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ABSTRACT 

This report describes the credibility activities undertaken in support of Gemma code 
development in FY20, which include Verification & Validation (V&V), Uncertainty 
Quantification (UQ), and Credibility process application. The main goal of these activities is to 
establish capabilities and process frameworks that can be more broadly applied to new and 
more advanced problems as the Gemma code development effort matures. This will provide 
Gemma developers and analysts with the tools needed to generate credibility evidence in 
support of Gemma predictions for future use cases. The FY20 Gemma V&V/UQ/Credibility 
activities described in this report include experimental uncertainty analysis, the development 
and use of methods for optimal design of computer experiments, and the development of a 
framework for validation. These initial activities supported the development of broader 
credibility planning for Gemma that continued into FY21.  
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1. INTRODUCTION 

This report describes the credibility activities that have taken place in parallel to Gemma code 
development in FY20. The credibility activities undertaken in support of Gemma code development 
include Verification & Validation (V&V), Uncertainty Quantification (UQ), and Credibility process 
application. The main goal of these activities is to establish capabilities and process frameworks that 
can be more broadly applied to new and more advanced problems as the Gemma code development 
effort matures. This will provide Gemma developers and analysts with the tools needed to generate 
credibility evidence in support of Gemma predictions for future use cases.  

The credibility team supporting the Gemma code development effort is made up of a cross-
discipline group of experts including V&V/UQ practitioners, Dakota experts, and statisticians. This 
team leverages the expertise and experience across these disciplines to develop strategies and 
solutions to support the Gemma code development effort. The efforts undertaken by this team 
include support of both experimental and computational simulation activities.  

The credibility activities undertaken in support of Gemma development have been tied to an overall 
credibility process strategy that is structured around the credibility tools and methodologies that 
have been developed by department 1544. The computational simulation (CompSim) credibility 
process involves assembling and documenting evidence to ascertain and communicate the 
believability of predictions that are produced from computational simulations [1].  The components 
of the CompSim credibility process in which activities have been undertaken in support of the 
Gemma code development effort in FY20 include experimental activities to quantify experimental 
result uncertainty, the development of a methodology for determining the optimal design of 
computer experiments, and the development of a validation framework methodology and the 
application of this methodology to a problem of interest. Verification activities have also taken place 
in parallel to these activities and are described in a separate report [2]. Each of the credibility 
activities undertaken in FY20 is described in the sections that follow. These activities are tied to the 
development and execution of a larger Gemma V&V/UQ/Credibility plan that will be documented 
in FY21.  
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2. EXPERIMENTAL ACTIVITIES 

2.1. Q-Killer Experimental Results & Analysis 

An experiment "Q-killer" was planned and executed in order to quantify uncertainty in several 
quantities of interest (QoIs). As a test instrument this experiment used a long-slotted cylinder with 
an absorber material. The test was performed under several experimental conditions: (1) Using 1 
mm absorber, 2 mm absorber, or 1 mm absorber with a D-Dot variation1; (2) Two modes, at 1.13 
GHz and 1.23 GHz. 

Prior to modeling, we first investigate the distribution of the results. Quantile-quantile (QQ) plots 
are commonly used to determine the suitability of a distribution for a given dataset. Given the small 
sample sizes, however, we pool the data in the following manner: For each treatment (combination 
of factor levels size and mode), we standardize the data by subtracting the mean and dividing by the 
standard deviation. If a normal distribution is satisfied, this will transform all of the data to a N(0,1) 
distribution, and the combined data would also represent a normal distribution.  
 

 
Figure 2-1 Quantile-quantile plots for SE and Q-factor. 

 
In Figure 2-1 we provide the QQ plots for both shielding effectiveness (SE), which is a measure of 
the electric field in a cavity relative to the incident exterior field strength [5], and the quality factor 

 
1 D-Dot is the AD80 d-dot free field sensor. This sensor is connected to a hybrid coupler, and data is collected from 
both the sum and delta ports. 
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(Q-factor), which describes how good a resonator the cavity is at a given resonant frequency (a 
higher Q-factor will be associated with a sharper resonant peak in an SE-vs-frequency plot) [6]. The 
data for each is within the range of that which is expected from ordinary variation from a normal 
distribution. Hence, we will assume that a normal likelihood for the data is a reasonable approach. 

To model the QoIs (SE and Q-factor) we construct a Bayesian hierarchical model. For explanation 
we refer to SE, but the same framework is applied to the Q-factor. 
We specify a cell-means model, in which each treatment (a combination of size and mode) is 
modeled with a separate mean and separate standard deviation. There are 6 such combinations, 

which we denote with 𝑖 = 1, … ,6. Then, letting 𝑌𝑖,𝑗 be the 𝑗𝑡ℎ measurement from the 𝑖𝑡ℎ treatment, 

we model 𝑌𝑖,𝑗 as below. 

