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ABSTRACT

This report presents the results of the “Foundations of Rigorous Cyber Experimentation”
(FORCE) Laboratory Directed Research and Development (LDRD) project. This project is a
companion project to the “Science and Engineering of Cyber security through Uncertainty
quantification and Rigorous Experimentation” (SECURE) Grand Challenge LDRD project. This
project leverages the offline, controlled nature of cyber experimentation technologies in general,
and emulation testbeds in particular, to assess how uncertainties in network conditions affect
uncertainties in key metrics.

We conduct extensive experimentation using a Firewheel emulation-based cyber testbed model of
Invisible Internet Project (I2P) networks to understand a de-anonymization attack formerly
presented in the literature. Our goals in this analysis are to see if we can leverage emulation
testbeds to produce reliably repeatable experimental networks at scale, identify significant
parameters influencing experimental results, replicate the previous results, quantify uncertainty
associated with the predictions, and apply multi-fidelity techniques to forecast results to real-world
network scales. The I2P networks we study are up to three orders of magnitude larger than the
networks studied in SECURE and presented additional challenges to identify significant
parameters.

The key contributions of this project are the application of SECURE techniques such as UQ to a
scenario of interest and scaling the SECURE techniques to larger network sizes. This report
describes the experimental methods and results of these studies in more detail. In addition, the
process of constructing these large-scale experiments tested the limits of the Firewell emulation-
based technologies. Therefore, another contribution of this work is that it informed the Firewheel
developers of scaling limitations, which were subsequently corrected.



ACKNOWLEDGEMENTS

This work was funded by the Laboratory Directed Research and Development program at
Sandia National Laboratories. The authors gratefully acknowledge the support of the National
Security Program Investment Area team for their support of this project. We acknowledge the
help of Kasimir Gabert, our colleague who, among other things, implemented the Snark
torrenting capability in our I2P model, and Corithian Williams, a 2019 summer student in the
Center for Cyber Defenders program, who wrote the initial version of the data analytics scripts.
Finally, we acknowledge the help of our colleagues supporting various cyber emulation
initiatives, including Steven Elliott and Chris Symonds.



CONTENTS

1.

TOEEOAUCHION 1.t 11
1.1 BacKground ... s 12
111, Case Study SElECtON c..cuuuuiiriiiicicicieieieirir ettt es 12
1.1.2. Preexistent I2ZP Model......cccoviiiiiiiiiiiiiiiiiciiiicececesice e 13
120 Previous WOLK ..o s 13
Overview and evolution Of £ESEArCH .......cviiuiiviiiiiiiciiic e 15
2.1. Network Topology GENEratiOn ..ot sssssesessans 15
2.1.1.  Original Dynamic Model........ccccoviiiiiiiniiiniiiiiccieeessenens 16
2.1.20 Static MOEL....ciiiiiiiiiiiiii e 16
2.1.3. New Dynamic MOdel.....cccccciiiiiniiiiicicieieinniccccieieessteeseiesesesesssseseseseesesenen 16
2.1.4. Network Topology Generation V&V .......ccccviiiviniiininiiiiiiiicssiessiseesisenens 16
2.2, Parameter SElECHON ...oiuiiuiiciieiiiiic e 17
2.2.1. Local Parameters for Local EAfects ... 17
2.2.2.  Global Parameters for Global Effects ..., 18
I2P Case Study DesCriPtON......ccuiiieiiiiiiiiicieiicc s esnaes 19
3.1. Invisible Internet Project (IZP) ..o 19
I2P Case Study Experimental Goals and Methodology ... 21
4.1. Experimental Network DesiZii......cccoviiiiiiiiiiiiiiiiiiiiiiinicesicesiciesicessissesssssesessans 22
4.2, Experiment Configuration for Experimental Propagation of Uncertainty..........cccocvueuenne. 22
DAta ANALTEICS cvvviieecicieieteterrt ettt ettt ettt bbb bbbttt 24
5.1. Data Extraction from Running Firewheel EXperiments ..........ccocevvenricieiniciniceniinenn. 24
5.2. Data Analysis of the Confirmed Hit Rate per Node.......cccccoueuviviiiiniiiniiiiniiiiccicn, 25
Emulated Experimental Results, Analysis, and ODbSErvations ..........cccceveeuviniecininicriiniensinieneinians 26
6.1. Exploratory Experimental RESULLS .......ccoceeuiiiiiiiiiiiiiiiiicccccese e 26
0.1.1. Type I = I2P NetwWork SCales.......couiiiiiiiiiiiiiiiiiciiciiccceeieee s 26
6.1.2. Type II — VICtm GIOUPS ...ccovviiiiiiiiiiiniciiiiccns s 27
6.1.3. Type I — Global DIStribUtiONS. .......ceveueiriiiiiniiiciiiieiiieieiceeeesseesseseee s 28
6.1.4. Exploratory Post-processing Parameters ... 30
6.2. Exploratory Analytical ReSults........cocciiviiiiiiiiiiiiiiiiiiiciccccseceniaes 31
6.2.1.  Successful Attribution in k THals......ccccceiviiiiniiiiiiiiiccccce e 31
6.2.2.  Probability of k Connections in One Day ... 32
6.3. Sensitivity Analysis Experimental Results ..o 33
6.3.1.  Summary of Results for Experiments 0-15......cccccoviiviiiniiinicnicinccicenn, 35
6.4. Regression Analysis for EXtrapolation ... 38
0.4.1.  SensitivIty ANALYSIS c.cceeriiriririiiccieieieiie ettt 39
6.4.2. Regression Model and Use in EXtrapolation ..........ccccceeieuvinicininicinincnnicesicenn. 40
0.4.3.  EXtaPOIAtION ....cuiuiieiiiiiiiiitci s 42
Multifidelity EXPEriMEnts ......ccviiiiiiiiiiiieiiieiiriciiiciie i sassens 44
7.1.  Discrete Event Simulation Model ..o 44
7.2. Multifidelity Results fOr I2P ......cooiiiiiiiiiiiiiiiicciceinecccieietene e 45
7.3. Optimal Experimental DEsign ......coiiiviiiiiiiiiiiiiiiiiiniieeicsceesissesiseessisse s 48
Lessons learned and DESt PrACHICES .......ccuvuiuiuiiiiiiiiiiiiriiicire s sessaes 51
SUIMIMALY 1ottt ettt ettt s s bbb snas 53



Appendix A. Experimental Design Terminology ... 57

A1, Experimental DEsSIZN.....coviiiiiiiiiiiiiiiiiicici s 57
A.2. Optimal Experimental Design .......ccccviiiiiiiiiiiniiiiiiiiricsicessise s 57
A.3. Uncertainty QUAantifiCAtiON .....cvveicecueucueieirininiiiceieiereteieesitcceeresesesessesestsesesesesesesessssesesescscsesenes 58
A4, SENSIEVIEY ANALYSIS ciuruiuiiiiireiiiriiiieicieieteteteie ettt be sttt sttt betess s seseacacserenen 58
A.5. Verification and Validation (V&V) c...cccvriiiiiiiiniinicccieieisisseseeeeiesesesesssseseeesesenenes 59
ALG. Parameter STUAY .ovovieiieciciiiiirii ettt 59
A7, Factorial DESIZN ..ot 59
AL, REPUCALES ...t 59
ALD. SULLOZALES ..ottt 60
A10.UQ vs. Experimental DesiZi ......cviiiiiiiiiiiiiiiiiiicieicenise s sesssesesssaenens 60
A.11. DoE for Physical vs. Computational EXperiments .........ccccvicrviieninieiinicnninieeceeicenns 61



TABLE OF FIGURES

Figure 2-1. Notional Internet TOPOIOZY ......cccuvuiiiiiiiiiiiiiiiiiiicii s 15
Figure 2-2. Comparison of Network Topology Generation Algofithms........ccccvvicuvivicviniicivinnnnn. 17
Figure 3-1. I2P communications using inbound and outbound tunnels (from Hoang, P.H., et al,,

An Empirical Study of the I2P Anonymity Network and its Censorship Resistance.

arXivi1809.09080V2, 20T8.) c.covuvuiirieiiiciiieieiieirieete ettt 19
Figure 3-2. netDb store, verify, and lookup operations (from Egger, C., et al. Practical Attacks

against the I2P Network. 2013. Berlin, Heidelberg: Springer Berlin Heidelberg.)........cccceveuuucees 20
Figure 4-1. Forward propagation of uncertainty in our I2P study ..o, 21
Figure 5-1. Process flowchart for data eXtraction .........ccocciiieiniiiciiiniciiiieieecesceesseee s 24
Figure 6-1. Median confirmed hit rate vs. network scale........ccooieuviiciiiniiininiciicceecccenns 26
Figure 6-2. Median confirmed hit rates for sampled groups of 6 victim routers for each effective

DBaNAWIALR FALE. ..ot 28

Figure 6-3. Confirmed hit rate boxplots based on the global parameter composition of the
network. Outliers exceeding the range defined by the 1.5 times IQR whiskers have been

£EMOVE, FOI CIATIEY. .ouuiuiiitiiiiriicccictete ettt bbbttt 29
Figure 6-4. Percent of I2P verification lookups per second after RI store event, for network

scales from 150 t0 10,000 NOAES. ....ccveiirivieriereiereirerereeret ettt ete vt ere e ereesesereesessersesesseseesessessesensesees 31
Figure 6-5. Comparison of the confirmed hit rates from Exp. III with post-processing analysis hit

time windows of 18-27 seconds (blue) and 20-27seconds (0range).........cccoeveeeevveeuerriniervireeneinnans 31
Figure 6-6. Probability of successful attribution in k trials. .......ccccoceuviieiiiiciiiniciiciicencceicenn, 32
Figure 6-7. Probability of k or more hits in @ day. ......cccceeiviieiviiciiiniiiciecee e 33
Figure 6-8. CHRs for nodes and the mean CHR for all sensitivity analysis (Type IV) experiments.. 35
Figure 6-9. Histogram of node CHRs for Experiments #3 and #10......cccccvvivniiiniiiniicviecnnn, 36
Figure 6-10. Histogram of node CHRs for Experiments #12 and #14.......ccccooevviivviinincniccnnn, 37
Figure 6-11. Mean CHR vs. Number of lookups per node.........cceuviiiiviiciiiniciiniciciniceicceienenns 37
Figure 6-12. Mean CHR vs. Number of Lookups/Node, identified by petcent torrenting................ 38
Figure 6-13. Scatterplots of inputs (x-axes) vs. mean Confirmed Hit Rate.......ccccoccvviiiniiiininnnnne. 39
Figure 6-14. Regression predictions for two cases: nominal torrenting and no torrenting............... 42
Figure 7-1. Scatterplot of 20 data points listed in Table 8-1. ......cccccoviiivniiiiniiniiinicrccic, 46

Figure 7-2. Mean estimate of mean CHR (middle line with X) and 99.7% Confidence Intervals..... 47
Figure 7-3. 3 parameter Box-Behnken design [from NIST, Section 5.3.3.6.2,
https:/ /www.itl.nist.gov/div898/handbook/pri/section3/pti3362.htm ....c.oveveveereermcecrerceniannn. 49



LIST OF TABLES

Table 4-1. Experimental Parameter Settings Used in SECion 5 .....c.cccviiiiiiniiiiiniiciiinieiiicsicenciaes 23
Table 6-1. First 10 rows of the Tukey test over configurations. Red highlights examples where the
Ul hypothesis 18 FEJECLEd w.uviiuiiiiiiiiiiiiiiiiiii e 30
Table 6-2. Parameter settings and results for experiments used in sensitivity analysis...........coceueenes 34
Table 6-3. Correlation Coefficients between I2P experiment parameters and mean CHR ................ 40
Table 6-4. Subset regression indicating best variables to choose depending on the number of
variables included in the regression EqUALION. ...t essaenens 41
Table 7-1. 20 samples of Firewheel and corresponding samples of DES model..........cccocoeuviiinninnes 46
Table 7-2. Results from Multifidelity estimate of the mean of the mean CHR ......ccccccevvvnnncccnnes 47
Table 7-3. Example Box-Behnken Design for I2P study with 57 model tuns........ccccoeevvivicrvinicnninnes 49



This page left blank



ACRONYMS AND DEFINITIONS

Abbreviation Definition
AS Autonomous System (a subset of the global internet)
BW Bandwidth
BW_DistType Bandwidth Distribution Type
CHR Confirmed Hit Rate (a probability of de-anonymization success)
CPU Central Processing Unit
DES Discrete Event Simulation
FORCE Foundations for Rigorous Cyber Experimentation
HPC High-Performance Computing
2P Invisible Internet Project
IP Internet Protocol [address]
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LDRD Laboratory Directed Research and Development
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quantification and Rigorous Experimentation
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VIF Variance Inflation Factor
VM Virtual Machine

10




1. INTRODUCTION

This report summarizes the work performed under the “Foundations of Rigorous Cyber
Experimentation” (FORCE) Laboratory Directed Research and Development (LDRD) project.
This report describes an application of uncertainty quantification (UQ) in a large-scale study of
de-anonymization of user activity in a distributed, anonymity preserving peer-to-peer network, the
Invisible Internet Project (I2P). Uncertainty is inherent in peer-to-peer, Internet overlay networks
and may affect results from studies conducted on the Internet which cannot control many variables.
Cyber testbeds running in emulated environments allow us to vary certain parameters of interest,
observe how the network responds to changes, and perform UQ. We study the impact of
uncertainty in de-anonymization success.

