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ABSTRACT:

Deep neural networks have emerged as a leading set of algorithms to infer information from a
variety of data sources such as images and time series data. In their most basic form, neural
networks lack the ability to adapt to new classes of information. Continual learning is a field of
study attempting to give previously trained deep learning models the ability to adapt to a
changing environment. Previous work developed a CL method called Neurogenesis for Deep
Learning (NDL). Here, we combine NDL with a specific neural network architecture (the Ladder
Network) to produce a system capable of automatically adapting a classification neural network
to new classes of data. The NDL Ladder Network was evaluated against other leading CL
methods. While the NDL and Ladder Network system did not match the cutting edge
performance achieved by other CL methods, in most cases it performed comparably and is the
only system evaluated that can learn new classes of information with no human intervention.

I. INTRODUCTION AND EXECUTIVE SUMMARY OF RESULTS:

Fields including device inspection and proliferation detection require rapid response and
adaptation to changes to their environment. Rare events in spare datasets must be recognized and
accounted for. Deep learning is inherently neither adaptive nor versatile [1]. Many data points
are required for model generalization and a human field expert is needed to be in-the-loop to
fine-tune the model. Furthermore, deep learning models readily forget old tasks when learning
new tasks, a process known as catastrophic forgetting [2]. Continual learning seeks to remedy
these shortcomings.

The dual-memory model of mammalian memory has received recent attention for its benefits to
brain-inspired CL. In this neurogenesis model, immature hippocampal neurons exhibit increased
plasticity and are dynamic in their representations, whereas mature hippocampal neurons have
reduced learning and maintain their representations. These structures allow mammals to learn
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and create new memories while maintaining existing memories and knowledge, essentially a
biological form of CL.

Prior work developed a CL method for deep neural networks (DNN5) called Neurogenesis for
Deep Learning (NDL) and demonstrated how neurogenesis could improve image reconstruction
of deep fully connected autoencoders. When confronted with a novel input, new “plastic”
neurons are added and trained to incorporate the anomalous input and older “mature” neurons are
preserved to maintain the model’s original representations. By using the reconstruction error
from within the autoencoder network, NDL detects novel inputs and then adapts to them. See [3]
for a detailed look into this method, and its application on reconstruction problems using
autoencoders. In this work, we constructed a ladder network out of convolutional autoencoders
to achieve complex pattern recognition while leveraging previous work on NDL. We evaluated
our ladder network and NDL pipeline (LN+NDL) against three other state-of-the-art adaptive CL
methods on pattern recognition tasks; namely Elastic Weight Consolidation (EWC) [2], Learning
Without Forgetting (LWF) [4], and Latent Replay [5].

EWC finds regions of the operational envelope that two disparate classes have in common. By
preserving these overlapping experience regions, EWC is able to learn one task and preserve the
shared experience of previous tasks. LWF places model weights into three categories: shared,
task-specific, and new-task. Weights in the shared category are kept the same throughout
training. The task-specific weights are refined for a given class. New-task weights are added
when a novel input is detected and are trained to perform the new task. Latent replay saves the
activations from earlier layers of a neural network. These activations can be considered a
compressed representation of the original input and are reintroduced when training on new tasks
to ensure the model maintains a representation of all previous tasks.

We can transform an autoencoder network intended for reconstruction problems into a pattern
recognizer by creating a Ladder Network out of autoencoders [6]. Ladder networks train a
decoder for each layer of the auto-encoding network. This is allows the NDL process to monitor
reconstruction loss at each layer, detect anomalous inputs, and adapt the network by adding and
training new neurons. While it is directly relevant to NDL, ladder networks are also capable of
performing semi-supervised learning, so they may be trained using unlabeled data as well as
labeled data. By applying NDL to a ladder network of autoencoders, we create a CL method
capable of automatically detecting when an anomalous input occurs and simultaneously adapting
to the input. Our goal is to achieve 10% higher classification accuracy than previous state-of-art
methods with reasonable overhead and no loss in learning capacity over time. Upon completion,
the codebase could be used by device inspection and proliferation detection programs to detect
and respond to anomalies in dynamic environments.
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We successfully constructed the Convolutional Ladder Network with NDL (LN+NDL) pipeline,
analyzed its individual performance, and measured our success on accuracy, retention, and
footprint. To support this evaluation, we designed an automated CL test and evaluation pipeline
for all four methods. Addressing each metric in turn, the LN+NDL pipeline efficiently detected
anomalies and adapted to them with comparable performance to the other three state-of-art
methods. The model converged faster than the other methods and had comparable accuracy.
However, the LN+NDL pipeline had lower retention compared to the other methods. This came
as a surprise, since our method was expanding the architecture much more than the other
methods. We determined the lower retention in our pipeline was caused by the ladder network
architecture becoming unstable after multiple classes were added. Finally, the LN+NDL pipeline
incurred a higher than expected footprint due to the duplicated layers in the ladder network
architecture. We observed that the pipeline was capable of semi-supervised tasks as well as
detecting the anomalous inputs presented to it. However, the LN+NDL pipeline overall fell
below the bar held by the other state-of-art methods. If the ladder network instability issue could
be resolved, we expect the pipeline would be an exceptional replacement to state-of-art methods
due to its automated anomaly detection capabilities.

