyFile}’
sideset = surface_1000
displacement

end

outputs
disp
stress

end

boundary
nodeset 1 x=0 y=0
nodeset 2 y=0
block 1 2 z=0

end

BLOCK 1
material aluminum

END
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BLOCK 2
material stiff

END

MATERIAL aluminum
E 7.8e7
nu = 0.0
density 2.59e-2

END

MATERIAL stiff
E 7.8e11
nu = 0.0
density 2.59e-2

END

LOAD 0
END

function ramp
type = linear
data 0 1
data 1 1

end

load 10
{ifdef(extensionPressure)}

sideset surface_2 traction 1 0 0 scale {extensionPressure}
{endif}
{ifdef(deflectionPressure)}

sideset surface_1000 traction 0 1 0 scale {deflectionPressure}
{endif}
end

ECHO
input

END

11.20.2. Files for Preloaded Eigen Comparison to Abaqus

Sierra/SM input file

Begin sierra cylinder only
title Membrane

define direction y with vector 0.0 1.0 0.0
define direction x with vector 1.0 0.0 0.0
define direction z with vector 0.0 0.0 1.0
define point origin with coordinates 0.0 0.0 0.0

Begin definition for function zero
type is constant
Begin values

0.0
end values

end
Begin definition for function one

type is constant
Begin values

1.0
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end values
end
Begin definition for function function_100

type is piecewise linear
Begin values

0.0 0.0
0.8 1.0
1.0 1.0

end values
end definition for function function_100

Begin property specification for material mat_100
density = 0.1E-08 # 10+3 kgm/mm3
Begin parameters for model elastic

youngs modulus = 6
poissons ratio =0.3

end parameters for model elastic
end property specification for material mat_100

Begin solid section solid_100
strain incrementation = strongly_objective
hourglass formulation = total

end solid section solid_100

Begin finite element model plate
Database name = bar.exo
Database type = exodusII
component separator character = ""
Begin parameters for block block_100

material mat_100
solid mechanics use model elastic
section = solid_100

end parameters for block block_100
end

Begin adagio procedure procedure_1
Begin time control

Begin time stepping block p0
start time = 0.0
Begin parameters for adagio region region_1

number of time steps = 100
end parameters for adagio region region_1

end time stepping block p0
termination time = 1.0

end time control

Begin adagio region region_1
jas mode solver
jas mode output
jas mode reactions
failure debug output
logfile detail = -1

use finite element model plate

Begin fixed displacement
node set = nodelist_1
components = x,y,z

end fixed displacement
Begin fixed displacement

node set = nodelist_2
components = y,z

end fixed displacement
Begin prescribed displacement

node set = nodelist_2
component = x
function = function_100
scale factor = 1.0
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end prescribed displacement

Begin results output output_1
database name = c_adagio_preload.e
database type = exodusII
component separator character = ""
at step 0 increment = 1
nodal variables = displacement as displ

end results output output_1
Begin results output output_2

database name = salinas_preload.e
database type = exodusII
component separator character = ""
additional times = 1.0
nodal variables = displacement as displ
nodal variables = node_filter as filter
element variables = stress as stress
element variables = density as fiberdensity
element Variables = element_thickness as fiberthickness
element variables = ends_per_length as epl
element variables = cord_modulus as fibmod
element variables = memb_stress as memstr
element variables = cord_ax as ax
element variables = cord_ay as ay

end results output output_2
Begin solver

Begin loadstep predictor
type = scale_factor
scale factor = 1.0 0.0

end loadstep predictor
Begin control contact

level = 1
target relative residual = 0.01
acceptable relative residual = 0.1
target relative contact residual = 0.001
acceptable relative contact residual = 0.01
maximum iterations = 500
minimum iterations = 10
lagrange initialize = none
lagrange adaptive penalty = off

end control contact
Begin cg

target relative residual = 0.005
acceptable relative residual = 0.05
minimum residual improvement = 0.5
maximum iterations = 500
minimum iterations = 10
reset limits 70 30 10.0 0.5
iteration print = 1
line search actual
preconditioner = block

end cg
end solver

end adagio region region_1
end adagio procedure procedure_1

end sierra cylinder only

Sierra/SD input file

SOLUTION
solver=gdsw

case one
receive_sierra_data
lumped

case two
eigen
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nmodes all
shift = -1000

END

FILE
geometry_file ’salinas_preload.e’
end

BOUNDARY
nodeset 1 x=0 y=0 z=0
nodeset 2 y=0 z=0

end

OUTPUTS
deform
end

ECHO
mass=block

end

BLOCK 100
material "steel"
hex8u
sd_factor 1.0

end
//E=6C10 @ 0.001 strain
//bulk modulus = E/[3(1-2*nu0]=16.66E=100
MATERIAL "steel"
E 6.0
nu 0.3
density 0.1E-08
end
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11.21. Waterline of a ship

Refer to section 4.1

SOLUTION
solver=gdsw

title=’ uhwm_20150113’
waterline
max_iterations 100
vizoption = ensight
tolerance_force 1e-10
delta 1e-8
point_a 2479.9 0. 100
point_b 3479.9 0. 100
point_c 2479.9 1000. 100
load 1

END

FILE
geometry_file ’uhwm_20150113.exo’

end

PARAMETERS
eigen_norm=visualization

end

BOUNDARY
end

LOAD 1
sideset 50000001

pressure = 1
function = 1

body
gravity = 0 0 -980.0

end
LOADS
end
FUNCTION 1

name ’pressure versus depth’
type LINEAR
data 0.0 0.0
data 1000.0 980e3

end
OUTPUTS

force // applied forces
npressure

end
HISTORY

nodeset ’500000011,’
disp
velocity
acceleration
nskip 1

end
include uhwmBlocks
include uhwmMaterials
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11.22. Transient Convergence

Refer to section 4.2

SOLUTION
solver=gdsw

transient
nsteps 4500
time_step 1.0e-3

END

FILE
geometry_file ’beam.exo’

END

OUTPUTS
END

BOUNDARY
nodeset 1
fixed

END

BLOCK 1
Beam2
material=1
Area=0.03
I1=0.09
I2=0.01
J=0.1
orientation = 1 1 0

END

MATERIAL 1
Isotropic
E = 1e+07
NU = 0.3
density = 1

END

LOADS
nodeset 2
force 0 1 0
function 1

END

ECHO
END

HISTORY
nodeset ’2’
disp

END

FUNCTION 1
type LINEAR
name "test_func1"
data 0 0
data 1 1
data 2 0

END
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11.23. Modal Transient Temporal Convergence

Refer to section 4.3

SOLUTION
solver=gdsw

case dummyEigen
eigen

shift=-1
nmodes 3

case out
modaltransient

nsteps 4500
time_step 1.0e-3
nmodes 3

END

FILE
geometry_file ’beam.exo’

end

OUTPUTS
disp

end

BOUNDARY
nodeset 1
fixed

end

BLOCK 1
Beam2
material=1
Area=0.03
I1=0.09
I2=0.01
J=0.1
orientation = 1 1 0

end

MATERIAL 1
Isotropic
E = 1e+07
NU = 0.3
density = 1

end

LOADS
nodeset 2
force 0 1 0
function 1

end

HISTORY
nodeset ’2’
disp

end

FUNCTION 1
type LINEAR
name "test_func1"
data 0 0
data 1 1
data 2 0

end
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11.24. Transient Restart Examples

11.24.1. Linear Transient in Step 1

Refer to section 4.4 for results of the tests.

SOLUTION
solver=gdsw

case eig
eigen
nmodes 40
shift = -1e6
restart=auto

case out
transient
time_step 1.0e-4
nsteps 30
nskip=1
restart=WRITE
load=1

END
FILE

geometry_file ninjabot.exo
end
BOUNDARY
end
LOAD 1

sideset 28 pressure 100 function 1
sideset 30 pressure 100 function 1

end
Function 1

type Linear
name "test_func1"

data 0 0
data 1 1

end

History
nskip 1
sideset 28
disp

end
Outputs

disp
velocity

end

Tied Joint
Normal Definition = slip
surface 13 14
search tolerance = 1e-6
connect to block 50

end
Tied Joint
Normal Definition = slip
surface 16 17
search tolerance = 1e-6
connect to Block 51

end
RigidSet set1

sideset 30
sideset 31
sideset 32

end
Tied Data

surface 20, 21
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search tolerance =1e-3
end
Tied Data

surface 22, 23
search tolerance =1e-3

end
Tied Data

surface 24, 26
search tolerance =1e-3

end
Tied Data

surface 25, 27
search tolerance =1e-3

end
Tied Data

surface 28, 29
search tolerance =1e-3

end
Tied Data

surface 40, 41
search tolerance =1e-3

end
Tied Data

surface 42, 43
search tolerance =1e-3

end
Tied Data

surface 42, 44
search tolerance =1e-3

end
MATERIAL "steel"

E 30e6
nu 0.3
density 0.288

end
MATERIAL ’dead’

isotropic
E = 1
nu = 0.29
density = 0

end

MATERIAL ’aluminum’
isotropic
E = 10e6
nu = 0.45
density = 0.27

end

Block 1 2 3 4 5 6 7 8 9 10
material ’aluminum’

end

Block 11 12 15
material "steel"

end

Block 16
RBAR

end

Block 17
RBAR

end

Block 18
conmass
MASS = 100
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end

Block 19
conmass
MASS = 100

end

Block 20
superelement
file = ’super_sword.ncf’
map locations

end

Block 21
superelement
file = ’super_shield.ncf’
map locations

end

Block 50
Joint2g
kx = iwan 1
ky = iwan 1
krz = elastic 1.0e9

end

Block 51
Joint2g
kx = iwan 1
ky = iwan 1
krz = elastic 1.0e9

end

Property 1
chi -.82
phi_max = 1.75e-4
R = 5.5050e+6
S = 2.1097e+6

end

11.24.2. Restarted Modal Transient in Step 2

SOLUTION
solver=gdsw

case eig
eigen
nmodes 40
shift = -1e6
restart=auto

case out
modaltransient
time_step 1.0e-4
nsteps 40
nskip=1
restart=READ
load=1

END
FILE

geometry_file ninjabot.exo
end
BOUNDARY
end
LOAD 1

sideset 28 pressure 100 function 1
sideset 30 pressure 100 function 1

end
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Function 1
type Linear
name "test_func1"

data 0 0
data 1 1

end

History
nskip 1
sideset 28
disp

end
Outputs

disp
velocity

end

Tied Joint
Normal Definition = slip
surface 13 14
search tolerance = 1e-6
connect to block 50

end
Tied Joint
Normal Definition = slip
surface 16 17
search tolerance = 1e-6
connect to Block 51

end
RigidSet set1

sideset 30
sideset 31
sideset 32

end
Tied Data

surface 20, 21
search tolerance =1e-3

end
Tied Data

surface 22, 23
search tolerance =1e-3

end
Tied Data

surface 24, 26
search tolerance =1e-3

end
Tied Data

surface 25, 27
search tolerance =1e-3

end
Tied Data

surface 28, 29
search tolerance =1e-3

end
Tied Data

surface 40, 41
search tolerance =1e-3

end
Tied Data

surface 42, 43
search tolerance =1e-3

end
Tied Data

surface 42, 44
search tolerance =1e-3

end
MATERIAL "steel"

E 30e6
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nu 0.3
density 0.288

end
MATERIAL ’dead’

isotropic
E = 1
nu = 0.29
density = 0

end

MATERIAL ’aluminum’
isotropic
E = 10e6
nu = 0.45
density = 0.27

end

Block 1 2 3 4 5 6 7 8 9 10
material ’aluminum’

end

Block 11 12 15
material "steel"

end

Block 16
RBAR

end

Block 17
RBAR

end

Block 18
conmass
MASS = 100

end

Block 19
conmass
MASS = 100

end

Block 20
superelement
file = ’super_sword.ncf’
map locations

end

Block 21
superelement
file = ’super_shield.ncf’
map locations

end

Block 50
Joint2g
kx = iwan 1
ky = iwan 1
krz = elastic 1.0e9

end

Block 51
Joint2g
kx = iwan 1
ky = iwan 1
krz = elastic 1.0e9

end
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Property 1
chi -.82
phi_max = 1.75e-4
R = 5.5050e+6
S = 2.1097e+6

end
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11.25. Eigenvalue Restart with Virtual Nodes and Elements

