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ABSTRACT

This report describes the credibility activities undertaken in support of Gemma code
development in FY20, which include Verification & Validation (V&V), Uncertainty
Quantification (UQ), and Credibility process application. The main goal of these activities is to
establish capabilities and process frameworks that can be more broadly applied to new and
more advanced problems as the Gemma code development effort matures. This will provide
Gemma developers and analysts with the tools needed to generate credibility evidence in
support of Gemma predictions for future use cases. The FY20 Gemma V&V /UQ/Credibility
activities described in this report include experimental uncertainty analysis, the development
and use of methods for optimal design of computer experiments, and the development of a
framework for validation. These initial activities supported the development of broader
credibility planning for Gemma that continued into FY21.
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ACRONYMS AND DEFINITIONS

Abbreviation

Definition

CompSim Computational Simulation

EM Electromagnetics

PLOAS Probability of loss of assured safety
Qol Quantity of Interest

Q-Q Quantile-Quantile Plot

SA Sensitivity Analysis

SE Shielding Effectiveness

uQ Uncertainty Quantification

V&V Verification & Validation




1. INTRODUCTION

This report describes the credibility activities that have taken place in parallel to Gemma code
development in FY20. The credibility activities undertaken in support of Gemma code development
include Verification & Validation (V&V), Uncertainty Quantification (UQ), and Credibility process
application. The main goal of these activities is to establish capabilities and process frameworks that
can be more broadly applied to new and more advanced problems as the Gemma code development
effort matures. This will provide Gemma developers and analysts with the tools needed to generate
credibility evidence in support of Gemma predictions for future use cases.

The credibility team supporting the Gemma code development effort is made up of a cross-
discipline group of experts including V&V/UQ practitioners, Dakota experts, and statisticians. This
team leverages the expertise and experience across these disciplines to develop strategies and
solutions to support the Gemma code development effort. The efforts undertaken by this team
include support of both experimental and computational simulation activities.

The credibility activities undertaken in support of Gemma development have been tied to an overall
credibility process strategy that is structured around the credibility tools and methodologies that
have been developed by department 1544. The computational simulation (CompSim) credibility
process involves assembling and documenting evidence to ascertain and communicate the
believability of predictions that are produced from computational simulations [1]. The components
of the CompSim credibility process in which activities have been undertaken in support of the
Gemma code development effort in FY20 include experimental activities to quantify experimental
result uncertainty, the development of a methodology for determining the optimal design of
computer experiments, and the development of a validation framework methodology and the
application of this methodology to a problem of interest. Verification activities have also taken place
in parallel to these activities and are described in a separate report [2]. Each of the credibility
activities undertaken in FY20 is described in the sections that follow. These activities are tied to the
development and execution of a larger Gemma V&V /UQ/Credibility plan that will be documented
in FY21.
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2. EXPERIMENTAL ACTIVITIES

2.1. Q-Killer Experimental Results & Analysis

An experiment "Q-killer" was planned and executed in order to quantify uncertainty in several
quantities of interest (Qols). As a test instrument this experiment used a long-slotted cylinder with
an absorber material. The test was performed under several experimental conditions: (1) Using 1
mm absorber, 2 mm absorber, or 1 mm absorber with a D-Dot variation'; (2) Two modes, at 1.13
GHz and 1.23 GHz.

Prior to modeling, we first investigate the distribution of the results. Quantile-quantile (QQ) plots
are commonly used to determine the suitability of a distribution for a given dataset. Given the small
sample sizes, however, we pool the data in the following manner: For each treatment (combination
of factor levels size and mode), we standardize the data by subtracting the mean and dividing by the
standard deviation. If a normal distribution is satisfied, this will transform all of the data to a N(0,1)
distribution, and the combined data would also represent a normal distribution.
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Figure 2-1 Quantile-quantile plots for SE and Q-factor.

In Figure 2-1 we provide the QQ plots for both shielding effectiveness (SE), which is a measure of
the electric field in a cavity relative to the incident exterior field strength [5], and the quality factor

' D-Dot is the AD80 d-dot free field sensor. This sensor is connected to a hybrid coupler, and data is collected from
both the sum and delta ports.
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(Q-factor), which describes how good a resonator the cavity is at a given resonant frequency (a
higher Q-factor will be associated with a sharper resonant peak in an SE-vs-frequency plot) [6]. The
data for each is within the range of that which is expected from ordinary variation from a normal
distribution. Hence, we will assume that a normal likelihood for the data is a reasonable approach.

To model the Qols (SE and Q-factor) we construct a Bayesian hierarchical model. For explanation
we refer to SE, but the same framework is applied to the Q-factor.