Il. DETAILED DESCRIPTION OF RESEARCH AND DEVELOPMENT
AND METHODOLOGY:

II.A Ladder Network architecture

Ladder networks are a specific type of neural network architecture developed in [7]. These
networks are designed to take advantage of datasets with a large amount of unlabeled data. A
ladder network is composed of three distinct neural networks; a “noisy” autoencoder, a decoder,
and a “clean” autoencoder. Both the labeled and unlabeled inputs are input into the “noisy”
encoder. This encoder seeks to encode the data into a small latent space like most autoencoders
but has Gaussian random noise added to each layer. The data is also input into the clean encoder,
which has no noise added to it. The “noisy” encoder encodes the data, which is then passed to the
decoder. Each layer of the decoder takes the corresponding layer of the “noisy” encoder and the
previous layer of the decoder as inputs. The decoder attempts to decode the noisy data from the
noisy encoder into good representations similar to the “clean” encoder’s corresponding layer. For
unlabeled data samples, the network is trained by back propagating the gradients of the loss
between the decoded representation and the clean encoder. This reconstruction error also allows
the NDL process to detect anomalous inputs. For labeled data examples, the network is trained
by back propagating the gradients of the loss encountered by the final classification of the clean
encoder. The clean encoder and the noisy encoder share weights such that the clean encoder is
trained when unlabeled data is ran through the noisy encoder and the decoder. When then
network is utilized to make a prediction, the inputs are ran through the clean encoder and the
output of the clean encoder is utilized. See Figure 1 for a diagram of the network.
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Figure 1 A diagram of the ladder network architecture from [7]. The noisy encoder is on the left
and produces ¥ . The clean encoder is on the right and produces y, the prediction utilized for
inference. The reconstruction error (RE) is the difference between the decoder (center) and the
clean encoder at a specific layer. A high RE during inference causes the NDL process to add
neurons and adapt the network.

I.B Ladder Network with Neurogenesis

Combining neurogenesis with ladder networks allows the network to continually learn new
classes of data. For example, a ladder network could be trained to recognize two classes of
object, say cars vs. trucks. Then if a third class that is substantially different from the first two is
introduced, e.g. tractors, the network may learn that a new class exists. For details of the NDL
process applied to autoencoders, see [3]. The NDL process with ladder networks is as follows:
1. The neurogenesis takes two user set parameters, an acceptable reconstruction error (RE)
and a specific number of samples acceptable over reconstruction error threshold
(Thresh_bad).
2. For each layer in the network:
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a. The new data (containing data from existing classes in the network, possibly
interspersed with new classes of data) is fed through this layer of the noisy
encoder, followed by the corresponding layer of the decoder.

b. The number of samples with an error between the output of the decoder and the
original input greater than RE is calculated. Call this number N_bad.

c. While N_bad exceeds Thresh bad, channels are added to the current layer one by
one. This enables the network to adapt to new data. Then new channels are briefly
trained (with previous layers frozen), and the reconstruction errors reevaluated.

3. The samples are fed through the clean encoder in the network, which has possibly had
channels added to some or possibly all layers in step 2. Note that the set of weights are
shared between the noisy encoder and the clean encoder, so if channels are added to one,
they are added to both.

4. The output of the clean encoder is used as the prediction. If channels have been added to
the final layer, then a new class has been identified by the network.

This process allows the network to learn new classes of data.

I1.C Metrics

Our success depends on whether we show advantage over the state-of-art methods based on the
following three criteria:

1. Accuracy: Percentage of new classes detected and accounted for. The purpose of the
accuracy metric is to show how efficiently we can detect anomalies. Based on past
performance from NDL [3], we expect a 10% increase in accuracy over alternative
methods.

2. Retention: Long-term retention of tasks as new tasks are added. We expect no drop in
long-term retention or learning capacity which are present in the alternative methods.