Refer to section 2.4

SOLUTION
solver=gdsw

case grbm
geometric_rigid_body_modes

case eig
eigen

shift = -1e5
restart=write

END
FILE
geometry_file ’ninja_SE_IE_TJ.exo’
end

BOUNDARY
end

LOADS
sideset 101

pressure 1.0
function 1

end

Parameters
num_rigid_mode 6
eig_tol = 1.0e-16

end

FUNCTION 1
type LINEAR
name "test_func1"

data 0 0
data 1 1

end

OUTPUTS
disp
end

TIED JOINT
Normal Definition = slip
surface 13 14
search tolerance = 1e-6
connect to block 50
end

TIED JOINT
Normal Definition = slip
surface 16 17
search tolerance = 1e-6

connect to Block 49
end

RIGIDSET set1
sideset 30
sideset 31
sideset 32
end

TIED DATA
surface 20, 21
search tolerance =1e-3

end
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TIED DATA
surface 22, 23
search tolerance =1e-3

end

TIED DATA
surface 24, 26
search tolerance =1e-3

end

TIED DATA
surface 25, 27
search tolerance =1e-3

end

TIED DATA
surface 28, 29
search tolerance =1e-3

end

TIED DATA
surface 40, 41
search tolerance =1e-3

end

TIED DATA
surface 42, 43
search tolerance =1e-3

end

TIED DATA
surface 42, 44
search tolerance =1e-3

end

/////// tying new sword together /////

MATERIAL "steel"
E 30e6
nu 0.3
density 0.288
end

MATERIAL ’dead’
isotropic
E = 1
nu = 0.29
density = 0

end

MATERIAL ’aluminum’
isotropic
E = 10e6
nu = 0.45
density = 0.27
end

MATERIAL ’kevlar’
isotropic
E = 83e6
density = .143
nu = 0.36
end

MATERIAL "steel_5"
E 30e6
nu .3
density 0.288
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end

MATERIAL 6
E 20e3
nu 0.3
density 0.288

end

MATERIAL 7
E 40e8
nu 0.3
density 0.288

end

MATERIAL 8
E 20e4
nu 0.3
density 0.288

end

MATERIAL 9
E 30e6
nu 0.3
density 0.15

end

MATERIAL 10
acoustic
density = 997
c0 = 1497

end

BLOCK 1
material ’aluminum’
end

BLOCK 2
material ’aluminum’
end

BLOCK 3
material ’aluminum’

end

BLOCK 4
material ’aluminum’
end

BLOCK 5
material ’aluminum’

end

BLOCK 6
material ’aluminum’

end

BLOCK 7
material ’aluminum’

end

BLOCK 8
material ’aluminum’

end

BLOCK 9
material ’aluminum’

end
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BLOCK 10
material ’aluminum’

end

BLOCK 15
material "steel"

end

BLOCK 16 ///beams
RBAR
// material "steel"
end

BLOCK 17 ///beams
RBAR
// material "steel"
end

BLOCK 18
conmass

MASS = 100
end

BLOCK 19
conmass

MASS = 100
end

BLOCK 11
material "steel"

end

BLOCK 12
material "steel"

end

BLOCK 51
dead
material "steel_5"
thickness 0.75

end

BLOCK 52
dead
material 6
thickness 0.5

end

BLOCK 53
dead
material 7
thickness 0.5

end

BLOCK 54
dead
material "steel"
I1 = 100
I2 = 200

j = 100
orientation = 0 0 1

end

BLOCK 60
dead
material 9
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end

BLOCK 61
dead
material 8

end

BLOCK 62
dead
material 9

end

BLOCK 50
joint2g
kx = iwan 1
ky = iwan 1
krz = elastic 1.0e9
end

BLOCK 49
joint2g
kx = iwan 1
ky = iwan 1
krz = elastic 1.0e9

end

BLOCK 100
dead

material 10
end

PROPERTY 1
chi -.82
phi_max = 1.75e-4
R = 5.5050e+6
S = 2.1097e+6

end

GDSW
solver_tol 1.0e-12

end
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11.26. Filter Rigid Modes from Loads

Refer to section 2.5

SOLUTION
solver=gdsw

statics
END

FILE
geometry_file ’temp1/beam_hex8.par’
// geometry_file ’beam_hex8.exo’
END

BOUNDARY
END

PARAMETERS
FilterRbmLoad=allStructural
rbmtolerance=1e-6
num_rigid_mode 6

END

GDSW
prt_summary = 3

END

LOADS
sideset 1

traction = 0 1000.0 0
END

OUTPUTS
disp

force
rhs

END

ECHO
none

END

BLOCK 1
material "steel"

hex8u
END

MATERIAL "steel"
E 30.0e6
nu 0.0
density 0.288
END
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11.27. Modal Transient

Refer to section 4.5

//salinas input created using pat2exo from patran file ’vtube.out’
SOLUTION

solver=gdsw
case rig

geometric_rigid_body_modes
case eig1
restart=none
eigen nmodes=10
shift=-1.e8

case filter1
modalfiltercase
modalfilter norot

case one
modaltransient
time_step=0.001
nsteps=400
load=1

case four
modaltransient
time_step=0.001
nsteps=2000
load=4

title ’verification of modal solution’
END

modalfilter norot
add all
remove 4,5,6,9

end

modalfilter norbm
add 7:10

end

HISTORY
block 101
disp
acceleration

END

DAMPING
// gamma=0.01
END

PARAMETERS
wtmass=0.00259
num_rigid_mode 6

END

FILE
geometry_file ’temp1/modaltransver.exo’

END

BOUNDARY
// nodeset 124
// fixed
// rotx=0 roty=0 rotz=0 x=0 z=0
// fixed
// nodeset 25
// fixed
// nodeset 26
// fixed
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END

LOAD=1
nodeset 12

force = 0 0 1
scale 1e5
function 10

END

LOAD=4
nodeset 12

force = 0 0 1
scale 1e5
function 2

END

function 10
type linear
name constant
data 0.0 1.
data 1.0 1.

end

function 1
type linear
name ’triangle 1’
data 0.0 0.0
data 1.5e-2 1
data 3e-2 0
data 1 0

end

function 2
type linear
name ’triangle’
data 0.0 0.0
data 1e-2 1
data 2e-2 0
data 1 0

end
OUTPUTS

disp
END

ECHO
mass

modalvars
END

BLOCK 101
material 101

quadt
thickness= 0.200000003E+00
// patran/exo type ’QUAD’/QUAD. Number nodes 4

END

BLOCK 102
// material 0

ConMass
Mass=1000
Ixx =0
Ixy =0
Iyy =0
Ixz =0
Iyz =0
Izz =0
Offset= 0 0 0

// patran/exo type ’BEAM’/BEAM. Number nodes 2
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END

Block 1000
RBE3 // RBE type elements
// # links 16

END
Block 1001 // not used

material=1000
beam2
area=1
i1=.1
i2=.1
j=.2
orientation=1 0 .10

end

MATERIAL 101
// material type ’Iso’
density=0.1
Isotropic
E=1e+07
nu=0.35

END

MATERIAL 1000
// material type ’Iso’
density=0.1e-5
Isotropic
E=1e+09
nu=0.35

END
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11.28. Sensitivity to Parameters

Refer to section 2.6

//salinas input created using nasgen from nastran file ’springrbar.bdf’
SOLUTION

solver=gdsw
case sens
title ’two hexes, connected by tied joint’
eigen nmodes=1

END

FILE
// geometry_file ’twoHex.exo’

geometry_file ’twoHex.exo’
END

sensitivity
values = all

end

gdsw
solver_tol=1e-12
prt_debug=2
orthog_option 0

end

PARAMETERS
// wtmass=0.00259
// eigen_norm=visualization
END

BOUNDARY
sideset 2 // nastran SID=2

fixed
sideset 4 // nastran SID=2

fixed
sideset 1

y=0 x=0
END

LOADS
END

OUTPUTS
disp

END

ECHO
END

BLOCK 1
material 1

END

BLOCK 2
material 2

END

material 1
E=10e6
nu=0.0
density = 0.000256

end
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material 2
E=20e6
nu=0.0
density = 0.000256

end

tied joint
normal definition = none

surface 1,3
search tolerance = 0.02
connect to block 13
side = average

end

block 13
joint2g
Kx = elastic 1e8
Ky = elastic 1e8
Kz = elastic 1e7 +/- 10 %
Krx = elastic 1e8
Kry = elastic 1e8
Krz = elastic 1e8

End
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11.29. Sensitivity Analysis with a Superelement

Refer to section 2.7

SOLUTION
solver=gdsw

title ’sensitivity of system with CBR model’
eigen nmodes=20

END
FILE

geometry_file blade1_residual_se.exo
end
PARAMETERS

eigen_norm=visualization
end
BOUNDARY

nodeset 11
fixed

end

OUTPUTS
disp

end
ECHO

mass
input

end
BLOCK 13

// 1 element of type SHELL. 4 nodes/element
// property card ’PSHELL 1 ’
dead
material=3001
thickness=0.111

end
BLOCK 17

// 2 elements of type SPHERE-MASS. 1 node/element
// no property card
ConMassA
// ’CONM2 4800719’
mass=11268.5
Ixx=0
Iyy=0
Izz=0
Ixy=0
Ixz=0
Iyz=0
offset=0 0 0

end
BLOCK 480000

// 6 elements of type BEAM. 2 nodes/element
// property card ’PBAR 48000 ’
material=48001
Area=0.05693
I1=0.00374
I2=0.00374
J=0.00749

end
BLOCK 480020

// 14 elements of type TRIANGLE. 3 nodes/element
// property card ’PSHELL 48002 ’
material=48000
thickness=0.0254

end
BLOCK 480023

// 209 elements of type SHELL. 4 nodes/element
// property card ’PSHELL 48002 ’
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material=48000
thickness=0.0254

end
BLOCK 480024

superelement
file=’blade1_se.ncf’
diagnostic=0
sensitivity_param 1 = 2.04e11 // E
sensitivity_param 2 = 8017.2
map locations

end
MATERIAL 3001

// from ’MAT1 3001 ’
Isotropic
E=2e+11
NU=0.3
density=7861.06

end
MATERIAL 48000

// from ’MAT1 48000 ’
Isotropic
E=2e+11
NU=0.29
density=7860

end
MATERIAL 48001

// from ’MAT1 48001 ’
Isotropic
E=2e+11
NU=0.29
density=7860

end
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11.30. Shock Tube SI

Refer to section 2.8

SOLUTION
solver=gdsw
nltransient
tolerance 1.0e-8
time_step 4e-05
nsteps 400

END

FILE
geometry_file ’temp1/shocktube_SI.par’

END

LOADS
sideset 4
acoustic_vel = -5
function = 1

END

BOUNDARY
sideset 6
absorbing

END

HISTORY
node_list_file ’nodeshock’
apressure

END

FUNCTION 1
type analytic
name "sine 1000"
evaluate expression = "omega = 2 * pi * 1000; sin(omega*t)"

END

OUTPUTS
END

ECHO
NLresiduals
END

BLOCK 1
material "air"
END

MATERIAL "air"
density 1.1934

acoustic
nonlinear
c0 343.2048
B_over_A 0.4

END

GDSW
solver_tol 1.0e-8
prt_summary 0

END
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11.31. Fluid Structure Interaction Added Mass

Refer to section 4.6

SOLUTION
solver=gdsw

case ’qevp’
qevp

method=sa_eigen
nmodes = 400
nmodes_acoustic=100
nmodes_structure=100
shift = -1.e+5
sort method= magnitude
reorthogonalize=yes

check_diag=yes
END

FILE
// geometry_file addedmass_shell_0.01_sphere.exo

geometry_file temp1/addedmass_shell_0_01_sphere.par
END

BOUNDARY
sideset 1
fixed

nodeset 1
fixed

nodeset 10
y=0 x=0 rotx=0 roty=0 rotz=0

END

OUTPUTS
disp

END

ECHO
disp
mass = block
END

BLOCK 1
material "steel"
quadT
thickness = 0.1

membrane_factor 0.0005
END

BLOCK 3
material "water"

END

BLOCK 4
material "water"
END

BLOCK 5
material "water"
END

BLOCK 2
// name "spring"
// Coordinate 1

spring
kx=10000

ky=10000
kz=10000
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END

//TIED DATA
// surface 3,2
// search tolerance = 1e-1
//END

MATERIAL "steel"
E 19.5e9
nu .3
density 7700.0
END

MATERIAL "water"
density 1000

acoustic
c0 1500

END

GDSW
solver_tol 1e-11
overlap = 3
prt_memory yes
prt_timing yes

END
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11.32. Fluid Structure Cavitation

Refer to section 4.7

SOLUTION
solver=gdsw
transient
time_step = 1.313e-5
nsteps 1200
rho = 0.8
scattering