 

𝑌𝑖,𝑗|𝜇𝑖, 𝜎𝑖
2 ∼ N(𝜇𝑖, 𝜎𝑖

2)

𝜇𝑖 ∼ N(𝜃 = 0, 𝜏2 = 1𝑒 + 05)

𝜎𝑖
2 ∼ InvGam(0.001,0.001)

 (2-1) 

 
In this framework, the prior distribution for both the mean and the variance are considered 
“diffuse” or “non-informative,” meaning the prior does not exert a strong influence on the results. 
This model is implemented through a Markov Chain Monte Carlo (MCMC) algorithm using the 

JAGS software. Running this analysis provides samples from the posterior distributions of 𝜇𝑖 and 

σi, that is, the distribution of these parameters after learning from the observed data. In addition, we 

can sample from the posterior predictive distribution of 𝑌𝑖,𝑗, which is analogous, but simulates the 

QoI after having updated the distributions of the parameters. These posterior and posterior 
predictive distributions inform about the behavior of the parameters or behavior of the QoI. 

2.1.1. Results for SE 

The posterior distributions of the mean and standard deviation of SE is provided in Figure 2-2, as 
well as numerical summaries in Table 2-1. These show a fairly striking difference between the 2 mm 
and 1 mm absorber thickness cases (with or without D-Dot variation), and between the two modes. 
Interestingly, there appears to be an interaction between the mode and the size because as, in 
comparison to mode 1, the 2 mm experiment has a smaller mean SE for mode 2, but both of the 1 
mm experiments have a larger mean SE for mode 2. Additionally, the 1 mm without D-dot variation 
has a larger shift form mode 1 to mode 2 than the 1 mm with D-dot variation. 
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Figure 2-2: Posterior distribution of (a) mean SE and (b) uncertainty in SE. 

 

There are also differences in the posterior distribution of the SE uncertainty (as measured by the 
standard deviation). In particular, the 1 mm absorber thickness without D-dot variation appears to 
minimize the uncertainty, though this is much less pronounced under Mode 2 setting.  
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Table 2-1: Summary statistics of posterior distribution of SE. 

Parameter Mode Size Mean SD +/- 1 SD Bound 

SE Mean 

Mode 1 

1 mm 21.7404 0.0576 (21.6828, 21.7980) 

1 mm Ddot variation 22.0649 0.2209 (21.8440, 22.2858) 

2 mm 18.5163 0.1134 (18.4029, 18.6297) 

Mode 2 

1 mm 22.7315 0.0336 (22.6979, 22.7651) 

1 mm Ddot variation 22.6378 0.0781 (22.5597, 22.7159) 

2 mm 17.3952 0.0626 (17.3326, 17.4578) 

SE SD 

Mode 1 

1 mm 0.0929 0.0676 (0.0253, 0.1605) 

1 mm Ddot variation 0.3634 0.2629 (0.1005, 0.6263) 

2 mm 0.1804 0.1379 (0.0425, 0.3183) 

Mode 2 

1 mm 0.0529 0.0412 (0.0117, 0.0940) 

1 mm Ddot variation 0.1242 0.0932 (0.0310, 0.2173) 

2 mm 0.1002 0.0824 (0.0178, 0.1826) 

 

The posterior predictive distribution is shown in Figure 2-3, and summarized in Table 2-2. These 
show largely the same patterns, but do serve to illustrate the point that while the parameters may 
show substantial differences, there is more variability associated with individual values, and hence 
less distinction between the absorbers and modes (in particular, between the 1 mm and 1 mm with 
D-dot variation). 
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Figure 2-3: Posterior predictive distribution of SE. 

 

Table 2-2: Quantiles of the posterior predictive distribution of SE. 

Mode Size 
Percentile 

0% 1% 5% 50% 95% 99% 100% 

Mode 1 

1 mm 16.947 21.400 21.564 21.740 21.917 22.082 25.719 

1 mm Ddot variation -0.308 20.730 21.374 22.065 22.755 23.418 36.414 

2 mm 10.633 17.855 18.173 18.516 18.860 19.179 34.319 

Mode 2 

1 mm 16.154 22.536 22.632 22.732 22.832 22.924 27.803 

1 mm Ddot variation 17.036 22.181 22.402 22.638 22.875 23.097 30.803 

2 mm 5.814 17.026 17.205 17.396 17.586 17.764 27.050 
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2.1.2. Results for Q-factor 

The posterior distribution of the mean Q-factor is provided in Figure 2-4, which again shows a 
distinct difference between the 2 mm vs 1 mm absorber thickness (with or without D-Dot 
variation), and between the two modes. Unlike with the SE, however, for the Q-factor the D-dot 
variations with the 1 mm absorber thickness did not appear to have an impact on the mean Q-
factor; the posterior distributions for each are nearly coincident. Additionally, there does not appear 
to be any interaction with the mode, all three absorber thickness levels experienced a roughly similar 
reduction in Q-factor for Mode 2. 
 

 
Figure 2-4: Posterior distribution of (a) mean SE and (b) uncertainty in Q-factor. 