3. Footprint: Memory and processor requirements. We expect our method to take up more
memory and require more processing time than the other three methods, however we
expect this overhead to be reasonable when accounting for the gains in accuracy and
retention provided by this pipeline.

11.C.1 Neural Network Architecture

A simple neural network architecture we named ConvNet was used to collect data for our
metrics. This network is complex enough to capture the MNIST dataset, however has a low
enough learning capacity to strain the continual learning methods when all classes are added.
The network architecture is show in Table 1. There are 2226 total weights in this network that
can be trained.
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Table 1 ConvNet architecture

LAYER Output Dimension Param count
INPUT 28x28x1

CONV 1 28x28x2 52
BATCH NORMALIZATION 28x28x2

RELU 28x28x2

MAXPOOL 14x14x2

CONV 2 14x14x4 204
BATCH NORMALIZATION 14x14x4

RELU 14x14x4

MAXPOOL TxTx4

LINEAR 10 1,970

II.D Datasets

We considered a set of datasets that would provide metrics relevant to real-world scenarios:

1. MNIST: We selected the handwritten number dataset called MNIST [8] to assess the
performance of the ladder network and characterize greater aspects of the LN+NDL
pipeline. This dataset would help us understand how the new pipeline is behaving, and
provide an interpretable comparison between our pipeline and the state-of-art methods.

2. CORe50: The Continual Object Recognition, Detection and Segmentation Dataset called
CORe50 [9] was considered to test how LN+NDL adapted to complex image data. We
intended to run our model with this dataset, however we prioritized MNIST for its
interpretability.

3. STEAD: The Stanford Earthquake Dataset [10] was considered to provide an example of
real-world time-series data, which we would process as spectrograms. We were able to
construct spectrograms from this dataset, however in the end we did not run a full
continual learning analysis on the data because the dataset did not contain the class
variety needed for continual learning.

Il.LE Continual Learning Test Bed

In order to gather data for the metrics mentioned above, a testbed was constructed for running
the continual learning methods. The tests were separated into two suites, Suite 1 intended to
provide data for the accuracy metric and Suite 2 intended to provide data for the retention metric.
The footprint metric would use timing data from both test suites. We describe the two test suites
below.
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II.E.1 Test Suite 1

The first test suite focused on the accuracy metric. We pretrained the networks with a subset of N
classes and then evaluated the ability for the networks to adapt to the next class. We selected
N=2 for our tests. We trained the networks on two cases: “1,7” and “0,6”, where the networks
were pretrained with MNIST 1’s and 7’s in the first case and 0’s and 6’s in the second. We chose
these cases by looking at the distribution of the MNIST data on a variational autoencoder (VAE)
[11]. The VAE naturally grouped the classes in the following subsets: {1, 4, 7, 9}, {0, 6}, {5, 8},
{2, 3}. By training on {0, 6} and testing on a different class, we maximized the amount of
adaptation required by the CL methods.

Il.E.2 Test Suite 2

The second test suite focused on the retention metric. We pretrained the networks with the same
approach as Suite 1, then we trained on a sequence of new classes. We chose the following two
tests to run in this suite. The first test trains on two similar classes (4 and 9), then adapts on
dissimilar classes. The second test has class similarity evenly distributed among the adapted
classes:

1. Trainon {1, 7} then adaptto 4,9, 0, 6, §, and 5.

2. Train on {0, 6} then adaptto 9, 8, 1, 3, 7, and 5.

lll. RESULTS AND DISCUSSION:

lllLA Ladder Network performance analysis

In order to assess the performance of the ladder network in handwritten digit recognition, the
network was trained with 70% unlabeled data, and learning rates ranging between 0.01 and 0.02
with steps of 0.001 for 75 epochs. In each experiment, the maximum accuracy for the training
and test epochs where tracked. In all cases, the ladder network showed increased performance
throughout the training period, with all learning rates achieving at least an accuracy of 60%.
However, when the learning rate was 0.01, the algorithm showed steady improvement
throughout all epochs, and achieved a maximum accuracy of about 90%, indicating the smaller
learning rate was most effective. The accuracy curve began to level off after 70 epochs,
indicating that only small accuracy gains were likely to be achieved from further training.

Il11.B LN+NDL vs State-of-art

The test suites above were used to gather data for all three metrics, which we compare in this
section. The ladder network code was able to automatically detect new classes of data on the
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MNIST dataset and achieve reasonable accuracy on new classes of data. However, it did not
perform as well as some of the current state of the art methods for continual learning. While the
LN+NDL methodology did not perform as well as other state of the art methods, it does allow
automatic detection of new classes of data, which none of the other methods allow. The other
methods also must have human intervention to train on new data classes.

