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ABSTRACT

The SIERR A Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of the
ASC fire environment simulation project. The fire environment simulation project is directed at
characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the
turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and
absorption coefficient model portion of the simulation software. Using MPMD coupling, Scefire and
Nalu handle the participating-media thermal radiation mechanics. This project is an integral part of the
SIERR A multi-mechanics software development project. Fuego depends heavily upon the core
architecture developments provided by SIERR A for massively parallel computing, solution adaptivity,
and mechanics coupling on unstructured grids.
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NOMENCLATURE

Einstein notation is used extensively throughout this report to imply summation over repeated indices,
primarily for multiple directions in integral equations. Indices are also used to denote chemical species
in a gas mixture. When dealing with notation for chemical species, Einstein notation is not implied.

When summation over chemical species is required, we will use a summation operator.

ENGLISH CHARACTER SYMBOLS

D

o~
.

CIECIECENS

>

Ji,g

g

& & X

mixture speciﬁc heat at constant pressure
mass diffusion coefficient
mixture-averaged mass diffusion coefficient for species ¢
mass diffusion coefficient between species 7 and j in a mixture
law of the wall parameter, turbulence model

mass fraction of "excess” carbon in a given species (over what may for CO2 from the available
oxygen in the species)

scalar radiative flux
magnitude of the gravity vector
component of the gravity vector in the ; direction
mixture enthalpy
fuel pool depth
mass diffusion flux vector for species ¢ in the x; direction
fuel heat of vaporization
number of chemical species in a mixture
mixture thermal conductivity
turbulent kinetic energy
length scale
integral scale with respect to turbulence

3



= =z 3 °

3

uj

B e o= o= 8

e

characteristic length scale of the products
mass flow rate
mass
concentration of soot particles per volume
concentration of radical nuclei per volume
unit normal vector component in the z; direction
pressure
thermodynamic pressure
heat flux vector component in the x; direction
soot/radical-nuclei particle production/consumption rate per volume in a cell
universal gas constant
species mass production/consumption rate per unit volume in cell
position vector
unit direction vector for radiation transport
ratio of air mass fraction to fuel mass fraction
source term for scalar variable ¢
time
temperature
velocity component in the ; direction
velocity component in the 2-direction
friction velocity, turbulence model
velocity parallel to the wall, turbulence model
dimensionless velocity, turbulence model
velocity component in the y-direction
volume of the computation cell (control volume)
velocity component in the z-direction
mixture molecular weight
Cartesian coordinate direction
mole fraction of species s

mass fraction of species s
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Y dimensionless distance from wall, turbulence model

GREEK CHARACTER SYMBOLS

absorptivity
concentration of radical nuclei per mixture mass
& mole fraction of carbon available to produce soot

X  weighting function for the reacting portion of the fine structure

A scalar difference

dij identity matrix

€ total normal emissivity

€ dissipation of turbulent kinetic energy

&  spherical direction angle for radiation transport
¢ generic scalar quantity

o equivalence ratio

~v  volume fraction of turbulent fine structures
v coefficient of surface tension

i Kolmogorov dissipative turbulent length scale
K emittance

x  thermal conductivity

K von Karman constant, turbulence model

A Taylor turbulent length scale

o viscosity

v kinematic viscosity

p  mixture density

p  reflectivity

o Stefan-Boltzmann constant

Oij deviatoric plus pressure stress tensor
T characteristic time scale

T transmissivity
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T;j  viscous stress tensor
v Kolmogorov dissipative turbulent velocity scale

¢ stoichiometric coeflicient

SUPERSCRIPT CHARACTER SYMBOLS

n iteration or time step number

r indicial notation for reaction number
fluctuating quantity with respect to time average
" fluctuating quantity with respect to Favre average
normalize by stoichiometric values

time rate of change of a variable

Favre-averaged quantity

* value for the turbulent fine structure in a cell

o value for the surrounding structure in a cell

time-averaged quantity

SUBSCRIPT CHARACTER SYMBOLS

air property associated with air

az azimuthal angle

cell property associated with a control volume

co stoichiometric reaction with CO and Hz products
co2 stoichiometric reaction with CO2 and H20 products, also a property associated with CO2
D property associated with diluents

flame  property associated with flame zone

fuel  property associated with fuel

g  indicial notation for gas-phase chemical species

h2o property associated with H20

i indicial notation for component of a vector or tensor
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inc  incident quantity

J indicial notation for component of a vector or tensor
k  indicial notation for chemical species

min minimum limiting value

MiX  mixture property

n number of hydrogen atoms in the fuel molecule
n2 property associated with N2

OXY  property associated with Oz

P  number of nitrogen atoms in the fuel molecule
prod property associated with products

d  number of oxygen atoms in the fuel molecule

rad  property associated with radiation

reac  associated with a specific chemical reaction (??)
res fine structure residence

soot  property associated with soot

stoich  stoichiometric composition

surr  property associated with the surroundings

t turbulent quantity

w  wall value

Zn zenith angle

DIMENSIONLESS GROUPS

Pr Prandtl number, the ratio of viscous and thermal diffusivities
Re Reynolds number, the ratio of inertial and viscous forces

Sc Schmidt number, the ratio of viscous and mass diffusivities
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1. INTRODUCTION

The SIERR A Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of the
ASC fire environment simulation project. The fire environment simulation project is directed at
characterizing both open large-scale pool fires and building enclosure fires. Fuego represents the
turbulent, buoyantly-driven incompressible flow, heat transfer, mass transfer, combustion, soot, and
absorption coefficient model portion of the simulation software. Using MPMD coupling, Scefire and
Nalu handle the participating-media thermal radiation mechanics. This project is an integral part of the
SIERR A multi-mechanics software development project. Fuego depends heavily upon the core
architecture developments provided by SIERR A for massively parallel computing, solution adaptivity,
and mechanics coupling on unstructured grids.

1.1. ABNORMAL THERMAL ENVIRONMENTS

Fuego is part of a suite of numerical simulation tools used to address abnormal thermal environments
for nuclear weapon systems [1]. From manufacture to disassembly, a weapon will see three types of
environments: normal, hostile, and abnormal. Abnormal environments result from natural
phenomena, such as fires, floods, tornadoes, earthquakes, lightning strikes, meteor strikes, etc., and
human phenomena, generally classified as “accidents”. In general, these phenomena can present
thermal, mechanical, and electrical hazards to a weapon system. Nuclear weapon systems must respond
to these abnormal environments in a deterministically safe manner.

Fire phenomena in the context of the abnormal thermal environment weapons response issue is part of
a three stage process leading from an accident to the system response. For certain scenarios, these stages

are uncoupled and may be sequential in time; in others, the stages are tightly coupled and concurrent in
time.

The first stage is the initial accident or environmental scenario that is defined typically through
probeabilistic studies such as historic data involving accident frequencies of a given type, ignition
probeabilities, etc. These are used to define scenarios for deterministic simulation tools that determine
the state of integrity of the weapon system and the distribution of fuel. The weapon integrity is
determined by the mechanical, transient-dynamic environment it sees during an accident. For accident
scenario description, Fuego is intended to handle the distribution of liquid fuels, although initial
implementation will be somewhat limited due to the very broad possibilities (e.g., fuel pools, spills,
sprays, porous flows) and complexity involved in two-phase flow.

The second stage is the actual buoyant, turbulent, reacting, flow that is the source of the thermal hazard
for the weapon system. Fuego and MPMD-coupled Nalu/Scefire are the primary tools that describe the
fire phenomenology that links an accident description to thermal radiation and convection on a weapon
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system. Fire involves a very complex, coupled set of physical phenomena over a very broad range of time
and length scales. The key features are the turbulent, buoyant flows involving combustion of the fuel
and air, and the formation of soot which results in participating media radiation (Nalu/Scefire), and a
range of convection heat transfer conditions from free to forced convection (Fuego).

The third stage is the weapon thermal response. As with the fire itself, the response of the warhead to a
fire is described by very complex, coupled set of physical phenomena. Simulation will require the
coupling of several, separate effects codes for a complete description. Heat from the fire is conducted
into the weapon and transmitted by surface-surface radiation. Materials such as foams decompose and
result in pressurization. Conduction across engineered joints is pressure dependent as is the
decomposition process. Materials such as aluminum can potentially melt and relocate. Energetic
materials can decompose and react. Within this environment the engineered fail-safes in the weapon
electrical system must operate with high reliability to ensure nuclear safety.

Because of the number of physical phenomena involved from the accident scenario to the weapon
response for abnormal thermal environments, and the very disparate time and length scales over which
these phenomena occur, it is necessary to have high-performance, massively-parallel, computers to even
consider addressing a problem of this scale and complexity. Further, the key to integrating this suite of
tools is flexibility of coupling and a common database architecture. Thus it is intended that all the
simulation requirements identified above will ride on a common software architecture (SIERR A) with
broad coupling flexibilities.

The principal value of the suite of numerical simulation tools is not the description of the accident to
response process, but the ability to evaluate prevention and mitigation design strategies. Preventative
strategies are primarily applied via administrative controls. Examples include design and maintenance to
minimize fuel levels, separation of fuels from air and ignition sources, and/or weapons separate from the
combination. Mitigation strategies include suppression (either manually through fire-fighters or by
automated fire suppression equipment), design of thermally activated fail-safes, and containment
design. In general, multiple barriers exist between fire and health consequences to the general public for
nuclear weapons.

1.2. DELIVERABLES

The requirements for Fuego Version 1.0 are described in the Strategic Plan [2] and are summarized as
follows:

* Customer Applications
— Weapons Designers
* Weapons Designers (all phases)
* Weapons Safety Certification
— Facilities Safety
* Prevention Strategies Design/Assessment
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* Mitigation Strategies Design/Assessment
— Nuclear Safety
* Weapons Safety Assessments
* Abnormal Thermal Environments Scenario Assessment
* Scenarios

— All credible accident scenarios involving fire that can occur from creation to disassembly of
any of our nuclear weapon systems.

* Priority Scenarios
— open hydrocarbon pool fire without wind
— open hydrocarbon pool fire with wind
— facility/enclosure with a hydrocarbon fuel fire
* Required Output: Radiative and Convective Heat Flux
— Resolution requirements
* length scale: O(0.1m)
* time scale: O(10 s)
— Uncertainty requirements
* uncertainty estimates are a required part of an analysis
* range from qualitative analysis to “as low as achievable"
* tolerance: early phase design > late phase design > certification
* Math Model Requirements
— Grid-Resolved Models: All Favre-averaged (RANYS)
* mass conservation, variable density
* species conservation (7 gas equations, 2 soot equations)
* momentum conservation (3 equations)
* energy conservation (low Mach number approximation)
* participating media radiation (number of equations ?)
* turbulence model (2 equations)
— Sub-Grid Models
* wall functions for momentum and heat transfer
* sub-grid turbulent mixing for combustion, soot, and radiation (EDC)
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* combustion chemistry and thermochemistry (EDC)
* soot and precursor formation (EDC)
— Material Models
* radiative emission/absorption properties
* transport properties for momentum, energy, and species
* ideal gas law and thermally perfect thermodynamic properties
— Fuel Sources
* liquid hydrocarbon pools
* Computational Requirements
— Compatibility with SIERR A Frameworks

* coupled-mechanics (turbulent combustion, participating media radiation, heat
conduction)

* massively parallel

* distributed memory

* unstructured grid, O(10%) elements
— Numerical Methods and Solvers

* proven technology — guaranteed convergence (first-order accurate methods, time and
space)

* 3D, control volume, finite element method (CVFEM)
* transient (but only for time scales long relative to turbulent fluctuation time scales)
* flexible coupling between math models (linearization and segregation)
* Problem Solving Environment Requirements
— Preprocessing for large data sets
— Diagnostics/Postprocessing for large data sets
* sensitivity coefficients
* virtual measurement comparison; i.e., thermocouple
— Version control
* Verification Requirements
— Guidelines
— Truncation error analysis for all operators
— Regression testing during development
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— Unit testing for major program elements

— Verification testing to establish correct implementation
* Certification Requirements

— Analyst training program

— Review and approval process

* Documentation Requirements

Implementation Plans for development

Theory Manual
* math models
* numerical methods

* solution strategies

User Manual (input syntax and definitions)

Verification Suite

* Truncation error
* Regression tests
* Unit tests
* Verification tests
The following definitions describe the release schedule:
* Fuego o — math models are in place and a fire problem is demonstrated by the development team

* Fuego 3 - code verification is sufficiently complete that the code can be released to a small group
of “friendly” users; i.c., analysts working on simulation validation

* Fuego 1.0.0 — code is released with documentation and defect tracking

1.3. DOCUMENT ORGANIZATION

This document contains theory and implementation details for the Fuego code. A discussion of the
physical models and governing transport equations (math models) is given in Chapter 2. A discussion of
the numerical methods that we use to solve the governing transport equations is given in Chapter s.
Implementation details regarding the SIERR A Frameworks are described in Chapter 6. Future math
model improvements are discussed in the appendices.

The Einstein notation of repeated indices is used extensively throughout this document. The only
exception is for equations involving chemical species where an explicit summation operator is used to
imply summation over all chemical species.

23



2. MATH MODELS

Fire simulation requires the solution of variable property, high Grashof number, turbulent, low Mach
number flow including the effects of species and soot transport, radiation, and buoyancy. Figure 2.0-1
shows the relation and interconnectivity of the math models as a function of physical conservation law
and length scale. Conservation laws include mass of the mixture, momentum, mass of the individual
species, and energy. Length scales vary from molecular to convection dominated. For purposes of
discussion, length scales are also categorized by the method of resolution.

The transport equations used to describe fire physics are based on two sets of approximations to the
fundamental equations of fluid dynamics. Fast acoustic time scales are removed from the equations
using low Mach number asymptotics, described in Section 2.1. Turbulent transport at high Grashof
numbers is modeled using a Reynolds averaging approach, described in Section 2..4.1.

In what follows, we note that unless specifically stated otherwise all units in the equations and
submodel expressions are cgs. For a more extensive treatment of units and unit conversions in Fuego,
please see the “Units and Unit Conversions” section in the User’s Manual. The numerical methods we
use to solve the transport equations are of the finite volume class. Therefore, we generally write the
transport equations in the integral form.

2.1. LOW MACH NUMBER EQUATIONS

The low Mach number equations are a subset of the full compressible Navier-Stokes (and continuity
and energy) equations, admitting large variations in gas density while remaining acoustically
incompressible. The low Mach number equations are preferred over the full compressible equations for
our problems of interest. We avoid resolving fast-moving acoustic signals which have no bearing on the
transport processes. Derivations of the low Mach number equations are found in Rehm and Baum [3],
Paolucci [4], Majda and Sethian [s], and Merkle and Choi [6]. The equations are derived from the
compressible equations using a perturbation expansion in terms of the lower limit of the Mach number
squared; hence the name. The asymptotic expansion leads to a splitting of pressure into a spatially
constant thermodynamic pressure and a locally varying dynamic pressure. The dynamic pressure is
decoupled from the thermodynamic state and cannot propagate acoustic waves. The thermodynamic
pressure is used in the equation of state and to determine thermophysical properties. The
thermodynamic pressure can vary in time and can be calculated using a global energy balance.
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Figure 2.0-1.. Fire Math Model Coupling in Fuego

2.1.1. Asymptotic Expansion
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The asymptotic expansion for the low Mach number equations begins with the full compressible
equations in Cartesian coordinates. The equations are the minimum set required to propagate acoustic
waves. The equations are written in divergence form using Einstein notation (summation over repeated

indices):
Op  Opu;
ZF - 0
ot o, ’
apuz Gpu]ul oP B 8’7’1']'
ot " Tox, Tom  om, P9
OpE  Opu;H — dq; Oy
of " Tox, ow  om, MY

(2.1)
(2.2)
(23)

The primitive variables are the velocity components, w;, the pressure, P, and the temperature 7'. The
viscous shear stress tensor is 7;;, the heat conduction is ¢;, the total enthalpy is H, the total internal
energy is I, the density is p, and the gravity vector is g;. The total internal energy and total enthalpy
contain the kinetic energy contributions. The equations are closed using the following models and
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definitions:

1% ( + ) - gua—xk@j,

R
P = p=T
pW Y
E = H-P/p,
H = h+ §ukuk,
Ty = a.fL'j axl
aT

(27)

(2.8)

The mean molecular weight of the gas is W, the molecular viscosity is /1, and the thermal conductivity is
k. A Newtonian fluid is assumed along with the Stokes hypothesis for the stress tensor.

The equations are scaled so that the variables are all of order one. The velocities, lengths, and times are
nondimensionalized by a characteristic velocity, Us, and a length scale, L. The pressure, density, and

temperature are nondimensionalized by Py, poo, and T. The enthalpy and energy are

nondimensionalized by C), oo T. Dimensionless variables are noted by overbars. The dimensionless

equations are:

op  Opuy
ot T o, —
opu; — Opui; 1 9P  10m; 1 _
gt oz, | Ma&dm  Reor; )
oph  Opush 1105 y-10P
ot 0z, PrRe 0z; v o Ot
v —1Ma? ou;my; __v—1 Ma?
+ — pl;———
v Re 0z v Fr;
91 a2<8ﬁﬂkﬂk Opuj gy,
2 ot oz,

The groupings of characteristic scaling terms are:

Re

Pr

FI'Z'

Ma

PooUso L
floo

C’p,oo,uoo
koo

2

Uso

gL’

uZ,
YRToo /W’

where 7 is the ratio of specific heats.
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Reynolds number,
Prandtl number,

Froude number,

Mach number,

gz#ou

)

(2.9)

(2.10)

(2.11)

(2.12)
(2.13)

(2.14)

(2.15)



For small Mach numbers, Ma < 1, the kinetic energy, viscous work, and gravity work terms can be
neglected in the energy equation since those terms are scaled by the square of the Mach number. The
inverse of Mach number squared remains in the momentum equations, suggesting singular behavior. In
order to explore the singularity, the pressure, velocity and temperature are expanded as asymptotic series
in terms of the parameter €:

]3 = P0+P16+P262... (2..16)
U; = ﬂi,O + ﬂz"lé + ﬂi’262 . (2.17)
T = TO + T1€ + T2€2 Ce (2.18)

The zeroeth-order terms are collected together in each of the equations. The form of the continuity
equation stays the same. The gradient of the pressure in the zeroeth-order momentum equations can
become singular since it is divided by the characteristic Mach number squared. In order for the
zeroeth-order momentum equations to remain well-behaved, the spatial variation of the Py term must
be zero. If the magnitude of the expansion parameter is selected to be proportional to the square of the
characteristic Mach number, € = 'yMa2, then the P, term can be included in the zeroeth-order
momentum equation.
1 0P 9 1
yMa?dx; Oz, (’yMaQ

P0+ 62P1+...)—i<P1+6P2+... ) (2,.19)
vMa Ox;
The form of the energy equation remains the same, less the kinetic energy, viscous work and gravity
work terms. The Py term remains in the energy equation as a time derivative. The low Mach number
equations are the zeroeth-order equations in the expansion including the P; term in the momentum
equations. The expansion results in two different types of pressure and they are considered to be split
into a thermodynamic component and a dynamic component. The thermodynamic pressure is
constant in space, but can change in time. The thermodynamic pressure is used in the equation of state.
The dynamic pressure only arises as a gradient term in the momentum equation and acts to enforce
continuity. The unsplit dimensional pressure is

P = Py, +~Ma’P,, (2.20)

where the dynamic pressure, p = P — Py, is related to a pressure coefhicient

_ P-P
P = —chPth. (2.21)
Poolis,
The resulting unscaled low Mach number equations are:
dp  Opu;
or I .
ot " O ’ (2:22)
Opu;  Opuju; ~ Op 07y
o " Tow, Tom T w, TP TP (2.23)
dph  Opush  Jq;  OPy
ot " on, T T om ot (2:24)
where the ideal gas law becomes
P, = /)%T : (2.25)
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The hydrostatic pressure gradient has been subtracted from the momentum equation, assuming an
ambient density of p,. The stress tensor and heat conduction remain the same as in the original
equations.

2.1.2. Variable Thermodynamic Pressure

For a low Mach number set of equations, the time derivative of pressure can only be nonzero in a closed
volume with energy addition or subtraction. Relaxing the low Mach number limit allows a time and
spatially varying pressure to appear in the energy equation (see Section 2.2.3).

2.2. LAMINAR FLOW EQUATIONS

Laminar transport equations are not used for fire problems, but they are important for other classes of
problems such as manufacturing. The low Mach number approximation is assumed (see Section 2..1).

2.2.1. Conservation of Mass

The mass conservation equation of a mixture of gases is given by
0
8_de + /pujnde =0, (2.26)

where u; is the mass average velocity of the mixture [7].

2.2.2. Conservation of Momentum

The conservation of momentum equations are given by

dpu;
ot

dV + /pulujn]dS—l— /PnldS = /leanS—l—/(p— po) gld‘/, (2,2,7)

where the viscous stress tensor is

i 8ui 6uj 2 8uk
T <(7Ij " @xz’) 3 3_%6”' (228

The pressure, P, in the momentum equations deserves a special note as this quantity can represent
either the dynamic, i.e., the second term in the Mach number expansion in the case of the low Mach
number assumption, or the static pressure in the case of formally compressibility. In either case, as
shown above the hydrostatic pressure gradient has been removed which gives rise to the far-field density,
Po» in the buoyancy body force. Optionally, we allow for the following sets of buoyancy models:
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1) a Boussinesq buoyancy approximation where the density difference is approximated as

(b= p) = =22 (T =T.), (229)

2) a standard buoyant model in which case the pressure above does include the hydrostatic pressure and
the buoyancy right-hand-side source term is,

PYi, (2.30)

3) A Boussinesq approximation for a binary mixture in which case the right-hand-side contribution
is:

1 1
MW, MW,

The user is referred to the Fuego user manual for exact line commands for each of these buoyancy

pMW"e < ) Y1 =Y g, (231)

options.

Note that zero pressure is almost always a convenient initial condition for a low Mach fluid flow.
However, in cases without buoyancy, it can be anything, as the value only defines the additive constant
for the pressure solve. However, one must ensure that the value matches for both initial and boundary
condition specifications.

For buoyant flow, specitying zero pressure is convenient in tandem with the “differential” buoyancy
option. This buoyancy term subtracts off the hydrostatic contribution such that the source term is
written as

p(p = pres) (2.32)

One can see that using this term along with a zero pressure initial condition allows one to avoid
specifying initial and boundary conditions as the hydrostatic pressure, i.c., as a function of height.

2.2.3. Conservation of Energy

The conservation of energy equation in terms of enthalpy (including a source term due to radiation
absorption and emission) is

dph dq;

where the energy diffusion flux vector is given by

T &
Q= g+ phiYiiljs. (2.34)
J k=1

and 1 1, is the diffusion velocity of species & in the j direction. This form of the energy equation is
derived by starting with the energy equation and supplemental relationships of internal energy and total
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enthalpy provided in Section 2.1.1. The time term and convection term due to kinetic energy are
expanded using the chain rule and simplified by enforcing the continuity equation. The remaining
kinetic energy terms and gravitational force term are removed by dotting velocity with the momentum
equation (to obtain the mechanical energy equation) and subtracting it from the energy equation. This
procedure provides the full material derivative of pressure and the expanded viscous dissipation term.
The last two terms of Equation 2.33 are only active when formal compressibility (in an acoustic sense)
are important (see the Fuego user manual for the appropriate command lines to activate the low speed
compressible and high speed compressible form in Fuego).

For a low Mach number flow, the time derivative of the pressure appearing above is substituted by the
thermodynamic reference pressure, Py, that can only be nonzero in a closed volume with energy
addition or subtraction. However, the low Mach number approximation mandates that the
thermodynamic pressure is always spatially uniform.

The enthalpy of the mixture, h, is a mass-average of the component enthalpies, iy, given by
K
h=>Y Y. (2.35)
k=1

The energy diffusion flux vector includes a scaled gradient of temperature whereas the independent
field to be solved in Equation 2.33 is enthalpy. The form of the gradient of temperature is derived by
first taking the gradient of Equation 2.35 and using the chain rule,

oh dY,
a § ij by § jhk ’“. (2.36)
T —

Given the thermodynamic definition of specific heat, the above equation is given by,

K

oh 8Yk
k=1
oT 5’Yk
= Cpa—% + Z hk 8:E] . (2.38)
k=
This equation is rearranged,

oT 1 [oh < 0Y;
a—xj = Ep (8_91:] - ghka—x]> ) (2.39)

and substituted into the energy diffusion flux vector to obtain,

k [0h S~ oY, - .
q; = “c (8% kz:; hk%) + ;Phkykuj,k- (2.40)

J

Commonly, the last two terms in the above equation can be canceled when a simple diffusion model is
assumed (see Section 2.2.4, Equation 2.46) in the limit where the ratio of thermal and mass diftusion is
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equal (unity Lewis number, or equivalently speaking the Prandtl number equals the Schmidt number,
ie.,

Le"™ — — = — =1, (2.41)

K
o= p?’ (2.42)
p
C
Pr = %,u = p%. (2.43)
and
Sc = pg - (2-44)

2.2.4. Conservation of Species

The mass conservation equation for species k in a mixture of & gas phase species is

dpY,;
/ gtde—l—/kaujnde: —/pﬁmYkndejL/wde, (2-45)

where wy, is the mass generation rate of species k per unit volume by homogeneous chemical reactions.
We allow several approximations for the diffusion velocity, i; 5, derived in Appendix 7. The simplest
form is Fickian diftusion with the same value of mass diffusivity for all species,

1 0Y;

~

Uik = —

(2.46)

This form is used for the Reynolds-averaged form of the equations for turbulent flow. A more accurate
approximation uses a mixture-averaged diffusion coefficient, Dy, for each species diffusion velocity,

_ 1 0X; _ (18Yk 18W> ( )
= —Dy : 2.47

Ai — D, _ t L

2.2.5. Conservation of Momentum, Axisymmetric with Swirl

Axisymmetric flows, with or without swirl, are described by two-dimensional equations in cylindrical
coordinates. All azimuthal derivatives are zero (i.e., /00 = 0). The axial coordinate is , the radial
coordinate is 7, and the azimuthal coordinate is 6. The radius is retained in the equations and the
purpose will become more clear in the discussion of the discrete integral form. The axial velocity is u,
the radial velocity is v, and the azimuthal velocity is w.
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Axial-Momentum:

dpur
ot

d , p 0
+ 5 (pu’r) + . (puvr) +r =3 (1Ta) + 5= (PTar) + pro. (2.48)

ar

Radial-Momentum:

Jpvr 0 0 9 Op s, O
ot + 8_x (pUU’f’) + E (;OU T) + 7’5 —pw = % (TTrx) + E (TTrr) — Too + PTgr (2'-49)
Azimuthal-Momentum:
dpwr 0 0 0 10 ,,

5 + E (puwr) + 5 (pvwr) + prw = E (r7o.) + ~5 (r Tgr) (2.50)

The viscous stress terms for the cylindrical equations are

[ Ou ou Jv v

Tow = M _2%—— (8:(: E—i_;)] (2.51)
S e (252)
fra = H | 0x  Or =5

_ _2@__ @4_@4_ ( )
T = u_ o I 2.53

v
T
Tog = [ 22 —g( E)} (2.54)
L T

r
0 [w

Trog = MTE <7) (2.55)
ow

T = Mg (2.56)

The azimuthal equation can be simplified by relating the swirl velocity to the angular velocity, w = rw.
The momentum equation, written in terms of the angular velocity, is

apwr_'_g( )_l_é?( )42 _8 Ow +£ Ow ) Ow (2.57)
ot oz T T g R A =g\ " ) Tar \Mar ) T e Y

The production term that is used in the turbulence model is
ou o\ U 2 ou  ow\: 2/0u v v\’
®= 2[(&;) *(5) +(;) +<E+5)_x) 7(%*5*2) - 8

2.2.6. Laminar Flow Boundary Conditions

The laminar flow math models require boundary conditions for velocity, pressure, temperature and
enthalpy variables, and mixture composition.
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2.2.6.1. Inflow

There are three types of inflow boundary conditions. For velocity-specified inflow, Dirichlet conditions
are applied to velocities in the momentum equations, temperature in the energy equation, and mass
fractions in the species equations. The mass flow rate at the boundary is specified for the continuity
equation. The pressure floats to a consistent value. Alternatively, a control volume balance is retained at
the boundary nodes and the convection fluxes are specified.

For pressure-specified inflow, the outflow boundary condition is applied with the added condition that
the flow must enter the domain normal to the mesh boundary. Transport equations are solved for the
momentum, energy and species equations.

2.2.6.2. Outflow

The pressure is specified at integration points on the outflow boundary. The specified pressure is used
in the surface integration procedure for approximation nodal gradients. The pressure gradients are used
to construct an interpolation for the mass flow rate at the boundary. Transport equations are solved for
the momentum, energy and species equations. Upwind extrapolation is used for the scalars if the flow is
leaving the domain. The boundary values of velocity and specified far-field values of scalars are used if
the flow is entering the domain.

2.2.6.3. Wall

It is assumed that there is no mass flow through the wall. The velocity is specified as a Dirichlet
boundary condition in the momentum equations. The temperature is specified as a Dirichlet boundary
condition in the energy if the wall is isothermal. We currently do not support heterogeneous chemical
reactions at a surface, so there should be no boundary condition applied to the mass fractions.

2.2.6.4. Symmetry Plane

There is no mass flow rate through the symmetry plane and there is no transport of scalar variables. The
normal stress (pressure and viscous) at the symmetry plane is applied in the momentum equations.

2.3. RADIATION TRANSPORT EQUATION

For applications involving PMR, both the radiative heat flux and the divergence of the radiative heat
flux are needed. The radiative heat flux vector provides the radiative flux to the boundary of the heat
conduction region. The flux divergence provides one of the principal volumetric heat sources in the
turbulent combustion region for fire applications.
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2.3.1. Boltzmann Transport Equation

The spatial variation of the radiative intensity corresponding to a given direction and at a given
wavelength within a radiatively participating material, /(s), is governed by the Boltzmann transport
equation. In general, the Boltzmann equation represents a balance between absorption, emission,
out-scattering, and in-scattering of radiation at a point. For combustion applications, however, the
steady form of the Boltzmann equation is appropriate since the transient term only becomes important
on nanosecond time scales which is orders of magnitude shorter than the fastest chemical reaction [8].

Experimental data shows that the radiative properties for heavily sooting, fuel-rich hydrocarbon
diffusion flames (10~*% to 1075% soot by volume) are dominated by the soot phase and to a lesser
extent by the gas phase (Modest [9], pg. 425). Since soot emits and absorbs radiation in a relatively
constant spectrum, it is common to ignore wavelength effects when modeling radiative transport in
these environments. Additionally, scattering from soot particles commonly generated by hydrocarbon
flames is several orders of magnitude smaller that the absorption effect and may be neglected [8]. With
these assumptions in mind, the appropriate form of the Boltzmann radiative transport equation for
heavily sooting hydrocarbon diffusion flames is

 paoT?

0
Sia_a:il(s) + o1 (s) p— (2.59)

where 1, is the absorption coefficient, (s) is the intensity along the direction s;, and T is the
temperature.

The flux divergence (on the right hand side of Equation 2.33) may be written as a difference between the
radiative emission and mean incident radiation at a point,

% = lg [40T4 — G] ) (2.60)

where G is the scalar flux. The quantity, G /4, is often referred to as the mean incident intensity [10].

The scalar flux and radiative flux vector represent angular moments of the directional radiative intensity
ata point [9],

2w
G = / / I (5) sin 0.,d6.,db,, (2.61)
0 0

2r  pm
@ = / / I(s) 8;8in0.,db.,d0,., (2.62)
0 0

where 0.,, and 0, are the zenith and azimuthal angles respectively as shown in Figure 2.3-1.

2.3.2. Radiation Intensity Boundary Condition

The radiation intensity must be defined at all portions of the boundary along which s;n; < 0, where n;
is the outward directed unit normal vector at the surface. The intensity is applied as a Dirichlet
condition which must be determined from the surface properties and temperature. The diffuse surface
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Figure 2.3-1.. Ordinate Direction Definition,
s = sin#,, sinf,.i + cosb.,j + sinb., cos 0,k

assumption provides reasonable accuracy for many engineering combustion applications. The intensity
leaving a diffuse surface in all directions is given by

1 ,
4 4 r,inc
I(s) = - (70T + €Ty + (1 —e—71)q;""ny] (2.63)
where € is the total normal emissivity of the surface, 7 is the transmissivity of the surface, T, is the
temperature of the boundary, T, is the environmental temperature and q;’mc is the incident radiation,
or irradiation for direction j. Recall that the relationship given by Kirchhoft’s Law that relates
emissivity, transmissivity and reflectivity, p, is

p+T17+e=1. (2.64)

where it is implied that o = .

2.4. TURBULENCE MODELING OVERVIEW

Turbulent reacting flows involve a very large range of length and time scales, requiring massive
computational resources to directly resolve all of the physical processes for even the most simple
problem. To be able to solve complex problems of interest in a reasonable amount of time, modeling
approximations must be made. A filtered form of the time-dependent Navier-Stokes, energy, and
species mass conservation equations presented in Section 2.2 are used, and closure models are applied to
the new terms that arise due to the filtering operation. Temporal filtering is used in the
Reynolds-Averaged Navier-Stokes (R ANS) method, and spatial filtering is used in the Large Eddy
Simulation (LES) method. The form of the models are dependent on the type of filtering performed,
and will be discussed for both the RANS and LES approaches in the following sections.