This project complements, and leverages work done in the “Science and Engineering of Cyber
security through Uncertainty quantification and Rigorous Experimentation” (SECURE) Grand
Challenge LDRD project. The SECURE Grand Challenge has identified experimental design and
uncertainty quantification as pillars of rigorous cyber experimentation. In the FORCE project, we
are focused on one in-depth case study where we demonstrate the use of experimental design and
UQ at scale on large cyber networks. The networks being emulated in FORCE are one to three
orders of magnitude larger than those studied in SECURE. We also demonstrate the use of multi-
fidelity experimentation and analysis using regression and discrete event simulation (DES) to
project emulated experimental results to higher network scales, and apply the multifidelity
uncertainty quantification (MFUQ) technique developed by the SECURE team to reduce the
variance of results.

We performed experimentation using a Firewheel [12] cyber emulation model of an I2P network
to understand a de-anonymization attack formerly presented in the literature. We demonstrate we
can identify parameters influencing the results, and quantify uncertainty associated with de-
anonymization attributions. Further, we present the use and usefulness of statistical analysis on
emulations of large-scale, distributed cyber networks, and highlight the value of applying UQ in
cyber experimentation.

This study provides us with a rich set of questions to investigate not only the potential for
replication and studying a previous work, but also to consider the following:

e Verification and Validation (V&V) of emulation model. The study performed by Egger et
al. involved live experimentation on the internet. The studies we performed were entirely
emulated in the Firewheel [12] environment. This comparison is important for both
verification and validation of emulator performance in modeling the 12P network.

e Uncertainty quantification (UQ) and sensitivity analysis (SA). The studies documented in
this report focus on “forward UQ” which refers to propagating uncertainties in input
parameters of a model to the corresponding uncertainties in the responses from that model.
We examined a variety of configuration and topology uncertainties relating to 12P. Other
uncertainties in cyber experiments could involve environment, user, and threat
uncertainties. We performed a variety of SA studies.

e Advanced experimental design topics. With the experimental platform we have set up now
and the Firewheel I2P framework, we plan to address multifidelity UQ. In multifidelity
UQ, the idea is to run a small number of expensive, high-fidelity runs (such as Firewheel
runs involving thousands of routers over several days) with many runs of a lower-fidelity
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model. The lower-fidelity model does not need to be very accurate; its results simply need
to be correlated with the high-fidelity model. Combining results from two fidelities of a
model can result in statistical estimators that are lower-variance and more efficient than
simply calculating the statistics based on the high-fidelity model alone.

The report outline is as follows: Section 1.1 presents project background information, and Section
1.2 discusses related work in cyber experimentation and the science of cybersecurity and how this
work integrates this related work. Section 2 describes how the FORCE I2P model evolved during
the three years of FORCE research. Sections 3 and 4 provide an overview of the I12P case study
and the experimental configurations for the studies. Section 5 describes the data analytics that
were developed for this research, to process the TB size datasets and to calculate the mean
confirmed hit rate (CHR) across many groupings and configurations (per node, per parameter
setting type, etc.). Section 6 describes the emulation results obtained throughout the FORCE
project. Section 7 discusses multifidelity UQ and its demonstration on the I2P network study;
Section 7 also discusses optimal experimental design. Section 8 addresses lessons learned and
best practices. Conclusions are summarized in Section 9. Finally, Appendix A provides an
overview of definitions related to experimentation, uncertainty quantification, and sensitivity
analysis.

1.1. Background

This project’s proposal was originally submitted as a backup plan for the SECURE Grand
Challenge in case that proposal was rejected. Instead, the SECURE Grand Challenge proposal and
this project’s proposal were both accepted. As a result, this project focuses on the application of
SECURE techniques such as UQ to a scenario of interest and scaling the SECURE techniques to
larger network sizes. We take a deep dive into one specific cyber case study, while the SECURE
Grand Challenge project focuses on advancing the theoretical foundations of the science and
engineering of cyber security through uncertainty quantification and rigorous experimentation.

Cyber testbeds have been established to provide a platform for research and experimentation on
networks [6]. These testbeds often deploy many virtual machines (VMs), running on individual or
clusters of powerful host computers, to provide greater network sizes at lower costs. Uses of cyber
testbeds include test and evaluation, identification of network performance, cyber security
investigation, and training [20,41]. Some examples of testbeds include LARIAT [36], Emulab
[30,43], DETER [4, 31], and DARPA’s National Cyber Range [10]. In this work, we use the
Firewheel emulation testbed [12], which was developed at Sandia National Laboratories (SNL) as
part of the Emulytics™ (Emulation and Analytics) program.

1.1.1.  Case Study Selection

Our selected cyber case study started with a paper called “Practical Attacks against the 12P
Network” by Christoph Egger et al. in 2013 [9]. 12P refers to the Invisible Internet Project [22]
which is an anonymous network built on top of the internet to allow protected communications. It
is a type of “darknet” technology which is described in more detail in Section 3.

In this report, we present the results of a series of experiments performed on large, emulated
networks to study a particular attack on the I2P network described in [9], and herein referred to as
the I2P Case Study.
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We selected the 12P Case Study for the following three reasons:

1. Egger et al. utilized a multi-phased approach for predicting the probability of successfully
de-anonymizing a target victim in a large-scale, distributed anonymization network, and
this study involved live experimentation on the Internet. In contrast, our studies use an
offline, emulated testbed environment.

2. Part of their process produced a very specific measurement (u, an empirically measured
property of the I2P network) that was derived by determining the probability of
successfully correlating sets of stochastic events generated by the network. Much of the
work presented here involves understanding the uncertainty associated with that key
parameter, #, which was found to have a value of 0.52 in Egger’s work [9]. The studies
documented in this paper focus on propagating I2P configuration uncertainties to the
corresponding uncertainty in # and beyond. Note that u is also referred to herein as mean
Confirmed Hit Rate or mean CHR in later chapters.

3. Egger et al. then used this specific measurement (u) in their calculations when making de-
anonymization attributions about their attack’s intended victims, regarding otherwise
anonymized communications. This provides a rich example to show how uncertainties in
one parameter or one part of the system propagate to downstream or aggregate predictions.

1.1.2. Preexistent I2P Model

Previous work by colleagues on the Firewheel team [12] had already produced a Firewheel
emulation model of the I12P network. It contained all the fundamental building blocks for the
creation of basic I2P experimental networks, however, it was now unusable as it was built to run
on an early version of Firewheel v1.0 and wasn’t compatible with the newest (at the time)
Firewheel v2.0. Even so, it could provide us with an established I2P emulation model that we could
reengineer to work on the newer version of Firewheel, and then be expanded on to support all our
experimental needs.

While not the deciding factor, the availability of this existing I12P emulation model did weigh
considerably on our decision to select the I2P Case Study over other candidate case studies not
involving the 12P network.

1.2. Previous Work

During the last 15 years there has been much work in developing virtual testbed technologies to
conduct cyber experimentation at scales that exceed what can be achieved using physical testbeds
[4,10, 12,31, 43]. These technologies include tools for defining topologies, deploying experiments
on one or more physical computing nodes, orchestrating experiments, collecting results, and
analyzing collected data. In parallel, related efforts in virtualization research and development led
to today’s cloud computing technologies, which are now used in a variety of applications where
computing at scale is needed, including cyber testbeds.

Also during this time there developed an increased interest in the science of cybersecurity [3, 8,
18, 27] due to increasing concern about the lack of scientific rigor in cyber experiments. Often
such experiments would be conducted without an articulated, falsifiable hypothesis, and would not
be documented sufficiently to facilitate experiment reproduction by other research teams. These
shortcomings in experimental methodology can lead to confusion about experimental conclusions
and courses of action that should be taken as a result of these conclusions. For decisions regarding

13



high consequence cyber systems such as the Nuclear Command, Control, and Communications
(NC3) system, more rigor in cyber experimentation is needed to produce scientifically meaningful
results that can inform these decisions.

Recent work in this LDRD, and the companion SECURE Grand Challenge LDRD have addressed
this gap between mature experimental testbed technologies and nascent work in the science of
cybersecurity. For example, formal uncertainty quantification and sensitivity analysis methods
were recently used for cyber experimentation (see [46] for an example of a DNS amplification
attack scenario, ranking the most important parameters affecting Central Processing Unit (CPU)
utilization and victim response rate). However, experimental design and uncertainty/sensitivity
analyses methods are not yet used widely in the cyber emulation community. This is a contribution
of SECURE and FORCE.
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2. OVERVIEW AND EVOLUTION OF RESEARCH

To achieve our goals, we need our I2P emulation model to run reliably repeatable experiments at
network scales and runtime durations not previously achieved using the Firewheel testbed. We set
out to verify that our inherited (newly ported to Firewheel 2.0), original 12P model could produce
reliably repeatable experiments. This chapter discusses the topologies generated for these
experiments as well as the parameters we investigated.

21. Network Topology Generation

Our I2P model generates network topologies that attempt to notionally replicate the Internet
structure that the real I2P network runs on. To this end, as shown in Figure 2-1, our model includes
an emulated tier 1 Internet backbone, tier 2 routing, and distributions of autonomous system (AS)
subnets and the I12P routers within each subnet. The subnet and I12P router distributions i.e., number
of subnets with I12P routers and number of I2P routers per subnet, are determined per AS by
sampling from cumulative distributions constructed using data from previous 2P measurement

studies [25].
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Figure 2-1. Notional Internet Topology
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All Tier 1 BGP Routers are linked in a full mesh across a single Tier 1 Switch, and all Tier 2 BGP
Routers are linked in a full mesh across their respective tier 2 Switches. Finally, we also include a
data center network with DNS and NTP servers, I2P and Snark torrenting bootstrap servers, and
an Eepsite server (an I2P hidden service website used for downloading files via the I2P network.)

2.1.1.  Original Dynamic Model

The I2P model we inherited used a dynamic network topology generation algorithm, as described
above, but one which did not generate the same network topology across subsequent runs using
the same experiment parameters. While this approach did produce a notional Internet and a 12P
overlay network of roughly a specified size, these were not reliably repeatable as is needed for our
work.

2.1.2. Static Model

To remedy the non-repeatability problem of the original model, we developed a new static network
topology generation algorithm. As its name implies, this model’s topology generation algorithm
generated the same network topology repeatedly and reliably. All the Internet backbone, tier 2 and
3 routers, and the number of subnets and I2P routers per subnet were always the same. For any
given network size, all the topology of a smaller network size was replicated identically. For
instance, a 500-node network would contain the exact 400-node sub-topology as was generated
for a 400-node network, and so forth. While this approach did fulfill our reliability of repeatability
requirement, since larger networks always contained exact subsets of all smaller networks the
algorithm would generate, we felt it was too deterministic and wouldn’t afford us the opportunity
to examine any possibility of effects caused by differences in I2P overlay network topology.

2.1.3. New Dynamic Model

We then reengineered the original dynamic model’s network topology generation algorithm to
make it reliably repeatable for any specific network size, but still generate randomly different 12P
overlay topologies for different network sizes. We felt that this compromise between the
deterministic nature of our static model and the stochasticity of the original dynamic model would
satisfy both of our requirements i.e., reliable repeatability and variability in I2P network topology.

2.1.4. Network Topology Generation V&V

To ensure that our changes to the network topology generation algorithm did not significantly
affect the mean CHR metric we are focused on, we conducted a series of network scale
experiments using each of the different models. The results of these experiments (Figure 2-2)
showed that all three models’ results corresponded and tracked closely with one another across
varying network scales. However, our new dynamic model’s results corresponded most closely
with the deterministic, static model’s results, thus giving us confidence that our changes had not
adversely affected the outcomes for our primary experimental metric of interest.
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Mean confirmed hit rate (Accuracy) vs. network scale
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Figure 2-2. Comparison of Network Topology Generation Algorithms
2.2. Parameter Selection

Our work is focused on how experimental inputs affect outputs, as well as predictions and analyses
based on those outputs, so selecting input parameters that matter is vital. Unfortunately, we didn’t
know much about how I2P worked when we started this project, and as a result we had to discover
which parameters would be significant.

We had discovered early on that network scale i.e., the overall number of I12P routers included in
each of our emulated I12P experiment networks, had an observable effect on an experiment’s mean
CHR. In addition, network scale also affected the variance of the CHR [see Section 6, Figure 6-1,
and Figure 6-14]. But we were also interested in finding parameters that would affect the CHR of
specific, targeted routers.

2.2.1. Local Parameters for Local Effects

We initially operated under the assumption, and hope, that we could cause changes to an individual
I2P router’s CHR by making changes to its local operating environment. This was a naive
assumption, based on a shallow (or lack of) understanding of the inner workings of the I12P routing
software, and was eventually proven to be incorrect. However, the idea was that if a router being
targeted by an attacker was configured in a way that significantly altered its CHR, then this could
disrupt the effectiveness of the attack. Therefore, we conducted numerous experiments which
varied parameters on individual routers and measured the resulting CHR for them before we
became much more fluent in the workings of I2P routers. During this phase, we varied such
parameters as a VMs available bandwidth, the percentage of that bandwidth it shared with its I2P
router software, the number of virtual CPU cores (sockets) and the amount of Random Access
Memory (RAM) that it had. We also looked at whether the number and/or length of a router’s
encrypted tunnels would affect its local CHR.

We developed an automated capability for configuring sets of targeted routers, called Victim
Groups since they were intended to be victims of the de-anonymization attack, so we could have
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multiple sets of similarly configured routers per experiment. This also allowed us to configure
different sets of routers with different configuration profiles, as well as to specify the number of
duplicate sets for each configuration profile. As stated previously, this approach didn’t identify
any local parameters that could reliably, if at all, predict a change in a that router’s CHR.

By this time, though, we had observed enough of the I2P network’s behaviors and become more
familiar with the I2P software, and as such had developed a different way of thinking about
experimental parameters.

2.2.2. Global Parameters for Global Effects

As mentioned above, we discovered early on that network scale had an observable effect on an
experiment’s mean CHR, and on the variance of the CHR. Network scale is a property of the
network, and not of an individual node, and this is the shift in thinking about experimental input
parameters that we pursued from here on out. This led us to look at the global distribution of
bandwidths across the real I12P network, and to derive a cumulative distribution from the real-
world data that we could apply proportionately to our experimental networks.