LABORATORY DIRECTED
DOR

lll.B.1 Accuracy Metric

Here we compare the accuracy of the LN+NDL pipeline to the other state-of-art methods. Each
network was trained on a pair of classes, 1’s and 7’s or 0’s and 6’s. They were then tasked with
adapting to a new class. To specify which classes were trained and added, the initial pretrained
pair is noted as “1,7” or “0,6” and then any following classes are adapted by the network. Table
2 shows the accuracies for each method on ConvNet. LN+NDL outperformed LWF in every
case. LN+NDL also outperformed EWC and Latent Replay in some cases, however on average
EWC and Latent Replay achieved higher accuracies.

Table 2 New-class training accuracies for models pretrained on classes “1,7” and “0,6”

ADDED CLASS LN+NDL EWC Lat Replay LWF
1,7+0 97.67 99.18 98.67 76.16
1,7+2 95.79 97.44 96.82 76.34
1,7+3 97.26 98.05 100 74.66
1,7+4 100 98.67 97.79 74.16
1,7+5 94.55 98.36 100 77.73
1,7+6 100 98.68 98.42 72.31
1,7+8 100 97.6 100 75.76
1,7+9 88.89 96.62 95.05 71.03
0,6 +1 90.41 98.67 98.19 64.19
0,6 +2 91.43 96.84 95.85 72.78
0,6 +3 93.75 97.33 100 72.88
0,6 +4 75 97.71 97.45 73.12
0,6 +5 80 95.46 95.92 73.81
0,6 +7 89.39 97.35 100 68.87
0,6 +8 91.67 96.96 96.81 73.65
0,6 +9 89.36 97.66 97.73 71.24
AVERAGE 92.2 97.66 98.04 73.04
STD DEV 7 0.94 1.66 3.25
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Figure 2 shows an example training profile of all four methods. The LN+NDL network (red
line) is considerably less stable while training. It does not converge to a local minima like the
other methods, but instead it wavers around a minima without stabilizing. We attribute this
behavior to the ladder network constantly agitating the weights during the denoising training
step.
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Figure 2 Accuracy of all methods, pretrained on 1,7 and adapted to 8

We now take a closer look at one of the “original” two classes that the networks were trained on
before adapting. We expect to see little change in accuracy of this class before and after
adaptation. Table 3 shows the test accuracy of the 1’s class before and after the models adapted
to the other classes. The average test accuracy for LN+NDL decreased from 99.67% to 98.48%.
This is higher compared to the other methods, however the decrease is within the standard
deviation of noise inserted by the ladder network. Table 4 shows the average test accuracy of the
0’s class before and after the models adapted to the other classes. There was a 6% decrease of
test accuracy for LN+NDL after adapting, which is a nonnegligible amount. Figure 3 shows
these accuracies during training. Evidently, the pipeline is capable of preserving the previous
class in nearly all cases except when adapting to Class 4 and Class 5. We attribute the poor
performance to the fact that those classes are very different from Class 0 [11].

Table 3 Class 1 Average Test Accuracies, 1+7 Pretrained

LN+NDL EWC Lat Replay = LWF
BEFORE ADAPTING | 99.67 99.9 100 99.91
AFTER ADAPTING 98.48 99.43 99.36 99.91

CHANGE [%] 1.19 0.47 0.64 0
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Table 4 Class 0 Average Test Accuracies, 0+6 Pretrained

L

LN+NDL EWC Lat Replay LWF
BEFORE ADAPTING 98.42 98.89 98.74 98.89
AFTER ADAPTING 92.18 98.24 97.92 99.04
CHANGE [%] 6.34 0.66 0.83 -0.15
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Figure 3 Class 0 Test Accuracy of LN+NDL as new classes are adapted

111.B.2 Retention Metric

We next compare LN+NDL retention to that of the other methods. Once a new class is added, all
training samples of that class are included in the accuracy. If the model perfectly adapts to the
new class, the accuracy will be greater than or equal to that of the original accuracy. We
expected no loss in retention as more classes were added to the LN+NDL pipeline, however the
pipeline experienced retention loss nearly every time a new class was added. Figure 4 shows the
accuracy of all classes while LN+NDL was trained. Arrows indicate when a new class was added
to the mix. The network initially showed promising results, bouncing back to high accuracies
after incorporating the first two new classes. However, the accuracy did not recover after the
third class was incorporated.
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Figure 4 LN+NDL Train Accuracy of all classes as new classes are added. Arrows indicate when
a new class was added. For the network pretrained on 1°s and 7’s (blue), the classes added were
4’s,9’s, and 6’s, and 0’s. For the network pretrained on 0’s and 6’s (pink), the classes added were
9’s, 8’s, and 1’s, and 3’s.