Figure 2.0-1 schematically illustrates the interaction between all of the transport equations across the
tull range of length scales. The transport equations are shown in shorthand with the notation T, RA,
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UA, D, S being the transient term, the resolved advection term, the unresolved advection (Reynolds
stresses) term, diffusion term and source term, respectively. Only one transport equation is shown for
each conservation principle, but it is understood that three equations exist for momentum (u,v,w), and
an equation exists for each species being transported (seven in the present model plus two for soot). The
momentum transport equations are strongly interconnected while the species equations are coupled
implicitly through their source terms, thermophysical properties, and conservation of mass of the
mixture.

The length scales in Figure 2.0-1 between the smallest control volume dimension and the largest mesh
dimension are defined as being "resolved", and the transport equations are used to solve the physics in
this range. The effects of the resolved turbulent scales may be modeled for RANS closures or they may
be directly solved for LES closures. Turbulence length scales can extend down many orders of
magnitude beyond the smallest finite volume dimension to the Kolmogorov scales, and these subgrid
scales must be modeled in either closure approach.

The output of the closure models is expressed as a source term in the conservation equations for the
mean flow and as effective properties in the radiative transport equation. Hence, the output of the
closure models can be interpreted as being cell-averaged values for the control volume for the
appropriate time scale. For the RANS formulation used here, the time scale is long relative to the
turbulence time scales (i.e., long time average). For LES, the time scale is the local advection time. For
the current suite of models, the momentum closure model is of the lumped-parameter type; that is, it
assumes homogeneity of the subgrid turbulence. The remaining closures, species and energy, are of the
zone-model type; that is, they assume heterogeneity of the species and energy subgrid. Two zones (one
combusting, one not) are used in the current zone models.

For length scales above the length scale of the mesh, the physics is modified via boundary and initial
conditions. Momentum boundary conditions include specified velocity (wind, and mass sources), or
constant pressure (inflow/outflow). Species boundary conditions include a mass source for the fuel
(pool model). Thermal boundary conditions include flux and temperature conditions. The following

sections provide details of the math models for conservation laws and fire physics models used in
SIERR A/Fuego.

2.4.1. RANS Temporal Filtering

In many typical engineering applications, only time averages of physical quantities are of interest. Often,
details of the turbulent fluctuations are of little concern. RANS formulations address this need by
solving a temporally-filtered form of the transport equations, directly yielding the time-averaged
variables of interest. For this reason, RANS approaches represent a relatively low-cost solution method
at the expense of additional modeling complexity.

An independent variable ¢ can be temporally filtered to obtain its mean ¢ with the mathematical form

(Tennekes and Lumley [11])
1 to+T

o(x) = lim — o(x,t) dt. (2.65)

T—00 T t
o
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The original variable can be represented as the sum of its mean and fluctuating component, ¢ = O+ ¢,
with the properties that ¢ = ¢ and ¢ = 0. This is called the Reynolds decomposition of a variable.

In combustion problems, the overall exothermic process can result in large localized temperature
increases and a correspondingly large density decrease in open systems where the molecular weight
change from reactants to products is small. Allowing for turbulent fluctuations of density, the above
temporal averaging procedure gives rise to additional terms involving time averages of products of
density and other variable (e.g., velocity) fluctuations. An alternative approach to applying the
Reynolds decomposition strictly to all independent variables is to consider a mass-weighted
decomposition known as Favre averaging (Libby and Williams [12], p. 15; Kuo [13], p. 419). This
simplifies all of the transport equations and eases modeling. A Favre-averaged variable ¢ is defined in
terms of Reynolds averages as

b= p—fﬁ. (2.66)
p
A variable can then be decomposed into its Favre-mean and fluctuating component as
d=0¢+¢", (2.67)

where p¢” = 0. Note that ¢ # 0. The relation between time averaged and Favre-averaged quantities

1S I
b=¢ (1 + p:q—y> : (2.68)
po

Favre averaging is used for all turbulent transport equations solved in SIERR A/Fuego.

For the RANS formulation used here, the laminar conservation equations of Section 2.2 are first
temporally filtered, revealing additional terms that can be simplified by substituting the Favre
decomposition, resulting in the Favre-filtered equations that will be presented in Section 2..5. This
procedure results in new terms in the equations that consist of time averages of products of fluctuating
quantities, called Reynolds stresses. These moments must be modeled to close the system of
equations.

The length of the time filter is typically much larger than the time scales of a turbulent flow, meaning
that all time scales from the largest turbulence scale down to the minimum Kolmogorov scale are
represented by these Reynolds stresses. In a strict sense, there can be no time dependence of a mean
(time-averaged) quantity. However, if there are variations in mean quantities that occur on time
intervals long compared to the averaging interval, then the transient terms for the mean quantities may
be justified and required. For this reason, unsteady R ANS simulations are possible with the present
formulation. The available RANS turbulence closure models are discussed in Section 2..6.

2.4.2. LES Spatial Filtering

Unlike the RANS approach which models most or all of the turbulent fluctuations, LES directly solves
for all resolved turbulent length scales and only models the smallest scales below the grid size. In this
way, a majority of the problem-dependent, energy-containing turbulent structure is directly solved in a
model-free fashion. The subgrid scales are closer to being isotropic than the resolved scales, and they
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generally act to dissipate turbulent kinetic energy cascaded down from the larger scales in
momentum-driven turbulent flows. Modeling of these small scales is generally more straightforward
than RANS approaches, and overall solutions are usually more tolerant to LES modeling errors because
the subgrid scales comprise such a small portion of the overall turbulent structure. While LES is
generally accepted to be much more accurate than RANS approaches for complex turbulent flows, it is
also significantly more expensive than equivalent RANS simulations due to the finer grid resolution
required. Additionally, since LES results in a full unsteady solution, the simulation must be run for a
long time to gather any desired time-averaged statistics. The trade-off between accuracy and cost must
be weighed before choosing one method over the other.

The separation of turbulent length scales required for LES is obtained by using a spatial filter rather
than the RANS temporal filter. This filter has the mathematical form

+oo
oz, t) = o(x' 1)G(x' — x)da’, (2.69)

—00

which is a convolution integral over physical space & with the spatially-varying filter function G. The
filter function has the normalization property [ j;o G(z) dz = 1, and it has a characteristic length
scale A so that it filters out turbulent length scales smaller than this size. In the present formulation, a
simple “box filter” is used for the filter function,

1)V : (¢'—x)eV

Gz’ — =) = { 0 otherwise ’ (2.70)

where V' is the volume of control volume V whose central node is located at . This is essentially an
unweighted average over the control volume. The length scale of this filter is approximated by A = Vs,
This is typically called the grid filter, as it filters out scales smaller than the computational grid size.

Similar to the RANS temporal filter, a variable can be represented in terms of its filtered and subgrid
fluctuating components as

p=0+¢ (2.71)
For most forms of the filter function G/(x), repeated applications of the grid filter to a variable do not
yield the same result. In other words, ¢ # ¢ and therefore ¢’ # 0, unlike with the RANS temporal

averages.

As with the RANS formulation, modeling is much simplified in the presence of large density variations
if a Favre-filtered approach is used. A Favre-filtered variable ¢ is defined as

d; P

1R

(2.72)
and a variable can be decomposed in terms of its Favre-filtered and subgrid fluctuating component as

p=0+¢" (2.73)

Again, note that the useful identities for the Favre-filtered RANS variables do not apply, so that 5 + o
and ¢” # 0. The Favre-filtered approach is used for all LES models in SIERR A/Fuego.
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2.5. TURBULENT FLOW EQUATIONS,
FAVRE-AVERAGED

The Favre-averaged turbulent transport equations are derived from the laminar equations of Section 2.2
by passing the equations through either the RANS temporal filter of Equation 2.65 or the LES spatial
filter of Equation 2.69. The mathematical form of the equations are essentially identical between the
two filtering methods, so only a single set of equations will be presented. Care should be taken to
interpret the filters as either temporal or spatial, depending on the closure models selected. While it is
the Favre-averaged form of the equations that are solved, a comparison of the simple Reynolds-averaged
and the Favre-averaged form is given in Appendix B for reference.

The approach most commonly used in turbulence modeling is called the Boussinesq eddy viscosity
approximation, which relates the turbulent stress tensor to the filtered strain rate tensor through a
modeled turbulent eddy viscosity. This general modeling approach has shown remarkable success for a
broad range of problems (Wilcox [14]), and is the approach used in SIERR A/Fuego. A similar
approach is used for scalar transport, where the scalar flux vector is related to scalar gradients through a
modeled diffusion coefficient.

The following subsections describe the turbulent transport equations expressed in terms of a turbulent
eddy viscosity or turbulent diffusion coefficient through the Boussinesq approximation. The treatment
of these coefficients is dependent upon which of the many closure models are selected, and will be
described in Section 2..6.

2.5.1. Conservation of Mass

The integral form of the Favre-filtered continuity equation used for turbulent transport is

/ %dv + / pii;n;dS = 0. (2.74)

This equation is in closed form, and no additional modeling is required.

2.5.2. Conservation of Momentum

The integral form of the Favre-filtered momentum equations used for turbulent transport are

dpu;
/ g;j/ dV—I—/pﬂzﬂjn]dS—l—/pmdS: /Tijnde‘l'/Tuiujnde—F/(p—,00) gldV, (2.75)

where the turbulent stress 7,,,,,; is defined as

Tuguy; = —P(Uslly — Uilly). (2.76)
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2.5.2.1. RANS Modeling

For RANS simulations, 7, represents the Reynolds stress tensor and can be reduced to the form
Tusu; = —pu; u] by substitution of the Favre decomposition u; = 1; + w; of each variable and

simplifying. The deviatoric (trace-free) part of the stress tensor is defined as

D _ 1

Tuiu]- = Tuu; — gTukukéij
9 .
Tusu; T §pk5i]’ (2.77)

where the turbulent kinetic energy is defined as k = 1uju;.. The deviatoric part of the Reynolds stress

tensor is modeled by the Boussinesq approximation which relates the Reynolds stresses to the filtered
strain rate tensor through a modeled turbulent viscosity /1, resulting in

o, ou; 2 0u
D _ i i\ _ 2, YUk
Tui'ui = (3% + 8I1> 3,ut 3xk 513
_ 1 -
= 2 (Sij - ggkkéij) : (2.78)

where the filtered strain rate tensor is defined by

~ 1 /0u; Ou;
S, == d J ) .
J 2 <a.13] + 8@) (2 79)
Substituting this into Equation 2.77 yields the modeled form of the full Reynolds stress tensor
(Kuo [13], p- 445)

1. 2
Tuu; = 24 (Sij — gskkfsij) - gﬁk’@j' (2.80)

The Favre-filtered momentum equations then become

-
ag? dv + / pilsiin;dS + / (p+ gﬁk:) nidS =

~ 1~
/2(,& + ,Ut) (SZJ — gSkk(Sz]> anS + / (ﬁ — po> gde, (2.81)

where RANS closure models for the turbulent viscosity /i, are presented in Section 2..6.

2.5.2.2. LES Modeling

For LES, 7,,,; in Equation 2.75 represents the subgrid stress tensor. The deviatoric part of the subgrid
stress tensor is defined as

1
Tuw; = Tuiu; — 3 Tunun O3
2_
T’LLin + gp(]Q(Sij, (2.82)

40



where the subgrid turbulent kinetic energy is defined as ¢* = %(u/k\ﬁk — Ugy). The deviatoric part of
the subgrid stress tensor is then modeled similar to RANS closures as (Moin, et al. [15])

5 1 -
T£uj = 2,ut (Sz] — gskkdw) . (2..83)
Substituting this into Equation 2.82 yields the modeled form of the full subgrid stress tensor
~ 1~ 2
Tuiu]- = 2/,Lt Sij - gskk(i] — gpq 61] (284)

For low Mach-number flows, a vast majority of the turbulent kinetic energy is contained at resolved
scales (Erlebacher, et al. [16]). For this reason, the subgrid turbulent kinetic energy ¢* will not be
directly treated and will instead be included in the pressure as an additional normal stress. The
Favre-filtered momentum equations then become

85, o 2
PU gy + / pitzii;ndS + / (p+ —qu) n,dS =

ot 3
~ 1~
[ 2t (sij - gskkaij) nds + [ (9= p) gV (2.85)

where LES closure models for the subgrid turbulent eddy viscosity 1i; are presented in Section 2.6.

2.5.3. Conservation of Energy

The integral form of the Favre-filtered energy equation used for turbulent transport is

oph . o
8” dv + / phiin;dS = — / gn;dS — / Thu, ;A5 — / ajf dv

8P aP - Ou;

The simple Fickian diffusion velocity approximation, Equation 2.46, is assumed, so that the mean
diftusive heat flux vector gj is

K
Y,
_ K Z hk—k'. (2.87)

If Sc = Pr, i.e., unity Lewis number (Le = 1), then the diffusive heat flux vector simplifies to

G = — 42 The viscous dissipation term is closed by

Pr 832
Tij% = ((M"’Ht) (a +axj)_3(pk+,uta k)‘%)%
J ? J
8uZ
= 2/¢SU + 241 Skkéz] pk:éw ) (2.88)
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The turbulent diffusive flux vector 7, in Equation 2.86 is defined as

Thu; = P (ﬁ — iLﬂ]> ) (2.89)

For RANS simulations, 75, represents the turbulent energy diffusive flux vector and is simplified to
the form 7,,,, = ph” u ! by substitution of the Favre decomposition of each variable. It is then modeled
by

He oh

Thy, = ph'u"! = —— — 2.90
huj p g Prt axj7 ( 9 )

where Pr, is the turbulent Prandtl number and i, is the modeled turbulent eddy viscosity from
momentum closure. For LES, 73,,,; represents the subgrid turbulent energy diffusive flux vector, and is
modeled in the same way as

He oh

Thy, = —7=— =— 2.91
hu; PI‘t axj> ( 9)

where Pr; is the subgrid turbulent Prandtl number and 1, is the modeled subgrid turbulent eddy
viscosity from momentum closure.

The resulting filtered and modeled turbulent energy equation for both RANS and LES is given in
Libby and Williams [12], p. 25, as

dph B 1 9g;
AV + / phiin;dS = / <ﬁ P—rt) 8%%(15 / 04V (2.92)

oP 9P " ou;

This equation is also given in Gran et al. [17] (without the transient and radiation source terms and the
additional term for laminar transport). The turbulent Prandtl number must have the same value as the
turbulent Schmidt number for species transport to maintain unity Lewis number.

2.5.4. Conservation of Species

The integral form of the Favre-filtered species equation used for turbulent transport is

_Y/ ~ - o
agtde—i-/ﬁYkﬁ]nde: —/Tykujnde—/kaﬁj,knde—i-/wde, (2.93)

where the form of diffusion velocities (see Equation 2.46) assumes the Fickian approximation with a
constant value of diffusion velocity for consistency with the turbulent form of the energy equation,
Equation 2.86.

The turbulent diffusive flux vector 7y, ,,; is defined as

Tou; = P <§71;/% - Vk%‘) : (2.94)
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For RANS simulations, 7y, represents the turbulent species diftusive flux vector and is simplified to
the form 7y,.,; = pYu’ by substitution of the Favre decomposition of each variable. It is then
modeled as ~
_ e 0%y

Sc, Ox;

where Sc; is the turbulent Schmidt number for all species and 11, is the modeled turbulent eddy
viscosity from momentum closure. For LES, TY,u,; TEpresents the subgrid turbulent species diffusive
flux vector, and is modeled identically as

T, = PYyu; = (2.95)

Y,
Ty, = — b 2 (2.96)

_S_Ct aIz’7

where Sc; is the subgrid turbulent Schmidt number for all species and i is the subgrid modeled
turbulent eddy viscosity from momentum closure.

The Favre-filtered and modeled turbulent species transport equation for both RANS and LES then
becomes (Gran et al. [17])

Oﬁffk o~ M 1% a?k o

If transporting both energy and species equations, the laminar Prandtl number must be equal to the
laminar Schmidt number and the turbulent Prandtl number must be equal to the turbulent Schmidt
number to maintain unity Lewis number. Although there is a species conservation equation for each
species in a mixture of K species, only &' — 1 species equations need to be solved since the mass
fractions sum to unity and

Ve=1-— foj (2.98)

2.5.5. Radiation Transport

The Favre-averaged energy equation, Equation 2.93, requires the time-averaged radiative flux divergence.
From Equation 2.60, the time-averaged radiative flux divergence is given by

Jar -
ﬁ = 40_:uaT4 - ;uaG- (2“99)
8:131-

For optically thin turbulent eddies, which is the case for many combustion applications, fluctuations in
the absorption coefficient and the scalar flux are weakly correlated [8] so Equation 2.99 may be

simplified to

aq;

= dop, T4 — [i,G. (2.100)
8567;
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The time averaged scalar flux is obtained from the time averaged Boltzmann radiative transport
equation

0 ~ fao T
8_:132-1(8) +lal (s) = ——,

S (2.101)
where the correlation between the turbulent fluctuations in the absorption coefficient and the intensity
is assumed small to simplify the absorption term.

Both Equation 2.100 and Equation 2.101 include the time averaged emission term, T4, which may
significantly increase the radiative emission from a turbulent flame above what would be estimated from
the mean temperature and absorption coeflicient values. The details of the closure used for this term are
discussed in the turbulent combustion model section.

2.6. TURBULENCE CLOSURE MODELS

The Favre-filtered turbulent flow equations of the previous section have been modeled in terms of fu,
the turbulent eddy viscosity for RANS simulations and the subgrid turbulent eddy viscosity for LES.
Evaluation of this eddy viscosity is dependent upon the closure model selected. All models supported
by SIERR A/Fuego are described below.

2.6.1. Standard k-< RANS Model

The standard k-€ closure model is a two-equation type of model, where transport equations for the
turbulent kinetic energy and the turbulent dissipation rate are solved to obtain length-scale and
time-scale estimates for the local turbulence field, to be used for modeling the turbulent eddy viscosity
1¢. The turbulent kinetic energy, k, and the dissipation rate of turbulent kinetic energy, €, are given by
(Granetal. [17]

Opk ok
/ IPE v + / phindS = [ 250 a8 + / (P, — pe) dV (2.102)
O 833]
Ope . I Oe € _
T —dV + [ peu;n;dS = p 8:76] n;dS + z (Ca P, — Ceape)dV, (2.103)
respectively, where the turbulence production rate, Py, is defined as
Py, = —pufu gz; (2.104)

and is modeled using the same Boussinesq approximation as in Equation 2.80,

P ou; n ou; \ 0u, B 2 o+ oty \ Oty
BT 0x; oz ) 0x; 3\ Moy, ) 0,
ou;
= |:2/~Lt (Sij - gskk:(sz‘j> Pk%} 9%, (2.105)
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The turbulent eddy viscosity is then given by the Prandtl-Kolmogorov relationship,

e = C,pkt. (2.106)
where 7 = min(£, dt ;). The filter time, dt ; is provided by the temporally filtered Navier Stokes model
(Tieszen et al. [18]). The parameters Ce1, Cea, 0%, and o are adjustable constants.

Frequently, although not formally justified in high Reynolds flows, the diffusion coefficient for the
turbulent kinetic energy and turbulence dissipation, Equations 2.102 and 2.103, may include the

molecular viscosity. This option is supported within Fuego by entering the following command line in
the Fuego region block, include molecular viscosity in k-e diffusion term.

2.6.2. Low Reynolds Number k-c RANS Model

In the case of the low Reynolds number turbulent flows, the standard k-€ transport equations can be
modified to contain additional damping functions to improve their accuracy. The low Reynolds
number model of Launder and Sharma [19] are used here, which modify the turbulent kinetic energy
equation, Equation 2.102, to includes an additional right-hand-side source term

ok \
Sir = 2y (—) (2.107)
0;1:j
and the dissipation rate equation to include the non-isotropic dissipation source term
9%; >
St — —opT ! . 2.108
€ al’k an ( )

The constants in the dissipation rate equation are modified by damping coefhicients, C¢, = f1C, and
Ce, = Ce, f2, where fiisunityand fo =1 — 0.3¢ B,

The eddy viscosity is then given by
pe = Cupfukr. (2.109)

Wall functions for momentum and turbulence quantities are not used with this model.

2.6.3. RNG k-c RANS Model

The RNG £-¢ model was derived using a rigorous statistical decomposition of the velocity field called
renormalization group (RNG) theory. This model has several significant benefits over the standard k-¢
model, including improved accuracy for rapidly strained flows, swirling flows, and low Reynolds
number flows, without additional modifications. Additionally, values for the model constants are
derived analytically rather than being evaluated empirically. Papageorgakis and Assanis [20] describe the
version of the RNG k-e model as implemented here.
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The same turbulent kinetic energy equation as in the standard k-e model, Equation 2.102, is used for the
RNG k-€ equation. The turbulent kinetic energy dissipation rate equation is the same as
Equation 2.103, with the addition of a single source term on the right-hand-side of the equation,

GRNG _ _O;ﬂ?g(l —1/Mo) f

T+ B’ = (2.110)
where C),, 3, and 1, are model constants, and
~ o~ a1k
n= (QSUSZ])%— (Z.III)
€

As with the standard k-e model, the turbulent eddy viscosity is then given by the Prandtl-Kolmogorov
relationship,
pe = C,pkt. (2.112)

2.6.4. v>-f RANS Model

Durbin [21] introduced a method for handling the wall region without using either wall functions or
damping functions. In his method a fine grid is required near the wall (e.g., the first grid point is
typically within one dimensionless unit of distance from the wall where the coordinate normal to the
wall is nondimensionalized with the inner scale for a turbulent boundary layer, y© = yu, /v < 1 atthe
first grid point, where u, is the friction velocity, 1/ 7,/ p). The model employs two transport equations
in addition to slightly modified k and € equations to account for the nonhomogeneous region near the
wall. The eddy viscosity is formulated using the component of turbulent kinetic energy normal to the
wall for velocity scaling (instead of using Vk as in the standard k-e model).

The turbulent kinetic energy, k, is given by Equation 2.102 while the dissipation rate of turbulent
kinetic energy, €, is given by

_ W O€ 1 -
—dV + /peujnde = /O—Za—xjnde—i—/T (CL P, — Cepe) dV. (2.113)

The time scale, 7', is the usual time scale & /€, away from the wall region; however, near the wall, if £ /€
becomes smaller than the Kolmogorov time scale / 7/, then the latter is used for T". This is formally
stated by

« k
T = min |7}, — — ] (2.114)
2v/3520,V/ 32
T7 = max {E, 6 K} , (2.115)
€ €
where
~ - 1 [ou; 0u,; ou; — 0u;
2_4¢.G6. ! J i J
S° = 5i;5i; 1 (axj + 8%) <8$j + &Ei) (2.116)
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and the modified constant, C”

€1

is given by

Cl =C, (1 +0.045 k/ﬁ) : (2.117)

The model includes a transport equation for v2,

opv:  Opup® 0
825 axj a an

(1 + ) (2.u8)

Oz

An elliptic relaxation model equation is formulated to solve for the variable f in the above equation.
The purpose of the elliptic relaxation model is to account for nonlocal effects such as wall blocking; the
equation is given by

2/3 —ﬁ/k Q2 -
f-r ai <%> = Cl(#l) + 022%% +(N-1) Y /k (2.119)

Finally, the turbulent eddy viscosity is given by

e = C’Mﬁv_QT. (2.120)

2.6.5. k& —w RANS Model

The k — w turbulence model and its variants are similar in structure to the kK — ¢ models. However,
instead of computing the turbulent dissipation rate directly, the & — w model models the transport the
reciprocal of a turbulent timescale referred to as the turbulent frequency. This quantity, w, can be
related to the turbulent dissipation by

e = [ kw. (2.121)

The the transport equations are given by the 2006 model, (Wilcox [22]),

Opk o pk . Ok o o
(3pt dV+/pk:ujnde:/(u—i—okz)a—%njdV—i—/(Pk — B pkw) dV, (2.122)
opw pk . Ow w 5 pog Ok Ow
| Ype poa O W\ gy
5 dV—i—/pwujnde /u—l— O~ )axjanV—l—/ <’yk w — Bpw + w Oz, 01, dv.
(2.123)

The user is to note the above standard for writing the effective diffusive ﬂux coeﬂicient. The model also
has a number of adjustable parameters: 3y = 0.0708, 8* = 0.09, v = 3z, Clir, = , o = 0.6, and
0., = 0.5. The constant 3 is given by,

25’

B =bofs (2.124)
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where

1+ 85y,
fo=17 100y, (2.125)
The value of y,, is as follows:
Q1 Sy
Xow = |—(]ﬁ*2j)3k | (2.126)

The production term is the same as in & — €. Typically limiters are used to prevent it from exceeding the
dissipation rate by too large an amount. Although the 2006 description does not speak of production
limiters, other sources that use the 2006 model do, i.e.

Py = max (P, 10pkw) . (2.127)

The value of 10 is expected to be a user specified quantity (see input file manual for more details). In
general, this term is defaulted to a very high number.

The eddy viscosity is
k
wr = p—. (2.128)
w

where @ is,

J ). (2.129)

2.6.6. Shear Stress Transport (SST)

It has been observed that standard 1998 k — w models display a strong sensitivity to the free stream value
of w. To remedy, this, an alternative set of transport equations have been used that are based on
smoothly blending the & — w model near a wall with k — € away from the wall (see Mentor [23]).
Because of the relationship between w and ¢, the transport equations for turbulent kinetic energy and
dissipation can be transformed into equations involving k and w. Aside from constants, the transport
equation for k is unchanged. However, an additional cross-diffusion term is present in the w equation.
Blending is introduced by using smoothing which is a function of the distance from the wall, F'(y).
The transport equations for the Mentor 2003 model ( [23]) are provided by the following:

opk ok
P —dV + /ﬁkﬂjnjds Z/(u—l-&kut)—nj +/(P]f — B pkw) dV, (2.130)
875 al‘j
opw . . Ow poe Ok Ow A s o
n:dS = —n; 2(1 - F _— — PP — .
/ dV—I—/ pwiiin;dS /(u + awut)axj n]+/ ( ) o 9z, 0n, dV+ / (Vt w — Bpw? | dV.
A (2.131)
The model coeficients, 6%, 6., ¥ and 8 must also be blended, which is represented by
6= For+ (1 - F)gn. (2132)

where Okl — 085, Oy = 10, Opyl1 = 05, 0,2 = 0856, Y1 = 8,72 = 044, 51 = 0.075 and
B2 = 0.0828.
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The blending function is given by

F = tanh(arg}), (2.133)
where
, VE 500p\  4po.sk (2134)
arg; = min | max . 2.1
. Brwy’ py*w | " CDguy? i

The final parameter is

1 0k 0O
CDy, = max (Zﬁawg———w, 1010) : (2.135)
w (9 j 8@-
In the 2003 SST model description, the production term is expected to be limited:
Py = max (P, 10pkw) . (2.136)

The value of 10 is expected to be a user specified quantity (see input file manual for more details). In
general, this term is defaulted to a very high number.

An important component of the SST model is the different expression used for the eddy viscosity,

pk
fie = el , (2.137)
max (ajw, SFy)

where F is another blending function given by

F, = tanh(arg3). (2.138)
The final parameter is
B 2VE 500

args = Mmax 6*—wy’ oo | (2.139)

2.6.7. Standard Smagorinsky LES Model

The standard Smagorinsky LES closure model approximates the subgrid turbulent eddy viscosity using
a mixing length-type model, where the LES grid filter size A provides a natural length scale. The
subgrid eddy viscosity is modeled simply as (Smagorinsky [24])

e = p(C.A)?[S], (2.140)

where the strain rate tensor magnitude is defined as | S| = (25,;5;;) 2. The constant coefficient C;
typically varies between 0.1 and 0.24 and should be carefully tuned to match the problem being solved
(Rogallo and Moin [25]). It is assigned a value of 0.17 here.

Although this model is desirable due to its simplicity and efficiency, care should be taken in its
application. It is known to predict subgrid turbulent eddy viscosity proportional to the shear rate in the
flow, independent of the local turbulence intensity. Non-zero subgrid turbulent eddy viscosity is even
predicted in completely laminar regions of the flow, sometimes even preventing a natural transition to
turbulence. Therefore, this model should only be used when this behavior will not adversely affect
results.
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2.6.8. Dynamic Smagorinsky LES Model

As mentioned in the previous section, the standard Smagorinsky model requires careful tuning of the
constant model coefficient for the particular problem being simulated, and it is often overly-dissipative
due to its inability to adapt to the local turbulent environment. Germano et al. [26] developed an
improvement over the standard Smagorinsky model, where the coeflicient C is dynamically calculated
based on the local turbulence field. A generalization of this method for variable-density flow is used here
(Moin et al. [15]).

Similar to the standard Smagorinsky LES closure model, the subgrid eddy viscosity is modeled by the
mixing length approximation .

pe = CrpA®*[S], (2.141)
where the strain rate tensor magnitude is defined as |§ | = (2S'ij 5'”) 3. The coefficient C' R is
dynamically evaluated by taking advantage of scale similarity in the inertial range of the turbulence
spectrum, near the minimum resolved scales. This is done by introducing a “test filter” which is

identical to the grid filter defined in Equation 2.69 except for having a larger filter size denoted by A.
The test filter of variable ¢ is denoted by ¢.

The previously-defined subgrid stress tensor can be rewritten as

Tuju; = _(pa—l\u/J - ﬁﬂﬂlj)
= — (puiw - pUiPUj> (2.142)
p
and an analogous larger-scale “subtest” stress T’,,,,; can be analogously defined as
Tuiuj- = - (puzu] - pa ]> ) (2"143)

A

where the () notation denotes resolved quantities that have been passed through the test filter. These
two stresses can be related to each other through the algebraic identity of Germano [27],

Luin = Tuiuj- - @ (2.144)
— D piy
= — (puiuj — 3 J) . (2.145)

Note that the right-hand side of Equation 2.145 is completely computable in terms of resolved
quantities.

By modeling the two stresses in Equation 2.144 and equating them to Equation 2.14s, the model
coefhicient C'r can be dynamically evaluated. The subtest stress is modeled analogously to the subgrid
stress, as

~ ~ 1~
Tqu ~ QCRﬁAQ ‘S| (S” - gskk52j> (2.146)
N IS = 1=
T, = 2CRpA*|S] (Sz’j - §Skk5zj> , (2.147)
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where Cr is assumed to be the same at both scales. The test-filtered strain rate tensor is defined similar
to || as

~—— L

|§\ = <2§ij§ij) ° (2.148)

Notice that when the modeled forms of Tuzu; and Ty,,; are substituted into Equation 2.144, C'r appears
inside a test filtering operation. Formally solving this system of equations for C'r requires the expensive
proposition of solving an additional set of coupled integro-differential equations (Ghosal et al. [28]).
Alternatively, it is common practice to remove C'r from the test filter with the assumption that it is
varying slowly over distances on the order of the test filter size. This greatly simplifies calculations,
although it yields a system of overdetermined equations for this single constant. The square of the error
involved in this approximation is Q = (L;; — CrM;;)?, where

Luiuj = - (puzuj_p f ]> (2-149)
1%
/—_—-\
Arol S = 1= IR ~ 1~
Muiuj = QpA |S| Sij—gSkkdij —2,0A |S| Sij—gSkkéij . (2.150)

Minimizing this error in a least-squares fashion yields an expression for the modeled Smagorinsky
coefhicient (Lilly [29]),
Luiuj Muiu]~

Cr=
J
My, My,

(2.151)

that can be used directly in Equation 2.141 for the subgrid turbulent eddy viscosity.

Due to the above simplifications, the model constant C'r can sometimes fluctuate wildly to both large
positive and negative values. These fluctuations can possibly lead to numerical instability, so they must
be controlled. A common solution, and one that is taken here, is to pass the numerator and
denominator of Equation 2.151 through the test filter, yielding

Ly My,
Cp= —a2 20 (2.152)
My Moy

This can be crudely justified by recognizing that C'r was already assumed to vary slowly over distances
equal to the test filter size, so that this filtering operation is simply enforcing that assumption.

This form of the dynamic Smagorinsky closure model allows energy backscatter, which is an
intermittent transfer of turbulent kinetic energy from small scales to larger scales rather than the typical
cascade from large to small scales. While backscatter can occur in real turbulent flows, the predicted
negative eddy viscosities of the dynamic Smagorinsky model are more often attributable to model errors
than to a real physical backscatter process. This can easily destabilize a simulation, so negative eddy
viscosity is disallowed in the present formulation.

The only free parameter in the dynamic Smagorinsky closure model is the ratio between the test and
grid filter sizes, o = A /A. Solutions are fairly insensitive to the choice of a, although values of around
a = 2 are usually considered optimal (Germano et al. [26]). This ratio is dictated by the box filter
formulation used in Fuego and the mesh topology selected by the user. The test filter volume for a
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particular CVFEM node is defined as the volume of all surrounding finite elements that contain that
node. (See Chapter 5 for more information about the CVFEM formulation.) On uniform hexahedral
and uniform quadrilateral meshes, the test filter ratio will have a value of 2.0. The ratio will be around
1.59 for uniform tetrahedral meshes and around 1.73 for uniform triangular meshes, which are still
reasonable values.