END

FILE
geometry_file ’Plate_fluid_shell.exo’

END

damping
beta = 1.5e-5

end

Frequency
freq_min = 1.0
freq_step = 2.0
freq_max = 80.0
apressure
block 1

End

OUTPUTS
apressure
velocity
END

HISTORY
block all
apressure
velocity
nskip 10

END

ECHO
END

BOUNDARY
sideset 10

infinite_element
use block 111

sideset 5
x=0 z=0 rotx=0 rotz=0

sideset 4
x=0 z=0 rotx=0 rotz=0

sideset 2
x=0 z=0 rotx=0 rotz=0

sideset 3
x=0 z=0 rotx=0 rotz=0

END

TIED DATA
Surface 1, 6
search tolerance =1e-3

END

FUNCTION 3
type planar_step_wave
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direction 0 1 0
material "water"
origin 0 149 0
beta = 1.0042e3

END

LOADS
sideset 1

acoustic_vel = 103
function = 3

sideset 6
pressure = 103
function = 3

END

BLOCK 1
quadT

material "Steel"
thickness = 1.0

END

BLOCK 2
material "water"

END

Block 111
infinite_element
radial_poly legendre
order 3
ellipsoid_dimensions 20000 20000 20000
source_origin = 0 19850 0

END

MATERIAL "Steel"
E 30e6
nu 0.3

density 5.32986e-4
// density 0.288
END

MATERIAL "water"
density 9.3455e-5
c0 57120
acoustic

END

GDSW
solver_tol = 1e-8

END
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11.33. Higher Order Hex Acoustic Element Convergence

Refer to section 5.13

SOLUTION
solver=gdsw

eigen
nmodes 10
shift = -1.e4

END

FILE
geometry_file ’temp1/wg_hex2.par’
// geometry_file ’1/wg_hex5.par’
END

BOUNDARY
END

LOADS
END

OUTPUTS
globals

END

ECHO
END

BLOCK 1
pelement
order=3
material "steel"
END

MATERIAL "steel"
acoustic
c0 332.0
density 1.3
END

PARAMETERS
usepelements

END

GDSW
solver_tol 1.0e-12
orthog 0
sc_option no

END
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11.34. Higher Order Tet Acoustic Element Convergence

Refer to section 5.14

SOLUTION
solver=gdsw

eigen
nmodes 10
shift = -1.e3

END

FILE
geometry_file ’temp1/wg_tet2.par’
END

BOUNDARY
END

LOADS
END

OUTPUTS
globals

END

ECHO
END

BLOCK 1
pelement
order=3
material "steel"
END

MATERIAL "steel"
acoustic
c0 332.0
density 1.3
END

PARAMETERS
usepelements

END

GDSW
solver_tol 1.0e-12
orthog 0
sc_option no

END

520



11.35. Tied-Joint with Joint2G and Spring

Inputs for comparison of manually generated constraints with TiedJoint.

11.35.1. Manual Constraints

SOLUTION
solver=gdsw

eigen
nmodes=20
shift=-1e7

END

FILE
geometry_file lap_simple.exo
END

OUTPUTS
disp
END

ECHO
mpc
END

BLOCK 1
material "mat"
END
BLOCK 2
material "mat"
END
BLOCK 3
dead
END

Block 33
spring
kx=20776000

ky=20776000
kz=26080000

END

HISTORY
sideset 1,2
displacement

END

Rigidset 1
sideset 1

end
Rigidset 2

sideset 2
end

MPC
254 x 1
207 x -1

END

MPC
254 y 1
207 y -1

END

MPC
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254 z 1
207 z -1

END

MPC
253 x 1
58 x -1

END

MPC
253 y 1
58 y -1

END

MPC
253 z 1
58 z -1

END

MATERIAL "mat"
E 200e9
nu 0.3

density 7800
END

BOUNDARY
sideset 3

fixed
END

LOADS
sideset 4

pressure = -1e3
function = 1

END

FUNCTION 1
type LINEAR
name "const_one"
data 0.0 1.0
data 2.0e4 1.0

END

11.35.2. Tied Joint Constraints

Refer to section 5.15 for details of the test.

SOLUTION
solver=gdsw

eigen
nmodes=20
shift=-1e7

restart=write
END

FILE
geometry_file lap_tied_spring_slip.exo

END

OUTPUTS
disp
END

ECHO
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mpc
input
END

Tied Joint
Normal Definition = slip

surface 1,2
side = rrod
connect to Block 33

end

BLOCK 1
material "mat"
END

BLOCK 2
material "mat"
End

BLOCK 3
dead

END

BLOCK 33
spring

kx=20776000
ky=20776000
kz=26080000

END

HISTORY
sideset 1,2
displacement

END

MATERIAL "mat"
E 200e9
nu 0.3

density 7800
END

BOUNDARY
sideset 3

fixed
END

LOADS
sideset 4

pressure = -1e3
function = 1

END

FUNCTION 1
type LINEAR
name "const_one"
data 0.0 1.0
data 2.0e4 1.0

END
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11.36. Beam CBR

Refer to section 2.9 for details of the test.

SOLUTION
cbr

nmodes=90
title ’single beam model. 100 elements. xy only’
END

FILE
geometry_file ’beam100b.exo’
END

cbmodel
file=beamcbr.ncf
format=netcdf
nodeset 1

end

BOUNDARY
nodeset 3

y = 0
z = 0
rotx = 0
roty = 0
rotz = 0

END

LOADS
END

OUTPUTS
deform

END

ECHO
END

BLOCK 1
material ’Aluminum’
Beam2
Area 0.1
orientation 0 .1 0
I1 .2
I2 .3
J .5
END

Material ’Aluminum’
E 10.0E6
nu 0.33
density 253.82e-6
END
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11.37. Slide RBE2. Selected DOFS

Refer to section 5.16 for details of the test.

//created with Nasgen from Nastran file ’sliderbe.nas’
SOLUTION

title=’ NEi Nastran Static Analysis Set’
statics

END

FILE
geometry_file ’sliderbe.exo’

END

PARAMETERS
eigen_norm=visualization

END

BOUNDARY
nodeset 11 x=0
nodeset 12 y=0
nodeset 13 z=0
nodeset 14 Rotx=0
nodeset 15 Roty=0
nodeset 16 Rotz=0

END

LOADS
nodeset 112

force = 0 1 0
END

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 13
material=1
thickness=0.5

END

BLOCK 23
material=1
thickness=0.375

END

BLOCK 24
// 25 links
RBAR

END

MATERIAL 1
Isotropic
E = 3e+07
NU = 0.3
density = 0.0007324

END
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11.38. Thin Plate Bending

Refer to section 5.17 for details of the test.

//salinas input created using nasgen from nastran file ’bending.nas’
SOLUTION

solver=gdsw
title=’ NEi Nastran Static Analysis Set’
statics

END

GDSW
solver_tol=1.0e-10

END

FILE
geometry_file ’bending.exo’

END

PARAMETERS
// wtmass=0.00259

eigen_norm=visualization
END

BOUNDARY
nodeset 11 // nastran SID=1

fixed
END

LOADS
sideset 1

pressure 1.0
END

OUTPUTS
disp
stress
genergies

END

ECHO
input
mass

END

BLOCK 13
material=1
thickness=0.5
{ QUAD }

END

MATERIAL 1
Isotropic
E = 3e+07
NU = 0.3
density = 0.0007324

END
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11.39. Modal Force on a Biplane Model

Refer to section 2.10 for details of the test.

SOLUTION
solver=gdsw

case eig2
eigen
shift=-1e5
nmodes=30

case two
modaltransient
nsteps 260
time_step 1e-3
load=10

END

FILE
// geometry_file ’biplane.exo’

geometry_file ’biplane.exo’
END

LOAD 10
body

modalforce
function 60

END

FUNCTION 60
type table

tablename 35
END

TABLE 35
dimension 2
size 260 30
delta 1e-3 1
origin 1e-3 0
datafile=ModalForces.txt

END

BOUNDARY
END

OUTPUTS
disp

END

ECHO
mass
modalvars

END

GDSW
krylov_method=1
max_iter=2000
solver_tol=1e-10
orthog=2000
prt_summary=1
prt_debug=1
prt_timing 1
coarse_option 0

END
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BLOCK 1 //tail stalk (hex8)
material "aluminum"
hex8b

END

BLOCK 2 //main body (hex20)
material "beam-titanium"
hex20

END

BLOCK 3 //tail side fins (tetra10)
material "aluminum"
tet10

END

BLOCK 4 //tail top fin (tetra4)
material "aluminum"
tet4

END

BLOCK 5 //top wing (shell8)
material "miraculum-steel"
quad8T
thickness=0.3

END

BLOCK 6 //bottom wing (tria6)
material "miraculum-steel"
tria6
thickness=0.3

END

BLOCK 7 //upper main beams (beam2)
material "beam-titanium"
beam2

END

BLOCK 8 //lower main beams (beam2)
material "beam-titanium"
beam2

END

BLOCK 9 //side trusses (truss)
material "beam-titanium"
truss

END

BLOCK 10 //Upper main beam rbe3s
rbe3

END

BLOCK 11 //Upper main beam rbe3s
rbe3

END

BLOCK 12 //Upper main beam rbe3s
rbe3

END

BLOCK 13 //Upper main beam rbe3s
rbe3

END

BLOCK 14 //Upper main beam rbe3s
rbe3

END

BLOCK 15 //Upper main beam rbe3s

528



rbe3
END

BLOCK 16 //Upper main beam rbe3s
rbe3

END

BLOCK 17 //Upper main beam rbe3s
rbe3

END

BLOCK 18 //Lower main beam rbe3s
rbe3

END

BLOCK 19 //Lower main beam rbe3s
rbe3

END

BLOCK 20 //Lower main beam rbe3s
rbe3

END

BLOCK 21 //Lower main beam rbe3s
rbe3

END

BLOCK 22 //Lower main beam rbe3s
rbe3

END

BLOCK 23 //Lower main beam rbe3s
rbe3

END

BLOCK 24 //Lower main beam rbe3s
rbe3

END

BLOCK 25 //Lower main beam rbe3s
rbe3

END

BLOCK 26 //Side truss rbe3s
rbe3

END

BLOCK 27 //Side truss rbe3s
rbe3

END

BLOCK 28 //Side truss rbe3s
rbe3

END

BLOCK 29 //Side truss rbe3s
rbe3

END

BLOCK 30 //Side truss rbe3s
rbe3

END

BLOCK 31 //Side truss rbe3s
rbe3

END

BLOCK 32 //Side truss rbe3s

529



rbe3
END

BLOCK 33 //Side truss rbe3s
rbe3

END

BLOCK 34 //Blades (quad8)
material "miraculum-steel"
quad8T
thickness=0.15

END

BLOCK 35 //Beams on Propellar Blades (rbars)
rbar

END

BLOCK 36 //Propellar Body (tri6)
material "titanium"
tria6
thickness=0.1

END

BLOCK 37 //Beam in center of Propellar Body (rbar)
material "miraculum-steel"
beam2

END

BLOCK 38 //rbars connecting blades to center beam
rbar

END

BLOCK 39 //surface on fin
material "aluminum"
tria3
thickness=0.05

END

BLOCK 40 //rear surface of tailstalk (quadT)
material "aluminum"
quadT
thickness=0.05

END

BLOCK 41 //cone connecting beams
material "miraculum-steel"
beam2

END

BLOCK 42 //cone connecting beams
material "miraculum-steel"
beam2

END

TIED DATA
surface 1,6 //tail stalk to main body

END
TIED DATA

surface 2,7 //top fin to top of tailstalk
END
TIED DATA

surface 3,9 //right fin to tailstalk
END
TIED DATA

surface 4,8 //left fin to tailstalk
END
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MATERIAL "aluminum"
E 72e9 //(N/m^2)

nu .33
density 2700 //(kg/m^3)

END

MATERIAL "titanium"
E 105e9 //(N/m^2)
nu 0.33
density 4510 //(kg/m^3)
END

MATERIAL "miraculum-steel"
E 200e10 //(N/m^2)
nu 0.3
density 7.850 //(kg/m^3)

END

MATERIAL "beam-titanium"
E 105e9 //(N/m^2)
nu 0.33
density 4.510 //(kg/m^3)
END
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11.40. Lighthill Analogy - Helmholtz Resonator

Refer to section 2.11 for details of the test.

