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ABSTRACT 
This report presents the results of the “Foundations of Rigorous Cyber Experimentation” 
(FORCE) Laboratory Directed Research and Development (LDRD) project.  This project is a 
companion project to the “Science and Engineering of Cyber security through Uncertainty 
quantification and Rigorous Experimentation” (SECURE) Grand Challenge LDRD project.  This 
project leverages the offline, controlled nature of cyber experimentation technologies in general, 
and emulation testbeds in particular, to assess how uncertainties in network conditions affect 
uncertainties in key metrics.     
 
We conduct extensive experimentation using a Firewheel emulation-based cyber testbed model of 
Invisible Internet Project (I2P) networks to understand a de-anonymization attack formerly 
presented in the literature.  Our goals in this analysis are to see if we can leverage emulation 
testbeds to produce reliably repeatable experimental networks at scale, identify significant 
parameters influencing experimental results, replicate the previous results, quantify uncertainty 
associated with the predictions, and apply multi-fidelity techniques to forecast results to real-world 
network scales.  The I2P networks we study are up to three orders of magnitude larger than the 
networks studied in SECURE and presented additional challenges to identify significant 
parameters.   
 
The key contributions of this project are the application of SECURE techniques such as UQ to a 
scenario of interest and scaling the SECURE techniques to larger network sizes. This report 
describes the experimental methods and results of these studies in more detail. In addition, the 
process of constructing these large-scale experiments tested the limits of the Firewell emulation-
based technologies. Therefore, another contribution of this work is that it informed the Firewheel 
developers of scaling limitations, which were subsequently corrected. 
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CPU Central Processing Unit  

DES Discrete Event Simulation 

FORCE Foundations for Rigorous Cyber Experimentation 

HPC High-Performance Computing 

I2P Invisible Internet Project 

IP Internet Protocol [address] 

IQR Interquartile Range 

Kbps Kilobytes per second 

LDRD Laboratory Directed Research and Development 

MFUQ Multifidelity Uncertainty Quantification 

RAM Random Access Memory 

RI RouterInfo (contains identifying information about an I2P router) 

SA Sensitivity Analysis 

SECURE Science and Engineering of Cyber security through Uncertainty 
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VIF Variance Inflation Factor 
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1. INTRODUCTION 
This report summarizes the work performed under the “Foundations of Rigorous Cyber 
Experimentation” (FORCE) Laboratory Directed Research and Development (LDRD) project.  
This report describes an application of uncertainty quantification (UQ) in a large-scale study of 
de-anonymization of user activity in a distributed, anonymity preserving peer-to-peer network, the 
Invisible Internet Project (I2P).  Uncertainty is inherent in peer-to-peer, Internet overlay networks 
and may affect results from studies conducted on the Internet which cannot control many variables.  
Cyber testbeds running in emulated environments allow us to vary certain parameters of interest, 
observe how the network responds to changes, and perform UQ.  We study the impact of 
uncertainty in de-anonymization success.  
This project complements, and leverages work done in the “Science and Engineering of Cyber 
security through Uncertainty quantification and Rigorous Experimentation” (SECURE) Grand 
Challenge LDRD project.  The SECURE Grand Challenge has identified experimental design and 
uncertainty quantification as pillars of rigorous cyber experimentation.  In the FORCE project, we 
are focused on one in-depth case study where we demonstrate the use of experimental design and 
UQ at scale on large cyber networks.  The networks being emulated in FORCE are one to three 
orders of magnitude larger than those studied in SECURE. We also demonstrate the use of multi-
fidelity experimentation and analysis using regression and discrete event simulation (DES) to 
project emulated experimental results to higher network scales, and apply the multifidelity 
uncertainty quantification (MFUQ) technique developed by the SECURE team to reduce the 
variance of results. 
We performed experimentation using a Firewheel [12] cyber emulation model of an I2P network 
to understand a de-anonymization attack formerly presented in the literature.  We demonstrate we 
can identify parameters influencing the results, and quantify uncertainty associated with de-
anonymization attributions.  Further, we present the use and usefulness of statistical analysis on 
emulations of large-scale, distributed cyber networks, and highlight the value of applying UQ in 
cyber experimentation.  
This study provides us with a rich set of questions to investigate not only the potential for 
replication and studying a previous work, but also to consider the following:  

• Verification and Validation (V&V) of emulation model.  The study performed by Egger et 
al. involved live experimentation on the internet.  The studies we performed were entirely 
emulated in the Firewheel [12] environment.  This comparison is important for both 
verification and validation of emulator performance in modeling the I2P network.   

• Uncertainty quantification (UQ) and sensitivity analysis (SA).   The studies documented in 
this report focus on “forward UQ” which refers to propagating uncertainties in input 
parameters of a model to the corresponding uncertainties in the responses from that model.  
We examined a variety of configuration and topology uncertainties relating to I2P.  Other 
uncertainties in cyber experiments could involve environment, user, and threat 
uncertainties. We performed a variety of SA studies.  

• Advanced experimental design topics.  With the experimental platform we have set up now 
and the Firewheel I2P framework, we plan to address multifidelity UQ.  In multifidelity 
UQ, the idea is to run a small number of expensive, high-fidelity runs (such as Firewheel 
runs involving thousands of routers over several days) with many runs of a lower-fidelity 
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model.  The lower-fidelity model does not need to be very accurate; its results simply need 
to be correlated with the high-fidelity model.  Combining results from two fidelities of a 
model can result in statistical estimators that are lower-variance and more efficient than 
simply calculating the statistics based on the high-fidelity model alone.   

The report outline is as follows: Section 1.1 presents project background information, and Section 
1.2 discusses related work in cyber experimentation and the science of cybersecurity and how this 
work integrates this related work. Section 2 describes how the FORCE I2P model evolved during 
the three years of FORCE research. Sections 3 and 4 provide an overview of the I2P case study 
and the experimental configurations for the studies.  Section 5 describes the data analytics that 
were developed for this research, to process the TB size datasets and to calculate the mean 
confirmed hit rate (CHR) across many groupings and configurations (per node, per parameter 
setting type, etc.). Section 6 describes the emulation results obtained throughout the FORCE 
project.  Section 7 discusses multifidelity UQ and its demonstration on the I2P network study; 
Section 7 also discusses optimal experimental design.  Section 8 addresses lessons learned and 
best practices. Conclusions are summarized in Section 9.  Finally, Appendix A provides an 
overview of definitions related to experimentation, uncertainty quantification, and sensitivity 
analysis. 

1.1. Background 
This project’s proposal was originally submitted as a backup plan for the SECURE Grand 
Challenge in case that proposal was rejected. Instead, the SECURE Grand Challenge proposal and 
this project’s proposal were both accepted. As a result, this project focuses on the application of 
SECURE techniques such as UQ to a scenario of interest and scaling the SECURE techniques to 
larger network sizes. We take a deep dive into one specific cyber case study, while the SECURE 
Grand Challenge project focuses on advancing the theoretical foundations of the science and 
engineering of cyber security through uncertainty quantification and rigorous experimentation. 
Cyber testbeds have been established to provide a platform for research and experimentation on 
networks [6]. These testbeds often deploy many virtual machines (VMs), running on individual or 
clusters of powerful host computers, to provide greater network sizes at lower costs. Uses of cyber 
testbeds include test and evaluation, identification of network performance, cyber security 
investigation, and training [20,41].  Some examples of testbeds include LARIAT [36], Emulab 
[30,43], DETER [4, 31], and DARPA’s National Cyber Range [10].  In this work, we use the 
Firewheel emulation testbed [12], which was developed at Sandia National Laboratories (SNL) as 
part of the Emulytics™ (Emulation and Analytics) program. 

1.1.1. Case Study Selection 
Our selected cyber case study started with a paper called “Practical Attacks against the I2P 
Network” by Christoph Egger et al. in 2013 [9].  I2P refers to the Invisible Internet Project [22] 
which is an anonymous network built on top of the internet to allow protected communications.  It 
is a type of “darknet” technology which is described in more detail in Section 3.  
In this report, we present the results of a series of experiments performed on large, emulated 
networks to study a particular attack on the I2P network described in [9], and herein referred to as 
the I2P Case Study. 
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We selected the I2P Case Study for the following three reasons: 
1. Egger et al. utilized a multi-phased approach for predicting the probability of successfully 

de-anonymizing a target victim in a large-scale, distributed anonymization network, and 
this study involved live experimentation on the Internet.  In contrast, our studies use an 
offline, emulated testbed environment. 

2. Part of their process produced a very specific measurement (u, an empirically measured 
property of the I2P network) that was derived by determining the probability of 
successfully correlating sets of stochastic events generated by the network. Much of the 
work presented here involves understanding the uncertainty associated with that key 
parameter, u, which was found to have a value of 0.52 in Egger’s work [9]. The studies 
documented in this paper focus on propagating I2P configuration uncertainties to the 
corresponding uncertainty in u and beyond.  Note that u is also referred to herein as mean 
Confirmed Hit Rate or mean CHR in later chapters.  

3. Egger et al. then used this specific measurement (u) in their calculations when making de-
anonymization attributions about their attack’s intended victims, regarding otherwise 
anonymized communications.  This provides a rich example to show how uncertainties in 
one parameter or one part of the system propagate to downstream or aggregate predictions. 

1.1.2. Preexistent I2P Model 
Previous work by colleagues on the Firewheel team [12] had already produced a Firewheel 
emulation model of the I2P network. It contained all the fundamental building blocks for the 
creation of basic I2P experimental networks, however, it was now unusable as it was built to run 
on an early version of Firewheel v1.0 and wasn’t compatible with the newest (at the time) 
Firewheel v2.0. Even so, it could provide us with an established I2P emulation model that we could 
reengineer to work on the newer version of Firewheel, and then be expanded on to support all our 
experimental needs. 
While not the deciding factor, the availability of this existing I2P emulation model did weigh 
considerably on our decision to select the I2P Case Study over other candidate case studies not 
involving the I2P network. 

1.2. Previous Work 
During the last 15 years there has been much work in developing virtual testbed technologies to 
conduct cyber experimentation at scales that exceed what can be achieved using physical testbeds 
[4, 10, 12, 31, 43]. These technologies include tools for defining topologies, deploying experiments 
on one or more physical computing nodes, orchestrating experiments, collecting results, and 
analyzing collected data. In parallel, related efforts in virtualization research and development led 
to today’s cloud computing technologies, which are now used in a variety of applications where 
computing at scale is needed, including cyber testbeds. 
Also during this time there developed an increased interest in the science of cybersecurity [3, 8, 
18, 27] due to increasing concern about the lack of scientific rigor in cyber experiments. Often 
such experiments would be conducted without an articulated, falsifiable hypothesis, and would not 
be documented sufficiently to facilitate experiment reproduction by other research teams. These 
shortcomings in experimental methodology can lead to confusion about experimental conclusions 
and courses of action that should be taken as a result of these conclusions. For decisions regarding 
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high consequence cyber systems such as the Nuclear Command, Control, and Communications 
(NC3) system, more rigor in cyber experimentation is needed to produce scientifically meaningful 
results that can inform these decisions. 
Recent work in this LDRD, and the companion SECURE Grand Challenge LDRD have addressed 
this gap between mature experimental testbed technologies and nascent work in the science of 
cybersecurity. For example, formal uncertainty quantification and sensitivity analysis methods 
were recently used for cyber experimentation (see [46] for an example of a DNS amplification 
attack scenario, ranking the most important parameters affecting Central Processing Unit (CPU) 
utilization and victim response rate).   However, experimental design and uncertainty/sensitivity 
analyses methods are not yet used widely in the cyber emulation community.  This is a contribution 
of SECURE and FORCE.  



 

15 

2. OVERVIEW AND EVOLUTION OF RESEARCH 
To achieve our goals, we need our I2P emulation model to run reliably repeatable experiments at 
network scales and runtime durations not previously achieved using the Firewheel testbed. We set 
out to verify that our inherited (newly ported to Firewheel 2.0), original I2P model could produce 
reliably repeatable experiments.  This chapter discusses the topologies generated for these 
experiments as well as the parameters we investigated.  

2.1. Network Topology Generation 
Our I2P model generates network topologies that attempt to notionally replicate the Internet 
structure that the real I2P network runs on. To this end, as shown in Figure 2-1, our model includes 
an emulated tier 1 Internet backbone, tier 2 routing, and distributions of autonomous system (AS) 
subnets and the I2P routers within each subnet. The subnet and I2P router distributions i.e., number 
of subnets with I2P routers and number of I2P routers per subnet, are determined per AS by 
sampling from cumulative distributions constructed using data from previous I2P measurement 
studies [25].  

Figure 2-1. Notional Internet Topology 
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All Tier 1 BGP Routers are linked in a full mesh across a single Tier 1 Switch, and all Tier 2 BGP 
Routers are linked in a full mesh across their respective tier 2 Switches. Finally, we also include a 
data center network with DNS and NTP servers, I2P and Snark torrenting bootstrap servers, and 
an Eepsite server (an I2P hidden service website used for downloading files via the I2P network.) 

2.1.1. Original Dynamic Model 
The I2P model we inherited used a dynamic network topology generation algorithm, as described 
above, but one which did not generate the same network topology across subsequent runs using 
the same experiment parameters. While this approach did produce a notional Internet and a I2P 
overlay network of roughly a specified size, these were not reliably repeatable as is needed for our 
work. 

2.1.2. Static Model 
To remedy the non-repeatability problem of the original model, we developed a new static network 
topology generation algorithm. As its name implies, this model’s topology generation algorithm 
generated the same network topology repeatedly and reliably. All the Internet backbone, tier 2 and 
3 routers, and the number of subnets and I2P routers per subnet were always the same. For any 
given network size, all the topology of a smaller network size was replicated identically. For 
instance, a 500-node network would contain the exact 400-node sub-topology as was generated 
for a 400-node network, and so forth. While this approach did fulfill our reliability of repeatability 
requirement, since larger networks always contained exact subsets of all smaller networks the 
algorithm would generate, we felt it was too deterministic and wouldn’t afford us the opportunity 
to examine any possibility of effects caused by differences in I2P overlay network topology. 