2.6.9. Subgrid-Scale Kinetic Energy One-Equation LES Model

The subgrid scale kinetic energy one-equation turbulence model, or K sgs model, represents a simple
LES closure model. The transport equation for subgrid turbulent kinetic energy is given by

aﬁk.sgs — 7,585~ K ok SgS sgs

The production of subgrid turbulent kinetic energy, P,jgs, is modeled by Equation 2.105 while the
dissipation of turbulent kinetic energy, D;*", is given by

3
k5853

D = CeﬁT, (2.154)
where the grid filter length, A, is given in terms of the grid cell volume by

A=Vs, (2.155)

The subgrid turbulent eddy viscosity is then provided by
e = Cpo AR3, (2.156)

where the values of C¢ and C),_ are 0.845 and 0.0856, respectively.
Beta Capability:

<D 2.6.10. Dynamic Subgrid-Scale Kinetic Energy
One-Equation LES Model

Similar to the dynamic Smagorinsky model in Section 2.6.8, a dynamic version is developed for the
subgrid kinetic energy model. The standard version with fixed coefficients over-predicts turbulent
viscosity while the dynamic version is known to offer a better predictability. In Fuego, C¢ and C),_ are
calculated dynamically which is considered to be a standard approach for the dynamic K sgs model
[30]. The concept of “test filter” is identical to that of the dynamic Smagorinsky model in Section 2.6.8.
Subgrid-scale kinetic energy for grid-filter and test-filter levels are

—

K = 5 (wpur, — Uuxy) , (2.157)
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st — % (@k _ ukuk> . (2.158)
Exact form of the dissipation D;*” in Equation 2.153 is
D = 241 [$;D; - 5,0y (2159)
where Sl?"j =5 — %Skkdij, D}, = Dij — %Dkk@-j, and D;; = Ou;/0x;. Meanwhile, £**" dissipates

by both molecular and turbulent viscosities of the grid-filtered level since the quantity is fully resolved
in the test-filter level [30].

- = ==
Dt = 2(ji + ) {S;;D;kj — S;}D;kj] (2.160)
Using scale similarity, Equation 2.154 applies to the test-filter level as
test SRt :
Dy = Cp— (2161
and therefore, C. is calculated by
- ==
2(f + pue) {SZD% - S%ij}
Ce = Spes 3 /A (2.162)
The other coefficient, C),_, is computed similarly to the Equation 2.151 as
Cu = M, (2.163)
Moy, Moy,
where Ly, is defined identically to Equation 2.149 and M., is simplified by
My, = 25AK 357 (2.164)

Note that dynamic subgrid kinetic energy model does not require an additional filtering as in Equation
2.152.

2.6.11. Buoyancy Models for the Production Rate

There are three supported models that augment the production of turbulent kinetic energy via
buoyancy contributions, buoyant vorticity generation [31], Rodi’s [32], and de Ris’ [33] buoyancy
term.

The buoyant vorticity generation model has been developed and validated by Sandia National
Laboratories group 9132 for use in large scale buoyant plumes. The model attempts to augment the
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production of turbulent kinetic energy by adding a source term, G'p to both the turbulent kinetic
energy and dissipation rate equation that is related to the baroclinic torque,

~ Cugli+ u)ll g2 X G2

B = 5 B Ry (2.165)
P

Please refer to Appendix 1o for a more detailed derivation of the model.

The buoyancy model of Rodi is given by
pe OT

Gp=B5 -5 166
B ﬁPrt axjg] (2.166)
De Ris’ buoyancy model offers two versions - flaming and non-flaming.
Coeris(pos — pg) G flaming (2.167)
Coaeris AR ([Vp x G| — Vp - §) non-flaming (2.168)

Default value of the user-defined coefficient Cye, s is 0.01. Note that ambient and flame density, rather
than local density, matters on the flaming version.

In each model, derivatives are evaluated at the subcontrol volume center while the property values are

lumped.

The right hand side of the turbulent kinetic energy equation for all model is rhs+ = f G pdV . For the
dissipation rate equation, the source term is rhs+ = f Ceg%G pdV for the buoyant vorticity
generation model while itis rhs+ = f c C€4%G gdV otherwise. Recall that the inverse time scale is
determined by the turbulence model of choice, i.e., + for the standard & — € model and provided in
Equation 2.114 for the v*- f model.

Note that the use of the buoyancy models hass not been evaluated with the v- f model.

2.6.12. Turbulence closure model constants

For each of the afore-mentioned turbulence closure models, there are several constant coefficients
which may be modified by the user in the input deck. Tables 2.6-1, 2.6-2, 2.6-3, and 2.6-4 list these
parameters, their mapping to input deck names, and default values. Each of these default values may be
modified by the user by specifying the respective Turbulence Model Parameter linein the Global
Constants block under the Sierra domain.

2.7. WALL BOUNDARY CONDITIONS FOR
TURBULENCE MODELS

2.7.1. Resolution of Boundary Layer; Momentum

The wall velocity boundary condition is the typical no-slip boundary; a specified value is expected.
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Table 2.6-1.. Constant parameters for © — ¢ turbulence models.
Turbulence Model Symbol  User Input Name Default Value

c, Cmu 0.09
Ca Ceps_1 1.44
Standard k — ¢ Ceo Ceps_2 L.92
Cy Cchi 2.0
Ok Sigma_K 1.0
O Sigma_E 1.3
C, Cmu 0.09
Ca Ceps_1 1.44
Low Reynolds k£ — € Cez C.eps_2 1oz
Ok Sigma_K 1.0
Oc Sigma_E L3
A, Amu 3.4
C, Cmu 0.0837
Ca Ceps_1 142
RNGEk —¢ Ceo Ceps_2 1.68
Ok Sigma_K 0.7194
O Sigma_E 0.7194
Cy Cmu 0.22
Ca Ceps_1 1.4
C Ceps_2 L9
Ok Sigma_K 1.0
O Sigma_E 1.0
vP— f o CF_1 0.4
C, CF_2 0.3
o} Alpha 0.6
Cr Nseg 6.0
CL CL 0.23
C, Ceta 70.0

2.7.2. Resolution of Boundary Layer; Turbulence Quantities

The resolution of the boundary layer is expected when the low Reynolds number or v*- f model is in
use.

For the v2-f model, the wall turbulent kinetic energy and normal fluctuating stress component are each
zero while the dissipation rate is given by

akl/QQ
aCL’j '

€w = 2V (2.169)

For the low Reynolds number, the wall turbulent kinetic energy is again zero while the dissipation rate,
here considered to be the isotropic dissipation rate, is given as zero.
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Table 2.6-2.. Constant parameters for £ — w turbulence models.
Turbulence Model  Symbol ~ User Input Name  Default Value

5o Beta_Zero 0.0708
5* Beta_Star 0.09
Ew o S%gma_K 3/5
Oy Sigma_W 0.5
Y Gamma 13/25
Clim Clim 7/8
Ay A_One 0.31
51 Beta_One 0.075
52 Beta_Two 0.0828
5 Beta_Star 0.09
SST " Gamma_One 5/9
Y2 Gamma_Two 0.44
Okl Sigma_K_0One 0.85
Oka Sigma_K_Two 1.0
Ol Sigma_W_0One 0.5
o) Sigma_W_Two 0.856

Table 2.6-3.. Constant parameters for LES turbulence models.
Turbulence Model Symbol  User Input Name = Default Value

Chy Cv 0.5
One-equation C. Ceps 0.845

C. Cmueps 0.0856
Standard Smagorinsky Co Cv o5

Cs Cs 0.17
Dynamic Smagorinsky C Cs 0.17

2.7.3. Resolution of Boundary Layer; Enthalpy

The wall value of enthalpy is computed based on the specified temperature and either reference or local
mass fractions. In the case of a heat flux boundary condition, the wall node value is computed based on
the control volume balance.

2.7.4. Wall Functions for Turbulent Flow Boundary Conditions

Resolution of the near-wall turbulent boundary layer can require extensive mesh points. Adjacent to
the wall exists an extremely thin viscous sublayer where these forces dominate and are relatively
insensitive to free stream parameters. Following the viscous sublayer is a buffer layer, the so-called
“log-layer” and, ultimately, the turbulent core. The Van Driest hypothesis of turbulent flow near solid
boundaries can be used to derive the appropriate form of this log-law zone. In general, the use of wall
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Table 2.6-4.. Constant parameters for miscellaneous turbulence
models. Default values may be changed using the & — ¢ model
parameters input.

Model Symbol  User Input Name = Default Value
Buoyant vorticity generation Cg:;(; sz\s’% 3 Z'.SOS
Rodi’s source term Cu C_eps4 0.0
Cy lam Cgammalam 2.0
EDC laminar limit Criam Ctaulam 0.02
Clam trans Clamtrans 40.0

functions eliminates the need to resolve the near wall layers by prescribing the wall shear stress and
resulting force based on the law of the wall (Launder and Spalding [34]).

The primary assumptions of the law of the wall are
e Jocal equilibrium of turbulent kinetic energy production and dissipation,
e constant shear stress within the log-law region,

e Couectte flow (pure shear flow).

2.7.5. Wall Functions; Momentum

The wall shear stress enters the discretization of the momentum equations by the term

/T,»jnde = —Fy;. (2.170)

Wall functions are used to prescribe the value of the wall shear stress rather than resolving the boundary
layer within the near-wall domain. The fundamental momentum law of the wall formulation, assuming
tully-developed turbulent flow near a no-slip wall, can be written as (Launder and Spalding [34])

ut = 4 _ 1 In (Eer) , (2.171)

Ur K

where u™ is defined by the the near-wall parallel velocity, ), normalized by the wall friction velocity, u..
The wall friction velocity is related to the turbulent kinetic energy by

Uy = C’}LMkI/Q. (2.172)

by assuming that the production and dissipation of turbulence is in local equilibrium. Moreover, y* is
defined as the normalized perpendicular distance from the point in question to the wall,

S () ol
p \p u
57

Yy (2.173)



The classical law of the wall is as follows:

1
ut=—l(yT) +C (2.174)

where k is the von Karman constant and C' is the dimensionless integration constant that varies based
on authorship and surface roughness. The above expression can be re-written as

ut = %m(y*) + %ln(exp(/ﬁ()’)) (2.175)
ut = % (In(y*) + In(exp(rC))) (2.176)
- éln( Ey") (2.177)

where F is referred to in the text as the dimensionless wall roughness parameter and is described by
E = exp(rC) (2.178)

In Fuego, « is set to the value of 0.42 while the value of £ is set to 9.8 for smooth walls'. The viscous
sublayer is assumed to extend to a value of y = 11.63.

The wall shear stress, 7,,, can be expressed as

o 2 ﬂ o p’%uT -
Tw = Pl = Pl = By Y T Awl; (2.179)

where ), is simply the grouping of the factors from the law of the wall. For values of y* less than 11.63,

the wall shear stress is given by
w

Tw = ,uY;). (2.180)
The force imparted by the wall, for the 7;;, component of velocity, can be written as
Fui= —ApAwty), (2.181)

where A, is the total area over which the shear stress acts.

The use of a general, non-orthogonal mesh adds a slight complexity to specifying the force imparted on
the fluid by the wall. As shown in Equation 2..181, the velocity component parallel to the wall must be
determined. Use of the unit normal vector, nj, provides an easy way to determine the parallel velocity
component by the following standard vector projection,

Hi]’ = [5” — ninj] . (2..182)

Carrying out the projection of a general velocity, which is not necessarily parallel to the wall, yields the
velocity vector parallel to the wall,

n
uy = Ilju; = uy (1 - nz‘z) - Z U1 5. (2.183)
J=1j#j

"White [35] suggests values of K = 0.41 and I = 7.768.
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Note that the component that acts on the particular i component of velocity,
- AwAw (1 - nznl) Ui, (2“184)

provides a form that can be potentially treated implicitly; i.e., in a way to augment the diagonal
dominance of the central coefficient of the i*" component of velocity. The use of residual form adds a
slight complexity to this implicit formulation only in that appropriate right-hand-side source terms

must be added.

2.7.6. Wall Functions; Turbulent Kinetic Energy

The near wall turbulent kinetic energy can be obtained by two different procedures. The most common
approach is to solve a transport equation for the near wall value of turbulent kinetic energy with a
modified production and dissipation term on the right hand side of the turbulent kinetic energy
equation, Equation 2.102. As will be shown below, the form of the near wall production and
dissipation term are determined based on equilibrium arguments, i.e., P, = pe.

Another common approach is to assign the value of turbulent kinetic energy that strictly results in the
equality P, = pe. In this formulation, it is assumed that the convection and diftusive flux is zero across
the control volume.

Both procedures, which formally do not address the role of buoyancy production, begin with the
determination of the near wall value of the production of turbulent kinetic energy. The turbulent
kinetic energy production term is consistent with the law of the wall formulation and can be expressed

as 5
Py = Twﬂ. (2.185)
dy
The parallel velocity, 1, can be related to the wall shear stress by
u+ uH
Twy—+ = ﬂ?p (2.186)
Taking the derivative of both sides of Equation 2.186, and substituting this relationship into
Equation 2.185 yields,
72 Out
Pkw == Fay_'i' (2.187)

Applying the derivative of the law of the wall formulation, Equation 2.171, provides the functional form

of du™ /oy,

oyt Iyt
Substituting Equation 2.188 within Equation 2.187 yields a commonly used form of the near wall
production term,

ou™ o |1 N

(2.189)



Assuming local equilibrium, P}, = pe, and using Equation 2.189 and Equation 2.172 provides the form
of the near wall turbulence dissipation,

e
€=+ = ”KY , (2.190)
P P

while the form of the wall shear stress is given by,
Tw = pC %k (2.191)

Under the above assumptions, the near wall value for turbulent kinetic energy, in the absence of
convection, diffusion, or accumulation is given by,

’LL2

k= ClT/Q : (2.192)
o

If the second method (Dirichlet condition on near wall turbulent kinetic energy) is to be used, the value
of the wall friction velocity, ., can be obtained in an iterative manner (Sondak and Pletcher [36]) by
use of Equation 2.171. This method has been used and shown to be satisfactory (Elkaim [37]) and
strictly enforces the assumptions of the law of the wall that have already been outlined.

In the method that elects to solve a near wall turbulent kinetic energy transport equation, the
production and dissipation terms in the turbulent kinetic energy transport equation are [potentially]
given by Equation 2.189 and

03/4 L3/2
—pe:-v%it?——, (2.193)
P

Unfortunately, there does not seem to be one universal description of the near wall turbulent kinetic
energy production term and dissipation term, Equation 2.189 and 2.193, respectively. For example, in
the law of the wall formulation, given by Launder and Spalding [38], the near wall production term is

given by,
U
Prw = Tw—L. (2.194)
Yp

In this formulation, the wall shear stress is given by the law of the wall formulation, Equation 2.179,
providing the value of y is greater than 11.63 (otherwise, it is given by the laminar shear stress, Equation
2.180). The dissipation term, — pe is given by

C«g/ 41.3/2

—pe= —PT In Ey*. (2.195)
p

Note that in the absence of convection, diffusion or accumulation, the above two forms of the near wall
production and dissipation source terms revert to Equation 2.192. Therefore, if the modeled flow is
consistent with the law of the wall formulations, all methods should yield similar limiting behavior.
Under conditions of non equilibrium, i.e., a separated flow, or values of y* within the viscous sublayer,
some models may perform better. However, it is important to note that if the flow to be simulated
includes separation and reattachment, or the computation mesh is such that y* is within the viscous
sublayer, the law of the wall formulation can provide non sensical results.
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In Fuego, there are currently two general supported methods from which to choose when applying the
near wall turbulent kinetic energy boundary condition. The first method, which can be activated by the
command line omit near wall turbulent ke transport equation, isthe form of

Equation 2.192 that enforces a Dirichlet condition. The second method is to solve a full control volume
balance for the near wall turbulent kinetic, with convection and diffusion terms, with a modified
production and dissipation term given by either

e Equations 2.189 and 2.190.
e Equations 2.194 and 2.195

The use of Equations 2.189 and 2.190 can be activated by the command line (within the wall be block)
use equilibrium production model which is based on the ability to express the wall shear stress
consistent with the assumptions of full equilibrium between production and dissipation,

Equation 2.191. In all cases that do not set a Dirichlet condition for the turbulent kinetic energy, the
assembled buoyancy source terms are not removed.

2.7.7. k-w SST Wall Functions; Turbulent Kinetic Energy

When a Dirichlet condition is not set for turbulent kinetic energy, the approach in modifying the near
wall production and dissipation terms is followed.

In this approach, the equation for k is solved near the wall to remove the assumptions of log layer flow
one level. However, we invoke the log layer assumption to write,

2

P, = . 196
k pru,Y, (2.196)

Balancing production and dissipation in the & — w model allows us to write,

w3 1\3/41.3/2
P =l :p(ﬁ) ‘
KRY,

p

(2.197)
p

The dissipation rate is also modified accordingly such that the production equality with dissipation is
retained. An alternative method is to use the approximation of of Launder and Spaulding which
prescribes production as,

P, = Tw%. (2.198)

p

In practice, this formulation seems to be less stable since the production and dissipation terms are now
in near-equilibrium.
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2.7.8. Wall Functions; Turbulence Dissipation Transport

Consistently within the literature, the near wall turbulence dissipation is assigned the Dirichlet value
given by Equation 2.190. Frequently, this expression is lagged by one subiteration in an effort to
maintain consistency between the Dirichlet wall condition and the freezing of the €/ ratio of the
turbulence dissipation equation, Equation 2.103.

2.7.9. Wall Functions; Turbulent Frequency Transport
2.7.9.1. Low Reynolds Number Treatment

The low Reynolds approach for & — w uses a sequence of Dirichlet conditions similar to what is used
for k — e. However, unlike the latter, £ — w requires no extra damping terms near the wall. When the
wall is resolved, exact Dirichlet conditions are known for both the velocity and &:

u=0, k= 0. (2.199)

A Dirichlet condition is also used on w. While the & — € model is rendered less stable because k appears
in this boundary condition, the w equation depends only on the near-wall grid spacing. The boundary
condition is

6
w=2 (2.200)

By*’
which is valid for y* < 3. Above, § depends on the model type. If SST is in use, 5 = (1 while if the

Wilcox model is in use, 8 = [.

2.7.9.2. High Reynolds Number Treatment

The high Reynolds approach is also quite similar to the £ — € model except w is handled difterently.

2.7.9.3. Automatic Wall Functions

Because w has analytic solutions in both the log layer and viscous sub-layer, an automatic treatment is
developed that blends those two solutions to provide Dirichlet conditions for all y. Let wy, be the high
Reynolds number formulation and w; be the low Reynolds version. Then the Dirichlet condition on w

[ 2
w=w/1+ (%) . (2.201)
1

However, u, for the high Reynolds w value is computed based on the parallel velocity: The velocity
equation is augmented by a traction force based on the friction velocity u.. This quantity may be solved
for iteratively using the law of the wall. A Dirichlet condition is also used for k, assuming it is in the log
region, which is similar to the k& — € model:

1S

k=—. (2.202)




In the case of w, an analytic expression is known in the log layer:

Ur

N (2.203)

which is independent of k. Note that some implementations use a predefined constant instead of \//3/,
although the standard values are consistent with these expressions. Because all these expressions require
y to be in the log layer, they should absolutely not be used unless it can be guaranteed that y* > 10,
and y© > 25 is preferable.

w =

Gl

Y

U, = (2.204)

The automatic wall function approach is obtained by removing the “omit near wall turbulent ke
equation” line command and activating either the SST or KW turbulence models.

2.7.10. Wall Functions; Enthalpy Transport

For non-adiabatic boundaries, heat loss to the wall must be considered. The use of the Reynolds analogy
provides a functional form of the energy transport similar to the that of the logarithmic law-of-the-wall
momentum formulation. The thermal boundary layer is modeled either as a linear profile (y* < 11.63)
where the thermal boundary layer is dominated by conduction or a logarithmic profile where the effects
of turbulence dominate over thermal conduction, Versteeg and Malalasekera [39].

The law-of-the-wall used in Fuego has the following form,

p (hw — hp) ur

T+ , (2.205)

Guw =

where
T =or [u+ + P] . (2.206)

The role of T is to account for the fact that the thickness of the thermal conduction layer is
[practically] of a different size than that of the viscous sublayer (momentum).

In the above equation, P is the universal “P function” (Jayatilleke [40]) and can be expressed as a
function of the molecular and turbulent Prandtl number,

o\ 07
P =924 [(—) —1
or

where o7 and o represent the turbulent and molecular Prandtl number, respectively.

(1 +0.28¢xp {—0.0071} ) : (2.207)

aor

Therefore, it is seen that the so-called “P function” is the parameter that functionally changes the
thickness of the thermal conduction layer from that of the viscous sublayer. For example, if one were to
model a high-Prandtl number fluid such as common vegetable oil, one would note that the thickness of
the viscous sublayer is far greater than that of the thermal sublayer. However, for low-Prandtl number
fluids, the opposite is true. The subsequent value of 7" ensures this functionality.
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In the case of a user defined heat flux at a wall boundary condition, the full quantity is assembled as a
right-hand-side source term. As a post processing step, Equation 2.205 (in temperature form) is
rearranged to provide the wall temperature. In practice, the heat flux boundary condition block is to be
defined on an already defined wall boundary condition block (without temperature specification). In
this manner, multiple boundary conditions are “painted” on a particular sideset.

2.7.11. Wall Functions; Scalar Transport

Wall functions for use in a convective diffusive problem, e.g., diffusional transport of fuel (through
multicomponent evaporation) from a jet fuel pool, are not currently supported.

2.8. INLET CONDITIONS FOR TURBULENCE
QUANTITIES

2.8.1. Turbulent Kinetic Energy

The inlet turbulent kinetic energy must be specified for any simulation that involves a velocity-specified
inlet. If actual values of the inlet turbulent kinetic energy are not available, then a suitable value based
on basic definitions is used. In general, the kinetic energy associated with the turbulent flow is defined

by,

1 /—
k= 3 (u’2 + 0?2 + w’2> : (2.208)
The turbulence intensity 75, is related to the kinetic energy by,
27)1/2
T, = % (2.209)

Rearranging Equation 2.209 for the turbulent kinetic energy yields a working form for the specification
of inlet turbulent kinetic energy based on a reference velocity, U,
3

k= 3 (Ureme)2 ) (2.210)

The value of U, ¢ can typically be taken to be the magnitude of the velocity.

2.8.2. Turbulence Dissipation Rate

As with the turbulent kinetic energy inlet condition for specified velocity, the inlet value of the
turbulence dissipation rate must also be specified. If values are known, for instance based on
experimental data, then the available data should be used. Otherwise, the following assumed form of the
turbulence dissipation rate is used,

k‘3/ 2

_ 3/4
e=C, 7

(2.211)
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where | = 0.07L; L represents a characteristic length scale of an inlet eddy and % represents the inlet
turbulent kinetic energy as determined above.

2.9. EDC TURBULENT COMBUSTION MODEL

The combustion submodel is Magnussen’s Eddy Dissipation Concept (EDC) and development details
can be found in Magnussen, et al. [41], Magnussen [42], Byggstyel and Magnussen [43],
Magnussen [44], Lilleheie, et al. [45], and Gran and Magnussen [46].

2.9.1. Model Characteristics

The underlying assumption in the EDC model is that combustion in turbulent flows is controlled by
turbulent mixing. The combustion model is an algebraic zone-type model and is influenced by local cell
(control volume) values only. The model derivation assumes that the minimum cell dimension is large
relative to the thickness of a flame (reaction zone) structure. This thickness varies with strain-rate, but
the cell size should not be less than a few millimeters. The equations are not valid for laminar or
near-laminar flow, but are based on fully developed turbulence arguments. The turbulent combustion
model uses information from three sources: 1) thermochemistry, 2) species and state information from
the cell values, and 3) turbulence kinetic energy and dissipation. From these data, the model creates
source/sink terms for species equations and the energy equation (via radiative transport).

The model function is to provide an integral effect of combustion processes occurring within the
control volume for the duration of a time-step. In this manner, reaction zone structures are not
resolved, but the aggregate effect of turbulent combustion is modeled. To model the integral effect, two
homogeneous zones are defined within each control volume for which there is combustion, as shown in
Figure 2.9-1. The zones are termed the reaction zone (fine structures) and the surrounding zone. The
size and mass exchange rate between these zones are influenced by the local turbulence properties and
are the principal means by which turbulent fluctuations are accounted for within the model. The
assumption that each zone is homogeneous is equivalent to assuming that the mixing within each zone
is instantaneous. Since combustion occurs within (but is not limited to) the reaction zone, the
assumptions for combustion correspond to those for a perfectly stirred reactor (PSR). Slower reactions
can also occur in the surroundings, in which case, the assumptions for reaction in the surroundings are
also consistent with PSR assumptions.

2.9.2. Physical Interpretation

Magnussen’s EDC model is derived to be a general combustion model for premixed to non-premixed
scalar fields and for high to moderate turbulence levels. It is not intended to be used for laminar
combustion. Magnussen’s physical interpretation of combustion is based on the concept that chemical
reaction occurs in regions of the flow in which the dissipation of turbulent energy takes place, i.e., fine
structure regions. These regions are concentrated in isolated volumes and represent a small fraction of
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Figure 2.9-1.. Model geometry for Magnussen’s Eddy Dissipa-
tion Concept. The control volume is comprised of two zones;
the properties of each zone are assumed to be adequately repre-
sented by a single set of values (i.e., lumped or perfectly stirred).
The mass exchange between the zones is controlled by turbulent
mixing.

the flow. The regions have characteristic dimensions that are of the Kolmogorov length scale in one or
two dimensions, but not the third.

Fires are buoyant flows. Turbulent fires tend to be large, having base diameters above a meter. The
turbulent length scales are large and the flow velocities are relatively slow, on the order of meters to tens
of meters per second. (Still photographs of reaction zone structure within large fires can be found in
Tieszen, et al. [47]). Therefore, turbulence levels tend to be moderate. Near the base of a fire, the
combustion zone can be characterized as a continuous wrinkled flame sheet that appears to wrap
around larger turbulent structures. The basic combustion mode is that of a strained diffusion flame
with large surface area due to the turbulence. At higher elevations in the fire, turbulence levels increase
and the character may change. Premixed combustion is possible as unburned products in the smoke are
re-entrained into the fire. While Magnussen’s model was originally derived in terms of high turbulence
levels resulting in fine structure regions (i.e., localized regions of high vorticity at dissipation scales), the
model is appropriate for moderate turbulent intensities that occur in fires.

Figure 2.9-2 shows the physical geometry from which the combustion model will be derived for fires.

66



Turbulence controls the reaction and surrounding volume fractions and fuel mass transport per unit
volume. In general, turbulent momentum exchange processes result in scalar stirring at all length scales
down to molecular mixing processes which are diffusion controlled. Without length scale information
below the grid scale of the computation, it is impossible to correctly represent the interactions between
all the relevant physical processes at their relevant length scales.

Air + Products=

Flame Sheet with Area ~ 12

Fuel + Products

Figure 2.9-2.. Assumed flame surface geometry. L is the integral
turbulent length scale. The reaction zone thickness is charac-
terized by the Kolmogorov dissipative turbulent length scale, 7.

Magnussen’s EDC model attempts to represent the mixing processes that are most important to the
overall heat release from combustion. It it based on the assumption that the overall heat release rate is
controlled by the mass transport into the reaction zone. Therefore, considerable effort is made to model
turbulent momentum processes that affect mass transport into the reaction zone. In the surrounding
gases, turbulent mixing occurs with (in all likelihood) a similar vigor, however, its effect on the
combustion rate is considered less important since the turbulence is not directly contributing to mass
transport into the reaction zone. For this reason, there are two different levels of mixing assumptions
made within the model.

With respect to Figure 2.9-1, the turbulence level in each control volume is taken into account in the
consideration of the mass exchange between the reaction zone and the surrounding zone. However,
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within each zone, it is assumed that the properties are instantaneously homogeneous and uniform, i.e.,
perfectly stirred. This perfectly stirred assumption obviously over-predicts mixing within each zone for
any real level of turbulence, and only begins to approximate reality at the highest levels of turbulence.
On the other hand, the perfectly stirred assumption allows point calculations to be made in each zone
for conveniently determining thermochemical properties. Without this assumption, it would be
necessary to specify the gradients within each zone and integrate the specified gradients throughout the
cell to obtain cell averaged property information. The approach here is to assume that over-predicting
mixing within each zone via the perfectly stirred assumption has only a secondary effect on heat release
rates within each cell.

2.9.3. Thermochemistry

Within the current strategy, chemical reaction can occur in both zones. However, in the simplest case,
no reaction occurs within the surroundings due to the low temperature and unmixedness; all reaction
occurs within the reaction zone. The notion of zones, perfect stirring within the zones, and type of
chemistry involved are all independent assumptions, but have interrelated consequences. For example,
finite-rate chemistry involving hundreds or thousands of species could be considered within the zones.
From the perfectly stirred assumption within each zone, the finite-rate chemistry would be calculated as
if it were occurring in a perfectly stirred reactor. In a real diffusion reaction, there are spatial variations
in species concentrations for real turbulence levels so that the various chemical pathways, as well as heat,
mass, and momentum transport, in a real strained diffusion flame can be quantitatively different than
those calculated on the basis of perfect stirring. This effect is probably the strongest disadvantage of the
perfectly stirred assumption. Only in the limit of infinitely-fast turbulent mixing does perfect stirring
actually exist. In practice, the computation of detailed, finite-rate chemistry concurrently with a
three-dimensional fluid mechanics calculation is expensive. Except in the limit where the turbulent
strain rate is high enough that finite rate chemistry is warranted, it is adequate to use simpler
descriptions of the chemistry. In the case of high strain rates, precalculation of the chemistry is usually
done and the results tabulated in a look-up table to determine extinction limits.

For the current implementation, it is assumed that the chemistry can be represented as irreversible,
“infinitely-fast” reactions that occur within each reactor. In classical combustion studies, the concept of
“infinitely-fast” reactions is not usually invoked in the context of a perfectly stirred reactor. In the
context of the current model, the meaning of an “infinitely-fast” reaction in the flame zone (a perfectly
stirred reactor) is that the reactant stream entering the reaction zone is converted to products instantly
as it enters the zone, and then the products are mixed instantly throughout the zone. The zone then
reflects the thermodynamic properties of the combustion products at the adiabatic flame temperature
for a given composition while the surrounding zone has the properties of reactants (and possibly
previously combusted products) near the cell temperature.

In general, if the turbulent mass exchange rate between the zones (i.e. strain-rate) is sufficiently high that
infinitely-fast chemistry assumptions do not apply, then finite-rate reactions within the perfectly stirred
reactor can be used. Residence time scales that warrant finite-rate considerations tend to be at the
sub-millisecond level. In the current implementation, the case of high turbulence levels leading to
blow-out of a reactor is treated as a limits test. The test method is discussed in Section 2.9.9.
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In principle, it is not necessary to assume irreversible chemistry within each zone. Atlong time scales
(i.e., low turbulence levels), chemical equilibrium will result. The use of irreversible chemistry avoids
the need to calculate the equilibrium state of the forward and reverse reactions for every combusting cell
at every time step. For the current implementation, the time savings is deemed to be worth the cost in
accuracy.

Regardless of the assumptions about chemistry employed in modeling the reaction zone, the actual
reaction zones in a fire will very likely be similar to strained diffusion flames (wrinkled flame sheets
wrapped into vortical structures). Perhaps higher in a fire with the re-entrainment of smoke, partially
premixed combustion can occur. For diffusion reactions, combustion occurs within a region
encompassing a stoichiometric surface between fuel and air. Therefore, the reaction zone is modeled as
occurring with stoichiometric reactions. The reactants being transported into the reaction zone via
turbulent mixing come from the surroundings zone and thus have the composition of the surroundings.
There will be a limiting amount of one reactant if the combustion is to occur at off-stoichiometric
conditions. The excess of the other reactant, prior products, and inerts do not participate in chemical
reactions, but are transported in and out of the combustion zone by turbulent mixing. However, their
presence affects the zone properties (for example, through their heat capacity).

Combustion products are transported into the surroundings at the same rate as the reactants are
transported into the reaction zone (conservation of mass). However, the perfect stirring assumption for
properties means that these products have uniform properties. In a diffusion reaction, products mix
with fuel on one side of the reaction zone and air on the other. On the fuel side of the reaction zone,
significant amounts of CO and soot can result from interaction between the inflowing fuel and
outflowing products. The formation of CO is important not only from a toxic pollutant perspective
but its formation results in significantly less heat release and lower temperatures. Given the limits of a
two-zone model with perfect mixing within each zone, there is no simple way to model both
stoichiometric combustion and the formation of CO on the fuel side of the reaction. In the current
formulation, an ad hoc approach is used in which combustion in the reaction zone is assumed to occur
in sequential steps, each of which is irreversible and infinitely fast. The first step is stoichiometric
oxidation of the fuel species to CO and Hj products. The second step is the oxidation of CO and Hj to
COg and HyO provided there is excess O3 in the reactant stream. If the overall stoichiometry in the
control volume is fuel rich, significant amounts of CO and Hy, will be formed, while if it is lean only

COg and H5O will be formed.

2.9.4. Chemical Mechanism

For an arbitrary CHNO fuel, the stoichiometric, irreversible reaction to CO and Hy products is given

by

2

(m)CO + <g) H, + (g) N+ 3 (Cp) Diluent,  (2212)

CmHanOqu(u) Oy + > ((p)Diluent =

where m, n, p, and g are the numbers of carbon, hydrogen, nitrogen, and oxygen atoms within the fuel
molecule, respectively, and the terms in parentheses are the stoichiometric coefficients. The summation
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term for diluents includes all other species present in the reaction stream including nitrogen in air,
combustion products in the surroundings from previous combustion processes, etc... Diluents,
including the combustion products, are assumed to have no effect on the chemical reaction itself.
However, diluents do have an effect on the temperature rise through their specific heats and the
presence of products is used as an ignition criteria for the combustion model.

The assumption that combustion products act like diluents (i.e., have no effect on the reaction) is
obviously a simplification. Product species include CO, Hy, COs, and HyO. The presence of CO and
Hj in the reactant stream would affect equilibrium results; however, irreversible reactions have already
been assumed in the model so the presence of these species does not represent an additional
simplification. On the other hand, the presence of large amounts of CO5 and H5O in the reactant
stream may reduce the amount of Oy consumed for a given amount of fuel due to partial oxidation of
the products via the oxygen in the CO4 and H5O in an overall fuel rich environment. However, this
effect is partially compensated since the extra Oy would be consumed by the second reaction.

