SAND2022-0264

SAND2022-0264 - Unlimited Release
Printed January 10, 2022

National
Laboratories

SANDIA REPORT @ Sandia

Sierra/Aria Verification Manual — Version
5.4

Brian R. Carnes

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech
Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NS

National Nuclear Socurity Adminisfration

ABSTRACT

Presented in this document is a portion of the tests that exist in the Sierra Thermal/Fluids verification
test suite. Each of these tests is run nightly with the Sierra/TF code suite and the results of the test
checked under mesh refinement against the correct analytic result. For each of the tests presented in this
document the test setup, derivation of the analytic solution, and comparison of the code results to the
analytic solution is provided. This document can be used to confirm that a given code capability is
verified or referenced as a compilation of example problems.

ACKNOWLEDGMENTS

This document’s authors acknowledge the help of the Sierra/TF team in creating and maintaining these
verification tests.

CONTENTS

Contents 5
List of Figures 21
List of Tables 23
1. Introduction 27
2. Basic Thermal Tests 28
2.1 Steady Heat Conduction: Hex8 Meshes........... o oo, 28
2..1. Features Testedttt 28

2.1.2. Boundary Conditions i 28

2.1.3. Material Parameters e 28

2.1.4. Verification of Solutiont 28

2.2. Steady Heat Conduction: Hexao Meshes............ oo oot 29
2.2.1. Features Tested i i 29

2.2.2. Boundary Conditions i 30

2.2.3. Material Parameterst 30

2.2.4. Verification of Solution 30

2.3. Steady Heat Conduction: Hexa7 Meshes........o oo oot 30
2.3.. Features Testedt 31

2.3.2. Boundary Conditions i i 31

2.3.3. Material Parameterst 31

2.3.4. Verification of Solution i 32

2.4. Steady Heat Conduction: Tet4 Mesheso it 33
2.4, Features Testedot 33

2.5.

2.6.

2.7.

2.8.

2.9.

2.4.2. Boundary Conditions i 33

2.4.3. Material Parameters ittt 33
2.4.4. Verification of SolUtionc.. i 33
Steady Heat Conduction: Tet4Tetto Meshes......... oot 34
2.5.0. Features Testedoo i 34
2.5.2. Boundary Conditions i 34
2.5.3. Material Parameters i 34
2.5.4. Verification of SOlUtionc.. it e 35
Steady Heat Conduction: Tetto Meshes.........o oot 39
2.6.1. Features Tested oot 36
2.6.2. Boundary Conditions i 36
2.6.3. Material Parameters oottt 36
2.6.4. Verification of SOlUtionc.o it e 36
Transient Heat Conduction: Hex8 Meshes i .. 37
2.7, Features Testedot 37
2.7.2. Boundary Conditions i i 37
2.7.3. Material Parameterst 37
2.7.4. Verification of Solutionc.. i e 37
Transient Heat Conduction: Tet4 Mesheso i 38
2.8.1. Features Tested it e 38
2.8.2. Boundary Conditions i 39
2.8.3. Material Parameterst 39
2.8.4. Verification of Solutionc.o i e 39
Transient Heat Conduction: Tetg4Tetto Meshes 40
2.91. Features Testedot 40
2.9.2. Boundary Conditions i 40
2.9.3. Material Parameterst 40
2.9.4. Verification of Solution i 40
. Transient Heat Conduction: TettoMeshes 41
200.1. Features Tested 41

2.10.2. Boundary Conditions i 41

2.10.3. Material Parameterst 41
2.10.4. Verification of Solutiont 42

2.0 PostProcess Min/Maxttt e 42
2111 Problem Description o 42
212, Features Tested i 43

2.11.3. Boundary Conditions i 43
2.11.4. Material Parameters 43

2.11.5. Verification of Solution 43

202, Adaptivity 43
202.1. Features Tested ... 44
2.12.2. Boundary Conditionsoo i 44
2.12.3. Material Parameterst 44
2.12.4. Verification of Solution 44

3. Thermal Boundary Conditions 46
3.0, Radiative Heat Flux 46
3.0 Features Tested 46

3..2. Boundary Conditions o i 46

3..3. Material Parameters i 46

3.1.4. Verification of Solution i 46

3.2. Radiative Heat Flux From Fortran User Subroutine 47
3.2, Features Testedt 47

3.2.2. Boundary Conditions i 47

3.2.3. Material Parameterst 48

3.2.4. Verification of Solution i i 48

3.3. Convective Heat Flux 48
3.3.0. Features Testedt 48

3.3.2. Boundary Conditions i 48

3.3.3. Material Parameters it 48

3.4.

3.5.

3.6.

3.3.4. Verification of Solution 49

Thermal Convective Flux (Fortran sub-routine) 50
3.4.1. Problem Description i 50
3.4.2. Features Tested oottt 50
3.4.3. Boundary Conditions i 50
3.4.4. Material Parametersttt 50
3.4.5. Verification of Solution i i 50
Thermal Convective Flux (User field from Exodusread-in) 51
3.5.L. Problem Description i i 51
3.5.2. Features Testedottt e ST
3.5.3. Boundary Conditions i 51
3.5.4. Material Parameters i i 52
3.5.5. Verification of Solution i 52
Thermal Heat Flux o e 53
3.6.1. Thermal Heat Flux (Basic).. ...t ieeaes 53
3.6.LL Problem Description oo i 53
3.6..2. Features Tested 53
3.6..3. Boundary Conditions o i 53
3.6.1.4. Material Parameters it 53
3.6.1.5. Verification of Solution 53
3.6.2. Thermal Heat Flux (Flux node variable user field).......................... 54
3.6.2.0. Problem Description o i 54
3.6.2.2. Features Tested 54
3.6.2.3. Boundary Conditions ool 54
3.6.2.4. Material Parameters 0 55
3.6.2.5. Verification of Solution i 55
3.6.3. Thermal Heat Flux (Flux node variable user field).......................... 55
3.6.3.1. Problem Description i i 55
3.6.3.2. FeaturesTested i 56
3.6.3.3. Boundary Conditions i 56

8

3.6.3.4. Material Parameters i 56

3.6.3.5. Verification of Solution i 56

3.6.4. Thermal Heat Flux (Fortran Subroutine)................................. 57
3.6.4.1. Problem Descriptiono i 57

3.6.4.2. Features Tested 57

3.6.4.3. Boundary Conditions ool 57

3.6.4.4. Material Parameters 57

3.6.4.5. Verification of Solution i 58

3.7. Thermal Radiative Heat Flux 59
3.7... Basic Calore-Style BC. o 59
3.7.11. Problem Description i i 59

3.7.0.2. Features Tested ... 59

3.7..3. Boundary Conditions ool 59

3.7.1.4. Material Parameters 59

3.7..5. Verification of Solution 59

3.7.2. With Fortran Subroutines 60
3.7.2.. Problem Descriptiono i 60

3.7.2.2. Features Tested ... 60

3.7.2.3. Boundary Conditions oo 60

3.7.2.4. Material Parameters e 60

3.7.2.5. Verification of Solution i 61

3.7.3. With User Subroutines. i e 61
3.7.3.1. Problem Description o i 61

3.7.3.2. Features Tested ... it 62

3.7.3.3. Boundary Conditionso il 62

3.7.3.4. Material Parameters 62

3.7.3.5. Verificationof Solution 62

3.8, Advective Bar 62
3.8.1. Steady Advection-Diffusion oo 62
3.8.2. Features Testedt 63

3.8.3. Boundary Conditions i 63

3.8.4. Material Parameterst 63

3.8.5. Verification of Solution ittt 63

3.8.6. Transient Advection-Diffusion i 64

3.8.7. Features Testedo 64

3.8.8. Boundary Conditions i 65

3.8.9. Material Parameterst 65
3.8.10. Verification of Solution 65

3.8.11. Transient Advection-Diffusionin2Do, 65
3.8.02. Features Tested i 66
3.8.13. Boundary Conditions i 66
3.8.14. Material Parameters o i 66
3.8.15. Verification of Solution i i 66

3.9. Solution Verificationttt 67
3.9.. Features Testedo i 67

3.9.2. Material Parameterst 67

3.9.3. Verification of Solutiont ii 67

4. Thermal Contact 70
4L ID Flat Contact. .o oottt 70
411 Features Testedttt 70

4.1.2. Boundary Conditions i 70

4.1.3. Material Parameterst 70

4.1.4. Verification of Solution 71

4.15. Results: Hex8 Tied i 71

4.1.6. Results: Hex8 Resistancecoviiiiiiin i 71

4.17. Results: Tetg4 Tiedo 73

4.1.8. Results: Tetg4 Resistance it 73

4.1.9. Results: Hex8-Tetg Tiedot 75
4..10. Results: Hex8-Tetg4 Resistance ..o, 75

4.3

4.4.

4.5.

4.6.

4.7.

3D Curved CONACE .ottt et ettt e e 75

420, Features Tested oo 76
4.2.2. Boundary Conditions i 76
4.2.3. Material Parameters i 76
4.2.4. Verification of Solution i 77
4.2.5. Results: Hex8-Hex8 Contact. .. .oovvtttiiiin e iiiiie e iiiiiaeaeean 77
4.2.6. Results: Tet4-Tet4 CONtact .. .oovutte ettt 79
4.277. Results: Hex8-Tet4 CONtactttt ettt it 80
Steady Hex8 Contact ... 80
430 Features Tested oo 80
4.3.2. Boundary Conditions i 81
4.3.3. Material Parameters i 81
4.3.4. Verification of Solution i 81
Steady Hexao Contact ... 81
4.4.0. Features Tested i 82
4.4.2. Boundary Conditions i 82
4.4.3. Material Parameters it 82
4.4.4. Verification of Solution i 83
Steady Hexa7 Contact ... 84
450 Features Testedo 84
4.5.2. Boundary Conditions i 84
4.5.3. Material Parameterst 84
4.5.4. Verification of Solution i 84
Steady Tet4 Contacto.viu it 8s
4.6.1. Features Testedttt 8s
4.6.2. Boundary Conditions i 8s
4.6.3. Material Parameters it 86
4.6.4. Verification of Solution i 86
Steady Tet4Tet1o Contactoiuiiui i 86
470 Features Testedt 87

4.8.

4.9.

4.10.

4.12.

4.03.

4.7.2. Boundary Conditions i 87

4.7.3. Material Parameterso it 87
4.7.4. Verification of Solutiont 87
Steady Tetto CONTACTottt 88
4.8.1. Features Testedt 88
4.8.2. Boundary Conditions i 88
4.8.3. Material Parameterst 88
4.8.4. Verification of Solution 88
Steady Tetro Dash Contacto i 89
4.9.1. Features Tested 89
4.9.2. Boundary Conditions i 89
4.9.3. Material Parameterst 89
4.9.4. Verification of Solution it 90
Transient Tet4Tetro Contact . ..ottt et ittt e et 90
g400.1. Features Testedttt 90
4.10.2. Boundary Conditions i 91
4.10.3. Material Parameterst 91
4.10.4. Verification of Solutiont 91
Transient Tetto CONTaCt. . ..\ttt t ittt 92
4011, Features Testedo 92
4.ar.2. Boundary Conditions i 92
4.01.3. Material Parameters i 92
4.01.4. Verification of Solution i 92
Transient Hex8 Tied CONtactouuutit it iiee e 93
412.1. Features Tested oo i 93
4.12.2. Boundary Conditions i 93
4.12.3. Material Parameters it 94
4.02.4. Verification of Solution i 94
Transient Tet4 Tied Contactttt e i 95
4130, Features Testedttt 9

4.13.2. Boundary Conditions i 95
4.13.3. Material Parameterso e 95
4.13.4. Verification of Solution it 95

5. Element Death 97
s.. CDFEM Element Death (Heat Flux) i 97
sl Features Tested ...t e 97

s..2. Boundary Conditions i i 97

5..3. Material Parameters 97

s..4. Verification of SOlUtIONt 97

5.5, Results: Trig oottt 98

s.L6. Results: Tetq ...ooooeii 98

s.2. 3D Spherical Shell Enclosureo i i 99
s.2.1. Problem Descriptiono 99

s.2.2. Features Tested ..o 99

5.2.3. Boundary and Initial Conditions ool 99

5.2.4. Material Parameters 100

s.2.5. Verificationof Solution 100

5.2.6. Results 101

5.3. Standard Element Death (Heat Flux) i 102
530 Features Tested ...t 102

5.3.2. Boundary Conditionso i 102

5.3.3. Material Parameters 103

5.3.4. Verification of Solution 103

5.3.5. Results: IDHeX8 ..o e 103

5.3.6. Results: tDQuad4 ... 104

5.3.7. Results: IDTri3. ... 104

5.3.8. Results: 2D Quadg.o 104

5.3.9. Features Testedttt 105
s.3.10. Boundary Conditions i i 105

5.3.1. Material Parametersoi i 105

5.3.12. Verification of Solution i 105

5.3.03. Results: 3D Hex8 ... 106
5.3.14. Features Testedt 106

5.3.15. Boundary Conditionsoi i 107

5.3.16. Material Parameterst 107

5.3.17. Verification of SOlUtioncoi i e 107

6. Time Integration 109
6.1. Adaptive Time Integrationo 109
6..1. Features Tested i 109

6.1.2. Boundary Conditions il 109

6.1.3. Material Parameterst 109

6.1.4. Verification of Solution i 109

6..5. Results: First Order Fixed i 110

6..6. Results: First Order Adaptiveo i i 110

6.1.7. Results: Second Order Fixed i 12

6.1.8. Results: Second Order Adaptive o i 112

6..9. Results: BDF2Fixedo 114
6.r10. Results: BDF2 Adaptive ... 114

7. Enclosure Radiation 116
7.1 2D Cylindrical Shell Enclosure oo i 116
7.L.L Problem Description o i 116

7.1.2. Features Tested i i 16

7.1.3. Boundary Conditions i 16

7.1.4. Material Parameters i 16

7.1.5. Verification of Solution i 17

76, Results. ... o 1y

7.2. 2D Annular Enclosure 18
7.2.1. Problem Description i i 18

73

7.4.

8. Chemistry

8.1.

8.2.

7.2.2. Features Tested o i 18
7.2.3. Boundary Conditions i 18
7.2.4. Material Parameters 119
7.2.5. Verification of Solution i 119
3D Spherical Shell Enclosure ... oo i 120
7.3.1. Problem Descriptiono 120
7.3.2. Features Tested i i 120
7.3.3. Boundary Conditions i i 121
7.3.4. Material Parameters 121
7.3.5. Verification of Solution i it 121
7.3.6. Results.o 123
3D Spherical Shell Partial Enclosure o o i i 124
7.4.1. Problem Description o i 124
7.4.2. Features Tested i 12.4
7.4.3. Boundary Conditions i 124
7.4.4. Material Parameters i 124
7.4.5. Verification of Solution i i 125

126
First Order Reaction (Spatially Varying Temperature) 126
8... Features Testedttt e 126
8.1.2. Boundary Conditions i 126
8.1.3. Material Parametersttt 126
8.1.4. Verification of SOlUtioNttt 126
First Order Reaction.t e 7
8.2.1. Features Testedt 127
8.2.2. Boundary Conditions i i 128
8.2.3. Material Parameters i 128
8.2.4. Verification of Solutionot 128

8.3. DAE and Pressure Test. .. .ovuu ettt e 128

83.0. Features Testedottt 129

8.3.2. Boundary Conditions i 129

8.3.3. Material Parameterst 129

8.3.4. Verification of SOlUtioncoi ittt 130

8.4. PMDIPlugin Testoiuuiiuiiii e 130
8.4.1. Features Tested i i 130

8.4.2. Boundary Conditions i i 130

8.4.3. Material Parameters 130

8.4.4. Verification of SOlUtIONt 130

9. Miscellaneous 132
9.1. Thermal Postprocessingot 132
9... Problem Description 132

9..2. Features Testedttt e 132

9.1.3. Boundary Conditions i 132

9.1.4. Material Parameters 132

9.1.5. Verification of Solutiont 132

9.2. Local Coordinates: Cartesianuoueeeiiiiine et iiiiaenn.. 133
9.2.0. Features Testedo i 134

9.2.2. Boundary Conditionso 134

9.2.3. Material Parameters 134

9.2.4. Verification of Solutiono 134

9.3. Local Coordinates: Cylindrical o il 134
93.1. Features Testedo 135

9.3.2. Boundary Conditions i 135

9.3.3. Material Parameters e 135

9.3.4. Verification of SOlutionc.. it 135
10.Low-Mach Fluid Flow 137

16

11.How to Build this Document 138

12.Input Decks For Verification Problems 140
12.1. Basic Thermal Tests i e 140
2.1.1. Steady Heat Conduction: Hex8 Meshes.ooooiaL. 140
12.1.2. Steady Heat Conduction: Hexao Meshes 143

12.1.3. Steady Heat Conduction: Hex27 Meshes.o oot 146
12.1.4. Steady Heat Conduction: Tet4 Meshes oL, 149

12.1.5. Steady Heat Conduction: Tet4Tetro Meshes.............. ISI
12.1.6. Steady Heat Conduction: Tetto Meshes.......... oo a.. 154
12.1.7. Transient Heat Conduction: Hex§ Meshes 157
12.1.8. Transient Heat Conduction: Tet4 Meshes 160
12.1.9. Transient Heat Conduction: Tet4Tetto Meshes 163
12..10. Transient Heat Conduction: Tetto Meshescooiiiiiiiiiiias. 166

12.2. Thermal Boundary Conditions., 170
12.2.1. Radiative Heat Flux3.1. o e 170
12.2.2. Radiative Heat Flux From Fortran User Subroutine 172
12.2.3. Convective Heat Flux 3.3o 176

12.3. Thermal Contact e 179
1230, ID Flat Contact 4.0 ..ottt et 179
2301 Hex8Tied 179

12.3..2. Hex8 Resistance ...ttt 181

12303, Tetg Tied. ... 184

12.3.1.4. Jet4 Resistancet 186

12305, Hex8Tetg Tied. ... e 189

12.3..6. Hex8-Tetg Resistancet 191

12.3.2. 3D Curved Contact 4.2 ..ottt 194
12.3.2.. Hex8Hex8 Case ..ot i e 194

12.3.2.2. Letg4-Tet4 Case .. oovti it . 194

12.3.2.3. Hex8-Tet4 Case. oot e 194

12.4.

12.5.

12.6.

12.7.

12.3.3. Steady Hex8 Contact ... 194

12.3.4. Steady Hex2o0 Contact 197
12.3.5. Steady Hexa7 Contact i 200
12.3.6. Steady Tet4 Contact...... ..ot 203
12.3.7. Steady Tet4Tetro Contact ... 206
12.3.8. Steady Tetto Contact ...t 209
12.3.9. Steady Tetto Dash Contact i i 212
12.3.10. Transient Tet4Tetto Contact.oouiiiin ettt 215
12301 Transient Tetto COontact.o vttt ittt e et 218
Element Death e 222
12.4.1. CDFEM Element Death (HeatFlux) i, 222

12.4.LL LT3t 222

120412 L4 oottt 224
12.4.2. 3D Spherical Shell Enclosureo o oo 227
Time Integration i 232
12.5.1. Adaptive Time Integration i 232

2501, FirstOrderFixed. 232

12.5.1.2. FirstOrder Adaptive il 234

12.5..3. Second OrderFixed 0o i 236

12.5..4. Second Order Adaptive il 238

2srs. BDFaFixed 240

12.5..6. BDF2 Adaptive....... o i 242
Enclosure Radiation e 245
12.6.1. 2D Cylindrical Shell Enclosure oo oo 245
12.6.2. 2D AnnularEnclosure 247
12.6.3. 3D Spherical Shell Enclosure o o 247
12.6.4. 3D Spherical Shell Partial Enclosure oo oo 247
12.6.5. Fully 2D Enclosure Radiation o oo 250
ChemiStryo 251
12.7.1. First Order Reaction (Uniform Temperature)oooiia... 251

18

12..8.

12.7.2. First Order Reaction (Spatially Varying Temperature) 251
12.7.3. First Order Reaction i 251
12.7.4. DAEand Pressure Test.ttt 254
12.7.5. PMDIPlugin Test o i 256
Miscellaneous e 260
12.8.1. Thermal Postprocessing o i i 260
12.8.2. Postprocess Min/Max 263
12.8.3. Local Coordinates: Cartesianoiiieiiiiiinneeeeiinneennnn 267
12.8.4. Local Coordinates: Cylindricalo o i 269

9

LIST OF FIGURES

2.1-1. Steady Heat Conduction: Hex8 Meshes.........o oot 29
2.2-1. Steady Heat Conduction: Hexao Meshes........... ... o oot 31
2.3-1. Steady Heat Conduction: Hexa7 Meshes...............o. oo oot 32
2.4-1. Steady Heat Conduction: Tet4 Meshes o it 34
2.5-1. Steady Heat Conduction: Tet4 Solutions on Tetto Meshes 33
2.6-1. Steady Heat Conduction: Tetto Meshes............ ... oot 36
2.7-1. Transient Heat Conduction: Hex8 Meshes i .. 38
2.8-1. Transient Heat Conduction: Tet4 Meshes 39
2.9-1. Transient Heat Conduction: Tet4 Solution on Tetto Meshes 41
2.10-1. Transient Heat Conduction: Tetto Meshes 42
2.11-. Min Max Postprocess 44
2.12-1. Steady Heat Conduction: Tet4 Meshes (Adaptive Mesh Refinement) 45
3.0-1. Radiative Heat Flux e 47
3.3-1. Convective Heat Flux o e 49
3.4-1. Convergence for 3D thermal steady convective flux BCs., ST
3.5-1. Convergence for 3D thermal steady convective flux BCs., 52
3.6-1. Thermal Heat Flux BC e 54
3.6-2. Thermal Heat Flux BC. e 55
3.6-3. Thermal Heat Flux BC i 57
3.6-4. Thermal Heat Flux BC. e 58
3.7-1. Thermal Radiative Flux e 60
3.7-2. Thermal Radiative Flux i 61
3.7-3. Thermal Radiative Flux e 63
3.8-1. Steady Advective Conduction: 3D Barz Meshes L 64

21

3.8-2. Transient Heat Conduction: 3D BaraMeshes, 65

3.8-3. Transient Heat Conduction: BaraMeshes i .. 67
3.9-1. Mock AFF Solution Verificationo i 68
3.9-2. The convergence rates can vary over time and between QOIs........................ 69
4.1-1. 1D Flat Contact: Hex8 Tied e 71
4.1-2. 1D Flat Contact: Hex8 Resistanceoooitiiiiin i 72
4.1-3. iIDFlat Contact: Tet4 Tiedo i 73
4.1-4. 1D Flat Contact: Tet4 Resistanceouuiiiini i 74
4.1-5. 1D Flat Contact: Hex8-Tet4 Tiedt i 75
4.1-6. 1D Flat Contact: Hex8-Tet4 Resistanceo ... 76
4.2-1. 3D Curved Contact: Hex8-Hex8 Caseooottiiiiie e 77
4.2-2.3D Curved Contact: Tet4-Tet4 Case.ottt 79
4.2-3. 3D Curved Contact: Hex8-Tet4 Caseo oot i 80
4.3-1. Steady Tied Contact: Hex8 Meshes i 82
4.4-1. Steady Heat Conduction: Hex2o Meshes.t 83
4.5-1. Steady Heat Conduction: Hexa7 Meshes. oot 8s
4.6-1. Steady Tied Contact: Tet4 Meshes o i 86
4.7-1. Steady Tied Contact: Tet4 Meshes o i 87
4.8-1. Steady Tied Contact: Tetto Meshes o it 89
4.9-1. Steady Tied Dash Contact: Tetto Meshes.o o it 90
4.10-1. Transient Tied Contact: Tetto Meshes i ... 91
4.11-1. Transient Tied Contact: Tetto Meshes oo i 93
4.12-1. Tied Contact Transient Heat Conduction: Hex8 Meshes 94
4.13-1. Transient Heat Conduction with Tied Contact: Tet4 Meshes....................... 96
s.1-. CDFEM Element Death (Heat Flux): Triz. ...t 98
s.-2. CDFEM Element Death (Heat Flux): Tet4 99
s.2-1. Evolution of parameters 7o and Ch. ..o oooii oo 102
5.3-1. Element Death (Heat Flux): Hex8 104
5.3-2. Element Death (Heat Flux): Quad4o 105

5.3-3. Element Death (Heat Flux): Triz. ... i s 106

5.3-4. Element Death (Heat Flux): Quad4o i i 107
5.3-s. Element Death (Heat Flux): Hex8 it 108
6.1-1. Adaptive Time Integration: Errors for First Order Fixedo ... 110
6.1-2. Adaptive Time Integration: Errors for First Order Adaptive 111
6.1-3. Adaptive Time Integration: Errors for Second Order Fixed 12
6.1-4. Adaptive Time Integration: Errors for Second Order Adaptive 113
6.1-s. Adaptive Time Integration: Errors for BDF2 Fixed......... o oL, 114
6.1-6. Adaptive Time Integration: Errors for BDF2 Adaptive 115
7.1-1. Enclosure Radiation 2D o o 18
7.2-1. 2D Full Enclosure Radiation 120
7.3-1. Enclosure Radiation i 124
7.4-1. Partial Enclosure Radiation i 125
8.1-1. First Order Reaction (Spatially Varying Temperature)ooo.o... 127
8.2-1. First Order Reaction. ot 129
9.1-1. Thermal Postprocess. 133
9.2-1. Local Cartesian Coordinate System oo i 135
9.3-1. Local Cylindrical Coordinate System oo i i, 36

LIST OF TABLES

2.1-1. Steady Heat Conduction: Convergence Rates for Hex8 Meshes 29

2.2-1. Steady Heat Conduction: Convergence Rates for Hex2o Meshes 30

23

2.3-L.

2.4-1.

2.7-1.

2.8-1.

2.9-1.

2.10-1.

2.1II-1.

3.3-1.

3.4-1.

4.1-1.
4.1-2.
4.1-3.
4.1-4.
4.1-5.

4.1-6.

Steady Heat Conduction: Convergence Rates for Hex27 Meshes 32

Steady Heat Conduction: Convergence Rates for Tet4 Meshes...................... 33

. Steady Heat Conduction: Convergence Rates for Tet4Tetto Meshes 35
. Steady Heat Conduction: Convergence Rates for Tetto Meshes 37
Transient Heat Conduction: Convergence Rates for Hex8 Meshes................... 38
Transient Heat Conduction: Convergence Rates for Tet4 Meshes 39
Transient Heat Conduction: Convergence Rates for Tet4 Solution on Tetro Meshes 40
Transient Heat Conduction: Convergence Rates for Tetto Meshes................... 42
Min Max Postprocess: Convergence Rateso L. 43

. Radiative Heat Flux: Convergence Rates for Hex8 Meshes 47
Convective Heat Flux: Convergence Rates for Hex8 Meshes 49
Thermal Convective BC: Convergence Rates 50

. Thermal Convective BC: Convergence Rates 52
. Thermal Heat Flux BC: Convergence Rates 54
. Thermal Heat Flux BC: Convergence Rates o .. 56
. Thermal Heat Flux BC: Convergence Rates 56
. Thermal Heat Flux BC: Convergence Rates, 58
Thermal Radiative Flux BC: Convergence Rates.............. 59

. Thermal Radiative Flux BC: Convergence Rates.................. 61
. Thermal Radiative Flux BC: Convergence Rates............... 62
Steady Advective Conduction: Convergence Rates for 3D Bara Meshes............... 64

. Transient Heat Conduction: Convergence Rates for 3D Bara Meshes 66
. Transient Heat Conduction: Convergence Rates for 2D Bara Meshes 66
1D Flat Contact: Convergence Rates for Hex8 Tied 72
1D Flat Contact: Convergence Rates for Hex8 Resistance 72
1D Flat Contact: Convergence Rates for Tet4 Tied it 73
1D Flat Contact: Convergence Rates for Tet4 Resistance 74
1D Flat Contact: Convergence Rates for Hex8-Tet4 Tied 75
1D Flat Contact: Convergence Rates for Hex8-Tet4 Resistance 76

24

4.2-1. 3D Curved Contact: Convergence Rates for Hex8-Hex8 78

4.2-2. 3D Curved Contact: Convergence Rates for Tet4-Tet4.......... 79
4.2-3. 3D Curved Contact: Convergence Rates for Hex8-Tet4 8o
4.3-1. Steady Tied Contact: Convergence Rates for Hex8 Meshes 81
4.4-1. Steady Heat Conduction: Convergence Rates for Hexao Meshes 83
4.5-1. Steady Heat Conduction: Convergence Rates for Hexa7 Meshes 8s
4.6-1. Steady Tied Contact: Convergence Rates for Tet4 Meshes 86
4.7-1. Steady Tied Contact: Convergence Rates for Tet4 Meshes 88
4.8-1. Steady Tied Contact: Convergence Rates for Tetto Meshes 88
4.9-1. Steady Tied DASH Contact: Convergence Rates for Tetto Meshes 90
4.10-1. Transient Tied Contact: Convergence Rates for Tetto Meshes 92
4.11-1. Transient Tied Contact: Convergence Rates for Tetto Meshes 93
4.12-1. Tied Contact Transient Heat Conduction: Convergence Rates for Hex8 Meshes 95
4.13-1. Transient Heat Conduction with Tied Contact: Convergence Rates for Tet4 Meshes ... 96
s.-1. CDFEM Element Death (Heat Flux): Convergence Rates for Triz 98
s.1-2. CDFEM Element Death (Heat Flux): Convergence Rates for Tet4 98
s.2-1. Dimensions of problem o 100
5.2-2. Material properties 100
5.2-3. Convergence Ratesatt = 0.9 102
5.3-1. Element Death (Heat Flux): Convergence RatesforHex8 103
5.3-2. Element Death (Heat Flux): Convergence Rates for Quad4 104
5.3-3. Element Death (Heat Flux): Convergence Ratesfor Triz 104
5.3-4. 2D Element Death (Heat Flux): Convergence Rates for Quad4 106
5.3-s. Element Death (Heat Flux): Convergence Ratesfor Hex8 108
6.1-1. Adaptive Time Integration: Convergence Rates for First Order Fixed 110
6.1-2. Adaptive Time Integration: Convergence Rates for First Order Adaptive 111
6.1-3. Adaptive Time Integration: Convergence Rates for Second Order Fixed 2
6.1-4. Adaptive Time Integration: Convergence Rates for Second Order Adaptive 113
6.1-s. Adaptive Time Integration: Convergence Rates for BDF2 Fixed 114

25

6.1-6. Adaptive Time Integration: Convergence Rates for BDF2 Adaptive.................. 115
7.1-1. Dimensions of problem 16
7.1-2. Material properties 1y
7.1-3. Enclosure Radiation 2D: Convergence Rates 18
7.2-1. 2D Full Enclosure Radiation: Convergence Rates.............., 120
7.3-1. Dimensions of problem o 121
7.3-2. Material properties 121
7.3-3. Enclosure Radiation: Convergence Rateso o . 123
7.4-1. Partial Enclosure Radiation: Convergence Rates............. 125
8.1-1. First Order Reaction (Spatially Varying Temperature): Convergence Rates for Hex8
Meshes ..o 7
8.2-1. First Order Reaction: Convergence Rates for Hex8 Meshes......................... 129
8.4-1. PMDI Plugin Test: Initial Conditions i, 131
9.1-1. Thermal Postprocess: Convergence Rates oot 133
9.2-1. Local Cartesian Coordinate System: Convergence Rates 134
9.3-1. Local Cylindrical Coordinate System: Convergence Rates.......................... 136

26

1. INTRODUCTION

The Sierra/TF Verification Manual is divided into chapters based on related capabilities. Each section of
a chapter represents a distinct verification test. Some problems that are not yet fully documented are
listed at the end of each chapter.

All of these verification tests are run nightly by the development team to continually verify code
accuracy under mesh refinement. The graphics and charts in this document are automatically generated
by the nightly test runs.