SOLUTION
solver=gdsw

transient
time_step 0.5e-3
nsteps 500

END
File

geometry_file temp1/lighthill_helmholtz_resonator_ns.par
end
Loads

nodeset 1
lighthill = 1.0
function = 1

end
Damping
alpha 50
end
Function 1

type readnodalset
nodeset 1
name "divT"
exo_var vector divT
interp = linear

end
Boundary
sideset 13 absorbing radius = 100
end
History

node_list_file nodelist1873
aforce
apressure

end

Outputs
end

Block 1
material 1
end

Block 2
material 1
end

MATERIAL 1
acoustic
density 1.2256e-3
c0 34300 // cm/s
end

Tied Data
surface 1, 10
End

Tied Data
surface 2, 11
End

Tied Data
surface 3, 12
End
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11.41. Lighthill Tensor Verification Input

Refer to section 2.12 for details of the test.

SOLUTION
solver=gdsw
solver=gdsw

transient
time_step 0.5
lumped_consistent
nsteps 600

END

LINESAMPLE
samples per line 1000
endpoint -500. 0. 0. 500. 0. 0.
format exodus

END

FILE
geometry_file temp1/lighthill_waveguide_1000x1x1_pulse.par

END

LOADS
nodeset 1
lighthill = 1
function = 1

END

FUNCTION 1
type readnodalset
nodeset 1
name "divT"
exo_var vector divT
interp = linear

END

BOUNDARY
sideset 1

absorbing
END

OUTPUTS
apressure
aforce

END

ECHO
END

BLOCK 1
material 1

END

MATERIAL 1
acoustic
density 1
c0 1

END
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11.42. Acoustic Point Source in Frequency Domain

Refer to section 2.13 for details of the test.

SOLUTION
directfrf

END

FILE
geometry_file ’point_source.exo’

END

Frequency
freq_min = 1.0
freq_step = 10.0
freq_max = 150.0
sideset 1
pressure

End

LOADS
nodeset 1
point_volume_vel = 1.0
function = 2

END

DAMPING
beta 1.0e-5

END

BOUNDARY
sideset 1

absorbing
radius 2.0

END

FUNCTION 2
type LINEAR
name "test_func1"
data 0.0 1.0
data 5.0e9 1.0

END

OUTPUTS
apressure

END

ECHO
END

BLOCK 1
material "air"

END

MATERIAL "air"
density 1.293
acoustic
c0 343.0

END

GDSW
solver_tol 1.0e-8
prt_summary 3
max_previous_sols 10
cull_method eigen
orthog 40
num_GS_steps 2
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END

535



11.43. Acoustic Point Source in Time Domain

Refer to section 2.14 for details of the test.

SOLUTION
transient
time_step 1.0e-4
nsteps 1000
rho 0.7

END

FILE
geometry_file ’point_source.exo’

END

LOADS
nodeset 1
point_volume_vel = 1.0
// point_volume_accel = 1.0
function = 1

END

DAMPING
beta 1.0e-5

END

BOUNDARY
sideset 1

absorbing
radius 2.0

END

FUNCTION 1
type analytic
evaluate expression = "omega = pi * 50; sin(omega*time)"

END

OUTPUTS
apressure

END

ECHO
END

BLOCK 1
material "air"
END

MATERIAL "air"
density 1.293
acoustic
c0 343.0

END

GDSW
solver_tol 1.0e-10

END
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11.44. Acoustic Plane Wave Scattering in Frequency Domain

Refer to section 2.15 for details of the test.

# rho0 = {rho0 = 1.21}
# c0 = {c0 = 343.0}
# vscale = {vscale = 1/(rho0*c0)}

SOLUTION
directfrf
scattering
solver=gdsw

END

FILE
geometry_file mie/cylinderScatterer.exo

END

Frequency
freq_min = 1000.0
freq_step =100.0
freq_max = 1000.0
block 1,2
apressure
disp

End

LOADS
sideset 2

acoustic_vel = 1.0
scale = {vscale}
function = 1

sideset 2
iacoustic_vel = 1.0
scale = {vscale}
function = 2

sideset 3
pressure = 1
scale = {vscale}
function = 1

sideset 3
ipressure = 1
scale = {vscale}
function = 2

END

BOUNDARY
nodeset 1

z = 0
sideset 1

pml_element
use block 326
hex

END

BLOCK 326
pml_element
stack_depth 20
source_origin 0 0 0
ellipsoid_dimensions 0.8 0.8 1000
pml_thickness 0.00025
loss_function = polynomial
loss_params = 0 6000 6000 6000

END

Function 1
type plane_wave_freq
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Material "air"
Direction 1.0 0.0 0.0
Origin 0 0 0

END
Function 2

type iplane_wave_freq
Material "air"
Direction 1.0 0.0 0.0
Origin 0 0 0

END

TIED DATA
Surface 2,3

END

OUTPUTS
deform
apressure

END

ECHO
END

BLOCK 1
material "air"

END

BLOCK 2
material "steel"

END

MATERIAL "air"
acoustic
density {rho0}
c0 {c0}

END

MATERIAL "steel"
E 19.5e10
nu 0.3
density 7700.0

END

GDSW
solver_tol 1.0e-11
overlap 1
SC_optionH yes
max_iter 100

END
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11.45. Superelement Superposition

Refer to section 2.16 for details of the test.

11.45.1. Full Model

//salinas input created using nasgen from nastran file ’trusses-4.bdf’
SOLUTION

title=’ MSC.Nastran job created on 02-Apr-12 at 16:56:43’
case full
transient

time_step=1e-5
nsteps=1000
load=1

END

FILE
geometry_file ’truss_full.exo’

END

BOUNDARY
nodeset 11 // nastran SID=1

x=0
nodeset 32 // nastran SID=3

y=0
nodeset 33 // nastran SID=3

z=0
END

LOAD 1
node_list_file ’endtruss_node_list’

force 1 0 0
function=1

END

function 1
type=linear
data 0 0
data 1e-3 1
data 4e-3 -1
data 5e-3 0

end

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 12
material=1
Area=0.01
Truss

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E=1e+07
NU=0
density=0.1
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END

11.45.2. CB Reduction

//salinas input created using nasgen from nastran file ’trusses-4.bdf’
SOLUTION

title=’ MSC.Nastran job created on 02-Apr-12 at 16:56:43’
case basis
cbr nmodes=1
lumped

END

FILE
geometry_file ’endtruss.exo’

END

CBMODEL
nodeset 11
format=netcdf
file=endtruss.ncf
inertia_matrix=yes

END

BOUNDARY
nodeset 32 // nastran SID=3

y=0
nodeset 33 // nastran SID=3

z=0
END

LOADS
END

OUTPUTS
disp
genergies

END

ECHO
mass

END

BLOCK 12
// 4 elements of type TRUSS. 2 nodes/element
// property card ’PROD 1 ’
material=1
Area=0.01
Truss

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E=1e+07
NU=0
density=0.1

END

11.45.3. System Analysis with Superelement

//salinas input created using nasgen from nastran file ’trusses-4.bdf’
SOLUTION

title=’2 residual trusses, and a superelement’
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transient
time_step=1e-5
nsteps=1000

END

FILE
geometry_file ’truss_se.exo’

END

BOUNDARY
nodeset 11 // nastran SID=1

x=0
nodeset 32 // nastran SID=3

y=0
nodeset 33 // nastran SID=3

z=0
END

LOADS
node_list_file ’endtruss_node_list’

force 1 0 0
function=1

END

function 1
type=linear
data 0 0
data 1e-3 1
data 4e-3 -1
data 5e-3 0

end

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 12
// 2 elements of type TRUSS. 2 nodes/element
// property card ’PROD 1 ’
material=1
Area=0.01
Truss

END

block 13
superelement
map = locations
file = endtruss.ncf

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E=1e+07
NU=0
density=0.1

END
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11.46. Superelement Inertia Tensor Input

Refer to section 2.17 for details of the test.

include beam_model.inp

outputs
genergies
eorient

disp
end

cbmodel
nodeset 1
format=dmig
file=cbr.dmig
inertia_matrix=yes

end

11.46.1. beam_model

//################################################################################
//#
//# This salinas input file was generated by lsdyna2sierra
//#
//################################################################################

SOLUTION
solver=gdsw

title ’beam_med’
cbr
nmodes = 10
correction=vectors
rbmdof=123456

END

file
geometry_file ’temp1/beam_med.exo’

end

echo
mass

end

block 1
material ’boxsolid’

end

material ’boxsolid’
isotropic
e = 207
nu = 0.300000
density = 0.0000071

end
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11.47. Nastran/Sierra/SD Interoperability with Superelements

Refer to section 2.18 for details of the test.

11.47.1. Sierra/SD full model

//salinas input created using nasgen from nastran file ’tuningforkz.bdf’
SOLUTION

title=’ MSC.Nastran job created on 28-Nov-17 at 08:50:40’
case eig

eigen
nmodes=10
shift=-1e6

case frf
modalfrf
load=1

case trn
modaltransient
time_step=2e-5
nsteps=200
load=30

END

FILE
geometry_file ’tuningforkz.exo’

END

PARAMETERS
// wtmass=0.00259

eigen_norm=visualization
END

BOUNDARY
nodeset 11 // nastran SID=1

x=0 y=0 z=0
nodeset 53 // nastran SID=4

z=0
END

LOAD 1
sideset 1

pressure 1
function 1

END

function 1
type linear
data 0 1
data 1e4 1

end

LOAD 30
sideset 1

pressure 1
function 30

END

function 30
type linear
data 0 0
data 0.5e-3 1
data 1e-3 0

end
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damping
gamma=0.03

end

frequency
freq_min 1
freq_step 1
freq_max 1000
nodeset 43
displacement

end

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 11
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 1 ’
material=1

END

BLOCK 21
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 2 ’
material=1

END

BLOCK 31
// 4 elements of type HEX. 20 nodes/element
// property card ’PSOLID 3 ’
material=1

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E = 1e+07
NU = 0.3
density = 0.000259

END

11.47.2. Nastran full model

$ NASTRAN input file created by the Patran 2010.2.3 64-Bit input file
$ translator on November 28, 2017 at 08:52:49.
$ Direct Text Input for Nastran System Cell Section
$ Direct Text Input for File Management Section
$ Direct Text Input for Executive Control
$ Linear Static Analysis, Database
SOL 101
CEND
$ Direct Text Input for Global Case Control Data
TITLE = MSC.Nastran job created on 28-Nov-17 at 08:50:40
ECHO = NONE
SUBCASE 1

SUBTITLE=no-bc-on-interface
SPC = 2
LOAD = 2
DISPLACEMENT(SORT1,REAL)=ALL
SPCFORCES(SORT1,REAL)=ALL
STRESS(SORT1,REAL,VONMISES,BILIN)=ALL

544



$ Direct Text Input for this Subcase
BEGIN BULK
$ Direct Text Input for Bulk Data
PARAM POST 0
PARAM PRTMAXIM YES
$ Elements and Element Properties for region : load-tine
PSOLID 1 1 0
$ Pset: "load-tine" will be imported as: "psolid.1"
CHEXA 10 1 36 12 8 30 72 52

48 71 157 103 158 159 160 104
96 161 162 108 163 164

CHEXA 11 1 37 36 30 31 74 72
71 73 165 159 166 167 168 160
161 169 170 164 171 172

CHEXA 12 1 38 37 31 32 76 74
73 75 173 167 174 175 176 168
169 177 178 172 179 180

CHEXA 13 1 39 38 32 33 78 76
75 77 181 175 182 183 184 176
177 185 186 180 187 188

CHEXA 14 1 40 39 33 34 80 78
77 79 189 183 190 191 192 184
185 193 194 188 195 196

$ Elements and Element Properties for region : rom-tine
PSOLID 2 1 0
$ Pset: "rom-tine" will be imported as: "psolid.2"
CHEXA 5 2 24 6 14 18 60 47

55 59 117 111 118 119 120 97
113 121 122 116 123 124

CHEXA 6 2 25 24 18 19 62 60
59 61 125 119 126 127 128 120
121 129 130 124 131 132

CHEXA 7 2 26 25 19 20 64 62
61 63 133 127 134 135 136 128
129 137 138 132 139 140

CHEXA 8 2 27 26 20 21 66 64
63 65 141 135 142 143 144 136
137 145 146 140 147 148

CHEXA 9 2 28 27 21 22 68 66
65 67 149 143 150 151 152 144
145 153 154 148 155 156

$ Elements and Element Properties for region : fork
PSOLID 3 1 0
$ Pset: "fork" will be imported as: "psolid.3"
CHEXA 1 3 4 3 1 2 44 41