Table 5 and Table 6 show the train accuracy of all classes as more classes were adapted. All
three state-of-art methods experienced a decrease in classification accuracy after the four new
classes were added. This phenomenon was present in both the “1,7”” and “0,6” configuration.
LWEF experienced the largest decrease of 21%. However, the loss in retention was much more
pronounced for LN+NDL, which experienced a 74% decrease in the “0,6” scenario. This result
suggests the new pipeline is experiencing catastrophic forgetting.

Table 5 Train Accuracy as new classes added, 1+7 Pretrained

ADDED CLASS LN+NDL EWC Lat Replay LWF
1,7 99.24 99.65 99.47 99.65
1,7+4 94.65 98.42 97.67 73.22
1,7+4+9 80.98 95.91 94.64 69.53
1,L7+4+9+0 51.57 96.97 95.15 75.54
1,L7+4+9+0+6 | 72.27 96.37 95.22 78.73
CHANGE [%] -27.18 -3.29 -4.27 -20.99
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Table 6 Train Accuracy as new classes added, 0+6 Pretrained

ADDED CLASS LN+NDL EWC Lat Replay LWF
0,6 98.71 99.65 98.51 99.65
0,6 +9 95.01 98.4 97.69 73.34
0,6 +9+8 89.77 95.78 96.18 69.57
0,6 +9+8+1 39.19 96.96 96.2 75.53
0,6+9+8+1+3 |2523 96.35 94.66 78.79
CHANGE [%] -74.58 -3.31 -3.91 -20.93

To determine whether catastrophic forgetting is occurring for LN+NDL, we analyzed the
accuracy of the original classes as the model adapted. Figure 5 shows the training accuracy of
Class 1 as the 4, 9, 0, and 6 classes were added. The accuracy dropped almost immediately after
Class 0 was added. The architecture changed drastically when incorporating Class 0, and it was
unable to recover Class 1 until Class 6 was added and adapted. We hypothesize that the ladder
network architecture became unstable after NDL added neurons for Class 0. The neurons that
were added greatly changed the distribution of the weights within the ladder network
architecture. Figure 6 shows how the weights evolved throughout the training period. After
Class 0 was added, i.e. the third histogram in Figure 6, the weights in both of the final encoder
layers evolved significantly. This evolution placed the ladder network into an unstable state
which made it difficult to recover from forgetting Class 1.
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Figure 5 LN+NDL Train Accuracy of Class 1 as new classes are added to the “1,7” pretrained
model. The blue arrows indicate when a new class was added. The third arrow indicates when
Class 0 was added.
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Figure 6 LN+NDL weight hfstogram overlays of the final two layers in the ladder network encoder
architecture. The bottom of the stack is after adapting to Class 4. The top of the histogram stack is
after adapting to Class 6. The third histogram from the back is after adapting to Class 0.
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We observe a similar phenomenon for Class 6 of the “0,6” case, shown in Figure 7. After Class
1 is added to the training step, the training accuracy for Class 6 drops from 95% to 60%. The
network was unable to recover the accuracy as new classes were added, and the accuracy
bottoms out at 0% for Class 6. In other words, LN+NDL experienced total catastrophic
forgetting for Class 6. There was a similar change in weight distribution after Class 1 was added
to the architecture, shown in Figure 8.

The dramatic change in weight distributions again placed the ladder network in an unstable state
that made it difficult to recover from catastrophic forgetting. If weights were added to the
architecture in a way that wouldn’t cause instability, then the LN+NDL pipeline would have high
retention. As it stands, however, the LN+NDL pipeline has lower retention than the state-of-art
methods.
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Figure 7 LN+NDL Train Accuracy of Class 6 as new classes are added to the “0,6” pretrained
model. The pink arrows indicate when a new class was added. The third arrow indicates when
Class 1 was added.
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Figure‘S‘ LN+NDL weight hiStogrdm overlays of the final two layers in the ladder network encoder
architecture. The bottom of the stack are the weights after adapting to Class 9. The top of the stack
are the weights after adapting to Class 3. The third histogram from the back is after adapting to
Class 1.