 

The standard deviation of the Q-factor exhibits an interesting pattern: the 1 mm with D-dot 
variation appears unchanged between the two modes, but the 1 mm and the 2 mm appear to swap: 
For Mode 1 the 1 mm thickness gives the smallest standard deviation, while for Mode 2 the 2 mm 
thickness appears to give the smallest (though neither of these would appear to be statistically 
significant). 
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Table 2-3: Summary statistics of posterior distribution of Q-factor. 

Parameter Mode Size Mean SD +/- 1 SD Bound 

Q-factor 

Mean 

Mode 1 

1 mm 1783.2816 1.0485 (1782.2331, 1784.3301) 

1 mm D-dot 
variation 

1784.1574 1.9619 (1782.1954, 1786.1193) 

2 mm 1198.4090 2.2179 (1196.1911, 1200.6269) 

Mode 2 

1 mm 1317.7187 2.0261 (1315.6926, 1319.7448) 

1 mm D-dot 
variation 

1319.4950 2.0849 (1317.4101, 1321.5799) 

2 mm 707.0319 1.1610 (705.8709, 708.1929) 

Q-factor  

SD 

Mode 1 

1 mm 1.6970 1.2308 (0.4662, 2.9278) 

1 mm D-dot 
variation 

3.1813 2.3169 (0.8644, 5.4982) 

2 mm 3.5327 2.6235 (0.9092, 6.1562) 

Mode 2 

1 mm 3.2502 2.4056 (0.8446, 5.6557) 

1 mm D-dot 
variation 

3.0896 2.4363 (0.6534, 5.5259) 

2 mm 1.8802 1.3844 (0.4958, 3.2646) 

 

We provide a numeric summary of the posterior predictive distributions of the Q-factor in Table 
2-4. Because of the large difference in mean Q-factor between the 2 mm thickness and the 1 mm 
thicknesses, and the relatively small uncertainties, a graphical representation does not provide much 
additional insight. 

 

Table 2-4: Quantiles of the posterior predictive distribution of Q-factor. 

Mode Size 
Percentile 

0% 1% 5% 50% 95% 99% 100% 

Mode 1 

1 mm 1672.4 1777.1 1780.0 1783.3 1786.5 1789.4 1908.9 

1 mm D-dot variation 1606.0 1772.3 1778.1 1784.2 1790.2 1795.7 1894.1 

2 mm 1013.6 1185.3 1191.7 1198.4 1205.1 1211.1 1352.9 

Mode 2 

1 mm 1095.9 1305.7 1311.5 1317.7 1323.9 1329.6 1517.0 

1 mm D-dot variation 1026.6 1308.0 1313.6 1319.5 1325.3 1330.6 1475.2 

2 mm 592.0 700.1 703.4 707.0 710.6 713.9 771.5 

 

 

 

 

 



 

18 

3. UNCERTAINTY QUANTIFICATION & SENSITIVITY ANALYSIS 

A major driver for the development of capabilities to support uncertainty quantification and 
sensitivity analysis for Gemma predictions is the desire to present prediction bounds for simulation 
results. An effort was undertaken to develop a methodology for selecting the optimal design of 
computer experiments, or simulation uncertainty runs, to develop uncertainty estimates. The 
development of this methodology is described in the following sections.  

In addition to the methodology development described in Section 3.1, an effort was also undertaken 
to develop and pilot a driver to connect Gemma to Dakota. This effort will be documented along 
with broader credibility activity plans in FY21. 

3.1.  Optimal Design of Computer Experiments  

3.1.1. General description 

Selecting inputs for computer runs in a computational simulation project can be accomplished 
through the “Design of Computer Experiments”. This process can be made substantially more 
efficient when a lower-fidelity code is available – in our case, we use a low-fidelity cavity coupling 
model to compute shielding effectiveness (SE) analytically for different values of three slot aperture 
parameters. This analytic model, described in [5], is based on conservation of electromagnetic energy 
and is referred to as a “power balance” method. 

Getting at specific project objectives can often be accomplished by understanding specific quantities 
of interest (QoIs) with a reasonable level of precision. Examples of quantities of interest include the 
response maximum value, the inputs yielding the maximum response, the overall probability of 
failure, and the average response. When a lower-fidelity code is available, precision in the QoI can be 
approximated using that code, thus providing an estimate of the sampling requirements (number of 
computer runs needed) to achieve an acceptable level of precision when using the high-fidelity code. 

It is often the case that a computer experimental design is accomplished in two phases. The first 
phase is used to get a rough approximation of the response over the entire input space and to get a 
reasonable initial estimate of the QoI. During the first phase a general sampling approach such as 
random sampling or Latin hypercube sampling (see [3]) can be employed to select input values for 
the low-fidelity computer runs. By examining results using different sample sizes, one can determine 
at what point a reasonable estimate of the QoI has been obtained. Generally, there is a point where 
further use of this sampling approach yields diminishing returns in establishing precision of the QoI 
estimates. The second phase is mainly focused on producing further computer runs on inputs that 
provide specific information more relevant to the QoI.    