We specify a cell-means model, in which each treatment (a combination of size and mode) is
modeled with a separate mean and separate standard deviation. There are 6 such combinations,
which we denote with i = 1, ...,6. Then, letting Y; ; be the j th measurement from the it" treatment,

we model Y; ; as below.

Yijluoof  ~ N, 0f)
;i ~N(0 =0,72 =1e + 05) (2-1)
~ TnvGam(0.001,0.001)

IS

o

In this framework, the prior distribution for both the mean and the variance are considered
“diffuse” or “non-informative,” meaning the prior does not exert a strong influence on the results.
This model is implemented through a Markov Chain Monte Carlo (MCMC) algorithm using the
JAGS software. Running this analysis provides samples from the posterior distributions of y; and
0j, that is, the distribution of these parameters after learning from the observed data. In addition, we
can sample from the posterior predictive distribution of ¥; j, which is analogous, but simulates the
Qol after having updated the distributions of the parameters. These posterior and posterior
predictive distributions inform about the behavior of the parameters or behavior of the Qol.

2.1.1. Results for SE

The posterior distributions of the mean and standard deviation of SE is provided in Figure 2-2, as
well as numerical summaries in Table 2-1. These show a fairly striking difference between the 2 mm
and 1 mm absorber thickness cases (with or without D-Dot variation), and between the two modes.
Interestingly, there appears to be an interaction between the mode and the size because as, in
comparison to mode 1, the 2 mm experiment has a smaller mean SE for mode 2, but both of the 1
mm experiments have a larger mean SE for mode 2. Additionally, the 1 mm without D-dot variation
has a larger shift form mode 1 to mode 2 than the 1 mm with D-dot variation.

12
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Figure 2-2: Posterior distribution of (a) mean SE and (b) uncertainty in SE.

There are also differences in the posterior distribution of the SE uncertainty (as measured by the
standard deviation). In particular, the 1 mm absorber thickness without D-dot variation appears to
minimize the uncertainty, though this is much less pronounced under Mode 2 setting.

13



Table 2-1: Summary statistics of posterior distribution of SE.

Parameter Mode Size Mean SD +/- 1 SD Bound
1 mm 21.7404 0.0576 (21.6828, 21.7980)
Mode 1 1 mm Ddot variation 22.0649 0.2209 (21.8440, 22.2858)
2mm 18.5163 0.1134 (18.4029, 18.6297)
SE Mean
1 mm 22.7315 0.0336 (22.6979, 22.7651)
Mode 2 1 mm Ddot variation 22.6378 0.0781 (22.5597, 22.7159)
2mm 17.3952 0.0626 (17.3326, 17.4578)
1 mm 0.0929 0.0676 (0.0253, 0.1605)

(
Mode 1 1 mm Ddot variation 0.3634 0.2629 (0.1005, 0.6263)
SE SD 2 mm 0.1804 0.1379 (0.0425, 0.3183)
1 mm 0.0529 0.0412 (0.0117, 0.0940)
Mode 2 1 mm Ddot variation 0.1242 0.0932 (0.0310, 0.2173)
2 mm 0.1002 0.0824 (0.0178, 0.1826)

The posterior predictive distribution is shown in Figure 2-3, and summarized in Table 2-2. These
show largely the same patterns, but do serve to illustrate the point that while the parameters may
show substantial differences, there is more variability associated with individual values, and hence
less distinction between the absorbers and modes (in particular, between the 1 mm and 1 mm with
D-dot variation).

14



Mode 1
5_
4 -
g
2.
=
-a I‘I -
C
g o
E Mode 2
L
2
E .5
o
2.0 -
2.0
0.0 1 . :
18 20 22
Posterior predictions of SE
Size 1mm 1mim Dot variation 2mim
Figure 2-3: Posterior predictive distribution of SE.
Table 2-2: Quantiles of the posterior predictive distribution of SE.
. Percentile
Mode ~ Size 0% 1% 5% 50% 95% 99%  100%
1 mm 16.947 21.400 21.564 21.740 21.917 22.082 25.719
Mode 1 1 mm Ddot variation -0.308 20.730 21.374 22.065 22.755 23.418 36.414
2 mm 10.633 17.855 18.173 18516 18.860 19.179 34.319
1T mm 16.154 22.536 22.632 22.732 22.832 22.924 27.803
Mode 2 1 mm Ddot variation 17.036 22.181 22.402 22.638 22.875 23.097 30.803
2 mm 5814 17.026 17.205 17.396 17.586 17.764 27.050
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2.1.2. Results for Q-factor

The posterior distribution of the mean Q-factor is provided in Figure 2-4, which again shows a
distinct difference between the 2 mm vs 1 mm absorber thickness (with or without D-Dot
variation), and between the two modes. Unlike with the SE, however, for the Q-factor the D-dot
variations with the 1 mm absorber thickness did not appear to have an impact on the mean Q-
factor; the posterior distributions for each are nearly coincident. Additionally, there does not appear
to be any interaction with the mode, all three absorber thickness levels experienced a roughly similar
reduction in Q-factor for Mode 2.
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Figure 2-4: Posterior distribution of (a) mean SE and (b) uncertainty in Q-factor.