Other global parameters we experimented with include the percentage of the overall number of
I2P routers per experiment that were using Snark, I2P’s native torrent-based file sharing
application, the size range of the torrent files being shared on the network, and other globally set
torrent-related router behaviors.

Using this global approach to input parameters, we started seeing effects on mean CHRs, and over
time we discovered a few global input properties we could set that would affect global
experimental outputs.
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3. I2P CASE STUDY DESCRIPTION

The details of the I2P Case Study are presented below, including the study motivation, the
experimental configuration used, the parameters that were varied, and the experimental results.
Additionally, information is provided about a process called forward uncertainty quantification,
which is the propagation of uncertainties in input parameters or configuration settings through the
emulated experiment to determine uncertainty in the corresponding quantities of interest.

3.1. Invisible Internet Project (I12P)

12P [22, 23] is an anonymous network consisting of peers (also called routers) running I12P routing
software that allows them to communicate with one another with a degree of anonymity. As shown
in Figure 3-1, anonymization involves multi-hop encryption in both directions to anonymize both
clients and servers. Previous investigations of the I12P network include the impact of a DNS
misconfiguration [11] and a study of I2P performance [19].

When an 12P router wants to make its presence known to the network, it publishes its RouterInfo
(RI) to the netDb, a Kademlia [28] distributed hash table (DHT) database, which is managed by a
subset of about 6% of all I2P peers, called floodfill nodes. RI data contains information needed to
contact a router within the I2P network. It is accessed by querying floodfill nodes and used by all
peers when building their encrypted tunnels. All routers rebuild their encrypted tunnels about every
ten minutes, and also they all repeatedly store their RI data using this same frequency. Once a
router stores its RI data to a floodfill node, the floodfill then ‘floods’ this data to other floodfill
nodes in the network, thus replicating RI data to other netDb nodes. The netDb also maintains
LeaseSet (LS) data, containing information needed to contact hidden destination sites within the
12P network, called Eepsites.

Outbound Tunnel Inbound Tunnel o~
\ |
/i)
Inbound Tunnel Outbound Tunnel

E‘E Gateway router Endpoint router — Encrypted communication

Figure 3-1. I12P communications using inbound and outbound tunnels (from Hoang, P.H., et al.,
An Empirical Study of the I12P Anonymity Network and its Censorship Resistance.
arXiv:1809.09086v2, 2018.)

Before we continue, we need to point out that some features and default behaviors of the I2P
network have changed over time. Of particular importance to our work is that when the 12P Case
Study was conducted, each router performed what’s called a verification lookup step after
completing their RI store step. This verify step is critical in the de-anonymization attack described
in [9], and can still be performed by today’s I2P routers, though it’s now been disabled by default
(as of I2P ver. 0.9.7 [23]). In our work we reenabled the verify step on all 12P routers used in our
experiments, and we describe this behavior herein as it worked when Egger et al did their research.
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Each peer 12P router populates the netDb as follows (see Figure 3-2):

1. Select one of today’s closest floodfill nodes; send the floodfill a request to store its RI using
a plaintext channel (no encryption; Rls includes peers’ cleartext IP address, so it’s already
known.)

2. Wait about 20 seconds.

3. Select a different one of today’s closest floodfill nodes; send the second floodfill a request
to lookup its RI and hence verify successful replication, this time using an encrypted tunnel
(this ensures the verify lookup is indistinguishable from any other RI lookup).
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Figure 3-2. netDb store, verify, and lookup operations (from Egger, C., et al. Practical Attacks
against the 12P Network. 2013. Berlin, Heidelberg: Springer Berlin Heidelberg.)
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In their 2013 paper [9], Egger et al. investigated a multi-phased set of attacks that resulted in the
attacker’s ability to de-anonymize a targeted victim on the 12P network. We note that their work
resulted in several changes to subsequent versions of the I12P software, which corrected these
attacks, including the disabling of the RI verification lookup step mentioned above.

Their attack allowed them to control all the floodfill nodes utilized by their victim I2P routers and
maintained this advantage even as the victims selected a different set of floodfills to use each day.
As such, whenever they observed a victim store their RI (to one of the floodfills they controlled)
and then saw a lookup for the same RI around 20 seconds later (again on a floodfill node they
controlled) they would assume the lookup was the verify step done by the victim and call that a Ait,
and associate the tunnel used for the lookup with the victim who performed the store.

During their study, using ground truth data obtained from their victim I2P routers, they observed
an empirical success probability of 0.52 for successfully associating a victim’s store with its related
verify lookup. The reason they were not 100% successful at associating these events is because all
other routers in the network /ookup peers’ RI when periodically rebuilding their encrypted tunnels.
If a peer requested a lookup of the victim’s RI from one of the floodfill nodes controlled by the
attacker, at around 20 seconds after an RI store done by the victim, but before the victim did their
verify lookup, then the attacker would erroneously associate this other peer’s tunnel with the
victim. We hereafter refer to this success probability as the Confirmed Hit Rate and denote it as u.
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4, I2P CASE STUDY EXPERIMENTAL GOALS AND METHODOLOGY

We wish to understand how uncertainties in I2P network properties (e.g., network size, I2P router
bandwidth, number of CPU cores, percent of peers generating encrypted traffic, peer traffic
profiles, etc.) contribute to uncertainty in de-anonymizing a victim. Answering this question
involves three steps: an experimental step to propagate input uncertainties to the emulated network;
data collection and analysis to determine the effects of these changes on the output parameter u;
and an analytical step to compute the de-anonymization uncertainty as a function of uncertainty in
u.

Our motivating questions pertaining to the study described in [9] are the following:
1. Is the confirmed hit rate probability, u = 0.52, stable?

2. Which I2P router and network environment parameters might affect the value of this
probability?

3. Are the de-anonymization results (i.e., attribution probabilities) that rely on « robust when
there are uncertainties in input parameters?

We address question 1 by constructing an 12P topology model and running it in an experimental
environment, so we can vary several local router configuration settings and global network
properties. The I2P routers are instrumented to collect data that is then used to determine confirmed
hit rates during post-experiment analysis. To address question 2, we perform a sensitivity analysis
on the I2P topology to assess the level of influence various input parameters have on the confirmed
hit rates of individual routers, and on the population.

Once a set of parameters that impact confirmed hit rates are identified, the third question is
addressed by varying these parameters’ values, measuring the variation in the confirmed hit rates,
and then using the range of confirmed hit rate values to calculate attack metrics of interest. These
metrics include:

e Probability of successful attribution within £ trials
e Probability of successfully attributing & connections over N observations

Our approach to the third question (an uncertainty quantification question) is shown in Figure 4-1.
It shows forward propagation from uncertain network conditions to uncertainty in de-
anonymization attribution as a two-step process. Uncertainty in the confirmed hit rate u is
determined via experimentation using an emulation-based testbed, with a set of inputs that are
fixed for each experiment and a set that are uncertain (or varied) during each experiment (e.g.,
number of I12P routers, router bandwidths, and user behaviors). Experimentation is required to
calculate u because, due to the complexities and scale associated with the I2P network, u cannot
be calculated analytically. Once a range of values of « is determined, these values are used in post-
experimental analysis to calculate the attribution probabilities listed above.

Fixed Parameters eI (uncertain parameter) Results

experiments

Uncertain Parameters

Figure 4-1. Forward propagation of uncertainty in our I2P study
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41. Experimental Network Design

Our emulated I2P network is modeled using Firewheel, a cyber experiment orchestration tool [12]
which assists a user in building and controlling repeatable experiments of large-scale distributed
network systems. Our Firewheel model allows us to specify the size of the I2P network for each
experiment run as well as other network conditions (see Figure 2-1). The emulated Internet
backbone, tier 2 routing, the distribution of tier 3 autonomous system (AS) routers, the I2P router
distributions within each AS i.e., number of subnets with I12P routers and number of I2P routers
per subnet, are generated based on data from previous I2P measurement studies [25]. We also
include a data center network with DNS and NTP servers, 2P and Snark torrenting bootstrap
servers, and an Eepsite to download files from.

All 12P routers run a modified copy of I2P version 0.9.29, installed on Ubuntu 14.04 Desktop
(which were both the latest versions when our 2P model was originally built). The I2P software
was modified to collect ground truth data about RI store and verify lookup events on all non-
floodfill (client) routers, and to collect all observed RI store and all lookup event data on all
floodfill (server) routers. This information is used to calculate the confirmed hit rate, u«, as well as
other statistics reported herein.

The emulated experiments are run on a High-Performance Computing (HPC) platform, due to the
experimental network sizes. Each HPC host machine has 32 CPU cores across 2 sockets, 512
Gigabytes of RAM, and 100 Gigabit Ethernet. The provisioning of virtual machines and virtual
networking is performed across an experiment’s cluster of HPC nodes using another technology,
called minimega [5,29], a tool for launching and managing virtual machines on a laptop or cluster,
which is available as open source. minimega can accept a network topology from Firewheel and
deploy it in a matter of minutes.

4.2. Experiment Configuration for Experimental Propagation of Uncertainty

We performed four types of emulation experiments, varying different configuration parameters
relating to I12P in each. The first three emulation experiment types are exploratory in nature. That
is, we conducted them to identify which parameters, when changed, resulted in observable changes
to confirmed hit rates. The final emulation experiment type is to conduct a sensitivity analysis on
a final set of parameters chosen from amongst those evaluated during the exploratory experiments.

The experimental results are presented in detail in Section 5. In Table 4-1, we present a summary
of the four experiment types and parameters that were varied, including the values used. Note
that for these experiments, we discretized the input uncertainties to take a set of specific values
enumerated in Table 4-1 and did not treat the uncertain inputs with parametric distributions such
as normal, Weibull, etc. Some of the variables are inherently discrete (e.g. number of CPU cores
or bandwidth) and so continuous distributions are not appropriate. Additionally, a select number
of discrete values per input allows one to perform a “main effects analysis” which tests if the mean
response value changes significantly as the input parameter varies over the input domain.

Note that generating samples of uncertain parameters and running the emulation with those
sampled values is a way to perform uncertainty analysis in emulated systems. This is often the
only tractable approach to perform UQ on problems which cannot be solved analytically. We
used this approach to understand the uncertainty in # (mean CHR) which we then carried forward
to the uncertainty in de-anonymization probability (Section 6.2). We stress that by traditional
computational modeling standards, the experimental design in terms of the number of uncertain
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parameters and the total number of parameters is straightforward for these studies (Table 4-1 and
Section 7.3). As such, the total number of experiments would, traditionally, be considered low.
However, each particular experimental I2P network run—with specific configuration
parameters—produced a significant amount of data: One emulation run provided hundreds or
thousands of nodes, each with its own confirmed hit rate per day. We partition the confirmed hit
rate results by various node attributes including bandwidth and percent of I2P share and also study
the confirmed hit rate per node configuration per day. Overall, this gives us rich datasets with
which to test our hypotheses.

Experiment Type Parameters varied and range

(Exploratory) Type I: | Number of i2p routers: {150, 300, 450, 600, 1100, 1600, 2100, 3000, 5000, 10000}
Network Scales

(Exploratory) Type II: | Bandwidth (BW): {8, 12, 16,3 2, 64, 128, 256, 512} Kbps
Victim Groups 12P Share%: {0, 10, 50, 100}
Number of CPU cotes pet router: {1 or 8}
Note: Only touters in sampled victim groups vary parameters using these settings, all others are fixed: {BW 40 Kbps, Share
100%, cores 1}.

(Exploratory) Type III: | Bandwidth distribution notionally detived from I2P Metrics data [21]: {48 Kbps (50%), 64 Kbps (11%), 128
Global Distributions | Kbps (17%), 256 Kbps (2.8%), 512 Kbps (4.4%), 1024 Kbps (4.3%), 2048 Kbps (3.5%), and 4096 Kbps

(6.5%)}

Percent of routers participating in Snark Torrenting: (0%, 20%, 80%, 100%)

Snark Torrenting Roles: {Generators, Seeders}

Type IV: Network size {500, 2000, 2100, 3000, 4000, 5000, 6000, 10000 nodes}, BW distribution type [explained in
Sensitivity Analysis Section 6.3] {0, 1, 2}, Percent of routets participating in Snark Torrenting {0, 20%, 80%, 100%}, number of
tunnels {3, 6}, length of tunnels {3,4}, number of torrents {0, 50, 100}, frequency of torrents {0, 0.0017,
0.0033}, frequency of new torrent subscriptions {0, 0.0008, 0.0033}, minimum torrent size {0, 10K, 1M
bytes}.

Table 4-1. Experimental Parameter Settings Used in Section 5
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5. DATA ANALYTICS

Once we finish running the Firewheel emulated experiments, we process and extract the CHR data
from the experiment logs, and then analyze the CHRs across nodes and across experiments to
identify significant effects.

5.1. Data Extraction from Running Firewheel Experiments

Firewheel
Experiment

Preprocessing

Node Logs Floodfill Logs

Ground Truth Stores & Lookups

Confirmed Hits

Figure 5-1. Process flowchart for data extraction

A process flowchart for the data processing performed to extract information from the I2P
experiments in shown in Figure 5-1. The data analysis begins with processing the generated log
files produced by the nodes in the Firewheel experiment. During each experiment run, the client
I2P nodes capture timestamped records of their own RI sfore and verify lookup operations,
including information about the RI key of interest and the node performing the operation. Each
floodfill server provides records of all node store and lookup operations (both verify and normal
lookups) that it observes, while each node logs the ground truth store and verify operations that it
performs.