42 43 81 82 83 84 85 86
87 88 89 90 91 92

CHEXA 2 3 8 4 2 6 48 44
43 47 93 84 94 95 96 85
88 97 98 92 99 100

CHEXA 3 3 12 11 4 8 52 49
44 48 101 102 93 103 104 105
85 96 106 107 98 108

CHEXA 4 3 6 2 13 14 47 43
54 55 94 109 110 111 97 88
112 113 99 114 115 116

$ Referenced Material Records
$ Material Record : aluminum
$ Description of Material : Date: 27-Nov-17 Time: 08:57:23
MAT1 1 1.+7 .3 2.59-4
$ Nodes of the Entire Model
GRID 1 0. 0. 0.
GRID 2 1. 0. 0.
GRID 3 0. 1. 0.
GRID 4 1. 1. 0.
GRID 6 2. 0. 0.
GRID 8 2. 1. 0.
GRID 11 1. 2. 0.
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GRID 12 2. 2. 0.
GRID 13 1. -1. 0.
GRID 14 2. -1. 0.
GRID 18 3. -1. 0.
GRID 19 4. -1. 0.
GRID 20 5. -1. 0.
GRID 21 6. -1. 0.
GRID 22 7. -1. 0.
GRID 24 3. 0. 0.
GRID 25 4. 0. 0.
GRID 26 5. 0. 0.
GRID 27 6. 0. 0.
GRID 28 7. 0. 0.
GRID 30 3. 1. 0.
GRID 31 4. 1. 0.
GRID 32 5. 1. 0.
GRID 33 6. 1. 0.
GRID 34 7. 1. 0.
GRID 36 3. 2. 0.
GRID 37 4. 2. 0.
GRID 38 5. 2. 0.
GRID 39 6. 2. 0.
GRID 40 7. 2. 0.
GRID 41 0. 1. .5
GRID 42 0. 0. .5
GRID 43 1. 0. .5
GRID 44 1. 1. .5
GRID 47 2. 0. .5
GRID 48 2. 1. .5
GRID 49 1. 2. .5
GRID 52 2. 2. .5
GRID 54 1. -1. .5
GRID 55 2. -1. .5
GRID 59 3. -1. .5
GRID 60 3. 0. .5
GRID 61 4. -1. .5
GRID 62 4. 0. .5
GRID 63 5. -1. .5
GRID 64 5. 0. .5
GRID 65 6. -1. .5
GRID 66 6. 0. .5
GRID 67 7. -1. .5
GRID 68 7. 0. .5
GRID 71 3. 1. .5
GRID 72 3. 2. .5
GRID 73 4. 1. .5
GRID 74 4. 2. .5
GRID 75 5. 1. .5
GRID 76 5. 2. .5
GRID 77 6. 1. .5
GRID 78 6. 2. .5
GRID 79 7. 1. .5
GRID 80 7. 2. .5
GRID* 81 .5 1.
* -1.46144-8
GRID* 82 -5.9644-10 .5
* -6.88986-9
GRID* 83 .5 -2.08654-9
* -4.99122-9
GRID* 84 1. .5
* -5.11059-9
GRID 85 1. 1. .25
GRID* 86 4.25148-10 1.
* .25
GRID* 87 2.65251-9 7.2653-9
* .25
GRID* 88 1. 3.57292-9
* .25

546



GRID 89 .5 1. .5
GRID* 90 4.44603-9 .5
* .5
GRID* 91 .5 6.6322-9
* .5
GRID 92 1. .5 .5
GRID* 93 1.5 1.
* -1.46144-8
GRID* 94 1.5 -2.08654-9
* -4.99122-9
GRID* 95 2. .5
* -5.11059-9
GRID 96 2. 1. .25
GRID* 97 2. 3.57292-9
* .25
GRID 98 1.5 1. .5
GRID* 99 1.5 6.6322-9
* .5
GRID 100 2. .5 .5
GRID* 101 1.5 2.
* -1.46144-8
GRID* 102 1. 1.5
* -6.88986-9
GRID* 103 2. 1.5
* -5.11059-9
GRID 104 2. 2. .25
GRID 105 1. 2. .25
GRID 106 1.5 2. .5
GRID 107 1. 1.5 .5
GRID 108 2. 1.5 .5
GRID* 109 1. -.5
* -6.88986-9
GRID* 110 1.5 -1.
* -4.99122-9
GRID* 111 2. -.5
* -5.11059-9
GRID 112 1. -1. .25
GRID 113 2. -1. .25
GRID 114 1. -.5 .5
GRID 115 1.5 -1. .5
GRID 116 2. -.5 .5
GRID* 117 2.5 1.5939-8
* -1.46144-8
GRID* 118 2.5 -1.
* -4.99122-9
GRID* 119 3. -.5
* -5.11059-9
GRID* 120 3. 1.94968-8
* .25
GRID 121 3. -1. .25
GRID* 122 2.5 1.6149-9
* .5
GRID 123 2.5 -1. .5
GRID 124 3. -.5 .5
GRID* 125 3.5 1.5939-8
* -1.46144-8
GRID* 126 3.5 -1.
* -4.99122-9
GRID* 127 4. -.5
* -5.11059-9
GRID* 128 4. 1.94968-8
* .25
GRID 129 4. -1. .25
GRID* 130 3.5 1.6149-9
* .5
GRID 131 3.5 -1. .5
GRID 132 4. -.5 .5
GRID* 133 4.5 1.5939-8
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* -1.46144-8
GRID* 134 4.5 -1.
* -4.99122-9
GRID* 135 5. -.5
* -5.11059-9
GRID* 136 5. 1.94968-8
* .25
GRID 137 5. -1. .25
GRID* 138 4.5 1.6149-9
* .5
GRID 139 4.5 -1. .5
GRID 140 5. -.5 .5
GRID* 141 5.5 1.5939-8
* -1.46144-8
GRID* 142 5.5 -1.
* -4.99122-9
GRID* 143 6. -.5
* -5.11059-9
GRID* 144 6. 1.94968-8
* .25
GRID 145 6. -1. .25
GRID* 146 5.5 1.6149-9
* .5
GRID 147 5.5 -1. .5
GRID 148 6. -.5 .5
GRID* 149 6.5 1.5939-8
* -1.46144-8
GRID* 150 6.5 -1.
* -4.99122-9
GRID* 151 7. -.5
* -5.11059-9
GRID* 152 7. 1.94968-8
* .25
GRID 153 7. -1. .25
GRID* 154 6.5 1.6149-9
* .5
GRID 155 6.5 -1. .5
GRID 156 7. -.5 .5
GRID* 157 2.5 2.
* -1.46144-8
GRID* 158 2.5 1.
* -4.99122-9
GRID* 159 3. 1.5
* -5.11059-9
GRID 160 3. 2. .25
GRID 161 3. 1. .25
GRID 162 2.5 2. .5
GRID 163 2.5 1. .5
GRID 164 3. 1.5 .5
GRID* 165 3.5 2.
* -1.46144-8
GRID* 166 3.5 1.
* -4.99122-9
GRID* 167 4. 1.5
* -5.11059-9
GRID 168 4. 2. .25
GRID 169 4. 1. .25
GRID 170 3.5 2. .5
GRID 171 3.5 1. .5
GRID 172 4. 1.5 .5
GRID* 173 4.5 2.
* -1.46144-8
GRID* 174 4.5 1.
* -4.99122-9
GRID* 175 5. 1.5
* -5.11059-9
GRID 176 5. 2. .25
GRID 177 5. 1. .25
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GRID 178 4.5 2. .5
GRID 179 4.5 1. .5
GRID 180 5. 1.5 .5
GRID* 181 5.5 2.
* -1.46144-8
GRID* 182 5.5 1.
* -4.99122-9
GRID* 183 6. 1.5
* -5.11059-9
GRID 184 6. 2. .25
GRID 185 6. 1. .25
GRID 186 5.5 2. .5
GRID 187 5.5 1. .5
GRID 188 6. 1.5 .5
GRID* 189 6.5 2.
* -1.46144-8
GRID* 190 6.5 1.
* -4.99122-9
GRID* 191 7. 1.5
* -5.11059-9
GRID 192 7. 2. .25
GRID 193 7. 1. .25
GRID 194 6.5 2. .5
GRID 195 6.5 1. .5
GRID 196 7. 1.5 .5
$ Loads for Load Case : no-bc-on-interface
SPCADD 2 1 3 4 5
LOAD 2 1. 1. 1
$ Displacement Constraints of Load Set : base
SPC1 1 123 1 3 41 42 82 86

87 90
$ Displacement Constraints of Load Set : interface
SPC1 3 1 6 14 47 55 97 111

113 116
$ Displacement Constraints of Load Set : otm
SPC1 4 3 67
$ Displacement Constraints of Load Set : z0
SPC1 5 3 1 2 3 4 6 8

11 12 13 14 18 19 20 21
22 24 25 26 27 28 30 31
32 33 34 36 37 38 39 40
81 82 83 84 93 94 95 101
102 103 109 110 111 117 118 119
125 126 127 133 134 135 141 142
143 149 150 151 157 158 159 165
166 167 173 174 175 181 182 183
189 190 191

$ Pressure Loads of Load Set : pressure
PLOAD4 1 14 1. 40 78
$ Referenced Coordinate Frames
ENDDATA
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11.48. Sierra/SD Superelement File Formats

Refer to section 2.19 for details of the test.

11.48.1. Sierra/SD full model

//salinas input created using nasgen from nastran file ’tuningfork.bdf’
SOLUTION

title=’ MSC.Nastran job created on 27-Nov-17 at 09:29:23’
eigen

nmodes=10
shift=-1e6 // needed only for floating

END

FILE
geometry_file ’tuningfork.exo’

END

PARAMETERS
// wtmass=0.00259

eigen_norm=visualization
END

BOUNDARY
nodeset 11 // nastran SID=1

x=0
nodeset 12 // nastran SID=1

y=0
nodeset 13 // nastran SID=1

z=0
nodeset 33 // nastran SID=3

z=0
END

history
nodeset 100
disp

end

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 11
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 1 ’
material=1

END

BLOCK 21
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 2 ’
material=1

END

BLOCK 31
// 4 elements of type HEX. 20 nodes/element
// property card ’PSOLID 3 ’
material=1
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END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E = 1e+07
NU = 0.3
density = 0.000259

END

11.48.2. Netcdf output

SOLUTION
title=’ROM tine of tuning fork’
cbr

nmodes=10
END

cbmodel
nodeset 41
format=netcdf
file=rom4.ncf

end

FILE
geometry_file ’rom4.exo’

END

PARAMETERS
eigen_norm=visualization

END

BOUNDARY
nodeset 33 // nastran SID=3

z=0
END

LOADS
END

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 21
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 2 ’
material=1
blkbeta=1e-6

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E = 1e+07
NU = 0.3
density = 0.000259

END
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11.48.3. DMIG output

SOLUTION
title=’ROM tine of tuning fork’
cbr

nmodes=10
END

cbmodel
nodeset 41
format=dmig*
file=rom4.dmig
inertia_matrix=no

end

FILE
geometry_file ’rom4.exo’

END

PARAMETERS
eigen_norm=visualization

END

BOUNDARY
nodeset 33 // nastran SID=3

z=0
END

LOADS
END

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 21
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 2 ’
material=1
blkbeta=1e-6

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E = 1e+07
NU = 0.3
density = 0.000259

END

11.48.4. Netcdf input

SOLUTION
title=’Residual calculations using a CBR/ROM of right tine’
case eigNCF

eigen
nmodes=10
shift=-1e6

END
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FILE
geometry_file ’residual.exo’

END

gdsw
solver_tol=1e-12

end

PARAMETERS
eigen_norm=visualization

END

BOUNDARY
nodeset 11 // nastran SID=1

x=0 y=0 z=0
nodeset 33 // nastran SID=3

z=0
END

LOAD 30
sideset 1

pressure 1
function 30

END

function 30
type linear
data 0 0
data 0.5e-3 1
data 1e-3 0

end

damping
gamma=0.03

end

frequency
freq_min 1
freq_step 1
freq_max 1000
nodeset 33
displacement

end

history
nodeset 100
disp

end

OUTPUTS
disp

END

ECHO
mass

END

BLOCK 11
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 1 ’
material=1

END

$$ BLOCK 21
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 2 ’
material=1
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END

BLOCK 31
// 4 elements of type HEX. 20 nodes/element
// property card ’PSOLID 3 ’
material=1

END

BLOCK 32
superelement
map=locations
file=rom4.ncf

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E = 1e+07
NU = 0.3
density = 0.000259

END

11.48.5. DMIG input

SOLUTION
title=’Residual calculations using a CBR/ROM of right tine’
case eigDMIG

eigen
nmodes=10
shift=-1e6

END

FILE
geometry_file ’residual.exo’

END

gdsw
solver_tol=1e-12

end

PARAMETERS
eigen_norm=visualization

END

BOUNDARY
nodeset 11 // nastran SID=1

x=0 y=0 z=0
nodeset 33 // nastran SID=3

z=0
END

LOAD 30
sideset 1

pressure 1
function 30

END

function 30
type linear
data 0 0
data 0.5e-3 1
data 1e-3 0

end

damping
gamma=0.03
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end

frequency
freq_min 1
freq_step 1
freq_max 1000
nodeset 33
displacement

end

OUTPUTS
disp

END

history
nodeset 100
disp

end

ECHO
mass

END

BLOCK 11
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 1 ’
material=1

END

$$ BLOCK 21
// 5 elements of type HEX. 20 nodes/element
// property card ’PSOLID 2 ’
material=1

END

BLOCK 31
// 4 elements of type HEX. 20 nodes/element
// property card ’PSOLID 3 ’
material=1

END

BLOCK 32
superelement
format = dmig
file=rom4.dmig

END

MATERIAL 1
// from ’MAT1 1 ’
Isotropic
E = 1e+07
NU = 0.3
density = 0.000259

END
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11.49. Transient Reaction Forces

Refer to section 2.20 for details of the test.