2.1.3. New Dynamic Model 
We then reengineered the original dynamic model’s network topology generation algorithm to 
make it reliably repeatable for any specific network size, but still generate randomly different I2P 
overlay topologies for different network sizes. We felt that this compromise between the 
deterministic nature of our static model and the stochasticity of the original dynamic model would 
satisfy both of our requirements i.e., reliable repeatability and variability in I2P network topology. 

2.1.4. Network Topology Generation V&V 
To ensure that our changes to the network topology generation algorithm did not significantly 
affect the mean CHR metric we are focused on, we conducted a series of network scale 
experiments using each of the different models. The results of these experiments (Figure 2-2) 
showed that all three models’ results corresponded and tracked closely with one another across 
varying network scales. However, our new dynamic model’s results corresponded most closely 
with the deterministic, static model’s results, thus giving us confidence that our changes had not 
adversely affected the outcomes for our primary experimental metric of interest. 
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Figure 2-2. Comparison of Network Topology Generation Algorithms 

2.2. Parameter Selection 
Our work is focused on how experimental inputs affect outputs, as well as predictions and analyses 
based on those outputs, so selecting input parameters that matter is vital. Unfortunately, we didn’t 
know much about how I2P worked when we started this project, and as a result we had to discover 
which parameters would be significant. 
We had discovered early on that network scale i.e., the overall number of I2P routers included in 
each of our emulated I2P experiment networks, had an observable effect on an experiment’s mean 
CHR. In addition, network scale also affected the variance of the CHR [see Section 6, Figure 6-1, 
and Figure 6-14]. But we were also interested in finding parameters that would affect the CHR of 
specific, targeted routers. 

2.2.1. Local Parameters for Local Effects 
We initially operated under the assumption, and hope, that we could cause changes to an individual 
I2P router’s CHR by making changes to its local operating environment. This was a naïve 
assumption, based on a shallow (or lack of) understanding of the inner workings of the I2P routing 
software, and was eventually proven to be incorrect. However, the idea was that if a router being 
targeted by an attacker was configured in a way that significantly altered its CHR, then this could 
disrupt the effectiveness of the attack. Therefore, we conducted numerous experiments which 
varied parameters on individual routers and measured the resulting CHR for them before we 
became much more fluent in the workings of I2P routers. During this phase, we varied such 
parameters as a VMs available bandwidth, the percentage of that bandwidth it shared with its I2P 
router software, the number of virtual CPU cores (sockets) and the amount of Random Access 
Memory (RAM) that it had. We also looked at whether the number and/or length of a router’s 
encrypted tunnels would affect its local CHR. 
We developed an automated capability for configuring sets of targeted routers, called Victim 
Groups since they were intended to be victims of the de-anonymization attack, so we could have 

* All models not included at these scales. 
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multiple sets of similarly configured routers per experiment. This also allowed us to configure 
different sets of routers with different configuration profiles, as well as to specify the number of 
duplicate sets for each configuration profile. As stated previously, this approach didn’t identify 
any local parameters that could reliably, if at all, predict a change in a that router’s CHR. 
By this time, though, we had observed enough of the I2P network’s behaviors and become more 
familiar with the I2P software, and as such had developed a different way of thinking about 
experimental parameters. 

2.2.2. Global Parameters for Global Effects 
As mentioned above, we discovered early on that network scale had an observable effect on an 
experiment’s mean CHR, and on the variance of the CHR. Network scale is a property of the 
network, and not of an individual node, and this is the shift in thinking about experimental input 
parameters that we pursued from here on out. This led us to look at the global distribution of 
bandwidths across the real I2P network, and to derive a cumulative distribution from the real-
world data that we could apply proportionately to our experimental networks. 
Other global parameters we experimented with include the percentage of the overall number of 
I2P routers per experiment that were using Snark, I2P’s native torrent-based file sharing 
application, the size range of the torrent files being shared on the network, and other globally set 
torrent-related router behaviors. 
Using this global approach to input parameters, we started seeing effects on mean CHRs, and over 
time we discovered a few global input properties we could set that would affect global 
experimental outputs. 
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3. I2P CASE STUDY DESCRIPTION 
The details of the I2P Case Study are presented below, including the study motivation, the 
experimental configuration used, the parameters that were varied, and the experimental results.   
Additionally, information is provided about a process called forward uncertainty quantification, 
which is the propagation of uncertainties in input parameters or configuration settings through the 
emulated experiment to determine uncertainty in the corresponding quantities of interest.  

3.1. Invisible Internet Project (I2P) 
I2P [22, 23] is an anonymous network consisting of peers (also called routers) running I2P routing 
software that allows them to communicate with one another with a degree of anonymity.  As shown 
in Figure 3-1, anonymization involves multi-hop encryption in both directions to anonymize both 
clients and servers.  Previous investigations of the I2P network include the impact of a DNS 
misconfiguration [11] and a study of I2P performance [19].   
When an I2P router wants to make its presence known to the network, it publishes its RouterInfo 
(RI) to the netDb, a Kademlia [28] distributed hash table (DHT) database, which is managed by a 
subset of about 6% of all I2P peers, called floodfill nodes. RI data contains information needed to 
contact a router within the I2P network. It is accessed by querying floodfill nodes and used by all 
peers when building their encrypted tunnels. All routers rebuild their encrypted tunnels about every 
ten minutes, and also they all repeatedly store their RI data using this same frequency. Once a 
router stores its RI data to a floodfill node, the floodfill then ‘floods’ this data to other floodfill 
nodes in the network, thus replicating RI data to other netDb nodes. The netDb also maintains 
LeaseSet (LS) data, containing information needed to contact hidden destination sites within the 
I2P network, called Eepsites. 

Figure 3-1. I2P communications using inbound and outbound tunnels (from Hoang, P.H., et al.,    
An Empirical Study of the I2P Anonymity Network and its Censorship Resistance. 

arXiv:1809.09086v2, 2018.) 

Before we continue, we need to point out that some features and default behaviors of the I2P 
network have changed over time. Of particular importance to our work is that when the I2P Case 
Study was conducted, each router performed what’s called a verification lookup step after 
completing their RI store step. This verify step is critical in the de-anonymization attack described 
in [9], and can still be performed by today’s I2P routers, though it’s now been disabled by default 
(as of I2P ver. 0.9.7 [23]). In our work we reenabled the verify step on all I2P routers used in our 
experiments, and we describe this behavior herein as it worked when Egger et al did their research. 
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Figure 1: Basic communication between two I2P peers using
unidirectional tunnels [27].

to. When the message passes through an inter-tunnel (i.e., from an
outbound tunnel to an inbound tunnel), garlic encryption (i.e. ElGa-
mal/AES) is employed by the originator [32], adding an additional
layer of end-to-end encryption to conceal the message from the
outbound tunnel endpoint and the inbound tunnel gateway [27].

Unlike Tor, multiple messages can be bundled together in a single
I2P garlic message. When they are revealed at the endpoint of the
transmission tunnel, each message, called "bulb" [17] (or "clove" in
I2P’s terminology [32]), has its own delivery instructions. Another
major di�erence between Tor and I2P is that all I2P nodes (except
hidden routers, discussed in Section 5.1) also participate in the
network as relays, routing tra�c for other nodes. In Figure 1, the
hops (denoted by boxed onions) forming the tunnels for Alice and
Bob correspond to actual I2P users. While routing messages for
Alice and Bob, these hops can also communicate with their intended
destinations in the same way Alice and Bob do. Similarly, Alice and
Bob can be chosen by other peers to participate in the tunnels these
peers will form.

2.1.2 Distributed Directory. The network database of I2P, called
netDb, plays a vital role in the I2P network by allowing peers to
query for information about other peers and hidden services. The
network database is implemented as a distributed hash table using
a variation of the Kademlia algorithm [44]. A newly joining peer
initially learns a small portion of the netDb through a bootstrapping
process, by fetching information about other peers in the network
from a set of hardcoded reseed servers. Unlike Tor directory author-
ities, these reseed servers do not have a complete view of the whole
I2P network. They are equivalent to any other peer in the network,
with the extra ability to announce a small portion of known routers
to newly joining peers.

Queries for the network database are answered by a group of
special �ood�ll routers [34], which play an essential role in main-
taining the netDb. One of their main responsibilities is to store
information about peers and hidden services in the network in a
decentralized fashion using indexing keys (i.e. routing keys). These
keys are calculated by a SHA256 hash function of a 32-byte binary
search key which is concatenated with a UTC date string. As a
result, these hash values change every day at UTC 00:00 [34]. In the
current I2P design, there are two ways to become a �ood�ll router.
The �rst option is to manually enable the �ood�ll mode from the
I2P router console. The other possibility is that a high-bandwidth
router could become a �ood�ll router automatically after passing

several “health” tests, such as stability and uptime in the network,
outbound message queue throughput, delay, and so on.

The netDb contains two types of network metadata: LeaseSets
and RouterInfos. For instance, Bob’s LeaseSet tells Alice the contact
information of the tunnel gateway of Bob’s inbound tunnel. A
RouterInfo provides contact information about a particular I2P
peer, including its key, capacity, address, and port. To publish his
LeaseSets, Bob sends a DatabaseStoreMessage (DSM) message to
several �ood�ll routers, which encapsulates his LeaseSets. To query
Bob’s LeaseSet information, Alice sends a DatabaseLookupMessage
(DLM) to those �ood�ll routers.

2.2 Related Work
2.2.1 I2P Network Measurement. There have been only a few stud-
ies on monitoring I2P prior to this work. In 2011, Timpanaro et
al. [68] built their monitoring architecture on the Planet Lab testbed
to characterize the usage of the I2P network. Planet Lab is a net-
work consisting of voluntary nodes run by research institutes and
universities around the globe. Therefore, bandwidth and tra�c
policies of nodes running on this network are often restricted. As
acknowledged by the group, only 15 �ood�ll routers could be set
up successfully due to the bandwidth rate restrictions of Planet
Lab, thus limiting the amount of collected data. The authors later
expanded their work to characterize the usage of I2P, particularly
the use of �le-sharing applications in the network [66, 67].

In 2014, Liu et al. [40] reported that they could observe 25,640
peers per day over a period of two weeks using various methods
to discover the network topology. However, there are some issues
with the methodology that the authors used to collect RouterInfos,
which we will discuss in later sections. More recently, Jeong et
al. [37] reported leakage of .i2p domain name resolution queries
in the public DNS infrastructure. Russia, the USA, and China are
top countries of leakage sources. Gao et al. [19] conducted a study
on the popularity and availability of eepsites (I2P’s terminology for
anonymous websites). The authors claimed the discovery of 1,861
online eepsites, which made up over 80% all anonymous websites
in the I2P network.

2.2.2 Anonymous Communication Network Blockage. To the best
of our knowledge, there has been no prior work focusing on the
blocking resistance of I2P. Throughout this paper, we aim to shed
some light on this aspect of the network. Similar to Tor or any other
anonymous network, I2P is susceptible to blockage. Prior to this
study, there have been some commercial tools alleging to be able
to block I2P. However, to the best of our knowledge, despite the
range of techniques used by these tools, none are able to block I2P
e�ectively, or at least not to the degree that would be required for a
large-scale adoption (e.g., nationwide blocking). We brie�y review
some of these tools below.

In network management, �rewall rules are often employed to
allow or �lter out tra�c. Popular blocking techniques often base on
port number, protocol signature, and IP address. However, anonymity
networks, including Tor and I2P, are designed to withstand censor-
ship [29, 54, 61]. As a result, any attempts to block these networks
could cause considerable collateral damage.

For port-based censorship, blocking onion relay ports (orports) or
directory information exchange ports (dirports) is e�ective enough
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Each peer I2P router populates the netDb as follows (see Figure 3-2): 
1. Select one of today’s closest floodfill nodes; send the floodfill a request to store its RI using 

a plaintext channel (no encryption; RIs includes peers’ cleartext IP address, so it’s already 
known.) 

2. Wait about 20 seconds. 
3. Select a different one of today’s closest floodfill nodes; send the second floodfill a request 

to lookup its RI and hence verify successful replication, this time using an encrypted tunnel 
(this ensures the verify lookup is indistinguishable from any other RI lookup). 

Figure 3-2. netDb store, verify, and lookup operations (from Egger, C., et al. Practical Attacks 
against the I2P Network. 2013. Berlin, Heidelberg: Springer Berlin Heidelberg.) 

In their 2013 paper [9], Egger et al. investigated a multi-phased set of attacks that resulted in the 
attacker’s ability to de-anonymize a targeted victim on the I2P network. We note that their work 
resulted in several changes to subsequent versions of the I2P software, which corrected these 
attacks, including the disabling of the RI verification lookup step mentioned above. 
Their attack allowed them to control all the floodfill nodes utilized by their victim I2P routers and 
maintained this advantage even as the victims selected a different set of floodfills to use each day. 
As such, whenever they observed a victim store their RI (to one of the floodfills they controlled) 
and then saw a lookup for the same RI around 20 seconds later (again on a floodfill node they 
controlled) they would assume the lookup was the verify step done by the victim and call that a hit, 
and associate the tunnel used for the lookup with the victim who performed the store. 
During their study, using ground truth data obtained from their victim I2P routers, they observed 
an empirical success probability of 0.52 for successfully associating a victim’s store with its related 
verify lookup. The reason they were not 100% successful at associating these events is because all 
other routers in the network lookup peers’ RI when periodically rebuilding their encrypted tunnels. 
If a peer requested a lookup of the victim’s RI from one of the floodfill nodes controlled by the 
attacker, at around 20 seconds after an RI store done by the victim, but before the victim did their 
verify lookup, then the attacker would erroneously associate this other peer’s tunnel with the 
victim. We hereafter refer to this success probability as the Confirmed Hit Rate and denote it as u. 
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4. I2P CASE STUDY EXPERIMENTAL GOALS AND METHODOLOGY 
We wish to understand how uncertainties in I2P network properties (e.g., network size, I2P router 
bandwidth, number of CPU cores, percent of peers generating encrypted traffic, peer traffic 
profiles, etc.) contribute to uncertainty in de-anonymizing a victim. Answering this question 
involves three steps: an experimental step to propagate input uncertainties to the emulated network; 
data collection and analysis to determine the effects of these changes on the output parameter u; 
and an analytical step to compute the de-anonymization uncertainty as a function of uncertainty in 
u. 