These log files are then processed using a combination of SQL (Structured Query Language) and
Python to extract every store operation seen by the floodfill servers and then find the first lookup,
seen by one of the floodfills being used that day by the node that performed the store (i.e. the
floodfills being controlled by the attacker targeting that node). This pair of store and lookup
operations, which occur together within an empirically determined 18 to 27 second window, are
collectively called a hit. If this /ookup corresponds to the ground truth verify operation recorded in
the originating node's log, this hit is labelled as a confirmed hit. Otherwise, this lookup comes from
a different node and the timing association was not successful, resulting in an unconfirmed hit.
The output of this data extraction for all of the non-floodfill nodes is a table summarizing the total
number of hits and confirmed hits for each node. This process also logs information about node
log errors, as well as information for verifying the correct expected operation of the I2P network.

We also provide additional options for preprocessing the data to skip nodes with various types of
errors in the logs. Logs can have errors due to data being corrupted, failure to complete operations
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resulting in repeated store or verify attempts, unexpected termination of the node's host machines,
or nodes not properly initializing and participating in the I2P network.

5.2, Data Analysis of the Confirmed Hit Rate per Node

We calculate the confirmed hit rates from the output of the data extraction process for each
Firewheel experiment and analyze them to characterize the statistical behavior, focusing on three
different sets of analyses that address three different aspects of the data: node and experiment
characteristics, experiment runtime dependencies, and experimental configuration effects.

First, the initial analysis helps examine the standard statistical properties of all nodes in the
experiment. Due to observations of non-normal behavior, these properties cover the population
CHR mean, variance, standard deviation, minimum and maximum values, as well as median and
first and third quartiles. We support these numerical results with histogram and bar plot
visualizations to examine the distribution. These visualizations reveal the extent of the CHRs at
the edges and the occurrence of unexpected bimodal behavior.

Second, with the dynamic behavior of the Firewheel I2P model, we consider the possibility of
initialization effects and the time delay for the network to converge to more realistic behavior.
This increases the runtime cost, as we must run experiments over longer durations, 3-7 days. We
can then compare the statistical properties as before, for each day, to determine the minimum
duration for experiments and to examine any changes in behavior over time. To do so, we augment
our comparisons of experiment statistics from before with statistical tests and regression analysis
to evaluate if the behavior is statistically different and to determine the trend over time.
Specifically, we use the Tukey test for multiple comparison, the pairwise Kolmogorov—Smirnov
test, and simple linear regression models.

Third, we explore different ways of parsing and grouping the data to analyze the effects of different
experiment configuration settings, as enumerated in Table 4-1. With the difficulty in setting up
experiments at the same size as the real 12P network, whose size also fluctuates, we set scale size
as a primary parameter of interest. Moving beyond that, to have a sufficient number of parameters
to motivate optimal experimental design considerations, we survey a range of nodes settings:
bandwidth, I2P share percentage, number of cores, and torrenting role. We then apply the same
statistical analysis and tests from the first two types of analysis above to groups of nodes with these
varying parameters to determine the effect on CHR. Similarly, we also examine how the global
configuration of an experiment affects the CHR. Some of these global parameters overlap with the
node configuration, such as the distribution of node bandwidths and the percentage of nodes in
each torrenting role. Other parameters explore the possible effects from the activity and behavior
of the network, such as the number and lengths of tunnels used by the nodes, the number and size
of the torrents, the frequency of torrent generation and requests.
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6. EMULATED EXPERIMENTAL RESULTS, ANALYSIS, AND
OBSERVATIONS

Our goal is to understand the variability in the confirmed hit rate and what factors might influence
it. To do that, we performed several studies where we varied the size of the I2P network that was
emulated, as well as configuration parameters such as the bandwidths for each node, the number
of CPU cores, the way I2P encrypted traffic was generated, and other I2P configuration settings
like the number and length of encrypted tunnels maintained by each I2P node. The results below
present these experiments.

6.1. Exploratory Experimental Results

6.1.1. Type I - I2P Network Scales

First, we examined the effect of different network scales (numbers of routers) on confirmed hit
rate, ranging from networks with as few as 150 nodes up to 10,000 nodes. To reduce the effects
from other parameters, we set all the I12P routers to have the same bandwidth, 100 Kbps with 100%
I2P share, and background traffic consisted of routers periodically downloading files from an
Eepsite.

Figure 6-1 shows how the median population confirmed hit rate decreases while the variance
increases as the network scale becomes larger. For each scale size, the median is shown in orange,
while the variance is captured by the box showing interquartile range (IQR) as well as by the
whiskers going out to 1.5 times the IQR. For clarity, we do not plot the outliers.

The median population confirmed hit rate decreases from 100% accuracy at the smallest scale (150
nodes) to 80% accuracy at our largest scale (10,000 nodes), while the interquartile range increases
significantly from 0.6% up to 17.2%. We expect this trend to continue as network scale continues
to increase. Network scale affects measurements of the confirmed hit rate, with Egger et al.
conducting their measurement of u over different times of the day to mitigate the fluctuation in
network size throughout a day (from 18,000 to 28,000 active routers) [9]. Such a measurement
then could have an underlying uncertainty spanning a range of potential variances.

Emulation Experiments by Nurnber of Nodes

LZE??%Q? U

08

Confirmmed Hit Rate

04 L

05

4] 5] i} a Al 3l ,:}'J .-§i- .-§.-
¥ J ) J W iy i + % o
AN A S

Mumber of Nodes

T

Figure 6-1. Median confirmed hit rate vs. network scale
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6.1.2.  Type Il - Victim Groups

We consider the potential effects of local I12P router configuration parameters, given that the
experimental setup for Egger et al. used groups of floodfill and victim nodes which were identically
configured [9] against the context of the live 2P network. We examine how the local parameters
for a small number of nodes representing a Victim Group might affect the confirmed hit rates of
that group.

For tractability, we look at a single 3000 scale experiment using data from the third day to reduce
boundary effects from initializing the system. We set around 2000 identically configured nodes
with 40 Kbps bandwidth, 100% I2P share, and 1 CPU core for the default network behavior, and
configure the remaining nodes into 42 groups of around 30 nodes with unique configuration
combinations of bandwidth (ranging from 12 Kbps to 512 Kbps), I2P share percentage (between
10% and 100%), and number of CPU cores (1 or 8). To isolate the potential effects of these
parameters, no background traffic occurs in this experiment.

As Egger et al. used a group of 6 victim nodes to verify the attack, we similarly sample nodes from
each configuration combination to form and calculate the median confirmed hit rate. Given that
our emulation enables control over the entire network, we sampled multiple times to produce 3
independent groups of 6 nodes for each configuration combination, as shown in Figure 6-2. The
median confirmed hit rate for each Victim Group of 6 identically configured nodes is plotted
against the effective bandwidth (router bandwidth * 12P share %) for each group, with color and
shape denoting the number of cores. We see that the number of cores does not appear to show any
significant effect, while a sharp difference appears to divide the confirmed hit rates for lower
performance and higher performance nodes. Here, we can characterize performance in terms of
effective bandwidth, which we compute by multiplying the bandwidth and the I2P share
percentage. This represents the amount of bandwidth actually available for use in supporting the
I2P network and is what governs the ordering of the parameters on the x-axis in ascending order.
Using this effective bandwidth approach, we categorize nodes as lower or higher performing based
on a threshold of 12 Kbps effective bandwidth. Within these two groupings, there does not appear
to be any other dependence of the confirmed hit rates on the configuration.

The effect of lower versus higher performing nodes matches well with the 12P code itself, which
marks these lower performing nodes as not being effective for supporting the network function.
This places them in a special category and minimizes their use by peers within tunnels, which
results in fewer lookups of these nodes. Here, based on that observation along with the observed
higher CHRs, we hypothesize that one mechanism driving confirmed hit rates is the number of
lookups for a node. While this particular set of parameters may be limited and the effect is very
distinct, the implication is that the local individual node configurations can impact the
experimental confirmed hit rate. Furthermore, by looking at the three different groups sampled
from the same configuration, we observe that there is a certain degree of variability inherent to
the network itself. While the lower performing nodes show more consistent median confirmed hits
with smaller spreads of around 5%, the higher performing nodes can show a spread of over 10%.
Consequently, a single Victim Group based on a single configuration could have a significant
amount of underlying uncertainty, which might not be captured by one snapshot from the real
system. One intrinsic benefit to emulation environments is the ability to collect data from all of
the nodes in the experiment and to run replicate experiments to better assess the variability.
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3000 Node Experiment - Median Confirmed Hit Rate (Groups of 8) vs Node Configurations
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Figure 6-2. Median confirmed hit rates for sampled groups of 6 victim routers for each effective
bandwidth rate.

6.1.3.  Type lll - Global Distributions

Given the greater degree of flexibility and control with using an emulation environment, we further
extend our analysis to consider how the overall configuration of the entire I12P network affects
observations of confirmed hit rates u. We again present results from the data of the third day from
a single 3000 scale experiment, where we globally set the bandwidth parameter for all of the nodes
within the network to approximate the actual bandwidth distributions of the real 12P network.

In addition, we include background traffic by configuring a high percentage of nodes (80%) to
participate in I2P Snark torrenting. We set 20% of the nodes to act as torrent generators, who
produce and share files but don’t download them from others, and 60% as seeders, who both
download files and share them with others, but don’t produce new ones. Non-torrenting nodes are
labelled as "I2P" nodes in the data. Guided by recent data from early 2021 about the distributions
of the I2P network bandwidths [21], we proportionally place the nodes into categories with
different performance specifications: 48 Kbps (50%), 64 Kbps (11%), 128 Kbps (17%), 256 Kbps
(2.8%), 512 Kbps (4.4%), 1024 Kbps (4.3%), 2048 Kbps (3.5%), and 4096 Kbps (6.5%), all with
I2P Share set at 100%. Given the results from Section 4.1.2, we do not include any lower
bandwidths.

The boxplots for each combination of these parameters are shown in Figure 6-3, where the label
indicates the corresponding parameter configurations. Here, we see that nodes with bandwidths
less than 512 Kbps tend to exhibit a higher confirmed hit rate than nodes with bandwidths equal
or greater than 512 Kbps. The lower bandwidth nodes also show a weak dependency on the
bandwidth, while the higher bandwidth nodes all appear to exhibit a similar range of confirmed hit
rates. We verify the effect of the global bandwidth parameter, in driving different confirmed hit
rates of differently configured nodes within the overall population, visually but also using various
statistical tests, as described in Section 5.2.
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Figure 6-3. Confirmed hit rate boxplots based on the global parameter composition of
the network. Outliers exceeding the range defined by the 1.5 times IQR whiskers have
been removed, for clarity.

In Table 6-1, we show the first 10 rows of the results from applying the pairwise Tukey’s honest
significance test [47,48]. The Tukey method is an example of the main effects analysis mentioned
earlier. We want to understand if the mean confirmed hit rate is statistically significantly different
across the various node configurations shown in Figure 6-3. While there are some nuances, due
to differences in the number of nodes for each parameter grouping, the results largely agree with
the qualitative observation of an s-shaped curve from Figure 6-3. Of the 276 pairwise comparisons,
162 comparisons result in rejecting the null hypothesis and finding that there is a statistical
difference in behavior between the parameter groupings. Similarly, other approaches such as the
Kolmogorov—Smirnov statistical test (not shown) reveal comparable behavior.

The observation of this effect aligns with the special case noted in Section 6.1.2, where 12P
minimizes the use and lookups to nodes with bandwidths under some threshold. With the wider
range of bandwidths used here, we can refine our hypothesis and say that the difference in node
performance results in a difference in the number of lookups, which drives different confirmed hit
rates. As nodes operate on the network, they learn over time which other nodes provide tunnels
with better performance (by Day 3 in our data). This learned preference drives biases in selecting
tunnel routes, resulting in more /ookups to nodes with higher performance specifications and fewer
lookups to nodes with worse performance. As a result, as shown in Figure 6-3, the higher
bandwidth nodes exhibit lower confirmed hit rates, while the lower bandwidth nodes have higher
confirmed hit rates. Similarly, examining the full tables of results from our statistical tests shows
that the higher bandwidth configurations do not show statistical differences among them, whereas
the lower bandwidth configurations do tend to show significant statistical differences in behavior.
It can also be noted that there is an unclear dependency on the torrenting role for routers, with
some groupings of roles within the same bandwidth rejecting the null hypothesis. This indicates
potential finer-grained configurations and additional parameters to consider which could affect the
confirmed hit rate.
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groupl groupl meandiff = p-adj reject
0048k _generator 0048k iZp -0.0047 0.9000  False
0048k _generator 0048k seeder 0.0368 0.0010  True
0048k _generator 0064k generator  -0.0324 0.1056 = False
0048k _generator 0064k i2p -0.0282 0.3720  False
0048k _generator 0064k seeder 0.0107 0.9000 False
0048k _generator 0128k generator  -0.0462 0.0010 True
0048k _generator 0128k i2p -0.0532 0.0010  True
0048k generator 0128k seeder -0.0380 0.0010  True
0048k _generator 0256k generator  -0.1002 0.0010 True

Table 6-1. First 10 rows of the Tukey test over configurations. Red highlights examples where the
null hypothesis is rejected

Overall, we find through our emulation experiments that a number of factors can affect the
confirmed hit rate and increase the degree of uncertainty in interpreting the power of an attack
against the I2P network. Although some factors, as reported by Egger et al [9], such as the location
and proximity of nodes do not appear to affect the confirmed hit rate, network size has a dominant
effect on confirmed hit rate and effective bandwidth is also an important parameter. Interestingly,
the effective bandwidth parameter shows an effect both as part of the configuration of nodes
relative to the global configuration of the network, as well as for certain local configurations on
their own. Most importantly, we find that the network itself exhibits a significant amount of
inherent variability, which may add to the uncertainty in observations.

6.1.4.