The standard deviation of the Q-factor exhibits an interesting pattern: the 1 mm with D-dot
variation appears unchanged between the two modes, but the 1 mm and the 2 mm appear to swap:
For Mode 1 the 1 mm thickness gives the smallest standard deviation, while for Mode 2 the 2 mm
thickness appears to give the smallest (though neither of these would appear to be statistically
significant).

16



Table 2-3: Summary statistics of posterior distribution of Q-factor.

Parameter Mode Size Mean SD +/-1 SD Bound
1 mm 1783.2816 1.0485 (1782.2331, 1784.3301)
Mode 1 | mm D-dot 1784.1574 1.9619 (1782.1954, 1786.1193)
variation
Q-factor 2 mm 1198.4090 22179 (1196.1911, 1200.6269)
Mean 1 mm 1317.7187 2.0261 (1315.6926, 1319.7448)
Mode 2 | mm D-dot 1319.4950 2.0849 (1317.4101, 1321.5799)
variation
2 mm 707.0319 1.1610 (705.8709, 708.1929)
1 mm 16970 1.2308  (0.4662, 2.9278)
Mode 1 | mm D-dot 31813 23169  (0.8644, 5.4982)
variation
Q-factor 2 mm 35327 26235  (0.9092, 6.1562)
SD 1 mm 32502 24056  (0.8446, 5.6557)
Mode 2 1 mm D-dot 3.0806 24363  (0.6534, 5.5259)
variation
2 mm 1.8802 1.3844  (0.4958, 3.2646)

We provide a numeric summary of the posterior predictive distributions of the Q-factor in Table
2-4. Because of the large difference in mean Q-factor between the 2 mm thickness and the 1 mm
thicknesses, and the relatively small uncertainties, a graphical representation does not provide much

additional insight.

Table 2-4: Quantiles of the posterior predictive distribution of Q-factor.

s L Percentile
0% 1% 5% 50% 95% 99% 100%
1 mm 16724 17771 1780.0 1783.3 1786.5 1789.4 1908.9
Mode 1 1 mm D-dot variation 1606.0 1772.3 1778.1 1784.2 1790.2 1795.7 1894.1
2 mm 1013.6 1185.3 1191.7 11984 12051 12111 1352.9
1 mm 1095.9 1305.7 13115 1317.7 1323.9 1329.6 1517.0
Mode 2 1 mm D-dot variation 1026.6 1308.0 1313.6 1319.5 1325.3 1330.6 1475.2
2 mm 592.0 700.1 703.4 707.0 710.6 713.9 771.5
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3. UNCERTAINTY QUANTIFICATION & SENSITIVITY ANALYSIS

A major driver for the development of capabilities to support uncertainty quantification and
sensitivity analysis for Gemma predictions is the desire to present prediction bounds for simulation
results. An effort was undertaken to develop a methodology for selecting the optimal design of
computer experiments, or simulation uncertainty runs, to develop uncertainty estimates. The
development of this methodology is described in the following sections.

In addition to the methodology development described in Section 3.1, an effort was also undertaken
to develop and pilot a driver to connect Gemma to Dakota. This effort will be documented along
with broader credibility activity plans in FY21.

3.1. Optimal Design of Computer Experiments

3.1.1.  General description

Selecting inputs for computer runs in a computational simulation project can be accomplished
through the “Design of Computer Experiments”. This process can be made substantially more
efficient when a lower-fidelity code is available — in our case, we use a low-fidelity cavity coupling
model to compute shielding effectiveness (SE) analytically for different values of three slot aperture
parameters. This analytic model, described in [5], is based on conservation of electromagnetic energy
and is referred to as a “power balance” method.

Getting at specific project objectives can often be accomplished by understanding specific quantities
of interest (Qols) with a reasonable level of precision. Examples of quantities of interest include the
response maximum value, the inputs yielding the maximum response, the overall probability of
failure, and the average response. When a lower-fidelity code is available, precision in the Qol can be
approximated using that code, thus providing an estimate of the sampling requirements (number of
computer runs needed) to achieve an acceptable level of precision when using the high-fidelity code.