In FY20 we focused on both phases of this analysis but completed work mainly on the first phase. 
In this report, we give results for all accomplishments including some preliminary second phase 
results from a proposed approach to the design of computer experiments. Section 3.1.2 provides an 
overview of the response-modeling approach to computer experimental design. Section 3.1.3 shows 
how this approach is implemented using data generated using the power-balance model. We show 
results that constitute the first step in the design algorithm.  More detail on the material in sections 
3.1.2 and 3.1.3 is provided in [4]. Section 3.1.4 focuses on the first phase, getting reasonable 
precision on the initial estimate of the QoI. 
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3.1.2. Proposed Response-Modeling Methodology for Design of Computer 
Experiments 

Over the past several decades, the use of computer codes supporting complex analyses in science 
and engineering has increased dramatically.  In response, the statistics and engineering communities 
have developed a range of methods and tools for working with computer models in areas including 
prediction, uncertainty quantification, sensitivity analysis, parameter calibration and computer 
experimental design.  Experimental design issues arise when the computer codes are complex and 
expensive to run. The challenge is to select the computer input levels that yield informative 
responses with limited computational effort.  A good experimental design depends on the objectives 
of the analysis.  The QoI is determined based on analysis objectives. Most QoIs either are functions 

of a computer response y or consist of a region or point in the k-dimensional computer input or 
design space X.  Examples of QoIs based on the response space include optimal response values, 
probability of a response below or above a specified threshold, mean or variances of the QoI, and 
quantiles of the response distribution. Examples of QoI in the input or design space include 

identification of inputs that yield an optimal response or identifying a failure region F  . 

The response-modeling approach to computer experimental design can accommodate the general 
case where the objectives of the analysis are to estimate some QoI with as much precision as 
possible. In this approach, the computer response is modeled through an emulator (the “response-
model”) based on an ensemble of Gaussian process surfaces. The surfaces are generated 
probabilistically and conditioned on prior information. Figure 3-1 provides an example of three 

realizations of a response-model in two input dimensions. In actual application, the response-

models consist of many more realizations, 20 or more in our applications. Note that for any set of 

input points x1,..,xm ϵ X the ensemble provides a discrete set of responses [𝑦𝑖1, … , 𝑦𝑖𝑚] for each i, i 

= 1, 2, 3 in the case shown in Figure 3-2.  

 

 
Figure 3-1. Illustration of a Response-Model. 

 

Information contained in the response-models and their linkage to the QoI will impact the degree to 
which further experimentation at a point in the input space will prove informative. Three 
considerations that can influence the choice of an efficient experimental design are automatically 
accounted for through the response-modeling algorithm: the sensitivity of the QoI to the response 
at that point, the “closeness” in the input space to other computer experiments, and the relative 
likelihood of inputs at that point (where applicable – for some QoI, failure probability for example, 
the inputs will have an associated joint probability distribution). 



 

20 

A diagram illustrating the flow of the algorithm is given in Figure 3-2.  

 

 
Figure 3-2. Flow Diagram for the Response-Modeling algorithm. The icons shown as multiple 

response surfaces represent the response-models. 

 

The two processes indicated in the diagram address tasks that are common to most experimental 
design algorithms, namely, selection of candidate designs for consideration, and evaluation and 
comparison of the designs according to specific (problem-dependent) design criteria in search of an 
optimal design. 

Response-models are used first to model prior information for parameters of the Gaussian 
processes used in their construction and to approximate uncertainty in the response for input 
locations where the computer code has not been run. The icon for the “prior response-model” is 
shown in the left of Figure 3-2. A single-point candidate design is indicated by the colored circles 
indicating different possible response values at that location calculated for different realizations. The 
“posterior response-models” are constructed iteratively to approximate the posterior response 
distribution. Note that there is one posterior response-model for each prior realization. Values in the 
prior response-model, at the design locations, are treated as part of the conditioning data for the 
corresponding posterior response-model. This is indicated by the coloring at the single design point 
location in the posterior response-models. The posterior response-models together provide the basis 
for estimating the QoIs and their expected precision and for evaluating and comparing candidate 
designs.   

A summary outline of the methodology includes: 

i) Candidate designs are selected. 
ii) For each design, the prior response-model specifies probable response values at the 

design points through the realizations (one set of values per realization as shown in 
the colored circles for the single-point design). 

iii) The set of values for each prior realization is used with other conditioning data for 
the posterior response-model corresponding to that realization (i.e. all realizations in 
that posterior response-model take on those same values at those design points). 

iv) Each posterior response-model provides an estimate of the QoI and its precision. 
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v) The expected precision (averaged across posterior response-models) is computed 
and compared with other designs. 

vi) The design yielding the best “relative expected precision” is selected. 

 
Note that the process described above may be repeated in stages as part of an overall design 
strategy. Results from a set of computer experiments established at one stage become part of the 
conditioning data for the next stage. 