In addition, post-processing assumptions within the data analysis approach can also affect the
confirmed hit rates. We empirically determine the valid time window for tracking Aits, finding that
over 98% of all lookups occur between 18 and 27 seconds after the store, as shown in Figure 6-4.
In comparison, Egger et al. note only that the verify lookup commences 20 seconds after the store
event [9]. If we assume that their Aif time window covers a range of 20 to 27 seconds, we can rerun
our analysis and evaluate if this 2 second difference in the time window size matters.

Exploratory Post-processing Parameters

To evaluate the effect of altering this post-processing parameter, we use the same data from Section
6.1.3 As shown in Figure 6-5, the 20 to 27 second time window (orange) results in slightly higher
average confirmed hit rates as compared with our empirically determined 18 to 27 second time
window (blue) across every configuration setting, along with a nearly uniform corresponding
increase in the quartiles and the interquartile ranges. While the effect is comparatively small, the
fact that we observe it impacting every node category in the experiment indicates that the decisions
underlying the post-processing can also contribute to the overall experimental uncertainty.
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Figure 6-5. Comparison of the confirmed hit rates from Exp. lll with post-processing analysis hit
time windows of 18-27 seconds (blue) and 20-27seconds (orange).

6.2. Exploratory Analytical Results

The sections above describe the experimentation required to quantify the uncertainty in the
confirmed hit rate, u. Once the uncertainty of u is characterized, it can be analytically used to
calculate attribution probabilities. In the following we describe the analysis and results for two
attribution probabilities: the probability of successful attribution within &£ observations of a
store/verify pair, and the probability of observing k connections between an I12P client and a server
in a 24-hour period.

6.2.1. Successful Attribution in k Trials

The confirmed hit rate u discussed in the above sections is the probability of successfully
associating a netDb store request with a subsequent verify lookup request within a few second time
window. Here, we are interested in understanding how multiple store/verify pairs would affect the
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probability of successful de-anonymization over a time period such as a day. More specifically,
we would like to know the probability that, given n observations of store/verify pairs, what is the
probability that at least one observation is correct? This probability is represented by the following
equation:

Pr{success in k trials} = 1 — (1 — u)*,

where u is the probability of successful attribution per trial, and k is the number of trials.

Figure 6-6 shows the probability of successful attribution for the following cases: using Egger’s
observed result, i.e. u = 0.52, and using the uncertainty bounds from Section 6.1.3, i.e. u = [0.693,
0.919]. The horizontal dotted line shows the 95% success probability, and the vertical dashed lines
show the number of trials required to achieve 95%. Rounding these values up to the next integer,
we see that with Egger’s result, 5 trials are required. With the experimental results described
earlier, between 2 and 3 trials are required to achieve 95% confidence. It is important to note,
however, that while attribution is 95% probable within 2, 3, or 5 trials, we do not know which trials

are successful.
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Figure 6-6. Probability of successful attribution in k trials.

6.2.2.  Probability of k Connections in One Day

A more meaningful question to ask is, given the store/verify pair observations, what is the
probability of observing a user accessing a given resource k& times in one day? Egger et al. [9]
models the probability of seeing k hits in N time slots as a binomial distribution:

Prob(k hits) = (Il\c/) xk(1 = x)Nk,

In this equation, x is the probability of a 4i¢, and includes a “correct” it and a “false negative” hit.
That is, x = u * p + (1 — u) * q where p is the fraction of time slots that the person accesses a
resource R, and ¢ is the probability that any other random user accesses R. In this work, we assume
p=0.05 and ¢=0.001 following [9] but we also vary p parametrically to see the effect of different
resource usage.
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Figure 6-7 shows the effect of including uncertainty in  in the plots showing the probability of £
or more hits as a function of the number of /its observed under different assumed resource usage
values, p. Note that the probability of k£ or more Aits can be calculated by summing terms from
the previous formula:
Prob(k or more hits) = 1 —Y52¢ <1]V) x/ (1 —x)N .

The results are shown in Figure 6-7. The upper plot has the deterministic value of # = 0.52 from
Eggers’ paper and the lower plot has the uncertainty bounds which incorporate the uncertainty in
u from the analyses in Section 6.1.3. Specifically, we use the 10% and 90" percentile of u as well
as the median: u = [0.693, 0.844, 0.919]. In this analysis, N=144 (one day of observations with
10-minute timeslots). Figure 6-7 shows that including the uncertainty in u adds significant
uncertainty in successfully attributing k connections in N observations, especially for larger values

of p.
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Figure 6-7. Probability of k or more hits in a day.

6.3. Sensitivity Analysis Experimental Results

In the spring of 2021, we added two capabilities to the Firewheel 12P model: torrenting, which
represents Snark file sharing traffic on the I2P network, and the ability to change the distribution
of bandwidths across the network according to a global distribution. Both of these global settings
(the percentage of nodes engaging in Snark Torrenting, called the global snarking percentage, and
global bandwidth distribution) appeared to influence the mean CHR [see Figure 6-13 and Table
6-3]. Because of the important role torrenting played, we further examined the number of torrents,
the size of the torrents, the frequency of initial torrents and the frequency for new torrenting
subscriptions. The effect of these variables is confounded (e.g. increasing the frequency of torrents
can have the same effect as increasing the number of torrents and/or the size). However, we were
able to observe a relationship where higher torrenting activity correlated with lower mean CHR,
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as shown in the scatterplots in Figure 6-13 and the high correlation coefficients between the
torrenting parameters and mean CHR as shown in the last row of Table 6-3.

A summary of the experiments included in our sensitivity analysis is shown in Table 6-2. Note
that the experiments numbered 0 through 15 are experiments performed in which we did have the
Snark torrenting ability for the I2P model. The previous experiments that were scaling
experiments and did not involve torrenting traffic on the I2P network are listed as experiments
number 1000-1003. These were included because they are important for scaling, with some of our
few results at 5000 and 10K nodes.

Some explanation for the experimental settings listed in Table 6-2. Number of nodes refers to the
number of routers on the I2P network. BWDistType refers to the bandwidth distribution type,
where BWDistType = 0 is the empirical distribution observed in [21]: {48 Kbps (50%), 64 Kbps
(11%), 128 Kbps (17%), 256 Kbps (2.8%), 512 Kbps (4.4%), 1024 Kbps (4.3%), 2048 Kbps
(3.5%), and 4096 Kbps (6.5%)}, BWDistType = 1 is equal percentages over all the bandwidths,
and BWDistType =2 is the distribution we used in the original scaling studies (no global parameter
tuning of bandwidth). Global Snarking is the percentage of traffic that was devoted to Snark
Torrenting (e.g. 80 = 80% Snarking traffic). Number of torrents is the number of torrents used in
Snark torrenting, and the frequency of torrents or of new torrent subscriptions is given as number
of torrents/second. The minimum torrent size represented a lower bound on the size of the torrents
(in bytes). We also varied number of tunnels and tunnel lengths in these experiments. However,
the number of tunnels and tunnel lengths were not determined to be significant in terms of mean
CHR, so we did not list them explicitly in Table 6-2.

Num of |BWDist |Global Num of |[Freqof [Min Size Freq New |mean
Exp_No [Nodes Type Snarking |Torrents |Torrents |Torrents Torrents [CHR

0 2000 0 100 50 0.0017 10000 0.0008 0.8852

1 2000 1 80 50 0.0017 10000 0.0008 0.9074

2 2000 0 80 100 0.0033| 10000000 0.0033 0.6735

3 2000 0 20 50 0.0017 10000 0.0008 0.8830

4 2000 0 80 50 0.0017 10000 0.0008 0.8734

5 2000 0 80 50 0.0017| 10000000 0.0008 0.7426

6 2000 0 80 50 0.0033 10000 0.0033 0.6871

7 2000 0 80 50 0.0017 10000 0.0008 0.8939

8 2000 0 80 50 0.0017 10000 0.0008 0.8978

9 2000 0 100 100 0.0033| 10000000 0.0033 0.7016

10 4000 0 80 50 0.0017 10000 0.0008 0.7893
11 500 0 80 50 0.0017 10000 0.0008 0.9817
12 4000 0 20 50 0.0017 10000 0.0008 0.7986
13 2000 0 20 100 0.0033| 10000000 0.0033 0.8101
14 4000 0 20 100 0.0033| 10000000 0.0033 0.6960
15 6000 0 20 50 0.0017 10000 0.0008 0.7562
1000 2100 2 0 0 0.0000 0 0.0000 0.8742
1001 3000 2 0 0 0.0000 0 0.0000 0.8321
1002 5000 2 0 0 0.0000 0 0.0000 0.8257
1003 10000 2 0 0 0.0000 0 0.0000 0.7845

Table 6-2. Parameter settings and results for experiments used in sensitivity analysis

34



6.3.1. Summary of Results for Experiments 0-15

We analyze the data using the same tools as before, to extract the CHRs for each node in the
network as well as the statistics characterizing the behavior of the overall network. Here, while we
can again separate nodes based on their particular configuration settings, the focus is on how the
torrenting configuration and global network parameters drive changes in the mean CHR.

First, as a summary of all of these experiments, we can plot the CHRs for the nodes and the mean
CHR for each experiment, as shown in Figure 6-8. Each blue point represents the mean CHR for
a node, although markers may overlap, while the orange marker indicates the mean CHR for all of
the nodes in the experiment. Although this representation is not as detailed as histograms for
showing the distribution of CHRs, the figure provides a concise summary of the behavior of all
experiments. This side-by-side overview of experiments allows us to compare and make high-level
evaluations of the effects of given parameters.

As a result, we can also note the interesting and somewhat unexpected effect of parameter
combinations. For example, Experiment #9 is a 100%-high torrenting experiment with longer and
more tunnels. Yet, its mean CHR falls between that for Experiment #2 (an 80%-high torrenting
experiment) and Experiment #13 (a 20%-high torrenting experiment) and with less variance. We
hypothesize that the increased tunnel setting actually reduces the effect of torrenting.
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Figure 6-8. CHRs for nodes and the mean CHR for all sensitivity analysis (Type IV) experiments

A more straightforward and expected comparison would be evaluating the effect of the size of the
experiment. With all other settings being identical, Experiments #3 and #15 differ only by the size
of the experiment, 2000 nodes versus 6000 nodes respectively. As shown in Figure 6-9, the
increase in scale size clearly results in a decrease in the mean confirmed rate, along with an
apparent spread in the distribution of node CHRs. This effect is supported by the exploratory
studies, where scale size was a significant driver of experimental CHR, as shown in Figure 6-1.
For the studies with Snark torrenting (experiments 0-15 as listed in Table 6-2), most of the
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experiments were performed with 2000 nodes, so node scale did not exhibit such a dominant role.
When we examine both the exploratory studies and the Snark torrenting studies together, we do
find node scale to be significant. This is discussed in Section 6.3 and in Figure 6-14.

Exp #2 and #15 (2k/6k-20% Snark) CHRs=
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Figure 6-9. Histogram of node CHRs for Experiments #3 and #16

Similarly, another clear pattern shows that higher torrenting activity, with larger torrents generated
and requested more frequently, significantly affects the resulting distribution in CHRs. We show
a comparison, in Figure 6-10, between Experiments #12 and #14, which differ only by the amount
of torrenting activity but show significant changes in the mean and variance of the node CHRs.
Similar behavior is observed with other pairs of experiments, such as Experiments #3 and #13.
Furthermore, examination of the data in Figure 6-8 shows that differences even in one aspect of
torrenting also produces a similar effect. Experiments #5 (larger torrent sizes), #6 (torrents
generated and requested more frequently), and #2 (80% of nodes participating in torrenting vs 20%
for #13) likewise exhibit lower mean CHRs and higher variance.

Based on these experimental results, which covered a wider range of the experiment parameter
space, we return to our earlier hypothesis that the number of lookups determines the success of the
timing attack and whether the store and verify lookup activity is correctly associated. To validate
our hypothesis, we extract all the Jookups for each node in all of the Type IV experiments (as well
as the Type I experiments with more than 2000 nodes). We then calculate the average number of
lookups per node to remove the bias due to the size of the experiments and compare that against
the mean CHR for that experiment.

As shown in Figure 6-11, there appears to be a strong inverse linear relationship, with a statistically
significant (p = 1.4e-6) correlation coefficient of —0.86. This result, showing that more lookups per
node correlates with lower CHRs, supports our hypothesis. The experiments with more lookups
per node also suggest that scale size (10k nodes with 5,262 lookups per node) and torrenting
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activity (higher torrenting frequency Experiment #6 with 6,283 lookups per node) are the primary
drivers behind this mechanism.
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Figure 6-10. Histogram of node CHRs for Experiments #12 and #14
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Figure 6-11. Mean CHR vs. Number of lookups per node

While examining the data, we note that there appears to be an outlier for Experiment #14, which
has an average of 10,640 lookups per node. After considering the different experiment settings, we
hypothesize that the effect results either from a combination of larger experiment size along with
more torrenting activity or from having a higher percentage of nodes participating in torrenting.
Based on the amount of available data, we focus on the second hypothesis, torrenting participation.
We split the data into 20% and 80% torrenting participation experiments and recalculate the
correlation with the mean CHR. As shown in Figure 6-12, (which also includes the Type I 0%
torrenting experiments and the Type IV 100% torrenting experiments for completeness), we note
that the different amounts of torrenting participation appear to result in different groupings of
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experiments which are each more strongly correlated. For 20% torrenting experiments, we obtain
a correlation coefficient of -0.91 (p=0.03) and for 80%, we obtain a correlation of -0.99 (p=1.5e-
7). These improvements in the correlation, which are both still statistically significant, suggest that
Experiment #14 is not an outlier, but rather that our second hypothesis on torrenting participation
is a likely explanation. Given the number of experiments for each torrenting participation setting,
further experiments and analysis would be required to confirm our hypothesis.
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Figure 6-12. Mean CHR vs. Number of Lookups/Node, identified by percent torrenting

Note that measurement of /ookups per node is an experimental outcome, strongly correlated with
the confirmed hit rate, rather than an input parameter. As such, it is not used as part of the
regression analysis. Instead, it supports our understanding of the mechanism behind the success of
the timing attack and allows us to examine the relevant parameters, which affect the number of
lookups performed.