It is often the case that a computer experimental design is accomplished in two phases. The first
phase is used to get a rough approximation of the response over the entire input space and to get a
reasonable initial estimate of the Qol. During the first phase a general sampling approach such as
random sampling or Latin hypercube sampling (see [3]) can be employed to select input values for
the low-fidelity computer runs. By examining results using different sample sizes, one can determine
at what point a reasonable estimate of the Qol has been obtained. Generally, there is a point where
further use of this sampling approach yields diminishing returns in establishing precision of the Qol
estimates. The second phase is mainly focused on producing further computer runs on inputs that
provide specific information more relevant to the Qol.

In FY20 we focused on both phases of this analysis but completed work mainly on the first phase.
In this report, we give results for all accomplishments including some preliminary second phase
results from a proposed approach to the design of computer experiments. Section 3.1.2 provides an
overview of the response-modeling approach to computer experimental design. Section 3.1.3 shows
how this approach is implemented using data generated using the power-balance model. We show
results that constitute the first step in the design algorithm. More detail on the material in sections
3.1.2 and 3.1.3 is provided in [4]. Section 3.1.4 focuses on the first phase, getting reasonable
precision on the initial estimate of the Qol.

18



3.1.2. Proposed Response-Modeling Methodology for Design of Computer
Experiments

Opver the past several decades, the use of computer codes supporting complex analyses in science
and engineering has increased dramatically. In response, the statistics and engineering communities
have developed a range of methods and tools for working with computer models in areas including
prediction, uncertainty quantification, sensitivity analysis, parameter calibration and computer
experimental design. Experimental design issues arise when the computer codes are complex and
expensive to run. The challenge is to select the computer input levels that yield informative
responses with limited computational effort. A good experimental design depends on the objectives
of the analysis. The Qol is determined based on analysis objectives. Most Qols either are functions
of a computer response yeY or consist of a region or point in the £-dimensional computer input or
design space X. Examples of Qols based on the response space include optimal response values,
probability of a response below or above a specified threshold, mean or variances of the Qol, and
quantiles of the response distribution. Examples of Qol in the input or design space include

identification of inputs that yield an optimal response or identifying a failure region F'< X.

The response-modeling approach to computer experimental design can accommodate the general
case where the objectives of the analysis are to estimate some Qol with as much precision as
possible. In this approach, the computer response is modeled through an emulator (the “response-
model”) based on an ensemble of Gaussian process surfaces. The surfaces are generated
probabilistically and conditioned on prior information. Figure 3-1 provides an example of three
realizations of a response-model in two input dimensions. In actual application, the response-
models consist of many more realizations, 20 or more in our applications. Note that for any set of
input points xi,..,x,, € X the ensemble provides a discrete set of responses [V;y, ..., Vim] for each i, i
=1, 2, 3 in the case shown in Figure 3-2.

Response
y

Figure 3-1. lllustration of a Response-Model.

Information contained in the response-models and their linkage to the Qol will impact the degree to
which further experimentation at a point in the input space will prove informative. Three
considerations that can influence the choice of an efficient experimental design are automatically
accounted for through the response-modeling algorithm: the sensitivity of the Qol to the response
at that point, the “closeness” in the input space to other computer experiments, and the relative
likelihood of inputs at that point (where applicable — for some Qol, failure probability for example,
the inputs will have an associated joint probability distribution).
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A diagram illustrating the flow of the algorithm is given in Figure 3-2.

| Compare
Designs and
Optimize

Select Another
Candidate Design |.

Compute

Average

_______ = Precision
'

Evaluate Qol
and Estimate
Precision

Posterior Response-Models

Figure 3-2. Flow Diagram for the Response-Modeling algorithm. The icons shown as multiple
response surfaces represent the response-models.

The two processes indicated in the diagram address tasks that are common to most experimental
design algorithms, namely, selection of candidate designs for consideration, and evaluation and
comparison of the designs according to specific (problem-dependent) design criteria in search of an
optimal design.

Response-models are used first to model prior information for parameters of the Gaussian
processes used in their construction and to approximate uncertainty in the response for input
locations where the computer code has not been run. The icon for the “prior response-model” is
shown in the left of Figure 3-2. A single-point candidate design is indicated by the colored circles
indicating different possible response values at that location calculated for different realizations. The
“posterior response-models” are constructed iteratively to approximate the posterior response
distribution. Note that there is one posterior response-model for each prior realization. Values in the
prior response-model, at the design locations, are treated as part of the conditioning data for the
corresponding posterior response-model. This is indicated by the coloring at the single design point
location in the posterior response-models. The posterior response-models together provide the basis
for estimating the Qols and their expected precision and for evaluating and comparing candidate
designs.

A summary outline of the methodology includes:

) Candidate designs are selected.

ii) For each design, the prior response-model specifies probable response values at the
design points through the realizations (one set of values per realization as shown in
the colored circles for the single-point design).

iif) The set of values for each prior realization is used with other conditioning data for
the posterior response-model corresponding to that realization (i.e. all realizations in
that posterior response-model take on those same values at those design points).