The test files for these problems may be found in the Sierra regression test repository. Most are in the
sub-directory called “verification.”

aria_rtest/verification

All tests are assigned the keyword “verification”. Those that appear in this document also have the
keyword “self-documenting”.

For each test, the approximate finite element solution 7}, is compared to the exact solution 7" using
several global norms, and in some cases using response quantities of interest. This is repeated over a
series of uniformly refined meshes (not necessarily nested) with mesh sizes { h; }, giving a sequence of
errors { E; }. For each pair of meshes, a convergence rate is estimated using the formula

r, = lOg(EZ/Efl)/IOg(hl/hlfl) (I.I)

The convergence of 7; to the expected rate is monitored as the mesh is refined. A test passes if all of the
estimated convergence rates on the finest pair of meshes are within a given tolerance of the expected
rates.

27

2. BASIC THERMAL TESTS

2.1. STEADY HEAT CONDUCTION: HEX8 MESHES

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

2.1.1. Features Tested

Basic heat conduction on Hex8 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

2.1.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function
(user subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.1.4. \Verification of Solution

A manufactured solution is chosen as
T(‘%’7y7 Z) =1+ (l’ - ‘T2)2(y - y2)2(2 - 22)2'

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

2.8

For each mesh, the errors in the temperature solution are computed in the L?, > and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

1074 4 - L
] -
- L
-5 4
n 1077
o
£
w
c
=)
2 o
S 10 '
1077 5
102 107 104 108
Num Nodes
Coarse Mesh Error Norms

Figure 2.1-1.. Steady Heat Conduction: Hex8 Meshes

Table 2.1-1.. Steady Heat Conduction: Convergence Rates for Hex8 Meshes
Num Dofs | L? H' L™

125 0.83 -127 0.74
729 2.20 0.98 2.07
4913 2.5 1.05 2.08

35940 2.08 103 194
274600 2.05 LO2 197

For input decks see Appendix 12.1.1.

2.2. STEADY HEAT CONDUCTION: HEX20 MESHES

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

2.2.1. Features Tested

Basic heat conduction on Hex20 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

29

2.2.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function
(user subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.2.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.2.4. \Verification of Solution

A manufactured solution is chosen as
T(‘%’7y7 Z) =1+ (l’ - ‘T2)2(y - y2)2(z - 22)2'

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L?, L> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

Table 2.2-1.. Steady Heat Conduction: Convergence Rates for Hex20 Meshes
Num Dofs | L? H! L*®
2673 339 232 3.52
18780 319 205 3.3
60620 3.1 2.08 3.04
140500 3.08 2.06 3.01

For input decks see Appendix 12.1.2.

2.3. STEADY HEAT CONDUCTION: HEX27 MESHES

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

30

-
j Hl
1075 1 - L
(%]
S 107° 4
] 3
=
S
|
& 1077 4
lo-ﬂg
Y
T T T T T T T
10° 10 10°
X Num Nodes
Coarse Mesh Error Norms

Figure 2.2-1.. Steady Heat Conduction: Hex20 Meshes

2.3.1. Features Tested

Basic heat conduction on Hex27 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

2.3.2. Boundary Conditions

Atsurfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function
(user subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

31

2.3.4. \Verification of Solution

A manufactured solution is chosen as
T(l‘7ya Z) =1+ (I’ - xQ)Q(y - y2>2<2 - 22>2'

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L?, L> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

1075 5
W
S 1076
w0
=
S
s
3
1077 4
1078 4
Y 1
M LI | T T T L T
% 104 10°
2 Num Nodes
Coarse Mesh Error Norms

Figure 2.3-1.. Steady Heat Conduction: Hex27 Meshes

Table 2.3-1.. Steady Heat Conduction: Convergence Rates for Hex27 Meshes
Num Dofs | L? H! L*®
12170 3.5 212 3.03
29790 3.10 2.07 3.01
59320 3.08 2.06 3.02

17600 3.07 2.05 3.0I

For input decks see Appendix 12.1.3.

32

2.4. STEADY HEAT CONDUCTION: TET4 MESHES

This problem is identical to the one in Section 2.1 except that unstructured Tet4 meshes are used
instead. The meshes are obtained from Cubit.

2.4.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

2.4.2. Boundary Conditions

Same as in Section 2.1.

2.4.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.4.4. \Verification of Solution

Same as in Section 2.1.

Unlike the Hex8 case, we have observed in many cases, and in this test, that the convergence rate for the
temperature in the L° norm is somewhat less than 2, in this case about 1.9. The exact reason for this
behavior is unclear.

Table 2.4-1.. Steady Heat Conduction: Convergence Rates for Tet4 Meshes
Num Dofs | L? H' L™

145 121 0.56 136
1104 2.45 122 2.I0
7725 2.07 103 2.02

59640 .99 0.99 1.91

For input decks see Appendix 12.1.4.

33

10743 -

¢

[=]

”t-l 1075 4

[=]

=

|

[=]

w

10-6
102 10% 10
Num Nodes
Coarse Mesh Error Norms

Figure 2.4-1.. Steady Heat Conduction: Tet4 Meshes

2.5. STEADY HEAT CONDUCTION: TET4TET10
MESHES

This problem is identical to the one in Section 2.1 with the exception of constant thermal conductivity
and use of unstructured Tetio meshes. The meshes are obtained from Cubit.

2.5.1. Features Tested

Basic heat conduction with Tet4 solution on Tetro meshes; dirichlet, heat flux, and convective flux
boundary conditions; constant source terms; heat flux and source term from Encore user
subroutines.

2.5.2. Boundary Conditions

Same as in Section 2.1.

2.5.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

34

2.5.4. \Verification of Solution

Same as in Section 2.1.

Unlike the Hex8 case, we have observed in many cases, and in this test, that the convergence rate for the
temperature in the L norm is somewhat less than 2, in this case about 1.9. The exact reason for this

behavior is unclear.

107 4

107% 4

Solution Errors

1076 4

Coarse Mesh

T ————r
10* 10°
Num Nodes

Error Norms

Figure 2.5-1.. Steady Heat Conduction: Tet4 Solutions on Tet10 Meshes

Table 2.5-1.. Steady Heat Conduction: Convergence Rates for Tet4Tet10 Meshes

Num Dofs | L? H! L™
865 .09 0.52 L.22
7831 226 1LI2 190
58210 2.0 1.0O 1.90
464400 .96 0.98 2.05

For input decks see Appendix 12.1.5.

2.6. STEADY HEAT CONDUCTION: TET10 MESHES

This problem is identical to the one in Section 2.1 except that unstructured Tetro meshes are used

instead. The meshes are obtained from Cubit.

35

2.6.1. Features Tested

Basic heat conduction on Tetro meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

2.6.2. Boundary Conditions

Same as in Section 2.1.

2.6.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.6.4. \Verification of Solution

Same as in Section 2.1.

Unlike the Hex8 case, we have observed in many cases, and in this test, that the convergence rate for the
temperature in the L°° norm is somewhat less than 3, in this case about 2.7. The exact reason for this
behavior is unclear.

107 4

-
-m- H?
- L
1073 5
i
Sa——
5 107
c
]
]
a
1077 5
Lo-ﬂg
102 104 10°
Num Nodes
Coarse Mesh Error Norms

Figure 2.6-1.. Steady Heat Conduction: Tet10 Meshes

For input decks see Appendix 12.1.6.
36

Table 2.6-1.. Steady Heat Conduction: Convergence Rates for Tet10 Meshes
Num Dofs | L? H! L
865 2.65 1SI 219
7831 3.32 2.08 3.4I
58210 3.04 2.07 2.58
464400 2.80 1L80 2.57

2.7. TRANSIENT HEAT CONDUCTION: HEX8 MESHES

This problem tests basic transient heat conduction in a 3D domain. The geometry consists of a unit
cube.

2.7.1. Features Tested

Basic transient heat conduction on Hex8 meshes; dirichlet, heat flux, and convective flux boundary
conditions; constant source terms; heat flux and source term from Encore user subroutines.

2.7.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function
(user subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.7.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.7.4. \Verification of Solution

A manufactured solution is chosen as
T(x,y,2,t) = (x—2*)? (y — y*)* (z — 2°)*m(t) + 1,
m(t) = 10* (1 —exp(—t) +t exp(—(t — 1)2))

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

37

For each mesh, the errors in the temperature solution at final time are computed in the L? norm of T
and T, L> and H' norms. The test passes, only if the observed rates of convergence in these norms are
2,2, 2 and 1, respectively (within a tolerance).

- A"
|- A7)
- H!

- L

1071 4

1072 4

Solution Errors

1073 4

102 102 104
Num Nodes

Coarse Mesh Error Norms

Figure 2.7-1.. Transient Heat Conduction: Hex8 Meshes

Table 2.7-1.. Transient Heat Conduction: Convergence Rates for Hex8 Meshes

Num Dofs | L*(T) L*(T) H' L™
125 0.12 3.02 -0.89 -0.4§
729 2.09 3.28 0.98 1.85
4913 2.09 2.46 .os 186
35940 2.06 2.07 .04 1.96

For input decks see Appendix 12.1.7.

2.8. TRANSIENT HEAT CONDUCTION: TET4 MESHES

This problem tests basic transient heat conduction in a 3D domain as in Section 2.7. The geometry
consists of a unit cube and a single bulk fluid element.

2.8.1. Features Tested

Basic transient heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary
conditions; constant source terms; bulk fluid element; heat flux and source term from Encore user
subroutines.

38

2.8.2. Boundary Conditions

Identical to Section 2.7 except one convective flux boundary condition is now connected to a bulk fluid
element.

2.8.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.8.4. \Verification of Solution

A manufactured solution is chosen as in Section 2.7.

For each mesh, the errors in the temperature solution at final time are computed in the L? norm of T
and 7', L>™ and H' norms. As in Section 2.4, we see convergence rates for L°° that are slightly less than
2.

10" 4
E 1071
w
[=
S
=]
[=]
Va-2
077w em
] - 12m
1 = H!
10-2{ W L
| - L%(Tbulk)
107 103 104
Num Nodes
Coarse Mesh Error Norms

Figure 2.8-1.. Transient Heat Conduction: Tet4 Meshes

Table 2.8-1.. Transient Heat Conduction: Convergence Rates for Tet4 Meshes

Num Dofs | L2(T) L*T) H' L*® L>(Tbulk)
146 1.20 219 057 136 2.53
1105 2.45 2.34 L2221 2.17
7726 2.07 2.16 .03 2.02 2.26
59640 1.99 2.04 0.99 LII 2.12

39

For input decks see Appendix 12.1.8.

2.9. TRANSIENT HEAT CONDUCTION: TETATET10
MESHES

This problem tests basic transient heat conduction in a 3D domain as in Section 2.8. The geometry
consists of a unit cube.

2.9.1. Features Tested

Basic transient heat conduction Tet4 analysis on Tetro meshes; dirichlet, heat flux, and convective flux
boundary conditions; constant source terms; heat flux and source term from Encore user
subroutines.

2.9.2. Boundary Conditions

Identical to Section 2.8

2.9.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.9.4. \Verification of Solution

A manufactured solution is chosen as in Section 2.8.

For each mesh, the errors in the temperature solution at final time are computed in the L? norm of T
and 7', L and H' norms. As in Section 2.8, we see convergence rates for L>° that are slightly less than
2.

Table 2.9-1.. Transient Heat Conduction: Convergence Rates for
Tet4 Solution on Tet10 Meshes
Num Dofs | L*(T) L*T) H' L

865 1.09 2.03 0.52 1.22
7831 2.26 1.95 L12 190
58210 2.01 2.00 L.0OO 1.90

464400 1.96 .98 0.98 2.05

For input decks see Appendix 12.1.9.

40

mﬂg
§ 1074
=
w
[=
S
s
8 1072 4
| -m 12m
| = 2
1073 4 1
1mH
] = -
10° 104 10°
Num Nodes
Coarse Mesh Error Norms

Figure 2.9-1.. Transient Heat Conduction: Tet4 Solution on Tet10 Meshes

2.10. TRANSIENT HEAT CONDUCTION: TET10 MESHES

This problem tests basic transient heat conduction in a 3D domain as in Section 2.7. The geometry
consists of a unit cube.

2.10.1. Features Tested

Basic transient heat conduction on Tetro meshes; dirichlet, heat flux, and convective flux boundary
conditions; constant source terms; heat flux and source term from Encore user subroutines.

2.10.2. Boundary Conditions

Identical to Section 2.7

2.10.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

41

2.10.4. \Verification of Solution

A manufactured solution is chosen as in Section 2.7.

For each mesh, the errors in the temperature solution at final time are computed in the L? norm of T
and T, L> and H" norms. As in Section 2.6, we see convergence rates for L°° that are slightly less than

2.

Solution Errors

Coarse Mesh

10° 5

1071 3

1072 4

103 3

107 5

- L4
- LT

T
103

T T
10* 10°
Num Nodes

Error Norms

Figure 2.10-1.. Transient Heat Conduction: Tet10 Meshes

Table 2.10-1.. Transient Heat Conduction: Convergence Rates for Tet10 Meshes

Num Dofs | L*(T) L*T) H' L*
865 2.66 4.15 LST 2.21
7831 3.32 2.04 2.08 3.40
58210 3.03 2.1§ 2.07 2.61
464400 2.79 2.02 180 255

For input decks see Appendix 12.1.10.

2.11. POSTPROCESS MIN/MAX

2.11.1. Problem Description

This problem tests the min/max postprocessors in Aria.

42

2.11.2. Features Tested

min max postprocessors

2.11.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 1-4.

A source term is applied within all blocks based on substituting the exact solution into the heat
conduction operator.

2.11.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

2.11.5. \Verification of Solution

The manufactured solution is

sin(7x) sin(8y).

For each uniformly refined mesh, the errors in the temperature solution are computed in the L? HY,
and L°° norms and for various postprocessors. Additionally, the nodal maximum and minimum values
on both block 1 and surface 2 are computed using Encore postprocessors and the convergence of these
values is compared as well. Since the maximum and minimums are nodal, the location of the nodes will
reflect the max/min values produced for a given mesh. Provided that the mesh is uniformly refined
(without smoothing that may shift the nodal locations), every mesh refinement will produce a better
result, dependent on how much closer to the maximum/minimum true solution the new nodes are.

Table 2.11-1.. Min Max Postprocess: Convergence Rates
Num Dofs ‘ L?> H' L*® error_bl_max error_bl_min error_s2_max error_s2_min
625 2.00 1.00 189 .92 0.40 0.46 2.83
37249 2.03 LO2 L9I 1.88 2.37 1.99 2.37

2.12. ADAPTIVITY

This problem is identical to the one in Section 2.4 except that we use adaptive mesh refinement to refine
from a coarse base mesh obtained from Cubit.

43

¢

2

o 1072

=

=]

g {2

2 10_3§ - H
1L

10_4; =~ error bl max
i -m error_bl_min

1 =i~ error_s2_max

-5 4
107 4 error_s2_min
10? 10° 104
Num Nodes
Coarse Mesh Error Norms

Figure 2.11-1.. Min Max Postprocess

2.12.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines; adaptive mesh
refinement; local error indicators based on jump in heat flux.

2.12.2. Boundary Conditions

Same as in Section 2.1.

2.12.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

2.12.4. \Verification of Solution

The mesh is adapted using code from Sierra/Percept that refines tetrahedral meshes without any
hanging nodes (conformal meshes only). The element error indicator is computed using a
residual-based error indicator in Encore, that computes the integrated jump in the normal heat flux
across inter-element faces. The input file is configured to refine elements so that the sum of the error in
the refined elements is approximately 75% of the total error in all elements.

44

%

Because of variability in the meshes, we expect the error reduction to be noisy. In this case, we use linear
least squares to estimate the slope of the error on a log-log plot against mesh size. Since the solution is
smooth we also expect the meshes to eventually refine everywhere. We estimate convergence in the usual
error norms and observe rates close to the theoretical ones (second order convergence for the L? and L™
norms and first order convergence for the H' norm). Mesh size is estimated using the formula

h ~ N~1/3 where N is the number of nodes in the mesh.

- 2

107* A i

107% 4

Solution Errors

1076 4

102 103 104
Num Nodes

Coarse Mesh Error Norms

Figure 2.12-1.. Steady Heat Conduction: Tet4 Meshes (Adaptive Mesh Refinement)

Documentation for the following tests is in progress:

nlin_verifyl/1dnonlin_verifyl.test|np8
0_2d/aniso_2d.test|np8
0_3d/aniso_3d.test|np8
shell_2d/cyl_shell_2d.test|np8
shell_3d/cyl_shell_3d.test|np8

|in_C_fi/nonlin_C_fi.test|npl
|in_C_trap/nonlin_C_trap.test|npl

ce_parab/source_parab.test|npl
ce_parab_2d/source_parab_2d.test|npl
shell_axi/sph_shell_axi.test|npl
rical_shell/spherical_shell.test|np4
11_nonlin/x11b11_nonlin.test|npl

45

3. THERMAL BOUNDARY CONDITIONS

3.1. RADIATIVE HEAT FLUX

This problem tests the radiative flux boundary condition under steady state heat conduction in a 2D
domain. The geometry consists of a unit square.

3.1.1. Features Tested

Basic heat conduction on Quad4 meshes; radiative flux boundary conditions with constant emissivity
and reference temperature; radiation form factor from C-style user subroutine; temperature boundary
conditions from C-style user subroutine and constant values.

3.1.2. Boundary Conditions

At surface 3, the temperature is prescribed from a C-style user subroutine. On surfaces 2 and 4, a
constant temperatre boundary condition is used. On surface 1, a radiative heat flux condition is
prescribed. No source term is needed.

3.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

3.1.4. \Verification of Solution

A manufactured solution is chosen as

T(x,y) = 200 exp(—my) sin(mwx) + 600

For each mesh, the errors in the temperature solution are computed in the L?, H' and L*™ norms. The
test passes, only if the observed rates of convergence in these norms are 2, 1, and 2, respectively (within a
tolerance).

For input decks see Appendix 12.2.1.

46

10! 4

107 4

Solution Errors

10-1 4

Num Nodes

Coarse Mesh Error Norms

Figure 3.1-1.. Radiative Heat Flux

Table 3.1-1.. Radiative Heat Flux: Convergence Rates for Hex8 Meshes
NumDofs | L* H' L~

121 2.27 LI3 234
441 2.14 1LO7 217
1681 2.07 104 2.09

3.2. RADIATIVE HEAT FLUX FROM FORTRAN USER
SUBROUTINE

This test verifies that a user-supplied subroutine for convective coefhicient and reference temperature
(restricted to a surface patch) produces the same results as the equivalent input syntax with constant
values. The user subroutine is applied to the entire exterior surface, while the case using constant values
must be applied only to specific sidesets that span a portion of the exterior surface.

3.2.1. Features Tested

Basic heat conduction on a Hex8 mesh; convective and radiative flux BCs, Fortran user subroutines.

3.2.2. Boundary Conditions

Convective and radiative flux BCs are applied to the exterior boundary.

47

3.2.3. Material Parameters

The values of density, thermal conductivity, emissivity and specific heat are all constant.

3.2.4. \Verification of Solution

The test compares Exodus output between two input files. The first does not use any user subroutines
and instead relies on sidesets to apply the correct convective and radiative boundary conditions with
constant coefficients. The second uses a single convective boundary condition with user subroutines for
both the convective coefficient and reference temperature. The two input files produce results that agree
to the default tolerances in the exodift script.

For input decks see Appendix 12.2.2.

3.3. CONVECTIVE HEAT FLUX

This problem tests the convective flux boundary condition under transient heat conduction in a 2D
domain. The geometry consists of a unit square.

3.3.1. Features Tested

Transient heat conduction on Quad4 meshes; convective flux boundary conditions with user
subroutines for convective coefficient and reference temperature; temperature boundary conditions
from C-style user subroutine and constant values.

3.3.2. Boundary Conditions

At surface 3, the temperature is prescribed from a C-style user subroutine. On surfaces 2 and 4, a
constant temperature boundary condition is used. On surface 1, a convective heat flux condition is
prescribed. No source term is needed. The initial condition is provided by a C-style user subroutine

3.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

48

3.3.4. \Verification of Solution

A manufactured solution is chosen as
T(x,y,t) = 100 exp(—27*t) sin(rx) (cos(my) + sin(ry))

Because the solution is based on eigenfunctions, it satisfies the heat equation with no source term.

For each mesh, the errors in the temperature solution are computed in the L?, L*> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

101 4
- L
Hl
- L
w 1004
s
&
[=
i=]
]
Q
w
]_0—1 4
102 103
Num Nodes
Coarse Mesh Error Norms

Figure 3.3-1.. Convective Heat Flux

Table 3.3-1.. Convective Heat Flux: Convergence Rates for Hex8 Meshes
Num Dofs ‘ L? H' L~

121 222 L2l 2.22
441 203 LO9 212
1681 2.07 1.04 2.07

For input decks see Appendix 12.2.3.

49

3.4. THERMAL CONVECTIVE FLUX (FORTRAN
SUB-ROUTINE)

3.4.1. Problem Description

This problem tests the convective flux boundary condition with a convective coefficient Fortran
subroutine for a steady thermal problem in a 3D domain whose geometry consists of a unit-sized
cube.

3.4.2. Features Tested

Convective Flux BC, Convective Coefficient Fortran Subroutine, user subroutine, integrated flux,
integrated power

3.4.3. Boundary Conditions

Convective flux boundary conditions are imposed on surfaces 1 and 2. Dirichlet BCs are specified using
the exact solution on surfaces 3-6. A source term is applied within all blocks based on substituting the
exact solution into the heat conduction operator.

3.4.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

3.4.5. Verification of Solution
The manufactured solution is

T(z,y,2) = (x —2*)*(y — y)°(z = 22)° + (= + 2°).

For each mesh, the errors in the temperature solution are computed in the L% H' and L* norms.

Table 3.4-1.. Thermal Convective BC: Convergence Rates
Num Dofs | L? H' L™

125 271 136 271
729 236 118 2.36
4913 218 1.09 218

35940 2.09 1.04 2.09

50

-
Hl
1071 4 - L
(%]
s
&h 1072
=
S
|
[=)
w
1073 A
T T T
102 10° 104
Num Nodes
Coarse Mesh Error Norms

Figure 3.4-1.. Convergence for 3D thermal steady convective flux BCs.

3.5. THERMAL CONVECTIVE FLUX (USER FIELD
FROM EXODUS READ-IN)

3.5.1. Problem Description

This problem evalutates a convective flux boundary condition with a convective coefficient and a
reference temperature from an exodus file for a steady thermal problem in a 3D domain whose geometry
consists of a unit-sized cube.

3.5.2. Features Tested

Convective Flux BC, Convective Coefficient, transfers, user subroutine, integrated flux, integrated
power

3.5.3. Boundary Conditions

Convective flux boundary conditions are imposed on surfaces 1 and 2. Dirichlet BCs are specified using
the exact solution on surfaces 3-6. A source term is applied within all blocks based on substituting the
exact solution into the heat conduction operator.

SI

3.5.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

3.5.5. Verification of Solution

The manufactured solution is

T(z,y,2) = (xz—2*)(y — y*)°(z = 2*)° + (2 + 2).

For each mesh, the errors in the temperature solution are computed in the L? H' and L* norms.

Coarse Mesh

Solution Errors

1071 4

1073 4

1074 A

-
Hl
- L7

-
102

— ———
103 104
Num Nodes

Error Norms

-
105

Figure 3.5-1.. Convergence for 3D thermal steady convective flux BCs.

Table 3.5-1.. Thermal Convective BC:

Convergence Rates

Num Dofs | L? H! L
125 2.74 136 271

729 236 118 236
4913 218 1.09 218
35940 2.09 L.0§ 2.09
274600 2.0 1.02 2.0§

52

3.6. THERMAL HEAT FLUX

3.6.1. Thermal Heat Flux (Basic)
3.6.1.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat flux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

3.6.1.2. Features Tested

Basic heat conduction, Calore style heat flux BCs, Integrated Flux Output, Integrated Power Output,
Hex8 meshes, user functions.

3.6.1.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 2-6. On surface 1, a heat flux BC is
specified, using a heat flux of 2 — exp(1). A source term is applied within all blocks based on
substituting the exact solution into the heat conduction operator. The integrated flux and power are
calculated and output as global variables, which should both be equal for a surface with area of 1 and
equal to 2 — exp(1) for all meshes considered.

3.6.1.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for

both blocks.

3.6.1.5. Verification of Solution

The manufactured solution is

T(z,y,z) = (x — 2*)*(y —y*)* (2 — 2°)° + 2" exp(2).

For each mesh, the errors in the temperature solution are computed in the L?, H', and L> norms. The
test passes, only if the observed rates of convergence are 2 (except for the L° norm, with convergence
order1).

53

1072 A - L

1073 4

Solution Errors

1074 4

1075

T T T T
102 10° 10* 10°
Num Nodes

Coarse Mesh Error Norms

Figure 3.6-1.. Thermal Heat Flux BC

Table 3.6-1.. Thermal Heat Flux BC: Convergence Rates
Num Dofs | L? L* H!
729 2.33 LIS 2.2§
4913 2.17 108 213

35940 2.09 104 2.07
274600 2.04 102 2.04

3.6.2. Thermal Heat Flux (Flux node variable user field)
3.6.2.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat flux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

3.6.2.2. Features Tested

Basic heat conduction, Calore style heat flux BCs, Flux Node Variable, User field, Field Scaling, Hex8
meshes, user functions, transfer.

3.6.2.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 1 and 3-6. On surface 2, a heat flux BC is
specified, using a flux node variable user field. A source term is applied within all blocks based on

54

substituting the exact solution into the heat conduction operator. Transfers are specified at the
surface.

3.6.2.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for

both blocks.

3.6.2.5. Verification of Solution

The manufactured solution is

T(x,y,z) = (x — 22y — vy (2 — 222 + 20 % (22 — 2) x (L + 2+ y + 29).

For each mesh, the errors in the temperature solution are computed in the L? H' and L*> norms. The
test passes, only if the observed rates of convergence are 2 (except for the L> norm, with convergence
order1).

10!

-
Hl
- L
100 4
W
5
o
5 107 4
El
3
1072 4
T T T T
102 10° 10* 10°
Num Nodes
Coarse Mesh Error Norms

Figure 3.6-2.. Thermal Heat Flux BC

3.6.3. Thermal Heat Flux (Flux node variable user field)

3.6.3.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat flux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

55

Table 3.6-2.. Thermal Heat Flux BC: Convergence Rates

Num Dofs | L? L>* H!
729 236 231 118
4913 218 216 109

35940 2.09 2.08 104
274600 2.05 2.04 102

3.6.3.2. Features Tested

Basic heat conduction, Calore style heat flux BCs, User field real nodal vector, Hex8 meshes, user
functions, transfers.

3.6.3.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 1 and 3-6. On surface 2, a heat flux BC is
specified, using a flux vector node variable defined as a user field. A source term is applied within all
blocks based on substituting the exact solution into the heat conduction operator.

3.6.3.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for

both blocks.

3.6.3.5. Verification of Solution

The manufactured solution is

T(x,y,z) = (x—2?)*(y —y)*(z — 222 +20% (22 — 2) x (1 + 2+ y + 27).

For each mesh, the errors in the temperature solution are computed in the L%, H' and L™ norms. The

test passes, only if the observed rates of convergence are 2 (except for the L> norm, with convergence
order 1).

Table 3.6-3.. Thermal Heat Flux BC: Convergence Rates
Num Dofs | L? L~ H!
729 236 231 118
4913 218 216 1.09
35940 2.09 2.08 1.04
274600 2.0§ 2.04 1.02

56

10!
-
Hl
- L
100 4
w1
S
o
§ 1071
El
S
w
1072 4
T T T T
102 10° 10* 10°
Num Nodes
Coarse Mesh Error Norms

Figure 3.6-3.. Thermal Heat Flux BC

3.6.4. Thermal Heat Flux (Fortran Subroutine)
3.6.4.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat flux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

3.6.4.2. Features Tested

Basic heat conduction, Calore style heat flux BCs, Integrated Flux Output, Integrated Power Output,
Fortran subroutine, Hex8 meshes, user plugin.

3.6.4.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 3-6. On surfaces 1 and 2, heat flux BCs
are specified, using Fortran subroutines. A source term is applied within all blocks based on substituting
the exact solution into the heat conduction operator.

3.6.4.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for

both blocks.

57

3.6.4.5. Verification of Solution

The manufactured solution is

T(x,y,z) = (v —2°)(y —y*)?(z — 22+ (22 + 2) « (1 + 2 +y + 2y).

For each mesh, the errors in the temperature solution are computed in the L?, H', and L> norms. The
test passes, only if the observed rates of convergence are 2 (except for the L> norm, with convergence
order1).

\ - U
10-1 4 T~ - Hj |
E ~—_ - L
8 :\l .
£ 10-2 1
E 10 \\.\
; \.\\

102 102 104 103
Num Nodes

Coarse Mesh Error Norms

Figure 3.6-4.. Thermal Heat Flux BC

Table 3.6-4.. Thermal Heat Flux BC: Convergence Rates
Num Dofs | L? L>* H?
729 236 231 LIS
4913 218 216 109
35940 2.09 2.08 1.05

274600 2-%5 2.04 LO2
5

3.7. THERMAL RADIATIVE HEAT FLUX

3.7.1. Basic Calore-Style BC
3.7.1.1. Problem Description

This problem evaluates a steady thermal solution with radiative heat flux boundary conditions on a 3D
unit cube domain.

3.7.1.2. Features Tested

Basic heat conduction, Calore style radiative heat flux BCs, Integrated Flux Output, Integrated Power
Output, Hex8 meshes.

3.7.1.3. Boundary Conditions
Dirichlet BCs are specified using the exact solution on surfaces 2-6. On surface 1, a radiative heat flux

BC is specified with constant emissivity and a radiation form factor of 0.2. A source term is applied
within all blocks based on substituting the exact solution into the heat conduction operator.

3.7.1.4. Material Parameters

The values of density, thermal conductivity, specific heat, and emissivity are all constant values.

3.7.1.5. Verification of Solution

The manufactured solution is

T(wy,2) = (2 = Py~ (s = 2P+ T = G0 (22— 2).

For each discretization, the errors in the temperature solution are computed in the L? H' and L*>®
norms. The observed rates of convergence are 2 (except for the L norm, with convergence order 1).

Table 3.7-1.. Thermal Radiative Flux BC: Convergence Rates
Num Dofs | L? L>® H!

125 271 136 271
729 236 118 2.36
4913 2.18 1.09 2.18

35940 2.09 1.04 2.09
274600 2.05 L.02 2.05

59

-
10? 4 H1
- L
w 1014
S
]
=
S
2 100
w
1071 A
T T T T
102 10° 104 10°
Num Nodes
Coarse Mesh Error Norms

Figure 3.7-1.. Thermal Radiative Flux

3.7.2. With Fortran Subroutines
3.7.2.1. Problem Description

This problem evaluates a steady thermal solution with radiative heat flux boundary conditions using
Fortran subroutines on a 3D unit cube domain.

3.7.2.2. Features Tested

Basic heat conduction, Calore style radiative heat flux BCs, Integrated Flux Output, Integrated Power
Output, Hex8 meshes, Fortran subroutines.

3.7.2.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 2-6. On surface 1, a radiative heat flux
BC is specified with emissivity, reference temperature, and radiation form factor of provided by Fortran
subroutines. A source term is applied within all blocks based on substituting the exact solution into the
heat conduction operator.

3.7.2.4. Material Parameters

The values of density, thermal conductivity, specific heat, and emissivity are all constant values.

60

3.7.2.5. Verification of Solution

The manufactured solution is

T(z,y,x)=(x—2)(y—y*)°(z = 2°)* + T —

8_T(22 —z

on

).

For each discretization, the errors in the temperature solution are computed in the L% H' and L*>®
norms. The observed rates of convergence are 2 (except for the L°° norm, with convergence order 1).