The second reaction is the subsequent oxidation of CO and Hj to CO4 and H5O. This reaction
oxidizes both the CO and Hy produced by the first reaction and any CO and H that passed through
the first reaction as products (i.e., diluent). The reaction is given by

(m) CO + (g) H, + (g) N, + (% + %) O3+ ) (Ca) Diluent =

(m)CO; + (5)H0+ (g) Ny + 3 (¢) Diluent. (2.213)

n

2

In the current implementation, soot is considered to be a trace species. As such, its mass and energetics
are not considered part of the above chemical reactions. Soot has its own production terms and is
considered to oxidize in proportion to the fuel oxidation in the first reaction. See the soot model in
Section 2.12 for details.

2.9.5. Species Consumption/Production Limits

The reactants being transported into the reaction zone come from the surroundings and therefore have
the same composition as the surroundings. As such, the reaction can only proceed within the limits of
available fuel and oxygen from the reactant stream. For example, if there is insufficient oxygen in the
reactant stream, then all of the oxygen will be consumed by Reaction 1, (Equation 2.212), and the excess
tuel will be passed with products from Reaction 1 to Reaction 2, (Equation 2.213). Reaction 2 will not
take place because all the oxygen was consumed in Reaction 1 (i.e., in both reactions, oxygen is limiting).
If there is insufficient fuel in Reaction 1, then all the fuel will be consumed and excess oxygen will be
passed to Reaction 2. Depending on the ratio of oxygen to CO and Hy, all the secondary fuels may be
consumed or all the oxygen may be consumed.

To find the limiting mass, it is convenient to define an equivalence ratio. Equivalence ratios are normally
defined in terms of molar ratios, but mass ratios yield the same result [48] and are preferred here since
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mass fractions are used in the transport equations.
(quel )
P = M

= 2.21
< quel ) ( 4)
YVOQ@ZI stoic

The numerator is the ratio of the actual mass of fuel to oxygen in the reactant stream,

(quel) __mass Fuel

Youy mass Oxygen (2.215)

mix

The denominator is determined for each reaction. Generically, the first and second reactions have the
following form

Z (Cruet) Fuel + ¢p, 04 + Z ((p) Diluent — Z (Cproa) Product + Z ((p) Diluent, (2.216)

where ( are stoichiometric coefficients on a molar basis. The stoichiometric fuel to oxygen mass ratio

is
_ Z quel (Cfuel)
stoic W02 (C02> ’

where W is a molecular weight. Specifically for the first reaction, the stoichiometric mass ratio of

G, H,N,O4 to Og is

quel
Yvo:]cy

(2.217)

(12m + n + 14p + 16q)
= . (2.218)

stoic B 32 (m; q)

Therefore, the equivalence ratio for the first reaction which is based on carbon monoxide and hydrogen

products is given by
d, = Y ue 16(m —g) , (2.219)
Youy ) (12m + n + 14p + 16q)

and similarly, the equivalence ratio for the second reaction which is based on carbon dioxide and water

n
o, — [ Yeo ol Yio 10 <m+§>
T v, (28m +n)

If either equivalence ratio is greater than unity, then the mass of oxygen will be completely consumed by
its reaction. If either equivalence ratio is less than unity, then the mass of fuel will be completely
consumed by its reaction. If either equivalence ratio is unity, then the mass of fuel and oxygen will both
be completely consumed by that reaction. Note that C,,,H, N, O, is not a fuel in the second reaction
because if there is any of this fuel left, all the oxygen was consumed in the first reaction. Therefore,

quel
)/o:vy

products is given by

(2.220)

under these conditions the second reaction cannot proceed due to lack of oxygen. Also note that the
expression for @ does not identify which secondary fuel, CO or Hy, is limiting.

In order to determine the limiting reactant mass in a multi-fuel (or multi-oxidant) system, a more
general approach based on equivalence ratios is required. Consider the reaction
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(aA+ (BB — (cC + (pD where ( are stoichiometric coefficients. The stoichiometric mass ratio of
reactant B to A is

Y massp Wg(p ( )
— = — = — 2.221
YA stoic mass 4 stoic WACA
Further, Y4 and Y5 are the mass fractions of A and B in the mixture and
Ys mass B ( )
—_— = — 2.222
Y mass A| .
The ratio of these quantities is an equivalence ratio; i.e., if
Y _ Was(p
—_ > —, (2.223)
Ya  Wala

then A is the limiting reactant, else B is the limiting reactant. However, this inequality can be usefully

rearranged. If
Y - Y
WaCsa ~ Wg(p’

then A is the limiting reactant. The same procedure can be shown to apply to reactions where there are

(2.224)

more than two reactants; i.e., if

Y Y5 Y,
< <o < , 2.22
WaCa  Wp(p Wi (2.225)
then A is the limiting reactant of n reactants. Therefore,
. . Y,
First Reactant Depleted = min (W c ) ) (2.226)

Note that the units of Y;, /W,,(,, are [(mass 1),/ (MasS 1) sgoic]/ (MaSS ) iz Also note that diluents
are not reactants and they are not depleted by the reaction. The min() function should only be applied
to fuels and oxygen, not to all species.

To determine the change in mass fraction, AY}", of reactant species & due to reaction m, multiply the
limiting mass expression by the stoichiometric mass of species k:

Y m
AY" = Wi mnin (WnnCn) . (2.227)

This expression has units of [(mass k) steic/ (MaSS 1) st0ic] X [(MASS 7)145/ (MASS ) 4z]. Since n is the
limiting reactant, the expression within the second set of square brackets is the change in mass fraction
of species 1 due to reaction m; this is because the limiting species 7 is completely used up in the reaction
(i.e., the mass fraction of species n goes to zero). The expression within the first set of square brackets
modifies the change in mass fraction of species 7 to yield the change in mass fraction of species k due to
reaction m. The change in mass fraction of product species k in reaction m is similar but without the
minus sign in the above expression.
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Since the reactions are given priority, the “products” of Reaction 1 are the “reactants” of Reaction 2.
The new mass fractions in the reactant stream for Reaction 2 are given by

Reaction 1
(Y;C)Reaction 2 reactants (Y}C)surr + AYk; caction . (2.228)

As noted above, the sign of the second term, :I:AYk,ReaCtiOI1 s positive for products and negative for
reactants. Similarly, the product composition from Reaction 2 is given by

o Reaction 2
(Yk)Reaction 2 products (Yk‘)Reaction 2 reactants + AYk . (2"2’2’9)
Here again the positive sign on the second term is used for products and negative sign is used for
reactants. Since the reactions are assumed to occur infinitely fast, the product composition for
Reaction 2 is the composition of the reaction zone,
(Yk)ﬂame = (Yk>Reaction 2 products * (2'2’30)

2.9.6. Conservation Laws

For convenience we restate the Favre-averaged species mass conservation equation, Equation 2.97,

aﬁffk - 1 i 83~/k —
o dV+/kaujnde:/<§+S—Ctt 8—%njd5+/wkdva (2.231)

where p is the time averaged density of the mixture, f/k is the Favre-averaged mass fraction of species k,
; is the Favre-averaged velocity of the mixture, /i, is the turbulent eddy viscosity, Sc; is the turbulent
Schmidt number, and wy, is the time-averaged mass production rate of species k per unit volume of the
mixture. This equation is solved on a mesh, one control volume of which is shown in Figure 2.9-1.
Within the control volume, the species & mass consumption/production rate,

Mk consumed /produced = Wi Veelt, is determined by the EDC model, assuming that the mass transfer
process into and out of the reaction zone from the surroundings (cf. Figure 2.9-1) can be represented as
a steady process,

(mk)consumed/produced = (mk)flame - (mk)su'r'r : (2"232’)

The mixture mass flow rate between the surroundings and the reaction zone is also assumed to be

steady,
(m)flame = (m)surr : (2‘2‘33)
Combining these two expressions yields

<mk)flam€ (mk)surr

(mk)consumed/produced = (m)flame - ( . )swr (m)flame

- [(Yk)ﬂame B <Yk)surr:| (m)flame ' (2.2,34)

It is convenient to normalize this equation with the mass of the control volume, or

(1) d/produced () l
consumed/produced  _ |, (Y :| flame . .
Mcell |:( k)flame ( k)surr Mcell (2 2’35)
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The term in the brackets is a function of thermochemistry only and is specified by the chemical
processes derived in the previous section. The second term, the normalized mass transfer rate, is a
function of the turbulent mass exchange rate between the reaction zone and its surroundings. The
derivation of this term is the subject of the next subsection.

2.9.7. Effect Of Turbulence On Combustion Rates

Magnussen derived the effect of turbulence on combustion rates in terms of high turbulence levels. The
derivation here will be for moderate turbulence levels for the flame geometry shown in Figure 2.9-2. The
derivation herein does not include proportionality constants. Rather, dimensional reasoning is used to
establish the relationship between reaction zone surface area, volume, and mass transfer rates with
respect to the prevailing turbulence levels. Constants of proportionality, taken from Magnussen’s
original derivation, are added at the end.

Characteristic scales are needed for the mass transfer velocity into the reaction zone, the reaction zone
surface area, and the reaction zone thickness. The mass transfer velocity into the reaction zone is a
velocity appropriate to diffusional length scales that are being modified by the local strain field induced
by the turbulent flow,

Mass Transfer Velocity o< v. (2.236)

An appropriate diffusional velocity is the Kolmogorov velocity, v, which is characteristic of dissipative
length scales (i.e., those in which the local strain field is being dissipated by diffusional effects). From

Kolmogorov’s definition, v is given by

)1/4

v=(ve)'", (2237)

where v is the molecular mixture kinematic viscosity (evaluated at the surrounding temperature), and €

is the rate of kinetic energy dissipation.

The reaction zone is characterized as a continuous flame sheet, highly wrinkled and wrapped around

large eddies. The volume of a large eddy is characterized by
Volumegqy, o< L3, (2.238)

where L is the characteristic integral length scale of the turbulence. The reaction zone area is assumed to
be proportional to both momentum and scalar influences. While all length scales of the turbulent
cascade contribute to wrinkling and stretching the flame, it is assumed that large changes in surface area
are associated with large length-scale fluctuations. Therefore, it is assumed that the square of the integral
length scale is the most appropriate turbulent length scale for characterizing the reaction zone area.

Species concentrations also affect reaction zone area. Obviously, if no fuel is present, no reaction zone
will be present regardless of level of turbulence present. The species influence are denoted by a
function, X, the rationale of which will be described later. Based on these arguments,

Areafigme X XLQ. (2.239)

To obtain property values for each zone in Figure 2.9-1, it is necessary to define the volume fractions of
the reaction zone and surrounding zones. The reaction zone volume fraction is based on a reaction zone
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area and a reaction zone thickness. Since the reaction zone is a strain modified diffusional zone, its
thickness is best modeled with a diffusional length scale that is characteristic of the turbulence-induced
strain field. Thus the reaction zone thickness is proportional to the Kolmogorov scale, 7,

Thickness figme o< 7. (2.240)

Kolmogorov’s definition of the diffusive length scale is

3 1/4
n= (—) . (2.241)

€

Since this is a characteristic scale analysis, the molecular mixture viscosity is evaluated at the
surrounding temperature. The actual reaction zone thickness will be larger due to the volumetric
expansion (i.e., lower density) in the reaction zone.

Based on these characteristic scales from the assumed reaction zone geometry in Figure 2.9-2,
expressions can be obtained for the mass transfer rate per total mass. The mass exchange rate into the
reaction zone per unit eddy mass is given by

mflame _ (mflame) (Maid?/) (2 242)
Mcell Meddy Mcell

The first term on the right hand side is given by

Mflame _ (SurroundingDensity) (FlameArea) (MassTransferVelocity)
Meaay (EddyDensity) (EddyVolume)

- (2.243)

The interpretation of the second term on the right hand side depends upon filtering used (i.e., averaging
over scales). For LES, the length scale of the eddy being modeled is proportional to the length scale of
the grid. In this case, the size of the eddy and the grid are the same. Therefore, the second term is unity.
In RANS modeling, the eddy is much larger than the grid, as is the reaction zone surface being
modeled. For RANS, it is assumed that averaged over a sufficient number of eddies, the mass exchange
rate into the reaction zone per unit eddy (first term) is uniformly distributed (i.e., independent of length
scale) up to the integral length scales. In this case the second term is irrelevant and is assigned a value of
unity. For example, for an integral scale eddy with a length scale ten times the grid, the mass transfer into
the reaction zone (averaged over many eddies) would be ten times the value for an eddy with a length
scale that is just the size of the grid.

Conservation of mass requires that the mass exchange rate into and out of the reaction zone be identical
so the properties can be evaluated at the thermodynamic state of either the reactant stream
(surroundings) or the product stream (reaction zone). For convenience, they will be defined in terms of
the reactant stream temperature and mass fractions. Using the characteristic length and velocity scale
arguments given above yields

mflame x (psum") (LZX) (U) _ XE Psurr .
Mcell (pcell> <L3) L Pcell
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The standard integral scale estimate [11] of the rate of energy supply to diftusive scale eddies is

TurbulentKineticEnergy u'? u?

€ EddyRollOverTime > L/ - (2.245)

The turbulence kinetic energy is given as

3
k= §ul2. (2.246)
Substituting and rearranging gives
k3/2
L ox —. (2.247)
€
Ignoring the constant of proportionality and substituting the results into the definition for the
Kolmogorov velocity gives
€ ve\ 1/4
v L <—> (—) . 2.248
AVE (2.248)
Substituting gives the mass exchange rate into the reaction zone per control volume in terms of standard
turbulence parameters,
mflame (VE)1/4 <€> Psurr
——— X (5 — ) x : (2.249)
Meen k2 k77 peen

The function Y is a scalar correction to take into account species effects on the reaction zone area. The
function is bounded between (o,1) with 1 representing optimal species concentrations which will
maximize the reaction zone area and o representing prohibitive species concentrations which would
prevent reaction zone formation. Two scalar properties are important, the reactant concentrations and
the product concentration (which acts as an ignition source since ignition is not assumed). Therefore,
the limiter is written as the product of two terms,

X = X1Xe2- (2.250)

The function x1 is intended to take into account the effect of the reactant mass fractions on the reaction
zone surface area. Since the reaction zone surface occurs at stoichiometric concentrations of fuel and
oxygen in a diffusion flame, stoichiometric concentrations of reactants in a control volume will result in
the largest reaction zone area (controlled by the turbulence levels). In this case, ) is unity. On the other
hand, if either fuel or oxygen is zero within a control volume, then ; is zero. Between these extremes, a
functional form is assumed which has the correct limiting properties. The function is given by

1
}A/;)xy + }A/;m“od }A/fuel + }A/;)rod
sz’n + Y;)rod szn + Y;)rod

X1 = , (2.251)

where the normalized mass fractions are defined below.

Overall reaction stoichiometry is determined from the sum of Reactions 1 and 2 in the chemical
reaction section (Equations 2.212 and 2.213). The overall reaction is

—9 _
CnH,N,0, + (m + %) Oy + > (C)Diluent =
(m)CO, + (g) H,0 + (g) Ny + 3 (C) Diluent (2.252)
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For the overall reaction, the mass ratio of oxygen to the mass ratio of fuel for stoichiometric reaction to

COgq and H5O is given by

Y n_q 32
R Do)
(YfUEl ) Optimal 4 2 12m +n + 14p —+ 16(] (2 253)

Since mass is conserved in the reaction, 1 + S kilograms of product (CO4 and HyO) are produced for
every kilogram of fuel consumed for a fuel/oxygen reaction. Note the mass of diluents, such as the
nitrogen in the air does not change, as a result of the reaction. It is useful to produce normalized mass

fractions based on the masses involved in the stoichiometric reaction.

> Y;J:r > 1/002 + Yh20 > Y, uel
Yvozy = Sy prod — H—S fuel — fl (2-254)

Note that the sum of these terms does not equal unity but one minus the mass fraction of diluent in the
mixture.

The actual reaction may involve the secondary fuels, so a more general expression is required for the
stoichiometric mass ratio of oxygen to fuel (and is used in the Vulcan code).

SO2FU - Yy +S02C0 - Y, + SO2H2 - V)9

5 = Yiuer + Yeo + Yo ’ (255)
SO2FU = (m * % a g) (12m +n —?—214]9 + 16q) ’ (2.256)
S02C0 = % (2257)
SO2H2 — % (2.258)

The product mass fractions are adjusted for the mass of nitrogen that accompanies the oxygen in air —
the nitrogen is treated as a product species. The normalized mass fractions are

~ Y;x ~ 3.39}/002 + 3-92Yh20 ~ quel
Y:)a: - Y rod — uel — '
TS prod 1+4.298 fuel = 77 (2:259)
where
MW, MW,
}/prod|602 = Yco2 (1 +3.76 2 ) ’ Y;77“Od|h2o = Yh2o (]- +1.88 MW 2 ) ) (2"2'60)
co2 h2o0

The molar ratio of nitrogen to oxygen in air is 3.76 and the mass ratio is 3.29. The production mass
fraction, Y),04, can be computed directly from the CO3 and HyO mass fractions as long as the only
source of product species in the flow field comes directly from combustion. If there is injection of
product species into the domain from a diluent stream or from an ambient concentration, then a
transport equation should be solved for the product mass fraction (see Section 2.9.12).

Since combustion always occurs at a stoichiometric surface in a diffusion flame, there is a limiting
reactant mass fraction in a fuel/oxygen mixture within the control volume unless the ratio is
stoichiometric. The limiting reactant mass fraction is given by

A

Y, .in = min (fffuel, }A/;xy> ) (2.261)
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The function X can be seen to approach the correct limits most clearly if the mass fraction of products,
Yrods is set to zero. If the mixture is fuel lean, Ymm = quel and x; is equal to the fuel to oXygen | ratio
which decreases to zero as the fuel mass fraction is decreased. If the mixture is fuel rich, Y, = Y;,Iy
and x is equal to the oxygen to fuel ratio which decreases to zero as the fuel mass fraction is increased.
At stoichiometric, X is unity.

The function s is intended to take into account the existence of reaction zone surface as a
precondition for reaction zone surface propagation. A stoichiometric surface without reaction can exist
in a flow field if there is no ignition source. An external source is required for ignition. However, once
ignited, reaction zone propagation can be interpreted as new flame surface being ignited by existing
adjacent reaction zone surface. A good indicator of existing flame surface is the presence of hot
combustion products within the control volume and this fact is used to create the function xs.

The value of x5 is zero if no combustion products are present. If the product mass fraction was
uniformly distributed, then the probability of ignition would increase with the ratio of product mass
fraction to reactant mass fraction. However, the combustion products are not uniformly distributed
but concentrated around the reaction zones, thereby increasing the probability of propagation of
reaction zone surface for a given product mass fraction. The assumed functional form of 5 that has
these characteristics is

( ExistingProductMassFraction >

B MaxFlameVolume (2.262)
Xz = MaxPossibleProductMassFraction 2202
CharacteristicProductVolume
_ ( CharacteristicProduct Volume ExistingProductMassFraction
N MaxFlameVolume MaxPossibleProductMassFraction /
The maximum volume of the reaction zone is the thickness times its area,
(Area - Thickness) jme L0 1 ‘
7= Volumecgay I (2263)
Using the definition for the Kolmogorov length scale and substituting the turbulence kinetic energy for
length scale, L, gives
Ve 3/4
¥ X (ﬁ) ) (2"2'64)

which is the maximum reaction zone volume per eddy volume. The value of 4'/? is bounded by one

since the length scale ratio of the flame volume to eddy volume cannot be larger than one.

The characteristic product volume can be defined by assuming the majority of combustion products are
held up within a distance corresponding to the Taylor microscale from the reaction zone surface,

(Area - Thickness), .,  L*X A
Volumeegay s T I

= (2.265)

Note that this assumption is used only to establish an ignition probability. For actual property
evaluation, it is assumed that the combustion products are well mixed with the surroundings. Taking
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the ratio of the volumes gives,

A
HEYNS (2.266)
Y n
Using the standard definition of this ratio (Tennekes and Lumley [11]) gives,
A
- = RelL/4. (2.267)
n

The Reynolds number can be defined in terms of turbulent kinetic energy and its dissipation by,

Rep, = —. (2.268)
ve

Substituting gives,

YE (2.269)

MaximumFlameVolume

(CharacteristicProductVolume> B ( 1 >

The existing product mass fraction is given by Y},,q. The maximum possible product mass fraction is
the sum of the existing products and the products that could be formed if all available reactants were to
burn. Since combustion takes place at a stoichiometric surface, the limiting reactant mass fraction is
given by Y,,.;,,. Therefore, x2 becomes

_ 1 varod (22 O)
AT A S o b 27
pro min

Functionally, x» can exceed unity but the product x1 X2 is limited to the range (o,1). The function x is
now completely described in terms of species and turbulence properties.

Combining all previous results gives the following result for species consumption/production,

(v, d/produced ve\1/4 re p
consume roauce Y o Y ] <_) (_) surr ’ .
Mcell X ( k)flame ( k)surr ( 2 k X Deell (2’ 2’71)

where  is defined above in terms of x1, Xo.

The above derivation is intended to provide a physical interpretation to Magnussen’s EDC model for
large fires typified by medium turbulence levels with diffusive combustion. Proportionality constants
are needed to close the model. As always, constants can be tweaked for a given flow to produce the best
result for that flow. However, we will use the constants as derived for more general flows (Ertesvag and
Magnussen [49]). With these constants, the model equations match those from the
KAMELEON-II-FIRE code (Holen et al. [50]).

Using these constants, the maximum reaction zone volume fraction is given by

ve\3/4
~v=09.7 (ﬁ) : (2.272)
Taking into account species limitations, the flame volume fraction is given by
ve\3/4
vx =9.7 (ﬁ) X- (2.273)
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The reaction rate of fuel is given by

(mk)consumed/produced ve\1/t re Psurr
i o | %) tame = (V) | (23.6 (53) (E)x( )X3)- (2.274)

Peell

The additional scalar function, X3 , at the end of Equation 2.274 is multiplier on the combustion rate
that Magnussen found necessary to maintain the mass transfer rate when the product concentration is
high in premixed flames. Its necessity suggests that perhaps alternate scalings should be examined, but
for consistency with the published model, it is implemented here as

A A

— min }/prod + szn 1 (2 2 )
X3 - }A/ ' 771/3 . . 75

2.9.8. Average Control Volume Properties

The volume and mass exchange process between the two zones is assumed to be constant over a time
step. Consequently, cell averaged properties for the mean flow equations are a volume weighted sum of
the properties in the two zones. Therefore, all control volume properties are given by

¢flame Vflame + Qbsurr ‘/surr

(bcell =
‘/cell

(2.276)

The maximum volume fraction of the reaction zone, v, was determined previously from momentum
considerations. The actual volume fraction is the maximum volume fraction times the scalar function,
X- The surroundings is the volume fraction that remains after the reaction zone volume has been
removed. Therefore,

¢cell = ¢flame ('VX) + ¢surr (1 - ’YX) . (2'-277)

Volume averaged properties given by Equation 2.277 are desired. However, the estimates used to obtain
X (i.e., Equation 2.272) are based on uniform cell temperatures. Clearly, the flame zone will be hotter
than the surroundings, so the volume fraction occupied by the flame will be larger than given by
Equation 2.277 (and the surroundings fraction smaller).

A first order non-isothermal estimate is made to account for flame volume fraction. This estimate
assumes that the non-homogeneous density field does not aftect the local turbulence field (or
alternately, that dilatation cancels the baroclinic generation) such that isothermal, isotropic,
homogeneous turbulence estimates for the turbulent kinetic energy, k, and its dissipation, €, hold. (This
assumption is made in virtually all models by the necessity that the fundamental research to quantify
the actual coupling has not been done.)

A mass balance then gives a first order estimate for the actual flame volume fraction at the flame
temperature. The actual flame volume at the flame temperature is given by its isothermal estimate times
the cell mean density (used to obtain the isothermal estimate) divided by the actual flame density.
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Thus, Equation 2.277 becomes,

Pcell Peell

Gcell = Pflame (7x) fl— + Gsurr (1 —¥X) . (2.278)
Where the mean density is given by
1_ —1
Pcell = (IYX) + ( ’YX) . (2"2'79)

Pflame Psurr

An interpretation of Equation 2.278 and Equation 2.279 is that 7y is, therefore, not a volume fraction
estimate but a mass fraction estimate. However, Reynolds, not Favre averaged properties are desired for
source term closure estimates. In this case, Equation 2.279, is intended as a non-isothermal volume
estimate, which the mass weighted isothermal volume estimate happens to be the best available
estimator until turbulence coupling in reacting flows can be elucidated. All cell averaged properties are
given by Equation 2.279. Equation 2.277 is intended for clarification only.

2.9.9. Limits Testing

Parameters in the EDC model take on limiting values in the presence of piloting conditions and
extinction conditions. The limits are discussing in the following subsections.

2.9.9.1. Ignition Criteria

Ignition will not occur in the above mechanism unless products are formed. An external ignition source
(or pilot flame) is simulated by setting X to be greater than zero (the product mass fraction is set to 0.2
times the maximum products that could be formed by the existing fuel in the current implementation)
in a cell with fuel and oxygen present. This can be done on a cell by cell basis to represent point ignition
sources, or in the whole domain if global ignition is required. If a pilot flame is to be simulated, the cells
associated with it have  set to be greater than zero for the duration of the calculation. If a transient
ignition (e.g., spark) is to be simulated, the cells initially have X set to be greater than zero. However,
after a minimum temperature is reached within a cell, 7,,, (K) (a user input), x is no longer specified
but calculated from the species concentrations and turbulence levels as derived previously.

2.9.9.2. Extinction Criteria

Extinction occurs when x = 0. This occurs automatically when the fuel and/or air is consumed. Local
extinction can also be caused within a cell due to high turbulence levels. At high turbulence levels, the
reaction zone can be appropriately modeled as a perfectly stirred reactor (PSR). A PSR blows out when
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the residence time is less than a minimum value for a given composition. The residence time, 7,5, in the
reaction zone volume is given by

Volume f1gme
Volume f1qme Volume,.;
Tros = — : ) (2.280)
VolumeFlowRate ¢;qme < M flame >
pS'U//‘T
( Mcell
Pcell
Simplifying gives
Tres = s X1 . (2.281)
( M flame ) Peell
Mcell Psurr
Substituting prior relations gives
ve\ 3/4
«(5z)
k2
res <V€)1/4 (6) . (2.282)
k2 K
Simplifying and substituting Magnussen’s constant of proportionality gives
1 v\ 1/2
res — & 1o \ _ . .28
Tres = 543 ( ¢ ) (2:283)

Comparison of the calculated residence time with a user input minimum residence time (based on
precalculation using a PSR and appropriate chemistry) determines whether or not combustion is
allowed to continue. If so, heat release is calculated as derived herein, and finite-rate effects are not
considered. However, if the calculated residence time is below the minimum value, X is set equal to zero
which causes combustion to cease within a cell.

2.9.9.3. Laminar Values

As currently formulated, the model assumes the flow is fully turbulent and does not model laminar
combustion. Minimum values for the reaction zone volume, v, and mass transport into the reaction
zone per mass in the cell, 712 fqme / Meen, are required in conditions with low turbulence levels to prevent
singularities.

2.9.9.4. Scalar Limits

The mass fractions of fuel, air, and products must remain bounded (o,1). This requires that the
consumption rate for the species with the limiting concentration times the time step must be less than
or equal to the mass of species.
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2.9.10. Cell Value Information Used By Model

The combustion model requires inputs from the transport equations for cell averaged variables at the
start of a time step. These variables include pressure, P, (dynes/cm?), species mass fractions Y;, density,
Peeir (g/ cm?), mixture molecular weight, Wiz, (g/mole), turbulent kinetic energy, k (cm?/sec?),
dissipation of the turbulent kinetic energy, € (cm?/sec?), mixture kinematic viscosity,  (cm?/sec),

individual (i.e., chemical plus sensible) enthalpies, h; (ergs/g), and mixture enthalpy, hcey (ergs/g).

2.9.11. Model Outputs

The two outputs of the combustion model are the species consumption rates and property estimates.

2.9.11.1. Species Consumption Estimates

Noting the general relation between cell averaged values and surrounding values, Equation 2.277, the
surrounding and cell mass fractions can be related to give

[(Yk) ftame — (Vi) cet
(I —=7x)

(00— O] = (289

Substituting this result and the definition of 7, into the species consumption/production rate gives
the source term in the species transport equation, Equation 2.231,

- [(Yk)flame - (Yk)cell] YX
Wg = X35 (2.285)
Tres 1 - /YX

for the species mass production/consumption rate in a control volume. The subscript & is understood

to be for each species, C,,,H,N, Oy, O, Na, CO, Hy, CO,, Hy0, and any diluents in the system.

2.9.11.2. Property Estimates

It is important in turbulent processes that nonlinear fluctuating quantities be appropriately
represented. Properties for which nonlinear fluctuations are important include the radiative emissive
power (proportional to the fourth power of temperature) and density.

To get the radiative emissive power, it is first necessary to get the temperature within each zone. This is
accomplished by iterative estimate based on the species mass fractions within each zone. Since total
(chemical plus sensible) enthalpy is used for each species, the total enthalpy per unit mass in the control
volume does not change between the reaction zone or the surrounding zone. The partitioning of
chemical and sensible enthalpy is different for the reaction and surrounding zone, but the specific total
enthalpy is equal to the cell value defined at the beginning of each time step. (Note: this is not a
statement of the energy equation, it is only a statement of property values within each zone and the cell.
Obviously, the enthalpy does vary after radiation transport is allowed to occur and species are allowed to
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advect between cells at the end of the time step as governed by the energy equation). The reaction zone
temperature, 1 'fqme, is obtained from iterative solution of

P flame = Z Yihi (T)‘ : (2.286)

flame

and the surrounding temperature, T, is obtained from iterative solution of

hsurr = Z Ykhk (T)

(2.287)

surr

The average emissive power is given by

JaT4rad =ox <T;}lame <7X) P + Ts4u7"7“ (1 - P)/X) & ) (ergs/ch_S)' (2"2‘88)

Pflame surr

An important assumption implied by the form of Equation 2.288 is that the turbulent fluctuations
between the temperature and absorption coefhicient are weakly correlated [8]. ( Note that the intent of
the averaging form above is to volume-weight the emissive power from the flame and surrounding
zones. This form implies that v should be viewed as a mass fraction rather than a volume fraction as
discussed for Equation 2.276. )

The density of each zone can be calculated according to the perfect gas law. For the reaction zone

volume, the density is

Ptthlame

== 2.28
Pflame RTflame ) ( 9)

where R is the universal gas constant and P, is the constant thermodynamic pressure. For the
surroundings, the density is

o Ptthurr
7

The soot model uses the temperatures, densities, and mass fractions of reaction zone and surroundings

(2.290)
according to the above estimates.

2.9.12. Combustion Products Transport Equation

The product mass fraction represents the products formed by combustion (CO4 and H,O for
hydrocarbon fuels, and HyO for hydrogen fuel). If any of the product species are injected into the
domain through either an initial condition or boundary condition to simulate a diluent stream or
ambient concentration, their influence must be removed in order for the 5 reaction limiter to function
properly. A transport equation similar to Equation 2.231 is used where the reaction rate is given by

Gprod = 339202 + 3.92402. (2.291)

This transported product mass fraction can only be formed due to reaction within the domain and
cannot be injected through either initial or boundary conditions. Therefore, the only boundary
conditions that are required are at an outflow so that products may exit the domain, and a zero value at
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any surfaces where a species Dirichlet condition is applied. All of these cases are handled automatically
so that nothing needs to be specified by the user.

Note that a pilot stream will be unable to ignite a flame when using this model. It will be treated as an
inert diluent stream, so that the normal ignition model will be required to ignite the flame. This model
in its current form should not be used for piloted flames.

Also note that if the only source of products in the simulation is combustion, then the product mass
fraction can be computed directly from the local species mass fractions and solving this transport
equation is unnecessary.

2.9.13. Chemical Equilibrium Models

The EDC combustion model uses a two-step chemical reaction, where the fuel species is consumed by
the reaction in Equation 2.212 to form CO and Hj, and then these intermediate species are consumed
by the reaction in Equation 2.213 to form CO4 and HyO. If oxygen is present in excess, then none of the
intermediate species will remain and only CO; and HyO will be produced. In reality, these reactions
would not proceed to completion, but instead would reach an equilibrium where some of the
intermediate species can persist. This can lead to a significantly different mixture composition and even
a different mixture temperature than what the standard EDC model would predict, especially at higher
temperatures.

Fuego includes two optional models that can include the effects of two independent chemical
equilibrium reactions into the standard EDC model, to better predict high-temperature combustion
species and temperatures.

2.9.13.1. CO, Dissociation Model

At high temperatures, the equilibrium reaction

1
CO, < CO + 502 (2.292)

becomes active to dissociate COq species back into CO and Oq, which has the effect to cool the gas
mixture. Including the effects of this dissociation reaction will help to control nonphysically-high
temperatures that might result otherwise.