1v) Each posterior response-model provides an estimate of the Qol and its precision.
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V) The expected precision (averaged across posterior response-models) is computed
and compared with other designs.
vi) The design yielding the best “relative expected precision” is selected.

Note that the process described above may be repeated in stages as part of an overall design
strategy. Results from a set of computer experiments established at one stage become part of the
conditioning data for the next stage.

3.1.3. Design of Experiments for Power Balance Code

In this section, we illustrate how the response-modeling algorithm could be used in the second
phase of the experimental design process. Here we describe the design of computer experiment
analyses related to the power balance code with 3 slot parameters as the main inputs: slot width, slot
length and slot depth as described in [5]. For simplicity the 3D domain for the independent variables
slot length, slot width and slot depth was limited to intervals where SE is monotonic. The
parameters related to the size, shape and composition of the cylinder were set at fixed values.
Because power balance code runs are so inexpensive, we can run it over a fine grid throughout the
input space. Figure 3-3 illustrates the true (power balance calculated) relationship between SE and
the three slot parameters calculated over an 11X11X11 grid. Yellow corresponds to higher values of
SE while blue corresponds to lower values (note that SE, as defined here, is high when shielding is

poor).
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Figure 3-3. 3-D plot of shielding effectiveness (SE) in terms of the slot parameters for a high-
resolution grid for the power balance code.

The first phase of the experimental design (see Section 3.1.1) was implemented to obtain a sample of
size 40 of the three-dimensional slot parameter space. The sample was generated assuming normal
distributions on the 3 inputs. Figure 3-4 shows the location of the Latin Hypercube samples colored
by magnitude of SE.
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Figure 3-4. Location of 40 Latin-hypercube samples for the power balance code.

The response-modeling algorithm (see Section 3.1.2) is used to approximate the relationship
between shielding effectiveness (SE) and the slot width, slot length and slot depth parameters.
Figure 3-5 illustrates the response-model estimated relationship based on the 40 samples shown in
Figure 3-4. Note that compared to the true values shown in Figure 3-3, the SE response is similar
with respect to the slot width and slot length parameters but no longer monotonic with respect to
the slot depth parameter.
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Figure 3-5. Estimated SE values calculated using the response-modeling algorithm based on the
40 Latin-hypercube samples shown in Figure 3-4.
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The response-modeling algorithm finds an optimal design based on expected precision for specific
Qol. For illustration, here, we show initial results for two Qol: (a) the 0.9 quantile and (b) the
estimation of a “failure region”, which is defined as all the point in input space for which values of
SE are above 15.5. For each analysis, the expected Qol precision is assessed as a function of the 3
slot parameters to determine what computer experiment should be run next. Figure 3-8 maps the
expected uncertainty for the estimation of the 0.9 quantile of SE, while Figure 3-9 shows the
corresponding mapping of expected uncertainty for the estimation of the failure region. In both
cases (Figure 3-8 and Figure 3-9) the more preferable design points in input space are those that
align with smaller values of expected uncertainty. These results agree with our intuition. In Figure
3-0, the preferable design points (indicated by the dark blue) are close to the region where Figure 3-3
tells us that the maximum value is. In Figure 3-7 the preferable design points are further back
toward the center of the input space at locations closer to the border of the failure region.
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Figure 3-6. Expected uncertainty in 0.9 quantile. Lower values of expected uncertainty provide
more preferable design points.
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Figure 3-7. Expected uncertainty of failure, where failure is defined as values of SE greater than
15.5. Lower values of expected uncertainty provide more preferable design points.

The next step in the algorithm would be to select the more promising points and run the code using
these inputs. One should see a substantial reduction in the uncertainty of the corresponding Qol.

3.1.4. Diminishing returns. Analyses of precision in Qol as a function of
sample size

In this section, we address the first phase in computer experimental design as discussed in Section
3.1.1. By examining results using different sample sizes, one can determine at what point a
reasonable estimate of the Qol has been obtained. Generally, there is a point where further use of
this sampling approach yields diminishing returns in establishing the precision of the Qol estimates.
We performed this analysis for several different Qol. We describe the procedure for the Qol failure-
probability but we include results for the other Qol as well.

Consider the analysis for failure probabilities, assuming a "failure" is any situation where SE is
greater than 15.5 and assuming the slot parameter inputs have a normal distribution. In Figure 3-8,
we plot the estimated precision for failure probability for a range of sample sizes.
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Figure 3-8. Standard error for failure probability as a function of sample size. Each dot represents
an estimate of uncertainty at that sample size. The orange curve connects the mean values.