Coarse Mesh

Solution Errors

103 4

102 4

10! 4

107 4

T
102

T
103
Num Nodes

Figure 3.7-2.. Thermal Radiative Flux

Table 3.7-2.. Thermal Radiative Flux BC: Convergence Rates

Num Dofs | L? L*® H!
125 2,72 L38 2.9

729 236 118 230
4913 2.18 1L.09 21§
35940 2.09 1Lo0§5 2.08

3.7.3. With User Subroutines

3.7.3.1. Problem Description

Error Norms

.
104

This problem evaluates a steady thermal solution with radiative heat flux boundary conditions with

user subroutines on a 3D unit cube domain.

61

3.7.3.2. Features Tested

Basic heat conduction, Calore style radiative heat flux BCs, Integrated Flux Output, Integrated Power
Output, Hex8 meshes, user subroutines.

3.7.3.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surfaces 2-6. On surface 1, a radiative heat flux
BC is specified with emissivity, reference termperature and radiation form factor provided by user
subroutines. A source term is applied within all blocks based on substituting the exact solution into the
heat conduction operator.

3.7.3.4. Material Parameters

The values of density, thermal conductivity, specific heat, and emissivity are all constant values.

3.7.3.5. Verification of Solution

The manufactured solution is

T(a,y.2) = (& =)y — e = 2P+ T = S (= 2).

For each discretization, the errors in the temperature solution are computed in the L% H' and L>®
norms. The observed rates of convergence are 2 (except for the L norm, with convergence order 1).

Table 3.7-3.. Thermal Radiative Flux BC: Convergence Rates
Num Dofs | L? L* H!

125 2.72 138 2.9
729 236 118 230
4913 2.18 1L.09 21§

35940 2.09 105 2.08

3.8. ADVECTIVE BAR

Advective bar model verification tests.

3.8.1. Steady Advection-Diffusion

The three dimensional Barz meshes of one element block are generated in Cubit.

62

107 4
] - 12
Hl
- L
102 4
1%
S
]
=
S
S 10! 4
S]
10° 4
L | T L L R | T T LB |
102 10° 104
Num Nodes
Coarse Mesh Error Norms

Figure 3.7-3.. Thermal Radiative Flux

3.8.2. Features Tested

Steady heat conduction on 3D Bar2 meshes, Dirichlet boundary conditions, constant source term,
advection and SUPG stabilization.

3.8.3. Boundary Conditions

3.8.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in the

block.

3.8.5. Verification of Solution

Solution verification is carried out by computing the error in the numerical solution based upon
comparison with the analytic solution.

o

where v = pC'V//k where p is the density, C'is specific heat, k is the thermal conductivity and V' is the
advection velocity. In this test, we find that the convergence rate for the temperature in the L*° and L?
norms are 2.

1073 4 - L
=
w 107% 4
S
0
=
k=]
5
[=]
1 10-5 4
1076
*—o—0—0—0—0—0—0—0—0—0°
. 107 107
_
VeIOCIty Num Nodes
Coarse Mesh Error Norms

Figure 3.8-1.. Steady Advective Conduction: 3D Bar2 Meshes

Table 3.8-1.. Steady Advective Conduction: Convergence Rates
for 3D Bar2 Meshes

Num Dofs | L? L*®
21 2.14 201
41 2.07 2.06
81 2.04 2.03
161 2.02 2.0I
321 2.0 2.0l

3.8.6. Transient Advection-Diffusion

The three dimensional Bar2 meshes of one element block are generated in Cubit.

3.8.7. Features Tested

Transient heat conduction on 3D Bar2 meshes, Dirichlet boundary conditions and Encore function
source term.

64

3.8.8. Boundary Conditions

Dirichlet boundary conditions on the bar ends based upon the manufactured solution 7'(z)

3.8.9. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in the bar

block.

3.8.10. \Verification of Solution

Solution verification is carried out by computing the error in the numerical solution based upon
comparison with the analytic solution.

T(x) =T, + Atx(x — 1) exp(—Bt) exp(—Buz)

In this test, we find that the convergence rate for the temperature in the L> and L? norms are 2.

101 4 - L2

107 4

Solution Errors

*—o—0 000 0 0 0 0 O 1072 4

10! 102
>X Num Nodes
Coarse Mesh Error Norms

Figure 3.8-2.. Transient Heat Conduction: 3D Bar2 Meshes

3.8.11. Transient Advection-Diffusion in 2D

The two dimensional Bara meshes of one elment block are generated in Cubit.

6s

Table 3.8-2.. Transient Heat Conduction: Convergence Rates for 3D Bar2 Meshes

Num Dofs | L? L™
21 2.33 217
41 2.12 2.08
81 2.0§ 2.04
161 2.02 2.02

3.8.12. Features Tested

Transient heat conduction on 2D Bar2 meshes, Dirichlet boundary conditions and Encore function
source term.

3.8.13. Boundary Conditions

Dirichlet boundary conditions on the bar ends

3.8.14. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in the bar

block.

3.8.15. \Verification of Solution

Solution verification is carried out by computing the error in the numerical solution based upon
comparison with the analytic solution.

T(x) =T, + Atz(x — 1) exp(—Bt) exp(—Buz)

In this test, we find that the convergence rate for the temperature in the L> and L? norms are 2.

Table 3.8-3.. Transient Heat Conduction: Convergence Rates for 2D Bar2 Meshes

Num Dofs | L? L*
21 2.33 2.02
41 212 197
81 2.0§ 1.98
161 2.02 1.99

66

1
10 »- 12
=

107 4

Solution Errors

1071 4

*—0—0—0—0—0—0 00090 1072 4

10! 102
_—
X Num Nodes

Coarse Mesh Error Norms

Figure 3.8-3.. Transient Heat Conduction: Bar2 Meshes

3.9. SOLUTION VERIFICATION

This test is for a Mock AFF (including a metal case, foam, mock components, and
temperature-dependent properties) that uses extrapolation to determine an approximation to the exact
solution as a function of the results from three levels of meshes.

3.9.1. Features Tested

Extrapolation, Radiative flux boundary condition

3.9.2. Material Parameters

Constant density, emissivity. Temperature dependent user functions for specific hear and thermal
conductivity.

3.9.3. \Verification of Solution

Quantities of interest are the maximum, minimum, and average temperatures on both blocks and
points. There is no manufactured solution in this case, instead an extrapolated solution is calculated and
used to measure convergence and approximate the absolute error for a given mesh resolution.

Documentation for the following tests is in progress:

nic_material_decomposition/organic_material_decomposition.test|np4

67

Figure 3.9-1.. Mock AFF Solution Verification

68

Rates of convergence for QOls

3 T T T T
\ ——max(T) on block 3

—— ave(T) on block 3

S min(T) on block ,
——ave(T) on block 2
—T at point

2 - ¢—---- 2nd Order ---- —

5

1r +—---- 1st Order ----

-5 | | | | |

0 1000 2000 3000 4000 5000 6(

Rate of convergence

Figure 3.9-2.. The convergence rates can vary over time and between QOls

4. THERMAL CONTACT

4.1. 1D FLAT CONTACT

This problem tests thermal contact along a flat surface using 3D domains. The geometry consists of two
thick blocks, which are in contact along a common flat surface. The mesh nodes on either side of the
contact surface are not aligned in general.

In this problem we observe sub-optimal convergence rates in the L°° norm when using Tet elements.
This is a known issue with unknown cause.

The contact search tolerances are fixed for all meshes, with a zero tangential and normal tolerances.

4.1.1. Features Tested

Basic heat conduction, tied and resistance thermal contact between non-matching meshes (Hex-Hex,

Tet-Tet, Hex-Tet).

4.1.2. Boundary Conditions

The interface between the two blocks is a thermal contact boundary condition. Both tied contact and
resistance contact (with finite contact resistance) are tested. The left and right boundary conditions are
prescribed using constant values. The remaining boundary conditions are adiabatic. A constant source
term is applied in each block (with different signs).

4.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

70

4.1.4. \Verification of Solution

A manufactured solution is chosen based on the contact interface at = 0:

B sA+a)(y+x), <0,
T(ﬂ?,y;z)_{ 1+%(1_x)(_1_|_1;)7 x>0

where 7y = (2 — R)/(2 + R) is a constant depending on the thermal contact resistance R. Here R is
the inverse of the contact conductance that is provided as a code input. In the case of tied contact,

R = 0 and therefore 7 = 1. We note that when R > 0, this exact solution exhibits a jump in
temperature across the contact interface.

For each mesh, the errors in the temperature solution are computed in the L?, 1> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These rates are observed for the Hex-Hex case; however, both of the cases involving Tet meshes exhibit a
reduced order of convergence in the L> norms (convergence rate about 1.7).

For input decks see Appendix 12.3.1.

4.1.5. Results: Hex8 Tied

1071 4 - L
- L
- H
n 1072 4
o
E
[In}
c
8
5
&
1073 4
1074 4
103 104 10°
Num Nodes
Coarse Mesh Error Norms

Figure 4.1-1.. 1D Flat Contact: Hex8 Tied

4.1.6. Results: Hex8 Resistance

71

Table 4.1-1.. 1D Flat Contact: Convergence Rates for Hex8 Tied

Num Dofs | L? L* H!

1241 2.45 2.44 1.38

7657 207 212 LIO

57890 201 201 1.07

432100 2.04 2.03 L.0O2
107 k\ 1 -]

\‘\

Solution Errors

\

10° 104 10°
Num Nodes

Coarse Mesh Error Norms

Figure 4.1-2.. 1D Flat Contact: Hex8 Resistance

Table 4.1-2.. 1D Flat Contact: Convergence Rates for Hex8 Resistance
Num Dofs | L? L* H!
1241 255 2.70 L.2§
7657 2.12 2.04 LO7
57890 213 217 LOG6
432100 2.03 2.0I 1.02

72

4.1.7. Results: Tet4 Tied

Coarse Mesh

Solution Errors

1014

102 4

10-3 4

1074 4

103 104 105
Num Nodes

Error Norms

Figure 4.1-3.. 1D Flat Contact: Tet4 Tied

Table 4.1-3.. 1D Flat Contact: Convergence Rates for Tet4 Tied

Num Dofs | L? L H!
1348 2.33 2.06 118
9102 219 1.88 1.06

66620 2.09 178 103
509200 2.04 L73 LOI

4.1.8. Results: Tet4 Resistance

73

10714 B - 12
"-\\ oL
\ _._ Hl
10-2 4 1\ T —
@ 1\\ |
o
E
w
c
=
E 10-3 \
3 \-\
o \\.
10% 10% 10°
Num Nodes
Coarse Mesh Error Norms

Figure 4.1-4.. 1D Flat Contact: Tet4 Resistance

Table 4.1-4.. 1D Flat Contact: Convergence Rates for Tet4 Resistance

Num Dofs | L2 L~ H!
1348 2.22 2.09 LI2
9102 2.08 1.95 10§

66620 2.04 L62 1.02
509200 2.01 1.42 1.0I

74

4.1.9. Results: Hex8-Tet4 Tied

Coarse Mesh

Solution Errors

1071 4

103 A

1074 4

103 10% 10°
Num Nodes

Error Norms

Figure 4.1-5.. 1D Flat Contact: Hex8-Tet4 Tied

Table 4.1-5.. 1D Flat Contact: Convergence Rates for Hex8-Tet4 Tied

Num Dofs | L? L* H!
1231 232 210 1.24
8284 2.16 1.82 1.09
60570 2.09 178 1.04
462800 2.04 182 1.02

4.1.10. Results: Hex8-Tet4 Resistance

4.2. 3D CURVED CONTACT

This problem tests thermal contact along a curved surface in 3D. The geometry consists of two thick
spherical shells, which are in contact along a shared surface. The mesh nodes on either side of the

contact surface are not aligned in general.

In this problem we observe sub-optimal convergence rates in the L°° norm when using tet elements.

This is a known issue with unknown cause.

The contact search tolerances are fixed for all meshes, with a zero tangential tolerance and a normal
tolerance large enough to insure a proper contact search on the coarsest mesh.

75

Solution Errors

Coarse Mesh

101 4

103 4

104 4

— — it — et
10° 10% 10°

Num Nodes

Error Norms

Figure 4.1-6.. 1D Flat Contact: Hex8-Tet4 Resistance

Table 4.1-6.. 1D Flat Contact: Convergence Rates for Hex8-Tet4 Resistance

Num Dofs | L? L H!
1231 2.28 210 LIS
8284 212 195 107
60570 2.05 162 1.03
462800 2.02 143 1.0I

4.2.1. Features Tested

Basic heat conduction, tied thermal contact between non-matching meshes (hex-hex, tet-tet, hex-tet).

4.2.2. Boundary Conditions

The interface between the two blocks is a tied thermal contact boundary condition. The outer and
inner boundary conditions are prescribed at the nodes using the analytic solution.

4.2.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.
76

4.2.4. \Verification of Solution

A manufactured solution is chosen as

T(x,y,2) = —32%2 — 3y°z + 22°
This solution is harmonic, implying that no source term is needed for the steady state heat equation
with constant conductivity.

For each mesh, the errors in the temperature solution are computed in the L?, L and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These rates are observed for the hex-hex case; however, both of the cases involving tet meshes exhibit a
reduced order of convergence in the L* norms (convergence rate about 1.7).

For input decks see Appendix 12.3.2.

4.2.5. Results: Hex8-Hex8 Contact

101 4

107 .\

101 4 \

1077 4 \.

103 104 105
Num Nodes

Solution Errors

Coarse Mesh Error Norms

Figure 4.2-1.. 3D Curved Contact: Hex8-Hex8 Case

77

Table 4.2-1.. 3D Curved Contact: Convergence Rates for Hex8-Hex8

Num Dofs | L? L*® H!
540 3.16 2.60 0.96
3752 232 L93 12§

21220 2.62 2.66 1.07
150700 2.35 2.05 106

78

4.2.6. Results: Tet4-Tet4 Contact

Coarse Mesh

Solution Errors

10% 4

10° 4

- 2
- L

Num Nodes

Error Norms

Figure 4.2-2.. 3D Curved Contact: Tet4-Tet4 Case

Table 4.2-2.. 3D Curved Contact: Convergence Rates for Tet4-Tet4

Num Dofs | L? L*® H!
674 2.47 234 10O
3881 2.33 2.41 LI

25010 2.09 196 1.04
159100 2.02 L73 LO4

79

4.2.7. Results: Hex8-Tet4 Contact

10" 4 - 12
L=
- H
o 1004
S
]
=
S
5
S
[} 10—1
1072 A
T T T
10° 10% 10°
Num Nodes
Coarse Mesh Error Norms

Figure 4.2-3.. 3D Curved Contact: Hex8-Tet4 Case

Table 4.2-3.. 3D Curved Contact: Convergence Rates for Hex8-Tet4

Num Dofs | L2 L*® H!
630 234 187 LI
3830 2.40 2.09 LI2
23420 .98 197 106
153700 2.06 1L70 1.04

4.3. STEADY HEX8 CONTACT

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube.

4.3.1. Features Tested

Basic heat conduction on Hex8 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

8o

4.3.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function
(user subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

4.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.3.4. \Verification of Solution

A manufactured solution is chosen as
T(fL‘,y, 2) =1+ (I - xz)Q(y - y2)2(2 - 22)2'

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L?, L*> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

Table 4.3-1.. Steady Tied Contact: Convergence Rates for Hex8 Meshes

Num Dofs | L? H' L*
192 0.86 -0.44 0.60
982 2.22 0.97 2.39
6419 231 Lo7 2.28

46280 2.06 104 L7I
350600 .95 L.02 2.08

For input decks see Appendix 12.3.3.

4.4. STEADY HEX20 CONTACT

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

81

-
-4
10 L
- L
- 10—5 4
s
]
=
S
|
3 107F 4
lo—? 4
T T T T
102 10° 10% 10°
Num Nodes
Coarse Mesh Error Norms

Figure 4.3-1.. Steady Tied Contact: Hex8 Meshes

4.41. Features Tested

Basic heat conduction on Hex20 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

44.2. Boundary Conditions

Atsurfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function
(user subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

4.4.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.
82

4.4.4. \Verification of Solution

A manufactured solution is chosen as
T(Z‘,y, Z) =1+ (l’ - $2)2(y - y2)2<2 - ZQ)Q'

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L?, 1> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

-
| - H!
1075 1 - L
é 10-6
w
[=
S
|
2 1077 5
10'“@
10° 104 10°
Num Nodes
Coarse Mesh Error Norms

Figure 4.4-1.. Steady Heat Conduction: Hex20 Meshes

Table 4.4-1.. Steady Heat Conduction: Convergence Rates for Hex20 Meshes
Num Dofs | L? H' L
2898 3.50 2.40 3.64
19620 3.25 2.9 3.09
62450 3.5 2.0 3.08
143700 310 2.07 3.0§

For input decks see Appendix 12.3.4.
83

4.5. STEADY HEX27 CONTACT

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of different source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

4.5.1. Features Tested

Basic heat conduction on Hex27 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.5.2. Boundary Conditions

Atsurfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function
(user subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux
boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

4.5.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.5.4. \Verification of Solution

A manufactured solution is chosen as
T(‘%’7y7 Z) =1+ (l’ - ‘T2)2(y - y2)2(2 - 22)2'

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the L?, 1> and H"' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

For input decks see Appendix 12.3.5.

84

j - 12
1075 4 i H
] . L=
g 107° 4
=]
w
[=
=
3
a
1077 4
10-% 4
104 10°
Num Nodes
Coarse Mesh Error Norms

Figure 4.5-1.. Steady Heat Conduction: Hex27 Meshes

Table 4.5-1.. Steady Heat Conduction: Convergence Rates for Hex27 Meshes
Num Dofs | L? H' L*
13750 3.25 218 3.9
28830 3.3 2.0 2.97
63880 3.14 2.09 3.25
120000 3.1 2.07 3.27

4.6. STEADY TET4 CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tet4 meshes are used
instead.

4.6.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.6.2. Boundary Conditions

Same as in Section 2.1.

85

4.6.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.6.4. \Verification of Solution

Same as in Section 2.1.

E\.\ -
10~4 1 - A
] - L
E 105 \.\ \-\
5 1
b
10°° 1 T~y
1077 4 \

Coarse Mesh

102

103 104 105

Num Nodes
Error Norms

Figure 4.6-1.. Steady Tied Contact: Tet4 Meshes

Table 4.6-1.. Steady Tied Contact: Convergence Rates for Tet4 Meshes

Num Dofs | L? H' L*®
229 .60 0.76 1.48
1402 229 109 2.65
8535 1.93 0.98 138
51620 2.05 102 2.14

291200 1.88 0.94 181

For input decks see Appendix 12.3.6.

4.7. STEADY TET4TET10 CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tet4 meshes are used

instead.

86

4.7.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.7.2. Boundary Conditions

Same as in Section 2.1.

4.7.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.7.4. \Verification of Solution

Same as in Section 2.1.

/

) -.- L?
10-° \k
10-5 \.\\.

1077 E \._

103 104 10° 10%
Num Nodes

Solution Errors

Coarse Mesh Error Norms

Figure 4.7-1.. Steady Tied Contact: Tet4 Meshes

For input decks see Appendix 12.3.7.

87

Table 4.7-1.. Steady Tied Contact: Convergence Rates for Tet4 Meshes
Num Dofs | L? H' L*®
1364 .40 0.72 LI3
9663 2.14 LO2 2.46
62720 1.90 0.94 127

392000 .98 1.00 216
2250000 .89 0.93 184

4.8. STEADY TET10 CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tetro meshes are used
instead.

4.8.1. Features Tested

Basic heat conduction on Tetro meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.8.2. Boundary Conditions

Same as in Section 2.1.

4.8.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.8.4. \Verification of Solution

Same as in Section 2.1.

Table 4.8-1.. Steady Tied Contact: Convergence Rates for Tet10 Meshes
Num Dofs | L? H' L™
1364 271 L§I 2.78
9663 334 204 2.99
62720 2.86 1.92 2.39
392000 3.06 2.0§ 2.68

For input decks see Appendix 12.3.8.
88

107 g

1 .\ - 12
] - H!
] l\ -
o .\\
E \\\:\.\
[=]
g 1076 5
5]
5]
8 4
1077 3

1078 4

_ //
/./ ./

10° 10% 10°
Num Nodes

Coarse Mesh Error Norms

Figure 4.8-1.. Steady Tied Contact: Tet10 Meshes

4.9. STEADY TET10 DASH CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tetro meshes are used
instead.

4.9.1. Features Tested

Basic heat conduction on Tetro meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.9.2. Boundary Conditions

Same as in Section 2.1.

4.9.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

89

1074 §
3 -
- H
- L
107° 4
¢
[=]
£
2 1075 5
=) 1
|
[=]
w
1077 3
1078 4
10° 10% 10°
Num Nodes
Coarse Mesh Error Norms

Figure 4.9-1.. Steady Tied Dash Contact: Tet10 Meshes

Table 4.9-1.. Steady Tied DASH Contact: Convergence Rates for Tet10 Meshes
Num Dofs | L? H' L*
1364 2.80 L§7 2.5
9663 334 214 314
62720 2.59 L9l 2.38
392000 2,70 2.06 2.61

4.9.4. \Verification of Solution

Same as in Section 2.1.

For input decks see Appendix 12.3.9.

4.10. TRANSIENT TET4TET10 CONTACT

This problem tests basic transient heat conduction with contact in a 3D domain. The geometry consists
of two halves of a unit cube meshed with Tetio elements. The problem is solved using Tet4
interpolation and applying thermal contact at the common interface between the two domains.

4.10.1. Features Tested

Basic heat conduction on Tetio meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

90

4.10.2. Boundary Conditions

Using a manufactured solution, Dirichlet boundary conditions are applied on all the non-contact
exposed faces.

4.10.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.10.4. Verification of Solution

A manufactured solution is chosen as

T(ZI},y, Z7t) = (1" - 1172)2 (y - y2)2 (Z - 22)2m(t) +1,
m(t) = 10* [1. — exp(—t) + t * exp(—(t — 1.0) * (¢ — 1.0))] ;

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

10° 4

\\
107! . —
\.

Solution Errors

1 -m 4N
] m
1B L
103 104
Num Nodes
Coarse Mesh Error Norms

Figure 4.10-1.. Transient Tied Contact: Tet10 Meshes

For input decks see Appendix 12.3.10.

91

Table 4.10-1.. Transient Tied Contact: Convergence Rates for Tet10 Meshes
Num Dofs | L*(T) L*T) H' L*

1364 .41 285 072 LI4
9663 2.13 1.81 .02 2.46
62720 1.90 .94 0.94 127

4.11. TRANSIENT TET10 CONTACT

This problem tests basic transient heat conduction with contact in a 3D domain. The geometry consists
of two halves of a unit cube meshed with Tetro elements. The problem is solved by applying thermal
contact at the common interface between the two domains.

4.11.1. Features Tested

Basic heat conduction on Tetro meshes; dirichlet, heat flux, and convective flux boundary conditions;
constant source terms; heat flux and source term from Encore user subroutines.

4.11.2. Boundary Conditions

Using a manufactured solution, Dirichlet boundary conditions are applied on all the non-contact
exposed faces.

4.11.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.11.4. \Verification of Solution

A manufactured solution is chosen as

T(‘T:?yv Zat) = (l‘ - ZL‘2)2 (y - y2)2 (Z - 22)2m(t) + 17
m(t) = 10* [1. — exp(—t) + t * exp(—(t — 1.0) * (¢ — 1.0))] ;

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For input decks see Appendix 12.3.11.

92

- LT
|- LA(T)
- H

- L

1071 4

Solution Errors

1072 4

10° 104
Num Nodes

Coarse Mesh Error Norms

Figure 4.11-1.. Transient Tied Contact: Tet10 Meshes

Table 4.11-1.. Transient Tied Contact: Convergence Rates for Tet10 Meshes
Num Dofs | L*(T) L*T) H' L*

1364 2.73 5.40 Ls1 2.8I
9663 3.33 2.23 214 3.00
62720 2.85 230 192 2.39

4.12. TRANSIENT HEX8 TIED CONTACT

This problem tests transient heat conduction on a 3D domains with a nonconformal mesh between two
blocks. Tied temperature (generalized contact) is used for matching the energy equation between
nonconformal blocks. The geometry consists of a unit cube.

4.12.1. Features Tested

Transient heat conduction on Hex8 meshes; dirichlet, heat flux, and convective flux boundary
conditions, Tied Contact, Nonconformal; constant source terms; heat flux and source term from
Encore user subroutines.

4.12.2. Boundary Conditions

Atsurfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and s, a heat flux
condition is prescribed using a sum of a constant heat flux and a heat flux from an Encore function
(user subroutine). On surfaces 1 and 2, heat flux condition is prescribed using a sum of a convective flux

93

boundary condition (with constant flux and convective coefficient) and a heat flux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine). On the two interior surfaces connecting the
nonconformal blocks (surfaces 7 and 8), a contact definition is defined as tied temperature.

4.12.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.12.4. Verification of Solution

A manufactured solution is chosen as

T<x7y7 Z7t) = ('I - .’172)2 (y - y2)2 (Z - 22)2m(t) +1,
m(t) = 10* (1 — exp(—t) + t exp(—(t — 1)?))

The source and heat flux user subroutines are chosen so that the solution satisfies the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution at final time are computed in the L? norm of T
and T, L> and H' norms. The test passes, only if the observed rates of convergence in these norms are
2, 2, 2. and 1, respectively (within a tolerance).

10 4 '/.\-\.
£ 107!
=
w
[=
8
5
[=]
v
1072 4
| = 1am
1 = 2
| - H
- L
1073 4 : :
102 103
Num Nodes
Coarse Mesh Error Norms

Figure 4.12-1.. Tied Contact Transient Heat Conduction: Hex8 Meshes

94

Table 4.12-1.. Tied Contact Transient Heat Conduction: Conver-
gence Rates for Hex8 Meshes

Num Dofs | L*(T) L*T) H' L=

192 0.88 3.46 -0.44 0.61
982 2.22 1.84 0.97 239
6419 2.31 2.30 .07 2.29

4.13. TRANSIENT TET4 TIED CONTACT

This problem tests transient heat conduction and tied thermal contact in a 3D domain as in Section 2.7.
The geometry consists of a unit cube that is split along the plane at x = 0.5.

4.13.1. Features Tested

Basic transient heat conduction on Tet4 meshes; non-conformal tied thermal contact; dirichlet, heat
flux, and convective flux boundary conditions; constant source terms; heat flux and source term from
Encore user subroutines.

4.13.2. Boundary Conditions

Identical to Section 2.7.

4.13.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

4.13.4. Verification of Solution

A manufactured solution is chosen as in Section 2.7.

For each mesh, the errors in the temperature solution at final time are computed in the L? norm of T
and T, L> and H' norms. We see convergence rates for 7" that are slightly greater than two.

95

100 4

1071 4

Solution Errors

1072 A

1073 A

102 103 104
Num Nodes

Coarse Mesh Error Norms

Figure 4.13-1.. Transient Heat Conduction with Tied Contact: Tet4 Meshes

Table 4.13-1.. Transient Heat Conduction with Tied Contact:
Convergence Rates for Tet4 Meshes

Num Dofs | L*(T) L*(T) H' L™
229 1.61 322 076 1.49
1402 2.29 1.94 Lo 2.64
8535 1.93 1.91 0.98 139
51620 2.05 2.12 .02 2.4

96

5. ELEMENT DEATH

5.1. CDFEM ELEMENT DEATH (HEAT FLUX)

This problem tests transient conduction and CDFEM element death using 2D and 3D domains. The
geometry consists of a thick 1/4 cylindrical or 1/8 spherical shell.

5.1.1. Features Tested

Transient heat conduction, adaptive second order time integration (BDF2), CDFEM element death,
temperature and heat flux boundary conditions, Tri3 and Tet4 meshes.

5.1.2. Boundary Conditions

On one surface, the exact solution is used to specify a time-varying temperature. At the other surface, an
analytic heat flux is applied using the exact solution. The erosion of the volume from CDFEM element
death causes the surface with the heat flux BC to gradually recede as the material is removed.

5.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

5.1.4. \Verification of Solution

A manufactured solution 7" and exact source term .S are chosen in 2D to be:

In(r) In(r)

Tt = e =022 —1)

S(r,t) =

and in 3D to be:
T(rt) = (L+0)/r, S(rt)=1/r

For each mesh, the errors in the temperature solution are computed in the L?, L*> and H' norms over
the volume, and in the L? and L™ norms over the outer surface. The test passes, only if the observed

97

rates of convergence in these norms are one (within a tolerance). First order convergence is expected in
this case, due to the nature of the coupling of the CDFEM mesh decomposition and the heat
conduction solve.

5.1.5. Results: Tri3

-

Hl
- L"
|- L%(surf)
107" 4 == L"(surf)

Solution Errors

1072 4

Num MNodes

Coarse Mesh Error Norms

Figure 5.1-1.. CDFEM Element Death (Heat Flux): Tri3

Table 5.1-1.. CDFEM Element Death (Heat Flux): Convergence Rates for Tri3
Num Dofs ‘ L?* H' L[> [L*surf) L*>(surf)

103 416 1.69 4.30 4.03 3.73
332 124 0.64 0.44 0.60 0.98
1163 0.78 0.93 LOI 0.93 0.73

5.1.6. Results: Tet4

Table 5.1-2.. CDFEM Element Death (Heat Flux): Convergence Rates for Tet4
Num Dofs ‘ L? HY L[[L*surf) L°(surf)

1024 0.64 0.40 0.78 0.61 0.84
5470 .66 141 L7I L7 1.68
32588 .27 120 137 1.27 1.34

For input decks see Appendix 12.4.1.

98

-
- H
- L
—- L%(surf)
== L”(surf)

=

Solution Errors

102 4

— —
10° 104
Num Nodes

Coarse Mesh Error Norms

Figure 5.1-2.. CDFEM Element Death (Heat Flux): Tet4

5.2. 3D SPHERICAL SHELL ENCLOSURE

5.2.1. Problem Description

This problem tests transient conduction, enclosure radiation, and CDFEM element death. The initial
geometry of this problem is a hollow sphere (block 2) inside and in contact with a second hollow sphere
(block 1). The geometry is such that the solution maintains radial symmetry. The inner sphere
decomposes at a specific failure temperature, resulting in a changing enclosure geometry.

5.2.2. Features Tested

Transient heat conduction, enclosure radiation, CDFEM element death, Tet4 meshes.

5.2.3. Boundary and Initial Conditions

The initial condition is a piecewise steady state temperature distribution defined below in (s.1). The
boundary conditions specify the temperature 7T at the outer surface (4) of the outer sphere and 7 at
the inner surface (1) of the inner sphere. The inner temperature 77 will be gradually increased, while T
remains constant in time.

An enclosure is defined initially using the outer surface of the inner volume (surface 2 of block 2) and the
inner surface of the outer volume (surface 3 of block 1). The erosion of the inner volume (block 2) from
CDFEM element death causes surface 2 to gradually recede as the material within block 2 is removed.

99

Dimensions are defined in Table 5.2-1.

Table 5.2-1.. Dimensions of problem
radius of surface 1 | 1 | o.01

radius of surface_2 | 75 | 0.02

radius of surface_3 | r3 | 0.03

radius of surface_4 | 4 | 0.04

5.2.4. Material Parameters

Material properties are shown in Table 5.2-2.

Table 5.2-2.. Material properties

Thermal conductivity Kk |10

Density p | 7682.0

Specific heat C, | 10.0

emissivity (inner) € | 0.6

emissivity (outer) €3 | 07
Stefan-Boltzmann constant | 0 | 5.6704€-8

failure temperature (block 2) | 7. | 867.011674920813

5.2.5. \Verification of Solution

The solution after failure occurs is specified using inner and outer temperature solutions of the form:

1/7“— 1/T1
(r) = B) P AR S <r< ,
E(T) Tl + (Tc 1—11)1/7‘2 _ 1/7“1’ m>rxry, (5 I)
1/r—1/r
To(r) = Co+ (Ty — C’O)ﬁ, r3 <r<nry (5.2)

Here all parameters are known except 73 and C,, which will vary with time. The initial value of r is
given in Table 5.2-1; the initial value of C,, is chosen to satisfy the enclosure radiation equilibrium
equations below.