3.1.3. Design of Experiments for Power Balance Code  

In this section, we illustrate how the response-modeling algorithm could be used in the second 
phase of the experimental design process. Here we describe the design of computer experiment 
analyses related to the power balance code with 3 slot parameters as the main inputs: slot width, slot 
length and slot depth as described in [5]. For simplicity the 3D domain for the independent variables 
slot length, slot width and slot depth was limited to intervals where SE is monotonic. The 
parameters related to the size, shape and composition of the cylinder were set at fixed values. 
Because power balance code runs are so inexpensive, we can run it over a fine grid throughout the 
input space. Figure 3-3 illustrates the true (power balance calculated) relationship between SE and 
the three slot parameters calculated over an 11X11X11 grid. Yellow corresponds to higher values of 
SE while blue corresponds to lower values (note that SE, as defined here, is high when shielding is 
poor). 

 
Figure 3-3. 3-D plot of shielding effectiveness (SE) in terms of the slot parameters for a high- 

resolution grid for the power balance code. 

 
The first phase of the experimental design (see Section 3.1.1) was implemented to obtain a sample of 
size 40 of the three-dimensional slot parameter space. The sample was generated assuming normal 
distributions on the 3 inputs. Figure 3-4 shows the location of the Latin Hypercube samples colored 
by magnitude of SE.    
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Figure 3-4. Location of 40 Latin-hypercube samples for the power balance code. 

 
The response-modeling algorithm (see Section 3.1.2) is used to approximate the relationship 
between shielding effectiveness (SE) and the slot width, slot length and slot depth parameters. 
Figure 3-5 illustrates the response-model estimated relationship based on the 40 samples shown in 
Figure 3-4. Note that compared to the true values shown in Figure 3-3, the SE response is similar 
with respect to the slot width and slot length parameters but no longer monotonic with respect to 
the slot depth parameter. 

 

 
Figure 3-5. Estimated SE values calculated using the response-modeling algorithm based on the 

40 Latin-hypercube samples shown in Figure 3-4. 
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The response-modeling algorithm finds an optimal design based on expected precision for specific 
QoI. For illustration, here, we show initial results for two QoI: (a) the 0.9 quantile and (b) the 
estimation of a “failure region”, which is defined as all the point in input space for which values of 
SE are above 15.5. For each analysis, the expected QoI precision is assessed as a function of the 3 
slot parameters to determine what computer experiment should be run next.  Figure 3-8 maps the 
expected uncertainty for the estimation of the 0.9 quantile of SE, while Figure 3-9 shows the 
corresponding mapping of expected uncertainty for the estimation of the failure region. In both 
cases (Figure 3-8 and Figure 3-9) the more preferable design points in input space are those that 
align with smaller values of expected uncertainty. These results agree with our intuition. In Figure 
3-6, the preferable design points (indicated by the dark blue) are close to the region where Figure 3-3 
tells us that the maximum value is. In Figure 3-7 the preferable design points are further back 
toward the center of the input space at locations closer to the border of the failure region. 

 
Figure 3-6. Expected uncertainty in 0.9 quantile.  Lower values of expected uncertainty provide 

more preferable design points. 
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Figure 3-7. Expected uncertainty of failure, where failure is defined as values of SE greater than 

15.5.  Lower values of expected uncertainty provide more preferable design points. 

 
The next step in the algorithm would be to select the more promising points and run the code using 
these inputs.  One should see a substantial reduction in the uncertainty of the corresponding QoI. 

3.1.4. Diminishing returns. Analyses of precision in QoI as a function of 
sample size 

In this section, we address the first phase in computer experimental design as discussed in Section 
3.1.1. By examining results using different sample sizes, one can determine at what point a 
reasonable estimate of the QoI has been obtained. Generally, there is a point where further use of 
this sampling approach yields diminishing returns in establishing the precision of the QoI estimates. 
We performed this analysis for several different QoI. We describe the procedure for the QoI failure-
probability but we include results for the other QoI as well. 

Consider the analysis for failure probabilities, assuming a "failure" is any situation where SE is 
greater  than 15.5 and assuming the slot parameter inputs have a normal distribution. In Figure 3-8, 
we plot the estimated precision for failure probability for a range of sample sizes.   
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Figure 3-8. Standard error for failure probability as a function of sample size. Each dot represents 

an estimate of uncertainty at that sample size. The orange curve connects the mean values. 

 

 
Each dot represents the response-modeling estimate of uncertainty using a response-model 
conditioned on a specific sample. The uncertainty estimate is just the standard deviation of the QoI 
estimate across the realizations of the response-model. For each sample size N, 10 different sets of 
N sample points were taken. Each dot represents the value of standard error for an N-point sample 
set.  The orange curve connects the mean standard error values corresponding to each sample size. 
If one were to assess the required sample size based on this information, one could consider that 
most of the uncertainty has been resolved with a sample size of around 60 observations.  Beyond a 
sample size value of 60, the decrements in standard error are more marginal. 

An alternative approach to estimating the required sample size that might be appropriate using this 
power-balance model would be to use repeated sampling at each of several sample sizes, fit a 
Gaussian process model to each sample and use it to calculate the QoI response. A reasonable 
sample size could be determined as the sample size where the standard deviation of these predicted 
QoI responses became acceptable. This approach, however, would not be possible with a higher 
fidelity code which may take hours to run rather than seconds.    