This model will adjust the EDC-reacted mixture (Y})game in Equation 2.285 to include the effects of
equilibrium reaction 2.292. This equilibrium can be modeled by

—AGY
Kp:exp< 7 TT>’

where R, is the ideal gas constant, 7" is the temperature at which the equilibrium is being calculated, K,
is the equilibrium constant for this dissociation reaction, and AGY; is the standard-state Gibbs function

(2.293)
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change for this reaction. The equilibrium constant K, for Equation 2.292 is defined as

) ()"

K, = ( Pco2) : (2.294)

PD

where Pco, Po,, and Pco, are the partial pressures of CO, Oy, and CO., respectively, and P° is the
reference pressure taken as 1 atm. The standard-state Gibbs function change for this reaction can be
evaluated in terms of the Gibbs function of formation for each species at temperature 7',

o -0 1 -0 —0
AGT = (gﬁco + ng’OQ - gﬁCOQ) . (2295)
Tref:T
The partial pressure of species k can be computed by P, = X, P, where P is the static pressure of the
mixture and X, is the mole fraction of species &, defined as X}, = ny/ntot with the total number of
moles of all species being defined as nyor = Y, n;. After making these substitutions and simplifying, the

7
equilibrium equation that needs to be solved, written in terms of moles of each species in a fixed-mass

volume, is
1/2 1 o
nco ng, ( P ) 2 (_AGT) (2.296)
—2 | — | =exp ) 2.29
1/2
nco, iy \° R.T
Additional equations may be written to enforce conservation of C and O atoms within the reaction
volume,
Nc = nco +nco, (2.297)
No = 2nco, +nco + 2no,, (2.298)

where N¢ and No are the fixed number of moles of carbon and oxygen atoms, respectively, during the
equilibrium reaction. Equations 2.296, 2.297, and 2.298 represent a system of three equations that can
be solved for the three unknowns nco,, nco, and no, at the equilibrium state.

The numerical solution procedure begins by approximating the number of moles of each species from
the reacted mixture mass fraction vector Y; as n; = Y;/W,, on a per-unit-mass-of-mixture basis.
Eliminating nco, and ng, from Equation 2.296 yields a nonlinear equation that can be solved directly
for nco from the fixed atom balances at a fixed temperature 7" and pressure P,

PO _2AGO Ninert
n¢o (No — 2Ne + neo)— (?) exp (R—TT) (Ne — nco)? [ No +nco +2 Z n; | =0,
" j

(2.299)
Ninert

where ) n; represents the summation of the number of moles of all species present in the mixture

J
that do not participate directly in the equilibrium reaction, ze. all species except for CO4, CO, and
Os.

A standard Newton’s method may be used to iteratively solve 2.299,

nggl =Nl — %, (2.300)
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where the function f(nco) is Equation 2.299 and the derivative function f’(nco) is

f'(nco) = 2nco (No — 2N¢ + nco) + néo

(P, (206
P )P\ TR,T

Ninert
(NC — nco)2 -2 (NC — nco) <NO + nco + 2 Z T@)] .

J

(2.301)
Once this equation is solved for nco, then the following equations may be used to evaluate the
remaining equilibrium species moles,
nco, = N¢—nco (2302)
1
no, = 3 (No — 2N¢ + neo) - (2.303)

With the new molar mixture defined for the equilibrium species, the mass fraction vector may be
reconstructed by Y; = n;WW;. This new mixture composition will result in a different temperature since
the enthalpy is fixed. After the new temperature is evaluated, this entire procedure may be repeated
iteratively until the mixture temperature converges to within a specified tolerance.

2.9.13.2. H, Dissociation Model

Similar to the CO dissociation model described in 2.9.13.1, at high temperatures the equilibrium
reaction
Hy, < 2H (2-304)

becomes active to dissociate Hy species into H atoms, which has the effect to cool the gas mixture.
Including the effects of this dissociation reaction in addition to the COj dissociation reaction will help
to control nonphysically-high temperatures that might result otherwise.

This model will adjust the EDC-reacted mixture (Y};)game in Equation 2.28s to include the effects of
equilibrium reaction 2.304. This equilibrium can be modeled by Equation 2.293, with the equilibrium
constant defined as
()’
K, = L

= , (2.305)
(%)

PD

where Py and Py, are the partial pressures of H and Hy, respectively. The standard-state Gibbs
function change for this reaction can be evaluated in terms of the Gibbs function of formation for each
species at temperature 7',

AGT = (29%n — 3tat) gy - (2.306)

Simplifying this equilibrium expression and writing it in terms of the number of moles of each species
in a fixed-mass volume results in the equilibrium equation

2 o
—nH2 o~ (_PO) = exp ( RT ) (2.307)
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An additional equation may be written to enforce conservation of H atoms within the reaction
volume,
Ny = ny + 2np,, (2.308)

where Ny is the fixed number of moles of hydrogen atoms during the equilibrium reaction.
Equations 2.307 and 2.308 represent a system of two equations that can be solved for the two unknowns
nu, and ny at the equilibrium state.

Similar to the CO; dissociation model, the numerical solution procedure begins by approximating the
number of moles of each species from the reacted mixture mass fraction vector Y; asn; = Y;/W;, ona
per-unit-mass-of-mixture basis. Eliminating ny, from Equation 2.307 yields a nonlinear equation that
can be solved directly for ny from the fixed atom balance at a fixed temperature 7" and pressure P,

1 PO _AGO Ninert

Ninert
where > n; represents the summation of the number of moles of all species present in the mixture

j
that do not participate directly in the equilibrium reaction, ze. all species except for Hy and H.

A standard Newton’s method may be used to iteratively solve 2.309,

/() (2.310)
f'(nu)’ '

n+l _ . n
Ny =Ny

where the function f(ny) is Equation 2.309 and the derivative function f’(ny) is

L 1 (P —AGS
f'(ng) =2ny 2 (F) exp ( RT )

Once this equation is solved for ny, then the following equations may be used to evaluate the remaining
equilibrium species moles,

Ninert

J

1

np, = 3 (Ny — ny) (2.312)

With the new molar mixture defined for the equilibrium species, the mass fraction vector may be
reconstructed by Y; = n;W;. This new mixture composition will result in a different temperature since
the enthalpy is fixed. After the new temperature is evaluated, this entire procedure may be repeated
iteratively until the mixture temperature converges to within a specified tolerance.

2.10. LAMINAR FLAMELET TURBULENT COMBUSTION
MODEL

Laminar flamelet models for non-premixed turbulent combustion treat turbulent flames as an ensemble
of laminar diffusion flames. [s1] Nonequilibrium chemistry effects may be included in the model by
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accounting for localized fluid strain, resulting in what is classically called the Strained Laminar flamelet
Model (SLEM). Nonadiabatic effects may also be included by accounting for losses to the surroundings
in the ensemble of flamelets.

The fundamental assumption is that the chemical time scales of the important reactions are fast enough
that they occur only in a thin layer around stoichiometry, thinner (ideally) than the smallest scales of the
turbulence. Defining a small quantity € = yeaction zone/{mixing layer << 1, We can examine the governing
equations in that thin region using a multiscale asymptotic expansion as

Z(x,t) — Zs
Y;IE(C,T,,CE,t)—f—EY;l(C’T’Jj,t)—|—_.., CzuandT:t/E% (2"313)
€

Collecting the dominant terms, making some standard simplifications, and assuming that the chemical
reaction scales as €2, the state of the gas depends on the flow scale Z and y = 2D|V Z|*:

v, px 1 0%, . -
Yot 2 leoz  “P)
oT  px (0*T  10c,dT -
— === | - )=0
Por 2 (022 o 0z07)  “r®
and T(Z = 07 t) - Tox.: T(Z - 17 t) - ,-Tfuel, Y;(Z - 07 t) - }/i,ox., Y;(Z - 17 t) - }/i,fueh
with p = p(@) and ¢, = cp(é), (2.314)
where @ is the state vector ® = (P, T, Y0, Y1, ..., Yy). The approximation allows us to resolve the

chemical scales in the phase space of the mixture fraction instead of on a three-dimensional grid,
granting dramatic computational savings. If we make the additional assumption that the chemistry is
quasi-steady on the scale of the flow, then the chemical structure in mixture fraction space can be
pre-computed offline from the simulation for a range of flow parameters x and tabulated (using
fuego_tabular_props). During the flow simulation, the solution of the flamelet simulation can be
queried to determine required flow properties, e.g. p = p(Z, ). Note that the flamelet formulation in
Eq. 2.314 is specifically for a “two-stream” problem, with constant Lewis numbers, where the boundary
and initial conditions of the simulation can be completely described by linear combinations of two
constant state vectors. Additional “streams” and boundary heat losses will require additional transport
equations to be solved.

This section summarizes the basic formulation and implementation details of both the adiabatic and
nonadiabatic flamelet model and SLF model, including both the property table generation procedure in
fuego_tabular_props and the usage of the property table in fuego to evaluate turbulent filtered
quantities of interest for both adiabatic and nonadiabatic configurations.

2.10.1. Adiabatic Property Table Generation
2.10.1.1. Laminar Flamelet Generation

Unstrained flamelet libraries, where nonequilibrium chemistry effects may be neglected with respect to
fluid strain rates, can be generated directly with the fuego_tabular_props application. These
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libraries should be used either in laminar flow or in turbulent flow where the turbulence/chemistry
interactions may be neglected.

Equilibrium chemistry, Burke-Schumann chemistry, or nonreacting flow scenarios are supported in
configurations where there are two or more streams that may be mixed and potentially reacted. The
stream composition is parameterized by the mixture fraction vector Z,,, where each of the M
component represents the fraction of mass that originated in that stream, where there are N streams and
M = N — 1. The mixture fraction for the final stream may be evaluated as Zy = 1 — Mz

m=1 ~m:

The resulting flamelet data can then be assembled into a sequence of multi-dimensional tables of
dependent variable ¢ as a function of the mixture fraction vector, ¢(Z,, ), and can be used directly for
laminar simulations. Adding turbulence interactions, nonequilibrium effects, and nonadiabatic effects
will increase the dimensionality of this lookup table and require additional processing. See the following
sections for more information.

2.10.1.2. Strained Laminar Flamelet Libraries

Strained laminar flamelet data may be generated for use in Fuego with the Spitfire code. This data is
two-dimensional in nature, determined by the mixture fraction and a reference scalar dissipation rate X,
at a reference mixture fraction Z,. The instantaneous laminar scalar dissipation rate is defined as

07 07 (2.315)
8.732' 0557, ’ 2315

X =2D

with D being the molecular mass diffusion coeflicient. The reference value x, is arbitrary, although
typical choices include the stoichiometric value ys = X (Zs) or the maximum value

Xmax = X(Z = 0.5). Stoichiometric values are used in Fuego. After generating flamelet data with
Spitfire, the fuego_tabular_props application can be used to assemble it into a sequence of
multi-dimensional tables of dependent variable ¢ as a function of the mixture fraction vector and
reference scalar dissipation rate, ¢(Z,,, X,). These tables may be then be used to evaluate properties in
Fuego. Please see section 2.10.6 for details regarding the generation of flamelet libraries with Spitfire.

2.10.1.3. Turbulent Averaging

In turbulent simulations, a filtered form of the governing equations are solved to reduce the resolution
requirements to an affordable level. Temporal filtering is used in Reynolds Averaged Navier-Stokes
(RANS) models and spatial filtering is used in Large Eddy Simulation (LES) models. Both types of
filtering are represented with the notation ¢, and are handled similarly in the present work.
Density-weighted, or Favre filtering greatly simplifies the treatment of variable-density flow. A
Favre-filtered quantity is represented by ¢ = po/p. Please see the fuego theory manual for further
details.

For use in turbulent simulations, a Favre-filtered version of the variables in the property table must be
calculated. This is performed by convoluting the property variable with the joint PDF of the
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independent variable sub-filter fluctuations, and is mathematically expressed as

oo 1
5(Zm, 2. % / / O Zoms Xo) D(Zis X Zoms 27, %) AZ1 . (2.316)
0 0

where pz\ (Zi, X3 Zm, Z "2 X) is the joint PDF of sub-filter fluctuations of the dependent variable ¢ in
Zi-X space, parameterized by the filtered mixture fractions Z,,, and the variance 7 "2 of mixture fraction
component Z;, and the filtered scalar dissipation rate X. The reference scalar dissipation rate has the

functionality Xo(Z;, Z"*, X), which will be discussed in the following section. Variance of only a single
component of mixture fraction, Z;, is considered at present for simplicity, although extensions to
include additional components are possible. Statistical independence will be assumed between Z; and x
fluctuations, so that

1

o m,Z”Q X //¢ ms Xo) pz(Zz,Zm,Z”Q)px(x X)dZ; dx. (2.317)
0 0

For the present work, pz(Z;; Zm, ?’5) will be modeled as either a beta PDF or a clipped Gaussian PDF
and p, (x; x) will be modeled as the delta function 6 (x — X).

2.10.1.4. Property Table Implementation

The convolution integral in Equation 2.317 would be prohibitively expensive to evaluate each time a
value for ¢ is needed by a turbulent reacting simulation. Therefore, this integral will be pre-calculated
so that each property table query will only involve an interpolation from a table of values.

Storing the final &(Zy, 2", X) values directly is undesirable since the range of possible X valt values for
each flamelet is different, resulting in a non- orthogonal table. Instead, the values (bT( A ”2, Xo) are

stored in an orthogonal table that is indexed by Zm, Z ”2, and XO(ZI», Z "2, X). These tabulated values
are calculated by

_ 1 o
Sr(Zm 27 x0) = / N Zoms o) 2(Z55 Zons 27) A2, (238)
0

p——

The reference scalar dissipation rate x, needed for lookup in the table for <;5T( s 272 Xo) can be
evaluated from the local filtered scalar dissipation rate y through laminar flamelet theory. The
instantaneous scalar dissipation rate x can be approximated by

X = Xmax€XP (—Z[erfc_l(QZ)F)
= Xmaxe<Z)7 (2'319)
where Xmax is the maximum scalar dissipation rate found in the counterflow diffusion flame, which

occurs at the stagnation point where Z = 0.5. (Note that this expression has not yet been extended to
multiple mixture fractions, so that this treatment is only applicable for two-stream problems.) The
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value of x at any reference location in the flamelet can be similarly approximated, so that

Xo = XmaxFy(Z,). Combining these models by equating the unknown Xax yields a closed-form
expression linking the scalar dissipation rate at any location to the reference value on the flamelet with
the same characteristic X max,

X = Xo (2.320)

Applying the filtering operation in Equation 2..317 to both sides of Equation 2.320 for a single-mixture
fraction configuration yields

oo 1
_ F(Z) .~ )
v = [ [z ez Ptz -
0 0
0o 1 -
- FXOZ / pX(X;X)dX/ FX(Z)pZ<Z§Zaz”2)dZ (2.322)
X( 0) 0 0
1
Xo / ~ ’\/E
FX(ZO) 0 X( ) Z( )

so that the filtered reference scalar dissipation rate can be calculated from the filtered quantities
provided by the turbulent flame simulation as

X £ (Zo)

I F(2)p2(2; 2, 2% a2,

Xo(Z, 2" %) = (2.324)

To decrease computational cost, the integral in the denominator can be interpolated from

pre-calculated values in a two-dimensional table as a function of Z and Z"2.

To summarize, the turbulent reacting simulation will query the property table for the variable

&(Zm, 7" X). Internally, Equation 2.324 will be used to calculate ), as a function of the provided
filtered independent variables. This value will then be used along with the provided independent

—

variables to interpolate a value for &T(Zm, 7" X,) from the stored table that was pre-calculated with
Equation 2.318. This interpolated value will then be returned to the main simulation as the requested
value for ¢(Zp,, 2", X).

If turbulence/chemistry interactions are to be neglected in the simulation, the delta function §(Z — 2)
may be used for pz(Z; Z) in Equation 2.324 so that the reference scalar dissipation rate can be
computed simply as

Xo(Z,%) = =—. (2.325)

Once the multidimensional property table has been generated, it can be imported into fuego and

queried for the dependent variables as a function of the independent variables 7. 7" and X- Models
are required for each of these independent variables used by the flamelet property table.

Sections 2.10.3-2.10.5 present models for each of these quantities for each of the supported turbulence
closure models.
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2.10.2. Nonadiabatic Property Table Generation

When including the effects of radiative or convective heat losses in a flamelet simulation, additional
parameterizations beyond those in the previous section are required. These are the “conserved
enthalpy”, h* and heat loss parameter 7y, where the heat loss parameter is defined asy = h — h*. The
conserved enthalpy is identical to the traditional enthalpy except that its transport equation omits all
source terms (typically due to radiative losses).

This formulation is used as a way to parameterize losses in a manner that is consistent with the opposed
diffusion flame burner simulations used to generate the flamelet libraries. In these burner simulations,
the inflowing pure stream states are fixed and cannot experience any heat losses; Losses only occur in the
interior of the burner, and are represented by 7y variation. A range of inflowing pure stream states may
also be computed, and are parameterized through h* variation. In this way, the full range of possible
states may be tabulated and retrieved in a fire simulation through values of h and h*, which are both
straightforward to compute.

For turbulent simulations, the Favre-filtered property variable ¢ is evaluated as

8\,8

00 oo 1

é(Zm,ZHQ,)Z,:}/,h* / //¢ ms Xoy Yoy o) pZX'yh*(Zm7X777h*;
—00 — 0 0
Zom

V2", %7, W) dZ dx dy dB*, (2.326)

where 7, and h}, are reference values of the heat loss parameter and the conserved enthalpy, respectively,
to be defined in the following sections. Statistical independence will be assumed between fluctuations
of each Z,,, component, x, 7, and h*, so that

ST, 27, 3,3, 1) = / / / / / A Zons Xow You 12) 92,253 Z2s 27) s (Zom: Zo)
co—-—oc0o 0 0 0
Py 06 X) Py (3 7) oo (B 1) A Z; A Z i A dry dR*. (2.327)

For the present work, pz, (Z;; Zi, Z "2) will be modeled as either a beta PDF or a clipped Gaussian PDF,

and pz,, (Zim; Zm)s Dx (X X)> D4 (73 7), and pp« (h*; h*) will be modeled as the delta functions
6(Zm — Zm)> 6(7 —A)sand 8(x — X), 3(y — 7), and §(h* — h*), respectively.

The convolution integral in Equation 2.327 would be prohibitively expensive to evaluate each time a
value for ¢ is needed by a turbulent reacting simulation. Therefore, this integral will be pre-calculated
so that each property table query will only involve an interpolation from a table of values.

Storing the final ¢(Z,y,, 27’5, X, ¥, h*) values directly is undesirable since the range of possible X, 7, and
h* values for each flamelet is different, resulting in a non-orthogonal table. Instead, the values

QST(Zm, Z "2, Xo» Vo, P%) are stored in an orthogonal table that is indexed by Z 7 ”2, Xo(Zza Z 7" X))
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%(Z, 27’5, %), and hZ(Z, B*) These tabulated values are calculated by

1 1
éT(vaz/QameyouhZ)://(b m7X07707 o) pZ (ZMZZ?Z/Q) Z (vazm)dZ’LdZ”Wél
0 0

(2.328)
The required reference values of y, and h; are described in the following sections.

2.10.2.1. Boundary heat loss

The addition of a temperature boundary condition on the wall requires a modification of the flamelet
formulation of Eq. 2.314. The equation for a normalized temperature variable, § = T'/T; — 1, is

8, (p0) +V - (pub) — V- (A\V6) = Lp = wr(0,Y) inQ (2.329)
O(x € 00%uel) = Otuel, O(x € 000x) = 0, and O(x € Oyan) = Owan, (2-330)

which now has an extra boundary term §(x € 0$yan) = Oyan. The extra boundary condition remains
when we apply the flamelet approximation, leaving 0(Z = Zya1) = Oyan. The value of the mixture
fraction at the wall, however, is undecided: we only know that VZ - n = 0. During the simulation, the
value of mixture fraction directly evaluated at the wall can be determined dynamically and the value of
temperature can be computed. Away from the wall, however, one in principle would need to follow the
¢ coordinate from the flamelet transformation until it intersects the wall. However, given that

VZ -n = 0, the gradient trajectory in principle is tangential to the wall. Although the flamelet
equation itself is well-posed, the asymptotic derivation of the flamelet model in the very near region to a
nonadiabatic wall and the equations need to modified in some fashion to account.

Flamelets can readily be described when they are adiabatic; in the limit of unity Lewis numbers and
adiabatic systems the enthalpy is a linear function of the mixture fraction. The existence of radiative
transport and wall heat transfer introduces deviations from this linear relationship between h and Z.
Heat losses at the predominant boundary temperature are a common scenario. Defining a reference
‘boundary temperature’ at 75, (Z) = (1 — Z)Tox + ZThye, then this case a simplified flamelet

temperature equation with heat losses could be written as

1 .
pO T — §pxa§T = wp(®) — Hp(T — Tg) (2.331)

where Hp represents a heat transfer coefficient that will be further discussed below. This gives a heat
loss term that is linear in 7". Alternately, the heat loss can be written specifically for radiative-style losses,
Qrosses = 0(5) (T* — Té). Regardless, with heat loss expressed in terms of 7%, the flamelet enthalpy is
no longer linear in Z but instead takes on a roughly inverted triangular form with an extrema at the
peak temperature, roughly Z,;. This has led us to express the difference between the adiabatic enthalpy,
defined as he = hox(1 — Z) + hfyerZ, and the actual flamelet computed enthalpy, h,asy = h — h,.
The introduction of 7 is done strictly as an expedient for generation of flamelet libraries. By assuming a
triangular form (or any particular assumed form) we can stretch the table entries into a square format by
tabulating as a function of the stoichiometric value of ~y,. This does require the use of the assumed
form for y for converting from the local Z value of v = h(Z) — h.(Z) to Y. Comparison with DNS
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and unsteady flamelets for laminar flames shows good agreement with this type of enthalpy defect
model for radiation in unity Lewis number flames (which is an appropriate assumption for turbulent,
hydrocarbon fires) [s2]. We make an assumption of path independence for the solution of at particular
integrated heat loss, but in reality the solution will depend somewhat on the value of Hr and the form
of the added heat loss term.

The compensation for boundary heat loss can be extended to a full range of temperature (below 7% ) in
the flamelet libraries by not only including an integrated heat loss rate from the flamelets, but also a
translation of the flamelet in enthalpy space. This translation is simply denoted ~*, where the conserved
enthalpy line is shifted as b, = hox(1 — Z) + hgwer Z + h*. This allows a ful description of wall
boundary heat loss. Having two heat loss parameterizations, however, makes the lookup procedure
non-unique, requiring a method for deciding which point on (7, 2*) to use for the flamelet lookup. We
prefer v and use 7y as much as possible. When 7 is insufficient, which would is the case for overly cold or
hot walls (wall temperatures outside of the range of temperatures spanned by the solutions of Eq. 2.331).
At the wall boundaries, the conserved enthaply is defined to not be affected by heat loss while the true
enthalpy is, providing 7y at the wall.

2.10.2.2. Property Table Heat Loss Parameterization

For nonadiabatic flamelet library generation and tabulation, a functional form for the heat loss
parameter 7y in terms of reference quantities is required, similar in concept to the form of x in
Equation 2.319. The value of 7y must be zero in each of the pure streams, and should have a maximum
value near the stoichiometric flame sheet since this quantity typically represents radiative losses to the
environment. A piecewise linear functional form is selected for simplicity. For a single mixture fraction,
this form is simply

7 =" F’Y(Zv Zo)a (2‘-332')

where 7, is a reference heat loss at reference state 7, (selected to be the stoichiometric condition Zg;)
and the nondimensional function F,(Z, Z,,) is defined as

Z I < Z
F(Z,Z,) = { foy ~ (2.333)
K = 4> Z
For multiple mixture fractions, 7y is calculated by
Y=Y F’y(Zma Zo,kma P)/(T]jx)a (2“334)

where 7, is the maximum-magnitude reference heat loss in the vector 7', which contains the

reference heat loss parameters corresponding to maximum thermal losses for the /& stoichiometric
mixture fractions that can be defined between stream pairs, Z,, j,,. The multiple stoichiometric mixture
fractions are necessary because a single unique stoichiometric mixture fraction does not exist when
using multiple mixture fractions.

The functional form for F, is quite complex for multiple mixture fractions, and will only be described
briefly here. In general, for a three-stream problem, there are two independent mixture fractions and the
realizable mixture fraction space is the triangle where the two mixture fractions sum to a value less than
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or equal to unity. The value of F, must be zero at the “corners” of this space, where the coordinates are
(0,0), (0,1),and (1, 0). The multiple stoichiometric mixture fractions between stream pairs will define
points along the boundaries of this realizable mixture fraction space that represent local maxima in the
heat loss distribution along that boundary. Straight lines may be used to connect these points in
mixture fraction space, forming a “ridge” in the multidimensional F, distribution. When definable, a
linear fit is used between this ridge and a corner where 7y is zero. When not uniquely definable, linear fits
are used between the ridge and the adjacent boundary value along rays extended from the opposite
corner of the state space. Note that the values 7, , are required for the calculation of F, so that the final
function may be normalized to a unity maximum value with appropriate relative scaling between the
boundary heat loss values. Note that no more than a three-stream configuration is currently supported
by fuego_tabular_props.

Applying the filtering operation in Equation 2.327 to both sides of Equation 2.334 yields

// Zm7ZOkma’70k )pZ (ZzaZmZN2) (Zmyzm>
0

N
I
\
\
0\8

px(xic Dy (7 7) pue (B B*) A Z; A Z i dx dy A (2.335)
= pi-(R*; 1*) dh* / py () dy / (X X) dx
0

—00 —00
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1
/ / E(Zun Zoons V) p2(Zi: 20, 2°) i (Zos o) Q20 A0z (2336)
0 0

= % / / F7<Zm7 Zo,kma vzlgx) pzi(ZZ‘; Zm, Z”2> pZm(Zm; Zm) dZZ dZm#zﬁ (2.337)

so that the filtered heat loss parameter can be calculated from the filtered quantities provided by the
turbulent flame simulation as

ey 3
VO(ZTrH Zl/z?’}/) = 11 ~ o N * (2"338)
f f F’y(Zma Zo,k:ma 72?2)() pZz(Zza Zi7 ZNQ) Pz, (Zm7 Zm) de dZm;éz
00

To decrease computational cost, the integral in the denominator can be interpolated from

pre-calculated values in a multi-dimensional table as a function of Z,,, and Z”*. Equation 2.338 can be
used during a simulation to convert filtered independent variables to the reference heat loss parameter
required to perform table lookups to retrieve .

If turbulence/chemistry interactions are to be neglected in the simulation, the delta function

—_—

Z; — Z) may be used for py, (Z;; A4 "2) in Equation 2.338 so that the reference heat loss parameter
can be computed simply as

7
F')/(Zma Z Jkmy V;n/?x>
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2.10.2.3. Property Table Conserved Enthalpy Parameterization

For nonadiabatic flamelet library generation and tabulation, a functional form for the conserved
enthalpy A" in terms of reference quantities is required. The value of h* should vary linearly within the
range provided for each of the pure streams as a function of a reference heat loss parameter /), with an
appropriate stream-weighted blending for all other compositions.

The stream-weighted mixture properties are computed with an augmented mixture fraction vector Z,,
in terms of Z,,,

M
Z;L: ZI7ZQ7"'7ZM71_ZZm ) (2’340)
m=1

where the last component is simply the last implied mixture fraction to recover a unity sum. A reference
augmented mixture fraction is defined as the centroid of the realizable mixture fraction space with each
component being identical and equal to

Loy = N (2.341)

From these definitions, minimum and maximum reference conserved enthalpy values may be computed
as

N

* _ § : * /

o,min hstream,min,n Zo,n (2'342')
n=1
N

* _ z : * /

ho,max - hstream,max,n Zo,n? (2'-343)
n=1

where h* and h*

N ream. min.n Stream.max.n A€ vectors of the minimum and maximum conserved enthalpy in
pure stream n, respectively. The conserved enthalpy can then be modeled as

h* = h;knimZ + (h’z - h‘:,min) az, (2‘344)

where the mixture-weighted minimum conserved enthalpy is

N

* _ § : * !

min,Z ~ hstream,min,n Zn (2"345)
n=1

and the mixture-weighted stream variation proportionality constant is

N B —h*
_ stream,max,n stream,min,n Z/ 6
az = E (rE— - (2346)
0,max o,min

n=1

Applying the filtering operation in Equation 2.3277 to both sides of Equation 2.344 yields

iL* = B:nin,Z + (h: - h:,min) dZ’ (2‘34‘7)
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where the two mixture-weighted quantities are now expressed in terms of the augmented filtered
mixture fraction as

mm zZ = § hstream min,n n (2'348)
and
* *
~ hstream max,n hstream ,min,n Z/
az = E— n- (2349)
n=1 o,max o,min

This allows the reference conserved enthalpy to be expressed in terms of the filtered quantities provided
by the turbulent flame simulation as

ot 7 h* - iL;knin Z
hZ(Zﬂ”H h*) = h‘z min ~ —. (2“350)
az

2.10.3. Filtered Scalar Dissipation Rate

2.10.3.1. RANS Model

For RANS turbulence closure models the instantaneous laminar scalar dissipation rate given in
Equation 2.315 can be Favre-filtered and expanded to the form

N 07 07
PX = 2pDo—o- (2.351)

07207 07" 97 _97"9Z"
Jz; Ox; 40D Ox; 0x; +2pD ox; Ox; (2352)

The middle term on the RHS is neglected for constant density flow [53]. The first term is referred to as
the mean scalar dissipation rate

—-0Z 0Z

DXm = 2pD .

pX PP o o, (2:353)
and the third term is the perturbation scalar dissipation rate p,,. This term can be modeled as
aZ// 82//

0Xp = 2pD .

PXp D as, (2.354)
_€m

~ C\p %Z"2 (2.355)

—_—

for RANS-based turbulence closures where ;- provides an inverse turbulence time scale, Z "2 is the scalar
variance that will be modeled in Section 2.10.5, and C is a model constant that typically has a value of

2.0. [51]

Expressing the molecular mass diffusivity as pD = p/Sc, where 1 is the molecular viscosity and Sc is
the Schmidt number, the modeled total filtered scalar dissipation rate for RANS closures is

X = Xm‘i_ip (2'356)

21 0Z 07 —
-———-—+C, Sqm. .
p Sc 0x; Ox; + Xk (2357)
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2.10.3.2. LES Model

For LES closures Equation 2.356 also applies, so that the total filtered scalar dissipation rate is the sum of
the mean and the perturbation scalar dissipation rates. The mean scalar dissipation rate is expressed
identically to RANS closures as

- 2p0Z0Z
N ;5§ Ox; 0x;

The perturbation scalar dissipation rate X,, represents the sub-filter dissipation of scalar variance, and
can be modeled by assuming that sub-filter dissipation is in local equilibrium with sub-filter production,
and that the sub-filter production can be modeled with a gradient transport assumption as [54]

Xm (2.358)

07" 07" S} A
5%, = 2pD = 20U 7" .
— 36
SCt 3@ 8IZ” (2 3 O)

where £, is the modeled turbulent eddy viscosity and Sc, is the turbulent Schmidt number.

This results in the final modeled form for the filtered total scalar dissipation rate for LES closures,

X = Xm+Xp (2.361)
o 2 (B 02 07 (2.362)
~ 5\Sc " Se, ) 9z 07 =352

2.10.4. Filtered Mixture Fraction

The primary quantity used to identify the chemical state in Flamelet closure models is the mixture
fraction, Z. While there are many different definitions of the mixture fraction that have subtle
variations that attempt to capture effects like differential diffusion, they can all be interpreted as a local
mass fraction of the chemical elements that originated in the fuel stream. [ss] The mixture fraction is a
conserved scalar that varies between 0 in the oxidizer stream and 1 in the fuel stream, and is transported
in laminar flow by the equation

opZ  Opu;Z 0 07
= = D 36

ot " om " om (p axi) (2:363)
where D is an effective molecular mass diffusivity.

Applying either temporal Favre filtering for RANS-based treatments or spatial Favre filtering for
LES-based treatments yields

(2364)

= —Ty, + —
ot oz, T2u; oz,

opZ , opuZ 9 (ﬁD8Z>,
0@»
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where sub-filter correlations have been neglected in the molecular diffusive flux vector [56] and the
turbulent diffusive flux vector is defined as

Tou; = P (?u/Z — Zﬂl> . (2.365)

Similar to species transport, this sub-filter correlation is modeled in both RANS and LES closures with
the gradient transport approximation

o4
(9%-’

Tzu; = —pDy (2.366)
where D is the turbulent mass diffusivity, modeled as pD; = j1;/Sc; where (1, is the modeled turbulent
viscosity from momentum transport and Sc; is the turbulent Schmidt number. Please see the Fuego
theory manual for further details. The molecular mass diftfusivity is then expressed similarly as

pD = 11/Sc so that the final modeled form of the filtered mixture fraction transport equation is

opZ  opu,Z 0 w07
—_ = — 4+ — 36
ot " Tom  om [(sc "3 ) o (2:367)
In integral form as used in Fuego, the mixture fraction transport equation is
——dav iZn; dS = ; dS. 368
ot +/pu i / ( Sar axzn (2.368)

2.10.5. Filtered Scalar Variance

2.10.5.1. RANS Model

For RANS-based turbulence closures, a transport equation is solved for theﬁltered scalar variance, Z".
This equation can be derived by subtracting Equation 2.364 multiplied by Z from the filter of the
multiple of Equation 2.363 and Z, yielding

052" 9 [ =  /—— d 577 9 Y
7 - _ AL D Q712 D
ot om; (‘”“ ) oz, (pul ) * om (’) oz, ) R <p (91:1-)
—rer 07 92" 07"
—2puiZ oz, 2pD 0z, 0z, (2:369)

where the filtered mixture fraction variance is defined as Z"? = 7% — Z2.