To complete the solution, we now derive a system of two nonlinear equations to solve for 73 and C,,.
These are the energy balances on the outer and inner enclosure surfaces, given by

R2 = (2 — U€2T24 + €2<F22J2 + F23J3) (53)
Rg = —(Qq3— 0'637?;1 + 63(F32J2 + F33J3) (5.4)

I00

where the three terms in each equation represent fluxes from conduction, radiative emission, and
radiative reflection. The conductive fluxes are defined by Fourier’s law as

oT; T.—Th

42 = _K/QﬁlT:T’Q = ﬁzr%(l/rg “1/m) (s-5)
or, T, —C,

g e T R) 5

The surface temperatures are
T2 = Elr:rg - Tca T3 = To|r:r3 - C’0
The radiosities are obtained by solving the linear system for enclosure radiation

[1— (1 - 62)F22 —(1 - 62)F23 :| |: Jg :| _ [062T24 :|
—(1 - 63)F32 1-— (1 - 63)F33 Jg 0'637—2;L

to obtain

JQ . l 1-— (1 - 63)F33 (1 — 62)F23 O'€2T24
J3 - a (]_ - 63)F32 11— (]_ - 62)F22 0'637751

where a is the determinant
a = (1 — (1 — EQ)FQQ)(]_ — (1 — €3)F33) — (1 — 62)F23(1 — €3)F32
The viewfactor coefhicients F;; are given by

Foo =0, Foz=1, Fz=(ry/r3)%, Fy3=1— F3

The specific function we choose for 77 () is
Ty (t) = Ty + 400(1 — cos(7t))/2

The time histories of ry and C,, are shown in Figure s5.2-1.

In order to derive the source term, the time derivatives of 9 and C, are computed once the pair of
nonlinear equations is solved using Newton’s method. Since the spatial part of the piecewise solution is
harmonic, the source terms become just pc, 0,1, where

. 1/r—1/r ro(1/r —1/rq)

oT, = Ty+ (T.—T))—~——L 2+ 4 (T.—-T , <r<ry, .

! 1 R 1/ro —1/m * 1>r§(1/r2 —1/r)? nsrsr, (7)
- 1/7”—1/7”3

or, = C,(1— ———7), <r< .8

t (1/ra — 1/r3 T3 ST STy (5-8)

5.2.6. Results

Results are presented running the problem on three meshes up to time ¢ = 0.9.

I01

0.02 10.02
[] 1140 | 1140
0019 [Jo.o19 b]
I] —_ r]
[] (o) I 1
1 O sk 1135
@0.018 L o.018 ‘q': I ,
~ 1 S 1130 J1130
(1]] —]
20017 Jo.017 ©]
i)] [- 4
S] @ 1125 11125
1o,] E 1
= 0.016 | Jo.o1s ,
Q] QL 1i20fF 1120
- | E E
£ B] 2]
0015 o015 S 1isf J1115
i] o ¢]
001 Jo.014 L o J1i1e
L. ’ L R R RI N NS S SRR
0 0.2 04__ 06 0.8 1 0 0.2 04__ 06 0.8 1
Time Time
o (t) C,(t)

Figure 5.2-1.. Evolution of parameters r, and C..

Table 5.2-3.. Convergence Rates at ¢t = 0.9
Num Dofs | L*(T) L*T) L~ H!
4301 2.12 1.99 0.90 1.02
25590 2.25 1.63 2.08 105

For input decks see Appendix 12.4.2.

5.3. STANDARD ELEMENT DEATH (HEAT FLUX)

This problem tests transient conduction with standard element death on a 2D square domain than is
essentially a 1D problem.

5.3.1. Features Tested

Transient heat conduction, adaptive second order time integration (BDF2), standard element death,
temperature and heat flux boundary conditions, Tri3, Hex8 and Quad4 meshes.

5.3.2. Boundary Conditions

On one surface, the exact solution is used to specify a time-varying temperature. At the other surface, an
analytic heat flux is applied using the exact solution. The erosion of the volume from element death
causes the surface with the heat flux BC to recede element by element as the material is removed.

102

102

.\}\-
04 .\._

5 - UM
E 100 4 LA(M)
S] + Lm
=
s - H
107! 4
1072 4
10° 104
Num Nodes
Coarse Mesh Error Norms (t = 0.9)

5.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

5.3.4. \Verification of Solution

A manufactured solution 7" and exact source term .S are chosen to be:

T(r,t) =exp(t — x).

For each mesh, the errors in the temperature solution are computed in the L?, L*> and H' norms over
the area. The test passes, only if the observed rates of convergence in these norms are one (within a
tolerance). First order convergence is expected in this case.

5.3.5. Results: 1D Hex8

Table 5.3-1.. Element Death (Heat Flux): Convergence Rates for Hex8

Num Dofs | Vart Varz Varz
40 nan nan nan
72 .69 159 162
144 0.93 0.96 0.93
272 L2l LI4 LIy

103

Solution Errors

10-1 4

10-2 4

103 4

-
Hl
- L"

T
4% 10! 6x 10! 102 2 %102
Num Nodes

Coarse Mesh Error Norms

Figure 5.3-1.. Element Death (Heat Flux): Hex8

5.3.6. Results: 1D Quad4

Table 5.3-2.. Element Death (Heat Flux): Convergence Rates for Quad4

Num Dofs | Vart Varz Varz
22 .38 138 1.34
36 .85 152 1.66
68 LI6 L12 LI3
134 LO9 1.09 LO9

5.3.7. Results: 1D Tri3

Table 5.3-3.. Element Death (Heat Flux): Convergence Rates for Tri3

Num Dofs | Vart Varz Var3
20 nan nan nan
38 1.43 1.44 1.40
73 .09 1.04 1.04
138 .19 LI2 LIy

5.3.8. Results: 2D Quad4

This problem tests transient conduction with standard element death on a 2D quarter slice of an

annulus.

104

1072 4

Solution Errors

10-3 4

Num Nodes

Coarse Mesh Error Norms

Figure 5.3-2.. Element Death (Heat Flux): Quad4

5.3.9. Features Tested

Transient heat conduction, fixed first order time integration, standard element death, Quad4 mesh.

5.3.10. Boundary Conditions

On one surface, the exact solution is used to specify a time-varying temperature. On the other surfaces,
the exact source solution is provided as the flux boundary condition. The erosion of the volume from
element death is caused by having a minimum nodal value of temperature less than 1.

5.3.11. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

5.3.12. \Verification of Solution

A manufactured solution 7" and exact source term .S are chosen to be:

T(r,t) =In(y/22 +y?)(1/In(2 — t)).

105

10-1 4 -
Hl
- L
(%]
S 1072
w0
=
S
|
[=)
w
1073 3
T
2% 10! 3x10! 4x10! 6x10! 102
Num Nodes
Coarse Mesh Error Norms

Figure 5.3-3.. Element Death (Heat Flux): Tri3

For each mesh, the errors in the temperature solution are computed in the L?, L*> and H' norms over
the area. The test passes, only if the observed rates of convergence in these norms are one (within a
tolerance). First order convergence is expected in this case.

Table 5.3-4.. 2D Element Death (Heat Flux): Convergence Rates for Quad4

Num Dofs | Vart Varz Varz Varg Vars
63 4.53 2.35 3.28 16.25 nan

246 0.79 110 0.9 -5.66 nan
810 45 L2§5 132 LI6 116
2898 I.I2 102 1.04 LIO 10§

5.3.13. Results: 3D Hex8

This problem evaluates transient conduction with standard element death on a 3D quarter of a hollow
sphere geometry.

5.3.14. Features Tested

Transient heat conduction, fixed first order time integration, standard element death, Hex8 mesh.

106

10°
- 1

Hl
- L
'.' Ll%rrerfa{e

1071 4 ®
'.' L;'nren"ace

Solution Errors

1072 1

103 4

102 10°
Num Nodes

Coarse Mesh Error Norms

Figure 5.3-4.. Element Death (Heat Flux): Quad4

5.3.15. Boundary Conditions

On surface 2, the exact solution is used to specify a time-varying temperature. On all remaining surfaces,
a heat flux boundary condition is imposed with a flux time function specified. The erosion of the
volume from element death is caused by having a maximum nodal value of temperature greater than 1.

5.3.16. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both

blocks.

5.3.17. \Verification of Solution

A manufactured solution 7" and exact source term S are chosen to be:

14+t

NZEST)

For each mesh, the errors in the temperature solution are computed in the L?, L> and H' norms over
the area. The observed rates of convergence in these norms are one (within a tolerance). First order
convergence is expected in this case.

T(r,t) =

107

-
- H
- L
£ 1072
g]
w
[=
=)
E|
o
(5]
1073 4
103 10% 10°
Num Nodes
Coarse Mesh Error Norms

Figure 5.3-5.. Element Death (Heat Flux): Hex8

Table 5.3-5.. Element Death (Heat Flux): Convergence Rates for Hex8
Num Dofs ‘ L? H' L™
2382 .64 112 180
16214 136 110 1.00
122892 157 105 1.08

108

6. TIME INTEGRATION

6.1. ADAPTIVE TIME INTEGRATION

This problem tests the various implicit time integrators using both fixed and adaptive time stepping.
The integrators are first order (Backward Euler), second order (Crank-Nicolson) and BDF2. The
geometry is a 2D square.

6.1.1. Features Tested

Transient heat conduction, time integrators, adaptive time stepping, polynomial temperature
dependence of density and thermal conductivity.

6.1.2. Boundary Conditions

The boundary conditions are prescribed at the nodes using the analytic solution. The initial condition
is specified using an Encore function evaluated at the nodes.

6.1.3. Material Parameters

The specific heat is constant. The density and thermal conductivity are linear polynomials in the
temperature.

6.1.4. Verification of Solution

A manufactured solution is chosen as
T(x,y,t) = sin(Cyt) + 21 cos(Cyt) + 3y sin(Cst) + 4ay cos(Cyt) + 5z? sin(Cst) + 63 cos(Cgt)

which requires a source term. This solution is designed to have a non-trivial time-dependence using
constants:

01:71‘, 02:277', 03:371', 04:77', 05:2.571', 06:0.571'

109

For each mesh, the errors in the temperature solution are computed in the L? L*> and H' norms. The
L? error in the temperature time derivative is also computed. The test passes, only if the observed rates
of convergence in these norms are 1 for /' and 2 for all other norms (within a tolerance).

Because the adaptive meshes use less time steps, we use time step size instead of mesh size for estimation
of the convergence rates. We also include the L? error in the time derivative of the temperature.

For input decks see Appendix 12.5.1.

6.1.5. Results: First Order Fixed

107 5 -, 147
LM
- H
- L
@ 100 4
B
]
=
S
o]
=
S
w
10—1 4
1072 A
T T
10! 10?
Num Nodes

Figure 6.1-1.. Adaptive Time Integration: Errors for First Order Fixed

Table 6.1-1.. Adaptive Time Integration: Convergence Rates for First Order Fixed

Num Dofs | L*(T) L*T) H' L
20 0.18 1.05 0.89 0.43
40 0.89 1.01 0.94 0.91
8o 0.95 1.0I .ol 0.97
160 0.98 1.OO 0.99 0.99
320 0.99 1.00 1.0 0.99

6.1.6. Results: First Order Adaptive

110

- LAT)
LY(T)
- H?

10° 4 - L

1071 4

Solution Errors

10-2 4

T
10?
Num Nodes

Figure 6.1-2.. Adaptive Time Integration: Errors for First Order Adaptive

Table 6.1-2.. Adaptive Time Integration: Convergence Rates for
First Order Adaptive
Num Dofs | L*(T) L*T) H' L™

23 0.13 L.13 .09 0.34
46 0.77 0.68 0.86 0.81
89 1.0I .04 1L09 LO3
178 0.93 0.95 0.96 0.95

355 0.96 0.81 0.98 0.97

III

6.1.7. Results: Second Order Fixed

101 4 - LUT)
LY(T)
. 1
10° 4 N
- L
i
S 1071 5
o
[=
=)
5 52
= 1077 4
vl
10—3 4
10—4 4
T T
107 107

Num Nodes

Figure 6.1-3.. Adaptive Time Integration: Errors for Second Order Fixed

Table 6.1-3.. Adaptive Time Integration: Convergence Rates for
Second Order Fixed

Num Dofs | L*(T) L*T) H' L™
20 2.59 2.11 137 2.46
40 1.90 2.06 0.92 1.90
8o 2.13 2.03 .o 1L.8s
160 1.98 .82 0.99 2.22
320 2.03 L.71 L.o2 L75

6.1.8. Results: Second Order Adaptive

112

101 g
- A7)
LY(T)
- H
107 4 -
- L
i
e
o 10-1 4
[=
=]
=
=1
3
w
10—2 i
10—3 4
T
101 2x 10! 3x10! 4x10! 6x 10!

Num Nodes

Figure 6.1-4.. Adaptive Time Integration: Errors for Second Order Adaptive

Table 6.1-4.. Adaptive Time Integration: Convergence Rates for
Second Order Adaptive

Num Dofs | L*(T) L*(T) H' L™
2 4.81 426 3.24 4.34
19 2.81 2.39 L41 2.71
26 1.61 438 2.38 135
41 1.88 2.77 I5I 192
70 2.17 170 134 2.24

113

6.1.9. Results: BDF2 Fixed

- 147
10° 4 LY(T)
- H?
- L
1
v 10
e
I
[=
i=l
E 10—2 i
[=]
w
10—3 4
107% ' '
10! 102
Num Nodes

Figure 6.1-5.. Adaptive Time Integration: Errors for BDF2 Fixed

Table 6.1-5.. Adaptive Time Integration: Convergence Rates for BDF2 Fixed

Num Dofs | L2(T) L*(T) H' L™
20 2.00 L7S 1.36 180
40 LSI .79 0.92 1L6I
8o 1.90 1.90 LIO 1.93
160 1.92 195 0.99 1.93
320 1.98 1.98 .02 1.98

6.1.10. Results: BDF2 Adaptive

114

- 147
LY(T)

10° 4 - H

- L

1071 4

Solution Errors

10-2 4

Num Nodes

Figure 6.1-6.. Adaptive Time Integration: Errors for BDF2 Adaptive

Table 6.1-6.. Adaptive Time Integration: Convergence Rates for BDF2 Adaptive

Num Dofs | L2(T) L*(T) H' L*®
13 4.03 412 2.86 3.80
19 0.27 0.65 158 0.49
28 1.59 1.73 .89 1.78
44 1.09 0.90 1.42 L22
74 2.13 2.37 LST 207

115

7. ENCLOSURE RADIATION

7.1. 2D CYLINDRICAL SHELL ENCLOSURE

7.1.1. Problem Description

This problem tests steady state coupled conduction and enclosure radiation. The geometry of this
problem is a hollow cylinder (block 2) inside a second hollow cylinder (block 1), which is a radially

symmetric problem.

7.1.2. Features Tested

Basic heat conduction, enclosure radiation, Quad4/Tri3 meshes.

7.1.3. Boundary Conditions
The boundary conditions specify the temperature of the outer surface of the outer sphere (1'(14) = T4)
and the inner surface of the inner sphere (7'(r;) = T1).

The problem is steady state but is initialized with a constant temperature of 300 in both blocks. The
inner surface temperature 77 is set to 300. The outer surface temperature 77 is set to 1300.

Dimensions are defined in Table 7.1-1.

Table 7.1-1.. Dimensions of problem
radius of surface 1 | 1 | o.01

radius of surface_2 | 75 | 0.02

radius of surface 3 | 3 | 0.03

radius of surface_4 | 4 | 0.04

7.1.4. Material Parameters

Material properties are shown in Table 7.1-2.

116

Table 7.1-2.. Material properties

Thermal conductivity (block_1) | K1 | 2.0
Thermal conductivity (block_2) | k2 | 0.35
Density p |10
Specific heat C, | Lo
emissivity (surface_2) € | 0.50
emissivity (surface_3) €3 | 0.55
Stefan-Boltzmann constant o | 5.6704¢-8

7.1.5. Verification of Solution
In cylindrical coordinates, the temperature is independent of 6 and z. Integrating this equation twice
with respect to the radius r, we obtain the general solution in either hollow cylinder to be

T(r) = Cilog(r) + Cs,

for arbitrary constants C'; and Cy. We will use 15,7 = 1, .. . , 4 to denote the location of the four
surfaces of constant r, numbered from inside to outside. Unless specified otherwise, we will use these
subscripts for other quantities which are evaluated at one of the four surfaces.

Including the boundary conditions into the solution allows us to eliminate two constants and gives
Tipner(r) = Ty +crlog(r/r) forry <r < ry (7.1)

Touwter(r) = Ty+ colog(r/ry)forrs <r <ry (7.2)

To solve for ¢; and co we compute the temperatures at the enclosure surfaces 73 and 3, defined as
T2 - T‘inner (7"2) and TS - Touter (TB):

7.1.6. Results

The exact temperatures at the enclosure surfaces (to six digits precision) are 75 = 444.7977 and
T3 = 956.5915. From these values we can compute the values of co and cr and thus the exact
solution.

For each mesh, the errors in the temperature solution are computed in the L?, L>= and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These optimal rates are observed in this test.

For input decks see Appendix 12.6.1.

117

102 4
101 4
100 4

1071 5

Solution Errors

10-2 4

1073 5 v

- H

T T
10° 104
Num Nodes

Coarse Mesh Error Norms

Figure 7.1-1.. Enclosure Radiation 2D

Table 7.1-3.. Enclosure Radiation 2D: Convergence Rates

Num Dofs | L? L* H!
640 2.54 1.88 LI
2276 2.50 2.33 LII
8673 2.10 2.0 LO7

33500 .90 2.00 LO2

7.2. 2D ANNULAR ENCLOSURE

7.2.1. Problem Description

This problem tests steady state coupled conduction and enclosure radiation. The geometry is an
annulus with a crack.

7.2.2. Features Tested

Basic heat conduction, enclosure radiation, Triz mesh.

7.2.3. Boundary Conditions

The outer and crack boundary conditions are prescribed at the nodes using the analytic solution. The
inner boundary uses an enclosure boundary condition.

118

7.2.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

7.2.5. \Verification of Solution

The manufactured solution is

30 - ke (Y20) i (2).

H(0) = ky + ko Ve) (cos (@) / sin <@> — /e cos (Q)) ,

1—¢

COS Q 1/4
5«)):(’“”‘@ (2)> |

T(r,0) =7rB(0) + (r —rey) (@ - @(@))

where J is the radiosity, H is the irradiance, ¢ is the flux, and

o =5.6704 x 1078,

k=1,
Teyl = L,

e =0.9,
k, = 8000,
ko = 400.

For each mesh, the errors in the temperature solution are computed in the L%, L> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance). Additionally, the errors in the radiosity and irradiance are computed in the L? norms and be
1 (within a tolerance).

These optimal rates are observed in this test.

For input decks see Appendix 12.6.2.

119

Coarse Mesh

Solution Errors

102 4

10! 4

10° 4

1071 5

1072 5

-

L=
- H!
-~ L%(Rad)
== L2(irr)

T
10?

T T
10° 104
Num Nodes

Error Norms

Figure 7.2-1.. 2D Full Enclosure Radiation

Table 7.2-1.. 2D Full Enclosure Radiation: Convergence Rates

Num Dofs | L? L* H' [L*(Rad) L*(Irr)
65 276 L3I 2.00 2.36 2.46
232 238 LI3 2.5 2.10 2.40
734 218 1.04 127 1.32 1.49
2788 2.26 103 2.07 1.32 .85
10420 2.37 103 2.I7 1.09 1.18
40530 .81 101 2.08 1.0I 1.04

7.3. 3D SPHERICAL SHELL ENCLOSURE

7.3.1. Problem Description

This problem tests steady state coupled conduction and enclosure radiation. The geometry of this
problem is a hollow sphere (block 2) inside a second hollow sphere (block 1), which is a radially

symmetric problem.

7.3.2. Features Tested

Basic heat conduction, enclosure radiation, Hex8 meshes.

120

7.3.3. Boundary Conditions

The boundary conditions specify the temperature of the outer surface of the outer sphere (1'(14) = T})
and the inner surface of the inner sphere (7'(r;) = T1).

The problem is steady state but is initialized with a constant temperature of 300 in both blocks. The
inner surface temperature 7} is set to 300. The outer surface temperature 7’ is set to 1300.

Dimensions are defined in Table 7.3-1.

Table 7.3-1.. Dimensions of problem
radius of surface_1 | 71 | o.o1

radius of surface 2 | 75 | 0.02

radius of surface 3 | 3 | 0.03

radius of surface_4 | r4 | 0.04

7.3.4. Material Parameters

Material properties are shown in Table 7.3-2.

Table 7.3-2.. Material properties

Thermal conductivity (block_1) | k1 | 2.0
Thermal conductivity (block_2) | ko | 0.35
Density p | Lo
Specific heat C, | Lo
emissivity (surface_2) € | 0.50
emissivity (surface_3) €3 | 0.55
Stefan-Boltzmann constant o | 5.6704e-8

7.3.5. Verification of Solution

In spherical coordinates, the temperature is independent of § and ¢. Integrating this equation twice
with respect to the radius 7, we obtain the general solution in either hollow sphere to be

T(T) = 017‘_1 + 02,

for arbitrary constants Cy and Cy. We will use 7,7 = 1, .. ., 4 to denote the location of the four
surfaces of constant 7, numbered from inside to outside. Unless specified otherwise, we will use these
subscripts for other quantities which are evaluated at one of the four surfaces.

121

Including the boundary conditions into the solution allows us to eliminate two constants and gives

1 1

Tinner(r) = Ti+c; (— — —) forry <r <re (7.3)
T T4
1 1

Touwter(r) = Ti+co (— — —> forrs <r <y (7.4)
T T1

To solve for c¢; and cp we compute the temperatures at the enclosure surfaces 7, and 73, defined as
T2 = Enner (TQ) and T3 == Touter (TB):

1 1

T, = Ty +cr (— — —) (7.5)
T T4
1 1

T3 = Ty+co (- — —) (7.6)
3 1

The fluxes at the surfaces between the two hollow spheres are

(9T K1Cr
Q= | —K 4= ‘n=—5

or|,_,., 5
¢ . oT N KaCoO
3 g — —_— . —= 5

orl._,, 3

Here we have used £ and k3 to denote the thermal conductivity of the inner and outer blocks,
respectively.

These normal conductive fluxes are included in the total energy balance at the enclosure surfaces using
the radiative transport equations (for grey diftuse surfaces):

g2 = O'EQT24 — €9 ZFQij

J

g3 = oesTy — €3 Z Fs;J;
J

where o is the Stefan Boltzmann constant, € is the emissivity, F;; is the geometric viewfactor of surface ¢
with respect to surface j and J; is the radiosity for surface j.

The viewfactor coefficient F;; is the fraction of energy that leaves surface ¢ and arrives at surface j. For
this geometric setup, no point on the inner surface at 7, can “see” itself (no straight line can be drawn
from a point on its surface onto itself) and so Fy9 = 0. By viewfactor reciprocit

p y p Y

> Fi=1
J

122

we must have Fy3 = 1. The outer-to-inner view factor F3y can be computed analytically to be

2
r
2
F3 ==
r

and again by viewfactor reciprocity

The system of equations that must be solved for the radiosities at the inner and outer surfaces is given
by
J2 = 620T24 + (1 — 62) [FQQJQ + F23J3]

Jg = 630’1151 + (1 — 63)[F32J2 + F33J3]

Solving this system of equations, we can write .J, and J3 in terms of temperature, and plug this back
into the equation for the surface flux. We then get a system of two nonlinear equations to solve for 75
and T3, the temperatures of the adjacent surfaces without Dirichlet boundary conditions. For our given
set of parameters, these equations are solved iteratively in Matlab using the fsolve function.

7.3.6. Results

The exact temperatures at the enclosure surfaces (to six digits precision) are T, = 564.783 and
T3 = 1047.825. From these values we can compute the values of co and ¢y and thus the exact
solution.

For each mesh, the errors in the temperature solution are computed in the L?, L> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These optimal rates are observed in this test.

Table 7.3-3.. Enclosure Radiation: Convergence Rates
Num Dofs ‘ L? L[>~ H!
15590 2.14 2.I7 106
117600 2.0§ 2.05 1.03

For input decks see Appendix 12.6.3.

123

N .\._\.

107 4

Solution Errors

1071 A

1072 4

T T
104 10°
Num Nodes

Coarse Mesh Error Norms

Figure 7.3-1.. Enclosure Radiation
7.4. 3D SPHERICAL SHELL PARTIAL ENCLOSURE

7.4.1. Problem Description
This problem tests coupled conduction and enclosure radiation with a partial enclosure. The geometry

consists of two thick spherical shells separated by a gap. The outer shell has a section removed so that the
enclosure is only partial.

7.4.2. Features Tested

Basic heat conduction, enclosure radiation with partial enclosure, Hex8 meshes.

7.4.3. Boundary Conditions

The outer and inner boundary conditions are prescribed at the nodes using the analytic solution. The
analytic solution is used to set the boundary conditions on the cutaway face near the opening in the
outer shell.

7.4.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant within each element
block; however, the values differ between blocks.

124

7.4.5. \Verification of Solution

The analytic solution is identical to Section 7.3. The area for the partial enclosure is computed
analytically.

For each mesh, the errors in the temperature solution are computed in the L?, L> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These optimal rates are observed in this test.

102 3
101€ .\1\1\1
£ Lo
g 10773
5 E
- 1
] 1
]
@ 1071 4
1024 L
1| L
- H!
103 104 108
Num Nodes
Coarse Mesh Error Norms

Figure 7.4-1.. Partial Enclosure Radiation

Table 7.4-1.. Partial Enclosure Radiation: Convergence Rates
Num Dofs | L? L[>~ H!
4338 226 232 LI3
29690 2.13 2.07 106
223200 2.06 2.06 1.03

For input decks see Appendix 12.6.4.

125

8. CHEMISTRY

8.1. FIRST ORDER REACTION (SPATIALLY VARYING
TEMPERATURE)

This problem tests the interface to the CHEMEQ solver under the assumption that the temperature
remains is variable in space but remains constant in time. The geometry consists of a unit cube meshed
with Hex8 elements refined only in one direction ().

8.1.1. Features Tested

CHEMEQ solver; source term from chemistry; nonlinear solver; second order time integrator with
fixed time steps; constant initial temperature; constant temperature boundary condition.

8.1.2. Boundary Conditions

A constant temperature is applied on surface 1. The initial temperature is provided by an Encore user
subroutine and the initial species values are A = 1 and B = 0.

8.1.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks. The CHEMEQ parameters are chosen to model a single first order reaction A — B with
constant values of pre-exponential factor and activation energy.

8.1.4. Verification of Solution
A manufactured solution is chosen as
T(x) =400 (1+ 0.2cos(mx)),

A(z,t) = exp {— exp(5) exp(—}ggii))t} :

B(z,t) =1— A(x,t)
126

where R = 1.9872 is the ideal gas constant. A source term is used to insure that the temperature does
not vary in time.

For each mesh, the errors in the temperature and species A and B are computed in the L? norm. The
test passes, only if the observed rates of convergence in these norms are 2 (within a tolerance).

- LYA.B)
A1)

Solution Errors

10?
Num Nodes

Coarse Mesh Error Norms

Figure 8.1-1.. First Order Reaction (Spatially Varying Temperature)

Table 8.1-1.. First Order Reaction (Spatially Varying Tempera-
ture): Convergence Rates for Hex8 Meshes

Num Dofs | L*(A,B) L*(T)
36 2.37 2.34
68 2.18 2.18
132 2.09 2.09
260 2.05 2.04
516 2.02 2.02

For input decks see Appendix 12.7.2.

8.2. FIRST ORDER REACTION

This problem tests the interface to the CHEMEQ solver under a temperature field that is variable in
space and time. The geometry consists of a unit cube meshed with Hex8 elements refined only in one
direction.

8.2.1. Features Tested

CHEMEQ solver; source term from chemistry; nonlinear solver; second order time integrator with
fixed time steps; initial temperature from user sub; constant temperature boundary condition.

127

8.2.2. Boundary Conditions

The initial temperature and the temperature boundary condition on surface 1 are provided by an
Encore user subroutine and the initial species values are A = 1 and B = 0.

8.2.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant, equal to one in both
blocks. The CHEMEQ parameters are chosen to model a single first order reaction A — B with
constant values of pre-exponential factor and activation energy.

8.2.4. \Verification of Solution

A manufactured solution is chosen as
(x,t) = exp(a — E/(RT)))(1 + 0.1sin(z)) exp(t),
(z,t) = exp(a — E/(RTp))(1 4 0.1sin(x))(exp(t) — 1),
T(x,t) = (E/R)/(a = In(¢(z, 1)),
(z,t) =e
(z,1) =1

§o)

where a is the log pre-exponential factor, R is the ideal gas constant, F is the activation energy, and T is
a reference temperature value. The form of the solution is contrived so that

0 A(z,t) = =0y B(z,t) = —¢(x,t) Az, t)
E

o(x,t) = exp(a) exp(—m)

This allows the chemistry ODE:s to be satisfied exactly, but a source term is needed in the energy

equation.

For each mesh, the errors in the temperature and species A and B are computed in the L? norm. The
test passes, only if the observed rates of convergence in these norms are 1 (within a tolerance). Currently
itis not clear why the convergence rates are only first order.

For input decks see Appendix 12.7.3.

8.3. DAE AND PRESSURE TEST

This test runs CHEMEQ with a kinetics model that includes both pressure dependence and distributed
activation energy for a single element mesh with uniform temperature and pressure.

128

Coarse Mesh

Solution Errors

10° —
107! —
1072
1073 5
1074 —
107%

1076 3

& L%4.8)
1w 2m
| - om
1 - HYD

Num Nodes

Error Norms

Figure 8.2-1.. First Order Reaction

Table 8.2-1.. First Order Reaction: Convergence Rates for Hex8 Meshes

Num Dofs | L?(A,B) L*(T) L>(T) HYT)
20 1.50 LIS LIy 1.00
40 130 1.08 LIO 1.00
8o L.I§ 1.04 1.0§ 1.00
160 1.07 1.02 1.03 1.00
320 1.0O 1.0I 1.0I 1.00
640 0.88 1.0I 1.01 1.00

8.3.1. Features Tested

Basic heat conduction on a Hex8 mesh; CHEMEQ solver with pressure dependence and distributed

activation energy.

8.3.2. Boundary Conditions

No boundary conditions are prescribed, resulting in an adiabatic flux BC.

8.3.3. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant.

129

8.3.4. Verification of Solution

The analytic solution for the concentration of species A as a function of time for the constant values
used in this test case is

1

At) = éerfc(é(\/@) — Gerf (1 — 45t/(2 exp(%)))))

The test compares the temperature errors against a gold file of the error at each time step. The exact

solution for the concentration of A is also output to the exodus file and a comparison plotting that and
the solved for concentration as a function of time has them lying on top of one another.

For input decks see Appendix 12.7.4.

8.4. PMDI PLUGIN TEST

This test verifies that the PMDI plugin calculates the correct pressure and eftective conductivity based
on the auxiliary variable values.

8.4.1. Features Tested

Basic heat conduction on a Hex8 mesh; CHEMEQ solver with pressure dependence and a user plugin
to model a seven-species PDMI foam decomposition reaction.

8.4.2. Boundary Conditions

No boundary conditions are prescribed, resulting in an adiabatic flux BC.

8.4.3. Material Parameters

The values of density, emissivity and specific heat are all constant. The thermal conductivity is
computed using a C-style user subroutine contained within the foam model.