Each dot represents the response-modeling estimate of uncertainty using a response-model
conditioned on a specific sample. The uncertainty estimate is just the standard deviation of the Qol
estimate across the realizations of the response-model. For each sample size N, 10 different sets of
N sample points were taken. Each dot represents the value of standard error for an N-point sample
set. The orange curve connects the mean standard error values corresponding to each sample size.
If one were to assess the required sample size based on this information, one could consider that
most of the uncertainty has been resolved with a sample size of around 60 observations. Beyond a
sample size value of 60, the decrements in standard error are more marginal.

An alternative approach to estimating the required sample size that might be appropriate using this
power-balance model would be to use repeated sampling at each of several sample sizes, fit a
Gaussian process model to each sample and use it to calculate the Qol response. A reasonable
sample size could be determined as the sample size where the standard deviation of these predicted
Qol responses became acceptable. This approach, however, would not be possible with a higher
fidelity code which may take hours to run rather than seconds.

Figure 3-9 through Figure 3-12 present the results of standard error analyses for other Qols similar
to the analysis shown in Figure 3-8 for failure-probability. These other Qols are the maximum SE
value, mean SE value, 0.95 SE quantile and analysis of the failure region. One thing we expected in
this analysis was to find that the recommended sample sizes would depend on the Qol. This appears
to be the case. For the mean and 0.95 quantile analyses, a sample size of about 60 resolved most of
the uncertainty in terms of standard error and the benefits of increasing the sample size were
negligible. For the case of the maximum value and identifying the failure region, the required
sample size to resolve most of the uncertainty would be higher, on the order of 100.
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Figure 3-9. Standard error for estimated maximum value of SE as a function of sample size. Each
dot represents an estimate of uncertainty at that sample size. The orange curve connects the
mean values.
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Figure 3-10. Standard error for the estimated mean value of SE as a function of sample size. Each
dot represents an estimate of uncertainty at that sample size. The orange curve connects the
mean values.
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Figure 3-11. Standard error for the 0.95 quantile of SE as a function of sample size. Each dot
represents an estimate of uncertainty at that sample size. The orange curve connects the mean
values.
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Figure 3-12. Discrepancy measure for the identification of the failure region as a function of
sample size. Each dot represents an estimate of uncertainty at that sample size. The orange curve
connects the mean values. Note that the identification of the failure region does not yield a point

estimate and consequently standard errors are not available. See [4] for a description of the

discrepancy measure.
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4, VALIDATION FRAMEWORK DEVELOPMENT

An approximate uncertainty quantification method for model validation is described, the results of
which can used to estimate bounds in the CompSim predictions. The uncertainty bounds accompany
nominal CompSim predictions to provide confidence in the CompSim results for use in applications.
The approach leverages information from existing experimental data by bounding discrepancies
between corresponding CompSim and experimental data quantities of interest (Qols) using an inverse
analysis. These enveloping bounds take the form of Qol probabilistic estimates for standard deviation
and yield best-fit estimates for system input parameter variances.

Linear system input-parameter-to-Qol response surface approximations are used to provide efficient
functional maps representing a parametric design space. All of the design-space approximations are
anchored at the Qol values computed at the nominal input parameter values and are assumed to
represent the Qol mean values. These approximations are used in the estimation of the system input
parameter variances, thus circumventing the need to make assumptions on input parameter probability
distributions.

Finally, the estimated input parameter variances can be propagated into a large number of prediction
scenarios, using similarly constructed linear response surface approximations, to estimate prediction
Qol variances.

4.1. Motivation and Introduction

Physics-based modeling and CompSim have evolved incredibly in recent years. Despite this, due to
any number of factors, discrepancy is routinely observed when comparing CompSim results modeling
an experiment to data from the physical experiment itself. This motivates the need for representing
CompSim results in the form of presumptive bounds rather than a single fixed value.

The process of establishing uncertainty aspects is a sub-type of model validation in that
CompSim/experiment discrepancies ate used to assess not only the suitability of our CompSim
models, but also to inform downstream uncertainty models and produce predictions based on them.
In typical CompSim applications there are some significant constraints that impact decisions on how
best to estimate at these bounds. Physics model form error, say as a closed functional form, is always
unknown and cannot be separated from other sources of discrepancy without a large time and cost
budget, making this an important constraint. In addition, in many cases there is an extremely limited
amount of data to assess, a prioti, uncertainty in system input parameters. Finally, large physics-based
CompSim models in the face of limited computational resources, namely machine time and number
of processors available, mean that the number of CompSim function evaluations that could be
performed was constrained.

With these limitations in mind, any Qol discrepancies are assumed to be accounted for by propagated
system input parameter uncertainty. Also, for this uncertainty a low-order probabilistic metric—
variance or standard deviation—is used to express Qol bounds.