6.4. Regression Analysis for Extrapolation

This recent set of experiments with torrenting was very useful because the data showed the
significance of the parameters relating to torrenting and volume of traffic. It also allowed us to
build a regression model to perform extrapolation to larger size networks than we were able to
emulate on Carnac.

In this section, we present two analyses of the recent experimental dataset: (1) sensitivity analyses
which identify significant parameters affecting the mean confirmed hit rate and (2) a regression
model for extrapolation. In the graphs and analyses below, we use all of the data in Table 6-2
except experiment 11 with 500 nodes, because that was considered too small to be a realistic 2P
network as evidence by a mean CHR of nearly 1 (0.98).
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6.4.1.  Sensitivity Analysis

The scatterplots shown in Figure 6-13 show the raw data: mean CHR is plotted against the various
parameter values that were varied in these experiments as detailed in Table 6-2. Note that the
point with the highest mean CHR is experiment 1, with the red square indicating an equal
distribution of nodes in the I2P network across the various BW levels. The BW levels are 48 Kbps,
64 Kbps, 128 Kbps, 256 Kbps, 512 Kbps, 1028 Kbps, 2048 Kbps, and 4096 Kbps. Each of these
8 levels had 12.5% of the nodes for the “equal” Bandwidth distribution type (BW_DistType) = 1.
In contrast, a BW_DistType of 0 (data shown in blue dots) had a distribution across nodes given
by the I2P data that was available [21]. Note that the major difference between BW_DistType =
0 and 1 is that in the 0 setting, most of the nodes are very low bandwidth (e.g. 78% of the nodes
are either 48 Kbps, 64 Kbps, or 128 Kbps). Finally, the BW_DistType = 2 represents the earlier
scaling studies performed where the bandwidth distribution was sampled at levels between 8 and
512 Kbps. In summary, BW_DistType 0 is the typical distribution used for torrenting, 1 is equal
distribution, and 2 is the scaling experiments with no torrenting.

Figure 6-13 shows a negative slope for all the parameters with respect to mean CHR. That is, as
the input parameter increases (such as number of nodes, percent global snarking, number of
torrents, etc.), the mean CHR decreases. We expect this, but the scatterplots and corresponding
analyses support it. We also see that the slope of the line representing the relationship between
the frequency of new torrent subscriptions and mean CHR (the right most box) is the largest
negative slope: this variable has the most significant effect as will be also discussed in the
regression plot. The parameters relating to torrenting have similar slopes, with the lines relating
number of nodes to mean CHR and percent global snarking to mean CHR (two leftmost boxes)
are less significant. Finally, we note that the trend lines shown in red in Figure 6-13 are univariate
trends: they show only the trend of each parameter individually with respect to mean CHR.
Because each subplot shows only 19 data points and the trend lines need to fit results that straddle
a large range of mean CHR, these trend lines capture overall trends but do not predict individual
experiments accurately in many cases.
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Figure 6-13. Scatterplots of inputs (x-axes) vs. mean Confirmed Hit Rate
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Correlation coefficients are another method used for sensitivity analyses. Correlation coefficients
vary in value between -1 (perfect negative trend, one variable decreases as another increases) to 1
(perfect positive trend: one variable increases as another variable does). A zero value of
correlation typically implies that knowing the value of one variable does not help inform the value
of another. The correlation coefficients for the data in Table 6-2 are shown in Table 6-3 below.

Num_ Global Num Freq Torrent Freq
Nodes BW DistType  Snarking Torr Torr Size NewTorr
Num_Nodes 1.00
BW_DistType 0.44 1.00
Global Snarking -0.54 -0.63 1.00
Num Torr -0.41 -0.79 0.48 1.00
Freq Torr -0.43 -0.79 0.51 0.95 1.00
Torrent Size -0.43 -0.79 0.51 0.95 0.89 1.00
Freq NewTorr -0.33 -0.57 0.33 0.87 0.94 0.79 1.00
meanCHR -0.19 0.24 -0.05 -0.46 -0.56 -0.50 -0.68

Table 6-3. Correlation Coefficients between I2P experiment parameters and mean CHR

In Table 6-3, the parameters highlighted in yellow show inputs which are strongly correlated. The
bright yellow color indicates correlations with an absolute value greater than 0.5, while the pale
yellow shows correlations with absolute value between 0.25 and 0.5. Generally, correlations
greater than 0.25 are considered significant, with larger values being more significant. The bottom
row of Table 6-3 shows the most important correlations between inputs and mean CHR. As the
scatterplots indicate, the frequency of new torrent subscriptions is most strongly negatively
correlated with mean CHR. Other parameters relating to torrents (number of torrents, frequency
of torrents, and torrent size) are also strongly negatively correlated with mean CHR. The number
of nodes, BW_DistType, and global Snark torrenting percentage are not as strongly correlated with
mean CHR in this set of experiments.

6.4.2. Regression Model and Use in Extrapolation

We perform a set of regressions with various combinations of input parameters considered as
independent predictors in a linear model to predict the mean CHR. For example, Table 6-4 shows
that if we only have one independent variable in the prediction model, the frequency of new
torrents is the best variable to choose as shown by an X in the first row: that generates a linear
regression with an R-squared value of 46%. The R-squared value indicates the fraction of the
variance in the output (in this case, mean CHR) that can be explained by the regression model
based on the selected inputs. An R-squared value of 100% is the highest possible: that would
indicate that the entire output variance can be attributed to a certain combination of inputs in the
regression model. R-squared is a common “goodness of fit” measure used in regression analysis.

If we look down the rows of Table 6-4, we find there is a sweet spot where we are not including
parameters with negligible effect, but we are achieving a high R-squared value. This occurs with
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the following 4 variables as highlighted in yellow: number of nodes, number of torrents, torrent
size, and frequency of new torrent subscriptions. The R-squared value for this regression is 80.3%.
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1 461 429 336 18.2 0.059293 X
1 309 269 14.9 27.5 0.067122 X
2 652 60.9 47.0 8.4 0.049106 X X
2 534 47.5 348 15.7 0.056863 X X
3 673 60.8 455 9.1 0.049166 X X X
3 66.1 59.3 431 9.8 0.050050 X X X
4 803 747 | 3.1 0.039460 X X X X
4 695 60.8 4.6 9.8 0.049138 X X X X
5 80.6 731 * 5.0 0.040720 X X X X X
5 804 729 * 5.0 0.040863 X X X X X
6 818 727 * 6.2 0.041009 X X X X X X
6 806 70.9 * 6.9 0.042367 X X X X X X
7 821 70.7 * 8.0 0.042457 X X X X X X X

Table 6-4. Subset regression indicating best variables to choose depending on the number of
variables included in the regression equation.

The regression equation for the regression highlighted in yellow in Table 6-4 is shown below:

Regression Equation

meanCHR = 0.9219 - 0.000018 NumNodes + 0.00346 Num Torr - 0.1270 Torrent Size - 74.0 Freq NewTorr

Specific information about each coefficient estimated in the regression model is shown below:

Coefficients

Term Coef SE Coef T-Value P-Value VIF
Constant 0.9219 0.0285 3230 0.000

NumNodes -0.000018 0.000005 -3.65 0.003 1.23
Num Torr 0.00346 0.00107 322 0.006 14.76
Torrent Size -0.1270  0.0417 -3.05 0.009 9.97
Freq NewTorr -74.0 148 -501 0.000 4.15

We note that the p-values for all terms are very small and all less than 0.05. This indicates that all
terms would be considered to have strong statistical significance in this model. Finally, we note
that two of the terms, number of torrents and torrent size, have a Variance Inflation Factor (VIF)
value that is high. The VIF is an indicator of multi-collinearity in a regression model. That is, it
indicates there is correlation amongst the predictor variables of the model. We are aware of this
issue: we saw high correlation amongst several of the predictors in Table 6-3. A high VIF (greater
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than 5) indicates high correlation between predictors, causing the resulting regression to be less
reliable. A regression result is considered more robust when it is built over independent input
values with zero correlation. However, in this situation, we had limited time and experimental
budget, so we will proceed with this particular regression model.

6.4.3. Extrapolation

We now present some results of the regression model when we use it to predict the mean CHR for
larger scale experiments which we did not have time or resources to implement. That is, we plug
in number of nodes = 10K, 15K, 20K, 25K, 30K in the regression model shown above, along with
two sets of values for the other parameters relating to torrenting. We use a nominal setting of the
torrenting values which corresponds to number of torrents = 50, torrent size = 10Kbytes, and
frequency of new torrent subscriptions = 0.00083/sec. Then, we use a no torrent set of values
which corresponds to number of torrents = torrent size = frequency of new torrent subscriptions =
0. For each of these parameter settings, we vary the number of nodes as indicated above to
generate predictions. The predictions are shown in Figure 6-14.
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Figure 6-14. Regression predictions for two cases: nominal torrenting and no torrenting

As shown in Figure 6-14, the experimental data is shown in the blue dots. The prediction with
nominal torrenting is given by the red line and the prediction with no torrenting is given by the
green line. The prediction limits for the regression with nominal torrenting are shown in the grey
and purple lines. These limits give the bounds of where a future realization of mean CHR may fall
for a particular number of nodes. For example, at 15000 nodes, the prediction of the expected
value of the mean CHR is 0.632 according to the regression model. However, this prediction has
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a high uncertainty: a particular instance of the mean CHR at 15000 nodes may fall between 0.477
and 0.787. The prediction limits for the no torrenting case were very similar to the case with
nominal torrenting: we did not plot them to simplify the graph.

Based on the regression equation, we calculate that a mean CHR of 0.522 will occur at 21000
nodes, with a prediction interval of [0.330, 0.715] around this estimate. Thus, the 52% value
reported in Egger’s paper using a realistic scale network is consistent with this estimate. Egger
reported a mean CHR of 52% for a network size that fluctuated between 18K and 28K nodes.
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7. MULTIFIDELITY EXPERIMENTS

Often, uncertainty quantification is challenging to perform because of the large number of samples
that must be run through a cyber model, which can be computationally expensive. However, in
multifidelity uncertainty quantification (MFUQ), many samples from one or more low-fidelity
models (such as a discrete event simulation) are fused with a few runs of a high-fidelity cyber
model (in this case, Firewheel) to decrease the estimator variance and obtain more reliable
statistics. While we may only be able to run a few dozen samples of a high-fidelity model, we
assume the cost of the low-fidelity model is much cheaper and so we can generate many low-
fidelity samples for the cost of one high-fidelity model evaluation. The papers by Geraci et al. [13,
14] present the theory behind multifidelity UQ as well as demonstration of the methods to network
applications.

In MFUQ, the multifidelity estimator for a mean of response quantity Q can be built starting from
the single fidelity Monte Carlo (MC) mean estimate from the high-fidelity model and adding a
weighted unbiased term to it:

— 1 j L ' ! '
a7 =15, 00, +a(5h, 00, 37 o)) (7-1)

XN
QMF = thgh + alow,)

In Equation 7-1, N is the number of high-fidelity runs, and 7 is the oversampling ratio that allows
for a maximization of the efficiency of the estimator by defining the optimal number of low-fidelity
model evaluations as (N+1) x 7. The first term on the right-hand side is just the usual mean estimate
from the high-fidelity model. The second term is the low fidelity estimate “corrected” so that it is
unbiased. Note that the second term has many more samples: this contributes to the variance
reduction of the MF estimator. For a MF estimator with a single low-fidelity model, the coefficient
o is obtained in closed form as function of the correlation and estimated variance of the two
models.

Section 7.1 discusses the low-fidelity discrete event simulation model (DES) that was constructed
to model the I12P network. Section 7.2 presents results from the MFUQ study and Section 7.3
provides an overview of optimal experimental design.

7.1. Discrete Event Simulation Model

Based on our high-fidelity model observations, we assume some simplified mechanisms driving
the CHR and build a statistical DES model in Python to provide low-fidelity samples. Our model
is a DES as it models /ookup interactions in fixed, discrete time steps, and it is statistical in
probabilistically mapping these modeled behaviors to CHRs. While this model runs significantly
more quickly than the Firewheel experiments, the runtime increases with larger experiment scale
sizes. Furthermore, we must tune the various parameters and hyperparameters of the DES model
to ensure that the behavior is correlated with the high-fidelity model.

The statistical DES model has two phases: setup and run. The setup phase configures the number
of nodes in the model, the distribution of node performance effects, the distribution of torrenting
roles, the effects of torrenting on performance, the number of lookups done each round based on
the number of tunnels, and local groups of nodes within which activity occurs. We use the
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performance attribute here to directly determine the nodes to be preferentially selected for lookup
operations, based on the observation that higher bandwidth nodes exhibit lower CHRs.

In the run phase, the simulation approximates the results from a 1-day long experiment, with 144
discrete rounds. Each round corresponds with a 10-minute time window to match the specification
of having a pair of RI store and verify operations every 10 minutes. Within a single round, each
node conducts /ookups against nodes in their local group, weighted by their performance attribute.
We assume three mechanisms driving the number of /ookups that occur. First, we have the store
and verify operation itself, which we define to have occurred and do not directly model. Second,
we add lookups based on the number of nodes, to represent some lookups from background traffic
needed to maintain and operate the network. Third, we increase /ookups due to network traffic
activity, based on the amount of torrenting. At the end of the round, we take the total number of
lookups and use a statistical likelihood parameter to determine whether these additional lookups
prevented the correct matching of the verify and store operation, resulting in an unconfirmed hit.
We then aggregate these hits and confirmed hits over the entire simulation to produce CHRs for
each node, with which we can conduct the same statistical analysis as with the high-fidelity
Firewheel experiments for comparison.