All five terms on the RHS of Equation 2.369 require closure models. The first term represents turbulent
transport of mixture fraction variance, and is modeled by a gradient-transport assumption as

- L 821/2
_ "7n2 g . .
pU; Se, o, (2:370)
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The second and third terms on the RHS of Equation 2.369 taken together represent molecular
diffusion of mixture fraction variance, and is typically neglected with respect to turbulent transport for
sufficiently high Reynolds numbers. Its effects are included here with another gradient-transport
assumption of the form

) YA 0 Y o [ uoz"
12 ~ -
ox; (pD ox; ) 22 ox; (pDax) = Oz, (Sc or; > ' (2371

The fourth and fifth terms on the RHS of Equation 2.369 represent production and dissipation of
mixture fraction variance, respectively. The production term is similarly modeled with a gradient

transport assumption as

02 Lt YA
—2pul! 7" — =~ 2— . )
P 8'751 SCt 8:61 a%z (2‘ 372)

The mixture fraction variance dissipation rate term is equal to the perturbation scalar dissipation rate,

aZ// 82" .

)

previously defined in Equation 2.354 and modeled in Equation 2.355. An identical treatment of this
term is used here.

The final modeled form of the filtered scalar variance transport equation for RANS turbulence closure
models is

0p2” | <pu23) 0 [ < i, ut) 07" 1w 87 07

Sc, 9z, 9z, PXp- (2.374)
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2.10.5.2. LES Model

—_—

For LES turbulence closures, the filtered scalar variance Z”? can be modeled with the scaling law [s4]
07 0Z (2375)
axl aajzﬂ 2"375

where A is a length scale corresponding to the grid filter size and Cy is a model coefhicient. For the £%8°
closure and the non-dynamic Smagorinsky closure, Cy, has a fixed value of 0.5. For the dynamic
Smagorinsky LES closure, C'y can be dynamically calculated based on the local instantaneous

flowfield.

Pz ~ Cypl\’

To dynamically evaluate the filtered scalar variance model coefhicient, begin by defining the grid
filter-scale correlation

Tz//2 = ﬁZ//Q (2"376)
= pZ*—pZ’ (2377)
—\ 2
- (pZ
= pZ?— % (2.378)
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Similarly, define an equivalent correlation at a larger test-filter scale

—\ 2
_ (PZ>
TZ//2 = pZ2 —_ . (2'379)

Now, define the quantity L z»2 as a combination of these two correlations which reduces to an
expression that can be evaluated in closed form,

Lywe = Type —Tym (2.380)
—=\ 2
— (0?2
_ oL (2381
p

By modeling the two correlations in Equation 2.380 and equating them to Equation 2.381, the model
coeflicient Cy can be dynamically evaluated. The correlations at the two filter scales are modeled
analogously as

~\ 2
A =~ CVﬁAz <§Z> (2382)
€
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where A is the characteristic test filter length scale and Cy, is assumed to be the same at both scales.

2

TZ//2 ~ CVﬁA2 9 (2"383)

Notice that when the modeled forms of 742 and T’z are inserted into Equation 2.380, C'y appears
inside a test filtering operation. Formally solving this system of equations for C'y requires the expensive
solution of an additional set of coupled integro-differential equations [57]. Alternatively, it is common
practice to remove Cy, from the test filter with the assumption that it is varying slowly over distances on
the order of the test filter size. This greatly simplifies calculations, although it can result in non-physical
oscillations in the modeled value for Cy,. The square of the error involved in this approximation is

Q = (LZ//2 — Cszl/2)2, WhCI'C

—=\ 2
—  (p2)
LZI/2 = ﬁZz — T (2,384)
) /\
- ~\ 2
My = pA® 0 <p§> — pA? <62>. (2-385)
ox; \ p oz,

Minimizing this error in a least-squares fashion with respect to C'y yields an expression for the modeled
coefhicient,

LZ//Q Mzu2
MZ//2 Mzu2 ’

that can be used directly in Equation 2.375 for the filtered scalar variance.

Cy (2-386)
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Due to the above simplifications, the model coefficient C'y; can sometimes fluctuate wildly, possibly
leading to numerical instabilities. A common solution to control these oscillations, and the one that is
taken here, is to pass the numerator and denominator of Equation 2.386 through a test filter, yielding

LZ//Q Mzu2

Cy = ———.
MZ//QMZ//Q

(2.387)

This can be crudely justified by recognizing that C'y, was already assumed to vary slowly over distances
equal to the test filter size, so that this filtering operation is simply enforcing that assumption.

2.10.6. Generating Flamelet Libraries with Spitfire
2.10.6.1. Introduction

Spitfire is a Python-C++ code used to solve low-dimensional combustion problems as a preprocessing
step in building tabulated chemistry models for turbulent, sooting fires. In tabulated chemistry models
we constrain the thermochemical state space to a manifold over a small number of reaction variables
which are often conserved scalars. There are two essential steps in building a tabulated chemistry model.
First, solve representative problems such as perfectly stirred reactors or nonpremixed flamelet models,
often performing continuation over parameters such as residence times, scalar dissipation rates, or heat
loss parameters. Second, use the solution data to build a property reconstruction model with either
structured interpolation tables or unstructured regression models (e.g., artificial neural networks).
Currently Spitfire solves nonpremixed flamelet equations over parameters of interest and forms the data
into a structured table, after which the Tabular Props application is used to build multidimensional
B-spline representations of properties which may be queried during a simulation by Fuego.

2.10.6.2. User Interfaces

There are two ways for a user to build a flamelet library with Spitfire. The simplest interface, likely
sufficient for most users, works through a simple YAML-style input file, which can be passed to generate
any of a set of ‘standard’ tables. Section 2.10.6.3 shows several examples of the YAML interface.

The second interface, recommended for developers and advanced users, involves the use of Python. At
the cost of a little bit of Python programming, this interface offers extensibility, generality, and more
precise control than the input file interface. For instance, one can define arbitrarily-complex post
processors for tabulated properties, which would enable straightforward parameter studies in soot
modeling, for instance. Another examplary use of the Python interface is to generate nonadiabatic
flamelet libraries with quasisteady heat loss (a core Spitfire regression test, actually) instead of the
transient heat loss allowed by the input file interface. The conda package manager may be used to
facilitate installation of Spitfire’s external Python and C++ dependencies, as described in the
SpitfireCore projectin the Spitfire repository group at
https://cee-gitlab.sandia.gov/spitfirecodes. Documentation and examples of the
Python interface may be found there as well.
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2.10.6.3. Using the YAML Interface

On the CEE LAN the YAML interface to Spitfire has been sandboxed into a standalone executable.
This removes the need for users to maintain a Python interpreter with Spitfire installed or manage
runtime dependencies with paths and environment variables. This reduces the required input down to
a chemical mechanism data file in Cantera XML format and an input file for Spitfire. A flamelet library
may be generated with the following commands. First, load the sierra module to make the Tabular
Props application available. Next, run the standalone generate executable on the input . yaml input
file. The -n 8 argument tells Spitfire to use eight cores wherever possible. The -t flag tells Spitfire to
run Tabular Props on its output, meaning that after Tabular Props completes a library file will be ready
for immediate use with Fuego. Next we discuss the required chemical mechanism data file and show
some examples, spanning a simple mixing library to a nonadiabatic, turbulent strained laminar flamelet
with soot source terms and radiation sources.

$ module load sierra

$ /usr/netpub/mahanse/spitfire_table/generate -i input.yaml -n 8 -t

Before showing some examples, we note the “parse-only” mode, which only parses the YAML input file
and dumps a comprehensive version with all defaults included. This is helpful when learning how to
specify new parameters or examining defaults that are implicitly set.

$ /usr/netpub/mahanse/spitfire_table/generate -i input.yaml -p

2.10.6.4. Chemical Mechanism Data

Spitfire uses the Cantera code to manage the specification of thermodynamic (species heat capacities),
transport (viscosity model parameters) and kinetic rate parameters. This data must be provided in
Cantera’s XML format. A number of chemical mechanism files are provided in the Spitfire code
repositories, and the standalone executable provides several useful mechanism data files listed in
Table 2.10-1. Many mechanisms of interest for fire scenarios are available online from various sources,
and Cantera provides thorough online resources for building mechanism files from scratch if desired.

Table 2.10-1.. Chemical mechanism data packaged into the stan-
dalone Spitfire executable

XML Fuel Reference

heptane_LiuEtAl.xml  heptane Liuetal. (2004)
ethylene_USC.xml ethylene  Wang et al. (2007) (USC-mech)
ethylene_LuoEtAl.xml ethylene Luo etal. (2012) (reduced USC-mech)
methane_GRI30.xml methane GRI-3.0
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2.10.6.5. Simple Mixing Library

The following input is as simple as it gets, which may be used for a mixture of air and n-heptane that is
not reacting (e.¢., cold flow). First, the chemistry-type of the mixture fraction model is specified.
This must be one of unreacted (pure mixing), Burke-Schumann (idealized combustion),
equilibrium (infinitely fast chemistry), or SLFM (strained laminar flamelet library). Next, the Cantera
mechanism data file is specified (using the pre-packaged n-heptane mechanism). Following that, the
mass fractions and temperature of the oxidizer and fuel streams are given. The mass fractions may be
specified in any acceptable format for Cantera, but a comma-separated list as shown here is often the
most convenient option.

mixture -fraction-model:
chemistry-type: unreacted
cantera:
xml: heptane_LiuEtAl.zxml
oxidizer:
temperature: 300
mass-fractions: ’N2:0.767,02:0.233°
fuel:
temperature: 300
mass -fractions: ’>NXC7H16:1°

This input will produce a flamelet library with the following properties: temperature, viscosity, density,
and isobaric heat capacity of the mixture. By default, Spitfire will write output to the
spitfire_output directory (set with output-directory), all intermediate data will be saved (set
with save-intermediate-data), and the table for Fuego will be named table_for_fuego.hb
(set with fuego-table-file-name). If defaults are unclear or you want to know what else could be
specified, you can run Spitfire in parse-only mode to see a comprehensive summary of the expanded
input file with all defaults and options. Another option is to generate a table and check the output
directory for the file named complete_spitfire_input.yaml, which contains the same
information as the parse-only mode produces.

2.10.6.6. Simple Equilibrium Library

There are a number of default parameters left unspecified in this first example. Among the most
important are the pressure (defaults to 101325 Pa), heat-loss-type (defaults to adiabatic), and
turbulence-type (defaults to laminar). For instance, to generate the data for an equilibrium
chemistry model at two atmospheres, one could change the chemistry-type and directly set the
pressure. In addition to the properties that are always tabulated, it may be interesting to visualize mass
fractions of certain species in the Fuego simulation. They may be added as shown below.

For equilibrium chemistry it may be important to set details of the grid in the mixture fraction
dimension. In the adjacent example the number of grid points is set to 96 (overwriting the default of 32)
and details of the automatic grid clustering are specified. Spitfire uses a grid clustered around the
stoichiometric mixture fraction by default (leave grid-cluster-point unspecified or specify
stoichiometric to accomplish this). The default value of the grid-cluster-intensityis 4, and
increasing this number leads to a more tightly clustered grid. In cases where a uniform grid is preferred,
simply set the grid-type to uniform.
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mixture-fraction-model:
chemistry-type: equilibrium

mixture-fraction-model: pressure: 202650

chemistr type: equilibrium cantera:
y-type: eq xml: heptane_LiuEtAl.zxml
pressure: 202650 .
oxidizer:
cantera: temperature: 300
L3 NSRRI BIEBELL, ¢ mass-fractions: ’N2:0.767,02:0.233°
oxidizer:

fuel:
temperature: 485
mass-fractions: ’NXC7H16:1°
tabulated-quantities:
mass-fractions:
- OH
- C2H2
mixture-fraction:
grid-points: 96
grid-type: clustered
grid-cluster -intensity: 6
grid-cluster -point: 0.1

temperature: 300
mass -fractions: ’N2:0.767,02:0.233”°
fuel:
temperature: 485
mass -fractions: ’>NXC7H16:1°
tabulated-quantities:
mass-fractions:
- OH
- C2H2

2.10.6.7. Laminar, Adiabatic SLFM Library

To generate a strained laminar flamelet model, the only required change from the simpler examples is
that the chemistry type be set to SLFM. However, we often prefer to specify the number and
distribution of grid points in the mixture fraction and dissipation rate dimensions. For more
information, run Spitfire in parse-only mode with -p to see an expanded input file.

mixture-fraction-model:
chemistry-type: SLFM
heat -loss-type: adiabatic
turbulence -type: laminar
cantera:
xml: heptane_LiuEtAl.zxml
oxidizer:
temperature: 300
mass-fractions: ’N2:0.767,02:0.233?
fuel:
temperature: 485
mass-fractions: ’NXC7H16:1°
mixture-fraction:
grid-points: 96
scalar -dissipation-rate:
grid-points: 36

2.10.6.8. Turbulent, Nonadiabatic SLFM Library

In this final demonstration we incorporate heat loss, radiation and soot source terms, and a presumed
PDF model for turbulence-chemistry interaction. For more information on parameter settings, run
Spitfire in parse-only mode with -p to see an expanded input file.
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mixture-fraction-model:
chemistry-type: SLFM
heat -loss-type: nonadiabatic-defect
turbulence-type: turbulent
presumed -PDF:
PDF-type: ClipGauss
integrator -type: GaussKronrod
scaled-scalar -variance:
grid-points: 32
mean-mixture-fraction:
grid-points: 32
mean-scalar -dissipation-rate:
grid-points: 32
mean-stoichiometric-enthalpy-defect:
grid-points: 32
minimize-convolution-time: False
cantera:
xml: heptane_LiuEtAl.zxml
oxidizer:
temperature: 300
mass-fractions: ’N2:0.767,02:0.233”
fuel:
temperature: 485
mass-fractions: ’NXC7H16:1°
mixture-fraction:
grid-points: 96
scalar-dissipation-rate:
grid-points: 36
min: 1.e-3
max: 1.e2
reference: stoichiometric
stoichiometric-enthalpy-defect:
grid-points: 36
tabulated -quantities:
include -radiation: True
soot -model: Aksit-Moss

2.11. TURBULENT REACTING MIXING MODELS

In a reacting flow it is sometimes necessary to limit the finite-rate chemistry reaction when it occurs in
regions of high turbulence. In this case, turbulent mixing of the reactants limits the finite-rate (laminar)
chemical reaction, the time scale of which can be calculated as

S Y

t, = S
i=1 dt

(2.388)

where Ny, is the number of reactions, Ng is the number of species in the reaction, and Y; represents the
concentration of species ¢. The denominator in Equation 2.388 is the production rate of species 1.

2.11.1. Modified EDC Model (PARENTE)

One such model, named here as the PARENTE model, is adopted from [58] which derives explicit
dependencies between the EDC model coeflicients and the turbulent Reynolds (Re;) and Damkéhler
(Da) dimensionless numbers. This model is based on EDC and is used to modifty the chemistry
reactions prescribed in the gas phase. The PARENTE turbulent reacting mixing model can can be used
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in addition to or in lieu of the built-in EDC turbulent combustion model found in Section 2.9. The
current model is described as

1
Da = max (min (t_\/z 10) .1 x 1010> (2-389)
Vo€

/{32
Rey = — (2.390)
Ve
C, = min G ,2.1377 (2.391)
Da(Re; + 1)
C. = max (min (cZ Da(Re; + 1), 5.0) ,0.4082) (2.392)
vey}
n=0C, (ﬁ) (2.393)

1%
7" = CT\/E (2394)

where k represents the turbulent kinetic energy, € is the turbulent dissipation and v is the kinematic
viscosity of the gas. The constants C'; and C can be specified by the user, but default to € = 0.05774
and Cy = 0.5. The modified reaction time scale, 7* is used to solve the reaction equation from time ¢"
to t"*". Following this calculation, the reaction source terms for species (S5-;) and enthalpy (S};) can
be computed. These computed sources are further scaled via the multiplication of a coefficient £ which

is calculated as
{1, ity > 1
KR = eq]

max (min (%, 1) ,O) , otherwise
L

where e; = e = 3.0 in our implementation of the model. Following the evaluation of &, the final
source terms for species and enthalpy can be calculated as

Sy, = Sy, (2395)
Sy = kSy (2.396)

respectively.

2.12. SOOT GENERATION MODEL FOR
MULTICOMPONENT COMBUSTION

Soot is an important contributor to radiative exchange within a fire and between a fire and its
surroundings. Soot production, destruction and transport at flame scales are still active areas of
research, with important chemical/physical processes not understood from a fundamental physics point
of view. Basically, soot particles are carbon-rich solid particles generated in regions of excess pyrolyzate,
such as on the rich side of a diffusion flame. Unagglomerated soot particles have characteristic
dimensions in the range 0.01-0.05 pim (Zukoski [59]).
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The main purpose of the soot model is for the calculation of the absorption coefficient in the radiant energy
transfer equation. For the current implementation we employ the soot model implemented in the
KAMELEON code because it has been used for large turbulent fire calculations with participating
media radiation. The model is discussed in Magnussen et al. [41] and Magnussen and Hjertager [60] It
is a two-step formulation, first described by Tesner et al. [61]. The model for generation and
combustion of soot can be summarized by three principal steps: 1) particle nucleation, where the first
solid soot particles (often called radical nuclei) are created as a result of fuel oxidation and pyrolysis, 2)
particle growth, whereby the soot particle size increases due to the addition of material which is
primarily carbon (10-20% mole fraction hydrogen) through a series of reactions and coagulation, 3)
particle oxidation, where soot particles are burned. Additional information is provided in the overview
by Haynes and Wagner [62].

Since the soot model is primarily directed at closing emission/absorption terms in the radiative transfer
equation, engineering approximations are made with respect to its inclusion in the Navier Stokes
equations. Specifically, heats of reaction associated with formation and destruction are not accounted
for in the heat balance, and the mass concentrations of soot and radical nuclei are not included in the
species mass balances; they are treated as tracers. The model has a significant amount of empiricism
associated with it, necessitated by the extreme length scale range of soot processes, its complexity, and
the degree to which many processes have yet to be quantified from a first principles perspective. The
model choice can be considered to be a pragmatic one based on its prior use in fire calculations.

The present model has been constructed to fit into the same framework as the conceptual model for
turbulent combustion outlined in the theory section for the EDC model. In the following subsections,
the basic mechanisms of soot formation and destruction are presented. These processes occur on a scale
smaller than can be resolved numerically, therefore the following subsections present the basic approach
to the subgrid modeling of the elementary mechanisms, suitable for use in a numerical model.

2.12.1. EDC Soot Model

It is important to note that the processes of turbulent soot formation and combustion occur on a scale
smaller than can be resolved in a numerical approximation. Thus, the averaged governing equations to
be solved numerically must be supplemented with subgrid models to account for these subgrid
processes. The conceptual model for subgrid turbulent soot generation and combustion is consistent
with the two-zone, turbulent, gas-phase, combustion model presented in the last section (see also
Holen [s0]). One zone is the flame zone (flame structure) and the other is the surrounding zone.

Soot reactions tend to be slower than gas phase hydrocarbon chemistry. Therefore, the infinitely fast
chemistry limit used for the gas phase chemistry is not employed for soot. The current model assumes
that the formation and combustion rates are long compared to turbulent mixing rates at flame scales. A
steady-state, steady-flow assumption is used in the formulation between the production/destruction
rates and the turbulent mixing rates to obtain the soot mass fraction in the flame zone in an algebraic
manner (avoiding solution of stiff ordinary differential rate equations).
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2.12.1.1. Criteria for Soot and Radical Nuclei Formation

To start, the first level criteria for formation of soot are
Y;)rod > Ysz and X >0 and T° > Eimv (2397)

where Y},,0q denotes the mass fraction of products, Yy;,,, and T};,,, are minimum values of product mass
fraction and surrounding temperatures allowing soot generation, and 7 is the volume fraction of the
reaction zone of the current cell. If these conditions are met, then the first step is to determine how
much carbon is available over and above what may potentially react with oxygen to produce CO, via
the 2-step reaction postulated in the chemistry model (see Section 2.9). So, first form the elemental mass
fraction of excess (over what may potentially form COz) carbon in each species,

N 1 N
foi = max {o, (Yf _ 5%’3@‘9)] , (2.398)

where Y;C is the mass fraction of carbon in species 7, and Y:© the mass fraction of elemental oxygen in
species . For example, for CO (carbon monoxide), VS, = 12/ (12 + 16), etc. Also, for CO,, the
excess fraction fe .2 = 0, while for any species containing oxygen but no carbon, the formula for the
excess fraction is constructed to give zero. Hence, the fraction is non-zero only for species containing
carbon but excluding carbon dioxide; i.e., the fuel and carbon monoxide species will have non-zero
excess carbon fraction. With the 2-step reaction process being considered, the CO can be considered a
fuel in the second reaction, in which CO and Hj are oxidized if enough oxygen in available after the first
reaction. Thus, the computed carbon fraction, f.;, is collectively the available carbon in the “fuel species”,
comprised of the actual CHNO fuel and CO, and will be zero for other species (compounds). Note
that this fraction excludes the carbon in the species that can potentially form COy via oxidation with the
oxygen present in the species itself.

Now, the mass fraction of carbon potentially available to produce soot can be computed for the
surrounding and flame zones from the following,

Vi= D Je¥? Y= eV (2399)

Again, these mass fractions represent the potentially available carbon in the fuels, separated into flame
zone and surroundings, for formation of soot. The average mass fraction of soot-producing-carbon
is,

Yoo = (m) Y5, + (1 —y) Y. (2.400)
Now we must compare the amount of oxidant (not counting oxidant present in the fuel compound)
actually available for burning these fuels to produce COs; any excess carbon is available to produce
additional soot and radical nuclei. The amount of oxygen required to react with @// of the available
soot-producing-carbon ( Y., which already excludes the oxygen present in the fuel compound) to
produce COy is
Wo
We
Now, if we can compare this to how much oxygen is actually available, we can decide how much excess
carbon is available to produce soot and radical nuclei. Thus the fraction (molar ratio) of excess carbon

YOg,max =2 }/c—m‘ (2"401)
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for producing soot is determined by subtracting off the amount that will go to stoichiometrically react
with the available oxygen to ultimately produce COs in the two-step reaction,

)/C—>S/WC - YOQ/WOQ YOQ . ( Y02 )
= =l—-——=1—min|1l, —|, 2.402
Y'cﬁs/Wc YOz,ma:r YOQ,max ( )

€e

where the last expression is the computational implementation, to take care of “lean” conditions where
there is excess oxidizer, and which will result in zero mole fraction of carbon to produce soot.

In other words, it is assumed that for a given fraction of existing soot that gets mixed by turbulence into
a flame zone, a fraction &, will contribute to the growth of soot in the flame zone, while the balance,

(1 — &) will be consumed in the production of CO,. Implicit in this assumption is that soot entering a
flame will be consumed in proportion to the oxygen present. Therefore in fuel lean regions, soot
entering flame zones will be preferentially destroyed.

Now we are in a position to determine whether soot and radical nuclei can be formed under present
conditions. They will form if
ch—>s > Y:eoot Xc,soot > 0. (2'403)

The first inequality in Equation 2.403 asserts that the available potential-soot-producing carbon in the
fuel must exceed the present amount of soot before enabling generation of additional soot. The
construction of Y,_, sums the total potential soot-producing-carbon, without distinguishing whether
the carbon exists as soot or fuel. The second requires enough carbon to exceed the requirements for the
combustion reaction; i.e., soot will only be formed under fuel rich conditions.

2.12.1.2. Soot Formation and Termination Models

In general, soot may be considered to be generated in both the reaction zone and in the surrounding
zone. This was the assumption invoked in KAMELEON-II (Holen, et al. [50]). As we shall see, in the
present implementation for multicomponent species problems, formation/destruction is assumed to
take place only in the surrounding fluid. The mass fraction of fuel in the reaction zone is assumed to be
proportional to the mass fraction v*, and the reacting fraction of the fuel in the reaction zone, x. The
total rate of radical nuclei formation and destruction is given by a volume averaged sum of the
formation within the reaction zone and the surrounding zone.

Assuming the conditions in Equation 2.403 are met, the rates of formation can be computed. The
following models for soot formation and termination were originally described by Tesner et al. [61] and
have been subsequently modified by Magnussen and co-workers. The elementary mechanisms (subgrid
models for the fire code application) of formation and destruction of radical nuclei was described by
Tesner et al. [61] in the form,

R,=no+ (f —g)n— goNn [particles/s — mg] , (2.404)

where n is the spontaneous origination rate of radical nuclei in particles/(s-m?) (due to fuel oxidation
and fuel pyrolysis), f is the linear branching coeflicient (whereby radical nuclei react to create additional
radical nuclei), g is the linear termination coefficient (where radical nuclei combine with existing radical
nuclei), n is the concentration of radical nuclei in particles/ m3, g is the linear coefficient of
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termination on soot particles (where radical nuclei combine with existing soot particles), and N is the
particle concentration of soot particles (assumed to be spherical with uniform diameter d,)) in
particles/m?. The spontaneous origination rate of radical nuclei was given by Tesner as

E
no = 1.08a0pY pyer €xp (_ﬁ> ) (2.405)

The rate of soot particle formation and destruction was given by Tesner et al. as,
RN,f =(a—bN)n [particles/s — mg] . (2.406)

The parameters appearing in the foregoing, as determined* by Tesner et al. [61] and Holen, et al. [50],
are given in Table 2.12-1 Tesner et al. [63] provide additional data for various hydrocarbons.

Table 2.12-1.. Soot model parameters (Tesner et al.(1971); Holen, et al.(1994))

a f —4g 90 b E/R Psoot o) dp
[1/s] | [1/s] | [em®/part —s] | [em®/part —s] | [K] | [g/cm?] | [part/g — s [cm)]
10° 102 107 8 x 1078 9 x 10* 2.0 12.5 x 10%3 | 17.85 x 1077

The elementary formation/destruction models of Tesner have been modified by Magnussen et al.
(Holen, et al. [50]) for application to multicomponent fire simulation problems. First, for
implementation into a computer program, transport equations for two field variables, radical nuclei
and soot concentrations, are needed. For computational reasons, it is convenient to write all transport
equations in a standard form,

po O
Wd‘/—i— /pu]gzﬁnjds = /Aa—x]njds—i—psqs, (2407)

written for the arbitrary scalar field, ¢, which will have units of intensity per unit mass (or be
dimensionless, such as a mass fraction). Thus the computational variables for the soot model are,
respectively, the radical nuclei concentration and soot mass fraction,

Csoo
ﬁ = E and Y:eoot = !
p p

(2.408)

where Cj,0¢ denotes the mass concentration of soot (kg/m?). In terms of these variables, the
spontaneous origination of radical nuclei, as modified by Magnussen et al., is determined from,

O (o] E

By = 1.08ag (Y2, — Ysoot) €Xp (— RTO) , (2.409)
* * E

By = 1.08ag (Y5, — Ysoot) €Xp ~Tpe ) (2.410)

*In practice, the variables a and b are scaled (multiplied) by 10*® while ay is scaled (divided) by 10'6 thereby effectively
reducing the nuclei concentration by this amount.
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in units of part/kg-sec, which, when compared to Tesner’s form, is seen to have been written in terms of
the excess soot-producing carbon, rather than simply being proportional to the fuel concentration, of
which only a fraction is available to produce radical nuclei and soot. Similarly, the linear branching and
termination reactions for radical nuclei can be written in the form,

.707, — g, Mo o o o R’?L —

,fpf, 4 — max 0, ) (f —g) B° = max (0, f2) %7 (2.411)
R}, g mo . ) R,
—Et = max (0, ) (f = 9) 5" = max 0, £7) =22, (2.412)

where the scale factors are defined by,

o] *
o __ (Yc—>s B Ysoot) d ® (Yc—>s - Y;oot)
fc - Yo an fc - Y* ) (2’413)
c—S c—S
and represent the fraction of soot-producing carbon available in the surroundings and flame zone,
respectively. The present formulation reduces the rates by the fraction of soot-producing carbon over
and above that which is already present as soot, represented by the last terms in each equation. In
contrast, the bilinear termination term for generation of soot is indirectly modified through the soot
mass fraction, which is similarly modified (as will be shown shortly). Therefore, the termination term

can simply be expressed in terms of the computational variables as,

R* *\/ * RO oy o
”;90 = o P soot 6* and n;QO =gy P soot Bo’ (2.414)
P mp P mp

in which the soot particle concentration has been expressed in terms of the soot mass fraction and an
average mass of a soot particle, m,, (kg),

(p}/;oot> 4 dp 3
N =-—""= d = Psoot S o .
m an m, = p 137 5 (2.415)
[¢] b (¢] [¢]
my = —p Y., (2.416)
* b * *
my = —p Y-, (2.417)

See Table 2.12-1 for data used in these equations. The generation/destruction term for soot are also
modified via the scale factors,

*

Rsoohfo:m,m‘)d _ f:mp (CL _ b(p* ;;ot)> B* = Jt';k?,npw7 (2_418)
P my, P
RO t d o (pOYO ) o o RO t
__soot,jorm,mod ’J::m’mo = f: my (a — bm—SOOt> B° = f; mpM' (2.419)
P

to be used in the elementary source expression for the flame zone and surroundings.
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The production/destruction of soot in the reaction zone should approach zero for Y, , — Y., since
production should cease when the amount of soot equals the maximum available
soot-producing-carbon in the reaction zone. This is easier to see by substituting this form into the
production term,
*

RIS = 20 (0 — P Yw) B (2.420)
This term vanishes when the soot mass fraction equals the maximum carbon mass fraction, by virtue of
its construction. However, this form is clearly not the form suggested by Tesner [61], the scaling factor
notwithstanding.

2.12.1.3. Soot Combustion Model

The soot combustion model assumes that soot is destroyed in the flame zone based on two factors 1) the
rate at which it is mixed into the flame zone, and 2) that there is sufficient oxygen to consume it. The
mixing rate is the same as in Equation 2.285 (in the gas phase combustion model section) where the
species Y, are treated as follows: In the cell, the fraction of soot that will burn up in the flame zone is

(1 — &.)Ys00t- In the flame zone, this mass is converted to COa, so its mass fraction in the flame zone is
zero. The radical nuclei concentration is treated similarly. Therefore,

Rn,comb . o <1 - 50) % ( X ) Y
- - — 3
L —x

(2.421)

,0 Tres

Rsoot,comb [ (1 B fc) Ysoot TX
= X3 (2.422)
1% Tres 1 - X

It is convenient to define a new timescale,

]- - Tres
Th = =7 Tres (2.423)
X3

2.12.1.4. Calculating Properties of the Reaction Zone

The foregoing models for soot and radical nuclei contain properties corresponding to the flame zone
and surroundings. This section discusses the method employed by Magnussen et al. to compute these
properties. The flame zone properties are computed by assuming local equilibrium mass transfer due to
turbulent mixing between the reaction zone and surroundings. In other words, the production and
combustion rates are sufficiently slow that the mass concentrations in the flame zone come to an
equilibrium state with the surroundings via the turbulent mixing rate. This equilibrium rate is assumed
to instantaneously adjust to the new cell conditions at every time step.

For this steady-state, steady flow approximation, a balance equation can be written for both nucleate
particles and soot mass fraction for the flame zone. In words, the radical nuclei concentration (or soot
mass fraction) mixed into the flame zone minus the radical nuclei concentration (or soot mass fraction)
mixed out of the flame zone plus the production of radical nuclei (or soot) minus the combustion of
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radical nuclei (or soot) equals zero. Note that the combustion rates given above are equal to the mixing
rates times the fraction of radical nuclei concentration (or soot mass fraction) able to combustion. So
the difference in these terms is equal to the soot production rates or,

(/6* B §CB>

f* R* B R*
R 58 + ¢ 7:f g _ n:kgo : (2'424)
Th p p
(Y;koot _Thé-c}/soot> _ f:m; R:oopt,*form . (2.425)
Solution of these two algebraic equations with two unknowns gives, 5 and Y% ,, the radical nuclei and

soot concentrations in the flame zone, respectively. Note that the formation/destruction terms are of a
bilinear form in the soot and radical nuclei concentrations. Thus, to compute the flame zone values of
radical nuclei and soot mass fractions requires the simultaneous solution of this 2 x 2 system of
equations. In particular, substituting for these terms from the formula given above, Equation 2.425 can
be solved for Y , using Equation 2.420. The result is that the mass fraction of soot in the flame zone in
terms of the radical nuclei concentration.

. §cY o0t + Thfc*bp*YC:sﬁ*

Y = 426
soot 1+ Thfc*bp*ﬁ* (2 42 )
Equation 2.426 can be used in Equation 2.424 to form a quadratic equation for 3%,
tildea, (8*)* + by* + tildec, = 0, (2.427)
where,
as = fimp" (ab+ mhago), (2.428)
7 cY;oo *
bs = a+mp” i—tgo — fibA |, (2.429)
_ *Y*
ap c—S
és = _AJ (2430)
A = &8+, (2.431)
a = 1=-n(f-9)f (2.432)

The solution is the negative root of the quadratic, here written in a computationally appropriate
form,

. —2C,
5" = - - (2.433)
bs + 1/ b2 — 4asc,
In the limit where
Y:::)ot — Y;:*—hs (2"434)

then the soot mass fraction becomes static and the radical nuclei concentration can be solved for
directly. The result is

_ §cB+ Tnl3;
L7 (—fr(f—g)+ %)
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2.12.1.5. Calculating Properties of the Surroundings

Having computed the properties of the reaction zone, the properties for the surroundings are calculated
from the definition of the cell (average) values,

o B—xp"

p° ==, (2.436)
I—9x
o Ysoot = VXY s00t

soot — . (2"437)

I —9x

. , , Yo x 107°

5 = min (5%, = (2.438)

Note that there is an upper bound to the number of nucleate particles based on a so percent dense
mixture given they are monodisperse at the size given in Table 2.12-1 with mass given by

4 (d,)\°
m:psootgﬂ- (?p) . (2'-439)

Now we are in a position to specify the transport equations and source terms for the soot model.