4.2. Technical Approach

The foundation of the approach is the assumption that model uncertainty can be addressed through
the uncertain system input parameters, P, as this input uncertainty is reflected in the system Qol, ¢ =
q(P). Typical examples of such parameters include, say, material properties or propetties of a physical
entity, such as a gap length or width. These parameters are modeled as probabilistic random variables.
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Nominal values for the input parameters, which are assumed to have been acquired during prior
simulation model development and model calibration activities, are assumed to represent their mean
values, Up. A first estimate for the variance, Ug, of such an input random variable, or its square root,
the standard deviation, dp, is also made based on whatever additional information arises during the

model development phase of a project.

Naturally, the effect of uncertainty in input parameters propagates into a response Qol, q. Mean
values, [g, for the various system response Qols that are considered in the project, such as EM wave
characteristic, are assumed to equal those Qols computed at these nominal parameter values, that is,
Ug = q(up). This relationship is exact for linear systems, but is an approximation otherwise.

Qol variances, 0'5, are adjusted to ensure that all discrepancies are a distance of no more than one
Qol standard deviation from the nominal Qol. The constraints that these adjustments impose are
used as criteria for making modifications to the input parameter variances. This process is a form of
model validation in the sense that not only is it possible to make assessments on the suitability of
the CompSim models, but underlying uncertainty is also captured in a manner that readily lends itself

to prediction.

To reduce the computational burden in the propagation procedure, input to output function mappings
for the input parameters are developed using linear response surface approximations. A byproduct of
the process of generating these linear approximations is that a local sensitivity analysis is implicitly

performed.
In the final phase, prediction, the now-modified uncertain input parameter variance estimates
M b

calculated during the model validation process are used in a number of prediction scenarios. In these
identical linear approximation procedures are employed using new CompSim Qol data local to each
desired prediction point in the application domain. A visual summary of the entire technical approach

is depicted in Figure 4-1.

& e
I L1
L +o, | Y
T 5 ! Ha ¥, U = () |II \\-.
— g =g Foops 'y | \".
Yoo, Fa~aelitr) Y u.-o, \"-\ /
Tes. g II". -'II
Ky —a,, {
|—\ Ul—l." ! IIIII
o Y i
||'I'. — "J'.- L :]' //
— < :'J
|“-- o \ > [/ E| é;n
Validation Prediction

Figure 4-1. Overview of the Margin Estimation Process
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4.2.1. Linear Response Surface Approximation

The circumstances underlying a typical CompSim project dictate the use of a linear response surface
approximation, g, of the general input parameter, P, to Qol, g, design space functional maps, q =

g = L(P). Thus,
n
. aq
g(P) = q(up) + Z —| (P — up,) (4-1)
i=1 api up

where P; and up, are understood to represent the ith components of P and pp, respectively. Also, in
Eq (4-1) the approximation

9q/ 0pily, = [ q(ue + Apy) — q(up) 1/4p; (4-2)

is used if one is calculating L( - ) using a one-sided finite difference. Alternative formulations based
on central difference and, in rare circumstances, linear fits via least squares can also be employed; in
these cases the calculated partial derivatives in Eq (4-1) are performed in the natural way.

Building these approximations at each point in application space encompasses all of the CompSim
burden. Note that the analysis that aided in the determination of which linear approximation method
to use itself constitutes a form of local sensitivity analysis. As final notes on the linear approximations
consider that

e The uncertain input parameters in Eq (4-1), P; € P, are assumed to be statistically
uncorrelated.

e While g has been assumed to be scalar in Eq (4-1), it would be trivial to generalize it to the
vector case.

4.2.2. Response Variance Approximation

The response Qol variance approximation follows from Eq (4-1),

a; = E[(a(P) — 1g)?]
~ E[(q(P) — §(up))?] (4-3)

-y (%)
op;

i

T, (4-4)

up

where 0'31. is the variance of the i*" input parameter in the vector, P. Also, in Eq (4-3) an

approximation to the mean of q, ug = q(tp), has been introduced; and, finally, all comments and
assumptions regarding Eq (4-1) apply to Eq (4-4).
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4.2.3. Model Validation

For model validation, integrating the discrepancy between CompSim Qols and corresponding
experimental Qol data, Eq (4-4), along with the constraint

|ig; £ 6Qi ~ exp; T ngxpil < 0g, = GQi(GP) (4-5)

yields a set of inequalities used to adjust the individual parameter variances, O'lgl. € 0f.1n Eq (4-5), 8o,
and €Qexp,; TEPrEsENt suitably chosen bounds estimates representing numerical and experimental errors,
L

respectively.