1ll.B.3 Footprint Metric

The footprint of each method was characterized using timing and memory usage acquired during
model training. The average memory usage is shown in Table 7. The ladder network architecture
was expected to have a 3x overhead in memory usage, because the network used by the other
methods is duplicated for the two encoders and one decoder in the architecture. The memory



L ")RD LABORATORY DIRECTED
AN RESEARCH & DEVELOPMENT
WHERE INNOVATION BEGINS

usage, however, was higher than 3x. On average, the usage was 7x higher than the other
methods. We attribute the overhead to the unseen parameters and mechanisms used to train the
LN+NDL pipeline. The unexpected increase made it impossible to train large CNN models such
as VGG or MobileNet, because we were limited to a 32 GB GPU which the LN+NDL pipeline
eventually surpassed while adapting to new classes.

Table 7 Method size requirements

LN+NDL EWC  LatReplay LWF
AVG. SIZE [MB] 5675 806 798 806

Although there was a higher than expected memory requirement for LN+NDL, the pipeline’s
computation speed remained competitive with the other models. Table 8 shows the average total
computation time of each continual learning methods The averages were calculated from the
Suite 1 test runtimes.

Table 8 Method computation times

LN+NDL EWC Lat Replay LWF
TOTAL TIME [MIN] 71 73 70 71

IV. ANTICIPATED OUTCOMES AND IMPACTS:
IV.A Publications

In May 2022 we intend to publish to the NeurIPS 2022 conference on Brain-inspired Al for
using ladder networks to apply the neurogenesis method to pattern recognition. Although this
work showed an instability in the ladder network architecture, it still showed a valid method for
using a previously proven continual learning method, neurogenesis, on task-based pattern
recognition problems. Previous state-of-art continual learning methods perform well on task
adaptation, however they cannot recognize when a new task is introduced. Furthermore, for
EWC and Latent Replay the number of future tasks must be known before-hand. This work
therefore makes significant contributions to the continual learning field by showing how a
pattern recognizer can not only adapt to an anomalous input, but also determine whether an input
is out-of-distribution. The ladder network can also accept unlabeled data, and this data can
contain anomalous inputs as well. These results will further the field of continual learning and
show that brain-inspired continual learning methods present benefits that prior methods are
incapable of producing.
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IV.B Tools and Capabilities

We developed many new tools and capabilities that will be applied to various fields in our team’s
departments. We constructed and optimized a LN+NDL pattern recognition pipeline capable of
detecting and adapting to novel inputs. Even though the pipeline was found to have lower
retention capabilities than the other state-of-art methods, the pipeline could be directly applied to
anomalous input detection problems. By removing the NDL portion, the architecture also
presents a semi-supervised pattern recognition solution for utilizing unlabeled data.

To support the evaluation of the new pipeline and comparison to the state-of-art methods, an
automated deep learning evaluation pipeline was constructed. This pipeline performs automated
data loading, training, and advanced metric collection capable of characterizing continual
learning methods. The test-bed could be easily expanded to other continual learning methods.

Finally, along with our LN+NDL pipeline we constructed and vetted three continual learning
methods: EWC, LWF, and Latent Replay. These methods are all state-of-art and capable of
performing continual learning on real-world scenarios. The methods will be kept as capabilities
we can use to accelerate development of other continual learning projects.

IV.C Staff development

Dylan Fox, Zach Harris, Yang Ho, and Shannon Kinkead were all early career employees at the
time of this work. Dylan gained experience in deep learning architecture development and
neurogenesis architecture development. Zach gained experience in Deep Learning architecture
development, with a focus in ladder networks and state-of-art continual learning architecture
design. Yang gained experience in deep learning benchmarking, state-of-art continual learning
architecture design, and performance analysis of continual learning pipelines. Shannon, a PhD
candidate, gained experience in deep learning training and performance analysis.

IV.D Impact and path forward

The progress made in this LDRD can be expanded upon in later works and future opportunities.
If the ladder network growth can be regularized, then stable growth of the network will boost
retention of the pipeline and offer a solution for rapid response to novel input. Such a system
would greatly benefit NNSA nuclear threats missions by providing adaptable proliferation
detection systems. These systems would reliably discover anomalies in a sea of data and rapidly
adapt to the anomalies, a task imperative to the detection mission. This work would therefore be
receptive to future calls in the proliferation detection domain. This work also impacts the
Department of Homeland Security Transport Security Administration by offering solutions for
device inspection software capable of detecting and adapting to anomalous devices in images.
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Further work must be done in order to characterize and remedy the instability observed in the
ladder network. However, if achieved, it would take a progressive step towards pioneering
pattern recognition systems capable of adapting to rapid changes to their environment.