7.2, Multifidelity Results for I12P

For a multifidelity framework to be effective, two conditions should be met: (1) the high and low
fidelity models should show a strong correlation (e.g. if they are run with the same sample settings,
the response quantities should be correlated) and (2) the cost of the low-fidelity model should be
much cheaper.

First, we investigate the correlation. Recall we had 20 Firewheel runs as shown in Table 6-2. We
ran the DES model at those parameter settings. The results are shown in Table 7-1 below, with
the scatterplot in Figure 7-1 showing the results graphically. If the DES model were perfectly
correlated with the Firewheel model, the dots would fall on a straight line. The correlation for
these 20 points is 0.807. That is a reasonable correlation, large enough to proceed with the MF
study. Two other details: the DES model had similar input parameters as Firewheel but they were
not exactly the same. Thus, we had to map some of the settings in Table 6-2 to those in the DES
model. Also, we note that the quantity of interest in this study is itself a mean (e.g. each row in
Table 7-1 is the mean confirmed hit rate, where the mean is the average over the nodes studied in
the experiment). We are interested in the overall mean (the average over all 20 samples as
highlighted in the bottom of Table 7-1). That is, we are focused on the “mean of the mean CHR.”
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Discrete Event Model

HIGH FIDELITY {LOW FIDELITY
Firewheel DES
meanCHR meanCHR

0.8852 0.8138
0.9074 0.8468
0.6735 0.6394
0.8830 0.9345
0.8734 0.8361
0.7426 0.6335
0.6871 0.6336
0.8939 0.8452
0.8978 0.8419
0.7016 0.5573
0.7893 0.7026
0.9817 0.9598
0.7986 0.8509
0.8101 0.8567
0.6960 0.7925
0.7562 0.7613
0.8742 0.9386
0.8321 0.9069
0.8257 0.8303
0.7845 0.6746
|0vera|| mean 0.8147 0.7928

Table 7-1. 20 samples of Firewheel and corresponding samples of DES model

Mean CHR from Firewheel and the DES model
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Figure 7-1. Scatterplot of 20 data points listed in Table 8-1.
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Next, we consider the cost ratio. The cost to run the Firewheel experiments and process the results
is approximately four days. The cost to run the DES model is 6.6 minutes, on average. This cost
ratio only considers wall-time cost, not processor cost. Firewheel must be run on dozens of HPC
nodes on the Carnac machine, whereas the DES model can be run on a laptop.

With this information, we proceed to the multifidelity calculations. The results are shown in Table
7-2 and Figure 7-2. In Table 7-2, we see that the mean of the high fidelity estimate of mean CHR
is 0.8147, whereas the multifidelity estimate is higher, 0.8256. The variance reduction achieved
by this process is approximately 58%. The coefficients o and A,,,, from Equation 7-1 are listed,
along with the 99.7% confidence intervals on the mean estimate of the mean CHR (this is the mean
value +/- 30. These confidence intervals are shown graphically in Figure 7-2. The cost of the
Firewheel runs was 3 days for the first 16 experiments and 1 day for the last four experiments,
resulting in (3*16+4)*24 = 1248 hours. We note that the cost of the 20 high-fidelity Firewheel
runs only was 1248 hours, whereas the 220 low-fidelity DES simulations took 34 hours total. The
cost of the low-fidelity model adds only 2% of the cost of the high-fidelity model while
substantially reducing the variance of the mean estimate and narrowing its confidence interval.
Note that the results from multifidelity uncertainty quantification are dependent on the relative
costs of the models as well as their correlation: a low-fidelity model with even higher correlation
that was even cheaper would result in larger variance reduction.

Number of High | Number of Low Cost
Q=mean CHR Result Fidelity Samples | Fidelity Samples (hours)
High Fidelity Mean of Q: Qhign 0.8147 20 1248
High Fidelity Variance of th,qh 0.0003689
Multifidelity Mean of Q: QMF 0.8256 20 220 1248+34
Multifidelity Variance of QMF 0.0001504
Variance Reduction Achieved 58.02%
Alpha coefficient a -0.5993
Delta estimate A, -0.0182
99.7% Confidence Interval for Qnign [0.7579,0.8715]
99.7% Confidence Interval for QMF [0.7889, 0.8624]

Table 7-2. Results from Multifidelity estimate of the mean of the mean CHR

Estimate of the mean of Mean CHR
(mean +/-99.7% confidence interval)
0.88

0.86

0.84

b 3

0.82

0.8

M 20 High Fidelity Runs

0.78 B Multifidelity (20HF and 220 LF)

0.76
0.74
0.72

0.7

Figure 7-2. Mean estimate of mean CHR (middle line with X) and 99.7% Confidence Intervals
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7.3. Optimal Experimental Design

As mentioned in Appendix A, section A.2, optimal experimental design refers to the creation of a
run matrix (parameter values at which the emulation should be run) to optimize some property.
For example, one property may be “space filling”: one selects a design which creates sample
points in the parameter domain so they fill out the space well (there are no “bunches” of points
piled up in one location). Other properties involve maximizing some property of a surrogate which
is constructed based on the points, for example, to minimize the maximum variance of the
prediction values from a regression fit. This section presents what some OED designs would look
like for the I2P study and why we were not able to use them (primarily because of computational
cost of running the 12P experiments at scale).

In this section, we use the same notation as Appendix A. We denote the run matrix, X, to be of
size n x p, where the n rows represent n runs, each with p parameter values. For the I12P case study,
there are seven parameters, p = 7, if we remove the number of tunnels and tunnel lengths. We first
consider a full factorial design. Full factorial designs can identify the main effects of each of the
factors (parameters) on the outcome as well as all of the interaction effects between variables. Full
factorial designs involve all combinations of all parameters at each of the parameter levels. For
example, if there were two parameters and one had three levels and the other had four levels, a full
factorial design would involve 3 x 4 or 12 runs. For our scenario, each of the parameters has three
levels (e.g. number of torrents is either 0, 50, or 100), except number of nodes, which has 6 (2000
nodes, 3000, 4000, 5000, 6000, and 10000 nodes). Thus, the total number of combinations for a
full factorial design is 6*36 =4374. We ran a few dozen experiments through the course of this
LDRD: 4374 is simply not feasible.

One class of experimental designs is called response surface designs. For example, to create
designs which support linear models, parameters are sampled only at a high level and a low level
(two values or settings allowed per parameter). The two values allow for a linear model. Most
response surface designs use three levels per factor, to estimate quadratic effects in each parameter.
Some examples of response surface designs are central composite designs and Box-Behnken
designs. These both have parameters sampled at a central value and at high and low values. To
illustrate such a design looks like, we created a Box Behnken design for 7 parameters in Minitab.

Note that the Box-Behnken design assumes that there are only 3 levels per parameter, so it is not
strictly comparable to the full factorial design we calculated above: ideally, we would like the
number of nodes to have more settings. But assuming that number of nodes would be limited to
three settings (e.g. 2000, 6000, and 10000 nodes), the Box-Behnken design is shown in Table 7-3
below. It has 57 runs of the 7-parameter space. The -1 indicates the parameter value at its low
value, 0 indicates a central value, and 1 indicates an upper or high value of the parameter. This 57
run design would allow us to create a model with quadratic effects in contrast to the regression
model built in Section 6.4 which was a linear model in 7 parameters built over 19 points. Some
of the interaction terms would be confounded, but the Box Behnken design would allow for some
statistical analyses of significant effects. A 3-parameter version of Box-Behnken is shown in
Figure 7-3. Note that the Box-Behnken design does not include corner points which may involve
high values of one parameter as well as high values from another. This is a drawback to this design
as compared with a full factorial, but it comes with much more efficiency.
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Figure 7-3. 3 parameter Box-Behnken design [from NIST, Section 5.3.3.6.2,

https://www.itl.nist.gov/div898/handbook/pri/section3/pri3362.htm

SizePackets Freq_NewTor

Freq_Tor

_Tor

ype GlobalSnarking Num,

Num_Nodes BW_DistT

0

0

1

Table 7-3. Example Box-Behnken Design for I2P study with 57 model runs.

49



For the I2P studies, we performed the experiments manually, typically changing one or two
parameters which we thought would have the most significant effect. This is not ideal and is not
a comprehensive experimental design approach. However, the cost of setting up the 12P model
and debugging/deploying the runs on Carnac was very expensive: often it would take a week or
two for each experiment (with 4-5 days of actual experiment time and the remainder
postprocessing or debugging). Thus, we were not able to run the Box-Behnken study with 57
runs shown in Table 7-3, much less a full factorial with 4374 runs. Finally, we note that classical
experimental designs tend to be insufficient for more than five to eight parameters. They have the
additional limitation that the parameters are varied between a high and low settings (2 levels) or
perhaps three levels, but not more than that. This is a limitation when deploying experimental
design to practical applications.
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8.

LESSONS LEARNED AND BEST PRACTICES

Based on the three years of FORCE LDRD research and the effort designing, running, and
analyzing the Firewheel emulation experiments, we present several lessons learned and
suggestions for best practices:

There are significant challenges with scaling emulation experiments to these sizes (2000-
10000 nodes). One may only be able to afford a very small number of experimental runs,
even smaller than the number of runs from an optimal experimental design.

Instrumenting just one experiment (e.g. one run of the Firewheel 2P model with 3000
nodes, for example) on Carnac is a major effort requiring significant subject matter
expertise e.g. for how many hosts to partition the experiment across, how many VMs to
place on each host, for debugging the experiment to ensure the protocols are running
properly, that the simulated IP networking is working properly, and that the log files are
being created and extracted properly, etc. It’s important to have a working relationship with
colleagues who maintain the Firewheel, minimega, and Carnac technologies so you have
someone to call on when things go wrong.

Each emulated experiment requires that all the experimental input parameters are properly
configured to ensure results represent those of the desired experiment. This can get
complicated and sometimes confusing, so having a clear and complete experimental design
for a suite of experiments (e.g. for a parameter sensitivity study) is critical to help keep the
research on track.

Although the number of experiments may be small, each experiment itself is rich in data.
One can slice data by hour or day, by node or type of node, by type of traffic, by role of a
component, etc. We obtained thousands of data points from each experiment: the question
was how to aggregate these.

When one parameter such as network scale dominates, it can be challenging to find other
parameters which significantly affect a quantity of interest. We needed to rethink how we
defined input parameters, from local to global, before we were able to identify additional
parameters that significantly affected results, so be open to rethinking how you approach
the problem.

The size of the network made it difficult to see changes caused by various parameter
settings if a parameter setting only affected a fraction of the nodes. We used coded
hostnames and incorporated that info into logfile names to identify which nodes were
configured with which parameter settings, then extracted that information from each node’s
logfile name when analyzing results.

The 12P process we examined was sufficiently complicated that we could not easily create
a mathematical model of it like we did with the Nmap scanning process under SECURE.
Nmap was a fairly simple protocol for which we understood all of the “knobs” controlling
it; we examined port scanning on a small number of nodes (24) where scanning was the
only activity happening. This contrasts with thousands of nodes in the I2P network which
were constantly changing their preferred neighborhood of other nodes to work with, the
floodfill nodes they used, and the tunnels they used, etc. We could not scale down to 50
nodes because the global behavior of I2P would not be realistic at that scale. Determining
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the scale at which a particular cyber model will behave as intended, and how long
experiments must run before they can converge on behaviors approaching the real world
dynamics of the system is very important to ascertain as quickly as possible, so you don’t
waste time running experiments that aren’t big enough or for a long enough duration to be
meaningful for your research.

Statistical comparison tests such as main effects and Tukey multiple mean comparisons are
useful for identifying statistically significant response effects as a function of changing
input parameters. The tests are particularly helping when comparing large number of
parameters with many settings.

Traditional sensitivity analysis methods such as correlation coefficients, scatterplots, and
regression modeling also were helpful to identify important parameters and develop models
for extrapolation.

More advanced UQ methods, such as multifidelity modeling, were viable for reducing the
variance in the mean estimate of the quantity of interest, mean CHR. The exercise of
constructing a low fidelity model was useful for the multifidelity exercise but also very
helpful for extrapolatory studies.

The discrete event simulation (the “lower fidelity”) I2P model required significant tuning
to work well. Efforts on improving its performance also motivated further research into the
mechanism of the de-anonymization attack. Tuning the parameters associated with the
associated mechanism resulted in analyzing the number of lookups/node, a feature that was
found to be strongly correlated with the mean CHR.
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9.

SUMMARY

The FORCE LDRD focused on one specific case study: de-anonymization in the 12P network.
Under this LDRD, we generated emulations at much larger scales (thousands of nodes) than the
companion SECURE Grand Challenge. This allowed us to see challenges associated with these
large emulations and address some of the issues relating to scaling. While the goals of FORCE and
SECURE are similar, FORCE was complementary to SECURE in its focus on very large
emulations. We anticipate that the framework established under FORCE for running such large
emulations and processing, extracting, and analyzing extremely large datasets will be useful for
the Emulytics community in years to come.

In terms of specific results for the 2P network, we present the following results:

Using an emulated cyber experimentation environment, we have shown that there is
inherent stochastic variation in confirmed hit rates (z) within an 12P network, regardless of
configuration parameters, and thus the value of u is not stable for all routers across the
network.

We have confirmed that network scale has a large effect on the population median of u, as
Egger et al. expected, but also on the variance of u. We have shown that some local router
configuration changes (i.e. very low bandwidths) can have an impact on confirmed hit
rates, while others do not (e.g. CPU cores, higher bandwidths), at least not when measured
in isolation i.e. with no background traffic.

Including the uncertainty in u adds significant uncertainty in successfully attributing &
connections in N observations, especially for larger values of p, fraction of time slots that
the person accesses a resource.

We demonstrated that global changes (e.g. bandwidth distribution, encrypted traffic
volume) can have a statistically significant impact on confirmed hit rates of like configured
routers.