Our motivating questions pertaining to the study described in [9] are the following:  
1. Is the confirmed hit rate probability, u = 0.52, stable?  
2. Which I2P router and network environment parameters might affect the value of this 

probability? 
3. Are the de-anonymization results (i.e., attribution probabilities) that rely on u robust when 

there are uncertainties in input parameters? 
We address question 1 by constructing an I2P topology model and running it in an experimental 
environment, so we can vary several local router configuration settings and global network 
properties. The I2P routers are instrumented to collect data that is then used to determine confirmed 
hit rates during post-experiment analysis. To address question 2, we perform a sensitivity analysis 
on the I2P topology to assess the level of influence various input parameters have on the confirmed 
hit rates of individual routers, and on the population.  
Once a set of parameters that impact confirmed hit rates are identified, the third question is 
addressed by varying these parameters’ values, measuring the variation in the confirmed hit rates, 
and then using the range of confirmed hit rate values to calculate attack metrics of interest.  These 
metrics include: 

• Probability of successful attribution within k trials 

• Probability of successfully attributing k connections over N observations 
Our approach to the third question (an uncertainty quantification question) is shown in Figure 4-1. 
It shows forward propagation from uncertain network conditions to uncertainty in de-
anonymization attribution as a two-step process. Uncertainty in the confirmed hit rate u is 
determined via experimentation using an emulation-based testbed, with a set of inputs that are 
fixed for each experiment and a set that are uncertain (or varied) during each experiment (e.g., 
number of I2P routers, router bandwidths, and user behaviors). Experimentation is required to 
calculate u because, due to the complexities and scale associated with the I2P network, u cannot 
be calculated analytically. Once a range of values of u is determined, these values are used in post-
experimental analysis to calculate the attribution probabilities listed above. 

Figure 4-1.  Forward propagation of uncertainty in our I2P study 
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4.1. Experimental Network Design  
Our emulated I2P network is modeled using Firewheel, a cyber experiment orchestration tool [12] 
which assists a user in building and controlling repeatable experiments of large-scale distributed 
network systems. Our Firewheel model allows us to specify the size of the I2P network for each 
experiment run as well as other network conditions (see Figure 2-1). The emulated Internet 
backbone, tier 2 routing, the distribution of tier 3 autonomous system (AS) routers, the I2P router 
distributions within each AS i.e., number of subnets with I2P routers and number of I2P routers 
per subnet, are generated based on data from previous I2P measurement studies [25]. We also 
include a data center network with DNS and NTP servers, I2P and Snark torrenting bootstrap 
servers, and an Eepsite to download files from. 
All I2P routers run a modified copy of I2P version 0.9.29, installed on Ubuntu 14.04 Desktop 
(which were both the latest versions when our I2P model was originally built). The I2P software 
was modified to collect ground truth data about RI store and verify lookup events on all non-
floodfill (client) routers, and to collect all observed RI store and all lookup event data on all 
floodfill (server) routers. This information is used to calculate the confirmed hit rate, u, as well as 
other statistics reported herein. 
The emulated experiments are run on a High-Performance Computing (HPC) platform, due to the 
experimental network sizes. Each HPC host machine has 32 CPU cores across 2 sockets, 512 
Gigabytes of RAM, and 100 Gigabit Ethernet. The provisioning of virtual machines and virtual 
networking is performed across an experiment’s cluster of HPC nodes using another technology, 
called minimega [5,29], a tool for launching and managing virtual machines on a laptop or cluster, 
which is available as open source. minimega can accept a network topology from Firewheel and 
deploy it in a matter of minutes. 

4.2. Experiment Configuration for Experimental Propagation of Uncertainty  
We performed four types of emulation experiments, varying different configuration parameters 
relating to I2P in each.  The first three emulation experiment types are exploratory in nature. That 
is, we conducted them to identify which parameters, when changed, resulted in observable changes 
to confirmed hit rates. The final emulation experiment type is to conduct a sensitivity analysis on 
a final set of parameters chosen from amongst those evaluated during the exploratory experiments.  
The experimental results are presented in detail in Section 5.  In Table 4-1, we present a summary 
of the four experiment types and parameters that were varied, including the values used.   Note 
that for these experiments, we discretized the input uncertainties to take a set of specific values 
enumerated in Table 4-1 and did not treat the uncertain inputs with parametric distributions such 
as normal, Weibull, etc.  Some of the variables are inherently discrete (e.g. number of CPU cores 
or bandwidth) and so continuous distributions are not appropriate.   Additionally, a select number 
of discrete values per input allows one to perform a “main effects analysis” which tests if the mean 
response value changes significantly as the input parameter varies over the input domain.  
Note that generating samples of uncertain parameters and running the emulation with those 
sampled values is a way to perform uncertainty analysis in emulated systems.  This is often the 
only tractable approach to perform UQ on problems which cannot be solved analytically.   We 
used this approach to understand the uncertainty in u (mean CHR) which we then carried forward 
to the uncertainty in de-anonymization probability (Section 6.2). We stress that by traditional 
computational modeling standards, the experimental design in terms of the number of uncertain 



 

23 

parameters and the total number of parameters is straightforward for these studies (Table 4-1 and 
Section 7.3). As such, the total number of experiments would, traditionally, be considered low.  
However, each particular experimental I2P network run—with specific configuration 
parameters—produced a significant amount of data: One emulation run provided hundreds or 
thousands of nodes, each with its own confirmed hit rate per day. We partition the confirmed hit 
rate results by various node attributes including bandwidth and percent of I2P share and also study 
the confirmed hit rate per node configuration per day.  Overall, this gives us rich datasets with 
which to test our hypotheses. 

 

Table 4-1. Experimental Parameter Settings Used in Section 5 

 

 

Experiment Type Parameters varied and range 

(Exploratory) Type I: 
Network Scales 

Number of i2p routers: {150, 300, 450, 600, 1100, 1600, 2100, 3000, 5000, 10000} 

(Exploratory) Type II: 
Victim Groups 

Bandwidth (BW): {8, 12, 16,3 2, 64, 128, 256, 512} Kbps 
I2P Share%: {0, 10, 50, 100} 
Number of CPU cores per router: {1 or 8} 
Note: Only routers in sampled victim groups vary parameters using these settings, all others are fixed: {BW 40 Kbps, Share 
100%, cores 1}. 

(Exploratory) Type III: 
Global Distributions 

Bandwidth distribution notionally derived from I2P Metrics data [21]: {48 Kbps (50%), 64 Kbps (11%), 128 
Kbps (17%), 256 Kbps (2.8%), 512 Kbps (4.4%), 1024 Kbps (4.3%), 2048 Kbps (3.5%), and 4096 Kbps 
(6.5%)} 
Percent of routers participating in Snark Torrenting: (0%, 20%, 80%, 100%) 
Snark Torrenting Roles: {Generators, Seeders} 

Type IV: 
Sensitivity Analysis 

Network size {500, 2000, 2100, 3000, 4000, 5000, 6000, 10000 nodes}, BW distribution type [explained in 
Section 6.3] {0, 1, 2},  Percent of routers participating in Snark Torrenting {0, 20%, 80%, 100%}, number of 
tunnels {3, 6}, length of tunnels {3,4}, number of torrents {0, 50, 100}, frequency of torrents {0, 0.0017, 
0.0033}, frequency of new torrent subscriptions {0, 0.0008, 0.0033}, minimum torrent size {0, 10K, 1M 
bytes}.   
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5. DATA ANALYTICS 
Once we finish running the Firewheel emulated experiments, we process and extract the CHR data 
from the experiment logs, and then analyze the CHRs across nodes and across experiments to 
identify significant effects.  

5.1. Data Extraction from Running Firewheel Experiments 

 
Figure 5-1. Process flowchart for data extraction 

 
A process flowchart for the data processing performed to extract information from the I2P 
experiments in shown in Figure 5-1.  The data analysis begins with processing the generated log 
files produced by the nodes in the Firewheel experiment. During each experiment run, the client 
I2P nodes capture timestamped records of their own RI store and verify lookup operations, 
including information about the RI key of interest and the node performing the operation. Each 
floodfill server provides records of all node store and lookup operations (both verify and normal 
lookups) that it observes, while each node logs the ground truth store and verify operations that it 
performs. 
These log files are then processed using a combination of SQL (Structured Query Language) and 
Python to extract every store operation seen by the floodfill servers and then find the first lookup, 
seen by one of the floodfills being used that day by the node that performed the store (i.e. the 
floodfills being controlled by the attacker targeting that node). This pair of store and lookup 
operations, which occur together within an empirically determined 18 to 27 second window, are 
collectively called a hit. If this lookup corresponds to the ground truth verify operation recorded in 
the originating node's log, this hit is labelled as a confirmed hit. Otherwise, this lookup comes from 
a different node and the timing association was not successful, resulting in an unconfirmed hit. 
The output of this data extraction for all of the non-floodfill nodes is a table summarizing the total 
number of hits and confirmed hits for each node. This process also logs information about node 
log errors, as well as information for verifying the correct expected operation of the I2P network. 
We also provide additional options for preprocessing the data to skip nodes with various types of 
errors in the logs. Logs can have errors due to data being corrupted, failure to complete operations 
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resulting in repeated store or verify attempts, unexpected termination of the node's host machines, 
or nodes not properly initializing and participating in the I2P network.  

5.2. Data Analysis of the Confirmed Hit Rate per Node 
We calculate the confirmed hit rates from the output of the data extraction process for each 
Firewheel experiment and analyze them to characterize the statistical behavior, focusing on three 
different sets of analyses that address three different aspects of the data: node and experiment 
characteristics, experiment runtime dependencies, and experimental configuration effects. 
First, the initial analysis helps examine the standard statistical properties of all nodes in the 
experiment. Due to observations of non-normal behavior, these properties cover the population 
CHR mean, variance, standard deviation, minimum and maximum values, as well as median and 
first and third quartiles. We support these numerical results with histogram and bar plot 
visualizations to examine the distribution. These visualizations reveal the extent of the CHRs at 
the edges and the occurrence of unexpected bimodal behavior. 
Second, with the dynamic behavior of the Firewheel I2P model, we consider the possibility of 
initialization effects and the time delay for the network to converge to more realistic behavior. 
This increases the runtime cost, as we must run experiments over longer durations, 3-7 days. We 
can then compare the statistical properties as before, for each day, to determine the minimum 
duration for experiments and to examine any changes in behavior over time. To do so, we augment 
our comparisons of experiment statistics from before with statistical tests and regression analysis 
to evaluate if the behavior is statistically different and to determine the trend over time. 
Specifically, we use the Tukey test for multiple comparison, the pairwise Kolmogorov–Smirnov 
test, and simple linear regression models. 
Third, we explore different ways of parsing and grouping the data to analyze the effects of different 
experiment configuration settings, as enumerated in Table 4-1. With the difficulty in setting up 
experiments at the same size as the real I2P network, whose size also fluctuates, we set scale size 
as a primary parameter of interest. Moving beyond that, to have a sufficient number of parameters 
to motivate optimal experimental design considerations, we survey a range of nodes settings: 
bandwidth, I2P share percentage, number of cores, and torrenting role. We then apply the same 
statistical analysis and tests from the first two types of analysis above to groups of nodes with these 
varying parameters to determine the effect on CHR. Similarly, we also examine how the global 
configuration of an experiment affects the CHR. Some of these global parameters overlap with the 
node configuration, such as the distribution of node bandwidths and the percentage of nodes in 
each torrenting role. Other parameters explore the possible effects from the activity and behavior 
of the network, such as the number and lengths of tunnels used by the nodes, the number and size 
of the torrents, the frequency of torrent generation and requests. 
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6. EMULATED EXPERIMENTAL RESULTS, ANALYSIS, AND 
OBSERVATIONS  

Our goal is to understand the variability in the confirmed hit rate and what factors might influence 
it.  To do that, we performed several studies where we varied the size of the I2P network that was 
emulated, as well as configuration parameters such as the bandwidths for each node, the number 
of CPU cores, the way I2P encrypted traffic was generated, and other I2P configuration settings 
like the number and length of encrypted tunnels maintained by each I2P node.  The results below 
present these experiments. 

6.1. Exploratory Experimental Results 

6.1.1. Type I – I2P Network Scales 
First, we examined the effect of different network scales (numbers of routers) on confirmed hit 
rate, ranging from networks with as few as 150 nodes up to 10,000 nodes. To reduce the effects 
from other parameters, we set all the I2P routers to have the same bandwidth, 100 Kbps with 100% 
I2P share, and background traffic consisted of routers periodically downloading files from an 
Eepsite.  
Figure 6-1 shows how the median population confirmed hit rate decreases while the variance 
increases as the network scale becomes larger. For each scale size, the median is shown in orange, 
while the variance is captured by the box showing interquartile range (IQR) as well as by the 
whiskers going out to 1.5 times the IQR.  For clarity, we do not plot the outliers. 
The median population confirmed hit rate decreases from 100% accuracy at the smallest scale (150 
nodes) to 80% accuracy at our largest scale (10,000 nodes), while the interquartile range increases 
significantly from 0.6% up to 17.2%. We expect this trend to continue as network scale continues 
to increase. Network scale affects measurements of the confirmed hit rate, with Egger et al. 
conducting their measurement of u over different times of the day to mitigate the fluctuation in 
network size throughout a day (from 18,000 to 28,000 active routers) [9]. Such a measurement 
then could have an underlying uncertainty spanning a range of potential variances. 