Figure 3-9 through Figure 3-12 present the results of standard error analyses for other QoIs similar 
to the analysis shown in Figure 3-8 for failure-probability.  These other QoIs are the maximum SE 
value, mean SE value, 0.95 SE quantile and analysis of the failure region. One thing we expected in 
this analysis was to find that the recommended sample sizes would depend on the QoI. This appears 
to be the case. For the mean and 0.95 quantile analyses, a sample size of about 60 resolved most of 
the uncertainty in terms of standard error and the benefits of increasing the sample size were 
negligible.  For the case of the maximum value and identifying the failure region, the required 
sample size to resolve most of the uncertainty would be higher, on the order of 100. 
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Figure 3-9. Standard error for estimated maximum value of SE as a function of sample size. Each 

dot represents an estimate of uncertainty at that sample size. The orange curve connects the 
mean values. 

 

 
Figure 3-10. Standard error for the estimated mean value of SE as a function of sample size. Each 

dot represents an estimate of uncertainty at that sample size. The orange curve connects the 
mean values. 
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Figure 3-11. Standard error for the 0.95 quantile of SE as a function of sample size. Each dot 

represents an estimate of uncertainty at that sample size. The orange curve connects the mean 
values. 

 

 

 
Figure 3-12. Discrepancy measure for the identification of the failure region as a function of 

sample size. Each dot represents an estimate of uncertainty at that sample size. The orange curve 
connects the mean values.  Note that the identification of the failure region does not yield a point 

estimate and consequently standard errors are not available. See [4] for a description of the 
discrepancy measure. 
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4. VALIDATION FRAMEWORK DEVELOPMENT 

An approximate uncertainty quantification method for model validation is described, the results of 
which can used to estimate bounds in the CompSim predictions. The uncertainty bounds accompany 
nominal CompSim predictions to provide confidence in the CompSim results for use in applications. 
The approach leverages information from existing experimental data by bounding discrepancies 
between corresponding CompSim and experimental data quantities of interest (QoIs) using an inverse 
analysis. These enveloping bounds take the form of QoI probabilistic estimates for standard deviation 
and yield best-fit estimates for system input parameter variances. 

Linear system input-parameter-to-QoI response surface approximations are used to provide efficient 
functional maps representing a parametric design space. All of the design-space approximations are 
anchored at the QoI values computed at the nominal input parameter values and are assumed to 
represent the QoI mean values. These approximations are used in the estimation of the system input 
parameter variances, thus circumventing the need to make assumptions on input parameter probability 
distributions. 

Finally, the estimated input parameter variances can be propagated into a large number of prediction 
scenarios, using similarly constructed linear response surface approximations, to estimate prediction 
QoI variances. 

4.1. Motivation and Introduction  

Physics-based modeling and CompSim have evolved incredibly in recent years. Despite this, due to 
any number of factors, discrepancy is routinely observed when comparing CompSim results modeling 
an experiment to data from the physical experiment itself. This motivates the need for representing 
CompSim results in the form of presumptive bounds rather than a single fixed value. 

The process of establishing uncertainty aspects is a sub-type of model validation in that 
CompSim/experiment discrepancies are used to assess not only the suitability of our CompSim 
models, but also to inform downstream uncertainty models and produce predictions based on them. 
In typical CompSim applications there are some significant constraints that impact decisions on how 
best to estimate at these bounds.  Physics model form error, say as a closed functional form, is always 
unknown and cannot be separated from other sources of discrepancy without a large time and cost 
budget, making this an important constraint. In addition, in many cases there is an extremely limited 
amount of data to assess, a priori, uncertainty in system input parameters. Finally, large physics-based 
CompSim models in the face of limited computational resources, namely machine time and number 
of processors available, mean that the number of CompSim function evaluations that could be 
performed was constrained.  

With these limitations in mind, any QoI discrepancies are assumed to be accounted for by propagated 
system input parameter uncertainty. Also, for this uncertainty a low-order probabilistic metric—
variance or standard deviation—is used to express QoI bounds. 

4.2. Technical Approach  

The foundation of the approach is the assumption that model uncertainty can be addressed through 

the uncertain system input parameters, 𝐏, as this input uncertainty is reflected in the system QoI, 𝑞 =
𝑞(𝐏). Typical examples of such parameters include, say, material properties or properties of a physical 
entity, such as a gap length or width. These parameters are modeled as probabilistic random variables. 
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Nominal values for the input parameters, which are assumed to have been acquired during prior 
simulation model development and model calibration activities, are assumed to represent their mean 

values, 𝜇𝐏. A first estimate for the variance, 𝜎𝐏
2, of such an input random variable, or its square root, 

the standard deviation, 𝜎𝐏, is also made based on whatever additional information arises during the 
model development phase of a project. 

Naturally, the effect of uncertainty in input parameters propagates into a response QoI, 𝑞. Mean 

values, 𝜇𝑞, for the various system response QoIs that are considered in the project, such as EM wave 

characteristic, are assumed to equal those QoIs computed at these nominal parameter values, that is, 

𝜇𝑞 = 𝑞(𝜇𝐏). This relationship is exact for linear systems, but is an approximation otherwise. 