8.4.4. \Verification of Solution

The initial conditions are specified as follows: The test includes a Mathematica notebook file
(ExpectedSolution.nb) for calculation of expected pressure which is r.15125¢7 Pa or 1669.75 psi.

For input decks see Appendix 12.7.5.

130

Table 8.4-1.. PMDI Plugin Test: Initial Conditions

Variable Value Units
Bulk Density 321.4432249 kg/m?
Initial condensed density 1500
Initial porosity 0.786301
Mass fraction of all ChemEQ species 1/7
Temperature 599.8
Initial gas pressure (N2) 101325
Initial gas temperature 299.9

131

9. MISCELLANEOUS

9.1. THERMAL POSTPROCESSING

9.1.1. Problem Description

This problem tests basic thermal postprocessors in Aria.

9.1.2. Features Tested

Basic heat conduction, thermal postprocessors, Hex8 meshes.

9.1.3. Boundary Conditions

Dirichlet BCs are specified using the exact solution on surface 1. On surface 2, a natural convection BC
is specified, using the exact solution as the reference temperature and a constant heat transfer coefficient.
Similarly, a radiative flux BC is applied on surface 3, with constant values of emissivity and radiation
form factor. A source term is applied within all blocks based on substituting the exact solution into the
heat conduction operator.

9.1.4. Material Parameters

The values of density, thermal conductivity, and specific heat are all constant with the same value for

both blocks.

9.1.5. Verification of Solution

The manufactured solution is
Ty + exp(Co(2® — 1) + C1(y* — 0.25) + Cy(2* — 0.25) + Cst).

Postprocessors are computed for the integrated power output for convective and radiative BCs
(cf_bc_ipo, rf_bc_ipo), the integrated flux output for convective and radiative BCs (cf_bc_ifo,
rf_bc_ifo), the integrated power output for volume source terms (src_ipo), and several point
evaluations (eval_br, eval_bib2, eval_s2).

132

For each mesh, the errors in the temperature solution are computed in the L? norm and for various
postprocessors. The test passes, only if the observed rates of convergence are 2 (except for the integrated
power output for source terms, which convergences with order 4).

These optimal rates are observed in this test clearly in most cases. However, for the point evaluation
cases, a large amount of variability exists in the convergence rates.

-
o cf_be_ipo
10 == f_bc_ipo
-- cf bc ifo
B f be_ifo
‘g —- src_ipo
E 107 eval_b1
s —- eval b1b2
]
Q
w
1073 5
10_4 E T T T T
102 103 104 105
Num Nodes
Coarse Mesh Error Norms

Figure 9.1-1.. Thermal Postprocess

Table 9.1-1.. Thermal Postprocess: Convergence Rates

Num Dofs | L? c¢f_bc_ipo rf_bc_ipo cf_bc_ifo rf_bc_ifo eval bl eval blb2 eval_s2
225 2.52 2.87 2.82 2.87 2.82 L.16 -2.02 1.33
1377 2.27 2.52 2.48 2.52 2.48 177 1.66 LII
9537 2.14 2.27 2.25 2.27 2.25 2.11 2.1§ 2.37
70785 2.07 2.13 2.12 2.13 2.12 2.06 2.07 2.09
545025 2.04 2.06 2.05 2.06 2.05 2.03 2.04 2.04

For input decks see Appendix 12.8.1.

9.2. LOCAL COORDINATES: CARTESIAN

This problem tests the use of a local Cartesian coordinate system in a material model. The geometry is a
3D cube that has been rotated.

133

9.2.1. Features Tested

Steady heat conduction, time integrators, tensor thermal conductivity, local Cartesian coordinates in a
material model.

9.2.2. Boundary Conditions

The boundary conditions are prescribed at the nodes using the analytic solution. The initial condition
is specified using an Encore function evaluated at the nodes.

9.2.3. Material Parameters

The specific heat is constant. The density and thermal conductivity are constant, with a diagonal
(tensor) thermal conductivity in the local coordinate space of the material.

9.2.4. \Verification of Solution

A manufactured solution is chosen as
T(X,Y,Z) =Ty + Ty cos(x X) cos(yrY') cos(z,Z)

where (X, Y, Z) are the local material coordinates, which are related to the Cartesian coordinates
(x,y, 2) by a rotation matrix consisting of a product of rotations (22.5 deg around the z-axis and
45 deg around the x-axis).

For each mesh, the errors in the temperature solution are computed in the L?, 1> and H' norms. The
test passes, only if the observed rates of convergence in these norms are 1 for Land 2 for all other
norms (within a tolerance).

Table 9.2-1.. Local Cartesian Coordinate System: Convergence Rates
Num Dofs | L* L
1331 2.29 2.27
9261 2,15 2.14

For input decks see Appendix 12.8.3.

9.3. LOCAL COORDINATES: CYLINDRICAL

This problem tests the use of a local cylindrical coordinate system in a material model. The geometry is
a3D cube that has been rotated.

134

- 12

10° 4

Solution Errors

1071

— . —
10° 104
Num Nodes

Coarse Mesh Error Norms

Figure 9.2-1.. Local Cartesian Coordinate System

9.3.1. Features Tested

Steady heat conduction, time integrators, tensor thermal conductivity, local coordinates in a material
model.

9.3.2. Boundary Conditions

The boundary conditions are prescribed at the nodes using the analytic solution. The initial condition

is specified using an Encore function evaluated at the nodes.

9.3.3. Material Parameters

The specific heat and density are constant. The diagonal (tensor) components of the thermal
conductivity are specified using constant values in the local coordinate space of the material.

9.3.4. \Verification of Solution

A manufactured solution is chosen as
T(X,Y,Z) =Ty + T1(2R)? cos(0) cos(z,2)

where (R, ©, Z) are the local cylindrical material coordinates, which are related to the standard
cylindrical coordinates (z, y, z) by a rotation matrix consisting of a product of rotations (22.5 deg
around the z-axis and 45 deg around the x-axis).

135

For each mesh, the errors in the temperature solution are computed in the L?, > and H' norms. The
test passes, only if the observed rates of convergence in these norms are 1 for H Land 2 for all other

norms (within a tolerance).

14
10° 7 »- 12

107 4

Solution Errors

10° 104
Num Nodes

Coarse Mesh Error Norms

Figure 9.3-1.. Local Cylindrical Coordinate System

Table 9.3-1.. Local Cylindrical Coordinate System: Convergence Rates
Num Dofs | L? L*
2692 2.19 1.83
22723 212 L.74

For input decks see Appendix 12.8.4.

10. LOW-MACH FLUID FLOW

Documentation for the following tests is in progress:

| _rtest/aria/cvfemConvTaylorVortex/cvfemConvTaylorVortex.test |np4
.| _rtest/aria/gfemConvTaylorVortex/gfemConvTaylorVortex.test|np4

| _rtest/aria/hfemConvTaylorVortex/hfemConvTaylorVortex.test|np4
mConvTaylorVortex/cvfemConvTaylorVortex.test|np8
;/mSteadyTaylorVortex/cvfemSteadyTaylorVortex.test|np8
mSteadyTaylorVortexKeps/cvfemSteadyTaylorVortexKeps.test |np8
|m_couette_flow/cdfem_couette_flow.test|cdfem_couette_flow_tri3
im_couette_flow/cdfem_couette_flow.test|cdfem_couette_flow_tri6
.| ConvTaylorVortex/gfemConvTaylorVortex.test |np8
«|SteadyTaylorVortex/gfemSteadyTaylorVortex.test|np8

137

11. HOW TO BUILD THIS DOCUMENT

You need to have Sierra developer access (through WebCars). Then you should clone the Sierra Git
repository containing the tests to a location with adequate memory (currently more than 80GB), using
a command like this:

git clone sierra-git:/git/tests

Then you need to assign the verification tests, running the following command from your local tests
repository:

assign --path aria_rtest/verification

This will produce a text file called assigned. tests containing the list of all tests to run. You should edit the
second line of this file to indicate the remote location (accessible from the HPC machine where you will
run the tests). For example, I might have something like this:

Created by assign at Fri Sep 19 09:52:09 2014

#@ /gscratchl/bcarnes/TESTS
aria_rtest/verification/1dnonlin_verifyl/ldnonlin_verifyl.test|np8
aria_rtest/verification/cyl_shell_2d/cyl_shell_2d.test|np8
aria_rtest/verification/cyl_shell_3d/cyl_shell_3d.test|np8

Next you need to copy the test files and the assigned.test file to the remote location (here it is

“/gscratchi/bcarnes/ TESTS/”):

rsync -azv aria_rtest/verification redsky:/gscratchl/bcarnes/TESTS/aria_rtest
scp assigned.tests redsky:/gscratchl/bcarnes/TESTS/

Here I am only copying the verification test sub-directory, since I do not want to run any other tests.

On the HPC machine, you will need to load a pre-built version of the code such as the nightly master
build:

module load sierra/master

To see where the executables are located, you can run something like:

138

[bcarnes@redsky-login9 ~]1$ which aria
/projects/sierra/redsky/install/master/bin/aria

Finally, to run the tests, you use the testrun script, with a few additional arguments. The first locates the
source code needed to compile the various user subroutines (which we just found from running “which
.)
aria”), the second enables tests to run as long as needed, the third uses the queue, and the fourth saves
the results so you can use them in the manual.
testrun --user sourcedir=/projects/sierra/tlcc2/install/master/ \
--allow-multipliers=time \
--queued \

--save-all-results

It may take 1-2 hours to run all the tests. Note that if the tests start to fail with an error associated with
the ACCOUNT not being set, you may need to set it using your WCID:

export ACCOUNT=fyXXXXX
To view your available WCIDs, run the following command:
mywcid

To build this manual, you should clone the Sierra Git repository containing the documentation files
using a command like this:

git clone sierra-git:/git/docs
Then go to the directory within your local repository containing the Aria Verification Manual files:
cd aria/doc/verification_manual

Once the tests have all ran successfully, you should sync the results from the remote location back to this
directory:

rsync -azv redsky:/gscratchl/bcarnes/TESTS/results

Then run the a script to execute any local postprocessing needed to create the plots for the tests:
python ariaPostprocess.py

Finally you can create the manual using pdfiatex:

pdflatex Aria_Verification_Manual.tex

which should create a new PDF output file.

139

12. INPUT DECKS FOR VERIFICATION
PROBLEMS

12.1. BASIC THERMAL TESTS

12.1.1. Steady Heat Conduction: Hex8 Meshes

BEGIN SIERRA myJob

begin definition for function kxx

type = piecewise linear
begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values
.2
.2
.1

N = O
(ol elNe)
N = O

20.0 20.2
end values
end

begin definition for function kzz
type = piecewise linear
begin values
0.0 1.0
1.0 2.0
2.0 3.0
20.0 21.0
end values
scale by 2.0
end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz
Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

140

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_hex8.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function
End

Begin User Function exact_src
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function
End

Begin Norm Postprocessor 12
Use Function exact_soln

registerExactSoln

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hil
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%

Write To File errors_thermal_steady_hex8_h{N}.dat

Floating Point Precision Is 3

141

Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 1

End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_

Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

surface_4: x=0

surface_6: x=1

surface_3: y=0

surface_b5: y=1

surface_1: z=1

surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature

const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux =

BC FLUX for Energy on surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

constant flux

Encore_Function
Encore_Function

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv
BC Flux for Energy on surface_2 = Nat_Conv
BC FLUX for Energy on surface_l = Encore_Function
BC FLUX for Energy on surface_2 = Encore_Function
const source term

Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

|
o
el e)

Name=flux_surface_3
Name=flux_surface_5

T_Ref=1 H=1
T_Ref=2 H=2

Name=flux_surface_1
Name=flux_surface_2

=exact_src

142

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex8_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.2. Steady Heat Conduction: Hex20 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact.so

begin definition for function kxx

type = piecewise linear
begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values
.2
.2
.1

N = O
o O o
N = O

20.0 20.2
end values
end

begin definition for function kzz
type = piecewise linear
begin values
0.0 1.0

w N

1.0 2.0
2.0 3.0
20.0 21.0
end values
scale by 2.0
end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx = kxX name_yy = kyy name_zz = kzz
Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN KLU2 SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER

143

END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_hex20.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function
End

Begin User Function exact_src
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function
End

Begin Norm Postprocessor 12
Use Function exact_soln

registerExactSoln

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hil
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%

Write To File errors_thermal_steady_hex20_h{N}.dat

Floating Point Precision Is 3
Floating Point Format Is Scientific
End

144

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control De
Use System Main
Begin System Main

scription

Begin Sequential The_Time_Block

Advance myRegion
End
Simulation Start
Simulation Terminat
End
End

Time = 0
ion Time

BEGIN ARIA REGION myRegion

=1

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iter
Nonlinear Residual Tol
Nonlinear Correction T
Nonlinear Relaxation F

ations =
erance =
olerance
actor =

10

1.0
=1
1.0

e-12
.0e-12

use dof averaged nonlinear residual

use finite element mod

el cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2S with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=
surface_2: z=

o =

const Temp BC (x)
BC const dirichlet at
BC const dirichlet at

const flux BC (y)
BC FLUX for Energy on
BC FLUX for Energy on

BC FLUX for Energy on
BC FLUX for Energy on

convective flux BC w
BC Flux for Energy on
BC Flux for Energy on

BC FLUX for Energy on
BC FLUX for Energy on

const source term
Source For ENERGY on b

Source For ENERGY on b
Output Number of Nod
Evaluate Postprocessor

Evaluate Postprocessor
Evaluate Postprocessor

surface_4 Temperature =
surface_6 Temperature

surface_3
surface_5

surface_3
surface_5

ith const
surface_1
surface_2
surface_1
surface_2
lock_1 =
lock_1 =
es

12

hi
linf

e
o o

constant flux = 3
constant flux

]
[¢]

= Encore_Function Name=flux_surface_3

Te

Con

Enc

Encore_Function Name=flux_surface_5
mp and H (z)
Nat_Conv T_Ref=1 H=1
Nat_Conv T_Ref=2 H=2
Encore_Function Name=flux_surface_1
Encore_Function Name=flux_surface_2

stant value=1

ore_Function Name=exact_src

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex20_h{N}.e

at step 1, incremen

t =1

145

time interval is 1.0
title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.3. Steady Heat Conduction: Hex27 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact.so

begin definition for function kxx
type = piecewise linear
begin values
0.0 0.5
1.0 2.0
2.0 8.0
end values
end

begin definition for function kyy
type = piecewise linear

begin values

.2

.2
.1

N = O
o O o
N = O

20.0 20.2
end values
end

begin definition for function kzz
type = piecewise linear
begin values
0.0 1.0
1.0 2.0
2.0 3.0
20.0 21.0
end values
scale by 2.0
end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx
Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE

kxx name_yy = kyy name_zz = kzz

CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_hex27.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube
Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End
Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5

Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1

Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hi
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %

Write To File errors_thermal_steady_hex27_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

147

Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End

Simulation Start Time = 0O
Simulation Termination Time

End
End

BEGIN ARIA REGION myRegion

=1

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations =
Nonlinear Residual Tolerance =
Nonlinear Correction Tolerance
Nonlinear Relaxation Factor =

use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

10
1.0e-12

= 1.0e-12
1.0

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_b: y=1
surface_1: z=1
surface_2: z=0

const Temp BC (x)

BC const dirichlet
BC const dirichlet

const flux BC (y)

BC FLUX for Energy
BC FLUX for Energy

BC FLUX for Energy
BC FLUX for Energy

at
at

on

on

on
on

surface_4 Temperature
surface_6 Temperature

surface_3
surface_b

surface_3
surface_5

i
[N e)

constant flux =
constant flux

Encore_Function
Encore_Function

convective flux BC with const Temp and H (2z)
surface_1 = Nat_Conv T_Ref=1
surface_2 = Nat_Conv T_Ref=2

BC Flux for Energy
BC Flux for Energy

BC FLUX for Energy
BC FLUX for Energy

on
on

on
on

const source term
Source For ENERGY on block_1 =

Source For ENERGY on block_1 =

surface_1
surface_2

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hi
Evaluate Postprocessor linf

Encore_Function
Encore_Function

Constant value=1

Name=flux_surface_3
Name=flux_surface_b

H=1
H=2

Name=flux_surface_1
Name=flux_surface_2

Encore_Function Name=exact_src

BEGIN RESULTS OUTPUT LABEL diffusion output
thermal_steady_hex27_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nonlinear_solution->TEMPERATURE as T

database Name =

nodal variables

148

END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.4. Steady Heat Conduction: Tet4 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact.so

begin definition for function density_table
scale by 1.0
type = piecewise linear
begin values
0.0 1.0
5000 1.0
end values
end definition for function density_table

BEGIN ARIA MATERIAL Kryptonite
Density = User_Function name=density_table X=temperature
Thermal Conductivity = constant k=1
Specific Heat Constant cp=1
heat conduction = basic
END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tetd.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1
END FINITE ELEMENT MODEL cube
Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot

149

End

Begin User Function exact_src
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function
End

Begin Norm Postprocessor 12
Use Function exact_soln

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hil
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12

Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

150

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

surface_4: x=0
surface_6: x=1
surface_3: y=0
surface_5: y=1
surface_1: z=1
surface_2: z=0

const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0
const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux =5
BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5

convective flux BC with const Temp and H (z)

Encore_Function Name=flux_surface_b

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet4_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.5. Steady Heat Conduction:

BEGIN SIERRA myJob
load user plugin file ./exact.so

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1

TetdTet10 Meshes

Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function
End

Begin User Function exact_src
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function
End

Begin Norm Postprocessor 12
Use Function exact_soln

registerExactSoln

registerExactSolnDot

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hil

152

Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%

Write To File errors_thermal_steady_tet4_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

=0
1

surface_4: x
surface_6: x

surface_3: y=0
surface_b: y=1

surface_1:
surface_2:

const Temp BC (x)
BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature

|
i
o o

const flux BC (y)
BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

I
w

constant flux =
constant flux

1]
[¢]

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_b

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

153

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf
BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet4_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.6. Steady Heat Conduction: Tet10 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact.so

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

154

END PARAMETERS FOR BLOCK block_1
END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function
End

Begin User Function exact_src
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function
End

Begin Norm Postprocessor 12
Use Function exact_soln

registerExactSoln

registerExactSolnDot

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hl
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%

Write To File errors_thermal_steady_tet10_h{N}.dat

Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End

155

End
BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_

EQ ENERGY for TEMPERATURE on block_1 using Q2 with

surface_4: x=0
X

surface_6: x=1
surface_3: y=0
surface_5: y=1
surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux =
BC FLUX for Energy on surface_5 constant flux

Encore_Function
Encore_Function

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv
BC Flux for Energy on surface_2 = Nat_Conv

BC FLUX for Energy on surface_l1 = Encore_Function
BC FLUX for Energy on surface_2 = Encore_Function

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet10_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test

Solver

DIFF SRC

=
o o

Name=flux_surface_3
Name=flux_surface_5

T_Ref=1 H=1
T_Ref=2 H=2

Name=flux_surface_1
Name=flux_surface_2

=exact_src

nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.7. Transient Heat Conduction: Hex8 Meshes

BEGIN SIERRA myJob

load user plugin file ./exact_transient.so

#L={L=101}
rho = { rho = 1 }
#Cp={Cp=11}
BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho={rho}

Thermal Conductivity = constant k=1
Specific Heat Constant cp={Cp}
heat conduction = basic
latent heat = constant value={L}

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_hex8.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./exact_transient.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact_transient.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact_transient.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact_transient.so Using Function registerFlux_Surface_b5

End

Begin User Function flux_surface_1
Load From File ./exact_transient.so Using Function registerFlux_Surface_1

157

End

Begin User Function flux_surface_2
Load From File ./exact_transient.so Using Function registerFlux_Surface_2
End

#Ts ={Ts =051}

#Tl={TlL=1.51%

Tm=9{ Tm =0.5* (Ts + T1) }

sigma = { sigma = 0.429858 * (Tm - Ts) }

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2*%*N}
Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12

Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

IC for temperature on block_1 = encore_function name=exact_soln

surface_4: x=0
surface_6: x=1
surface_3: y=0
surface_b: y=1
surface_1: z=1
surface_2: z=0

const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0
const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
Begin Heat Flux Boundary Condition hfbc2
Add Surface surface_5
Flux = -5
End
BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

Begin Convective Flux Boundary Condition cfbc2
Add Surface surface_2
Convective Coefficient = 2
Reference Temperature = 2

End
BC FLUX for Energy on surface_1l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Begin Volume Heating vhl
Add Volume block_1
Value = 1
End

Source for Energy on block_1 = melting Ts={Ts} T1={T1l}
Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e
at step O, increment = {2%*N}
#at step O, increment = 1
title Aria cube test

159

nodal variables = solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.8. Transient Heat Conduction: Tet4 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact_transient.so

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN ARIA MATERIAL Air
Density
Thermal Conductivity = constant k=1
Specific Heat Constant cp=1
heat conduction basic

END ARIA MATERIAL

Constant rho=1

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet4.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube
Begin User Function exact_soln
Load From File ./exact_transient.so Using Function registerExactSoln
End
Begin User Function exact_soln_dot

Load From File ./exact_transient.so Using Function registerExactSolnDot
End

160

Begin User Function exact_src
Load From File ./exact_transient.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact_transient.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact_transient.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact_transient.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact_transient.so Using Function registerFlux_Surface_2
End

cp =

omega = { omega = PI }

bn_vol = { bn_vol = 0.5 }

Begin String Function bulk_node_exact_solution
Value is "{T0} * (sin({omegal} * t) + 1)"

End

Begin String Function bulk_node_source
use function bulk_node_exact_solution as Tb
Value is "{rho * cp * omega * TO} * cos({omega} * t) - ({h} * (1 - Tb))/{bn_voll}"

End

Begin String Function bulk_node_flux_bc_corr
use function bulk_node_exact_solution as Tb
Value is "({h} * (Tb - 2))"

End

T —{To=2}
#h={h=21}

rho = { rho = 1 }
#cp=9c 1}

#

#

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
volumes block_1
End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2
volumes block_1
End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
volumes block_1
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
volumes block_1
End

Begin Norm Postprocessor linf_bulk_node
Use Function bulk_node_exact_solution

161

Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms Nodal LInfinity
volumes block_for_abulknode

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2%*N}
Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Minimum Nonlinear Solves = 1
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
nonlinear residual minimum convergence rate = 0.999 number of steps = 3
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC
IC const on block_1 temperature = 1.0

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0
const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5
BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

162

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

Begin Bulk Fluid Element aBulkNode
material = Air
bulk element volume = constant v = {bn_vol}
initial temperature = {TO}
bulk eq energy for temperature using pO with mass src
bulk source for energy = encore_function name=bulk_node_source
End
Begin Convective Flux Boundary Condition bulk_flux
add surface surface_2
use bulk element aBulkNode
convective coefficient = {h}
End
BC Flux for Energy on surface_2 = encore_function name=bulk_node_flux_bc_corr

BC FLUX for Energy on surface_l1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hl
Evaluate Postprocessor linf
Evaluate Postprocessor linf_bulk_node
BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e
at step O, increment = {2**N}
title Aria cube test
nodal variables = solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
global variables = abulknode_T
END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.9. Transient Heat Conduction: Tet4Tet10 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact_transient.so

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

Load From File ./exact_transient.so Using Function registerExactSoln
End
Begin User Function exact_soln_dot

Load From File ./exact_transient.so Using Function registerExactSolnDot
End
Begin User Function exact_src

Load From File ./exact_transient.so Using Function registerExactSrc
End
Begin User Function flux_surface_3

Load From File ./exact_transient.so Using Function registerFlux_Surface_3
End
Begin User Function flux_surface_5

Load From File ./exact_transient.so Using Function registerFlux_Surface_5
End
Begin User Function flux_surface_1

Load From File ./exact_transient.so Using Function registerFlux_Surface_1
End
Begin User Function flux_surface_2

Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor 12
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hil
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

164

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is ¥
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2%*N}
Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC
IC const on block_1 temperature = 1.0

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature

|
=
o o

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux =
BC FLUX for Energy on surface_5 = constant flux

o
o w

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e
at step O, increment = {2**N}
title Aria cube test
nodal variables = solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.10. Transient Heat Conduction: Tet10 Meshes

BEGIN SIERRA myJob
load user plugin file ./exact_transient.so

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

166

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet10.
coordinate system is cartesian
decomposition method = rcb

e

BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.
End

Begin User Function exact_soln_dot
Load From File ./exact_transient.
End

Begin User Function exact_src
Load From File ./exact_transient.
End

Begin User Function flux_surface_3
Load From File ./exact_transient.
End

Begin User Function flux_surface_5
Load From File ./exact_transient.
End

Begin User Function flux_surface_1
Load From File ./exact_transient.
End

Begin User Function flux_surface_2
Load From File ./exact_transient.
End

Begin Norm Postprocessor 12
Use Function exact_soln

SO

SO

SO

SO

SO

SO

SO

Using

Using

Using

Using

Using

Using

Using

Function

Function

Function

Function

Function

Function

Function

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot

registerExactSoln

registerExactSolnDot

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hl
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_out

Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3

Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2%xN}
Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion
Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with MASS DIFF SRC
IC const on block_1 temperature = 1.0

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)

BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0
const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5
BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

BC FLUX for Energy on surface_5 Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

168

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e
at step O, increment = {2**N}
title Aria cube test
nodal variables = solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.2. THERMAL BOUNDARY CONDITIONS

12.2.1. Radiative Heat Flux 3.1

BEGIN SIERRA Aria
Title Radiation Form Factor Flux User_Sub

Begin Global Constants
Stefan Boltzmann constant = 5.6704E-8
End Global Constants

load user plugin file ./FormFactor.so
load user plugin file ./DirichletBC.so

Begin User Function exact_soln
Load From File ./Exact_Solution.so Using Function registerExactSoln
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

Begin Aria Material matl
density = constant rho = 0.1
thermal conductivity = constant k = 1.0
specific heat = constant cp = 1.0
heat conduction = basic
End Aria Material matl

Begin Aria Material mat_si

emissivity = constant e = 0.8

bc rad reference temperature = constant t_ref = 500

radiation form factor = calore_user_sub name = form_factor type = element
End

Begin Finite Element Model myModel
Database Name = mesh{N}.g
Coordinate System = Cartesian
decomposition method = rcb
Database Type = EXODUSII
Use Material matl for block_1
Use Material mat_sl for surface_1

End Finite Element Model myModel

170

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Advance myRegion
End
End
End

begin Aria region myRegion

Use Finite Element Model myModel
Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton

Maximum nonlinear iterations = 10
Nonlinear residual tolerance = 1.0e-10
Nonlinear correction tolerance = 1.0e-10
Nonlinear relaxation factor = 1.0

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF
BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node

Begin Radiative Flux Boundary Condition fraction
Add surface surface_1
Emissivity = 0.8
Reference Temperature = 500.0
Radiation Form Factor Subroutine = form_factor
End

H O H O HH

BC Flux for Energy at surface_l = generalized_rad

BC const DIRICHLET at surface_2 temperature = 600.0
BC const DIRICHLET at surface_4 temperature = 600.0

Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

Begin Results Output Label diffusion output
database Name = output{N}.e
At Step 1, Increment = 1
Timestep Adjustment Interval = 1
Title Radiative Flux BC User Sub Test
Nodal Variables = solution->temperature as T
End Results Output Label diffusion output

end Aria region myRegion
end procedure myProcedure

end sierra Aria

171

12.2.2. Radiative Heat Flux From Fortran User Subroutine

begin sierra FandI_VnVtest

title Verification of Fire and Ice BC subroutine, AKA Directed Heating User Sub \$
Simplified model with sidesets to check that BCs are applied to faces specified \$

Load User Plugin File ./FireAndIceBC.so USING function conv_subs_register

B
######## Material property definitions ############

begin aria material VnVmat
heat conduction = basic
density = constant rho = 8000.0 # Approximate value for VnV study
emissivity = constant e = 0.30 # Approximate value for VnV study
specific heat = constant cp = 550 # Approximate value for VnV study
thermal conductivity = constant k = 20 # Approximate value for VnV study
end aria material VnVmat

##HHHE#H UPDATE THE FINITE ELEMENT MODEL ##########H IR

begin finite element model fem
database name = VnVmesh2.g
database type = exodusII
use material VnVmat for block_1

- Block id 10 had name 10
use material VnVmat for block_10

- Block id 11 had name 11
use material VnVmat for block_11

- Block id 12 had name 12
use material VnVmat for block_12

- Block id 13 had name 13
use material VnVmat for block_13

- Block id 2 had name 2
use material VnVmat for block_2

- Block id 3 had name 3
use material VnVmat for block_3

- Block id 4 had name 4
use material VnVmat for block_4

- Block id 5 had name 5
use material VnVmat for block_5

- Block id 6 had name 6
use material VnVmat for block_6

- Block id 7 had name 7
use material VnVmat for block_7

- Block id 8 had name 8
use material VnVmat for block_8

- Block id 9 had name 9

use material VnVmat for block_9
end finite element model fem

172

begin global constants
stefan boltzmann constant = 5.67e-8
end global constants

BEGIN TPETRA EQUATION SOLVER TRILINOS_SOLVE
BEGIN GMRES SOLVER
BEGIN DD-ILUT PRECONDITIONER
DROP TOLERANCE = 0
FILL FRACTION = 5.000000e+00
END
MAXIMUM ITERATIONS
RESTART ITERATIONS
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
MATRIX SCALING = ONE_NORM
END TPETRA EQUATION SOLVER

1000
100

begin procedure aria_procedure
begin solution control description
Use System Main
Begin System Main
Simulation Max Global Iterations = 10000

Simulation Start Time 0.0
#Simulation Termination Time = 3600.0

Begin Transient Main
Advance myRegion
End

End
Begin Parameters For Transient Main
Start Time = 0.0

Termination Time = 0.1

Begin Parameters for Aria Region myRegion

e

Time Integration Method = Second_Order #Second_Order
s

Time Step Variation = Adaptive

Initial Time Step Size = 0.01

Minimum Time Step Size = 0.01

]

Maximum Time Step Size 0.01
#Minimum Resolved Time Step Size = 0.001
Predictor-Corrector Tolerance = 1.0e-08
End
End

End #solution control

begin aria region myRegion
solve energy equation for temperature at the nodes (1st order) with diffusion
EQ ENERGY for TEMPERATURE on all_blocks using Q1 with lumped_mass Diff

use finite element model fem

nonlinear solution strategy = newton

173

use dof averaged nonlinear residual

accept solution after maximum nonlinear iterations = true
use linear solver trilinos_solve

nonlinear relaxation factor = 1.0

nonlinear residual tolerance = 1.0e-10 # for transient
maximum nonlinear iterations = 10 # for transient
#nonlinear residual tolerance = 1.0e-15 # for steady state
#maximum nonlinear iterations = 150 # for steady state

IR
##HHH R Initial Conditions ###H#HH#H###IHHHHH# I

IC Const on all_blocks temperature = 300.0

####HA##HAH# Convective Boundary Conditions ########H#H#HIH

#
begin convective flux boundary condition FireAndIceBC

add surface surface_1 surface_2 surface_3 surface_4
add surface surface_5 surface_6 surface_7 surface_8
add surface surface_9 surface_10 surface_11 surface_12
add surface surface_13 surface_14 surface_15 surface_16
add surface surface_17 surface_18 surface_19 surface_20
add surface surface_21 surface_22 surface_23 surface_24
add surface surface_25 # All external surfaces