 
Figure 6-1.  Median confirmed hit rate vs. network scale 
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6.1.2. Type II – Victim Groups 
We consider the potential effects of local I2P router configuration parameters, given that the 
experimental setup for Egger et al. used groups of floodfill and victim nodes which were identically 
configured [9] against the context of the live I2P network. We examine how the local parameters 
for a small number of nodes representing a Victim Group might affect the confirmed hit rates of 
that group.  
For tractability, we look at a single 3000 scale experiment using data from the third day to reduce 
boundary effects from initializing the system. We set around 2000 identically configured nodes 
with 40 Kbps bandwidth, 100% I2P share, and 1 CPU core for the default network behavior, and 
configure the remaining nodes into 42 groups of around 30 nodes with unique configuration 
combinations of bandwidth (ranging from 12 Kbps to 512 Kbps), I2P share percentage (between 
10% and 100%), and number of CPU cores (1 or 8). To isolate the potential effects of these 
parameters, no background traffic occurs in this experiment. 
As Egger et al. used a group of 6 victim nodes to verify the attack, we similarly sample nodes from 
each configuration combination to form and calculate the median confirmed hit rate. Given that 
our emulation enables control over the entire network, we sampled multiple times to produce 3 
independent groups of 6 nodes for each configuration combination, as shown in Figure 6-2. The 
median confirmed hit rate for each Victim Group of 6 identically configured nodes is plotted 
against the effective bandwidth (router bandwidth * I2P share %) for each group, with color and 
shape denoting the number of cores. We see that the number of cores does not appear to show any 
significant effect, while a sharp difference appears to divide the confirmed hit rates for lower 
performance and higher performance nodes. Here, we can characterize performance in terms of 
effective bandwidth, which we compute by multiplying the bandwidth and the I2P share 
percentage. This represents the amount of bandwidth actually available for use in supporting the 
I2P network and is what governs the ordering of the parameters on the x-axis in ascending order. 
Using this effective bandwidth approach, we categorize nodes as lower or higher performing based 
on a threshold of 12 Kbps effective bandwidth. Within these two groupings, there does not appear 
to be any other dependence of the confirmed hit rates on the configuration. 
The effect of lower versus higher performing nodes matches well with the I2P code itself, which 
marks these lower performing nodes as not being effective for supporting the network function. 
This places them in a special category and minimizes their use by peers within tunnels, which 
results in fewer lookups of these nodes. Here, based on that observation along with the observed 
higher CHRs, we hypothesize that one mechanism driving confirmed hit rates is the number of 
lookups for a node. While this particular set of parameters may be limited and the effect is very 
distinct, the implication is that the local individual node configurations can impact the 
experimental confirmed hit rate. Furthermore, by looking at the three different groups sampled 
from the same configuration, we observe that there is a certain degree of variability inherent to 
the network itself. While the lower performing nodes show more consistent median confirmed hits 
with smaller spreads of around 5%, the higher performing nodes can show a spread of over 10%. 
Consequently, a single Victim Group based on a single configuration could have a significant 
amount of underlying uncertainty, which might not be captured by one snapshot from the real 
system. One intrinsic benefit to emulation environments is the ability to collect data from all of 
the nodes in the experiment and to run replicate experiments to better assess the variability. 
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Figure 6-2. Median confirmed hit rates for sampled groups of 6 victim routers for each effective 

bandwidth rate. 

6.1.3. Type III – Global Distributions 
Given the greater degree of flexibility and control with using an emulation environment, we further 
extend our analysis to consider how the overall configuration of the entire I2P network affects 
observations of confirmed hit rates u. We again present results from the data of the third day from 
a single 3000 scale experiment, where we globally set the bandwidth parameter for all of the nodes 
within the network to approximate the actual bandwidth distributions of the real I2P network. 
In addition, we include background traffic by configuring a high percentage of nodes (80%) to 
participate in I2P Snark torrenting. We set 20% of the nodes to act as torrent generators, who 
produce and share files but don’t download them from others, and 60% as seeders, who both 
download files and share them with others, but don’t produce new ones. Non-torrenting nodes are 
labelled as "I2P" nodes in the data. Guided by recent data from early 2021 about the distributions 
of the I2P network bandwidths [21], we proportionally place the nodes into categories with 
different performance specifications: 48 Kbps (50%), 64 Kbps (11%), 128 Kbps (17%), 256 Kbps 
(2.8%), 512 Kbps (4.4%), 1024 Kbps (4.3%), 2048 Kbps (3.5%), and 4096 Kbps (6.5%), all with 
I2P Share set at 100%. Given the results from Section 4.1.2, we do not include any lower 
bandwidths. 
The boxplots for each combination of these parameters are shown in Figure 6-3, where the label 
indicates the corresponding parameter configurations. Here, we see that nodes with bandwidths 
less than 512 Kbps tend to exhibit a higher confirmed hit rate than nodes with bandwidths equal 
or greater than 512 Kbps. The lower bandwidth nodes also show a weak dependency on the 
bandwidth, while the higher bandwidth nodes all appear to exhibit a similar range of confirmed hit 
rates. We verify the effect of the global bandwidth parameter, in driving different confirmed hit 
rates of differently configured nodes within the overall population, visually but also using various 
statistical tests, as described in Section 5.2.  
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Figure 6-3.  Confirmed hit rate boxplots based on the global parameter composition of 
the network. Outliers exceeding the range defined by the 1.5 times IQR whiskers have 

been removed, for clarity. 

In Table 6-1, we show the first 10 rows of the results from applying the pairwise Tukey’s honest 
significance test [47,48].  The Tukey method is an example of the main effects analysis mentioned 
earlier. We want to understand if the mean confirmed hit rate is statistically significantly different 
across the various node configurations shown in Figure 6-3.  While there are some nuances, due 
to differences in the number of nodes for each parameter grouping, the results largely agree with 
the qualitative observation of an s-shaped curve from Figure 6-3. Of the 276 pairwise comparisons, 
162 comparisons result in rejecting the null hypothesis and finding that there is a statistical 
difference in behavior between the parameter groupings. Similarly, other approaches such as the 
Kolmogorov–Smirnov statistical test (not shown) reveal comparable behavior.  
The observation of this effect aligns with the special case noted in Section 6.1.2, where I2P 
minimizes the use and lookups to nodes with bandwidths under some threshold. With the wider 
range of bandwidths used here, we can refine our hypothesis and say that the difference in node 
performance results in a difference in the number of lookups, which drives different confirmed hit 
rates. As nodes operate on the network, they learn over time which other nodes provide tunnels 
with better performance (by Day 3 in our data). This learned preference drives biases in selecting 
tunnel routes, resulting in more lookups to nodes with higher performance specifications and fewer 
lookups to nodes with worse performance. As a result, as shown in Figure 6-3, the higher 
bandwidth nodes exhibit lower confirmed hit rates, while the lower bandwidth nodes have higher 
confirmed hit rates. Similarly, examining the full tables of results from our statistical tests shows 
that the higher bandwidth configurations do not show statistical differences among them, whereas 
the lower bandwidth configurations do tend to show significant statistical differences in behavior. 
It can also be noted that there is an unclear dependency on the torrenting role for routers, with 
some groupings of roles within the same bandwidth rejecting the null hypothesis. This indicates 
potential finer-grained configurations and additional parameters to consider which could affect the 
confirmed hit rate.  
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Table 6-1. First 10 rows of the Tukey test over configurations. Red highlights examples where the 

null hypothesis is rejected 

Overall, we find through our emulation experiments that a number of factors can affect the 
confirmed hit rate and increase the degree of uncertainty in interpreting the power of an attack 
against the I2P network. Although some factors, as reported by Egger et al [9], such as the location 
and proximity of nodes do not appear to affect the confirmed hit rate, network size has a dominant 
effect on confirmed hit rate and effective bandwidth is also an important parameter.  Interestingly, 
the effective bandwidth parameter shows an effect both as part of the configuration of nodes 
relative to the global configuration of the network, as well as for certain local configurations on 
their own. Most importantly, we find that the network itself exhibits a significant amount of 
inherent variability, which may add to the uncertainty in observations. 

6.1.4. Exploratory Post-processing Parameters 
In addition, post-processing assumptions within the data analysis approach can also affect the 
confirmed hit rates. We empirically determine the valid time window for tracking hits, finding that 
over 98% of all lookups occur between 18 and 27 seconds after the store, as shown in Figure 6-4. 
In comparison, Egger et al. note only that the verify lookup commences 20 seconds after the store 
event [9]. If we assume that their hit time window covers a range of 20 to 27 seconds, we can rerun 
our analysis and evaluate if this 2 second difference in the time window size matters. 
To evaluate the effect of altering this post-processing parameter, we use the same data from Section 
6.1.3 As shown in Figure 6-5, the 20 to 27 second time window (orange) results in slightly higher 
average confirmed hit rates as compared with our empirically determined 18 to 27 second time 
window (blue) across every configuration setting, along with a nearly uniform corresponding 
increase in the quartiles and the interquartile ranges. While the effect is comparatively small, the 
fact that we observe it impacting every node category in the experiment indicates that the decisions 
underlying the post-processing can also contribute to the overall experimental uncertainty. 
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Figure 6-4. Percent of I2P verification lookups per second after RI store event, for network scales 

from 150 to 10,000 nodes. 

 

 
Figure 6-5. Comparison of the confirmed hit rates from Exp. III with post-processing analysis hit 

time windows of 18-27 seconds (blue) and 20-27seconds (orange). 

6.2. Exploratory Analytical Results 
The sections above describe the experimentation required to quantify the uncertainty in the 
confirmed hit rate, u.  Once the uncertainty of u is characterized, it can be analytically used to 
calculate attribution probabilities. In the following we describe the analysis and results for two 
attribution probabilities: the probability of successful attribution within k observations of a 
store/verify pair, and the probability of observing k connections between an I2P client and a server 
in a 24-hour period.  

6.2.1. Successful Attribution in k Trials 
The confirmed hit rate u discussed in the above sections is the probability of successfully 
associating a netDb store request with a subsequent verify lookup request within a few second time 
window. Here, we are interested in understanding how multiple store/verify pairs would affect the 
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probability of successful de-anonymization over a time period such as a day.  More specifically, 
we would like to know the probability that, given n observations of store/verify pairs, what is the 
probability that at least one observation is correct? This probability is represented by the following 
equation:  

Pr{𝑠𝑢𝑐𝑐𝑒𝑠𝑠	𝑖𝑛	𝑘	𝑡𝑟𝑖𝑎𝑙𝑠} = 1 − (1 − 𝑢)!, 
 

where u is the probability of successful attribution per trial, and k is the number of trials. 
 

Figure 6-6 shows the probability of successful attribution for the following cases: using Egger’s 
observed result, i.e. u = 0.52, and using the uncertainty bounds from Section 6.1.3, i.e. u = [0.693, 
0.919]. The horizontal dotted line shows the 95% success probability, and the vertical dashed lines 
show the number of trials required to achieve 95%. Rounding these values up to the next integer, 
we see that with Egger’s result, 5 trials are required. With the experimental results described 
earlier, between 2 and 3 trials are required to achieve 95% confidence. It is important to note, 
however, that while attribution is 95% probable within 2, 3, or 5 trials, we do not know which trials 
are successful. 

 
Figure 6-6. Probability of successful attribution in k trials. 

6.2.2. Probability of k Connections in One Day 
A more meaningful question to ask is, given the store/verify pair observations, what is the 
probability of observing a user accessing a given resource k times in one day? Egger et al. [9] 
models the probability of seeing k hits in N time slots as a binomial distribution: 

𝑃𝑟𝑜𝑏(𝑘	ℎ𝑖𝑡𝑠) = :𝑁𝑘< 𝑥
!(1 − 𝑥)"#! . 

In this equation, x is the probability of a hit, and includes a “correct” hit and a “false negative” hit.  
That is, 𝑥 = 𝑢 ∗ 𝑝 + (1 − 𝑢) ∗ 𝑞 where p is the fraction of time slots that the person accesses a 
resource R, and q is the probability that any other random user accesses R.  In this work, we assume 
p=0.05 and q=0.001 following [9] but we also vary p parametrically to see the effect of different 
resource usage.   
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Figure 6-7 shows the effect of including uncertainty in u in the plots showing the probability of k 
or more hits as a function of the number of hits observed under different assumed resource usage 
values, p.   Note that the probability of k or more hits can be calculated by summing terms from 
the previous formula:  

𝑃𝑟𝑜𝑏(𝑘	𝑜𝑟	𝑚𝑜𝑟𝑒	ℎ𝑖𝑡𝑠) = 1 − ∑ D𝑁𝑗 F 𝑥
$(1 − 𝑥)"#$!#%

$&' . 

The results are shown in Figure 6-7. The upper plot has the deterministic value of u = 0.52 from 
Eggers’ paper and the lower plot has the uncertainty bounds which incorporate the uncertainty in 
u from the analyses in Section 6.1.3.  Specifically, we use the 10th and 90th percentile of u as well 
as the median: u = [0.693, 0.844, 0.919].   In this analysis, N=144 (one day of observations with 
10-minute timeslots). Figure 6-7 shows that including the uncertainty in u adds significant 
uncertainty in successfully attributing k connections in N observations, especially for larger values 
of p. 

Figure 6-7. Probability of k or more hits in a day. 