2.12.2. Transport Equations and Source Terms

Two transport equations for radical nuclei and soot mass fractions need be solved,

apﬁ Heff aﬂ
de—k/pﬁujnde:/ - a—xjnjd5+/,05ndv, (2.440)

}/SDO e YSOO
0PYsoot 41/ 4 / Y sootti;n;dS = / Hess 9 LS + / pSsoondV. (2.441)

ot oy (‘3xj

In general, the source term, in particles/kg-sec, for radical nuclei is given by,

R’Tl orm,mo R:L com Rsl orm,mo
Sn =X Jormamod _ _meomb ) 4 (1 — ryy) —formimod (2.442)
P P P
where the form of the net formation/destruction source terms is,
'127 orm,mod o o o aYs(Zm o
—mlormmed — o+ (f — g) B°max (0, £2) — goy=22% 3. (2.443)
p Y2,

For each of the reaction and surrounding zones, the (production destruction) of radical nuclei in the
flame zone is given by the mixing balance, or

: ; orm R; com B* - 6
( Lorm _ b) = ( ) : (2.444)
P P Th
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Substituting gives,

/B* - 5 o o o aYts?)o o
5= F (=) (B + (f — 9) B max (0.£) — g5 ) | (augg)
Th bYc—>s
The general source term for soot (1/sec) is given by
. :oot,form,mod . :oot,comb Rzoot,form,mod
Ssoot = mpyX o* - o* + (1 - fYX) mp 0° (2“446)

The (production-destruction) of soot in the flame zone is likewise given by the mixing balance, or

y " . -y t
mp soot, form o soot,com _ ( soot S00 ) ) (2'447)
P P Th

Substituting gives,

s*oo B Y;OO 07 o o ) o
Ssoot = VX (t,]_—ht) + (1 - ’YX) fc b,O <}/:’/‘—)S - Ysoot) 5, (2‘~448)

which also follows the practice of using the scale factor and effective mass for a soot particle in the
surroundings, m, = bp°Y,2, /a.

The fact that the soot and radical nuclei concentrations are treated as tracers should be reemphasized.
This means that their concentrations in the gas mixture are assumed insignificant such that they do not
enter into calculations of density, or other properties of the mixture.

2.13. ABSORPTIVITY MODEL

The absorption coefficient submodel calculates a spectrally averaged total absorptivity value for a
homogeneous ( in thermodynamic state and composition ) mixture of gaseous CO,, H>O, and soot
particles. It should be recognized that this model does not account for either the presence of volatilized
hydrocarbon molecules nor for the spectral line broadening effects of Ny gas. The following implicit
assumptions are made:

1. Thermodynamic equilibrium between soot and gas phase.
2. Homogeneous mixture over length scale of interest ( cf. input1)

3. Individual ( non agglomerated ) spherical soot particles with diameter much smaller than the
radiation wavelength (Rayleigh scattering).

4. Absorptivity of the soot varies inversely with radiation wavelength.
The following quantities are required:
1. Length scale indicating the optical path length of interest, L. in centimeters.
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2. Mixture temperature, T, in Kelvin.
3. Total mixture pressure, Pyiz, in bar.
4. Partial pressures of the CO, and HyO gaseous components, pes2, Pr2os in bar.
5. Soot volume fraction, X,
The absorptivity model generates the following output:
1

* Spectrally averaged absorptivity, o, in cm™".

The absorptivity is based on empirical correlations for the total emittance of a homogeneous, isothermal
mixture with a given optical path length. The correlations used in this model are based on empirical
data covering a range of optical path lengths, temperatures, soot concentrations and pressures:

* lem < Loy <103 em

* 600K < T < 2400K

* 107° < Xyoor <107°

* 0.1bar < peo2, Phoo < 1 bar

The absorptivity values provided by the equations in this model are accurate to within 10% - 30% of
their value with greater accuracy at higher temperatures, path lengths, and concentrations.

2.13.1. Theory

The total ( e.g. integrated over all wavelengths ) absorptivity of a homogeneous ( in composition and
temperature ) thickness L layer of CO4 gas, HoO gas, and soot particles may be expressed in terms of
the total emittance of the layer

a=———Ilog(l —K), (2.449)

cell
where o is the total absorptivity and & is the total emittance. The total emittance of the mixture may be
expressed in terms of the total emittance of the soot and gas phase (Siegel and Howell [10], Eq.
(13-145)),
K = Ksoot + Rgas — KsootFgas, (2“450)

where K00t and Kyqs are the total emittance of the soot and gas phase respectively as if the other phase
were not present.

To evaluate the absorptivity within a given control volume, the layer length, L.y, is taken to be the
geometric path length through the cell. This assumption ( cf. assumption 2 ) implies that the mixture
composition and temperature are uniform within the given cell. For convenience, the hydraulic
diameter may be used for the layer thickness (in three dimensions),
3V 1/3
Lcell =2 [Z _:| ) (2-451)

™
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where V' is the cell volume. Alternatively, Tezduyar [64] proposes a more expensive length scale for

finite element grids,
cell — 28 (Z V¢z) ) (2"452')

where, Ly is the path length through the element in direction 3, and ¢; is the finite element basis.

2.13.2. Emittance Model

The KAMELEON fire code ( Holen, et al. [so] ) employs the work of Felske and Tien [65] to provide
the emittance of a mixture of COs, HyO, and soot particles. Assuming the absorptivity of the soot
phase varies inversely with wavelength (Rayleigh scattering theory), a closed form expression may be
obtained for the total emittance of the soot phase,

15 cXsootd Lee
®) [1 + t—”] : (2.453)

soot — =1- _\Ij

Fisoot 7T 02
where, X, is the soot volume fraction, 71" is the temperature, Cy = 0.01438769 m-K is the second
Planck constant, and ¢ = 7.0 ( Felske and Charalampopoulos [66] suggest ¢ = 5.0 ). The pentagamma
function W3 (z) is given by Abramowitz and Stegun [67],

1—e

(n) dn+1 i 0o yn —zt
U (2) = o losl(2)] = (=1) 0 —dt,  n=12.3... (2.454)

Equation 2.454 may be evaluated by the series expansion (Abramowitz and Stegun [67]),

U@ (2 (2.455)
k:O
and by the seven-term asymptotic expansion,
2 3 2 1 4 3 10
(3) e T e R Bt
U (z) = 3 + A + 5 o7 + 3,0 11 + 13 (2.456)

Equation 2.456 is accurate to within 1% of the value given by Equation 2.4s5 for > 1.6 and accurate to
within 0.1% of the value given by Equation 2.4ss for z > 2. A plot of the pentagamma function and the
asymptotic expansion are provided in Figure 2.13-1 for reference.

The emittance of the gas phase is given by Leckner [68]. Leckner’s model is relatively involved and
assumes that the path length, L.y, is given in centimeters, the temperature, T', is given in Kelvin, and
the pressure, p, is given in bars. Leckner also defines a reference temperature, 7, = 273 K, and pressure,
Do = 1 bar, for reduction purposes. Two additional quantities used by Leckner are the scaled
temperature, § = 7'/1000K and the logarithm of the optical path length, A, = log;, (p, Leenr) where
the subscript v represents one of the species CO4 or HyO. These quantities are summarized in

Table 2.13-1.
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Figure 2.13-1.. Pentagamma function and asymptotic expansion

The emittance of the gas phase (cf. Equation 2.450) is the sum of the CO5 and H,O contributions less a
correction factor which accounts for overlap in the CO3 and HyO absorption bands,

Rgas = Kh2o + Keoz — Afi, (2-457)

where the species emittance at a given partial pressure and temperature is expressed in terms of a scale
emittance, Ky o.

(2-458)

- o (  APp+B
Kuo_exp( S(Am(w AV))(PE—FA‘FB—l 1)+1

Table 2.13-2 summarizes the quantities on the right hand side of Equation 2.458. The scale emittance,
Ky,0, for both species is given by the expressions

M
10g (Kuo) = ag + »_ a;\,, (2.459)

i=1
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Table 2.13-1.. Parameters used in Leckner’s gas phase emittance model.

Quantity Definition
Temperature units, [7'] Kelvin
Path length units, [ L] centimeters
Pressure units, [p] bar
Reference temperature, 15, | 273 K
Reference pressure, p, 1 bar
Scaled path length, A, logo (Py Leent)
Scaled temperature, ¢ T/1000K
N
a; = Cio + Z cijﬁj, (2.460)
j=1

where the coefficients a; and ¢;; are given in Table 2.13-3 and Table 2.13-4 for CO4 and H5O respectively.
(Leckner provides several alternative listings for the coefficients for calculating the total emittance of
COg. The values listed in Table 2.13-3 are the values employed in the KAMELEON-II-FIRE program

(1994).)
The effect of the overlap correction factor in Equation 2.457 is relatively small so Leckner [68] employed

an approximate expression obtained from emittance data for a total pressure of 1 bar and temperatures
between 1000K and 2200K:

¢ 10.4 2.76
Ak = ——— —0.0089¢™" 1 o o) Lece , 46
K (10'7+ T01¢ ¢ (10810 [(Peoz + Ph2o) Licenr]) (2.461)
where, »
h2o0
= 2.462
Ph2o + Peco2 ( )

The following observations are made to clarify the range of applicability of the absorptivity submodel
specifically for hydrocarbon combustion applications. The absorptivity model does not account for the
presence of volatilized hydrocarbon molecules which may have strong absorption bands in the infrared
region. The VULCAN/KAMELEON fire code (Holen, et al. [s0]) accounts for the presence
hydrocarbon molecules by treating hydrocarbon molecules in the same manner as the CO5 and H,O
product species ( cf. the partial pressure submodel ). This is a convenient although questionable
assumption which provides for a zeroth order treatment of absorption by hydrocarbon molecules.

2.14. FUEL BOUNDARY CONDITION SUBMODEL

In most cases, fires are the result of burning fuel vapor in air. Exceptions include oxygenated and
energetic materials that embody both fuel and oxidizer. The source of fuel vapor may be a gas release,
the vapor which forms over a liquid surface due to its vapor pressure, liquid fuel which is heated above
its vaporization temperature, or solid materials which are heated to the point where combustible gases
are released due to pyrolysis reactions. The purpose of this submodel is to provide the mass flux and
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Table 2.13-2.. Species-specific parameters used in Equation 2.458.

Quantity

COq

H,O

Equivalent pressure, Py

Pr = Pz (1 +0.28

Peo2

Pmiz

)

Peo2

Pmiz

T

T

)

Maxima location, A4z

for T > 700K
Amaz = logy, (0.22562)

forT < T00K
)\mow: = 1Ogl(] (OO546—2)

Anaz = logyo (13.26%)

Coefficient, £

£ =147

£=10.5

Coefficient, A

A=10+0.10"1%

0 =2145if T < 750K

Coefficient, B

B =0.23

B =110

Table 2.13-3.. Coefficients Cij for calculating the scale total emit-
tance of CO, from Equation 2.459 and Equation 2.460, (valid for

T > 400K).
i j (N=4)
(M=3) | o I 2 3 4
o -3.9781 2.7353 -1.9882 0.31054 0.015719
I 1.9326 -3.5932 | 3.7247 -1.4535 0.20132
2 -0.35366 | 0.61766 | -0.84207 | 0.39859 | -0.063356
3 -0.080181 | 0.31466 | -0.19973 | 0.046532 | -0.0033086

Table 2.13-4.. Coefficients Cij for calculating the scale total emit-
tance of H,O from Equation 2.459 and Equation 2.460, (valid for

T > 400K).

i j(N=2)
(M=2) | o I 2

o -2.2118 -1.1987 0.035596
I 0.85667 | 0.93048 | -0.14391
2, -0.10838 | -0.17156 | 0.045915
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temperature of fuel vapor which enters the computational domain at the boundaries. This submodel is
only required if the source of fuel is a solid or liquid since gas releases can be specified as a flow boundary
condition. Since the generation of fuel vapor from these materials involves, as a minimum, representing
thermal transport within the material including phase change, a simplified approach is taken here to
serve the basic need of present generation fire models. The development of improved, validated models
is presently underway. Present generation models are limited to liquid fuels in the form of pools (i.c., a
defined amount of fuel constrained in a pool with fixed, known geometry) and spills onto
non-absorbing substrates. (See Martinez and Hopkins [69] for a model of fuel spill in a porous
medium.) Although the form of the submodel will allow first order estimates of fire growth rates, data
acquired to date (Saito et al. [70]) tend to show that relevant flame spread mechanisms include features
which occur at lengths scales several orders of magnitude below the resolution of present grids.
Additional submodels will be therefore be required to predict flame spread with confidence. The
following quantities are required:

L. T'fyet,vap» the vaporization temperature of the fuel (K).
2. hyg, the heat of vaporization of the fuel (KJ/kg),
3. C),, the specific heat of the liquid fuel (KJ/kg-K),
4. T'fyel init> the initial temperature of the liquid fuel (K),
S. Qfyelig> the absorptivity of the liquid fuel,
6. qp. ;> the radiative heat flux incident on the fuel surface,
7. q. .. the convective heat flux incident on the fuel surface.
The fuel boundary condition submodel generates the following output:
* 11", the mass flux of fuel (kg/m?-s).

The fuel pool will be modeled as a mass of liquid that is gradually converted to vapor which in turn
enters the flow field as a distinct species. The fuel vapor generation rate is based on the incident heat flux
to the pool surface. Data for heavy hydrocarbon fuels (Gritzo, et al. [71, 72]) show the following:

* After the initial transient (which includes flame spread) the fuel burning (and hence
vaporization) rate is steady.

* Heating of the fuel is limited to the top 1.5 cm (which greatly exceeds the penetration depth for
combined thermal transport in semitransparent media).

* Fuel transport occurs within the pool due to the preservation of a fuel free surface and the
presence of a non-uniform heat flux to the fuel surface.

* The temperature at the free surface of the fuel is spatially uniform and approximately equal to
the mean of the distillation curve for multi-component fuels.

Given these observations, the present submodel includes two options for calculating the fuel
vaporization. These options are used for both pool and spill fires.
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2.14.1. Option 1: Constant, Specified Mass Flux

In this option, the output of the submodel will be specified directly by the user. Fuel will be released at
the boundaries defined by a fuel free surface. Since the burning rate is constant, the mass flux can be
considered constant. Fuel burn rate data (for example, Blinov and Khudiakov [73]) are available as a
function of pool size for a variety of fuels. This option neglects the physical process of fuel heating and
is therefore only appropriate for steady burning fires. The spatial variation of fuel vaporization is also
neglected.

2.14.2. Option 2: Mass Flux as a Function of Incident Heat Flux

Neglecting the transport of liquid fuel within the pool, the local fuel vapor mass flux is given by

m’/ — O‘fuehliqq;«/ad + qgonv
hfg + sz (Tfuel,vap - Tfuel,z‘nit)

This option includes the physical process of fuel heating and is therefore appropriate as a zeroth order
estimate during fire growth. The spatial variation of fuel vaporization is also neglected.

(2.463)

Before to the surface of the fuel reaches its vaporization temperature, the KAMELEON fire code
(Holen, et al. [so]) models the heating of the fuel in the same manner as the heating of solid surfaces.
The heat transferred into the material is determined using a linearized approximation for the
temperature distribution in the media by

pCp (Ts — Tp)
2

where gqp is the heat absorbed by the material, 7 is the temperature at the exposed surface of the
control volume, and 7T}, is the temperature at the control volume center, A is the fuel thickness, and p
and C), are the material density and specific heats, respectively.

Qabs = h (2.464)

Due to low diffusivity and high opacity of hydrocarbon fuels, the temperature gradient in the liquid
tuel develops quickly, is considerably larger than the linear approximation, and does not extend to the
lower surface of the fuel. The transient fuel heating occurs at the same short time and length scales as
flame spread. The inclusion of this feature is not suggested until a more rigorous technique for
modeling flame spread can be developed.

2.15. FUEL SPREADING SUBMODEL

The VULCAN/KAMELEON fire code includes a model which represents the spreading of fuel on a
non-absorbing substrate. This feature allows the simulation of fires resulting from fuel spills. Various
correlations (Mansfield and Linley [74]) and global, quasi-steady-state, algebraic models (Cline and
Koenig [75]; Magnoli [76]) have been developed to determine the size of a circular pool fire resulting
from a fuel spill. Since these models are global in nature, and do not include the effects of complex
geometries resulting from obstacles, they will not be included as submodel options. The following
quantities are required:
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L. Pfuel» the density of the liquid fuel,
2. [Lfuel, the viscosity of the liquid fuel,
3. Qrelease> the volumetric flow of fuel released by the spill,
4. A, the surface area of the element,
5. 7, the surface tension coefficient of the liquid fuel.
The fuel boundary condition submodel generates the following output:
* h, the depth of fuel (m).
The following assumptions are invoked as part of the fuel spreading model presently in VULCAN.
1. The fuel is sufficiently thin for inertial forces to be neglected as compared to shear forces.
2. The velocity components in the fuel are always horizontal.
3. The substrate is smooth, horizontal and non-absorbing.
4. The flow is laminar.
5. The interface between the fuel and air at the front of the spreading fuel is parabolic.
6. The shear stress is zero at the top of the film.

Given the preceding assumptions, the spread of fuel is driven by the difference between hydrostatic
pressure due to variations in fuel depth. The transport can then be represented by

oh 0 Pfueld h*\ Oh
— = S. .46

ot Oz, ( ltfuer ) Ox; * (2-465)
Equation 2.46s5 is solved explicitly to track the fuel thickness along the flat surface. Boundary conditions
and source terms are defined as follows to represent various physical features.

1. Drains - The depth of fuel is set equal to zero for cells occupied by drains. The volume of fuel
transported into the drain cell is removed via a negative source term. occupied by drains. The
volume of fuel transported into the drain cell is removed via a negative source term.

2. Obstacles - The fuel depth and the gradient of the fuel depth is set equal to zero at the interface
between obstacles and surrounding cells.

3. Release Locations - The source term is defined by the volumetric flow of released fuel divided by
the surface area of the element (i.e. Q,erease/As)-

The fuel will spread up until the hydrostatic pressure gradient is balanced by surface tension forces.
Subject to the preceding assumptions, the minimum fuel depth is given by

2s
pfuelg’

(2.466)

hmin -

where s is the coefficient of surface tension for the fuel. The reduction in fuel depth due to the
vaporization of fuel is calculated by the same technique used to define the fuel vapor boundary
condition for pool fires.
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2.16. VOLUME OF FLUID MODEL

laminar isothermal flow are well tested, but advanced features such as non-isothermal
reacting and evaporating simulations are more experimental.

: Beta Capability: The volume-of-fluid capability is a beta feature. The numerics for

The volume-of-fluid (VOF) capability allows simulation of two-phase systems. The phases are tracked
with a conserved scalar, o, which is the volume fraction of fluid in a given control volume. This scalar is
1 in the liquid, 0 in the gas, and between 0 and 1 in the transition region.

There are a number of numerical challenges associated with multi-phase modeling using a diffuse
interface. Many of these challenges exist regardless of whether one uses a level set or a volume-of-fluid
approach, or some hybrid of the two.

2.16.1. Governing Equation

The basic advection equation for the volume fraction (o) in VOF equations is

aa—(j +u-Va=.5, (2-467)

Expanding the conservative form of the convection term with the chain rule as

V. (ia) =u-Va+a(V-u) (2.468)
We can express the governing equation in corrected conservative form as

oo

5 TV () = a (Vi) + S, (2-469)

where the right hand side term is 0 for an incompressible flow with no phase change. The standard
advection operator is typically too diffusive for practical use, so one of two approaches are typically
used:

1. A geometric advection operator [77, 78, 79, 80]

2. An additional interface compression term [81, 82]
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Several varieties of geometric advection operators have been proposed in the literature [77, 78, 79, 80],
many of which are only applicable for 2D quadrilateral meshes. Those that can be extended to higher
dimensions often do so at considerable complexity. For a more detailed discussion of the different
options, see [83]. The form implemented here uses the interface compression approach to modify the
governing equation to be

aa—j‘+v.(aa)+v.(zrca(1—a>> —a(V-@) + 5, (2.470)

where i, is the compressive velocity. A common form for this is

i, = C, il (2.471)

where C, is a constant and 77 is the normal vector at the phase interface.

When phase change is present, the source term S, is non-zero. The volume source of liquid due to
evaporation is

meva
So = _/)—Lp (2.472)

The evaporation term is calculated using the method described by Hardt and Wondra [84] which
converts an evaporative mass flux to a volume source using the interphase area, A, and the mass flux

1

predicted by the evaporation model, m,,,,, as
Mevap = Mgy (2.473)
[ IVal|dV
A=W\NVo| == .
W=a (2-475)

One variation of this that we explored is W = (1 — «)?, which is well suited for a diffuse interface
approach. We find that the form by Hardt and Wondra is sometimes destabilizing to the diffuse
interface and leads to an artificially high surface regression rate. For a very simple 1D problem or a sharp
interface method, the W = (1 — a)? weighting scheme places all the evaporation outside the liquid
and does not correctly predict the surface regression rate. However, it can be better for a diffuse
interface representation since evaporation acts as a stabilizing liquid sink to counteract interface
diffusion. When using a sharp interface method or a 1D problem where there is no interface diffusion,

the weighting of Hardt and Wondra (W = «) should be used.

1"

Different evaporation models can be used to define m,.,,,,. The model used by Hardt and Wondra uses
deviation from the saturation temperature to define the rate as
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mgvap = K(T — Tsat) (2.476)

25 hf 1%
K = z_Ps .
2 — /8 /27TR Tsld;:) (2’ 477)

This form is only physically applicable to either fully saturated gasses, or interface temperatures above
the boiling point since it does not take into account the gas composition. As such, this model only
allows positive evaporation rates (so no condensation) in order to produce realistic behavior during
heat-up and away from the hot regions of the simulation. When using a multi-species gas, the more
complete Hertz-Knudsen-Langmuir model can be used, where the rate is driven by the difference
between the partial pressure of the vapor and the saturation pressure. This model will be added to the
available evaporation models once the multi-species gas treatment is complete.

2.16.2. Interface Reconstruction

When the phase interface is represented by a volume-of-fluid variable, numerical diftusion in the normal
advection operator causes the interface (cells with volumes of fluid between 0 and 1) to become wider
over time. Although the total volume of liquid is conserved, the volume inside the v = 0.5 isosurface
may change as a result, and the effect of the higher density liquid will be felt well outside the correct
liquid interface location. Techniques to counter-act this diffusion in volume-of-fluid include using
compressive advection operators in the VOF equation, using a separate anti-diffusive sharpening step,
using a geometric reconstruction of the interface to define the advection, and using sharpening and
liquid relocation schemes.

With a level set approach, the interface location is defined by the ¢ = 0 contour. By definition, the
interface does not become diffuse, but there are no guarantees of global conservation of liquid either.
Techniques to address this typically involve doing a volume-conserving redistancing operation to the
level set field. Such operations can preserve the total volume of liquid, but may not preserve the local
shape of the liquid-gas interface.

In both VOF and level set approaches, calculation of the interface curvature is required to determine
surface tension forces. This is done by taking the divergence of the interface normal vector (77).

k=-V-n (2.478)

It should be immediately apparent that £ will contain not only discretization error from the divergence
operator, but also discretization error from the calculation of the normal vector, which is itself a
gradient of some other quantity (call it v here, it could be the level set field, the volume of fluid field, or
a smoothed version of either).

Vo,

" V| + e

(2.479)
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The simple approach to use oy = « results in considerable noise in the interface normal vector
calculation, particularly in regions of high curvature relative to mesh sizes. In the coupled level set VOF
approach (CLSVOF), o is the companion level set distance function that is either advected along with
the volume fraction or redistanced from the volume fraction contour at 0.5 (so ag = ¢).

In Fuego we have implemented both a CLSVOF approach and a diftusive approach, where a5 is a
diffusively smoothed version of the volume fraction field, o, using a user-specified Fourier number (£'0)
and number of iterations.

a, =« (2.480)

"t = o + FoAz*V?a” (2.481)

In addition, recall that the analytical curvature for a spherical drop is a function of radius: k = 2/r .
This means that if » is calculated in cells that span an interface of finite, non-zero width, there will also
be a spatial variation of k across that interface. This means that although in reality the surface tension
force is applied sharply at the interface, in a diffuse interface scheme it will be applied over a finite
interface thickness of several cells.

This noise and spatial variation in the curvature translates directly into noise in the surface tension force
and is the sole cause of the so-called “parasitic currents” that plague diffuse interface methods. Many
authors have demonstrated that when using a uniform, analytically prescribed curvature the parasitic
currents in the classical static drop test drop to machine precision levels if the forces are otherwise

properly balanced.

There are various techniques for improving the curvature calculation. Calculation of the normal vector
when the VOF field is sharp is very noisy, so VOF schemes often use a smoothed field or higher order
least squares technique. Coupled level set VOF (CLSVOF) carries a level set field along to use for
calculating this normal vector on a smooth field (the level set field).

Finally, once the interface has been advected and sharpened, and the curvature has been properly
calculated, the surface tension force must be integrated into the momentum and continuity equations
in such a manner as to not induce spurious velocities. This is known as the “balanced force” technique,
and involves including a surface tension force vector consistently with the pressure gradient.

2.16.3. Continuity Equation

In order to handle the high density ratios in multiphase simulations, the form of the continuity
equation is modified by dividing both sides of the equation by density. Interpolation of nodal
quantities to subcontrol surfaces is an important consideration to note. Quantities interpolated to faces
are indicated with an f subscript in the following equations, while nodal quantities are given no
subscript.

The regular form of the pressure Poisson equation in discrete form is
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> (7 Vpp-Ap) =) ((Pﬁ)f - Ajp+ (TVp), - Af) (2.482)
f 7

which includes the projected nodal gradient of pressure Vp. In the prior form, the projected nodal
gradient Vp was calculated using the divergence theorem as

1
Vp = % Zf:pfAf (2.483)

For the VOF implementation we use the method described by Francois et al. [85] to calculate a
projected nodal density-scaled force term (/) based on calculation of forces at faces, which includes
both pressure gradient and surface tension forces. The balanced force term is

F = Vp — koVa (2.484)

and the projection from subcontrol faces to nodes is done using the method by Francois as

o > (Vpp; — (or)Vay;) /ps
P
> 1Ayl

This term is updated after the solution to the pressure equation, when updated values for pressure and
volume-of-fluid have both been calculated in order to keep them synchronized. This nodal force term is

(2.485)

included as a source term in the momentum equation (negative, scaled by volume, and multiplied by
nodal density) and can be added to the 4th order pressure projection scheme in discrete form as

3 ((g)fw)fAf) -y (af-Af+ (Tﬁ)f.Af+ (%)

(O’li)fvozf : Af) (2.486)
f f

f

where F' is the projected nodal density-weighted balanced force, & is the curvature, and o is the surface
tension.

The advantage of this projection scheme over a simpler approach where one might define the nodal
force term (as done by Lin et al. [86]) as

1
F = v <prAf — UHZ&fAf) (2-487)
! f

is that in such a scheme the evaluation of curvature (k) occurs at a different location than the gradient
of the volume-of-fluid term (V). In the presence of gradients in K—which are guaranteed to occur in
real problems—this introduces a force imbalance that can cause significant spurious non-physical
currents in the fluid. Spatial inaccuracies in curvature are the primary cause of spurious currents in
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VOF simulations — and a baseline test for any balanced force implementation is to see how a static drop
with a prescribed (not calculated) value for curvature behaves. In a properly balanced force
implementation the resulting parasitic currents should be basically zero (on the order of machine
precision). However, a weakness of relying solely on a prescribed curvature test is that it fails to show the
force imbalance that arises in the projected nodal force calculation due to interpolation of the curvature.
The form published by Francois et al. [85] and implemented in Sierra/Fuego not only recovers
machine-precision parasitic currents with the prescribed curvature test, but also keeps them acceptably
low when using calculated curvatures.

In addition, when there is phase change there is an additional source term on the right hand side of this
equation, which is

S = mevap ( ! ! ) (2’~488)

Py L
2.16.4. Property Evaluation

When using VOF, you are required to provide three material models. There is one model for the liquid,
one for the gas, and one top level model. The top level model simply specifies the names for the
materials to use for gas and liquid, as well as specifying properties like surface tension. Properties needed
for flow calculations are combined from the liquid and gas properties using the following rules

A simple averaging is used for non-specific quantities,

¢ = a¢L + (1 - a)¢g (2-489)
where ¢ is thermal conductivity (k), density (p), viscosity (1), absorption (a), or
density-pressure-derivative (g—g ).

For specific quantities, such as specific heat (C},) and enthalpy (), a density-weighted average is used

_ aprdr + (1 — a)pydy
p

¢

(2-490)

For properties that are only relevant for the gas phase, the property value is simply copied from the gas
phase

¢ =9 (2.491)

Examples include species enthalpy, mass diftusivity, and molecular weight.
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3. MPMD RADIATION

This chapter outlines the use of Multiple-Program-Multiple-Data (MPMD) coupling to perform
radiation solves with two different codes: Scefire and Nalu. MPMD coupling allows the radiation solve
to occur on an entirely different set of processors using an executable other than Fuego.

3.1. INPUT DECK CONVERSION

The Conversion of a Fuego/Syrinx input deck to a Fuego MPMD input deck is straightforward. The
basic steps to convert a Syrinx case to a Fuego-Nalu case are:

1. Delete the Syrinx region, PMR material, PMR solver, and PMR mesh (finite element) blocks
from the Fuego input deck.

2. Delete all transfer blocks to or from the PMR region and all calls to them from solution control
(see Section 3.1.1).

3. Add the USE MPMD RADIATION command to the Fuego input deck in the Fuego region block
to activate the MPMD coupling.

4. Add the SKIP STEPS FOR PMR command in the Fuego procedure or time blocks if you want to
run the PMR solve less frequently than every time step.

5. Specify emissivity, transmissivity, radiation environment temperature, and radiation boundary
temperature in the Fuego boundary condition blocks. If any of these are omitted defaults will be
used. Default conditions are emissivity = 1, transmissivity = o, and boundary temperature equal
to the local or wall temperature depending on the boundary type.

6. Copy the template Nalu input file from Section 3.1.2 and update the name of the mesh file.

7. (Optional) Update the quadrature and numerical scheme in the Nalu input deck per your
problem requirements.

8. (Optional) If using a particle region, transfer absorption and radiation sources from the particle
region to the Fuego region, and transfer scalar flux from the Fuego region to the particle region
(see Section 3.3).

9. Run your case using an MPMD launch command (see Section 3.1.4).
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3.1.1.

Transfers

In prior Fuego-Syrinx simulations the user would specifically call out which fields to transfer between

Fuego

and Syrinx in the input file, or call out a pre-defined transfer that would automatically define

fields to transfer. With MPMD PMR the transfers are always determined automatically, so nothing is
required in the input deck with regards to transfers to or from the PMR code.

The Fuego to PMR transfers are:

Radiative source (rad_source, R;). This is calculated by Fuego either from the temperature field

or combustion model (EDC or mixture fraction) and is sent on all volume nodes. For the
non-reacting laminar case, this term is

o
R, = —aT* (3.1)
T
and for reacting cases it is either tabulated or otherwise modified to include sub-grid effects.

Absorption coefficient (absorption, «). Calculated using the current property model and sent on
all volume nodes.

Emissivity. Calculated in Fuego and sent on all surface nodes.
Transmissivity. Calculated in Fuego and sent on all surface nodes.

Boundary Source. Calculated in Fuego using the emissivity (), transmissivity (7), radiation
boundary temperature (73), radiation environment temperature (1), and band fractions ( f., f3)

if doing a spectral calculation. This is sent on all surface nodes.

Spc =0 (T3 fu + 7T f) (3-2)

Boundary Beam Source. Calculated in Fuego on all surface nodes only if the beam model is in

use.

The PMR to Fuego transfers are:

Scalar flux (scalar_flux, ). Calculated by the PMR code and sent back on all volume nodes, this
is used to apply the radiative source term to the enthalpy equation.

Sh = ‘/scv (OéG - 477Rs) (33)
This source term is linearized using the laminar form of R, to give

16a0T?
Sh,lhs = ‘/;cv C (34)
p

Radiative Flux (radiative_flux). Calculated by the PMR code this flux vector is sent back on all
volume nodes and is primarily used for post-processing.
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* Incident Flux (incident_flux). The incident flux on all surfaces is calculated by Nalu and sent
back to Fuego. Scefire does not send this field, so when coupling with Scefire Fuego calculates
this term using the radiative flux vector on all surfaces.

3.1.2. Nalu Input Deck

The corresponding Nalu input deck for Fuego/Nalu MPMD calculations is shown in the following
sections. The Nalu input file is YAML formatted, so spaces and indentation matter.

3.1.2.1. Header

The file header defines a simulation name (sim1 here) and names a time integrator block to use (til
here, must match the name used in the following time integrator section).

Since the PMR solve is steady state, no time stepping parameters are required for the time integrator
block. All that is required is to list the two realms in use for an MPMD PMR problem.

The linear_solvers block defines the list of linear solvers to use. Nalu PMR only solves one
equation system so there need only be one solver specified here.

In general, nothing in this section should need to be modified unless you want to adjust the linear solver
settings.

Simulations:
- name: siml
time_integrator: til

Time_Integrators:
- StandardTimeIntegrator:
name: til

realms:
- pmrRealm
- MPMDRealm

linear_solvers:

- name: solve_scalar
type: tpetra
method: gmres
preconditioner: sgs
tolerance: 1le-5
max_iterations: 100
kspace: 100
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output_level: 0O
write_matrix_files: no

3.1.2.2. Transfers

The transfers section declares that we will be doing an MPMD PMR transfer. This section should not
be modified - the transfers are all pre-defined.

transfers:

- name: xfer_fluid_pmr
realm_pair: [MPMDRealm, pmrRealm]
coupling_physics: mpmd_pmr

- name: xfer_fluid_pmr2
realm_pair: [pmrRealm, MPMDRealm]
coupling_physics: mpmd_pmr

3.1.2.3. Realms

The Realms section (similar to a Region in a Sierra input deck) lists the two Realms needed for a PMR
problem. The first is an MPMD realm, which requires no parameters. The second is the main PMR
realm.