V. CONCLUSION:

Here, Continual Learning using NDL and Ladder Networks was shown to be capable of
recognizing anomalous inputs and adapting to the new environment. The NDL plus Ladder
network system displayed performance comparable with cutting edge methods for many added
classes of data, but suffered from catastrophic forgetting and instability in the Ladder Network
after some added classes. While the performance of the NDL plus Ladder network was generally
slightly worse than other cutting edge CL methods, this system can automatically adapt to
anomalous inputs, setting it apart from other CL methods.
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ADDENDUM:
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Continual Learning for Pattern Recognizers using Neurogenesis Deep Learning, #22
James Z Harris (6362), Dylan Fox, Shannon Kinkead, Yang Ho, Omar Garcia

Key R&D Results and Significance

Purpose, Approach, and Goal Summarize your R&D

Motivation: Device inspection and proliferation detection require adaptive, versatile *  Developed a LN+NDL pipeline for applying NDL to a deep convolutional pattern
systems. Deep Learning (DL) is inherently neither adaptive nor versatile. Continual recognizer.

Learning (CL) makes models adaptive, but current methods require pre-ordained *  Analyzed stability of LN+NDL pipeline.

knowledge of future tasks, or storing inputs that represent each task. Neurogenesis Deep *  Developed an automated CL test and evaluation pipeline for our LN+NDL pipeline,
Learning (NDL) removes these problems, but hasn’t been used with pattern recognition. Elastic Weight Consolidation, Learning without Forgetting, and Latent Replay.

*  Developed data loader for training CL models.
¢ Compared performance of LN+NDL against our 3 criteria:
¢ Accuracy:
Approach: We constructed a LN+NDL pipeline and tested it against three state-of-art *  Goal: Efficiently detect anomalies with explainable uncertainty
Continual Learning approaches using simple and complex datasets. estimates.
*  Result: In most cases, LN+NDL had lower accuracy than the other
methods using comparable architectures.
*  Retention:
*  Goal: Retain knowledge for extended periods of time.
*  Result: LN+NDL was more adaptive than the other 3 methods,

Hypothesis: NDL can be applied to pattern recognition problems by using Ladder
Networks (LNs) as the DL architecture.

Our goal: We will develop a Convolutional Ladder Network (CLN) with NDL and compare
it to alternative state-of-art adaptive methods, measuring our success on accuracy,
retention, and footprint.

Representative Figure however after many classes were added the LN became unstable.
Test these methods... against this data... on these metrics. *  Footprint:

Baseline Metrics *  Goal: Balance network effectiveness and efficiency.

Split/incremental MNIST [7]
Task 0 Task 1 [ Taska ) ¢ Result: The increased footprint was higher than expected.
B HAERE
2L L The result for the one key goal
Challenger Stention We did not achieve our go/no-go. The LN architecture was too unstable to use with NDL.

CORe50 (8
m &1 “ L “ .} Other science learned: automated testbed for CL models, data preprocessing, pre- and
h‘ & | 000
* Successful if we

post-training model analysis.
STEAD Seismic ctrograms [9]
sk 1 [ _Taska )
! - A - J
show advantage on

‘ Lessons learned
Factor in time for studying background material.
ime D these metrics Publications, awards, staff development & IP
Testing and evaluation pipeline Early career: All members gained valuable experience in developing and evaluating
OFFICIAL USE ONLY Continual Learning pipelines.
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alternative state-of-art adaptive methods [4][5][6], measuring our success on accuracy, retention,

and footprint.

Test these methods... against this data...

on these metrics.

Split/Incremental MNIST [7] Baseline
Task 0O Task 1 Task 4
AERRR - HHHEH
/14 /M3131313]> alz217]171s
CORe50 [8 Challenger
NN - N

N

Task 4

STEAD Seismic spectrograms [9]
Task 0 Task 1
- - o -
J - _

[Time >

[4] Pellegrini, Lorenzo, et al. arXiv preprint arXiv:1912.01100 (2019).

(5] Kirkpatrick, James, et al. Proceedings of the national academy of sciences 114.13 (2017): 3521-3526.

[6] Li, Zhizhong, and Derek Hoiem. IEEE transactions on pattern analysis and machine intelligence 40.12 (2017): 2935-2947.
[7] Deng, Li. IEEE Signal Processing Magazine 29.6 (2012): 141-142.

[8] Lomonaco, Vincenzo, and Davide Maltoni. Conference on Robot Learning. PMLR, 2017.