User Sub Integer Input Constants:

cosdistA=idat (1), for x < xA

cosdistAB=idat(2), for xA <= x <= xB

cosdistB=idat(3), for x > xB

User Sub Real Input Constants:

xoffset=rdat(1), such that abs(xnosetip-xoffset)=0

xA=rdat(2), distance from nosetip to position A (xA>0)

xB=rdat(3), distance from nosetip to position B (xB>0)

hAl=rdat(4), convective htc for x < xA for azimuthal section 1

hABl=rdat(5), convective htc for xA <= x <= xB for section 1

hBl=rdat(6), convective htc for x > xB for azimuthal section 1

TrefAl=rdat(7), Tref for x < xA for azimuthal section 1

TrefABl=rdat(8), Tref for xA <= x <= xB for azimuthal section 1

TrefBl=rdat(9), Tref for x > xB for azimuthal section 1

emisAl=rdat(10), emis for x < xA for azimuthal section 1

emisABl=rdat(11), emis for xA <= x <= xB for azimuthal section 1

emisBl=rdat(12), emis for x > xB for azimuthal section 1

hA2=rdat(13), convective htc for x < xA for azimuthal section 2

hAB2=rdat (14), convective htc for xA <= x <= xB for azimuthal section 2

hB2=rdat (15), convective htc for x > xB for azimuthal section 2

TrefA2=rdat(16), Tref for x < xA for azimuthal section 2

TrefAB2=rdat(17), Tref for xA <= x <= xB for azimuthal section 2

TrefB2=rdat(18), Tref for x > xB for azimuthal section 2

emisA2=rdat(19), emis for x < xA for azimuthal section 2

emisAB2=rdat (20), emis for xA <= x <= xB for azimuthal section 2

emisB2=rdat(21), emis for x > xB for azimuthal section 2

thetaA=rdat(22), azimuthal reference angle (degrees) for section 1 of region A
thetaAB=rdat(23), azimuthal reference angle (degrees) for section 1 of region AB
thetaB=rdat(24), azimuthal reference angle (degrees) for section 1 of region B
dphiA=rdat(25), subtended angle (degrees) for section 1 of region A

dphiAB=rdat(26), subtended angle (degrees) for section 1 of region AB

dphiB=rdat(27), subtended angle (degrees) for section 1 of region B

notes:

if cosdistA (or AB,or B) set to 1 then impose cosine distribution on radiative htc
otherwise, distribution is uniform (convective distribution is always uniform)
x coordinate assumed to lie on centerline of bomb

htc_total = convective htc + effective radiative htc

174

effective radiative htc = sigma*emis*(Twall+Tref)*(Twall~2+Tref~2)
emissivities should be the same as associated material emissivities, but
can be set to zero to eliminate radiative heat transfer from a region
set convective htc to zero to eliminate convective heat tranfer from a region
set both convective htc and emis to zero for an adiabatic (insulated) surface
a zero-degree angle corresponds to the y axis
angle is positive in clockwise direction when looking in the positive x axis direction
theta is the angle for the center of the azimuthal section and dphi is the delta angle
with section 1 extending from theta-dphi/2 to theta+dphi/2, centered on theta
section 2 is opposite section 1 and can be empty if dphi = 360 degrees.
convective coefficient fortran subroutine is coef_directed_angle
reference temperature fortran subroutine is tref_directed_angle
integer data 0 0 O
xoffset xA xB
hAl hAB1 hB1
TrefAl TrefAB1 TrefBl1
emisAl emisAB1 emisB1
hA2 hAB2 hB2
TrefA2 TrefAB2 TrefB2
emisA2 emisAB2 emisB2
thetaA thetaAB thetaB
dphiA dphiAB dphiB
real data -1.5 0.5 1.0 \$
0.0 50.0 0 \$
300.0 1000.0 300.0 \$
0.0 0.8 0.0 \$
0.0 0.0 100.0 \$
300.0 300.0 900.0 \$
0.0 0.0 0.0 \$
0.0 300.0 240. \$
0.0 120.0 240.0
+theta
xA xB azimuthal section 1 -dphi/2 - -
A | AB | B axial (x axis) regions | vl yl Vv
surfaces 0-theta l_ _>x I_ _ >z
I | I
xA xB azimuthal section 2 dphi/2 z out of page x into page
#

integrated power output gFirelce
integrated flux output fluxFirelce

end convective flux boundary condition FireAndIceBC

H#FFHFHHHHHAA Results #HH#HHFHFHHHHHHHHH R

Begin user variable HTC
type is face real length = 1
initial value = 0.0
add part surface_1 surface_2 surface_3 surface_4
add part surface_b surface_6 surface 7 surface_8
add part surface_9 surface_10 surface_11 surface_12
add part surface_13 surface_14 surface_15 surface_16
add part surface_17 surface_18 surface_19 surface_20
add part surface_21 surface_22 surface_23 surface_24
add part surface_25

End

Begin user variable SurfFlux
type is face real length =1
initial value = 0.0
add part surface_1 surface_2 surface_3 surface_4
add part surface_5 surface_6 surface_7 surface_8
add part surface_9 surface_10 surface_11 surface_12

175

add part surface_13 surface_14 surface_15 surface_16
add part surface_17 surface_18 surface_19 surface_20
add part surface_21 surface_22 surface_23 surface_24
add part surface_25

End

Begin user variable Tref #for checking only

type is face real length =1

initial value = 0.0

add part surface_1 surface_2 surface_3 surface_4
add part surface_5 surface_6 surface_7 surface_8
add part surface_9 surface_10 surface_11 surface_12
add part surface_13 surface_14 surface_15 surface_16
add part surface_17 surface_18 surface_19 surface_20
add part surface_21 surface_22 surface_23 surface_24
add part surface_25

End

Begin Results Output NodalTdata
Title VnVtest Nodal Temperature Data
database name = VnVinputTest.e
Nodal Variables = solution->temperature as T
#nodal variables = temperaturedot as Tdot
#Face Variables = HTC SurfFlux Tref #costheta
Global Variables = time_step as timestep

Global Variables = PEinterior_T as PEinterior_T

Timestep Adjustment Interval is 1
At Time 0.0, Increment = 0.01 #

End

end aria region myRegion
end procedure aria_procedure

end sierra FandI_VnVtest

12.2.3. Convective Heat Flux 3.3

Begin SIERRA Aria
load user plugin file ./Exact_Solution.so

Begin User Function exact_soln
Load From File ./Exact_Solution.so Using Function registerExactSoln
End

Begin Norm Postprocessor 12_norm
Use Function exact_soln
Subtract Function nonlinear_solution->temperature
Compute Norms L2

End

Begin Norm Postprocessor hl_norm
Use Function exact_soln
Subtract Function nonlinear_solution->temperature
Compute Norms H1

End

Begin Norm Postprocessor linf_norm
Use Function exact_soln

Subtract Function nonlinear_solution->temperature
Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

load user plugin file ./FluxBC.so
load user plugin file ./DirichletBC.so

load user plugin file ./Init.so

Begin Aria Material M_Block

density = constant rho = 1.

specific heat = constant cp = 1.

heat conduction = basic

Thermal conductivity = constant k = 1.
End

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

Begin Finite Element Model myModel
Database Name = mesh{N}.g
Coordinate System = cartesian
decomposition method = rcb
Use Material M_Block for block_1

End

Begin procedure myProcedure

Begin solution control description

Use System Main

Begin System Main
Simulation Start Time =0.0
Simulation Termination Time
Simulation Max Global Iterations = 100
Begin Transient Time_Block

advance myRegion

End

End System Main

1]
o
e

Begin parameters for transient Time_Block
Start Time = 0.0
Begin parameters for aria Region myRegion
time step variation = fixed # adaptive
initial time step size = {0.008*0.5%*(N)}
time integration method = second_order
predictor-corrector tolerance = 1.0E-5
End
End
End Solution Control Description

begin aria region myRegion

Use Finite Element Model myModel
Use Linear Solver solve_temperature

77

nonlinear solution strategy = newton
nonlinear residual tolerance = 1.0e-10
maximum nonlinear iterations = 10
Nonlinear Relaxation Factor = 1.0

EQ energy for temperature on block_1 using Q1 with diff mass
BC const dirichlet on surface_2 Temperature = 0.0

Begin Temperature Boundary Condition s4
Add Surface surface_4
Temperature = 0.0

End

BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node
IC for temperature on block_1 = calore_user_sub name = localCoord_ic type=node

Output Number of Nodes

Evaluate Postprocessor 12_norm
Evaluate Postprocessor hl_norm
Evaluate Postprocessor linf_norm

Begin Convective Flux Boundary Condition internal
Add Surface surface_1 #y=1, 0<x<1, normal=(0,1)
Reference Temperature Subroutine = tref_coeff
Convective Coefficient Subroutine = convec_coeff

End

Begin Results Output output

Database Name = output{N}.e

AT STEP 0, INCREMENT = {2%*(N)}

TITLE Aria Heat Convective Flux BC Condition

Nodal Variables = nonlinear_solution->temperature as T
End

end aria region myRegion
End procedure myProcedure

End sierra Aria

12.3. THERMAL CONTACT

12.3.1. 1D Flat Contact 4.1
12.3.1.1. Hex8 Tied

#{R=0.0}
begin sierra Aria

title Adaptive Square
load user plugin file ./Exact_solution.so

BEGIN ARIA MATERIAL M1

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_hex8_h{N}.g
Begin parameters for block block_1
material M1
End
Begin parameters for block block_2
material M2
End
End Finite Element Model bar

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 20000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value
End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor 12

Use Function exact_soln
Subtract Function ffunc

179

Compute Norms L2
Store in 12_err
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor hi
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in hl_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_tied_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 1
End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xmil
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xpl
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp

180

End

add volume block_2
VALUE = 1.

begin contact definition resi

end

contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2
end interaction inter_1

begin enforcement enf_1
Enforcement for Energy = Tied_Temperature

end enforcement

contact definition resi

Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hil

Begin Results Output Label diffusion output

database Name = 2blocks_tied_h{N}.e

At Step 1, Increment = 1

Title Calore Two Blocks

Nodal Variables = solution->temperature as T
Element Variables = 12_err linf_err hl_err

End
end
end
end
12.3.1.2. Hex8 Resistance
#{R=4.0}

begin sierra Aria

title Adaptive Square

BEGIN ARIA MATERIAL M1

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_hex8_h{N}.g
Begin parameters for block block_1
material M1

End

Begin parameters for block block_2
material M2

End

181

End Finite Element Model bar

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 20000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value
End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in 12_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor hi
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in hl_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_res_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

182

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xmil
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xpil
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition resi
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2
end interaction inter_1

begin enforcement enf_1
conductance coefficient= {1.0/R}
Enforcement for Energy = gap_conductance
end enforcement

end contact definition resl
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hl

Begin Results Output Label diffusion output
database Name = 2blocks_res_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = 12_err linf_err hl_err
End

end

end

end

12.3.1.3. Tet4 Tied

#{R=0.0}
begin sierra Aria

title Adaptive Square
load user plugin file ./Exact_solution.so

BEGIN ARIA MATERIAL M1

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_tet4_h{N}.g
Begin parameters for block block_1
material M1
End
Begin parameters for block block_2
material M2
End
End Finite Element Model bar

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 200
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value
End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in 12_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor hi
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in hl_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_tied_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xmil
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xpl
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition resi
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2
end interaction inter_1

begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end enforcement

end contact definition resl
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hil

Begin Results Output Label diffusion output
database Name = 2blocks_tied_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = 12_err linf_err hl_err

End
end
end
end
12.3.1.4. Tet4 Resistance
#{R=4.0}

begin sierra Aria
title Adaptive Square

BEGIN ARIA MATERIAL M1

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_tet4_h{N}.g
Begin parameters for block block_1
material M1
End
Begin parameters for block block_2
material M2
End
End Finite Element Model bar

186

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 200
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value
End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in 12_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor hi
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in hl_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_res_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 1
End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xml
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xpl
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition resi
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2
end interaction inter_1

begin enforcement enf_1
conductance coefficient= {1.0/R}
Enforcement for Energy = gap_conductance
end enforcement

end contact definition resl

Output Number of Nodes

Evaluate Postprocessor 12

Evaluate Postprocessor linf

Evaluate Postprocessor hil

Begin Results Output Label diffusion output
database Name = 2blocks_res_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = 12_err linf_err hl_err

End

end

end

end

188

12.3.1.5. Hex8-Tet4 Tied

#{R=0.0}
begin sierra Aria

title Adaptive Square
load user plugin file ./Exact_solution.so

BEGIN ARIA MATERIAL M1

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_hex8_tet4_h{N}.g
Begin parameters for block block_1
material M1
End
Begin parameters for block block_2
material M2
End
End Finite Element Model bar

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 200
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value
End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in 12_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in hl_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_tied_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xmil
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xpil
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

190

begin contact definition resi
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2
end interaction inter_1

begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end enforcement

end contact definition resl
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hl

Begin Results Output Label diffusion output
database Name = 2blocks_tied_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = 12_err linf_err hl_err

End
end
end
end
12.3.1.6. Hex8-Tet4 Resistance
#{R=4.0}

begin sierra Aria
title Adaptive Square

BEGIN ARIA MATERIAL M1

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_hex8_tet4_h{N}.g
Begin parameters for block block_1
material M1
End
Begin parameters for block block_2
material M2
End
End Finite Element Model bar

191

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN UMFPACK SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 200
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value
End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in 12_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in hl_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_res_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

begin Aria region myRegion

192

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0

use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xmil
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xpl
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition resi
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2
end interaction inter_1

begin enforcement enf_1
conductance coefficient= {1.0/R}
Enforcement for Energy = gap_conductance
end enforcement

end contact definition resl
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hil

Begin Results Output Label diffusion output
database Name = 2blocks_res_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = 12_err linf_err hl_err
End

end
end

end

193

12.3.2. 3D Curved Contact 4.2

12.3.2.1. Hex8-Hex8 Case
12.3.2.2. Tet4-Tet4 Case
12.3.2.3. Hex8-Tet4 Case

12.3.3. Steady Hex8 Contact

#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_hex8.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube
Begin User Function exact_soln

Load From File ./exact.so Using Function registerExactSoln
End
Begin User Function exact_soln_dot

Load From File ./exact.so Using Function registerExactSolnDot
End
Begin User Function exact_src

Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3

194

Load From File ./exact.so Using Function
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function
End

Begin Norm Postprocessor 12
Use Function exact_soln

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
store in 12_error
End

Begin Norm Postprocessor hl
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
store in hl_error
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
store in linf_error
End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10

Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12

Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

195

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q1 with DIFF SRC

surface_4: x=0

surface_6: x=1

surface_3: y=0

surface_b: y=1

surface_1: z=1

surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)

BC FLUX for Energy on surface_3 = constant flux = 3

BC FLUX for Energy on surface_5 = constant flux =5

BC FLUX for Energy on surface_3 = Encore_Function

BC FLUX for Energy on surface_5 = Encore_Function

convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv
BC Flux for Energy on surface_2 = Nat_Conv
= Encore_Function
Encore_Function

BC FLUX for Energy on surface_1
BC FLUX for Energy on surface_2 =
const source term

Source For ENERGY on block_1 Constant value=1

Name=flux_surface_3
Name=flux_surface_5

T_Ref=1 H=1

T_Ref=2 H=2

Name=flux_surface_1
Name=flux_surface_2

Source For ENERGY on block_2

Source For ENERGY on block_1
Source For ENERGY on block_2

Constant value=1

Encore_Function Name=exact_src
Encore_Function Name=exact_src

begin contact definition mpcl
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

output rule = summary

begin interaction inter_1

surfaces = surf_1 surf_2
normal tolerance = 0.01
end

begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end
end

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex8_tied_contact_h{N}.e
at step 1, increment 1
time interval is 1.0
title Aria cube test
nodal variables nonlinear_solution->TEMPERATURE as T
element variables = 12_error h2_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.4. Steady Hex20 Contact

BEGIN SIERRA myJob
load user plugin file ./exact.so

begin definition for function kxx

type = piecewise linear
begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values
2
.2
.1

N = O
o O O
N = O

20.0 20.2
end values
end

begin definition for function kzz
type = piecewise linear
begin values
0.0 1.0
1.0 2.0
2.0 3.0
20.0 21.0
end values
scale by 2.0
end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx = kxX name_yy = kyy name_zz = kzz
Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN klu2 SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 300
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.0e-3
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube

197

database name = cube_contact_h{N}_hex20.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %

Write To File errors_thermal_steady_hex20_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure
Begin Solution Control Description

Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2S with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q25 with DIFF SRC

surface_4: x
surface_6: x=

surface_3: y=0
surface_5: y=1

surface_1:
surface_2:

const Temp BC (x)
BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature

|
i
o o

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux

1]
[¢]

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2
BC FLUX for Energy on surface_1l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Constant value=1
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcl
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2
end
begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end

199

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_b

end

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hi
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex20_tied_contact_h{N}.e

at step 1, increment = 1
time interval is 1.0
title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output
END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.5. Steady Hex27 Contact

BEGIN SIERRA myJob
load user plugin file ./exact.so

begin definition for function kxx

type = piecewise linear
begin values

0.0 0.5

1.0 2.0

2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values
.2
.2
.1

N = O
o O O
N = O

20.0 20.2
end values
end

begin definition for function kzz
type = piecewise linear
begin values
0.0 1.0

0
0

w N

1. .0
2. .0
20.0 21.0
end values
scale by 2.0
end

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1

tensor thermal conductivity = user_function X = temperature name_xx
Specific Heat = Constant cp=1

heat conduction = Generalized

END ARIA MATERIAL Kryptonite

200

kxx name_yy = kyy name_zz = kzz

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 300
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.0e-3
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_hex27.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

201

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%

Write To File errors_thermal_steady_hex27_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2 with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=
surface_b: y=

= O

surface_1: z=
surface_2: z=

o =

const Temp BC (x)
BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature

[}
=
o o

const flux BC (y)
BC FLUX for Energy on surface_3 constant flux = 3
BC FLUX for Energy on surface_5 = constant flux

1]
a

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5

Encore_Function Name=flux_surface_5
convective flux BC with const Temp and H (z)

BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term

202

Source For ENERGY on block_1
Source For ENERGY on block_1
Source For ENERGY on block_2
Source For ENERGY on block_2

begin contact definition mpcil

Constant value=1

Encore_Function Name=exact_src

Constant value=1

Encore_Function Name=exact_src

contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2

end

begin enforcement enf_1

Enforcement for Energy = Tied_Temperature

end
end

Output Number of Nodes
Evaluate Postprocessor 12

Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex27_tied_contact_h{N}.e

at step 1, increment = 1
time interval is 1.0
title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.6. Steady Tet4 Contact

#N={N=53}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END
END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE

CONVERGENCE TOLERANCE = 1.000000e-15

203

END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube

database name = cube_contact_h{N}_tet4d.e

coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function
End

Begin User Function exact_src
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function
End

Begin Norm Postprocessor 12
Use Function exact_soln

registerExactSoln

registerExactSolnDot

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
Store In 12_error
End

Begin Norm Postprocessor hl
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
Store In hl_error
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
Store In linf_error
End

204

Begin Postprocessor Output Control pp_out
Comment Character Is ¥
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q1 with DIFF SRC

surface_4: x=0
surface_6: x=1
surface_3: y=0
surface_b: y=1
surface_1: z=1
surface_2: z=0

const Temp BC (x)

BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature

const flux BC (y)
BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5 = constant flux

constant flux

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

convective flux BC with const Temp and H (2)

Encore_Function
Encore_Function

BC Flux for Energy on surface_1 = Nat_Conv
BC Flux for Energy on surface_2 = Nat_Conv

BC FLUX for Energy on surface_1 = Encore_Function
BC FLUX for Energy on surface_2 = Encore_Function

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

1]
e
o)

Name=flux_surface_3
Name=flux_surface_5

T_Ref=1 H=1

T_Ref=2 H=2

Name=flux_surface_1
Name=flux_surface_2

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

205

begin contact definition mpcil
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2
end
begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end
end

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet4_tied_contact_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
element variables = 12_error hl_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.7. Steady Tet4Tet10 Contact

#N={N=53}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian

206

decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In 12_error
End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In hl_error
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_error
End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

207

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q1 with DIFF SRC

surface_4:
surface_6:

surface_3: y=0
surface_b5: y=1

surface_1: z=
surface_2: z

const Temp BC (x)
BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature

1]
i
o)

const flux BC (y)
BC FLUX for Energy on surface_3 constant flux =
BC FLUX for Energy on surface_5 = constant flux

|
w

]
a

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpci
contact surface surf_1 contains surface_7

contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2

208

end
begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end
end

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet4_tied_contact_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
element variables = 12_error hl_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.8. Steady Tet10 Contact

#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2

209

material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In 12_error
End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In hl_error
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_error
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion

210

End
Simulation Start Time = 0O
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2 with DIFF SRC

surface_4:
surface_6:

surface_3: y=0
surface_b5: y=1

surface_1: z=
surface_2: z

const Temp BC (x)
BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature

1]
i
o)

const flux BC (y)
BC FLUX for Energy on surface_3 constant flux =
BC FLUX for Energy on surface_5 = constant flux

|
w

]
[¢4]

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcil
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2
end
begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end
end

Output Number of Nodes

211

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet1O_tied_contact_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
element variables = 12_error hl_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.9. Steady Tet10 Dash Contact

#N={N=43}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1
BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2
END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

212

End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function
End

Begin User Function exact_src
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_b5
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function
End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function
End

Begin Norm Postprocessor 12
Use Function exact_soln

registerExactSolnDot

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
Store In 12_error
End

Begin Norm Postprocessor hil
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
Store In hl_error
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
Store In linf_error
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
End

BEGIN ARIA REGION myRegion

213

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2 with DIFF SRC

surface_4:
surface_6:

surface_3: y=0
surface_b5: y=1

surface_1: z=
surface_2: z

const Temp BC (x)
BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature

1]
o
o)

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux =
BC FLUX for Energy on surface_5 = constant flux

I

o
o w

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpcil
skin all blocks = on
search = dash

begin interaction defaults
general contact = on
end interaction defaults

begin dash options
interaction definition scheme = explicit
search length scaling = 0.75

end dash options

begin enforcement enf_1
Enforcement for Energy = Dash_Tied
end
end

214

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tetl10_tied_dash_contact_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
element variables = 12_error hl_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.10. Transient Tet4Tet10 Contact

#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tetl10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1
BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite
END PARAMETERS FOR BLOCK block_2
END FINITE ELEMENT MODEL cube

Begin User Function exact_soln

215

Load From File ./exact_transient.so
End

Begin User Function exact_soln_dot
Load From File ./exact_transient.so
End

Begin User Function exact_src
Load From File ./exact_transient.so
End

Begin User Function flux_surface_3
Load From File ./exact_transient.so
End

Begin User Function flux_surface_5
Load From File ./exact_transient.so
End

Begin User Function flux_surface_1
Load From File ./exact_transient.so
End

Begin User Function flux_surface_2
Load From File ./exact_transient.so
End

Begin Norm Postprocessor 12
Use Function exact_soln

Using

Using

Using

Using

Using

Using

Using

Function

Function

Function

Function

Function

Function

Function

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot

registerExactSoln

registerExactSolnDot

registerExactSrc

registerFlux_Surface_3

registerFlux_Surface_5

registerFlux_Surface_1

registerFlux_Surface_2

Subtract Function time_derivative_at_time->TEMPERATURE

Compute Norms L2
End

Begin Norm Postprocessor hil
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms H1
End

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_

Comment Character Is %

Write To File errors_h{N}.dat

Floating Point Precision Is 3

Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 3

out

216

End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2**N}
Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q1 with MASS DIFF SRC

IC const on block_1 temperature = 1.0
IC const on block_2 temperature = 1.0

surface_4: x=0

surface_6: x=1

surface_3: y=0

surface_b5: y=1

surface_1: z=1

surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature
BC const dirichlet at surface_6 Temperature

1]
i
o)

const flux BC (y)
BC FLUX for Energy on surface_3 constant flux =
BC FLUX for Energy on surface_5 = constant flux

|
w

]
a

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

convective flux BC with const Temp and H (2)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_l = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpci
contact surface surf_1 contains surface_7

contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2

217

end
begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end
end

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_transient_tet1O_tied_contact_h{N}.e

at step O, increment = {2**N}

title Aria cube test

nodal variables = solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.11. Transient Tet10 Contact

#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2

218

material Kryptonite
END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./exact_transient.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact_transient.so Using Function registerExactSrc
End

Begin User Function flux_surface_3
Load From File ./exact_transient.so Using Function registerFlux_Surface_3
End

Begin User Function flux_surface_5
Load From File ./exact_transient.so Using Function registerFlux_Surface_5
End

Begin User Function flux_surface_1
Load From File ./exact_transient.so Using Function registerFlux_Surface_1
End

Begin User Function flux_surface_2
Load From File ./exact_transient.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hl
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main

219

Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2%*N}
Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with MASS DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2 with MASS DIFF SRC

IC const on block_1 temperature = 1.0
IC const on block_2 temperature = 1.0

surface_4: x=0

surface_6: x=1

surface_3: y=0

surface_5: y=1

surface_1: z=1

surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature =
BC const dirichlet at surface_6 Temperature

=
o o

const flux BC (y)
BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

|
w

constant flux =
constant flux

]
(¢

Encore_Function Name=flux_surface_3
Encore_Function Name=flux_surface_5

]

BC FLUX for Energy on surface_3
BC FLUX for Energy on surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_l1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

220

begin contact definition mpcil
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2
end
begin enforcement enf_1
Enforcement for Energy = Tied_Temperature
end
end

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = thermal_transient_tet10O_tied_contact_h{N}.e

at step O, increment = {2**N}

title Aria cube test

nodal variables = solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

221

12.4. ELEMENT DEATH

12.4.1. CDFEM Element Death (Heat Flux)
12.4.1.1. Tri3

BEGIN SIERRA Aria

Title \$
1-d standard conduction problem, Carslaw and Jaeger P. 292\$

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 10000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER

Begin Global Constants
Stefan Boltzmann Constant = 5.67e-8 # W/m~2-K~4
Ideal Gas Constant = 8.314 # J/mol-K
End

BEGIN ARIA MATERIAL solid
DENSITY = constant rho = 1.
Thermal Conductivity = constant k = 1.
Specific Heat = Constant cp = 1.0
Heat Conduction = basic
END ARIA MATERIAL solid

BEGIN FINITE ELEMENT MODEL VERIFY_DEATH
DATABASE NAME = input{N}_tri3.e
decomposition method = rcb
COORDINATE SYSTEM = CARTESIAN
DATABASE TYPE = EXODUSII
USE MATERIAL solid FOR block_1
USE MATERIAL solid FOR block_1_dead

END FINITE ELEMENT MODEL VERIFY_DEATH

Begin String Function exact_soln

Value Is "ln(sqrt(x*x+y*y))*(1/1n(2-t))"

Gradient Is "(x/(x*x+y*y))*(1/1n(2-t))" "(y/(xxx+y*y))*(1/1n(2-t))"
End

Begin String Function exact_src
Value Is "ln(sqrt(x*xx+y*y))*(-1/(1n(2-t)*1n(2-t)))*(1/(2-t))*(-1)"
End

exact flux computed at interface (r=2-t)
Begin String Function exact_flux

Value Is "-1/((2-t)*1n(2-t))"
End

exact interface position (radial)

Begin String Function exact_interface
Value Is "2-t"

End

radius function - evaluate r(x,y)
Begin String Function radius

Value Is "sqrt(x*x+y*y)"
End

222

Begin Norm Postprocessor 12
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms L2
Store In 12_err
End

Begin Norm Postprocessor hil
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms H1
Store In hl_err
End

Begin Norm Postprocessor linf
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_err
End

Begin Norm Postprocessor 12_interface
Surfaces surface_1 surface_block_1_death_by_temp
Use Function exact_interface
Subtract Function radius
Compute Norms L2
End

Begin Norm Postprocessor linf_interface
Surfaces surface_1 surface_block_1_death_by_temp
Use Function exact_interface
Subtract Function radius
Compute Norms Nodal LInfinity
Store In linf_interface_err
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 6
Floating Point Format Is Fixed
End

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Simulation Start Time =
Simulation Termination Time
Begin transient MySolveBlock
Advance myRegion
End
End
begin parameters for transient MySolveBlock
start time = 0.0
begin parameters for aria region myRegion
initial time step size = {0.1%(0.5*%x(N-1))}
Predictor-Corrector Tolerance = {0.05%(0.5%x(N-1))}
Maximum Time Step Size = {0.2%(0.5*x(N-1))}
Time Integration Method = bdf2
time step variation = adaptive
end
end

o o
© O

223

End
Begin Aria Region myRegion
Use Finite Element Model VERIFY_DEATH

Begin CDFEM Death death_by_temp

add volume block_1

Criterion is solution->Temperature > 1.0
End

Use Linear Solver solve_temperature

nonlinear solution strategy = newton
maximum nonlinear iterations = 2
nonlinear correction tolerance = 1.0e-12
nonlinear residual tolerance = 1.0e-12
nonlinear relaxation factor 1.0

use dof averaged nonlinear residual

eq energy for temperature on all_blocks using ql with lumped_mass diff src
IC Encore function on block_1 Temperature = exact_soln

BC Dirichlet for Temperature on surface_2 = encore_function name=exact_soln
SOURCE for Energy on block_1 = encore_function name=exact_src

BC Flux for Energy on surface_l = encore_function name=exact_flux
BC Flux for Energy on surface_block_1_death_by_temp = encore_function name=exact_flux

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

Evaluate Postprocessor 12_interface
Evaluate Postprocessor linf_interface

Begin Results Output Label diffusion output
database name = output{N}.e
at Step 0, Interval = {2*xN}
Nodal Variables = solution->temperature as TEMP
Nodal Variables = linf_interface_err
Element Variables = 12_err hl_err linf_err
End Results Output Label diffusion output

End Aria Region myRegion
End Procedure myProcedure

END SIERRA ARIA

12.4.1.2. Tet4

BEGIN SIERRA Aria

Title \$
1-d standard conduction problem, Carslaw and Jaeger P. 292\$

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END

224

MAXIMUM ITERATIONS = 10000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER

Begin Global Constants
Stefan Boltzmann Constant = 5.67e-8 # W/m~2-K~4
Ideal Gas Constant = 8.314 # J/mol-K
End

BEGIN ARIA MATERIAL solid
DENSITY = constant rho = 1.
Thermal Conductivity = constant k = 1.
Specific Heat = Constant cp = 1.0
Heat Conduction = basic
END ARIA MATERIAL solid

BEGIN FINITE ELEMENT MODEL VERIFY_DEATH
DATABASE NAME = input{N}_tet4.e
decomposition method = rcb
COORDINATE SYSTEM = CARTESIAN
DATABASE TYPE = EXODUSII
USE MATERIAL solid FOR block_1
USE MATERIAL solid FOR block_1_dead

END FINITE ELEMENT MODEL VERIFY_DEATH

Begin String Function exact_soln

Value Is "(1+t)/sqrt(xxx+y*y+z*z)"

Gradient Is "(1+t)*(-1/(x*x+y*y+z*z))*(x/sqrt (xxx+y*y+z*z))" " (1+t)*(-1/ (x*x+y*y+z*z)) * (y/sqrt (x*x+y*y+z*z))" "(1+t)*(-1/ (x*xA
End

Begin String Function exact_src
Value Is "1/sqrt(x*x+yxy+z*z)"
End

exact flux computed at interface (r=2-t)
Begin String Function exact_flux

Value Is "-1/(1+t)"

###Value Is "-(1+t)" ### for verification of case with no element death
End

exact interface position (radial)

Begin String Function exact_interface
Value Is "1+t"

End

radius function - evaluate r(x,y)
Begin String Function radius

Value Is "sqrt(x*x+y*y+zxz)"
End

Begin Norm Postprocessor 12
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms L2
Store In 12_err
End

Begin Norm Postprocessor hl
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms H1
Store In hl_err
End

225

Begin Norm Postprocessor linf
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_err
End

Begin Norm Postprocessor 12_interface
Surfaces surface_1 surface_block_1_death_by_temp
Use Function exact_interface
Subtract Function radius
Compute Norms L2
End

Begin Norm Postprocessor linf_interface
Surfaces surface_1 surface_block_1_death_by_temp
Use Function exact_interface
Subtract Function radius
Compute Norms Nodal LInfinity
Store In linf_interface_err
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 6
Floating Point Format Is Fixed
End