We demonstrated that lookups/node is highly correlated with mean CHR, supporting our
hypothesis for the mechanism driving the success of this de-anonymization attack

Based on a regression equation constructed from our emulation studies, we calculate that
amean CHR 0f 0.522 will occur at 21000 nodes, with a prediction interval of [0.330, 0.715]
around this estimate. Thus, the 52% value reported in Egger’s paper using a realistic scale
network is consistent with this estimate. Egger reported a mean CHR of 52% for a network
size that fluctuated between 18K and 28K nodes.

Finally, we demonstrated that changes in inputs do affect the analytical de-anonymization
outputs, and that applying UQ to cyber experimentation can produce greater insights and
higher confidence in analytical results.
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APPENDIX A. EXPERIMENTAL DESIGN TERMINOLOGY

In this section, we present definitions for experimental design that can support cyber
experimentation on emulation platforms. We draw on the history of experimentation on
computational simulations with the goal of providing guidance on how one specifies the
parameters to be investigated, how one generates the sample set, and how one analyzes the results.

Currently the state of the art is to either do a “hero” calculation on a cyber testbed with an
experiment that is run once or just a few times, or to perform a “grid” study where the parameter
settings are discretized, and each combination of parameter settings is run. This latter can be
computationally expensive due to the curse of dimensionality and thus methods requiring one to
run only a subset of the complete enumeration of the parameter space are necessary. We discuss
grid studies (e.g., full factorial designs) but also suggest other options in instances where the
number of runs is much less than the number of parameter combinations that is possible. This
reduces computational cost at the expense of understanding interaction effects between variables.
Finally, some cyber experiments are run multiple times at the same settings (sometimes called
replications or iterations) to understand the stochastic behavior of the system. The optimal number
of replications is also a topic of interest, and this is a topic little discussed in the cyber
experimentation community although there is some recent work demonstrating number of samples
required to achieve a particular confidence interval for the mean or median of a set of runs [26].

AA1. Experimental Design

This is an overloaded term. It can be used to refer to how one selects input parameter settings for
one experiment (e.g., which virtual environment to use, how many virtual machines, what
protocols to run, etc.) The one experiment may involve multiple replications where the experiment
is run multiple times at the same settings of the governing parameters.

However, Experimental Design is typically used to refer to the broader problem of selecting a set
or suite of experimental parameter settings at which one will run the cyber experimental model
(e.g., various choices of number of cores per machine, protocols and environment settings, packet
size of traffic, bandwidth of links, etc.) This process of generating an ensemble of runs is also
called Design of Experiments (DoE). The parameter values for each run should be carefully
chosen to extract as much trend data from a parameter space as possible using a limited number of
sample points. Additionally, each run may involve replicates if the emulation model is stochastic
and exhibits random behavior upon repeated iterations of the same model settings. The ensemble
of runs is used to perform sensitivity analysis and uncertainty quantification studies. For example,
one might want to know which variables contribute the most to packet response time or determine
the distribution of quantities of interest such as network latency, bandwidth, and memory.

A.2. Optimal Experimental Design

The selection of input parameters for design of experiments may be done in many ways. There
are several criteria one can choose to optimize when selecting a design. For example, Monte Carlo
sampling over the parameter domain generally tries to select points with good “space filling”
properties. There are several “alphabet-optimal” designs such as A-optimal, B-optimal, D-
optimal, G-optimal, and I-optimal. These designs all involve optimizing some property of the run
matrix.
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Let us denote the run matrix, X, to be of size n x p, where the n rows represent n runs, each with p
parameter values. The information matrix is denoted by the inverse of the variance matrix, or
[XTX]~1. An A-optimal design minimizes the trace of the inverse of the information matrix which
results in minimizing the average variance of the estimates of regression coefficients built on the
dataset X. A D-optimal design minimizes the determinant of the information matrix which results
in maximizing the information content of the parameter values (this is also has the effect of good
“space filling” properties). A G-optimal design minimizes the maximum variance of the predicted
values from a regression fit built on the dataset X, etc. [40]

The above designs are fixed designs that seek to optimize a particular property. There are also
adaptive designs in which an initial experiment is run and then an optimization procedure identifies
the “next best” experiment to run to optimize some objective. Typically, the objective involves
improving the parameters of the model and “gaining the most information” possible. For example,
Bayesian optimal experimental design has become popular, with the goal of determining
experiments which most inform the posterior distribution inferred on model parameter values. [40]

A.3. Uncertainty Quantification

Uncertainty Quantification (UQ) is the process of characterizing all uncertainties that could affect
the results of the cyber experimental runs. Once the uncertainties are identified and characterized
as “input uncertainties”, they are propagated (e.g., mapped) through the experiment to obtain
uncertainties on the results (“output uncertainties”).

UQ is a closely related activity to V&V and essential for verifying and validating computational
models. The goal of UQ is to propagate input distribution uncertainty through the model to
generate distributions on the model responses. This can then be used to understand the mean and
variance of the output, calculate the probability that the response is less than or greater than a
particular threshold value, etc. UQ, along with V&V, enables modelers and analysts to make
statements about the degree of confidence they have in their simulation or emulation-based
predictions. Uncertainty quantification has been a fundamental capability supporting nuclear
reactor safety studies, performance assessment of repositories for the disposal of nuclear waste,
computational fluid dynamics for aircraft design, and climate model predictions [7-33]. We
anticipate more widespread use of UQ in the cyber emulation community to address questions
about the performance and confidence in mitigation strategies for network attacks, for example.
However, emulated cyber environments are different from physics simulation models used in
many risk assessments of engineered systems. We need to understand how typical UQ methods
work in the presence of stochastic network behavior, and how to use UQ methods to identify “edge
case” behavior where software, hardware, network topology, and vulnerabilities interact in
unforeseen ways.

AA4. Sensitivity Analysis

Sensitivity analysis (SA) is the process of identifying the most significant factors or variables
affecting the uncertainty of the Emulytics model predictions [38,39]. This can help identify where
to most effectively place cyber threat mitigations or invest in resources. SA can be used to identify
model inputs in which a reduction of uncertainty would most reduce the uncertainty of the model
output, or to identify model inputs that could be fixed to simplify the calculation, or to identify
general trends between inputs and outputs. SA can be performed using local or global methods.
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A.5. Verification and Validation (V&V)

Over the past few decades, the computational simulation community has developed a strong
emphasis on Verification and Validation activities to build credibility in scientific computing. A
study by the National Research Council at the National Academies issued a report outlining the
mathematical and statistical foundations of V&V and UQ as primary activities supporting the
reliability of computational models [33]. A number of professional societies have developed
guidelines and standards for V&V activities [1,2]. We take as definitions those outlined in [34]:

* Verification is the process of assessing software correctness and numerical accuracy of the
solution to a given mathematical model.

* Validation is the process of assessing the physical accuracy of a mathematical model based on
comparisons between computational results and experimental data.

Verification provides evidence that the model and the equations are correctly solved. In
computational simulations, it deals with the adequacy of the numerical algorithms to provide
accurate numerical solutions to the discretized partial differential equations. In cyber
experimentation, it can refer to how accurately the virtualized software and hardware components
represent their physical counterparts. Validation addresses a different question: the degree to
which a model is an accurate representation of the real world from the perspective of the intended
uses of the model. Validation provides evidence that the cyber experiment is appropriate for the
problem of interest. Validation typically involves measuring agreement between the experimental
outcomes and “gold standard” outcomes from appropriately designed validation experiments
running on actual networks or physical testbeds with no emulation. The extent to which validation
can be performed on cyber experiment models and how to do it is an open research question [24].

A.6. Parameter Study

Typically, a parameter study means the same thing as an experimental design: it specifies a
number of runs which involve varying the allowable levels of the parameters in a structured way.

A.7. Factorial Design

A factorial design is an experimental design that samples the full combination of all parameters.
Thus, if there were 3 parameters and each had 5 allowable values or levels, a full factorial design
would involve 5*5*5 = 125 runs. A fractional factorial design only involves a subset of the full
factorial. The subset is typically chosen to best estimate the main effects of the parameter
values.[16] There is a rich statistical literature based on orthogonal arrays that involves
determining fractional designs. The approaches typically involve substantial computation, rely on
libraries of pre-generated orthogonal arrays, and are mainly valid for combinations of variables
only with two or three levels.

A.8. Replicates

A replicate refers to running the same set of experimental settings multiple times to see how the
response varies within that setting. A replicate can also be called an iterate. The idea of replicates
comes from the early experimental design literature. A common example is that of crop yields,
where the parameter of interesting might be the application of fertilizer. A “replicate” would be
one of several plots to which fertilizer was applied or one of several plots to which it was not
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applied. Replication is needed when there can be significant variation within a treatment or
combination of parameter settings.

A.9. Surrogates

Experimental design and UQ can both require huge numbers of model evaluations to generate
accurate statistics or to perform sensitivity analysis. For this reason, the computational science
community has embraced the notion of “surrogate models”, also called emulators, meta-models,
or response surface approximations. Surrogate models are used in computational models for
physics and engineering applications to replace the “full physics code runs” which involve the
solution of partial differential equations over very large (e.g., > 1M elements) meshes. In the past
two decades, surrogate modeling for computational science problems has become an active
research field.[44] Some of the most common surrogate models involve regression [42], Gaussian
processes [35,37], and polynomial chaos expansions [15,49].

Cyber testbeds themselves may be considered surrogates for real-world environments. However,
it is also possible to think of surrogates or lower-fidelity models for cyber virtualized experiments
or emulations. For example, such surrogates could be regression models or other statistical data-
fit models such as Gaussian processes. But surrogates for cyber experiments might also involve
discrete event simulators such as the NS3 network traffic simulator. Finally, surrogates for cyber
experiments might involve analytic formulas. One use of surrogates for cyber experiments is for
“multi-fidelity” UQ. In this approach to UQ, a low-fidelity model is run thousands of times, where
a high-fidelity model may be run a few times. The results are combined to produce a high-fidelity
estimate which has the benefit of low variance from the large number of low-fidelity runs and
improved accuracy from the high-fidelity runs which reduce bias in the estimate [14, 13].

A.10. UQ vs. Experimental Design

Note that there can be a subtle difference in how one treats the results of an experimental design
study and a UQ study. Typically, uncertainty quantification requires the user to specify probability
distributions on the input parameters (e.g., normal, Weibull, exponential, etc.). Then, samples are
taken according to the probability distributions and the model is run at those settings to produce a
distribution on results. Thus, uncertainty quantification focuses on mapping input distributions to
output distributions: the goal is understanding the probability distribution of the output and
associated statistics such as mean, variance, and percentiles of the output.  Historically,
experimental design methods do not require distributions. They are more focused on the influence
of the input settings (often taken to be binary or discrete levels). Thus, the goal of experimental
design is to say something like “the application of fertilizer results in a mean crop yield that is
statistically significantly higher than without the fertilizer.” Parameter studies, factorial studies,
and parameter sweeps over levels of an input parameter typically are not focused on “distribution
of inputs to distribution of outputs mapping” but instead on “what is the difference in response
under various experimental settings?” or “what is the trend in the response as we increase the value
of an input parameter?”

A confusing aspect of the distinction outlined above is that Monte Carlo sampling may be used for
both UQ and experimental design. That is, often Monte Carlo methods are used to generate
realizations of input parameters for UQ. However, Monte Carlo methods may be used to generate
a small number of samples from a high dimensional space when a full factorial design or complete
enumeration is too expensive. In the latter case, one does not necessarily impose a distribution
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structure on the outputs. It is acceptable to use Monte Carlo methods for both UQ and
experimental design studies, but the analyst should carefully state what assumptions are being
made on the input distributions or levels of parameter values.

A1, DoE for Physical vs. Computational Experiments

Statisticians classify DoE approaches into two different areas: classical Design of Experiment
methods and the more modern design and analysis of computer experiments (DACE) methods.
Classical DoE techniques arose from technical disciplines that assumed some randomness and
non-repeatability in field experiments (e.g., agricultural yield, experimental chemistry). DoE
approaches such as central composite design, Box-Behnken design, and structured factorial
designs have approaches to generate and handle replicate runs. These designs also put sample
points at the extremes of the parameter space, since such designs offer more reliable trend
extraction in the presence of non-repeatability.

DACE methods are distinguished from DoE methods in that the non-repeatability component is
omitted for computer simulations which are deterministic (e.g., one set of input parameters always
results in the same output. This is usually the case for the partial differential equations models
used to solve physical problems). Thus, for DACE experiments, there are no replicates. In these
cases, space-filling designs and Latin hypercube sampling are more commonly employed to
accurately extract trend information. Quasi-Monte Carlo sampling techniques which are
constructed to fill the unit hypercube with good uniformity of coverage are also used for DACE.
Space filling designs are also employed when constructing surrogate models, and much of the
early DACE work centered around sampling to construct Gaussian process models [35,37]. Note
that cyber experimentation involves aspects of both DoE (e.g., possible randomness and non-
repeatability from stochastic network traffic, delays, timings, etc.) and DACE (large numbers of
simulation parameters, need for good space filling designs).

In this report, we used simple experimental designs, mainly parameter studies, because of the large
cost of the I2P Firewheel runs. We did perform replicate studies (repeating the experiment two
more times) early in the project. This helped verify the repeatability of network configurations
(topology, global and local settings, etc.), the repeatability of results (mean CHR), and allowed us
to determine experiment run times (typically, we saw that response metrics were stable enough to
be sampled on a daily basis but we ran the experiments for 3-5 days to ensure we had stable mean
CHR results. Also note that each experiment itself involves a significant amount of random
behavior across all the nodes that are tracked. By taking averages of activity within a node and
across nodes, we account for the stochasticity of the experiments. Further discussion of particular
experimental aspects and challenges is discussed in Section 8.3.
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