[9] Mousavi, S. Mostafa, et al. IEEE Access 7 (2019): 179464-179476. OFFICIAL USE ONLY

Metrics
Accuracy
Retention

Footprint

- di

* Successful if we
show advantage on
these metrics

Alternative methods:

1. Latent Replay for Real-time CL [4]
2. Elastic Weight Consolidation [5]
3. Learning without Forgetting [6]

Datasets:
1.  MNIST [7]: Handwritten, low-res
images

2. CORe50 [8]: Continuous object
recognition on high-res images

3.  STEAD [9]: Complex seismic
waveforms from global survey
stations

R&D Summary: Results and Discussion
Accuracy:

* Goal: Efficiently detect anomalies with explainable uncertainty estimates.

¢ Result: LN+NDL had comparable accuracy to state-of-art.

Train accuracies on class_8

Accuracy

0 01 0z 03 04 05 06 07 08
Relative steps.

NDL test accuracy on class_1

Accuracy

—NDLL7+0
—NDL17+2
—NDL17+3

NDLL7+4
—NDL17+5
—NDL17+6
DL 1,7+8

o % " o o 0 2% T 16 18

terations
OFFICIAL USE ONLY

New class Training Accuracies

Added class LN+NDL EWC Lat Replay LWF

1,7+0 97.67 99.18 98.67 76.26
1,7+2 95.79 97.44 96.82 76.34
1,7+3 97.26 98.05 100 74.66
1,7+4 100 98.67 97.79 74.16
1,7+5 94.55 98.36 100 77.73
1,7+6 100 98.68 98.42 72.31
1,7+8 100 97.6 100 75.76
Average 97.9 98.28 98.81 75.32
Std dev 221 0.63 1.25 1.77

0ld class (class_1) Test Accuracies

Added class LN+NDL EWC Lat Replay LWF

1,7+0 99.47 99.74 99.65 99.91
1,7+2 98.68 99.21 99.12 99.91
1,7+3 97.36 99.38 99.56 99.91
1,7+4 96.56 99.82 99.65 99.91
1,7+5 98.15 99.47 99.12 99.91
1,7+6 99.03 99.03 99.12 99.91
1,7+8 98.68 98.85 98.94 99.91
Average 98.28 99.36 99.31 99.91
Std dev 1.01 0.36 0.3 )
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R&D Summary: Results and Discussion

Retention:

¢ Goal: Retain knowledge for extended periods of time.
¢ Result: LN+NDL was more adaptive than the other 3 methods, however after many classes were added the LN became unstable.

NDL train accuracy of all classes as new classes added

dos.o
NDLon 1, 7,4, and
9 were stable

EWC and Latent Replay
outperformed NDL

WHERE INNOVATION BEGINS

NDL train accuracy of class_1 as new classes added

Accuracy

State-of-art train accuracy of all classes as new classes added

Added
30K | class 8 35

‘Added ‘Added Added Added
class_4 class 9 | 19| class 0 | 20 class 6
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Training
ontand7

— DL class_1

terations

NDLon 0 and 6 Recovery

were unstable period

LDRD Project Metrics

Presentations and Publications

¢ SAND report.

* NeurlPS 2022 conference paper, submission in May 2022. Need to recompile SAND report.

Tools and Capabilities

* Optimized NDL + Ladder Network pattern recognition pipeline.

* Classifier capable of rapid detection and response of novel anomalous inputs.

* Classifier capable of both supervised and semi-supervised learning.

¢ Automated Deep Learning evaluation pipeline: Data loading, training, advanced metric collection.

¢ Operational state-of-art continual learning methods: EWC, LWF, Latent Replay.

Staff Development
¢ Yang Ho: DL benchmarking and performance analysis. State-of-art architecture development.

¢ Dylan Fox: LN and NDL architecture development.

¢ Shannon Kinkead: DL training and LN analysis.

¢ Zach Harris: DL architecture development. LN and state-of-art architecture development.
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Project Legacy @

Key Technical Accomplishment

* We did not achieve our go/no-go. LN architecture instability lead to lower performance compared to state-of-art.

* Other science learned: automated testbed for CL models, data preprocessing, pre- and post-training model analysis, operational
anomaly detection, semi-supervised learning.

How does this engage Sandia missions?
* NNSA nuclear threats mission: Proliferation involves detecting rare events in sparse datasets where
misclassification can have high consequences
* Rapid detection and response of novel anomalous inputs
* Automatic model adaptation to new data
* DHS Transportation Security Administration: safeguarding U.S. cargo systems
* Device inspection software capable of adapting to anomalous devices

Plans for follow-on and partnerships?

* Proliferation Detection R&D NA-23 call in November: leverage knowledge gained for other CL approaches
* Experience will be leveraged by the team on other projects

What do you wish you could have done, but didn’t? We wish we could have closed the loop on the LN instability
problem. More experimentation than expected was required.
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