6.3. Sensitivity Analysis Experimental Results 
In the spring of 2021, we added two capabilities to the Firewheel I2P model:  torrenting, which 
represents Snark file sharing traffic on the I2P network, and the ability to change the distribution 
of bandwidths across the network according to a global distribution.  Both of these global settings 
(the percentage of nodes engaging in Snark Torrenting, called the global snarking percentage, and 
global bandwidth distribution) appeared to influence the mean CHR [see Figure 6-13 and Table 
6-3].  Because of the important role torrenting played, we further examined the number of torrents, 
the size of the torrents, the frequency of initial torrents and the frequency for new torrenting 
subscriptions.  The effect of these variables is confounded (e.g. increasing the frequency of torrents 
can have the same effect as increasing the number of torrents and/or the size).  However, we were 
able to observe a relationship where higher torrenting activity correlated with lower mean CHR, 

Probability of k or more hits 

Number of hits observed 
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p = [0, 0.007, 0.01, 0.02, 0.05, 0.1, 0.2] 
u = 0.52 

p = [0, 0.007, 0.01, 0.02,  
        0.05, 0.1, 0.2] 
u = [0.693, 0.844, 0.919] 
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as shown in the scatterplots in Figure 6-13 and the high correlation coefficients between the 
torrenting parameters and mean CHR as shown in the last row of Table 6-3.  
A summary of the experiments included in our sensitivity analysis is shown in Table 6-2.  Note 
that the experiments numbered 0 through 15 are experiments performed in which we did have the 
Snark torrenting ability for the I2P model.  The previous experiments that were scaling 
experiments and did not involve torrenting traffic on the I2P network are listed as experiments 
number 1000-1003.  These were included because they are important for scaling, with some of our 
few results at 5000 and 10K nodes.   
Some explanation for the experimental settings listed in Table 6-2.  Number of nodes refers to the 
number of routers on the I2P network.  BWDistType refers to the bandwidth distribution type, 
where BWDistType = 0 is the empirical distribution observed in [21]: {48 Kbps (50%), 64 Kbps 
(11%), 128 Kbps (17%), 256 Kbps (2.8%), 512 Kbps (4.4%), 1024 Kbps (4.3%), 2048 Kbps 
(3.5%), and 4096 Kbps (6.5%)}, BWDistType = 1 is equal percentages over all the bandwidths, 
and BWDistType = 2 is the distribution we used in the original scaling studies (no global parameter 
tuning of bandwidth).   Global Snarking is the percentage of traffic that was devoted to Snark 
Torrenting (e.g. 80 = 80% Snarking traffic).  Number of torrents is the number of torrents used in 
Snark torrenting, and the frequency of torrents or of new torrent subscriptions is given as number 
of torrents/second.  The minimum torrent size represented a lower bound on the size of the torrents 
(in bytes).  We also varied number of tunnels and tunnel lengths in these experiments.  However, 
the number of tunnels and tunnel lengths were not determined to be significant in terms of mean 
CHR, so we did not list them explicitly in Table 6-2. 

 
Table 6-2.  Parameter settings and results for experiments used in sensitivity analysis 

Exp_No
Num of 
Nodes

BWDist
Type

Global 
Snarking

 Num of 
Torrents

Freq of 
Torrents

Min Size 
Torrents

Freq New 
Torrents

mean 
CHR

0 2000 0 100 50 0.0017 10000 0.0008 0.8852
1 2000 1 80 50 0.0017 10000 0.0008 0.9074
2 2000 0 80 100 0.0033 10000000 0.0033 0.6735
3 2000 0 20 50 0.0017 10000 0.0008 0.8830
4 2000 0 80 50 0.0017 10000 0.0008 0.8734
5 2000 0 80 50 0.0017 10000000 0.0008 0.7426
6 2000 0 80 50 0.0033 10000 0.0033 0.6871
7 2000 0 80 50 0.0017 10000 0.0008 0.8939
8 2000 0 80 50 0.0017 10000 0.0008 0.8978
9 2000 0 100 100 0.0033 10000000 0.0033 0.7016
10 4000 0 80 50 0.0017 10000 0.0008 0.7893
11 500 0 80 50 0.0017 10000 0.0008 0.9817
12 4000 0 20 50 0.0017 10000 0.0008 0.7986
13 2000 0 20 100 0.0033 10000000 0.0033 0.8101
14 4000 0 20 100 0.0033 10000000 0.0033 0.6960
15 6000 0 20 50 0.0017 10000 0.0008 0.7562

1000 2100 2 0 0 0.0000 0 0.0000 0.8742
1001 3000 2 0 0 0.0000 0 0.0000 0.8321
1002 5000 2 0 0 0.0000 0 0.0000 0.8257
1003 10000 2 0 0 0.0000 0 0.0000 0.7845
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6.3.1. Summary of Results for Experiments 0-15 
We analyze the data using the same tools as before, to extract the CHRs for each node in the 
network as well as the statistics characterizing the behavior of the overall network. Here, while we 
can again separate nodes based on their particular configuration settings, the focus is on how the 
torrenting configuration and global network parameters drive changes in the mean CHR. 
First, as a summary of all of these experiments, we can plot the CHRs for the nodes and the mean 
CHR for each experiment, as shown in Figure 6-8. Each blue point represents the mean CHR for 
a node, although markers may overlap, while the orange marker indicates the mean CHR for all of 
the nodes in the experiment.  Although this representation is not as detailed as histograms for 
showing the distribution of CHRs, the figure provides a concise summary of the behavior of all 
experiments. This side-by-side overview of experiments allows us to compare and make high-level 
evaluations of the effects of given parameters. 
As a result, we can also note the interesting and somewhat unexpected effect of parameter 
combinations. For example, Experiment #9 is a 100%-high torrenting experiment with longer and 
more tunnels. Yet, its mean CHR falls between that for Experiment #2 (an 80%-high torrenting 
experiment) and Experiment #13 (a 20%-high torrenting experiment) and with less variance. We 
hypothesize that the increased tunnel setting actually reduces the effect of torrenting. 
 

 
Figure 6-8. CHRs for nodes and the mean CHR for all sensitivity analysis (Type IV) experiments 

A more straightforward and expected comparison would be evaluating the effect of the size of the 
experiment. With all other settings being identical, Experiments #3 and #15 differ only by the size 
of the experiment, 2000 nodes versus 6000 nodes respectively. As shown in Figure 6-9, the 
increase in scale size clearly results in a decrease in the mean confirmed rate, along with an 
apparent spread in the distribution of node CHRs. This effect is supported by the exploratory 
studies, where scale size was a significant driver of experimental CHR, as shown in Figure 6-1.  
For the studies with Snark torrenting (experiments 0-15 as listed in Table 6-2), most of the 
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experiments were performed with 2000 nodes, so node scale did not exhibit such a dominant role.  
When we examine both the exploratory studies and the Snark torrenting studies together, we do 
find node scale to be significant. This is discussed in Section 6.3 and in Figure 6-14.    
 

 
Figure 6-9. Histogram of node CHRs for Experiments #3 and #16 

Similarly, another clear pattern shows that higher torrenting activity, with larger torrents generated 
and requested more frequently, significantly affects the resulting distribution in CHRs. We show 
a comparison, in Figure 6-10, between Experiments #12 and #14, which differ only by the amount 
of torrenting activity but show significant changes in the mean and variance of the node CHRs. 
Similar behavior is observed with other pairs of experiments, such as Experiments #3 and #13. 
Furthermore, examination of the data in Figure 6-8 shows that differences even in one aspect of 
torrenting also produces a similar effect. Experiments #5 (larger torrent sizes), #6 (torrents 
generated and requested more frequently), and #2 (80% of nodes participating in torrenting vs 20% 
for #13) likewise exhibit lower mean CHRs and higher variance.  
Based on these experimental results, which covered a wider range of the experiment parameter 
space, we return to our earlier hypothesis that the number of lookups determines the success of the 
timing attack and whether the store and verify lookup activity is correctly associated. To validate 
our hypothesis, we extract all the lookups for each node in all of the Type IV experiments (as well 
as the Type I experiments with more than 2000 nodes). We then calculate the average number of 
lookups per node to remove the bias due to the size of the experiments and compare that against 
the mean CHR for that experiment. 
As shown in Figure 6-11, there appears to be a strong inverse linear relationship, with a statistically 
significant (p = 1.4e-6) correlation coefficient of –0.86. This result, showing that more lookups per 
node correlates with lower CHRs, supports our hypothesis. The experiments with more lookups 
per node also suggest that scale size (10k nodes with 5,262 lookups per node) and torrenting 
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activity (higher torrenting frequency Experiment #6 with 6,283 lookups per node) are the primary 
drivers behind this mechanism. 

 
Figure 6-10. Histogram of node CHRs for Experiments #12 and #14 

 
Figure 6-11.  Mean CHR vs. Number of lookups per node 

While examining the data, we note that there appears to be an outlier for Experiment #14, which 
has an average of 10,640 lookups per node. After considering the different experiment settings, we 
hypothesize that the effect results either from a combination of larger experiment size along with 
more torrenting activity or from having a higher percentage of nodes participating in torrenting. 
Based on the amount of available data, we focus on the second hypothesis, torrenting participation. 
We split the data into 20% and 80% torrenting participation experiments and recalculate the 
correlation with the mean CHR. As shown in Figure 6-12, (which also includes the Type I 0% 
torrenting experiments and the Type IV 100% torrenting experiments for completeness), we note 
that the different amounts of torrenting participation appear to result in different groupings of 



 

38 

experiments which are each more strongly correlated. For 20% torrenting experiments, we obtain 
a correlation coefficient of -0.91 (p=0.03) and for 80%, we obtain a correlation of -0.99 (p=1.5e-
7). These improvements in the correlation, which are both still statistically significant, suggest that 
Experiment #14 is not an outlier, but rather that our second hypothesis on torrenting participation 
is a likely explanation. Given the number of experiments for each torrenting participation setting, 
further experiments and analysis would be required to confirm our hypothesis. 
 

 
Figure 6-12.  Mean CHR vs. Number of Lookups/Node, identified by percent torrenting 

Note that measurement of lookups per node is an experimental outcome, strongly correlated with 
the confirmed hit rate, rather than an input parameter. As such, it is not used as part of the 
regression analysis. Instead, it supports our understanding of the mechanism behind the success of 
the timing attack and allows us to examine the relevant parameters, which affect the number of 
lookups performed. 

6.4. Regression Analysis for Extrapolation 
This recent set of experiments with torrenting was very useful because the data showed the 
significance of the parameters relating to torrenting and volume of traffic.  It also allowed us to 
build a regression model to perform extrapolation to larger size networks than we were able to 
emulate on Carnac.  
In this section, we present two analyses of the recent experimental dataset:  (1) sensitivity analyses 
which identify significant parameters affecting the mean confirmed hit rate and (2) a regression 
model for extrapolation.   In the graphs and analyses below, we use all of the data in Table 6-2 
except experiment 11 with 500 nodes, because that was considered too small to be a realistic I2P 
network as evidence by a mean CHR of nearly 1 (0.98).    
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6.4.1. Sensitivity Analysis 
The scatterplots shown in Figure 6-13 show the raw data:  mean CHR is plotted against the various 
parameter values that were varied in these experiments as detailed in Table 6-2.   Note that the 
point with the highest mean CHR is experiment 1, with the red square indicating an equal 
distribution of nodes in the I2P network across the various BW levels.  The BW levels are 48 Kbps, 
64 Kbps, 128 Kbps, 256 Kbps, 512 Kbps, 1028 Kbps, 2048 Kbps, and 4096 Kbps.  Each of these 
8 levels had 12.5% of the nodes for the “equal” Bandwidth distribution type (BW_DistType) = 1.   
In contrast, a BW_DistType of 0 (data shown in blue dots) had a distribution across nodes given 
by the I2P data that was available [21].  Note that the major difference between BW_DistType = 
0 and 1 is that in the 0 setting, most of the nodes are very low bandwidth (e.g. 78% of the nodes 
are either 48 Kbps, 64 Kbps, or 128 Kbps).   Finally, the BW_DistType = 2 represents the earlier 
scaling studies performed where the bandwidth distribution was sampled at levels between 8 and 
512 Kbps.   In summary, BW_DistType 0 is the typical distribution used for torrenting, 1 is equal 
distribution, and 2 is the scaling experiments with no torrenting.   
Figure 6-13 shows a negative slope for all the parameters with respect to mean CHR.  That is, as 
the input parameter increases (such as number of nodes, percent global snarking, number of 
torrents, etc.), the mean CHR decreases.   We expect this, but the scatterplots and corresponding 
analyses support it.  We also see that the slope of the line representing the relationship between 
the frequency of new torrent subscriptions and mean CHR (the right most box) is the largest 
negative slope:  this variable has the most significant effect as will be also discussed in the 
regression plot.  The parameters relating to torrenting have similar slopes, with the lines relating 
number of nodes to mean CHR and percent global snarking to mean CHR (two leftmost boxes) 
are less significant.  Finally, we note that the trend lines shown in red in Figure 6-13 are univariate 
trends:  they show only the trend of each parameter individually with respect to mean CHR.  
Because each subplot shows only 19 data points and the trend lines need to fit results that straddle 
a large range of mean CHR, these trend lines capture overall trends but do not predict individual 
experiments accurately in many cases.  

 
Figure 6-13.  Scatterplots of inputs (x-axes) vs. mean Confirmed Hit Rate 
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Correlation coefficients are another method used for sensitivity analyses.  Correlation coefficients 
vary in value between -1 (perfect negative trend, one variable decreases as another increases) to 1 
(perfect positive trend:  one variable increases as another variable does).   A zero value of 
correlation typically implies that knowing the value of one variable does not help inform the value 
of another.  The correlation coefficients for the data in Table 6-2 are shown in Table 6-3 below.   

 

  
Num_ 
Nodes BW_DistType 

Global 
Snarking 

Num 
Torr 

Freq 
Torr 

Torrent 
Size 

Freq 
NewTorr 

Num_Nodes 1.00       
BW_DistType 0.44 1.00      
Global Snarking -0.54 -0.63 1.00     
Num Torr -0.41 -0.79 0.48 1.00    
Freq Torr -0.43 -0.79 0.51 0.95 1.00   
Torrent Size -0.43 -0.79 0.51 0.95 0.89 1.00  
Freq NewTorr -0.33 -0.57 0.33 0.87 0.94 0.79 1.00 
meanCHR -0.19 0.24 -0.05 -0.46 -0.56 -0.50 -0.68 

Table 6-3. Correlation Coefficients between I2P experiment parameters and mean CHR 

In Table 6-3, the parameters highlighted in yellow show inputs which are strongly correlated.  The 
bright yellow color indicates correlations with an absolute value greater than 0.5, while the pale 
yellow shows correlations with absolute value between 0.25 and 0.5.  Generally, correlations 
greater than 0.25 are considered significant, with larger values being more significant.  The bottom 
row of Table 6-3 shows the most important correlations between inputs and mean CHR.  As the 
scatterplots indicate, the frequency of new torrent subscriptions is most strongly negatively 
correlated with mean CHR.  Other parameters relating to torrents (number of torrents, frequency 
of torrents, and torrent size) are also strongly negatively correlated with mean CHR.  The number 
of nodes, BW_DistType, and global Snark torrenting percentage are not as strongly correlated with 
mean CHR in this set of experiments. 