11.49.1. Vibration from Initial Conditions

FILE
geometry_file = bars.g

END
SOLUTION

case ’transient’
transient
time_step 1e-2
nsteps 1000
load 1
solver=gdsw
lumped

END
GDSW
END
BOUNDARY

nodeset 2 3 4 5
fixed

END
LOAD 1
END

INITIAL-CONDITIONS
velocity = by_block

END

OUTPUTS
database name = initCond.e
disp
velocity
accel
force
reaction_force

END

ECHO
mass

END

HISTORY
END

BLOCK 1
dashpot
cid=1
k=1.1
c = 0.7

END
BLOCK 2

dashpot
cid=1
k=1.2
c = 0.8

END
BLOCK 3

dashpot
cid=2
k=1.3
c = 0.9

END
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BLOCK 4
dashpot
cid=2
k=1.4
c = 1.0

END

BLOCK 100
conmass
mass = 2.5
velocity = 10 20 0

end

11.49.2. Prescribed Acceleration

FILE
geometry_file = bars.g

END
SOLUTION

case ’transient’
transient
time_step 1e-2
nsteps 1000
load 1
solver=gdsw
lumped

END
GDSW
END
BOUNDARY

nodeset 2 3 4 5
fixed

nodeset 1
accelx 1
function xfun
disp0 = 0
vel0 = 0

nodeset 1
accely 1
function yfun
disp0 = 0
vel0 = 0

END

FUNCTION xfun
type = linear
data 0 4
data 1 4

END

FUNCTION yfun
type = linear
data 0 8
data 1 8

END

LOAD 1
nodeset 1

force 0 0 1.5
END

OUTPUTS
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database name = accel.e
disp
velocity
accel
force
reaction_force

END

ECHO
mass

END

HISTORY
END

DAMPING
alpha = 0.1
beta = 0.2

END

BLOCK 1
dashpot
cid=1
k=1.1
c = 0.7

END
BLOCK 2

dashpot
cid=1
k=1.2
c = 0.8

END
BLOCK 3

dashpot
cid=2
k=1.3
c = 0.9

END
BLOCK 4

dashpot
cid=2
k=1.4
c = 1.0

END

BLOCK 100
conmass
mass = 2.5
velocity = 10 20 0

end
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11.50. Relative Displacement PSD

Refer to section 2.21 for details of the test.

11.50.1. In Phase Response

Solution
solver=gdsw
case eig

eigen nmodes=all
case random

modalranvib
lfcutoff -1

end
Parameters

wtmass 0.00259
end
File

geometry_file oneD.exo
end
Boundary

nodeset 1,2 y = 0 z = 0 rotx = 0 roty = 0 rotz = 0
end
Outputs

disp
relative_disp
vrms

end
Ranloads

matrix matFun
load=1

nodeset 2
force 1 0 0
scale 1e6

load=2
nodeset 1
force 1 0 0
scale 1e6

end

Matrix-function matFun
symmetry hermitian
dimension 2x2
data 1,1

real function squareBand scale 1
data 1,2

real function squareBand scale 1
data 2,2

real function squareBand scale 1
end
Function squareBand

type linear
data 1 1e-6
data 9.9999 1e-6
data 10 1e-1
data 25 1e-1
data 25.0001 1e-6
data 30 1e-6

end
Damping

gamma = 0.05
end
Frequency

freq_min 10
freq_max 25
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freq_step 0.1
nodeset 1 2 disp
block 12 relative_disp

end
Block 1 2

conmass
mass 1e2

end
Block 12

joint2g
kx elastic 1e5
ky elastic 1e5
kz elastic 1e5

end

11.50.2. Opposite Phase Response

Solution
solver=gdsw
case eig

eigen nmodes=all
case random

modalranvib
lfcutoff -1

end
Parameters

wtmass 0.00259
end
File

geometry_file oneD.exo
end
Boundary

nodeset 1,2 y = 0 z = 0 rotx = 0 roty = 0 rotz = 0
end
Outputs

disp
relative_disp
vrms

end
Ranloads

matrix matFun
load=1

nodeset 2
force 1 0 0
scale 1e6

load=2
nodeset 1
force 1 0 0
scale 1e6

end

Matrix-function matFun
symmetry hermitian
dimension 2x2
data 1,1

real function squareBand scale 1
data 1,2

real function squareBand scale -1
data 2,2

real function squareBand scale 1
end
Function squareBand

type linear
data 1 1e-6
data 9.9999 1e-6
data 10 1e-1
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data 25 1e-1
data 25.0001 1e-6
data 30 1e-6

end
Damping

gamma = 0.05
end
Frequency

freq_min 10
freq_max 25
freq_step 0.1
nodeset 1 2 disp
block 12 relative_disp

end
Block 1 2

conmass
mass 1e2

end
Block 12

joint2g
kx elastic 1e5
ky elastic 1e5
kz elastic 1e5

end

11.50.3. One Node Fixed Response

Solution
solver=gdsw
case eig

eigen nmodes=all
case random

modalranvib
lfcutoff -1

end
Parameters

wtmass 0.00259
end
File

geometry_file oneD.exo
end
Boundary

nodeset 1 fixed
nodeset 2 y = 0 z = 0 rotx = 0 roty = 0 rotz = 0

end
Outputs

disp
relative_disp
vrms

end
Ranloads

matrix matFun
load=1

nodeset 2
force 1 0 0
scale 1e6

end
Matrix-function matFun

symmetry hermitian
dimension 1x1
data 1,1

real function squareBand scale 1
end
Function squareBand

type linear
data 1 1e-6
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data 9.9999 1e-6
data 10 1e-1
data 25 1e-1
data 25.0001 1e-6
data 30 1e-6

end
Damping

gamma = 0.05
end
frequency

freq_min 10
freq_max 25
freq_step 0.1
nodeset 2 disp
block 12 relative_disp

end
Block 1 2

conmass
mass 1e2

end
Block 12

joint2g
kx elastic 1e5
ky elastic 1e5
kz elastic 1e5

end

11.50.4. Tuning fork response

Solution
solver gdsw
case eig

eigen
nmodes 12
shift -100

case mRand
modalranvib
truncationMethod none
lfcutoff -10

end
GDSW

max_numterm_c1 1000
end
Parameters

wtmass 0.00259
end
File

geometry_file tuningFork.exo
end
Damping

gamma 0.08
end
Boundary

block 1
z=0

nodeset 1
x=0 y=0

end
Matrix-function 1x1

symmetry hermitian
dimension=1x1
data 1,1

real function 2 scale 1
end
Function 2

type linear
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data 1.000000e-16 1.000000e-16
data 1.99999999 1.000000e-16
data 2.0 1.000000e-01
data 100.0 1.000000e-01
data 100.00000001 1.000000e-16
data 125.0 1.000000e-16

end
Ranloads

matrix 1x1
load = 1
nodeset 2
force 0 1 0
scale 1

end
Outputs

disp
relative_disp

end
Frequency

freq_min 1
freq_max 150
freq_step 0.1
block ’100 10 11 12 13 14 15 16 17 18 19’
nodeset all
relative_disp
disp

end
Block 1

material 1
end
Material 1

e 1e7
nu 0.3
density 0.1

end
Block 100

Joint2g
kx elastic 0
ky elastic 0
kz elastic 0
nsm 1e-4

end
Tied Joint
normal definition none
surface 100, 200
connect to block 100
side average

end

//{ind=0}
{loop(10)}

Block {10+ind}
joint2g
kx elastic 0
ky elastic 0
kz elastic 0
nsm 1e-4

end
tied joint
normal definition none
surface {10+ind}, {20+ind}
connect to block {10+ind}
side average // do not stiffen the surface

end

//{ind++}
{endloop}
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11.51. Contact Verification

Refer to section 3.4 for details of the test.

Solution
case static_gap

statics
end

File
geometry_file bar_curve_r1000.g

end

Boundary
nodeset 1

z=0
sideset 1

x=0 y=0
End

Block 1
material "steelish"

end
Block 2

material "steelish"
end
Block 3

material "steelish"
end

Material "steelish"
isotropic
density = 0.0343
nu = 0.0
E = 29.e6

end
Loads

body
gravity = 0 -1 0
function = 1

end
Function 1

name "impulse"
type LINEAR
data 0 1
data 1 1

end
Outputs

disp
stress
energy

end
Tied Data

Surface 101, 100
search tolerance 0.125
gap removal = off

end
Tied Data

Surface 200, 201
search tolerance 0.125
gap removal = off

end
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11.52. Buckling of Constant Pressure Ring Input

Refer to section 4.8 for details of the test.

SOLUTION
solver=gdsw

buckling
nmodes 1
shift=-100

END

FILE
geometry_file ’temp1/ring20.par’

END

BOUNDARY
nodeset 1

y=0
nodeset 2

x=0
nodeset 3

z=0
END

LOADS
sideset 1

pressure = 1.0
END

OUTPUTS
deform

END

ECHO
END

BLOCK 1
material 1

END

Material 1
E 10e6
nu 0.0
density 0.098 // not used in statics

END
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11.53. Buckling of Cantilever Beam Input

Refer to section 4.9 for details of the test.

SOLUTION
solver=gdsw
buckling
nmodes 4
shift=-1.e5

END

FILE
geometry_file ’bar.exo’

// geometry_file ’bar.exo’
END

OUTPUTS
deform

END

ECHO
END

BOUNDARY
sideset 1
fixed

END

BLOCK 1
material "steel"

END

MATERIAL "steel"
density 1.293

E 3.0e7
nu 0.0

END

LOADS
sideset 2
pressure=1.0

END
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11.54. Rotating Dumbbell Statics

Refer to section 6.1

SOLUTION
solver=gdsw
statics

END
loads

body
angular_velocity 0 0 1.1

end
file

geometry_file ’dumbbell.exo’
end
boundary

nodeset 1 fixed
end
outputs

force
end
echo

mass
end
block 2

conmass
mass=2

end
block 1

beam2
material=light
area=1e-2
i1=1e-2
i2=1e-2
j=2e-2
orientation 0 0 1

end
material light

isotropic
density = 0
nu = .3
E = 1E7

end
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11.55. Rotating Beam Statics

Refer to section 6.2

SOLUTION
solver=gdsw

case one
statics
load = 1

case two
tangent

case out
qevp
method=anasazi
nmodes=10
subspace_size 100

END
file
geometry_file ’beam_hex8.exo’
end

parameters
eig_tol=1.0e-12

end

load 1
body

angular_velocity 0 0 50.0
function = 1

end
FUNCTION 1

type LINEAR
name "test_func1"
data 0.0 1.0
data 1.0 1.0
data 2.0e4 1.0

end
OUTPUTS
disp
force
end
echo
mass
mass=block
end
boundary

nodeset 1
fixed

end
block 1 // hex8u

material "steel"
rotational_type lagrangian

end
material "steel"

E 19.5e10
nu 0
density 7700.0

end
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11.56. Rotating Shell Statics