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Simulation Start Time =
Simulation Termination Time
Begin transient MySolveBlock
Advance myRegion
End
End
begin parameters for transient MySolveBlock
start time = 0.0
begin parameters for aria region myRegion
initial time step size = {0.1%(0.5*%x(N-1))}
Predictor-Corrector Tolerance = {0.05%(0.5%*(N-1))}
Maximum Time Step Size = {0.2%(0.5*%x(N-1))}
Time Integration Method = bdf2
time step variation = adaptive
end
end
End

o o
~N ©
ol

Begin Aria Region myRegion

Use Finite Element Model VERIFY_DEATH
Begin CDFEM Death death_by_temp

add volume block_1

Criterion is solution->Temperature > 1.0
End
Use Linear Solver solve_temperature
nonlinear solution strategy = newton

maximum nonlinear iterations = 2
nonlinear correction tolerance = 1.0e-12

226

1.0e-12
1.0

nonlinear residual tolerance
nonlinear relaxation factor

use dof averaged nonlinear residual

eq energy for temperature on all_blocks using ql with lumped_mass diff src
IC Encore function on block_1 Temperature = exact_soln

BC Dirichlet for Temperature on surface_2 = encore_function name=exact_soln
SOURCE for Energy on block_1 = encore_function name=exact_src

BC Flux for Energy on surface_1 = encore_function name=exact_flux
BC Flux for Energy on surface_block_1_death_by_temp = encore_function name=exact_flux

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

Evaluate Postprocessor 12_interface
Evaluate Postprocessor linf_interface

Begin Results Output Label diffusion output
database name = output{N}.e
at Step 0, Interval = {2xxN}
Nodal Variables = solution->temperature as TEMP
Nodal Variables = linf_interface_err
Element Variables = 12_err hl_err linf_err
End Results Output Label diffusion output

End Aria Region myRegion
End Procedure myProcedure

END SIERRA ARIA

12.4.2. 3D Spherical Shell Enclosure

BEGIN SIERRA myJob
Title Element Death Test Problem #1

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-09
END
END TPETRA EQUATION SOLVER

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN GLOBAL Constants
Stefan Boltzmann Constant = 5.6704e-08 # W/m2-K4
End

227

BEGIN ARIA MATERIAL ss304

Heat Conduction = Basic

Density = Constant rho = 7862.0 $§ kg/m*x3
Specific Heat = Constant Cp = 10.0 $ J/gm/K
Thermal Conductivity = Constant K = 1.0 $ W/m/K

END ARIA MATERIAL ss304

BEGIN ARIA MATERIAL fake
END ARIA MATERIAL fake

BEGIN FINITE ELEMENT MODEL myModel
Database Name = two_sphere_shells_tet4_m{N}.g
Coordinate System is cartesian
decomposition method = rcb

Use material ss304 for block_1 # Outer "case" block
Use material ss304 for block_2 # Inner block that will have death

#THIS BLOCK SHOULD BE REMOVED EVENTUALLY BUT IS CURRENTLY REQUIRED

Commenting it out leads to a segfault because of a null field data pointer for model_coordinates
This is very bizarre

Use material fake for block_2_dead

#BEGIN PARAMETERS FOR BLOCK block_2_dead

Material fake

#END PARAMETERS FOR BLOCK block_2_dead

END FINITE ELEMENT MODEL myModel

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSolnSrc
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In 12_err
Volumes block_1 block_2
End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2
Store In 12_dot_err
Volumes block_1 block_2
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms Nodal LInfinity
Store In linf_err
Volumes block_1 block_2
End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

228

Store In hl_err
Volumes block_1 block_2
End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

Begin Average Value Postprocessor avg_T_surfl
Use Function nonlinear_solution->Temperature
Surfaces surface_1

End

Begin Average Value Postprocessor avg_T_surf2
Use Function nonlinear_solution->Temperature
Surfaces surface_2

End

Begin Average Value Postprocessor avg_T_surf2_death_templ
Use Function nonlinear_solution->Temperature
Surfaces surface_block_2_death_templ

End

Begin Average Value Postprocessor avg_T_surf3
Use Function nonlinear_solution->Temperature
Surfaces surface_3

End

Begin Average Value Postprocessor avg_T_surf4
Use Function nonlinear_solution->Temperature
Surfaces surface_4

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main

Begin System Main
Simulation Start Time =
Simulation Termination Time
Begin Transient Stepper

Advance myRegion

End

End

]
o O
o O

Begin Parameters For Transient Stepper
Begin Parameters for Aria Region myRegion

Time Integration Method = BDF2
Time Step Variation = fixed #Adaptive
Initial Time Step Size = {0.05%0.5%*(N)}
#Minimum Time Step Size 1.0e-5
#Maximum Time Step Size = 1000.0
#predictor order = 0
#Predictor-Corrector Tolerance = 1.e-3

#Fail Time Step When Time Step Size Ratio Is Below 0.0

End
End
End
BEGIN ARIA REGION myRegion

Use Linear Solver solve_temperature #direct_solver
Use Finite Element Model myModel

Begin CDFEM Death death_templ

229

add volume block_2
Criterion is solution->Temperature > 867.011674920813
End

Nonlinear Solution Strategy = newton

Maximum Nonlinear Iterations 10

Nonlinear Residual Tolerance = 1.0e-06

Nonlinear Correction Tolerance = 1.0e-06

Nonlinear Relaxation Factor = 1.0

Accept Solution After Maximum Nonlinear Iterations = false

IC for Temperature for all_volumes = Encore_Function Name=exact_soln

BC Dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln
BC Dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with lumped_mass Diff Src
EQ ENERGY for TEMPERATURE on block_2 using Q1 with lumped_mass Diff Src

Source For ENERGY on all_volumes = Encore_Function Name=exact_src

Begin Viewfactor Calculation vf_calc

Compute Rule = Hemicube

Geometric Tolerance = 1.0e-6

Hemicube Resolution = 500

Hemicube Max Subdivides = 5

hemicube min separation =5.0

Output Rule = Verbose
End

Begin Viewfactor Smoothing smooth

Method = least-squares
Convergence Tolerance = 1.0e-06
Maximum Iterations = 500

weight power =2.0
Reciprocity Rule = average
Output Rule = verbose

End

Begin Viewfactor Smoothing no_smooth

Method = none

Convergence Tolerance = 1.0E-08

Maximum Iterations = 150

Weight Power = 2.0

Reciprocity Rule = average

Output Rule = Summary
End

Begin Radiosity Solver Rad_Solv

Coupling = mason
Solver = chaparral GMRES
Convergence Tolerance = 1.0e-08
Maximum Iterations = 300
Output Rule = none

End

Begin Enclosure Definition encl
add surface surface_2
add surface surface_3
add surface surface_block_2_death_templ

meshed enclosure is block_2_dead
disable parallel redistribution

Emissivity = 0.6 On surface_block_2_death_templ
Emissivity = 0.6 On surface_2
Emissivity = 0.7 On surface_3

230

Blocking Surfaces
Use Viewfactor Calculation vf_calc
Use Viewfactor Smoothing no_smooth
Use Radiosity Solver Rad_Solv

End

Postprocess Heat_Flux on All_Blocks

Evaluate Postprocessor avg_T_surfl
Evaluate Postprocessor avg_T_surf2
Evaluate Postprocessor avg_T_surf2_death_templ
Evaluate Postprocessor avg_T_surf3
Evaluate Postprocessor avg_T_surf4

Begin Postprocessor Group zzz
Output Number Of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor linf
Evaluate Postprocessor hi

End

BEGIN RESULTS OUTPUT myLABEL diffusion output etc
Database Name = cdfem_rad_death_m{N}.e
at step 0, increment = 1

Title CDFEM Death Test Case #1

Nodal Variables = Solution->Temperature as T

Nodal Variables = pp->heat_flux as Heat_Flux

Nodal Variables = encl_position linf_err

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

Face Variables = face_area emissivity face_coverage face_temperature irradiance rad_flux radiosity

Element Variables = current_element_volume initial_element_volume volume_change_ratio 12_err 12_dot_err hl_err
END

Begin Heartbeat thermalrace
stream Name = globals_tet4_m{N}.dat
precision = 7
timestamp format ’°
legend = off
labels = off
Variable = Global time as time
Variable = Global 12_err
Variable = Global 12_dot
Variable = Global linf
Variable = Global hl_err
Variable = Global encl_area
Variable = Global encl_volume
Variable = Global avg_T_surfil
Variable = Global avg_T_surf2 # this value is mostly NalNs
Variable = Global avg_T_surf2_death_templ
Variable = Global avg_T_surf3
Variable = Global avg_T_surf4d
at step O, increment = 1

end

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

231

12.5. TIME INTEGRATION

12.5.1. Adaptive Time Integration
12.5.1.1. First Order Fixed

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

232

Begin Postprocessor Output Control pp_out

Comment Character Is 7%

Write To File errors_1st_ord_fixed_h{N}.dat

Floating Point Precision Is 4

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End

Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.1/2**N}
Time Integration Method = First_Order

Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion
Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations
Nonlinear Residual Tolerance

Nonlinear Correction Tolerance

Nonlinear Relaxation Factor

10
1.0e-12

= 1.0e-12
1.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature

BC dirichlet for Temperature
BC dirichlet for Temperature
BC dirichlet for Temperature
BC dirichlet for Temperature

EQ ENERGY for TEMPERATURE on block_1

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

at
at
at
at

surface_1
surface_2
surface_3
surface_4

exact_soln

Encore_Function
Encore_Function
Encore_Function
Encore_Function

using Q1 with MASS DIFF SRC

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_1st_ord_fixed_h{N}.e

at step O, increment = 1
time interval is 1.0
title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

233

Name=exact_soln
Name=exact_soln
Name=exact_soln
Name=exact_soln

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.2. First Order Adaptive

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

234

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_1ist_ord_adapt_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.1/2**N}
Predictor-Corrector Tolerance = {le-1/4x**N}
Maximum Time Step Size = {0.5/2%xN}
Time Integration Method = First_Order
Time Step Variation = adaptive
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_l = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC
Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src
Output Number of TimeSteps

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = aria_1ist_ord_adapt_h{N}.e

at step O, increment = 1

time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

235

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.3. Second Order Fixed

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

load user plugin file ./somefunc.so

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hl
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf

236

Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_2nd_ord_fixed_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 1
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.1/2%x*N}
Time Integration Method = Second_Order
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_1 = Encore_Function
Encore_Function
BC dirichlet for Temperature at surface_3 = Encore_Function
BC dirichlet for Temperature at surface_4 = Encore_Function

BC dirichlet for Temperature at surface_2

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_2nd_ord_fixed_h{N}.e
at step O, increment = 1
time interval is 1.0
title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

237

Name=exact_soln
Name=exact_soln
Name=exact_soln
Name=exact_soln

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.4. Second Order Adaptive

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Specific Heat = Constant cp=1

heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hl
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf

238

Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_2nd_ord_adapt_h{N}.dat

Floating Point Precision Is 4

Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = O
Simulation Termination Time = 1
End

Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2%x*N}

Predictor-Corrector Tolerance = {le-1/4**N}
Maximum Time Step Size = {0.5/2%xN}
Time Integration Method = Second_Order

Time Step Variation = adaptive
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations =

Nonlinear Residual Tolerance

Nonlinear Correction Tolerance

Nonlinear Relaxation Factor

10

.0e-12
1.0e-12
.0

use dof averaged nonlinear residual

use finite element model cube

Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature

BC dirichlet for Temperature
BC dirichlet for Temperature
BC dirichlet for Temperature
BC dirichlet for Temperature

EQ ENERGY for TEMPERATURE on block_1

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

at
at
at
at

surface_1
surface_2
surface_3
surface_4

exact_soln

Encore_Function
Encore_Function
Encore_Function
Encore_Function

using Q1 with MASS DIFF SRC

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_2nd_ord_adapt_h{N}.e

at step O, increment 1

time interval is 1.0

239

Name=exact_soln
Name=exact_soln
Name=exact_soln
Name=exact_soln

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.5. BDF2 Fixed

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

240

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors_bdf2_fixed_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End
Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.1/2%*N}
Time Integration Method = BDF2
Time Step Variation = fixed
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_1 = Encore_Function
BC dirichlet for Temperature at surface_2 = Encore_Function
BC dirichlet for Temperature at surface_3 = Encore_Function
BC dirichlet for Temperature at surface_4 = Encore_Function

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src
Output Number of TimeSteps

Evaluate Postprocessor 12

Evaluate Postprocessor 12_dot

Evaluate Postprocessor hil

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_bdf2_fixed_h{N}.e

at step O, increment = 1
time interval is 1.0

241

Name=exact_soln
Name=exact_soln
Name=exact_soln
Name=exact_soln

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.6. BDF2 Adaptive

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 CO=1 C1=0.1
Specific Heat Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln
End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor 12_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hil
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

242

Begin Norm Postprocessor linf
Use Function exact_soln

Subtract Function nonlinear_solution->TEMPERATURE

Compute Norms LInfinity
End

Begin Postprocessor Output Control pp_out

Comment Character Is %

Write To File errors_bdf2_adapt_h{N}.dat

Floating Point Precision Is 4
Floating Point Format Is Scientif
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Descripti
Use System Main
Begin System Main
Begin Transient The_Time_Block
Advance myRegion
End
Simulation Start Time = 0
Simulation Termination Time = 1
End

ic

on

Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2%*N}

Predictor-Corrector Tolerance = {le-1/4**N}
{0.5/2**N}

Maximum Time Step Size =
Time Integration Method = BDF2
Time Step Variation = adaptive
End
End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations
Nonlinear Residual Tolerance
Nonlinear Correction Toleranc
Nonlinear Relaxation Factor

e

10
1.0e-12

1.0e-12

1.0

use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solv

er

IC Encore Function on block_1 temperature

BC dirichlet for Temperature
BC dirichlet for Temperature
BC dirichlet for Temperature
BC dirichlet for Temperature

EQ ENERGY for TEMPERATURE on block_1

at
at
at
at

surface_1
surface_2
surface_3
surface_4

exact_soln

Encore_Function Name=exact_soln
Encore_Function Name=exact_soln
Encore_Function Name=exact_soln
Encore_Function Name=exact_soln

using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor 12
Evaluate Postprocessor 12_dot
Evaluate Postprocessor hil
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_bdf2_adapt_h{N}.e

243

at step O, increment = 1

time interval is 1.0

title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

244

12.6. ENCLOSURE RADIATION

12.6.1. 2D Cylindrical Shell Enclosure

BEGIN SIERRA Aria
Title Verification for two concentric spheres with radiation gap between them

Begin Global Constants
Stefan Boltzmann constant = 5.6704E-8
End Global Constants

Begin Aria Material inner
Heat conduction = Basic
Density = constant rho = 1.0
Specific heat = constant cp = 1.0
Thermal conductivity = constant k = 2.0
End Aria Material inner

Begin Aria Material outer
Heat conduction = Basic
Density = constant rho = 1.0
Specific heat = constant cp = 1.0
Thermal conductivity = constant k = 0.35
End Aria Material outer

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor hl
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

Begin Finite Element Model VERIFY_RAD_GAP
Database name = input{N}.g
Coordinate System = Cartesian
Database Type = EXODUSII
Begin Parameters for Block block_1
Material inner
End
Begin Parameters for Block block_2
Material outer
End
End Finite Element Model VERIFY_RAD_GAP

245

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RHS
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential Steady
Advance myRegion
End
End
End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_RAD_GAP
Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton
maximum nonlinear iterations = 1000
nonlinear residual tolerance = 1.0e-10
nonlinear relaxation factor = 1.0

EQ energy for Temperature for all_volumes using Q1 with Diff
IC const for all_volumes Temperature = 300.0

BC const Dirichlet at surface_1 Temperature = 300.0

BC const Dirichlet at surface_4 Temperature = 1300.0

Output Number of Nodes
Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hil

begin enclosure definition sph_shell
add surface surface_2
add surface surface_3
blocking surfaces
use viewfactor calculation vf_calc
use viewfactor smoothing vf_smooth
use radiosity solver rad_solver

enclosure id =1

emissivity = 0.50 on surface_2
emissivity = 0.80 on surface_3

end enclosure definition sph_shell

begin viewfactor calculation vf_calc
bsp tree max depth = O and min list length = 25

compute rule = hemicube
geometric tolerance = 1.0E-6
hemicube max subdivides =5
hemicube min separation =5.0
hemicube resolution = 500

check rowsum with tolerance = .001
output rule = verbose

end viewfactor calculation vf_calc

begin viewfactor smoothing vf_smooth
convergence tolerance = 1.0E-10

246

method = least-squares

weight power =2
maximum iterations = 150
reciprocity rule = average
output rule = verbose

end viewfactor smoothing vf_smooth

begin radiosity solver rad_solver

coupling = mason

solver = chaparral gmres
convergence tolerance = 1.0E-8

maximum iterations = 800

output rule = verbose

end radiosity solver rad_solver

Begin Results Output Label diffusion output
database name = output{N}.e
at Step O, increment = 1
Nodal Variables = solution->temperature as TEMP
End Results Output Label diffusion output

End Aria Region myRegion
End Procedure myProcedure

END SIERRA Aria

12.6.2. 2D Annular Enclosure
12.6.3. 3D Spherical Shell Enclosure

12.6.4. 3D Spherical Shell Partial Enclosure

BEGIN SIERRA Aria
Title Verification for two concentric spheres with radiation gap between them
load user plugin file ./exact.so

Begin Global Constants
Stefan Boltzmann constant = 5.6704E-8
End Global Constants

begin definition for function emissivity_table
scale by 1.0
type = piecewise linear
begin values
0.0 0.5
5000 0.5
end values
end definition for function emissivity_table

Begin Aria Material inner

Heat conduction = Basic

Density = constant rho = 1.0

Specific heat = constant cp = 1.0

Thermal conductivity = constant k = 2.0

emissivity = user_function name=emissivity_table X=temperature
End Aria Material inner

Begin Aria Material outer

Heat conduction = Basic
Density = constant rho = 1.0

247

Specific heat = constant cp = 1.0
Thermal conductivity = constant k = 0.35
emissivity = constant e = 0.80

End Aria Material outer

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln
End

Begin Norm Postprocessor 12
Use Function exact_soln
Volumes block_1 block_2
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In 12_err
End

Begin Norm Postprocessor hil
Use Function exact_soln
Volumes block_1 block_2
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In hl_err
End

Begin Norm Postprocessor linf
Use Function exact_soln
Volumes block_1 block_2
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_err
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

BEGIN Field Function numerical_solution
USE NODAL FIELD solution->TEMPERATURE
END Field Function numerical_solution

BEGIN Difference Function temp_error
Difference is exact_soln - numerical_solution
END Difference Function temp_error

Begin Finite Element Model VERIFY_RAD_GAP
Database name = sphere_cutout_h{N}.g
Coordinate System = Cartesian
Database Type = EXODUSII
Begin Parameters for Block block_1

Material inner
End
Begin Parameters for Block block_2
Material outer
End
End Finite Element Model VERIFY_RAD_GAP

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RHS
CONVERGENCE TOLERANCE = 1.000000e-10
END

248

END TPETRA EQUATION SOLVER

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential Steady
Advance myRegion
End
End
End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_RAD_GAP
Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton
maximum nonlinear iterations = 1000
nonlinear residual tolerance = 1.0e-8
nonlinear correction tolerance = 1.0e-8
nonlinear relaxation factor = 1.0

EQ energy for Temperature for all_volumes using Q1 with Diff

IC const for all_volumes Temperature = 300.0

BC const Dirichlet at surface_1 Temperature = 300.0

BC const Dirichlet at surface_4 Temperature = 1300.0

BC Dirichlet for Temperature on surface_b5 = encore_function name=exact_soln

Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor linf
Evaluate Postprocessor hil

interpolate function value of exact_soln into nodal field analytic_temp on volumes block_1 block_2
Interpolate Function Value of temp_error into nodal field temp_error on volumes block_1 block_2

begin enclosure definition sph_shell
add surface surface_2
add surface surface_3
blocking surfaces
use viewfactor calculation vf_calc
use viewfactor smoothing vf_smooth
use radiosity solver rad_solver
emissivity = 0.50 on surface_2
emissivity = 0.80 on surface_3
Partial Enclosure Emissivity = 0.8
Partial Enclosure Area = {2.0%PI*0.03%(0.03-0.025)}
Partial Enclosure Temperature = 1035.02
end enclosure definition sph_shell

begin viewfactor calculation vf_calc
bsp tree max depth = 0 and min list length = 25

compute rule = hemicube
geometric tolerance = 1.0E-10
hemicube max subdivides =5
hemicube min separation =5.0
hemicube resolution = 500

check rowsum with tolerance = .001
output rule = verbose

end viewfactor calculation vf_calc
begin viewfactor smoothing vf_smooth

method = none
end viewfactor smoothing vf_smooth

249

begin radiosity solver rad_solver
coupling = mason
solver = chaparral gmres
convergence tolerance = 1.0E-9
maximum iterations 80
output rule = summary

end radiosity solver rad_solver

Begin Results Output Label diffusion output
database name = output{N}.e
at Step 0, increment =1
Nodal Variables = solution->temperature as T
nodal variables = analytic_temp
nodal variables = temp_error
element variables = hl_err 12_err linf_err
End Results Output Label diffusion output

End Aria Region myRegion
End Procedure myProcedure

END SIERRA Aria

12.6.5. Fully 2D Enclosure Radiation

250

12.7. CHEMISTRY

12.7.1. First Order Reaction (Uniform Temperature)
12.7.2. First Order Reaction (Spatially Varying Temperature)
12.7.3. First Order Reaction

BEGIN SIERRA Aria
Title Verification Problem for Coupled Chemistry Diffusion
load user plugin file ./Exact_solution.so

Begin Field Function species
Use Quadrature Field species
Integration Order Is 2
Dimension Is 2

End

Begin User Function ufuncAB
Load From File ./Exact_solution.so Using Function registerExactSolnAB
End

Begin User Function ufuncT
Load From File ./Exact_solution.so Using Function registerExactSolnT
End

Begin User Function energySrc
Load From File ./Exact_solution.so Using Function registerEnergySrc
End

Begin Norm Postprocessor L2_AB
Use Function ufuncAB
Subtract Function species
Compute Norms L2

End

Begin Norm Postprocessor L2_T
Use Function ufuncT
Subtract Function solution->temperature
Compute Norms L2

End

Begin Norm Postprocessor LInf_T
Use Function ufuncT
Subtract Function solution->temperature
Compute Norms LInfinity

End

Begin Norm Postprocessor H1_T
Use Function ufuncT
Subtract Function solution->temperature
Compute Norms H1

End

Begin Postprocessor Output Control pp_out
Comment Character is %
Write To File error{N}.txt

End

BEGIN Aria MATERIAL hmx

density = constant rho =1
specific heat = constant cp =1

251

heat conduction = basic
thermal conductivity = constant k =1
begin parameters for chemeq model hmx

number of reactions = 1

species names are A B
species phases are Condensed GAS

Condensed Fraction = 0.0

Steric Coefficients are 0.0

Log Preexponential Factors are 5
Activation Energies are 1000.0
Energy Releases are -20.0

Concentration Exponents for A are 1.0
Concentration Exponents for B are 0.0

Stoichiometric coefficients for A are -1.0
Stoichiometric coefficients for B are 1.0

end parameters for chemeq model hmx
end Aria MATERIAL hmx

BEGIN GLOBAL CONSTANTS
Ideal Gas Constant = 1.9872 #CGS_cal
END GLOBAL CONSTANTS

BEGIN FINITE ELEMENT MODEL block
Database Name = grid{N}x.exo $ exodusii
decomposition method = rib

Use material hmx for block_1
END FINITE ELEMENT MODEL block

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-06
END
END TPETRA EQUATION SOLVER

BEGIN procedure myProcedure

begin solution control description
Use System Main
Begin System Main
Simulation Start Time =
Simulation Termination Time
Begin Transient time_block
advance myregion
End Transient time_block
End System Main

o o
o o

BEGIN parameters for transient time_block
start time = 0.0
termination time = 0.04

BEGIN PARAMETERS FOR Aria REGION myRegion
time step variation = fixed
time integration method = second_order

initial time step size = {0.001*0.5%*(N-1)}

252

END PARAMETERS FOR Aria REGION myRegion
END parameters for transient time_block
end solution control description
begin aria region myRegion
Output Number Of Elements

Evaluate Postprocessor L2_AB
Evaluate Postprocessor L2_T
Evaluate Postprocessor LInf_T
Evaluate Postprocessor H1_T

EQ energy for temperature on all_blocks using Q1 with diff mass src
Source for Energy on all_blocks = chemeq_heating MODEL = hmx
use data block region_data

maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0E-10
nonlinear correction tolerance = 1.0E-10
Nonlinear Relaxation Factor = 1.

BEGIN CHEMEQ SOLVER FOR hmx
Chemistry step multiplier = 10.0
Epsilon Min = 0.0001
Epsilon Max = 10.0
Minimum Chemistry Timestep =
Percentage Asymptotics = 0.0
Asymptotic tolerance = 100.0

ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL
Absolute Tolerance = le-12
Relative Tolerance = le-9
Minimum Concentration for A = 1.0E-08
Activation Temperature = 0.0
species A = 1.0
species B = 0.0
END CHEMEQ SOLVER FOR hmx

1.0E-15

H O OHE B H

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e
At Step O, Increment = {2x*(N-1)}
Timestep Adjustment Interval = 1
Title Aria Chem/Diffusion Verification
Nodal Variables = solution->temperature as T
Element Variables = A B species

END RESULTS OUTPUT LABEL diffusion output

IC Encore Function on block_1 temperature = ufuncT
BC dirichlet for Temperature at surface_l1 = Encore_Function Name=ufuncT
Source For ENERGY on block_1 = Encore_Function Name=energySrc

USE FINITE ELEMENT MODEL block
usE LINEAR SOLVER solve_temperature

END Aria REGION myRegion
END procedure myProcedure

END SIERRA Aria

253

12.7.4. DAE and Pressure Test

BEGIN SIERRA Aria
Title Verification Problem for Coupled Chemistry Diffusion
load user plugin file ./Exact_solution.so

Begin Field Function species
Use Quadrature Field species
Integration Order Is 2
Dimension Is 1

End

Begin User Function ufuncA
Load From File ./Exact_solution.so Using Function registerExactSolnA
End

Begin Norm Postprocessor L2_A
Use Function ufuncA
Subtract Function species
Compute Norms L2

End

Begin Postprocessor Output Control pp_out
Comment Character is %
Write To File error.txt

End

BEGIN Aria MATERIAL hmx
density = constant rho =1
specific heat = constant cp =1
heat conduction = basic
thermal conductivity = constant k =1
pressure = constant value=3

begin parameters for chemeq model hmx
number of reactions = 1

species names are A
species phases are Condensed

Condensed Fraction = 0.0

Steric Coefficients are 0.0

Log Preexponential Factors are {log(5)}
Activation Energies are 10.0

Energy Releases are 0.0

Concentration Exponents for A are 0.0
Stoichiometric coefficients for A are -1.0
Pressure dependence
Reference pressure = 2.
Pressure exponents are 2.
Pressure = From_Material_Definition
#Distributed activation energy
Activation energy st devs are 1.
extent of reaction based on A

end parameters for chemeq model hmx

end Aria MATERIAL hmx

BEGIN GLOBAL CONSTANTS
Ideal Gas Constant = 1.

254

END GLOBAL CONSTANTS

BEGIN FINITE ELEMENT MODEL block
Database Name = 1block.g
decomposition method = rib

Use material hmx for block_1
END FINITE ELEMENT MODEL block

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

BEGIN procedure myProcedure

begin solution control description
Use System Main
Begin System Main
Simulation Start Time =
Simulation Termination Time
Begin Transient time_block
advance myregion
End Transient time_block
End System Main

N O
o o

BEGIN parameters for transient time_block
start time = 0.0
termination time = 2.0

BEGIN PARAMETERS FOR Aria REGION myRegion
time step variation = fixed
time integration method = second_order
initial time step size = {0.01%0.5}

END PARAMETERS FOR Aria REGION myRegion

END parameters for transient time_block
end solution control description

begin aria region myRegion

Evaluate Postprocessor L2_A

EQ energy for temperature on all_blocks using Q1 with diff mass src
Source for Energy on all_blocks = chemeq_heating MODEL = hmx
IC for temperature on all_blocks = constant value=3

maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0E-10
nonlinear correction tolerance = 1.0E-10
Nonlinear Relaxation Factor = 1.

BEGIN CHEMEQ SOLVER FOR hmx
ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL
Absolute Tolerance = le-12
Relative Tolerance = le-10
Activation Temperature = 0.0
species A = 1.0
END CHEMEQ SOLVER FOR hmx

Begin Postprocessor Group exact_soln

255

Interpolate function value of ufuncA into nodal field exact_A
End

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output.e
At Step O, Increment = 1
Timestep Adjustment Interval = 1
Title Aria Chem/Diffusion Verification
Nodal Variables = solution->temperature as T
Nodal Variables = exact_A
Element Variables = A
END RESULTS OUTPUT LABEL diffusion output

USE FINITE ELEMENT MODEL block
usE LINEAR SOLVER solve_temperature

END Aria REGION myRegion
END procedure myProcedure

END SIERRA Aria

12.7.5. PMDI Plugin Test

{ECHO(OFF)}
{include("params_nom")}
{ECHO(OFF)}
{include("params")}

BEGIN SIERRA aria
Title PMDI_Plugin_Verification
load user plugin file pmdi_multspecies.so

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 10000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-08
END
END TPETRA EQUATION SOLVER

BEGIN GLOBAL CONSTANTS
Stefan Boltzmann Constant = 5.67e-8 # W/m~2-K~4
ideal gas constant = 8314. # J/kgmol-K
END GLOBAL CONSTANTS

begin data block pmdi_data
real data_real = (\# Variable definition, units

{to} \# to Initial gas temperature, K- necessary to calculate pressure for first timestep
{vex0Tvex} \# vex/Tvex Excess volume/temp excess volume, m~3/K

{po} \# po Initial pressure, PA

{rbo*uden_pmdi} \# rbo Initial bulk density, kg/m~3

{rco} \# rco Initial condensed density, kg/m~3

{kb_1} \# kb, effectve cond. for Keff, W/mK (for20lb: 0.0486 0.706) radiation coefficient- 16/3/(a +sig s)
{kb_2} \# kb, W/mK

{t_1} \# t, K

{t_2} \# t, K

{rad_coef} \#

{ukb} \#

{ukrad} \#

{ukeff_pmdi} \#

{upress})

end data block pmdi_data

256

BEGIN ARIA MATERIAL pmdifoam
use data block pmdi_data
Emissivity = constant e = {0.8%uemis_pmdi}
density = constant rho = {rbo*uden_pmdil} #
specific heat = constant cp =1
tensor thermal conductivity = calore_user_sub name = ktdirpu type = element_tensor # W/m-K

Heat Conduction = generalized

BEGIN PARAMETERS FOR CHEMEQ MODEL reaction_model
number of reactions is 3
species names are FOAMA FOAMB FOAMC CHAR C02 LMWO HMWO
species phases are Condensed Condensed Condensed Condensed Gas Condensed Condensed
condensed fraction is 0. # Not used
steric coefficients are 0. 0. O. # Not used
log preexponential factors are 0. 0. 0. # Set these to O to prevent any reactions for the purpose of verification
activation energies are {179441062.*uEl_pmdi} {179441062.*uEl_pmdi} {179441062.*uEl_pmdi} # J/kmol (e/R=21583 KENDATA)
energy release units are per unit mass
energy releases are 0 0 0 # J/Kg no energy for first cut

Rxn-->1 2 # Mechanism

concentration exponents for FOAMA ARE 1. 0. O. # A -> C02 --> 0.45 PMDIRPU -> 0.252 C02 + 0.198 LMWO
concentration exponents for FOAMB ARE 0. 1. O. # B-> HMWO --> 0.15 PMDIRPU -> 0.15 HMWO
concentration exponents for FOAMC ARE 0. 0. 1. # C-> HMWO --> 0.4 PMDIRPU -> 0.2 HMW0+0.2 char
concentration exponents for CHAR ARE 0. 0. O. # 207 CHAR FORMATION

concentration exponents for CO02 ARE 0. 0. 0. #

concentration exponents for LMWO ARE 0. 0. 0. #

concentration exponents for HMWO ARE 0. 0. O

stoichiometric coefficients for FOAMA ARE -1.0 0.0 0.0 # dA/dt = r1

stoichiometric coefficients for FOAMB ARE 0.0 -1.0 0.0

stoichiometric coefficients for FOAMC ARE 0.0 0.0 -1.0

stoichiometric coefficients for CHAR ARE 0.0 0.0 5

stoichiometric coefficients for C02 ARE +0.56 0.0 # dB/dt = 0.252/0.45 r1
stoichiometric coefficients for LMWO ARE +0.44 0.0 # dC/dt = 0.198/0.45 r1
stoichiometric coefficients for HMWO ARE +0.0 +1.0 +0.5 # dD/dt = r2 + r3

aux variable names are sf, phi, keff, frxn, krad #, p, krad, kbulk
aux variable subroutine is calcauxvar
END PARAMETERS FOR CHEMEQ MODEL reaction_model
END ARIA MATERIAL pmdifoam

BEGIN FINITE ELEMENT MODEL FoamInCan
database name is 1block.g
Use Material pmdifoam for block_1
END FINITE ELEMENT MODEL FoamInCan

BEGIN PROCEDURE myProcedure

begin solution control description
use system main
begin system main
simulation start time = 0.0
simulation termination time = 1.0

begin transient solution_block_1
advance myRegion
end transient solution_block_1
end system main

begin parameters for transient solution_block_1
start time = 0.0
begin parameters for aria region myRegion
time step variation = fixed
initial time step size = 0.1
end parameters for aria region myRegion
end

257

end solution control description

BEGIN ARIA REGION myRegion
use finite element model FoamInCan Model Coordinates are model_coordinates
use linear solver solve_temperature

nonlinear solution strategy = newton
maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0e-8
nonlinear relaxation factor = 1.0
use dof averaged nonlinear residual

BEGIN CHEMEQ SOLVER FOR reaction_model
ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL
absolute tolerance = le-12
relative tolerance = 1le-9

aux variable names are sf, phi, rbulk, keff
aux variable sf =1.0 # initial solid fraction value
aux variable phi = {phi} # initial gas volume fraction
aux variable keff = 0. # initial effective thermal conductivity
aux variable frxn = 1.0 # initial bulk demnsity
aux variable krad = 0.0 # radcond

species FOAMA = {1./7.
species FOAMB = {1./7.
species FOAMC = {1./7.
species CHAR /7.
species C02 = {1./7.
species LMWO = {1./7.
species HMWO = {1./7.
minimum concentration for FOAMA = le-12
minimum concentration for FOAMB = le-12
minimum concentration for FOAMC le-12
chemistry step multiplier = 1Eb5
END CHEMEQR SOLVER FOR reaction_model

Il
-~
.