Note that Eq (4-5) represents one inequality for each Qol in a given validation scenario and that the
collective must be satisfied for all i simultaneously. This collective is depicted for the case where no
numerical or experimental errors are present in Figure 4-2.
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Figure 4-2. CompSim/Experiment Comparisons with Margins
where one can observe that not only do CompSim mean values vary point-to-point for each
scenario/Qol, but the variances do as well; thus uniform Qol adjustments are often non-optimal. The
collective inequality set to be satisfied is depicted in the Validation portion of Figure 4-1.

This validation process was carried out for a simple example of three Qols for a single mode,
TMO10, of the shielding effectiveness response vs frequency for the Higgins Cylinder [7]. The
Sandia EM code Gemma was used to provide the simulation Qol response data using a method-of-
moments approach. Results revealed an issue with one of the Qols, the 50% Q, a measure of the
width of the SE signal about frequency at which the peak response is attained. This has yet to be
resolved. The other two Qols, the value of the peak response itself and the value of the frequency at
which this peak is attained, were retained in the proposed bounding procedure. This reduced-order-
validation Qol response set required only a small adjustment to the assumed input parameter
standard deviations, specifically, an increase of 15%.

4.2.4. Prediction

Margin predictions can next be performed using the fixed, validation-derived a,?l. € of values and Eq
(4-4) which require a new set of CompSim Qol predictions. The margin estimates can be represented
by the resulting Qol standard deviations. This aspect of the procedure is depicted for one prediction
point in the application space on the right side of Figure 4-1.
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4.3. Concluding Remarks

In this section, we provided an overview of the technical process that is followed to estimate
confidence bounds associated with CompSim predictions. We also provided motivation for specific
key technical aspects of our approach and provided an individual discussion on each of these key
aspects. These discussions included a justification for using a low-order uncertainty quantification
approach, and the strategies for encapsulating all observed simulation-to-experiment discrepancies
through system input parameter uncertainty and for limiting the computational burden through the
use of low-order physics-based model approximations. A simple validation exercise using the
Higgins Cylinder was described that resulted in the identification of a potential problem with the
experimentally measured QQ for the first, or lowest frequency, resonant mode. This mode is
identified as TMO010 for the EM shielding effectiveness response. A minor adjustment to the
assumed standard deviations for the uncertain input parameters was required to ensure that the
experiment Qol data were bounded by the nominal analysis result plus or minus a standard
deviation for the remaining Qols considered.

Finally, a visual depiction of a low-order uncertainty quantification process was provided in its
entirety from validation to prediction for a typical prediction point. A procedure could be devised in
which the results of the proposed validation study are used to propagate quite general probabilistic
information, such as estimated probability of loss of assured safety (PLOAS), with results that are
expressed as intervals with statistical tolerance limits. Such an approach also mitigates the problem
of assuming too much information in assumed probability models characterized with too little data.
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5. CONCLUSION

The V&V /UQ/Credibility process activities described in this report represent the beginning of a
broader set of credibility activities supporting the code development efforts for the Gemma
electromagnetics code. These efforts will be documented in a V&V /UQ/Credibility plan for
Gemma in FY21. The overall goal of these activities is to provide Gemma developers and analysts
with the tools needed to generate credibility evidence in support of Gemma predictions for future
use cases. As the code development and application plans for Gemma continue to evolve, the
planning and execution of credibility activities for Gemma will need to be adapted to meet changing
needs and expectations.

Several lessons learned can be captured from the work described in this report and will be applied to
the planning and execution of credibility activities for Gemma moving forward. First, it is critically
important for V&V /UQ/ Credibility activity planning and execution to include EM SMEs and
Gemma code developers. This involvement is important to ensute that V&V /UQ/Credibility
experts are made aware of important considerations in the physics, understand the experimental data
that they are processing, and are able to connect credibility activities to larger planning efforts and
requirements. A lack of communication and understanding on these aspects of the analysis can lead
to an increase in analysis timelines and rework. As a result of this lesson learned, EM SMEs and
Gemma code developers will be included as authors for the FY21 Gemma credibility plan, and
strategies for communication will be put in place to communicate and document important aspects
of upcoming analyses. As a result of the FY20 efforts, a stronger teaming across

V&V /UQ/Credibility partners and EM SMEs/Gemma code developers has already been
developed.

Second, it is clear that there is a wide variety of V&V/UQ/Credibility needs and stakeholders for
both Gemma and EM analyses in general. Competing priorities and analysis needs can make it
difficult to develop a clear plan for execution of credibility activities. Future planning will involve a
prioritization of activities and stakeholders to streamline execution and ensure that credibility
activities leverage V&V /UQ/Credibility capabilities and expertise efficiently.

Through evolving planning and execution of V&V /UQ/Credibility activities for Gemma, credibility
evidence and the capabilities to generate this evidence will be developed and made available to
Gemma code developers and analysts. This will support the development and delivery of the
credibility evidence needed to support the use of Gemma across an applicable range of
computational simulation problems.
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