6.4.2. Regression Model and Use in Extrapolation 
We perform a set of regressions with various combinations of input parameters considered as 
independent predictors in a linear model to predict the mean CHR.  For example, Table 6-4 shows 
that if we only have one independent variable in the prediction model, the frequency of new 
torrents is the best variable to choose as shown by an X in the first row:  that generates a linear 
regression with an R-squared value of 46%.  The R-squared value indicates the fraction of the 
variance in the output (in this case, mean CHR) that can be explained by the regression model 
based on the selected inputs.  An R-squared value of 100% is the highest possible:  that would 
indicate that the entire output variance can be attributed to a certain combination of inputs in the 
regression model.  R-squared is a common “goodness of fit” measure used in regression analysis. 
If we look down the rows of Table 6-4, we find there is a sweet spot where we are not including 
parameters with negligible effect, but we are achieving a high R-squared value.  This occurs with 
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the following 4 variables as highlighted in yellow:  number of nodes, number of torrents, torrent 
size, and frequency of new torrent subscriptions.  The R-squared value for this regression is 80.3%. 

Response is meanCHR 
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1 46.1 42.9 33.6 18.2 0.059293             X 
1 30.9 26.9 14.9 27.5 0.067122         X     
2 65.2 60.9 47.0 8.4 0.049106 X           X 
2 53.4 47.5 34.8 15.7 0.056863 X       X     
3 67.3 60.8 45.5 9.1 0.049166 X    X     X 
3 66.1 59.3 43.1 9.8 0.050050 X       X   X 
4 80.3 74.7 * 3.1 0.039460 X     X   X X 
4 69.5 60.8 4.6 9.8 0.049138 X       X X X 
5 80.6 73.1 * 5.0 0.040720 X X   X   X X 
5 80.4 72.9 * 5.0 0.040863 X   X X   X X 
6 81.8 72.7 * 6.2 0.041009 X X   X X X X 
6 80.6 70.9 * 6.9 0.042367 X X X X   X X 
7 82.1 70.7 * 8.0 0.042457 X X X X X X X 

 
Table 6-4.  Subset regression indicating best variables to choose depending on the number of 

variables included in the regression equation.  

The regression equation for the regression highlighted in yellow in Table 6-4 is shown below:  

Regression Equation 
meanCHR = 0.9219 - 0.000018 NumNodes + 0.00346 Num Torr - 0.1270 Torrent Size - 74.0 Freq NewTorr 

Specific information about each coefficient estimated in the regression model is shown below:  

Coefficients 
Term Coef SE Coef T-Value P-Value VIF 
Constant 0.9219 0.0285 32.30 0.000   
NumNodes -0.000018 0.000005 -3.65 0.003 1.23 
Num Torr 0.00346 0.00107 3.22 0.006 14.76 
Torrent Size -0.1270 0.0417 -3.05 0.009 9.97 
Freq NewTorr -74.0 14.8 -5.01 0.000 4.15 
      

We note that the p-values for all terms are very small and all less than 0.05.  This indicates that all 
terms would be considered to have strong statistical significance in this model.  Finally, we note 
that two of the terms, number of torrents and torrent size, have a Variance Inflation Factor (VIF) 
value that is high.  The VIF is an indicator of multi-collinearity in a regression model.  That is, it 
indicates there is correlation amongst the predictor variables of the model.  We are aware of this 
issue:  we saw high correlation amongst several of the predictors in Table 6-3.  A high VIF (greater 
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than 5) indicates high correlation between predictors, causing the resulting regression to be less 
reliable.  A regression result is considered more robust when it is built over independent input 
values with zero correlation.  However, in this situation, we had limited time and experimental 
budget, so we will proceed with this particular regression model.  

6.4.3. Extrapolation 
We now present some results of the regression model when we use it to predict the mean CHR for 
larger scale experiments which we did not have time or resources to implement.  That is, we plug 
in number of nodes = 10K, 15K, 20K, 25K, 30K in the regression model shown above, along with 
two sets of values for the other parameters relating to torrenting.  We use a nominal setting of the 
torrenting values which corresponds to number of torrents = 50, torrent size = 10Kbytes, and 
frequency of new torrent subscriptions = 0.00083/sec.   Then, we use a no torrent set of values 
which corresponds to number of torrents = torrent size = frequency of new torrent subscriptions = 
0.   For each of these parameter settings, we vary the number of nodes as indicated above to 
generate predictions.  The predictions are shown in Figure 6-14. 

  
Figure 6-14.  Regression predictions for two cases:  nominal torrenting and no torrenting 

As shown in Figure 6-14, the experimental data is shown in the blue dots.  The prediction with 
nominal torrenting is given by the red line and the prediction with no torrenting is given by the 
green line.  The prediction limits for the regression with nominal torrenting are shown in the grey 
and purple lines. These limits give the bounds of where a future realization of mean CHR may fall 
for a particular number of nodes.  For example, at 15000 nodes, the prediction of the expected 
value of the mean CHR is 0.632 according to the regression model.  However, this prediction has 
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a high uncertainty:  a particular instance of the mean CHR at 15000 nodes may fall between 0.477 
and 0.787.  The prediction limits for the no torrenting case were very similar to the case with 
nominal torrenting:  we did not plot them to simplify the graph. 
Based on the regression equation, we calculate that a mean CHR of 0.522 will occur at 21000 
nodes, with a prediction interval of [0.330, 0.715] around this estimate.  Thus, the 52% value 
reported in Egger’s paper using a realistic scale network is consistent with this estimate.  Egger 
reported a mean CHR of 52% for a network size that fluctuated between 18K and 28K nodes. 
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7. MULTIFIDELITY EXPERIMENTS  
Often, uncertainty quantification is challenging to perform because of the large number of samples 
that must be run through a cyber model, which can be computationally expensive. However, in 
multifidelity uncertainty quantification (MFUQ), many samples from one or more low-fidelity 
models (such as a discrete event simulation) are fused with a few runs of a high-fidelity cyber 
model (in this case, Firewheel) to decrease the estimator variance and obtain more reliable 
statistics. While we may only be able to run a few dozen samples of a high-fidelity model, we 
assume the cost of the low-fidelity model is much cheaper and so we can generate many low-
fidelity samples for the cost of one high-fidelity model evaluation. The papers by Geraci et al. [13, 
14] present the theory behind multifidelity UQ as well as demonstration of the methods to network 
applications.    
In MFUQ, the multifidelity estimator for a mean of response quantity Q can be built starting from 
the single fidelity Monte Carlo (MC) mean estimate from the high-fidelity model and adding a 
weighted unbiased term to it: 
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∑ 𝑄*+,*

(+)"
+&% + 𝛼 :%

"
∑ 𝑄/01

(+)"
+&% − %

2×4
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($)2×"
$&% <  (7-1) 

𝑄()H=𝑄*5,*H +αΔ/01H, 

In Equation 7-1, N is the number of high-fidelity runs, and r is the oversampling ratio that allows 
for a maximization of the efficiency of the estimator by defining the optimal number of low-fidelity 
model evaluations as (N+1) x r.  The first term on the right-hand side is just the usual mean estimate 
from the high-fidelity model.  The second term is the low fidelity estimate “corrected” so that it is 
unbiased.  Note that the second term has many more samples:  this contributes to the variance 
reduction of the MF estimator.  For a MF estimator with a single low-fidelity model, the coefficient 
a is obtained in closed form as function of the correlation and estimated variance of the two 
models. 
Section 7.1 discusses the low-fidelity discrete event simulation model (DES) that was constructed 
to model the I2P network.  Section 7.2 presents results from the MFUQ study and Section 7.3 
provides an overview of optimal experimental design. 

7.1. Discrete Event Simulation Model 
Based on our high-fidelity model observations, we assume some simplified mechanisms driving 
the CHR and build a statistical DES model in Python to provide low-fidelity samples. Our model 
is a DES as it models lookup interactions in fixed, discrete time steps, and it is statistical in 
probabilistically mapping these modeled behaviors to CHRs. While this model runs significantly 
more quickly than the Firewheel experiments, the runtime increases with larger experiment scale 
sizes. Furthermore, we must tune the various parameters and hyperparameters of the DES model 
to ensure that the behavior is correlated with the high-fidelity model. 
The statistical DES model has two phases: setup and run. The setup phase configures the number 
of nodes in the model, the distribution of node performance effects, the distribution of torrenting 
roles, the effects of torrenting on performance, the number of lookups done each round based on 
the number of tunnels, and local groups of nodes within which activity occurs. We use the 
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performance attribute here to directly determine the nodes to be preferentially selected for lookup 
operations, based on the observation that higher bandwidth nodes exhibit lower CHRs. 
In the run phase, the simulation approximates the results from a 1-day long experiment, with 144 
discrete rounds. Each round corresponds with a 10-minute time window to match the specification 
of having a pair of RI store and verify operations every 10 minutes. Within a single round, each 
node conducts lookups against nodes in their local group, weighted by their performance attribute. 
We assume three mechanisms driving the number of lookups that occur. First, we have the store 
and verify operation itself, which we define to have occurred and do not directly model. Second, 
we add lookups based on the number of nodes, to represent some lookups from background traffic 
needed to maintain and operate the network. Third, we increase lookups due to network traffic 
activity, based on the amount of torrenting. At the end of the round, we take the total number of 
lookups and use a statistical likelihood parameter to determine whether these additional lookups 
prevented the correct matching of the verify and store operation, resulting in an unconfirmed hit. 
We then aggregate these hits and confirmed hits over the entire simulation to produce CHRs for 
each node, with which we can conduct the same statistical analysis as with the high-fidelity 
Firewheel experiments for comparison. 

7.2. Multifidelity Results for I2P 
For a multifidelity framework to be effective, two conditions should be met: (1) the high and low 
fidelity models should show a strong correlation (e.g. if they are run with the same sample settings, 
the response quantities should be correlated) and (2) the cost of the low-fidelity model should be 
much cheaper.  
First, we investigate the correlation.  Recall we had 20 Firewheel runs as shown in Table 6-2.  We 
ran the DES model at those parameter settings.  The results are shown in Table 7-1 below, with 
the scatterplot in Figure 7-1 showing the results graphically.  If the DES model were perfectly 
correlated with the Firewheel model, the dots would fall on a straight line.  The correlation for 
these 20 points is 0.807.  That is a reasonable correlation, large enough to proceed with the MF 
study.  Two other details:  the DES model had similar input parameters as Firewheel but they were 
not exactly the same.  Thus, we had to map some of the settings in Table 6-2 to those in the DES 
model.  Also, we note that the quantity of interest in this study is itself a mean (e.g. each row in 
Table 7-1 is the mean confirmed hit rate, where the mean is the average over the nodes studied in 
the experiment).  We are interested in the overall mean (the average over all 20 samples as 
highlighted in the bottom of Table 7-1).  That is, we are focused on the “mean of the mean CHR.”   
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Table 7-1.  20 samples of Firewheel and corresponding samples of DES model 

Figure 7-1.  Scatterplot of 20 data points listed in Table 8-1. 

 

HIGH FIDELITY LOW FIDELITY
Firewheel DES
meanCHR meanCHR
0.8852 0.8138
0.9074 0.8468
0.6735 0.6394
0.8830 0.9345
0.8734 0.8361
0.7426 0.6335
0.6871 0.6336
0.8939 0.8452
0.8978 0.8419
0.7016 0.5573
0.7893 0.7026
0.9817 0.9598
0.7986 0.8509
0.8101 0.8567
0.6960 0.7925
0.7562 0.7613
0.8742 0.9386
0.8321 0.9069
0.8257 0.8303
0.7845 0.6746

Overall mean 0.8147 0.7928
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Next, we consider the cost ratio.  The cost to run the Firewheel experiments and process the results 
is approximately four days.  The cost to run the DES model is 6.6 minutes, on average.  This cost 
ratio only considers wall-time cost, not processor cost.  Firewheel must be run on dozens of HPC 
nodes on the Carnac machine, whereas the DES model can be run on a laptop.   
With this information, we proceed to the multifidelity calculations.  The results are shown in Table 
7-2 and Figure 7-2.  In Table 7-2, we see that the mean of the high fidelity estimate of mean CHR 
is 0.8147, whereas the multifidelity estimate is higher, 0.8256.  The variance reduction achieved 
by this process is approximately 58%.  The coefficients a and Δ/01H from Equation 7-1 are listed, 
along with the 99.7% confidence intervals on the mean estimate of the mean CHR (this is the mean 
value +/- 3𝜎.  These confidence intervals are shown graphically in Figure 7-2.  The cost of the 
Firewheel runs was 3 days for the first 16 experiments and 1 day for the last four experiments, 
resulting in (3*16+4)*24 = 1248 hours. We note that the cost of the 20 high-fidelity Firewheel 
runs only was 1248 hours, whereas the 220 low-fidelity DES simulations took 34 hours total.  The 
cost of the low-fidelity model adds only 2% of the cost of the high-fidelity model while 
substantially reducing the variance of the mean estimate and narrowing its confidence interval.  
Note that the results from multifidelity uncertainty quantification are dependent on the relative 
costs of the models as well as their correlation:  a low-fidelity model with even higher correlation 
that was even cheaper would result in larger variance reduction.  
 