I e e el A S

EQ ENERGY for TEMPERATURE on block_1 using Q1 with mass src
Source for energy on block_1 = chemeq_heating model=reaction_model
IC for temperature on block_1 = constant value={2*to}

Define Global Scalar gmasco2 as real operation sum initial value 0.0
Define Global Scalar gmasn2 as real operation sum initial value 0.0
Define Global Scalar gmaslowmw as real operation sum initial value 0.0
Define Global Scalar gmashighmw as real operation sum initial value 0.0

Define Global Scalar itv as real operation sum initial value 0.0

Define Global Scalar gvtot as real operation sum initial value O

Define Global Scalar p as real operation min initial value 101325.0
Define Global Scalar psig as real operation min initial value 0.0

Define Global Scalar padmix as real operation min initial value 101325.0
Define Global Scalar psigadmix as real operation min initial value 0.0
Define Global Scalar mcvT as real operation sum initial value 0.0

Define Global Scalar mcv as real operation min initial value 0.0

Define Global Scalar gvol as real operation sum initial value 0.0

Define Global Scalar psigl as real operation min initial value 0.0
Define Global Scalar psigadmixl as real operation min initial value 0.0
Define Global Scalar poc as real operation max initial value 0.0

Define Global Scalar count as int operation min initial value O

Define Global Scalar psigxuncert as real operation min initial value 0.0
Define Global Scalar pxuncertsig as real operation min initial value 0.0

Define Global Scalar molesn2 as real operation min initial value 0.0
Define Global Scalar molesco2 as real operation min initial value 0.0

258

Define Global Scalar moleslowmw as real operation min initial value 0.0
Define Global Scalar moleshighmw as real operation min initial value 0.0
Define Global Scalar molesofv as real operation min initial value 0.0

Define Global Scalar molestotal as real operation min initial value 0.0

BEGIN RESULTS OUTPUT output_1
Database Name is %B.e
Database Type is EXODUSII
at step O, increment is 1
nodal variables = solution->temperature as temp
nodal variables = solution->temperatureDot as TDOT
element variables = Density as RHO
element variables = FOAMA FOAMB FOAM C CO2 CHAR LMWO HMWO
element variables = sf, phi, keff, frxn, krad
global variables = p
global variables = psig

END RESULTS OUTPUT output_1

END ARIA REGION myRegion

END PROCEDURE myProcedure
END SIERRA aria

259

12.8. MISCELLANEOUS

12.8.1. Thermal Postprocessing

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = CONSTANT rho =1
Thermal Conductivity = Constant k =1
Specific Heat = Constant cp =1
heat conduction = basic

user expression = encore_function name = src user_tag = src
user expression = encore_function name = ufunc user_tag = ufunc

END

BEGIN ARIA MATERIAL Mathite
Density = CONSTANT rho =1
Thermal Conductivity = Constant k =1
Specific Heat = Constant cp =1
heat conduction = basic

user expression = encore_function name = src user_tag = src
user expression = encore_function name = ufunc user_tag = ufunc

END
Begin Global Constants

Stefan Boltzmann Constant = 5.67e-8
End

Begin Aria Material surf_2_models

BC Reference Temperature = encore_function name = cf_Tref

Heat Transfer Coefficient = constant h=10.0

user expression = encore_function name = cf_Tref user_tag = cf_Tref
user expression = encore_function name = cf_bc_exact user_tag = cf_bc_exact
user expression = encore_function name = rf_Tref user_tag = rf_Tref
user expression = encore_function name = rf_bc_exact user_tag = rf_bc_exact

End

Begin Aria Material surf_3_models

BC Rad Reference Temperature = encore_function name

Emissivity

Constant E=0.6
Radiation form factor = Constant F=1.0

= rf_Tref

user expression = encore_function name = cf_Tref user_tag = cf_Tref
user expression = encore_function name = cf_bc_exact user_tag = cf_bc_exact
user expression = encore_function name = rf_Tref user_tag = rf_Tref
user expression = encore_function name = rf_bc_exact user_tag = rf_bc_exact

End

BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE
BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-14
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL cube
database name = cube_two_blocks_hex8_h{N}.g
coordinate system is cartesian

[0,1] x [-0.5,0.5] x [-0.5,0.5]

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END

260

[-1,0] x [-0.5,0.5] x [-0.5,0.5]

BEGIN PARAMETERS FOR BLOCK block_2
material Mathite

END

Use Material surf_2_models for surface_2
Use Material surf_3_models for surface_3

END FINITE ELEMENT MODEL cube

Begin Global Function Parameters gfp

Parameter TO = 400 # [K]
Parameter CO = 2.0
Parameter C1 = 3.0
Parameter C2 = 4.0
Parameter C3 = 0.4
Parameter h = 10.0

Parameter eps = 0.6
Parameter sigma = 5
End

Begin Field Function ffunc
Use Nodal Field nonlinear_solution->TEMPERATURE
End

exact solution
Begin User Function ufunc

Load From File ./somefunc.so Using Function registerExactSoln
End

Begin Difference Function dfunc
Difference Is ufunc - ffunc
End

Begin User Function src

Integration Order Is 4

Load From File ./somefunc.so Using Function registerSrc
End

Begin User Function cf_Tref

Integration Order Is 4

Load From File ./somefunc.so Using Function registerConvHeatFlux_Tref
End

exact convective flux
Begin User Function cf_bc_exact

Integration Order Is 4

Load From File ./somefunc.so Using Function registerExactConvHeatFlux
End

Begin User Function rf_Tref
Load From File ./somefunc.so Using Function registerRadFlux_Tref
End

exact radiative flux
Begin User Function rf_bc_exact

Integration Order Is 4

Load From File ./somefunc.so Using Function registerExactRadFlux
End

Begin Tabular Function Output Postprocessor tfo_sset2
Use Functions model_coordinates ffunc ufunc dfunc
Surfaces surface_2
Write To File values_sset2_{N}.dat

End

BEGIN PROCEDURE myAriaProcedure

261

Begin Solution Control Description
Use System Main
Begin System Main
Begin Transient MySolveBlock
Advance myRegion
End
Simulation Max Global Iterations = 1
Simulation Start Time = 0
Simulation Termination Time = 1
End
Begin Parameters for Transient MySolveBlock
End
End

BEGIN ARIA REGION myRegion

use finite element model cube
use linear solver solve_temperature

nonlinear solution strategy = newton

maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0e-16
nonlinear correction tolerance = 1.0e-12
nonlinear relaxation factor = 1.0

use dof averaged nonlinear residual

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

MESH GROUP Dirichlet_Surface = surface_4 surface_5 surface_6 surface_7
mesh group block_1_2 = block_1 block_2
BC Dirichlet for Temperature on Dirichlet_Surface = encore_function name=ufunc

BC Flux for Energy on surface_2 = Generalized_Nat_Conv Power_Output=cf_bc_ipo Flux_Output=cf_bc_ifo
BC Flux for Energy on surface_3 = Generalized_Rad Power_Output=rf_bc_ipo Flux_Output=rf_bc_ifo

SOURCE for ENERGY on all_blocks = encore_function name=src Power_Output=src_ipo

Evaluate Postprocessor tfo_sset2

postprocess integral of expression cf_bc_exact on surface_2 as cf_bc_ipo_ex
postprocess integral of expression rf_bc_exact on surface_3 as rf_bc_ipo_ex
postprocess integral of expression src on block_1_2 as src_ipo_ex

postprocess average of expression cf_bc_exact on surface_2 as cf_bc_ifo_ex
postprocess average of expression rf_bc_exact on surface_3 as rf_bc_ifo_ex
postprocess value of expression ufunc on block_1_2 as pp->ufunc

postprocess 1_2_norm of function "ufunc - TEMPERATURE" on block_1_2 as 12_error

Begin data probe eval_bl

at step 1 increment is 1

nodal_location nonlinear_solution->temperature location = -0.151720462393008 0.146935733548329 -0.393641401879319
end

Begin data probe eval_bl_ex

at step 1 increment is 1

nodal_location pp->ufunc location = -0.151720462393008 0.146935733548329 -0.393641401879319 1label eval_bl_ex
end

Begin data probe eval_bilb2

at step 1 increment is 1

nodal_location nonlinear_solution->temperature location = 0 0.162595269728099 -0.377464159584852 label eval_b1b2
end

Begin data probe eval_blb2_ex
at step 1 increment is 1

262

nodal_location pp->ufunc location = 0 0.162595269728099 -0.377464159584852 label eval_blb2_ex
end

Begin data probe eval_s2

at step 1 increment is 1

nodal_location nonlinear_solution->temperature location = -0.855758209426849 0.159603369582751 0.5 label eval_s2
end

Begin data probe eval_s2_ex

at step 1 increment is 1

nodal_location pp->ufunc location = -0.855758209426849 0.159603369582751 0.5 label eval_s2_ex
end

postprocess global_function "cf_bc_ipo_ex - cf_bc_ipo" as cf_bc_ipo_err
postprocess global_function "rf_bc_ipo_ex - rf_bc_ipo" as rf_bc_ipo_err
postprocess global_function "cf_bc_ifo_ex - cf_bc_ifo" as cf_bc_ifo_err
postprocess global_function "rf_bc_ifo_ex - rf_bc_ifo" as rf_bc_ifo_err
postprocess global_function "src_ipo_ex - src_ipo" as src_ipo_err
postprocess global_function "eval_bl_ex - eval_bl" as eval_bl_err
postprocess global_function "eval_blb2_ex - eval_blb2" as eval_blb2_err
postprocess global_function "eval_s2_ex - eval_s2" as eval_s2_err

Begin Heartbeat The_Heartbeat

Stream Name = globals{N}.txt
Timestamp Format = "" # Omit time stamps for diffing purposes.
Precision =8

At Step O increment = 1

Legend = on

Labels = off

Format = csv

variable is Global time

variable is Global number_of_nodes as num_nodes

variable is Global 12_error

variable is Global cf_bc_ipo_err

variable is Global rf_bc_ipo_err

variable is Global cf_bc_ifo_err

variable is Global rf_bc_ifo_err

variable is Global eval_bl_err

variable is Global eval_blb2_err

variable is Global eval_s2_err
End

END ARIA REGION myRegion
END PROCEDURE myAriaProcedure

END SIERRA myJob

12.8.2. Postprocess Min/Max

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite

Density = constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER
BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

263

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}.e
coordinate system is cartesian
decomposition method = rib

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin String Function exact_soln

Value Is "sin(7*x) * sin(8*y)"

Gradient Is "7 * cos(7xx) * sin(8xy)" "8 x sin(7*x) * cos(8xy)"
End

Begin String Function exact_src
Value Is "(49 + 64) * sin(7*x) * sin(8*y)"
End

Begin Field Function ffunc
Use Nodal Field nonlinear_solution->TEMPERATURE
End

Begin Norm Postprocessor 12
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2

End

Begin Norm Postprocessor hi
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity

End

Begin Min Max Postprocessor max_node_bl
Use Function ffunc
Compute Max
Volumes block_1

End

Begin Min Max Postprocessor min_node_bl
Use Function ffunc
Compute Min
Volumes block_1

End

Begin Min Max Postprocessor max_node_s2
Use Function ffunc
Compute Max
Surfaces surface_2 # x=1

End

Begin Min Max Postprocessor min_node_s2
Use Function ffunc
Compute Min
Surfaces surface_2 # x=1

End

code used to compute exact errors in Min Max PP
Begin String Function sfunc_max_node_bl_ex

264

Value Is "1.
End
Begin String Fu
Value Is "-1
End

Begin String Fu
Value Is "si
End

Begin String Fu
Value Is "-s
End

Begin Evaluate
Use Function
Location 0 O

End

Begin Evaluate
Use Function
Location 0 O

End

Begin Evaluate

o"

nction
'OII

nction
n(7)"

nction
in(7)"

Function Postprocessor
sfunc_max_node_b1l_ex
0

Function Postprocessor
sfunc_min_node_bl_ex
0

Function Postprocessor

sfunc_min_node_bl_ex

sfunc_max_node_s2_ex

sfunc_min_node_s2_ex

max_node_bl_ex

min_node_bl_ex

max_node_s2_ex

Use Function
Location 0 O
End

sfunc_max_node_s2_ex
0

Begin Evaluate Function Postprocessor
Use Function sfunc_min_node_s2_ex
Location 0 0 O

End

min_node_s2_ex

Begin Difference
Difference is
End

Postprocessor max_node_bl_err
max_node_bl_ex - max_node_bl

Begin Difference
Difference is
End

Postprocessor min_node_bl_err
min_node_bl - min_node_bl_ex

Begin Difference
Difference is
End

Postprocessor max_node_s2_err
max_node_s2_ex - max_node_s2

Begin Difference
Difference is

End

end code used to compute exact errors in Min Max PP

Postprocessor min_node_s2_err
min_node_s2 - min_node_s2_ex

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors_h{N}.dat
Floating Point Precision Is 8
Floating Point Format Is Scientific
End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential The_Time_Block
Advance myRegion
End
Simulation Start Time

0

265

Simulation Termination Time = 1
End

Begin Parameters For Transient The_Time_Block

End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton

Maximum Nonlinear Iterations =

Nonlinear Residual Tolerance
Nonlinear Correction Toleranc
Nonlinear Relaxation Factor

e

10
.0e-12
1.0e-12
1.0

use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solv

BC dirichlet for Temperature
BC dirichlet for Temperature
BC dirichlet for Temperature
BC dirichlet for Temperature

EQ ENERGY for TEMPERATURE on block_1

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

er

at
at
at
at

surface_1
surface_2
surface_3
surface_4

Encore_Function
Encore_Function
Encore_Function
Encore_Function

using Q1 with DIFF SRC

Evaluate Postprocessor max_node_b1l
Evaluate Postprocessor min_node_b1l

Evaluate Postprocessor max_node_s2
Evaluate Postprocessor min_node_s2

Begin Postprocessor Group zzz
Output Number of Nodes

Evaluate Postprocessor 12
Evaluate Postprocessor hil
Evaluate Postprocessor linf

Evaluate Postprocessor max_node_bl_err
Evaluate Postprocessor min_node_bl_err
Evaluate Postprocessor max_node_s2_err
Evaluate Postprocessor min_node_s2_err

End

Begin Solution Options

post process normalized temperature on surface_2 as t_s2
post process normalized temperature on block_1 as t_bl

End

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = aria_h{N}.e
at step O, increment = 1

time interval is 1.0
title Aria cube test

nodal variables = nonlinear_solution->TEMPERATURE as T

global variables = t_s2 t_

bl

END RESULTS OUTPUT LABEL diffusion output

Begin History Output blah

database Name = aria_h{N}.hist

at time 1 interval is 1
Variable = global t_s2
Variable = global t_bl

End

END ARIA REGION myRegion

266

Name=exact_soln
Name=exact_soln
Name=exact_soln
Name=exact_soln

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.8.3. Local Coordinates: Cartesian

Aria input file heat condution in local
coodinate system

BEGIN SIERRA MyProblem

Begin User Function ufunc
Load From File ./cartesian.so Using Function registerExactSolution
End

Begin Postprocessor Output Control pp_out
Comment Character Is 7%
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific
End

load user plugin file ./cartesian.so
load user plugin file ./cartesian.so
load user plugin file ./cartesian.so

begin data block region_data
TO T1 Kxx Kyy Kzz Lx Ly Lz thetal theta2
Real r_data = 400.0 100.0 10.0 1.0 1.0 1.0 1.0 1.0 45.0 22.5
end data block region_data

BEGIN LOCAL COORDINATE SYSTEM CS_Block

TYPE = Cartesian

ORIGIN = 0.000000 0.000000 0.00000

POINT = 0.707106781186548 0.653281482438188 0.270598050073098
VECTOR = O -0.382683432365090 0.923879532511287

END

BEGIN ARIA MATERIAL M_Block
DENSITY = CONSTANT rho = 0.1
TENSOR THERMAL CONDUCTIVITY = CONSTANT XX=10.0 YY=1.0 ZZ=1.0
SPECIFIC HEAT = CONSTANT CP = 0.5
Heat Conduction = Generalized
END ARIA MATERIAL M_Block

BEGIN TPETRA EQUATION SOLVER LINEARSOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL FE_Block
DATABASE NAME = cartesian{N}.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
MATERIAL M_Block
LOCAL COORDINATE SYSTEM = CS_Block
END PARAMETERS FOR BLOCK block_1

267

END

BEGIN PROCEDURE MyProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MyBlock
Advance Region_Block

End

End

H OH B H O HHHHH

End

BEGIN ARIA REGION Region_Block
nonlinear solution strategy
use data block region_data

Output Number of Nodes
Compute Difference L2

NONLINEAR RESIDUAL TOLERANCE
NONLINEAR CORRECTION TOLERANCE
MAXIMUM NONLINEAR ITERATIONS
NONLINEAR RELAXATION FACTOR

newton

0f ufunc solution->temperature Store In 12_error_norm2
Compute Difference LInfinity Of ufunc solution->temperature Store In linf_error_norm

1.0e-10
1.0e-10
10

1.0

name
name
name
name
name
name

-38.
-38.

-38.

= localCoord_bc
= localCoord_bc
= localCoord_bc
= localCoord_bc
= localCoord_bc
= localCoord_bc

37 92.39
37 92.39

37 92.39

IC for temperature on block_1 = calore_user_sub name = localCoord_ic type=node
BC dirichlet for temperature on surface_1 = calore_user_sub
BC dirichlet for temperature on surface_2 = calore_user_sub
BC dirichlet for temperature on surface_3 = calore_user_sub
BC dirichlet for temperature on surface_4 calore_user_sub
BC dirichlet for temperature on surface_b5 calore_user_sub
BC dirichlet for temperature on surface_6 calore_user_sub
IC CONST ON block_1 Temperature = 0.0

along z

BC Const Dirichlet on surface_1 Temperature = 100.0

BC Const Dirichlet on surface_2 Temperature = 0.0

along y

BC Linear Dirichlet on surface_3 Temperature Coeff = 50. 0.
BC Linear Dirichlet on surface_5 Temperature Coeff = 50. 0.
along x

BC Linear Dirichlet on surface_4 Temperature Coeff = 50. 0.
BC Linear Dirichlet on surface_6 Temperature Coeff = 50. 0.

EQ ENERGY FOR TEMPERATURE ON block_1 USING Q1 WITH DIFF #SRC
#SOURCE for Temperature on block_1 =

Begin Volume Heating juan
add volume block_1
element subroutine = localCoord_vhs

End

USE FINITE ELEMENT MODEL FE_Block

BEGIN RESULTS OUTPUT TemperatureOutput

DATABASE NAME = output{N}.e

AT STEP 1, INCREMENT = 1
TITLE Aria Temperature in Local Coordinate System Verification Problem
NODAL VARIABLES = solution->TEMPERATURE AS T
Element Variables = 12_error_norm2 as l2error
Element Variables = linf_error_norm as linf
END RESULTS OUTPUT TemperatureQutput

USE LINEAR SOLVER LinearSolver

END

268

-38.

37 92.39

type=node
type=node
type=node
type=node
type=node
type=node

END
END SIERRA MyProblem

12.8.4. Local Coordinates: Cylindrical

Aria input file heat condution in local
coodinate system

BEGIN SIERRA MyProblem

Begin Field Function ffunc
Use Nodal Field solution->temperature
End

Begin User Function ufunc
Load From File ./cylindrical.so Using Function registerExactSolution
End

Begin Definition for Function krr
Type is piecewise linear
Begin Values
0o 1.0
400 1.0
End Values
Scale by 10.0
End

Begin Definition for Function ktt
Type is piecewise linear
Begin Values
0o 1.0
400 1.0
End Values
Scale by 1.0
End

Begin Definition for Function kzz
Type is piecewise linear
Begin Values
0 1.0
400 1.0
End Values
End

Begin Postprocessor Output Control pp_out
Comment Character Is ¥
Write To File errors{N}.dat
Floating Point Precision Is 6
Floating Point Format Is Scientific
End

load user plugin file ./cylindrical.so
begin data block region_data
TO T1 Krr Ktt Kzz Lx Lz thetal theta2
Real r_data = 400.0 100.0 10.0 1.0 1.0 1.0 1.0 45.0 22.5

end data block region_data

BEGIN LOCAL COORDINATE SYSTEM CS_Block

TYPE = Cylindrical

ORIGIN = 0.000000 0.000000 0.00000

POINT = 0.707106781186548 0.653281482438188 0.270598050073098
VECTOR = 0 -0.382683432365090 0.923879532511287

END

BEGIN ARIA MATERIAL M_Block

269

DENSITY = CONSTANT rho = 0.1
#tensor thermal conductivity = user_function X=Temperature Name_XX=krr Name_YY=ktt Name_ZZ=kzz
TENSOR THERMAL CONDUCTIVITY = CONSTANT XX=10.0 YY=1.0 ZZ=1.0
SPECIFIC HEAT = CONSTANT CP = 0.5
Heat Conduction = Generalized
END ARIA MATERIAL M_Block

BEGIN TPETRA EQUATION SOLVER LINEARSOLVER
BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RO
CONVERGENCE TOLERANCE = 1.000000e-12
END
END TPETRA EQUATION SOLVER

BEGIN FINITE ELEMENT MODEL FE_Block
DATABASE NAME = cylindrical{N}.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
MATERIAL M_Block
LOCAL COORDINATE SYSTEM = CS_Block
END PARAMETERS FOR BLOCK block_1
END

BEGIN PROCEDURE MyProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MyBlock
Advance Region_Block
End
End
End

BEGIN ARIA REGION Region_Block
nonlinear solution strategy = newton
use data block region_data

Output Number of Nodes
Compute Difference L2 0f ufunc ffunc Store In 12_error_norm2
Compute Difference LInfinity 0f ufunc ffunc Store In linf_error_norm

NONLINEAR RESIDUAL TOLERANCE = 1.0e-10
NONLINEAR CORRECTION TOLERANCE = 1.0e-10
MAXIMUM NONLINEAR ITERATIONS = 10
NONLINEAR RELAXATION FACTOR =1.0

BC dirichlet for temperature on surface_1 = calore_user_sub name localCoord_bc type=node
BC dirichlet for temperature on surface_2 = calore_user_sub name localCoord_bc type=node
BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node

EQ ENERGY FOR TEMPERATURE ON block_1 USING Q1 WITH DIFF SRC

Begin Volume Heating juan

add volume block_1

element subroutine = localCoord_vhs
End

Begin Initial Condition BlockName
A1l Volumes
Temperature = 400.0

End

270

USE FINITE ELEMENT MODEL FE_Block
Interpolate Function Value of ufunc Into Nodal Field Tex

BEGIN RESULTS OUTPUT TemperatureOutput
DATABASE NAME = output{N}.e
AT STEP 1, INCREMENT = 1
TITLE Aria Temperature in Local Coordinate System Verification Problem
NODAL VARIABLES = solution->TEMPERATURE AS T
NODAL VARIABLES = Tex
Element Variables = 12_error_norm2 as l2error
Element Variables = linf_error_norm as linf
END RESULTS OUTPUT TemperatureOutput

USE LINEAR SOLVER LinearSolver
END

END
END SIERRA MyProblem

271

Appendices

273

DISTRIBUTION
Email—Internal | NG

Technical Library 01177 libref@sandia.gov

275

277

Sandia
National
Laboratories

Sandia National Laboratories

is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Contents
	List of Figures
	List of Tables
	Introduction
	Basic Thermal Tests
	Steady Heat Conduction: Hex8 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Heat Conduction: Hex20 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Heat Conduction: Hex27 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Heat Conduction: Tet4 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Heat Conduction: Tet4Tet10 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Heat Conduction: Tet10 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Heat Conduction: Hex8 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Heat Conduction: Tet4 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Heat Conduction: Tet4Tet10 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Heat Conduction: Tet10 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	PostProcess Min/Max
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Adaptivity
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Boundary Conditions
	Radiative Heat Flux
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Radiative Heat Flux From Fortran User Subroutine
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Convective Heat Flux
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Convective Flux (Fortran sub-routine)
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Convective Flux (User field from Exodus read-in)
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Heat Flux
	Thermal Heat Flux (Basic)
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Heat Flux (Flux node variable user field)
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Heat Flux (Flux node variable user field)
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Heat Flux (Fortran Subroutine)
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Radiative Heat Flux
	Basic Calore-Style BC
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	With Fortran Subroutines
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	With User Subroutines
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Advective Bar
	Steady Advection-Diffusion
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Transient Advection-Diffusion
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Transient Advection-Diffusion in 2D
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Solution Verification
	Features Tested
	Material Parameters
	Verification of Solution

	Thermal Contact
	1D Flat Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results: Hex8 Tied
	Results: Hex8 Resistance
	Results: Tet4 Tied
	Results: Tet4 Resistance
	Results: Hex8-Tet4 Tied
	Results: Hex8-Tet4 Resistance

	3D Curved Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results: Hex8-Hex8 Contact
	Results: Tet4-Tet4 Contact
	Results: Hex8-Tet4 Contact

	Steady Hex8 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Hex20 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Hex27 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Tet4 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Tet4Tet10 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Tet10 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Tet10 Dash Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Tet4Tet10 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Tet10 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Hex8 Tied Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Tet4 Tied Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Element Death
	CDFEM Element Death (Heat Flux)
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results: Tri3
	Results: Tet4

	3D Spherical Shell Enclosure
	Problem Description
	Features Tested
	Boundary and Initial Conditions
	Material Parameters
	Verification of Solution
	Results

	Standard Element Death (Heat Flux)
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results: 1D Hex8
	Results: 1D Quad4
	Results: 1D Tri3
	Results: 2D Quad4
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results: 3D Hex8
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Time Integration
	Adaptive Time Integration
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results: First Order Fixed
	Results: First Order Adaptive
	Results: Second Order Fixed
	Results: Second Order Adaptive
	Results: BDF2 Fixed
	Results: BDF2 Adaptive

	Enclosure Radiation
	2D Cylindrical Shell Enclosure
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results

	2D Annular Enclosure
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	3D Spherical Shell Enclosure
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results

	3D Spherical Shell Partial Enclosure
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Chemistry
	First Order Reaction (Spatially Varying Temperature)
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	First Order Reaction
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	DAE and Pressure Test
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	PMDI Plugin Test
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Miscellaneous
	Thermal Postprocessing
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Local Coordinates: Cartesian
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Local Coordinates: Cylindrical
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Low-Mach Fluid Flow
	How to Build this Document
	Input Decks For Verification Problems
	Basic Thermal Tests
	Steady Heat Conduction: Hex8 Meshes
	Steady Heat Conduction: Hex20 Meshes
	Steady Heat Conduction: Hex27 Meshes
	Steady Heat Conduction: Tet4 Meshes
	Steady Heat Conduction: Tet4Tet10 Meshes
	Steady Heat Conduction: Tet10 Meshes
	Transient Heat Conduction: Hex8 Meshes
	Transient Heat Conduction: Tet4 Meshes
	Transient Heat Conduction: Tet4Tet10 Meshes
	Transient Heat Conduction: Tet10 Meshes

	Thermal Boundary Conditions
	Radiative Heat Flux 3.1
	Radiative Heat Flux From Fortran User Subroutine
	Convective Heat Flux 3.3

	Thermal Contact
	1D Flat Contact 4.1
	Hex8 Tied
	Hex8 Resistance
	Tet4 Tied
	Tet4 Resistance
	Hex8-Tet4 Tied
	Hex8-Tet4 Resistance

	3D Curved Contact 4.2
	Hex8-Hex8 Case
	Tet4-Tet4 Case
	Hex8-Tet4 Case

	Steady Hex8 Contact
	Steady Hex20 Contact
	Steady Hex27 Contact
	Steady Tet4 Contact
	Steady Tet4Tet10 Contact
	Steady Tet10 Contact
	Steady Tet10 Dash Contact
	Transient Tet4Tet10 Contact
	Transient Tet10 Contact

	Element Death
	CDFEM Element Death (Heat Flux)
	Tri3
	Tet4

	3D Spherical Shell Enclosure

	Time Integration
	Adaptive Time Integration
	First Order Fixed
	First Order Adaptive
	Second Order Fixed
	Second Order Adaptive
	BDF2 Fixed
	BDF2 Adaptive

	Enclosure Radiation
	2D Cylindrical Shell Enclosure
	2D Annular Enclosure
	3D Spherical Shell Enclosure
	3D Spherical Shell Partial Enclosure
	Fully 2D Enclosure Radiation

	Chemistry
	First Order Reaction (Uniform Temperature)
	First Order Reaction (Spatially Varying Temperature)
	First Order Reaction
	DAE and Pressure Test
	PMDI Plugin Test

	Miscellaneous
	Thermal Postprocessing
	Postprocess Min/Max
	Local Coordinates: Cartesian
	Local Coordinates: Cylindrical