Refer to section 6.3

SOLUTION
solver=gdsw

case one
statics
load = 1

case two
tangent

case out
qevp
method=anasazi
nmodes=10
subspace_size 100

END
FILE
geometry_file ’beam_shell.exo’
end

parameters
eig_tol=1.0e-12

end

LOAD 1
body

angular_velocity 0 0 50.0
function = 1

end
FUNCTION 1

type LINEAR
name "test_func1"
data 0.0 1.0
data 1.0 1.0
data 2.0e4 1.0

end
OUTPUTS
disp
force
end
ECHO
mass
mass=block
end
BOUNDARY

nodeset 1
fixed

end
BLOCK 1 // hex8u

material "steel"
quadt
thickness 1.0
rotational_type lagrangian

end
MATERIAL "steel"

E 19.5e10
nu 0
density 7700.0

end
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11.57. Rotating Ring Statics

Refer to section 6.4

SOLUTION
solver=gdsw
statics

END
loads

body
angular_velocity 0 0 1.1
coordinate 10

end
coordinate 10

3 1 4
3 1 5
4 1 4

end
file

geometry_file ’ring.exo’
end
boundary

nodeset 1 fixed
end
outputs

force
end
echo

mass
end
block 1

quadt
material "Al6061-2"

end
block 2

beam2
material=light
area=1e-2
i1=1e-2
i2=1e-2
j=2e-2
orientation 0 0 1

end
material "Al6061-2"

isotropic
density = 4
nu = .3
E = 1E7

end
material light

isotropic
density = 0
nu = .3
E = 1E7

end
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11.58. Rotating Ring Acceleration

Refer to section 6.5

SOLUTION
solver=gdsw
statics

END
loads

body
angular_acceleration 0 0 1.1
coordinate myCoord

end
coordinate myCoord

3 1 4
3 1 5
4 1 4

end
file

geometry_file ’ring.exo’
end
boundary

nodeset 1 fixed
end
outputs

force
end
echo

mass
end
block 1

quadt
material "Al6061-2"

end
block 2

beam2
material=light
area=1e-2
i1=1e-2
i2=1e-2
j=2e-2
orientation 0 0 1

end
material "Al6061-2"

isotropic
density = 4
nu = .3
E = 1E7

end
material light

isotropic
density = 0
nu = .3
E = 1E7

end
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11.59. Rotating Superelement Statics

Refer to section 6.6

// solution should be identical to the single hex solution, but
// this model uses a superelement.
SOLUTION

solver=gdsw
statics

END

loads
body

angular_velocity 3 0 0
end

file
geometry_file ’rotating_hex_se.exo’

end

boundary
nodeset 1 fixed
nodeset 2 fixed

end

outputs
force

end

echo
mass
force

end

block 1
superelement
file=rotating_hex_gold.ncf
map locations

end
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11.60. Rotating Superelement Beam Statics

Refer to section 6.7

SOLUTION
solver=gdsw

case out
statics

load=1
END

HISTORY
nodeset 2
disp

end
FILE
geometry_file ’beam_se.exo’
end
LOAD 1

body
angular_velocity 0 0 5.0

function = 1
end
FUNCTION 1

type LINEAR
name "test_func1"
data 0.0 1.0
data 1.0 1.0
data 2.0e4 1.0

end
outputs
disp
force
end
echo
mass
mass=block

input
end
block 1

dead
end
block 2

superelement
file=cbr_hex.netcdf
map = location

end
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11.61. Point Mass in a Rotating Frame

Refer to section 6.8

SOLUTION
solver=gdsw
title ’pt hex starting at rest in rotating frame’
transient

time_step = 0.001
nsteps = 1000

END

loads
body

angular_velocity 0 0 1.1
function 1

end

file
geometry_file ’phex.exo’

end

function 1
type=linear
data 0 1
data 1 1

end

boundary
end

outputs
disp
force

end

echo
mass

end

block 1
material heavy
rotational_type lagrangian

end

material heavy
isotropic
E = 30.0e6
nu = 0.3
density = 10

end
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11.62. Force Identification from Structural Acoustic Frequency Responses

7.1

11.63. Force Identification from Frequency Responses

7.2

11.64. Force Identification from Temporal Pressures

7.3

11.65. Force Identification from Temporal Tractions

7.4

11.66. Force Identification from Temporal Acoustic Pressures

7.5

11.67. Force Identification with Modal Transient

7.6

11.68. PSD Identification with Modal FRF

7.7
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11.69. Orthotropic Material Identification with Transient

7.8

SOLUTION
solver=gdsw
solver=gdsw
transient-inverse

title ’Inverse Solution’
nsteps = 10
time_step 0.1

END

INVERSE-PROBLEM
design_variable = material
data_truth_table = ttable.txt
data_file = data.txt

END

BLOCK 1
material ’orthotropic’
inverse_material_type = HOMOGENEOUS
hex8f

END

MATERIAL ’orthotropic’
density = 1.0
orthotropic
AlphaParametrization = yes
InequalityConstraints = no
Cij = 3.0 1.0 1.0

3.0 1.0
3.0

1.0
1.0

1.0
Eii_bounds = 0.01 20.0 0.01 20.0 0.01 20.0
Gij_bounds = 0.01 10.0 0.01 10.0 0.01 10.0
Aij_bounds = -1.0 1.0 -1.0 1.0 -1.0 1.0

END

FILE
geometry_file ’DeepBeam.exo’

END

BOUNDARY
sideset 1

x=0 y=0 z=0
END

LOADS
sideset 2

traction 1.0 1.0 1.0
function = 1

sideset 3
traction 1.0 1.0 1.0
function = 1

END

HISTORY
displacement nodeset 1

END

OUTPUTS
END
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ECHO
END

FUNCTION 1
type LINEAR
data 0.0 0.0
data 10.0 10.0

END

GDSW
solver_tol 1.0e-13
prt_summary 0

END

OPTIMIZATION
// ROLmethod = linesearch
// LSstep = secant
// check_grad = no
// LS_curvature_condition = null
// Max_iter_Krylov = 30
// Use_FD_hessvec = false
// Use_inexact_hessvec = false
// opt_tolerance = 1e-10
// opt_iterations = 500

boundconstraints = yes
scaleDesignVars = no
xml_file = DeepBeamRol.xml

END
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11.70. Fatigue Output of Single DOF in Random Vibration

Refer to section 8.1

11.70.1. Modal Random Vibration

Solution
title ’test of a single dof example for fatigue’
case eig

eigen nmodes=all
case frf

modalfrf
load=1

case ran
modalranvib
noSVD

end

FILE
geometry_file ’onehexran.exo’

end

Ranloads
matrix 97
load=1

sideset 2
pressure 7

end

Matrix-function 97
dimension 1x1
symmetry=symmetric
data 1,1
real function 99

end

Function 99
type linear
data 0 9
data 5000 9

end

Frequency
freq_min 10
freq_max 100
freq_step 10
sideset 2
disp
acceleration

end
BOUNDARY

sideset 1
fixed

sideset 2
y=0 z=0

end
OUTPUTS

maa
disp
vrms

end
Echo
input
disp
force
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rhs
mass

end
LOAD 1

sideset 2
pressure 3
function 1

end
Function 1

type linear
data 0 3.0
data 1e5 3.0

end
Block 1

material 3
end
Material 3

E = 1e7
nu = .3
density 0.000259

end

11.70.2. Fatigue Solution

SOLUTION
title ’test of a single dof example for fatigue’
case eig

eigen nmodes=all
case frf

modalfrf
load=1

case ran
modalranvib
noSVD

case out
fatigue

method=wirsching
duration=0.001

end

FILE
geometry_file ’onehexran.exo’

end

Ranloads
matrix 97
load=1

sideset 2
pressure 7

end

Matrix-function 97
dimension 1x1
symmetry=symmetric
data 1,1
real function 99

end

Function 99
type linear
data 0 9
data 5000 9

end

Frequency
freq_min 10
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freq_max 100
freq_step 10
sideset 2
disp
acceleration

end

BOUNDARY
sideset 1
fixed

sideset 2
y=0 z=0

end

OUTPUTS
disp
vrms

end

ECHO
input
disp
force

rhs
mass
fatigue

end

LOAD 1
sideset 2

pressure 3
function 1

end

Function 1
type linear
data 0 3.0
data 1e5 3.0

end

BLOCK 1
material 3

end

MATERIAL 3
E = 1e7
nu = .3
density 0.000259
Fatigue_A1 12.1689
Fatigue_A2 -3
Stress_Ratio -1.0
Fatigue_Stress_Scale 1.0 // 0.001
std_err 0.01
t_dist 123.4

end
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11.71. Fatigue Output of Dogbone

Refer to section 8.2

SOLUTION
case eig
eigen nmodes=150 // a 5 Hz wave is effectively static loading for this thing. We need a TON of modes for this to work.
shift=-1e9

restart = auto
case rand

modalranvib
lfcutoff = 10 // DON"T USE -1 FOR STRESS.
nosvd

case fatigue
fatigue

method=wirsching
end

FILE
geometry_file ’dogbone_eng.exo’

end

PARAMETERS
wtmass=0.002589

end

BOUNDARY
nodeset 1
rotx=0
roty=0
rotz=0

end

RANLOADS
matrix=11
load=1

nodeset 1
force=1 0 0
scale = 1.0
nodeset 2
force=1 0 0
scale = -1.0

end

Matrix-Function 11
symmetry = symmetric
dimension = 1x1
data 1,1
real FUNCTION 1

end

FUNCTION 1
Name="psd"
type loglog
data 4.0 1e-13
data 4.49 1e-13
data 4.5 4931280.0 // 2219.96 // for sine wave of 3.141165e3, want rms of sqrt(4933460)=2221.139.
data 5.5 4931280.0 // 2219.96
data 5.51 1e-13
data 6.0 1e-13

end

// PSD magnitude based on integral function from wolfram alpha. Execute the following line:
// 4931280.000000*1.000000+integral 10^-13307.372658 * x^20382.441146 dx from x=4.490000 to x=4.500000 + integral 10^18487.818124 * x^-24962.258939 dx from x=5.500000 to x=5.510000
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Frequency
nodeset 1
freq_min=4.0
freq_max=6.0
freq_step=0.01

end

LOADS
end

HISTORY
end

OUTPUTS
vrms

end

ECHO
mass

end

BLOCK 77
rbar

end

BLOCK 99
material AISI4140

end

BLOCK 100
material AISI4140

end

block 1
dead
end

MATERIAL AISI4140
E=29.0e6 // psi
nu=0.32
density=0.283 // lb/in^3
// these values are not appropriate for this material

Fatigue_A1 31.6
Fatigue_A2 -14.0845

fatigue_stress_scale 1.0e-3
end
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11.72. Fatigue Output of Pinned Shell

Refer to section 8.3

SOLUTION
title ’test of a simple pinned plate for fatigue’
case statics

statics
load=11

case eig
eigen
nmodes=1

case ran
modalranvib
noSVD

case nb
fatigue

method=wirsching
END

FILE
geometry_file ’pinned_plate_fatigue.exo’

END

Ranloads
matrix 97
load=1

sideset 1
pressure 1

END

matrix-function 97
dimension 1x1
symmetry=symmetric
data 1,1
real function 99

end

function 99
type linear
data 1 1e-20
data 4 1e-20
data 4.01 1
data 4.99 1
data 5.00 1e-20
data 500 1e-20

end

frequency
freq_min 4
freq_max 5
freq_step 0.001
block 1 displacement

end

damping
end

BOUNDARY
nodeset 1
x=0 y=0 z=0

nodeset 2
x=0 y=0 z=0

END
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OUTPUTS
disp
vrms
stress

END

ECHO
input
mass

END

LOAD 11
sideset 1

pressure 1
END

LOAD 14
sideset 1

pressure 1
function=14

END

function 14
// white noise
type linear
data 0 1.0
data 1e5 1.0

end

BLOCK 1
material 3

END

MATERIAL 3
E = 1e7
nu = .3
density 0.000259
Fatigue_A1 12.1689
Fatigue_A2 -3
Stress_Ratio -1.0
Fatigue_Stress_Scale=1e-4

END
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11.73. Periodic Boundary Conditions

Refer to section 3.5 for details of the test.

SOLUTION
solver=gdsw
statics

END

FILE
geometry_file ’SingleVoidCenterPbc.exo’

END

BOUNDARY
nodeset 1

x=0 y=0 z=0
nodeset 2

x=0 z=0
nodeset 2

x=0
END

BEGIN-PERIODIC
side a = 1
side b = 2
name = X_directional_PBC
search tolerance = 1e-2
geometric offset = -1.0 0.0 0.0
Ux = -1.5

END

LOADS
END

HISTORY
element stress nearest location 0.0 0.4 0.0 as ExpectedMaxStress1
element stress nearest location 0.0 0.0 0.4 as ExpectedMaxStress2
element stress nearest location -0.4 0.0 0.0 as ExpectedMinStress

END

OUTPUTS
displacement
stress

END

ECHO
MPC

END

BLOCK 1
material "simple_solid"

END

MATERIAL "simple_solid"
E 100.0
nu 0.3
density 1.0

END
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11.74. Moving Mesh MPCs

Refer to section 3.7 for details of the test.