 
Table 7-2.  Results from Multifidelity estimate of the mean of the mean CHR 

 
Figure 7-2.  Mean estimate of mean CHR (middle line with X) and 99.7% Confidence Intervals 

Q=mean CHR Result
Number of High 
Fidelity Samples

Number of Low 
Fidelity Samples

Cost       
(hours)

High Fidelity Mean of Q:  0.8147 20 1248

High Fidelity Variance of 0.0003689  

Multifidelity Mean of Q: 0.8256 20 220 1248+34
Multifidelity Variance of 0.0001504    
Variance Reduction Achieved 58.02%
Alpha coefficient a -0.5993
Delta estimate -0.0182

99.7% Confidence Interval for [ 0.7579 , 0.8715] 
99.7% Confidence Interval for [0.7889 , 0.8624]

𝑄ℎ𝑖𝑔ℎ%  
𝑄ℎ𝑖𝑔ℎ%  

𝑄𝑀𝐹% 
𝑄𝑀𝐹% 

Δ𝑙𝑜𝑤% 
𝑄ℎ𝑖𝑔ℎ%  

𝑄𝑀𝐹% 



 

48 

7.3. Optimal Experimental Design 
As mentioned in Appendix A, section A.2, optimal experimental design refers to the creation of a 
run matrix (parameter values at which the emulation should be run) to optimize some property.  
For example, one property may be “space filling”:  one selects a design which creates sample 
points in the parameter domain so they fill out the space well (there are no “bunches” of points 
piled up in one location).  Other properties involve maximizing some property of a surrogate which 
is constructed based on the points, for example, to minimize the maximum variance of the 
prediction values from a regression fit.   This section presents what some OED designs would look 
like for the I2P study and why we were not able to use them (primarily because of computational 
cost of running the I2P experiments at scale).  
In this section, we use the same notation as Appendix A.  We denote the run matrix, X, to be of 
size n x p, where the n rows represent n runs, each with p parameter values.  For the I2P case study, 
there are seven parameters, p = 7, if we remove the number of tunnels and tunnel lengths.  We first 
consider a full factorial design.  Full factorial designs can identify the main effects of each of the 
factors (parameters) on the outcome as well as all of the interaction effects between variables.  Full 
factorial designs involve all combinations of all parameters at each of the parameter levels.  For 
example, if there were two parameters and one had three levels and the other had four levels, a full 
factorial design would involve 3 x 4 or 12 runs.  For our scenario, each of the parameters has three 
levels (e.g. number of torrents is either 0, 50, or 100), except number of nodes, which has 6 (2000 
nodes, 3000, 4000, 5000, 6000, and 10000 nodes).  Thus, the total number of combinations for a 
full factorial design is 6*36 = 4374.   We ran a few dozen experiments through the course of this 
LDRD:  4374 is simply not feasible.   
One class of experimental designs is called response surface designs.  For example, to create 
designs which support linear models, parameters are sampled only at a high level and a low level 
(two values or settings allowed per parameter).   The two values allow for a linear model.  Most 
response surface designs use three levels per factor, to estimate quadratic effects in each parameter.   
Some examples of response surface designs are central composite designs and Box-Behnken 
designs.  These both have parameters sampled at a central value and at high and low values.  To 
illustrate such a design looks like, we created a Box Behnken design for 7 parameters in Minitab.   
Note that the Box-Behnken design assumes that there are only 3 levels per parameter, so it is not 
strictly comparable to the full factorial design we calculated above:  ideally, we would like the 
number of nodes to have more settings.  But assuming that number of nodes would be limited to 
three settings (e.g. 2000, 6000, and 10000 nodes), the Box-Behnken design is shown in Table 7-3 
below.  It has 57 runs of the 7-parameter space.  The -1 indicates the parameter value at its low 
value, 0 indicates a central value, and 1 indicates an upper or high value of the parameter.  This 57 
run design would allow us to create a model with quadratic effects in contrast to the regression 
model built in Section 6.4 which was a linear model in 7 parameters built over 19 points.   Some 
of the interaction terms would be confounded, but the Box Behnken design would allow for some 
statistical analyses of significant effects.  A 3-parameter version of Box-Behnken is shown in 
Figure 7-3.  Note that the Box-Behnken design does not include corner points which may involve 
high values of one parameter as well as high values from another.  This is a drawback to this design 
as compared with a full factorial, but it comes with much more efficiency.    
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Figure 7-3.  3 parameter Box-Behnken design [from NIST, Section 5.3.3.6.2, 

https://www.itl.nist.gov/div898/handbook/pri/section3/pri3362.htm 

 
Table 7-3.  Example Box-Behnken Design for I2P study with 57 model runs. 

Num_Nodes BW_DistType GlobalSnarking Num_Tor Freq_Tor SizePackets Freq_NewTor
1 0 1 0 1 0 0
-1 1 0 1 0 0 0
0 0 1 -1 0 0 -1
-1 0 1 0 1 0 0
1 0 -1 0 1 0 0
0 0 0 1 -1 -1 0
0 1 0 0 -1 0 -1
0 0 0 -1 -1 -1 0
0 1 1 0 0 -1 0
0 -1 1 0 0 -1 0
-1 0 0 0 0 1 1
-1 -1 0 -1 0 0 0
0 1 -1 0 0 -1 0
1 0 0 0 0 1 -1
1 0 0 0 0 -1 -1
0 0 0 -1 1 1 0
-1 0 0 0 0 1 -1
-1 0 0 0 0 -1 -1
0 0 0 1 1 -1 0
-1 -1 0 1 0 0 0
0 0 -1 1 0 0 1
0 0 0 1 -1 1 0
0 1 0 0 1 0 1
0 1 0 0 -1 0 1
0 0 0 1 1 1 0
0 1 1 0 0 1 0
0 -1 1 0 0 1 0
0 -1 0 0 -1 0 -1
-1 1 0 -1 0 0 0
0 1 0 0 1 0 -1
-1 0 -1 0 1 0 0
0 0 -1 -1 0 0 -1
1 1 0 -1 0 0 0
-1 0 -1 0 -1 0 0
0 -1 0 0 1 0 -1
1 0 1 0 -1 0 0
1 0 -1 0 -1 0 0
1 -1 0 1 0 0 0
1 -1 0 -1 0 0 0
1 1 0 1 0 0 0
0 -1 0 0 -1 0 1
0 0 1 1 0 0 1
-1 0 1 0 -1 0 0
0 0 1 1 0 0 -1
0 0 0 -1 -1 1 0
0 0 1 -1 0 0 1
0 1 -1 0 0 1 0
1 0 0 0 0 -1 1
1 0 0 0 0 1 1
0 -1 -1 0 0 -1 0
0 0 0 0 0 0 0
0 0 0 -1 1 -1 0
-1 0 0 0 0 -1 1
0 -1 0 0 1 0 1
0 0 -1 1 0 0 -1
0 0 -1 -1 0 0 1
0 -1 -1 0 0 1 0
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For the I2P studies, we performed the experiments manually, typically changing one or two 
parameters which we thought would have the most significant effect.  This is not ideal and is not 
a comprehensive experimental design approach.  However, the cost of setting up the I2P model 
and debugging/deploying the runs on Carnac was very expensive:  often it would take a week or 
two for each experiment (with 4-5 days of actual experiment time and the remainder 
postprocessing or debugging).   Thus, we were not able to run the Box-Behnken study with 57 
runs shown in Table 7-3, much less a full factorial with 4374 runs.  Finally, we note that classical 
experimental designs tend to be insufficient for more than five to eight parameters.  They have the 
additional limitation that the parameters are varied between a high and low settings (2 levels) or 
perhaps three levels, but not more than that.   This is a limitation when deploying experimental 
design to practical applications.  
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8. LESSONS LEARNED AND BEST PRACTICES 
Based on the three years of FORCE LDRD research and the effort designing, running, and 
analyzing the Firewheel emulation experiments, we present several lessons learned and 
suggestions for best practices: 

• There are significant challenges with scaling emulation experiments to these sizes (2000-
10000 nodes).  One may only be able to afford a very small number of experimental runs, 
even smaller than the number of runs from an optimal experimental design.  

• Instrumenting just one experiment (e.g. one run of the Firewheel I2P model with 3000 
nodes, for example) on Carnac is a major effort requiring significant subject matter 
expertise e.g. for how many hosts to partition the experiment across, how many VMs to 
place on each host, for debugging the experiment to ensure the protocols are running 
properly, that the simulated IP networking is working properly, and that the log files are 
being created and extracted properly, etc. It’s important to have a working relationship with 
colleagues who maintain the Firewheel, minimega, and Carnac technologies so you have 
someone to call on when things go wrong. 

• Each emulated experiment requires that all the experimental input parameters are properly 
configured to ensure results represent those of the desired experiment. This can get 
complicated and sometimes confusing, so having a clear and complete experimental design 
for a suite of experiments (e.g. for a parameter sensitivity study) is critical to help keep the 
research on track. 

• Although the number of experiments may be small, each experiment itself is rich in data.  
One can slice data by hour or day, by node or type of node, by type of traffic, by role of a 
component, etc.  We obtained thousands of data points from each experiment:  the question 
was how to aggregate these. 

• When one parameter such as network scale dominates, it can be challenging to find other 
parameters which significantly affect a quantity of interest. We needed to rethink how we 
defined input parameters, from local to global, before we were able to identify additional 
parameters that significantly affected results, so be open to rethinking how you approach 
the problem. 

• The size of the network made it difficult to see changes caused by various parameter 
settings if a parameter setting only affected a fraction of the nodes. We used coded 
hostnames and incorporated that info into logfile names to identify which nodes were 
configured with which parameter settings, then extracted that information from each node’s 
logfile name when analyzing results. 

• The I2P process we examined was sufficiently complicated that we could not easily create 
a mathematical model of it like we did with the Nmap scanning process under SECURE. 
Nmap was a fairly simple protocol for which we understood all of the “knobs” controlling 
it; we examined port scanning on a small number of nodes (24) where scanning was the 
only activity happening.  This contrasts with thousands of nodes in the I2P network which 
were constantly changing their preferred neighborhood of other nodes to work with, the 
floodfill nodes they used, and the tunnels they used, etc.  We could not scale down to 50 
nodes because the global behavior of I2P would not be realistic at that scale. Determining 
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the scale at which a particular cyber model will behave as intended, and how long 
experiments must run before they can converge on behaviors approaching the real world 
dynamics of the system is very important to ascertain as quickly as possible, so you don’t 
waste time running experiments that aren’t big enough or for a long enough duration to be 
meaningful for your research. 

• Statistical comparison tests such as main effects and Tukey multiple mean comparisons are 
useful for identifying statistically significant response effects as a function of changing 
input parameters. The tests are particularly helping when comparing large number of 
parameters with many settings. 

• Traditional sensitivity analysis methods such as correlation coefficients, scatterplots, and 
regression modeling also were helpful to identify important parameters and develop models 
for extrapolation.  

• More advanced UQ methods, such as multifidelity modeling, were viable for reducing the 
variance in the mean estimate of the quantity of interest, mean CHR.  The exercise of 
constructing a low fidelity model was useful for the multifidelity exercise but also very 
helpful for extrapolatory studies.  

• The discrete event simulation (the “lower fidelity”) I2P model required significant tuning 
to work well. Efforts on improving its performance also motivated further research into the 
mechanism of the de-anonymization attack. Tuning the parameters associated with the 
associated mechanism resulted in analyzing the number of lookups/node, a feature that was 
found to be strongly correlated with the mean CHR. 
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9. SUMMARY 
The FORCE LDRD focused on one specific case study:  de-anonymization in the I2P network.  
Under this LDRD, we generated emulations at much larger scales (thousands of nodes) than the 
companion SECURE Grand Challenge.  This allowed us to see challenges associated with these 
large emulations and address some of the issues relating to scaling. While the goals of FORCE and 
SECURE are similar, FORCE was complementary to SECURE in its focus on very large 
emulations.  We anticipate that the framework established under FORCE for running such large 
emulations and processing, extracting, and analyzing extremely large datasets will be useful for 
the Emulytics community in years to come.  
In terms of specific results for the I2P network, we present the following results:  

• Using an emulated cyber experimentation environment, we have shown that there is 
inherent stochastic variation in confirmed hit rates (u) within an I2P network, regardless of 
configuration parameters, and thus the value of u is not stable for all routers across the 
network.  

• We have confirmed that network scale has a large effect on the population median of u, as 
Egger et al. expected, but also on the variance of u. We have shown that some local router 
configuration changes (i.e. very low bandwidths) can have an impact on confirmed hit 
rates, while others do not (e.g. CPU cores, higher bandwidths), at least not when measured 
in isolation i.e. with no background traffic.  

• Including the uncertainty in u adds significant uncertainty in successfully attributing k 
connections in N observations, especially for larger values of p, fraction of time slots that 
the person accesses a resource. 

• We demonstrated that global changes (e.g. bandwidth distribution, encrypted traffic 
volume) can have a statistically significant impact on confirmed hit rates of like configured 
routers.  

• We demonstrated that lookups/node is highly correlated with mean CHR, supporting our 
hypothesis for the mechanism driving the success of this de-anonymization attack 

• Based on a regression equation constructed from our emulation studies, we calculate that 
a mean CHR of 0.522 will occur at 21000 nodes, with a prediction interval of [0.330, 0.715] 
around this estimate.  Thus, the 52% value reported in Egger’s paper using a realistic scale 
network is consistent with this estimate.  Egger reported a mean CHR of 52% for a network 
size that fluctuated between 18K and 28K nodes. 

• Finally, we demonstrated that changes in inputs do affect the analytical de-anonymization 
outputs, and that applying UQ to cyber experimentation can produce greater insights and 
higher confidence in analytical results. 
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APPENDIX A. EXPERIMENTAL DESIGN TERMINOLOGY 
 
 
In this section, we present definitions for experimental design that can support cyber 
experimentation on emulation platforms.  We draw on the history of experimentation on 
computational simulations with the goal of providing guidance on how one specifies the 
parameters to be investigated, how one generates the sample set, and how one analyzes the results.  
Currently the state of the art is to either do a “hero” calculation on a cyber testbed with an 
experiment that is run once or just a few times, or to perform a “grid” study where the parameter 
settings are discretized, and each combination of parameter settings is run.  This latter can be 
computationally expensive due to the curse of dimensionality and thus methods requiring one to 
run only a subset of the complete enumeration of the parameter space are necessary.  We discuss 
grid studies (e.g., full factorial designs) but also suggest other options in instances where the 
number of runs is much less than the number of parameter combinations that is possible.  This 
reduces computational cost at the expense of understanding interaction effects between variables.  
Finally, some cyber experiments are run multiple times at the same settings (sometimes called 
replications or iterations) to understand the stochastic behavior of the system.  The optimal number 
of replications is also a topic of interest, and this is a topic little discussed in the cyber 
experimentation community although there is some recent work demonstrating number of samples 
required to achieve a particular confidence interval for the mean or median of a set of runs [26].  