QoI variances, 𝜎𝑞
2, are adjusted to ensure that all discrepancies are a distance of no more than one 

QoI standard deviation from the nominal QoI. The constraints that these adjustments impose are 
used as criteria for making modifications to the input parameter variances. This process is a form of 
model validation in the sense that not only is it possible to make assessments on the suitability of 
the CompSim models, but underlying uncertainty is also captured in a manner that readily lends itself 
to prediction. 

To reduce the computational burden in the propagation procedure, input to output function mappings 
for the input parameters are developed using linear response surface approximations. A byproduct of 
the process of generating these linear approximations is that a local sensitivity analysis is implicitly 
performed. 

In the final phase, prediction, the now-modified uncertain input parameter variance estimates 
calculated during the model validation process are used in a number of prediction scenarios. In these, 
identical linear approximation procedures are employed using new CompSim QoI data local to each 
desired prediction point in the application domain. A visual summary of the entire technical approach 
is depicted in Figure 4-1.  

 

 
Figure 4-1. Overview of the Margin Estimation Process 
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4.2.1. Linear Response Surface Approximation 

  
The circumstances underlying a typical CompSim project dictate the use of a linear response surface 

approximation, 𝑞̂, of the general input parameter, 𝐏, to QoI, 𝑞, design space functional maps, 𝑞 ≈
𝑞̂ = 𝐿(𝐏). Thus,  
 

𝑞̂(𝐏) = 𝑞(𝜇𝐏) + ∑

𝑛

𝑖=1

∂𝑞

∂𝑝𝑖
|

𝜇𝐏

(𝑃𝑖 − 𝜇𝑃𝑖
) (4-1) 

 

 where 𝑃𝑖 and 𝜇𝑃𝑖
 are understood to represent the 𝑖𝑡ℎ components of 𝐏 and 𝜇𝐏, respectively. Also, in 

Eq (4-1) the approximation  
 

∂𝑞/ ∂𝑝𝑖|𝜇𝐏
≈ [ 𝑞(𝜇𝐏 + Δ𝑝𝑖) − 𝑞(𝜇𝐏) ]/Δ𝑝𝑖 (4-2) 

  

is used if one is calculating 𝐿( ⋅ ) using a one-sided finite difference. Alternative formulations based 
on central difference and, in rare circumstances, linear fits via least squares can also be employed; in 
these cases the calculated partial derivatives in Eq (4-1) are performed in the natural way. 

Building these approximations at each point in application space encompasses all of the CompSim 
burden. Note that the analysis that aided in the determination of which linear approximation method 
to use itself constitutes a form of local sensitivity analysis. As final notes on the linear approximations 
consider that   

• The uncertain input parameters in Eq (4-1),  𝑃𝑖 ∈ 𝐏, are assumed to be statistically 
uncorrelated.  

• While 𝑞 has been assumed to be scalar in Eq (4-1), it would be trivial to generalize it to the 
vector case. 

4.2.2. Response Variance Approximation 

  
The response QoI variance approximation follows from Eq (4-1),  

 

𝜎𝑞
2 = 𝐸[(𝑞(𝐏) − 𝜇𝑞)2]  

≈ 𝐸[(𝑞̂(𝐏) − 𝑞̂(𝜇𝐏))2] (4-3) 

≈ ∑

𝑖

(
∂𝑞̂

∂𝑝𝑖
)

2

|
𝜇𝐏

𝜎𝑃𝑖

2  (4-4) 

 

where 𝜎𝑃𝑖

2  is the variance of the 𝑖𝑡ℎ input parameter in the vector, 𝐏. Also, in Eq (4-3) an 

approximation to the mean of 𝑞, 𝜇𝑞 = 𝑞(𝜇𝐏), has been introduced; and, finally, all comments and 

assumptions regarding Eq (4-1) apply to Eq (4-4). 
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4.2.3. Model Validation 

  
For model validation, integrating the discrepancy between CompSim QoIs and corresponding 
experimental QoI data, Eq (4-4), along with the constraint  
 

|𝜇𝑞𝑖
± 𝛿𝑄𝑖

− 𝑞𝑒𝑥𝑝𝑖
± 𝜀𝑄𝑒𝑥𝑝𝑖

| ≤ 𝜎𝑞𝑖
= 𝜎𝑞𝑖

(𝜎𝐏) (4-5) 

 

yields a set of inequalities used to adjust the individual parameter variances, 𝜎𝑃𝑖

2 ∈ 𝜎𝐏
2. In Eq (4-5), 𝛿𝑄𝑖

 

and 𝜀𝑄𝑒𝑥𝑝𝑖
 represent suitably chosen bounds estimates representing numerical and experimental errors, 

respectively. 
 
Note that Eq (4-5) represents one inequality for each QoI in a given validation scenario and that the 

collective must be satisfied for all 𝑖 simultaneously. This collective is depicted for the case where no 
numerical or experimental errors are present in Figure 4-2.  