SOLUTION
solver=gdsw

case trans
transient

time_step {time_step} //1.0e-4
nsteps {nsteps} //150
nskip {nskip} //10
nUpdateConstraints = 1
predictorcorrector = 0

END

FILE
geometry_file = {geometry_file} //brick_gap.g

END

LINESAMPLE
samples per line 1000
endpoint -4 0. 0. 4 0. 0.
format mfile

END

LOADS
sideset 1
acoustic_accel = 0.0
function 1

END

INITIAL-CONDITIONS
acoustics = by_block

END

FUNCTION 1
type linear
data 0 0
data 1 0

END

BOUNDARY
sideset 2

absorbing
END

OUTPUTS
apressure

END

ECHO
none

END

BLOCK 1
acoustics 4
material "air"

END

BLOCK 2
acoustics 2
material "air"

END

MATERIAL "air"
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density 1.293
acoustic
c0 332.0

END

begin contact definition
gap removal = off
skin all blocks = on
begin interaction defaults

general contact = on
end

end

GDSW
solver_tol = 1e-8

END
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11.75. Nodal Loading vs Sideset Loading for Modal Random Vibration

Refer to section 8.4

// Flat Plate Problem Solution in Roark

solution
case ’eig’
eigen

nmodes=50
case ’randomvib’
modalranvib
end

RANLOADS
matrix = 1
load = 1
nodeset 10
force = 0 0 1
scale = 9.3234e-4
END

MATRIX-FUNCTION 1
name ’pressure spectral density’
symmetry = hermitian
dimension = 1x1
data 1,1
real function 1
END

FUNCTION 1
name = ’psd’
type = ’loglog’
data 10.0 690.0
data 20.0 690.0

data 30.0 6900.0
data 100.0 6900.0
data 500.0 690.0
data 1000.0 690.0
END

parameters
end

damping
gamma 0.02
end

FREQUENCY
method=log
freq_min 1.0
freq_max 1000
NF 1000
nodeset 5
disp
accel
END

file
geometry_file ’flat_input.exo’

end

boundary
nodeset 1

z = 0.0
nodeset 2
z = 0.0
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nodeset 3
fixed
nodeset 4
fixed
end

history
nodeset ’5’
disp
end

outputs
disp

end

echo
end

block 1
HEXSHELL
sideset 1
material "Example-2"

end

material "Example-2"
isotropic
density = 8.56e3
nu = 0.34
E = 9.02e10

end
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11.76. Multidirectional Periodic BC: Periodic Volume Elements

Refer to section 3.6 for details of the test.

SOLUTION
solver=gdsw
statics

END

FILE
geometry_file ’SingleVoidCenterPve.exo’

END

BOUNDARY
nodeset 1

x=0 y=0 z=0
END

BEGIN-PERIODIC
side a = 1
side b = 2
name = X_directional_PBC
search tolerance = 1e-4

// geometric offset = 1.0 0.0 0.0
Ux = 1.5
Uy = 1.0
Uz = 0.5

END

BEGIN-PERIODIC
side a = 3
side b = 4
name = Y_directional_PBC
search tolerance = 1e-4

// geometric offset = 0.0 1.0 0.0
Ux = 1.0
Uy = -1.0
Uz = 0.25

END

BEGIN-PERIODIC
side a = 5
side b = 6
name = Z_directional_PBC
search tolerance = 1e-4

// geometric offset = 0.0 0.0 1.0
Ux = 0.5
Uy = 0.25
Uz = -0.5

END

LOADS
END

HISTORY
element stress nearest location -0.1 -0.5 -0.5 as Stress1
element stress nearest location -0.5 -0.1 -0.5 as Stress2
element stress nearest location -0.5 -0.5 -0.1 as Stress3

END

OUTPUTS
displacement
stress

END

ECHO
MPC
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END

BLOCK 1
material "simple_solid"

END

MATERIAL "simple_solid"
E 100.0
nu 0.3
density 1.0

END
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12. MAKING THE VERIFICATION DOCUMENT

This appendix provides instructions to developers to assist in building this reference. It is not of general use to analysts. Note
that this procedure depends on the code, docs, and test repositories: make sure they are all up to date.

There are two steps. If an issue arises, and it’s necessary to repeat this process, it is necessary to restart from step 1 if one or
more tests have changed significantly.

NOTE: all of the following steps are also contained in a single script, “RunMe.sh”.

Step 1 is to run the tests. Remove a pre-existing results directory. Be aware that even if makeLocalDocuments.py claims
success, one or more of the individual LaTeX files may be broken.

cd /scratch/$USER/code
assign -p Salinas_rtest -k self-documenting
assign -p InverseOpt_rtest/InverseSD_rtest -k self-documenting --union
assign -p arpeggio_rtest/aria_sd -k self-documenting --union
assign -p arpeggio_rtest/salinas_verification -k self-documenting --union
assign -p sd_sm_coupled_rtest/verification_manual -k self-documenting --union
bake4tests.sh -e release
rm -rf results
testrun -e release --save-all-results -D

If it is necessary to repeat the second step, and no tests have changed, then (fortunately) skip the first step and start here.
The last step is generating a single, concatenated verification document. As many supporting files are in the docs/Salinas/doc
directory, we go to that directory to run the scripts.

cd /scratch/$USER/docs/Salinas/doc
ln -sf /scratch/$USER/code/results
make verificationAutodoc.pdf
xdg-open Verification/verificationAutodoc.pdf

If step 2 fails, the tail of an .aux will point to the cause.

Finally, you may clean up that directory.

make clean
unlink results

Note however, the SrcVerification and InpVerification files may need to be manually updated. There is a tool to help! Use
“gatherLocalTests.sh” to generate a list of all tests in the results directory. These are in the right format to be added to
verificationAutodocSrc, but must be copied over by hand. I’ve also recently found that the graphicspath should be terminated
with “/”, and not with a space. LaTeX is picky about that.
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13. RICHARDSON EXTRAPOLATION

Richardson extrapolation44 is a numerical technique. The convergence of a solution is identified and used to provide an
improved accuracy solution. We here discuss this technique as applied to a finite element model.∗

Assume that an exact solution, ao is sought and that the mesh with a characteristic element length h is within the region of
geometric convergence.† The solution, ao, may be an eigenvalue for example. In that region, the error may be written,

errh = a(h) −ao = Chn (13.0.1)

where C and n are unknown.

Take another mesh of characteristic element size, αh.‡

a(αh) −ao = Cαnhn (13.0.2)

We further refine the mesh.
a(α2h) −ao = Cα2nhn (13.0.3)

There are thus three equations to solve for the three unknowns, C, n and ao.

a(h) −a(αh) = Chn −αnChn = Chn(1 −αn) (13.0.4)

a(αh) −a(α2h) = αnChn −α2nChn = Chnαn(1 −αn) (13.0.5)

Thus,

αn =
a(αh) −a(α2h)
a(h) −a(αh)

(13.0.6)

And,

n=
log(a(αh) −a(α2h)) − log(a(h) −a(αh))

log(α)
(13.0.7)

Knowing n, we solve for ao.

ao =
a(αh) −αna(h)

1 −αn
(13.0.8)

Having ao, one may plot a(h) −ao versus mesh size on a log-log plot and achieve a line. A fourth mesh is necessary to confirm
that we are in the region of geometric convergence.

The extrapolation must be performed using the FEM predictions at a node or element center which does not change spatial
location during mesh refinement. If a nodal variable is chosen, 1/α will be even (2). For element centroids, odd values of 1/α
are needed so the element centroid does not move during refinement.

Richardson extrapolation is valuable because it provides both an improved estimate for ao, and a convergence rate, n.
Typically a priori estimates for this rate exist. While it is not practical to accomplish 4 levels of mesh refinement on most real
models, the technique can be valuable for determining the convergence rates of simpler examples.

∗Richardson extrapolation was first developed in 1910. It is a well established technique. This description
is based on notes from Dan Segalman.

†The region of geometric convergence is that part of the solution where the error is decreasing monotonically,
and may be well represented by a decaying exponential. Richardson’s extrapolation allows an approach
either from above or below (i.e. the error may have either sign). This write up describes convergence
from above.

‡Usually we take α= 1/2, but other values are sometimes useful. Also, the mesh need not be uniform, but
the mesh does need to be scaled uniformly. For example, slicing each element in half in each dimension
does result in a uniform refinement with α= 0.5.
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14. LEGACY TEST MATRIX

The following tables identifies the verification tests for Sierra/SD, and provides a cross reference between the descriptions in
this document and the tests run. Tests are found in two major test systems. The Salinas_rtest/test_tool tests contain the
regression tests, and some of the verification tests. The Salinas_rtest directory contains the remainder of the tests.

Table 0-1. – Test Matrix.
Dir/Name of Test Doc. Row Ref Element

Table Table Type
beam_analytic/cantilever_free_beam2_test 7-58 2 3 1a Beam2

./cantilever_free_tria3_test 7-58 3 3 1a Tria3
./cantilever_free_tria3r_test 7-58 4 3 1a Tria3⊥
./simply_simply_beam2_test 7-58 7 3 1e Beam2
./simply_simply_tria3_test 7-58 8 3 1a Tria3
./simply_simply_tria3r_test 7-58 9 3 1a Tria3⊥

./cantilever_guided_beam2_test 7-58 11 3.3b Beam2
beam-curved/roark_table17_1_test 7-59 2 17.1 Beam2

./roark_table17_2_test 7-59 4 17.1 Beam2

./roark_table17_3_test 7-59 6 17.1 Beam2
beam_eigen/free_free_test 7-66 2 8-1.1 Beam2

beam_eigen/free_sliding_test 7-66 4 8-1.2 Beam2
beam_eigen/clamped_free_test 7-66 6 8-1.3 Beam2

beam_eigen/pinned_pinned_test 7-66 8 8-1.5 Beam2
beam-mass/blevins_table6-2_19_test 7-65 2 6-2.19 Beam2
beam-mass/blevins_table6-2_20_test 7-65 4 6-2.20 Beam2
beam-mass/blevins_table6-2_22_test 7-65 6 6-2.22 Beam2
plate_annular/roark_table24_1a_test 7-60 2 24.1a Tria3
plate_annular/roark_table24_1b_test 7-60 4 24.1b Tria3
plate_annular/roark_table24_1e_test 7-60 6 24.1e Tria3

plate_rectangular/roark_table26_1a_test 7-61 3 26.1a QuadT
plate_rectangular/roark_table26_1a_t_test 7-61 2 26.1a Tria3

plate_rectangular/roark_table26_8a_test 7-61 6 26.8a QuadT
plate_rectangular/roark_table26_8a_t_test 7-61 5 26.8a Tria3

spring-mass/blevins_table6-2_2_test 7-64 2 6-2.2 spring
spring-mass/blevins_table6-2_18_test 7-64 4 6-2.18 spring
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Table 0-2. – Test Matrix (cont).
Dir/Name of Test Doc. Row Ref Element

Table Table Type
thinShellsOfRevolution/.

./roark_table28_1a_hex8_test 7-62 3 28.1a Hex8

./roark_table28_1a_tria3_test 7-62 2 28.1a Tria3

./roark_table28_1b_hex8_test 7-62 6 28.1b Hex8

./roark_table28_1b_tria3_test 7-62 5 28.1b Tria3
shaft/fixed_free_beam2_test 7-67 2 8-19.2 Beam2
shaft/fixed_free_hex8_test 7-67 3 8-19.2 Hex8
plate_eigen_circ/free_test 7-69 2 11-1.1 QuadT

plate_eigen_circ/simple_test 7-69 4 11-1.2 QuadT
plate_eigen_circ/clamped_test 7-69 6 11-1.3 QuadT

plate_eigen_circ/clamped_mass_test 7-69 8 11-1.12 QuadT
plate_eigen_rect/all_edges_free_test 7-70 2 11-4.1 Tria3
plate_eigen_rect/all_edges_fixed_test 7-70 4 11.4.21 Tria3

plate_eigen_rect/all_edges_simple_test 7-70 6 11-4.16 Tria3
plate_eigen_rect/sFixed_lFree_sSS_lFree_test 7-70 8 11-4.6 Tria3
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