A.1. Experimental Design 
This is an overloaded term.  It can be used to refer to how one selects input parameter settings for 
one experiment (e.g., which virtual environment to use, how many virtual machines, what 
protocols to run, etc.)  The one experiment may involve multiple replications where the experiment 
is run multiple times at the same settings of the governing parameters.  
However, Experimental Design is typically used to refer to the broader problem of selecting a set 
or suite of experimental parameter settings at which one will run the cyber experimental model 
(e.g., various choices of number of cores per machine, protocols and environment settings, packet 
size of traffic, bandwidth of links, etc.)  This process of generating an ensemble of runs is also 
called Design of Experiments (DoE).  The parameter values for each run should be carefully 
chosen to extract as much trend data from a parameter space as possible using a limited number of 
sample points.  Additionally, each run may involve replicates if the emulation model is stochastic 
and exhibits random behavior upon repeated iterations of the same model settings.  The ensemble 
of runs is used to perform sensitivity analysis and uncertainty quantification studies.  For example, 
one might want to know which variables contribute the most to packet response time or determine 
the distribution of quantities of interest such as network latency, bandwidth, and memory.  

A.2. Optimal Experimental Design  
The selection of input parameters for design of experiments may be done in many ways.  There 
are several criteria one can choose to optimize when selecting a design.  For example, Monte Carlo 
sampling over the parameter domain generally tries to select points with good “space filling” 
properties.  There are several “alphabet-optimal” designs such as A-optimal, B-optimal, D-
optimal, G-optimal, and I-optimal. These designs all involve optimizing some property of the run 
matrix.   
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Let us denote the run matrix, X, to be of size n x p, where the n rows represent n runs, each with p 
parameter values.  The information matrix is denoted by the inverse of the variance matrix, or 
[𝑋6𝑋]#%.  An A-optimal design minimizes the trace of the inverse of the information matrix which 
results in minimizing the average variance of the estimates of regression coefficients built on the 
dataset X.   A D-optimal design minimizes the determinant of the information matrix which results 
in maximizing the information content of the parameter values (this is also has the effect of good 
“space filling” properties).  A G-optimal design minimizes the maximum variance of the predicted 
values from a regression fit built on the dataset X, etc. [40] 
The above designs are fixed designs that seek to optimize a particular property.  There are also 
adaptive designs in which an initial experiment is run and then an optimization procedure identifies 
the “next best” experiment to run to optimize some objective.  Typically, the objective involves 
improving the parameters of the model and “gaining the most information” possible.   For example, 
Bayesian optimal experimental design has become popular, with the goal of determining 
experiments which most inform the posterior distribution inferred on model parameter values. [40] 

A.3. Uncertainty Quantification 
Uncertainty Quantification (UQ) is the process of characterizing all uncertainties that could affect 
the results of the cyber experimental runs.  Once the uncertainties are identified and characterized 
as “input uncertainties”, they are propagated (e.g., mapped) through the experiment to obtain 
uncertainties on the results (“output uncertainties”).    
UQ is a closely related activity to V&V and essential for verifying and validating computational 
models. The goal of UQ is to propagate input distribution uncertainty through the model to 
generate distributions on the model responses.  This can then be used to understand the mean and 
variance of the output, calculate the probability that the response is less than or greater than a 
particular threshold value, etc.  UQ, along with V&V, enables modelers and analysts to make 
statements about the degree of confidence they have in their simulation or emulation-based 
predictions. Uncertainty quantification has been a fundamental capability supporting nuclear 
reactor safety studies, performance assessment of repositories for the disposal of nuclear waste, 
computational fluid dynamics for aircraft design, and climate model predictions [7-33].  We 
anticipate more widespread use of UQ in the cyber emulation community to address questions 
about the performance and confidence in mitigation strategies for network attacks, for example.  
However, emulated cyber environments are different from physics simulation models used in 
many risk assessments of engineered systems.  We need to understand how typical UQ methods 
work in the presence of stochastic network behavior, and how to use UQ methods to identify “edge 
case” behavior where software, hardware, network topology, and vulnerabilities interact in 
unforeseen ways.   

A.4. Sensitivity Analysis 
Sensitivity analysis (SA) is the process of identifying the most significant factors or variables 
affecting the uncertainty of the Emulytics model predictions [38,39]. This can help identify where 
to most effectively place cyber threat mitigations or invest in resources.  SA can be used to identify 
model inputs in which a reduction of uncertainty would most reduce the uncertainty of the model 
output, or to identify model inputs that could be fixed to simplify the calculation, or to identify 
general trends between inputs and outputs.  SA can be performed using local or global methods. 
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A.5. Verification and Validation (V&V) 
Over the past few decades, the computational simulation community has developed a strong 
emphasis on Verification and Validation activities to build credibility in scientific computing.  A 
study by the National Research Council at the National Academies issued a report outlining the 
mathematical and statistical foundations of V&V and UQ as primary activities supporting the 
reliability of computational models [33].  A number of professional societies have developed 
guidelines and standards for V&V activities [1,2].   We take as definitions those outlined in [34]: 
• Verification is the process of assessing software correctness and numerical accuracy of the 
solution to a given mathematical model.   
• Validation is the process of assessing the physical accuracy of a mathematical model based on 
comparisons between computational results and experimental data.  
Verification provides evidence that the model and the equations are correctly solved.  In 
computational simulations, it deals with the adequacy of the numerical algorithms to provide 
accurate numerical solutions to the discretized partial differential equations.  In cyber 
experimentation, it can refer to how accurately the virtualized software and hardware components 
represent their physical counterparts.  Validation addresses a different question:  the degree to 
which a model is an accurate representation of the real world from the perspective of the intended 
uses of the model.  Validation provides evidence that the cyber experiment is appropriate for the 
problem of interest.  Validation typically involves measuring agreement between the experimental 
outcomes and “gold standard” outcomes from appropriately designed validation experiments 
running on actual networks or physical testbeds with no emulation.  The extent to which validation 
can be performed on cyber experiment models and how to do it is an open research question [24].   

A.6. Parameter Study 
Typically, a parameter study means the same thing as an experimental design:  it specifies a 
number of runs which involve varying the allowable levels of the parameters in a structured way.   

A.7. Factorial Design  
A factorial design is an experimental design that samples the full combination of all parameters.  
Thus, if there were 3 parameters and each had 5 allowable values or levels, a full factorial design 
would involve 5*5*5 = 125 runs.   A fractional factorial design only involves a subset of the full 
factorial.  The subset is typically chosen to best estimate the main effects of the parameter 
values.[16] There is a rich statistical literature based on orthogonal arrays that involves 
determining fractional designs.  The approaches typically involve substantial computation, rely on 
libraries of pre-generated orthogonal arrays, and are mainly valid for combinations of variables 
only with two or three levels.  

A.8. Replicates 
A replicate refers to running the same set of experimental settings multiple times to see how the 
response varies within that setting. A replicate can also be called an iterate.  The idea of replicates 
comes from the early experimental design literature.  A common example is that of crop yields, 
where the parameter of interesting might be the application of fertilizer. A “replicate” would be 
one of several plots to which fertilizer was applied or one of several plots to which it was not 
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applied.  Replication is needed when there can be significant variation within a treatment or 
combination of parameter settings.  

A.9. Surrogates 
Experimental design and UQ can both require huge numbers of model evaluations to generate 
accurate statistics or to perform sensitivity analysis.  For this reason, the computational science 
community has embraced the notion of “surrogate models”, also called emulators, meta-models, 
or response surface approximations.  Surrogate models are used in computational models for 
physics and engineering applications to replace the “full physics code runs” which involve the 
solution of partial differential equations over very large (e.g., > 1M elements) meshes.  In the past 
two decades, surrogate modeling for computational science problems has become an active 
research field.[44] Some of the most common surrogate models involve regression [42], Gaussian 
processes [35,37], and polynomial chaos expansions [15,49].    
Cyber testbeds themselves may be considered surrogates for real-world environments.  However, 
it is also possible to think of surrogates or lower-fidelity models for cyber virtualized experiments 
or emulations.  For example, such surrogates could be regression models or other statistical data-
fit models such as Gaussian processes.  But surrogates for cyber experiments might also involve 
discrete event simulators such as the NS3 network traffic simulator.  Finally, surrogates for cyber 
experiments might involve analytic formulas.  One use of surrogates for cyber experiments is for 
“multi-fidelity” UQ.  In this approach to UQ, a low-fidelity model is run thousands of times, where 
a high-fidelity model may be run a few times.  The results are combined to produce a high-fidelity 
estimate which has the benefit of low variance from the large number of low-fidelity runs and 
improved accuracy from the high-fidelity runs which reduce bias in the estimate [14, 13].  

A.10. UQ vs. Experimental Design 
Note that there can be a subtle difference in how one treats the results of an experimental design 
study and a UQ study.  Typically, uncertainty quantification requires the user to specify probability 
distributions on the input parameters (e.g., normal, Weibull, exponential, etc.).  Then, samples are 
taken according to the probability distributions and the model is run at those settings to produce a 
distribution on results.  Thus, uncertainty quantification focuses on mapping input distributions to 
output distributions:  the goal is understanding the probability distribution of the output and 
associated statistics such as mean, variance, and percentiles of the output.   Historically, 
experimental design methods do not require distributions.  They are more focused on the influence 
of the input settings (often taken to be binary or discrete levels).  Thus, the goal of experimental 
design is to say something like “the application of fertilizer results in a mean crop yield that is 
statistically significantly higher than without the fertilizer.”  Parameter studies, factorial studies, 
and parameter sweeps over levels of an input parameter typically are not focused on “distribution 
of inputs to distribution of outputs mapping” but instead on “what is the difference in response 
under various experimental settings?” or “what is the trend in the response as we increase the value 
of an input parameter?” 
A confusing aspect of the distinction outlined above is that Monte Carlo sampling may be used for 
both UQ and experimental design.  That is, often Monte Carlo methods are used to generate 
realizations of input parameters for UQ.  However, Monte Carlo methods may be used to generate 
a small number of samples from a high dimensional space when a full factorial design or complete 
enumeration is too expensive.  In the latter case, one does not necessarily impose a distribution 
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structure on the outputs.   It is acceptable to use Monte Carlo methods for both UQ and 
experimental design studies, but the analyst should carefully state what assumptions are being 
made on the input distributions or levels of parameter values.  

A.11. DoE for Physical vs. Computational Experiments 
Statisticians classify DoE approaches into two different areas:  classical Design of Experiment 
methods and the more modern design and analysis of computer experiments (DACE) methods.  
Classical DoE techniques arose from technical disciplines that assumed some randomness and 
non-repeatability in field experiments (e.g., agricultural yield, experimental chemistry).  DoE 
approaches such as central composite design, Box-Behnken design, and structured factorial 
designs have approaches to generate and handle replicate runs.  These designs also put sample 
points at the extremes of the parameter space, since such designs offer more reliable trend 
extraction in the presence of non-repeatability.  
DACE methods are distinguished from DoE methods in that the non-repeatability component is 
omitted for computer simulations which are deterministic (e.g., one set of input parameters always 
results in the same output.  This is usually the case for the partial differential equations models 
used to solve physical problems).  Thus, for DACE experiments, there are no replicates.  In these 
cases, space-filling designs and Latin hypercube sampling are more commonly employed to 
accurately extract trend information. Quasi-Monte Carlo sampling techniques which are 
constructed to fill the unit hypercube with good uniformity of coverage are also used for DACE.   
Space filling designs are also employed when constructing surrogate models, and much of the 
early DACE work centered around sampling to construct Gaussian process models [35,37].  Note 
that cyber experimentation involves aspects of both DoE (e.g., possible randomness and non-
repeatability from stochastic network traffic, delays, timings, etc.) and DACE (large numbers of 
simulation parameters, need for good space filling designs).  
In this report, we used simple experimental designs, mainly parameter studies, because of the large 
cost of the I2P Firewheel runs.  We did perform replicate studies (repeating the experiment two 
more times) early in the project.  This helped verify the repeatability of network configurations 
(topology, global and local settings, etc.), the repeatability of results (mean CHR), and allowed us 
to determine experiment run times (typically, we saw that response metrics were stable enough to 
be sampled on a daily basis but we ran the experiments for 3-5 days to ensure we had stable mean 
CHR results.   Also note that each experiment itself involves a significant amount of random 
behavior across all the nodes that are tracked.  By taking averages of activity within a node and 
across nodes, we account for the stochasticity of the experiments.  Further discussion of particular 
experimental aspects and challenges is discussed in Section 8.3.  
 
  



 

62 

DISTRIBUTION 
Email—Internal 

Name Org. Sandia Email Address 
Laura Swiler 1463 lpswile@sandia.gov 

Daniel Turner 1463 dzturne@sandia.gov 

Derek Hart 5621 derhart@sandia.gov 

Michael Stickland 5682 mgstick@sandia.gov 

Thomas Tarman 5682 tdtarma@sandia.gov 

Jorge Urrea 5682 jmurrea@sandia.gov 

Kasimir Gabert 5689 kggaber@sandia.gov 

Justin Li 5953 jdli@sandia.gov 

Kristina R. Czuchlewski 5953 krczuch@sandia.gov 

Ali Pinar 8762 apinar@sandia.gov 

   

   

   

Technical Library 01977 sanddocs@sandia.gov 

   
 
 
 
 

 
  



 

63 

 

This page left blank 
 

  



 

64 

 

This page left blank 
 



 

 

Sandia National Laboratories 
is a multimission laboratory 
managed and operated by 
National Technology & 
Engineering Solutions of 
Sandia LLC, a wholly owned 
subsidiary of Honeywell 
International Inc. for the U.S. 
Department of Energy’s 
National Nuclear Security 
Administration under contract 
DE-NA0003525. 

 