 

 
Figure 4-2. CompSim/Experiment Comparisons with Margins 

 where one can observe that not only do CompSim mean values vary point-to-point for each 
scenario/QoI, but the variances do as well; thus uniform QoI adjustments are often non-optimal. The 
collective inequality set to be satisfied is depicted in the Validation portion of Figure 4-1. 
 

This validation process was carried out for a simple example of three QoIs for a single mode, 
TM010, of the shielding effectiveness response vs frequency for the Higgins Cylinder [7]. The 
Sandia EM code Gemma was used to provide the simulation QoI response data using a method-of-
moments approach. Results revealed an issue with one of the QoIs, the 50% Q, a measure of the 
width of the SE signal about frequency at which the peak response is attained. This has yet to be 
resolved. The other two QoIs, the value of the peak response itself and the value of the frequency at 
which this peak is attained, were retained in the proposed bounding procedure. This reduced-order-
validation QoI response set required only a small adjustment to the assumed input parameter 
standard deviations, specifically, an increase of 15%. 

4.2.4. Prediction 

Margin predictions can next be performed using the fixed, validation-derived 𝜎𝑃𝑖

2 ∈ 𝜎𝐏
2 values and Eq 

(4-4) which require a new set of CompSim QoI predictions. The margin estimates can be represented 
by the resulting QoI standard deviations. This aspect of the procedure is depicted for one prediction 
point in the application space on the right side of Figure 4-1. 
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4.3. Concluding Remarks  

In this section, we provided an overview of the technical process that is followed to estimate 
confidence bounds associated with CompSim predictions. We also provided motivation for specific 
key technical aspects of our approach and provided an individual discussion on each of these key 
aspects. These discussions included a justification for using a low-order uncertainty quantification 
approach, and the strategies for encapsulating all observed simulation-to-experiment discrepancies 
through system input parameter uncertainty and for limiting the computational burden through the 
use of low-order physics-based model approximations. A simple validation exercise using the 
Higgins Cylinder was described that resulted in the identification of a potential problem with the 
experimentally measured Q for the first, or lowest frequency, resonant mode. This mode is 
identified as TM010 for the EM shielding effectiveness response. A minor adjustment to the 
assumed standard deviations for the uncertain input parameters was required to ensure that the 
experiment QoI data were bounded by the nominal analysis result plus or minus a standard 
deviation for the remaining QoIs considered. 

Finally, a visual depiction of a low-order uncertainty quantification process was provided in its 
entirety from validation to prediction for a typical prediction point. A procedure could be devised in 
which the results of the proposed validation study are used to propagate quite general probabilistic 
information, such as estimated probability of loss of assured safety (PLOAS), with results that are 
expressed as intervals with statistical tolerance limits. Such an approach also mitigates the problem 
of assuming too much information in assumed probability models characterized with too little data. 
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5. CONCLUSION  

The V&V/UQ/Credibility process activities described in this report represent the beginning of a 
broader set of credibility activities supporting the code development efforts for the Gemma 
electromagnetics code. These efforts will be documented in a V&V/UQ/Credibility plan for 
Gemma in FY21. The overall goal of these activities is to provide Gemma developers and analysts 
with the tools needed to generate credibility evidence in support of Gemma predictions for future 
use cases. As the code development and application plans for Gemma continue to evolve, the 
planning and execution of credibility activities for Gemma will need to be adapted to meet changing 
needs and expectations.  

Several lessons learned can be captured from the work described in this report and will be applied to 
the planning and execution of credibility activities for Gemma moving forward. First, it is critically 
important for V&V/UQ/Credibility activity planning and execution to include EM SMEs and 
Gemma code developers. This involvement is important to ensure that V&V/UQ/Credibility 
experts are made aware of important considerations in the physics, understand the experimental data 
that they are processing, and are able to connect credibility activities to larger planning efforts and 
requirements. A lack of communication and understanding on these aspects of the analysis can lead 
to an increase in analysis timelines and rework. As a result of this lesson learned, EM SMEs and 
Gemma code developers will be included as authors for the FY21 Gemma credibility plan, and 
strategies for communication will be put in place to communicate and document important aspects 
of upcoming analyses. As a result of the FY20 efforts, a stronger teaming across 
V&V/UQ/Credibility partners and EM SMEs/Gemma code developers has already been 
developed.  

Second, it is clear that there is a wide variety of V&V/UQ/Credibility needs and stakeholders for 
both Gemma and EM analyses in general. Competing priorities and analysis needs can make it 
difficult to develop a clear plan for execution of credibility activities. Future planning will involve a 
prioritization of activities and stakeholders to streamline execution and ensure that credibility 
activities leverage V&V/UQ/Credibility capabilities and expertise efficiently.  

Through evolving planning and execution of V&V/UQ/Credibility activities for Gemma, credibility 
evidence and the capabilities to generate this evidence will be developed and made available to 
Gemma code developers and analysts. This will support the development and delivery of the 
credibility evidence needed to support the use of Gemma across an applicable range of 
computational simulation problems.  
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