Like Fuego, Nalu uses automatic decomposition of the mesh using RIB, so the specification of a
decomposition method is not required. If desired, automatic_decomposition_type: rcb canbe
added after themesh: line.

The most common parameters to change in the PMR realm are:

* Name of the mesh file.
* Numerical scheme (Edge-Upwind, Edge-SUCYV, or Element-SUCV).

* PMR quadrature rule (quadrature_type) and order (quadrature_order). Valid options for
quadrature type are Thurgood (default), LevelSymmetric, PNTN, and UserDefined. If the
quadrature_type command is omitted, Thurgood is used.

* Number of nonlinear iterations. If the problem has non-zero reflectivity on a surface (typically
from non-unity emissivity) then multiple nonlinear iterations are required to reach convergence.
Note that you may see max_iterations defined in RadiativeTransport in some cases. The
proper one to change is at the equation_systems level, set to 3 in the example below. The one
inRadiativeTransport can be omitted and will default to 1.
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realms:

- name: MPMDRealm

mesh: MPMDVirtual
type: MPMDRealmType

name: pmrRealm
mesh: ./100cmCube.g
use_edges: yes

boundary_conditions:
- wall_boundary_condition: walls
target_name: all_surfaces

material _properties:
target_name: all_blocks

equation_systems:
name: theEqSys
max_iterations: 3

solver_system_specification:
intensity: solve_scalar

systems:
- RadiativeTransport:
name: myRTE

convergence_tolerance: 1.e-8

quadrature_order: 6
quadrature_type: Thurgood
activate_upwind: no
deactivate_sucv: no

output:
output_data_base_name: pmr.e
output_frequency: 1
output_node_set: no
output_variables:
- absorption_coefficient
- intensity_bc
- scalar_flux
- radiative_heat_flux
- radiation_source
- irradiation
- emissivity



- transmissivity

Setting the numerical scheme required modifying a few parameters together. Examples of these settings
are:

* Edge-Upwind
use_edges: yes

activate_upwind: yes
deactivate_sucv: yes

* Edge-SUCV
use_edges: yes
activate_upwind: no

deactivate_sucv: no

* Element-SUCV

use_edges: no
activate_upwind: no
deactivate_sucv: no

You should not use any combinations of use_edges, activate_upwind, and deactivate_sucv
not shown in the list above.

Nalu supports the Thurgood quadrature (identical to 7 from Syrinx), which has 8 N2 ordinate
directions, N being the order of the quadrature; level-symmetric quadrature (Lathrop Carlson) orders

2,4,6,8,12, and 16; and PN-T'N (for any even order) which has N (/N + 2) ordinate directions. The
default quadrature is Thurgood.

Nalu requires the user to specify the name of the sidesets to be used in the boundary_conditions
specifications. For most cases the al1l_surfaces alias can be used. In the case where it cannot be used
(e.g. amesh with internal sidesets), the wall BC sidesets can be supplied as a list (e.g.

[surface_1, surface_2, surface_3])

Nalu has no concept of temperatures, since Fuego transfers only radiative intensities. Although there is
are temperature fields defined in Nalu they will not have values applied in them and there is no need to
output them.

Fuego MPMD simulations will terminate Nalu when Fuego is finished executing, so there is no need to
specify an end time or any other end criteria.
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3.1.3. SceFire Input Deck

Scefire input decks have the following structure:

<?xml version="1.0" encoding="utf-8"7>
<SCEPTRE_Input>
<Mesh_File>100cmCube.g</Mesh_File>
<Output_Prefix>radResults.e</Output_Prefix>
<Output_Format>Simple</Output_Format>
<0utput_Options>
<Verbosity>high</Verbosity>
</0Output_Options>
<XS_File>thermal-fromShawn.xslib</XS_File>
<Sn_0Options>
<Sn_0rder>6</Sn_0rder>
<Angular_Quadrature_Type>Level_Symmetric</Angular_Quadrature_Type>
<!--Angular_Quadrature_Type>Lebedev</Angular_Quadrature_Type-->
</Sn_Options>
<Enable_User_Defined_Solvers>true</Enable_User_Defined_Solvers>
<Solvers>
<Solver name="1lstOrder">
<Solver_Form>First_Order</Solver_Form>
<Error_Control_QOptions>
<Maximum_Number_Iterations>20</Maximum_Number_Iterations>
<Convergence_Tolerance>1.e-8</Convergence_Tolerance>
</Error_Control_Options>
</Solver>
</Solvers>
<Solver_Assignment explicit="true">
<Solver_By_Group>
<Group index="1">1stOrder</Group>
</Solver_By_Group>
</Solver_Assignment>
</SCEPTRE_Input>

The Scefire input deck requires very little user input. The first required component is the Mesh_File,
here specified as “roocmCube.g”. The Scefire mesh does not need to be identical to the Fuego fluid
mesh file, but currently Scefire uses a closest node interpolation of data, so that limitation should be
taken into consideration. Different decompositions (including numbers of processors) for the Scefire
mesh relative to the Fuego Fluid mesh can effectively be used. The name of the output file
(radResults.e) is a required entry, though most users will only use output from the Fuego exodus files.
Using the “Simple” output format suppresses the Scefire output.

The Angular_Quadrature_Type is set here to Level_Symmetric, though Lebedev is also available
in Scefire. The user also selects the order of the Angulare_Quadrature (Sn_0Order), here set to 6.
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Level_Symmetric quadratures, as in Syrinx, have N (N + 2) ordinate directions, where IV is the
Sn_0Order. The First_0Order solver should be left unchanged for all current Fuego/Scefire MPMD
simulations, though Maximum Iterations and Convergence tolerances can be changed at the user?s
discretion. The rest of the Scefire input deck should remain unchanged. Note that the user does not
need to specify any boundary conditions in the Scefire input deck.

3.1.4. Running MPMD Jobs

The command to run in MPMD mode is different from what was used to run Fuego-Syrinx cases. To
run Fuego-Syrinx cases you simply ran a parallel job of Fuego using something like

mpirun -np 100 fuego -i fire.i

In this case one executable would use 100 cores, so both Fuego and Syrinx were taking turns using the
same CPU resources. With MPMD runs you are launching two separate MPI jobs with two different
codes that can communicate. An example MPMD launch command would look like

mpirun -np 100 fuego -i fire.i : -np 100 nalu -i pmr.i

However, there is no requirement any more that the two codes use the same number of cores, so
depending on the mesh and computational costs you may choose a different allocation per code. For
example, if your PMR solve is very expensive you may allocate more cores to Nalu than Fuego:

mpirun -np 50 fuego -i fire.i : -np 150 nalu -i pmr.i

Special care must be taken when submitting MPMD jobs on the HPCs or any queued environment. By
default, the two MPMD codes cannot share cores so to launch the case above on an HPC you would
need to request an allocation 200 cores. This is unnecessarily wasteful though since Nalu would not be
using its 150 cores while Fuego runs, and Fuego would not be using its so cores while Nalu runs. To get
around this, you must enable oversubscription. Since Fuego and Nalu run sequentially (never executing
at the same time) you can allow them to share resources. To get an allocation of 100 cores and use them
all for both codes you must add additional mpi flags:

mpiexec --oversubscribe --bind-to core:overload-allowed -np 100 \
fuego -i fire.i : --bind-to core:overload-allowed -np 100 nalu -i pmr.i

Keep in mind that the specific command to use can be platform dependent. A more complete example
submission script on an HPC may look like
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#!/bin/bash

#SBATCH --nodes=10

#SBATCH --time=48:00:00
#SBATCH --account=xxxxxxxx
#SBATCH --job-name=fire
#SBATCH --partition=batch

nodes=$SLURM_JOB_NUM_NODES
cores=36

module load sierra
export OMPI_MCA_rmaps_base_oversubscribe=1
mpiexec --oversubscribe
--bind-to core:overload-allowed
--npernode $cores --n $(($cores*$nodes)) fuego -i fire.i :
--bind-to core:overload-allowed
--npernode $cores --n $(($cores*$nodes)) nalu -i pmr.i

Contact sierra-help@sandia. gov if you need more help or encounter issues running MPMD

jobs.

3.2. SPECTRAL RADIATION TRANSPORT

Fuego now supports spectral radiation calculations through MPMD coupling with either Scefire or
Nalu (not Syrinx). Spectral radiation transport is instantiated in an MPMD Fuego input deck through
a spectral model section similar to the following:

BEGIN RAD TRANSPORT SPECTRAL MODEL SPECIFICATION spectralRadModel
Spectral Band Model = LINEAR
Spectral Subband Model = AVERAGE
Minimum Frequency = 1.0el3
Maximum Frequency = 2.0el3
Number Spectral Bands = 2
END RAD TRANSPORT SPECTRAL MODEL SPECIFICATION

The spectral model utilized in Fuego is based on the concept of spectral bands, which means that the
user must describe frequency bands over which radiation absorptivities are averaged. In this context, a
richer set of data is available to the analyst, including radiation transport terms (banded absorptivity,
scalar flux, and radiative flux) than is available through the standard gray (nonbanded) radiation
transport description that has been available to Fuego analysts for many years.

Spectral transport makes use of spectral data files that the user must provide. Files are named as:
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Species-data.dat

Where “Species” is the name of the chemical species whose spectral transport properties are being
described. Each species present (all species for EDC simulations) or those output through the use of
output variables in mixture fraction simulations must have all necessary spectral data files available in
the working directory when a spectral transport calculation is performed. Spectral data files have the
following structure:

T Fiq Ay
T FnN A
Ty  Fua Ana

TM FM,NM AM,NM

For each temperature T, of the M temperatures specified in the spectral data files, there are Nx
frequencies (/7 ; through F} n ) specified with corresponding absorptivity values (A, 1 through

Az n,). Temperatures within these files are required to be in non-decreasing order and frequencies must
be ordered in increasing value within a specific temperature. Absorptivities are expected to be in units
of cm? /molecule, which is a number density weighted absorptivity. Unit conversion within the Fuego
input deck is required if the desired units of the simulation are not cgs. The ideal gas law and knowledge
of the mass fraction of each species is used to calculate the number density.

For the spectral radiation model specified here, the name of the particular spectral model is given as
spectralRadModel, but could be any valid string. For this case, a LINEAR “Spectral Band Model” is
used, where the set of spectral bands, in this case 2 as specified by “Number of Spectral Bands” are
equally divided along the linear spectral frequency range with “Minimum Frequency = 1.0e13” Hz and
“Maximum Frequency = 2.0e13” Hz. One could alternatively choose a LOGARITHMIC Spectral Band
Model where bands are divided up equally in logarithmic frequency space.

In this case, we have chosen an AVERAGE “Spectral Subband Model”, which indicates that averaging of
absorptivities for frequencies within a spectral band will follow standard (unweighted) averaging over
the particular spectral band. A PLANCK_AVERAGE Spectral Subband Model is also available where
integrations are weighted by their Planck black-body spectrum contribution.
PLANCK_AVERAGE_WITH_REFERENCE_TEMPERATURE is a final choice that a user can select where the
band contributions are weighted by the Planck black body-spectrum at a specified user reference
temperature. If this final option is used, a user must also specify a reference temperature, which can be
done through: Planck Subband Model Reference Temperature = 2000.0 Here the Reference
temperature is set to 2000.0 K, but could be any nonzero temperature.

Please also note that if running a spectral case with Nalu multiple non-linear iterations should be
specified. This is currently necessary to converge the system even if the equation system is linear.
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Beta Capability:

Q> 3.2.1. Spectral properties on surfaces

Fuego can now perform spectral radiation calculations with banded emissivities defined on surfaces.
This is a beta feature, and still requires additional testing. A command similar to the one shown below is
used to define banded emissivities on surfaces:

BEGIN WALL BOUNDARY CONDITION ON SURFACE SURFACE_1
INTERFACE BOUNDARY
EMISSIVITY SPECTRAL FILE NAME = SURFACE_1_SPECTRAL.DATA
TRANSPARENT BAND EMISSIVITY = 1.0

END WALL BOUNDARY CONDITION ON SURFACE SURFACE_1

Similar to the spectral radiation model described in Section 3.2, a spectral data file containing the
emissivity bands must be provided for each surface (provided by the "EMISSIVITY SPECTRAL FILE
NAME =" command in the above). These files have a structure similar to the species spectral files:

T F1,1 €11

Similar to the species spectral files, each temperature T}, of the M temperatures specified in the spectral
file have Nx frequencies defined, each with a corresponding emissivty value (¢ x ; through ex v, .
Temperatures within these files must be defined in a non-decreasing order, with frequencies within each
temperature group ordered in increasing value.

In addition to defining a spectral emissivity file, an additional emissivity for the transparent band can be
defined as a general expression; this value is defaulted to 1. In the above example, the transparent band
emissivity is defined as a constant (of 1).

3.3. PARTICLE RADIATION TERMS

Particle Radiation contributions are also still available in Fuego simulations with Lagrangian particle
types that have radiation contributions (heated, CPD, evaporating, general chemistry, wildfire).
Previously, the user would specify transfers of necessary thermal/radiation fields between Fuego and
Syrinx, which would resemble the following:
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BEGIN TRANSFER pmr_to_particle

COPY VOLUME NODES FROM pmr_region TO particle_region

SEND BLOCK block_1 TO block_1

SEND FIELD scalar_flux STATE none TO scalar_flux STATE new
END  TRANSFER pmr_to_particle

BEGIN TRANSFER particle_to_pmr
COPY VOLUME NODES FROM particle_region to pmr_region
send field particle_absorption_coeff state new to particle_absorption_coeff state no
SEND FIELD particle_rte_source STATE new TO particle_rte_source STATE none

END TRANSFER particle_to_pmr

For MPMD Radiation transport simulations involving Lagrangian particles, the user now removes the
pmr(Syrinx) to particle transfers and instead adds these to the already-present set of fluid to particle
transfers as is seen in the following:

BEGIN TRANSFER fluid_to_particle
COPY VOLUME NODES FROM fluid_region TO particle_region
SEND BLOCK block_1 TO block_1

SEND FIELD scalar_flux STATE none TO scalar_flux STATE new
END  TRANSFER fluid_to_particle

BEGIN TRANSFER particle_to_fluid
COPY VOLUME NODES FROM particle_region TO fluid_region
SEND BLOCK block_1 TO block_1

send field particle_absorption_coeff state new to particle_absorption_coeff state no
send field particle_rte_source state new to particle_rte_source state none
END  TRANSFER particle_to_fluid

3.4. BEAM (DIRECTED FLUX)

Fuego users are able to now specify beam or directed flux boundary conditions for use in MPMD
simulations with PMR. A beam boundary condition is specified in the Fuego input deck in the
following manner:

#CONVERGING/DIVERGING BEAM

BEGIN BEAM RADIATION BOUNDARY SPECIFICATION
BEAM RADIATION BOUNDARY MODEL = FOCUSED
FOCAL POINT = FX FY FZ
FOCAL POWER = FP
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FOCUSED BEAM TYPE = DIVERGING (OR CONVERGING)
CONSTRAIN TO SURFACES = sideA sideB ...
BEAM TEMPERATURE = BT

END BEAM RADIATION BOUNDARY SPECIFICATION

In the above case, a focused beam boundary BEAM RADIATION BOUNDARY MODEL = FOCUSED is
defined where the FOCAL POINT of the beam, either sourcing from or arriving at this point are

(FX, FY, FZ). The user specifies whether the beam diverges from this point or converges to this focal
point. For the DIVERGING beam, the focal point needs to lie outside the simulation domain, whereas
for the CONVERGING case, the focal point could lie in or outside the domain. The focal power is
specified as FP which is the integrated power of the beam assuming the intensity is spherically isotropic.
For a converging case, the power should be properly scaled to respect the actual solid angle over which
the beam converges to the focal point. For instance if the converging beam actually occupies a solid
angle of 7, the FOCAL POWER should be scaled up by a factor of 4 = 47 /7 since if the beam were
incident from all solid angles, the total beam power would increase by this factor. Beams can be
constrained to arrive through the domain through only a fixed set of external surfaces if so desired as
indicated through CONSTRAIN TO SURFACES = sideA sideB. ... The user also specifies the
BEAM TEMPERATURE for cases using spectral radiation transport, since the beam power must then be
parceled out among the defined spectral bands.

Another “directed” or beam-type boundary condition is available, where the user specifies not a focused
beam but rather a plane wave as is seen below:

#PLANE WAVE

BEGIN BEAM RADIATION BOUNDARY SPECIFICATION
BEAM RADIATION BOUNDARY MODEL = PLANE_WAVE
PLANE WAVE BEAM DIRECTION = WX WY WZ
PLANE WAVE INTENSITY = PWI
CONSTRAIN TO SURFACES = sideA sideB ...
BEAM TEMPERATURE = 3000.0

END BEAM RADIATION BOUNDARY SPECIFICATION

In this case, the BEAM RADIATION BOUNDARY MODEL = PLANE_WAVE, indicates a plane-wave type
source is to be used. The user also specifies the direction for the plane wave as

PLANE WAVE BEAM DIRECTION = WX WY WZ. The direction must be non-zero. The intensity of the
plane-wave in units of Power per area is defined through PLANE WAVE INTENSITY = PWI. The
ability to constrain the beam to only certain external surfaces is identical to that for the focused beam
above as is the beam temperature.

One should keep in mind that for both beam types (focused and plane wave), beam vectors at external
surfaces are only calculated for nodes on surfaces where the inner (dot) product of outwardly directed
area vector and the beam flux vector is less than o, indicating that a user specified beam must enter
rather than exit the simulation domain. Of course, given the physics internal to the domain of
simulation, a radiative flux vector can exit the simulation, but we disallow the possibility of a user
specifying an outwardly directed beam that does not result from internal physics.
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Beta Capability:

3.5. ONE-DIMENSIONAL COMPOSITE FIRE
BOUNDARY CONDITION

3.5.1. Conceptual Overview

Fuego includes a boundary condition that is capable of modeling the thermal decomposition and
outgassing of a thin sheet of porous material at the boundary surface, initially intended to simulate the
combustion of a sheet of carbon fiber composite material. Variation through the material thickness is
assumed to be locally one-dimensional. The actual implementation is quite flexible, allowing the
simulation of the thermal response of essentially any finite-thickness material that can optionally
undergo a user-specified chemical decomposition mechanism.

Figure 3.s-1 illustrates a two-dimensional representation of the virtual mesh used for this 1D composite
fire boundary condition. One layer of elements above the boundary is shown, within which Fuego
performs its normal fluid solve using the control volume finite element CVFEM method. The CVFEM
sub-control volumes are demarcated with dashed lines. An equal-order interpolation methodology is
used, so that all solution variables are stored at the element vertices.

For this boundary condition, a series of independent one-dimensional virtual domains exist behind
each CVFEM surface node, and each virtual 1D domain has a cross-sectional area that matches the
group of CVFEM boundary sub-control surfaces that contain the single “parent” surface node. A
classical cell-centered finite volume methodology is used for the 1D virtual domains, where the
discretization, storage, and numerical solutions all occur within the boundary condition
implementation and only interact with the main CVFEM flow solution through fluxes and solution
variables at the exposed surface.

Each 1D domain is assumed to have a fixed geometry that is filled with a simple porous material that is
allowed to react chemically to form gaseous species. Since the overall volume of each element is fixed,
the porosity of each volume is assumed to increase as species are converted from solid to gas. It is
assumed that the gaseous species within the pores of the solid phase are of secondary concern, and as
such no discrete transport equation is solved for them. The approximation is instead made that all gases
generated within the porous material appear instantaneously at the surface of the material as a flux into
the main fluid solution. It would be straightforward to solve additional transport equations for fluid
flow within the porous material if that level of fidelity were to become necessary, as in the case of
oxidative reactions where oxygen must diffuse through the exposed surface into the porous material
before reactions may occur.
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Figure 3.5-1.. Representative mesh layout for 1-D composite fire
boundary condition

3.5.2. Model Formulation
3.5.2.1. Transport Equations

Within the solid phase of the porous material, one-dimensional transport equations for continuity,
chemical species, and energy are solved in the form:

a_ﬁ -

9 T Y (3:5)
pY; - m
gtk = W (3.6)
T o (-oT\ .,
PCar = ar <k%) +q7, (3.7)

where p, ¢, and k are the mixture-averaged bulk density, specific heat, and thermal conductivity,
respectively, Y}, is the mass fraction of chemical species k, 1" is the temperature of the solid phase, ¢ is
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the volumetric heat generation rate due to chemical reactions, w;” is the volumetric mass generation rate

of chemical species k, and w!” is the overall mass generation rate computed as W = > w}".
ks

3.5.2.2. Material Models

The composite material used for this boundary condition is assumed to be of a fixed volume, ze. there is
no structural deformation allowed. The bulk density of the multi-species solid mixture is assumed to be
a function of the density of each component species in their native porous state, as

-1
p= (Z ﬁ) , (3.8)

w Pk

where py, is the porous density of species k, provided as a material model by the user. This model for the
mixture bulk density is only used to compute the initial bulk density field, which is subsequently solved
directly from Equation 3.s.

The porosity of the mixture is assumed to follow the model

)= Xpt, (3.9)
k
where X, is the volume fraction of species k,
Y
Xy = p—, (3.10)
Pk
and 9, is the porosity of pure species k, modeled as
pe=1--0, (311
P50,k

where py 1, is the density of the solid (non-porous) species k at a reference temperature. Note that the
porosity does not appear explicitly in any of the transport equations or subsequent material models, so
that it is never computed as part of the boundary condition solution. It would only appear in transport
equations for the gaseous species occupying the pores of the solid skeleton, if this level of detail were
ever to be added to this model.

In their most detailed form, the bulk thermal conductivity and specific heat are evaluated as a volume
average and mass average of the individual species properties, respectively, as

E = Zkak (3.12)
k

c = ) Vi, (3.13)
k

although a species-independent model for the overall bulk property may be used if the individual
species properties are not known.
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The last quantities that require a model are the volumetric species mass production rates, w”’, and the
volumetric heat production rate, ¢"”’. These quantities can be provided by the user in two different
ways. The traditional approach is to supply them using standard material property evaluations as a part
of the material model definition. These are arbitrary functions that themselves may be dependent on
any of the solution variables or other material properties. If a nonreacting material is desired, then these

terms may be simply modeled as zero.

The second way of supplying these quantities is by including a chemistry description block in the
material model, which allows the user to specify multiple reactions and variable composition gas
production.

3.5.2.3. Boundary Conditions

The exposed surface of the composite material interacts thermally with the environment through
several mechanisms, including convective heat transfer and both radiation absorption and emission.
These external fluxes must balance the conduction inside the composite material at the surface, as

<11 _ <11 <1
q = Yeonv + Grad
<1 4 <1
Aeony te (UTl - %rr) (3'14)
where ¢ is the convective flux imposed on the surface by the external laminar or turbulent boundary

condition treatment, 7 is the temperature solution from the first control volume in the composite

material used to model the gray emission, and ¢, is the external radiative flux incident on the surface.

On the back-side of the virtual composite material, optional convective and radiative heat transfer to a
p p
quiescent environment is modeled as

/)] -1
dy = qb,conv +qb,rad

4 4
- h’C (TN - Tref) + O€y (TN - Tref) (315)
where h. is a user-specified convection coefficient, €, is a user-specified back-side emissivity, T} is the

modeled ambient environment temperature, and Ty is the temperature of the solution node closest to
the back-side surface, assumed to be equal to the back-side surface temperature itself.

3.5.2.4. Numerical Implementation - Original

A segregated, implicit solution technique is used to numerically integrate Equations 3.5-3.7. The
discretized form of the continuity equation, Equation 3.5, is derived by first integrating it over the finite
volume V' and the time step At to yield

/ {/ 8—ﬁdV — / d}é”dV] dt =0 (3.16)
ae LJv Ot v

aﬁz -
/At lV T Viw; 0 (3.17)
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Discretizing the temporal derivative using a first-order backward difference approximation and solving
for the bulk density at the new time step yields

Vi (P = pi) — Vidli At =0 (3.18)
Pt =+ wlhAL (3.19)

where the mesh indices are defined in Figure 3.5-2. Note that this equation is linearized by evaluating the
source term at the most recent estimate of the n + 1 solution state.
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Figure 3.5-2.. Mesh index definition for 1-D composite fire boundary condition

The species transport equations, Equation 3.6, undergoes an identical transformation,

apY;
/ [ gt’“dv . / w,;”dv] dt =0 (3.20)
At 1% Vv
At ot o
Vi (ﬁ?HYk’?iH - ﬁ?Yknz) - V;w;v/:iAt =0 (3.22)
n PrY + wih At
Yt = S (3-23)

(2

where the bulk density at the new time level is used from Equation 3.19, and the source term is evaluated
from the most recent estimate of the n + 1 solution state.

The energy equation also undergoes a similar transformation, but with added complexity due to the
inclusion of spatial derivatives. Equation 3.7 is first integrated in both space and time, and the Gauss
divergence theorem is used to remove one level of spatial derivatives in the diffusive flux term,

i) 0 - 0T 11 .
/At [/v chdV B /V o (k£> dV — /Vq dV] dt =0 (3.24)
/ {/ ﬁéa—TdV — / n- (]%8_T> dA — / q'”/dV} dt = 0. (3.25)
IR AT A or v
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Integrating numerically in space yields

oT; - 0T -OT :
5.6 Vi—t Ak Ak— — "V
/At picats ot <( kaﬁ)zé i < kﬁf)w;) wh

oT; T —Ti = Tiy1— T, .
A DTN Ak 2T gy,
At + ( AZIZ’Z_% ) H—% z+% ( Al’l_’_% Q'L

et .
ot T2

and then integrating in time and linearizing the equation by evaluating the coefficients at the most

recent estimate of the n + 1 solution state yields

Tn—i—l _Tn Tn+1 _ T-n+1 B T."'H _ Tn+1
pic Vi [ —— 1 A I el S R S SAR SR S V)
PiC ( ) + % ( AZEZ_% H—% H—% AZL’H_% q;

At
(3.28)
This leads to a tridiagonal system of coupled linear equations for the temperature at time level (n + 1),
which is solved using a direct method with the DGTSL module of the SLATEC library.

dt=0 (3.26)

pzcz‘/; Ei— dt = 07 (3.2,7)

N|=

o
|

The continuity, species, and energy equations are solved sequentially in the order described, and the
solution is repeated until the maximum normalized change in the temperature solution,

|Tn+1 _ T*|

Terr - Trtl

(3-29)

satisfies the user-specified tolerance, where 7™ is the solution from the previous iteration.

Please see the Fuego user’s manual for details on the usage of this boundary condition.

3.5.2.5. Numerical Implementation - New

When using the new form of the composite BC, where the chemical mechanism is specified using a
chemistry description, the numerical implementation is slightly different. The finite volume
discretization used is the same, but the system of equations is solved monolithically using the
user-specified ODE solver. The solver handles time stepping during the sub-integration to reduce the
overall error below the specified threshhold.

Additionally, when constructing the monolithic system with the new form the DOFs are temperature
and NV species masses, rather than the prior approach of using temperature, density, and /N — 1 species
mass fractions.
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3.6. NON-CONFORMAL DG BOUNDARY CONDITION

3.6.1. Conceptual Overview

The non-conformal boundary condition uses the DG approach described by Domino [87] and is
currently implemented for turbulence models, continuity, momentum, and heat conduction. The
non-conformal boundary condition is applied where you have two domains, A and B, which share a
discontinuous interface with individual sidesets, S4 and Sp. The algorithm is applied in two passes,
first iterating over all integration points in S4 and finding the matching face in S, then by iterating
over the integration points in Sp and finding the matching face in S4. The generic flux of a scalar, ¢ at
an integration point on 54 is

04 = (q}qn

;)

2

A B A
LA (PN — ¢B) A?+mA(¢ ‘2F¢ )+n‘7’;‘

(0" —¢"),  (330)

where ¢; is the diffusive flux, 72 is the mass flux, and A is the interior penalty coefficient.

Prior investigations have shown that pressure oscillations can be minimized by using the current

integration point normal direction for both diffusive fluxes, so nk =_—n4

J J-

The penalty term, A4 s given by

i = LTI )

where I is the diffusive flux coefficient and L is an element length scale.

The advection coefficient, 7, defines the degree of upwinding to use. A value of 7 = 1 results in a fully
upwind scheme, while 7 = 0 results in a central difference scheme. When using a hybrid approach, this
value is calculated locally based on the Peclet number.

3.6.1.1.  Continuity

The mass flow rate at the non-conformal boundary includes the pressure stabilization terms, as

OpA B\ B
(put + a2Gp — aA—‘gZ;_ )t — (puf +alGPp — al L )n!
A j p 7] P Da; ) - j p p 9z, /"] At = pB) A?.

(3-32)



3.6.2. Performance Considerations

There is a computational cost associated with the use of the non-conformal interface. This is largely due
to two tasks: a search to match integration points with opposing faces on both non-conformal
boundaries, and the resulting changes to the linear system stencil if the interface moves. Preliminary
testing has shown that the cost of reinitializing the linear system with a new stencil is at least an order of
magnitude greater than the cost of the search. For this reason, the algorithm implemented in Fuego will
do an extra search in order to only reinitialize the linear system when the stencil actually changes. The
user can expand the search boxes used in the stencil definition in order to reduce the number of linear
system reinitializations by setting the “Search Expansion Factor” in the non-conformal boundary
condition specification. This number is the approximate diametrical size increase in the stencil in terms
of number of elements.

3.6.3. Non-Conformal Moving Walls

The non-conformal BC in Fuego supports having a moving surface as one side of the interface. This is
implemented by providing a shell block containing nodal displacements on one side of the interface.
Then non-conformal search will search for matching faces in opposing blocks and shells. If a shell is
found, an appropriate wall boundary condition is applied at the integration point, while if a non-shell
element is found the interior algorithms described previously are used.
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3.7. POROUS-FLUID COUPLING ALGORITHM

This section provides a brief overview of the current porous/fluid coupling algorithm, as it is intended
to be used in simulations of composite fires using Fuego to model the fluid region and coupling to Aria
to model the porous region.. This is a loosely-coupled algorithm, relying on framework interpolation
transfers of nodal fields between the porous region and the low-Mach fluid region and region-region
Picard loops to converge the overall problem within a timestep.

Note that the shorthand is adopted where the porous region is described as region A and the low-Mach
free fluid region is described as region B, with the interface between them referred to as I' 4 g and other
boundaries not a part of this interface are referred to as ['\I" 4 5.

3.7.1.  Fluid Flow
3.7.1.1. Bulk Equations

Porous Continuity Equation The porous region contains a condensed phase (the solid skeleton
of the porous system) and a gas phase occupying the pores of the condensed phase. The condensed
phase is not discussed explicitly in this description, although it interacts with the gas phase through
things like its permeability and porosity, and its decomposition which can produce gas-phase mass
through chemical source terms.

The porous gas-phase continuity equation within a porous region, to be solved for the gas-phase
pressure pg, is

a(&pg) a<pgu]}9) e

where 1) is the mixture-averaged condensed-phase porosity, p, is the gas-phase density, and u; 4 is the
gas-phase velocity vector computed from Darcy’s approximation as

K (0p,
Ujg = m ( oz, + pg%) ; (3.34)

where K is the mixture-averaged condensed-phase permeability, 114 is the gas-phase viscosity, and g; is
the gravity vector. The term W represents the formation rate of gas-phase mass from the condensed

phase.

Multiplying Equation 3.33 by an arbitrary test function w and integrating over the domain {2 while
integrating the advection term by parts, yields the variational form of the continuity equation that is
solved for p, using the Galerkin finite element method,

a(r‘;p ) - m ow
Q r

Q

153



where n; is the boundary surface normal. The boundary flux term is then split into contributions on
the interface between regions A and B and off the interface so that they may be treated separately. The
continuity equation then takes the form

OWpg) _ . dw
/w < 61&9 — Wy | dQ — /6—%pguj,gd§2
Q Q

+ / wpguj7gnjdlﬂ+/wFAdF:0, (3.36)

MNCap T'ar

where F' is the imposed flux on the porous side (A) of the I 4 g interface. A detailed description of the
coupling boundary flux is given in Section 3.7.1.2

Low-Mach Continuity Equation The continuity equation within the low-Mach fluid region, to
be solved for the pressure p, is
dp  Opu;
8t 81']‘
where p is the fluid density, u; is the fluid velocity, and .S is a generic mass volumetric source term.
Integrating Equation 3.37 over a CVFEM control volume and using the Gauss divergence theorem on
the advection and diffusive flux terms, yields the integral form of the continuity equation that is

solved,
dp
5% S dQY+ [ pujn;dl’ = 0. (3.38)
Q T

Similar to the porous continuity equation, the boundary flux term is split into contributions both on
and off the I' 4 p interface, yielding

Q

MIap Y]

=9, (337)

The interface coupling flux is described in Section 3.7.1.2.

Low-Mach Momentum Equation The momentum equation within the low-Mach fluid region,
to be solved for the velocity u;, is
8pul 8,0u]ul aO'Z'j

5 oz, = Dz, + pgi (3.40)

where the Cauchy stress tensor is given by

Oij = Tij — P5ij (3.41)
in terms of the viscous stress tensor
Ou;  Ou; 2 Ouy
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Integrating Equation 3.40 over a CVFEM control volume and using the Gauss divergence theorem on
the advection and diftusive flux terms, yields the integral form of the momentum equation that is

solved,
dpu;
T r Q

Q

Multiplying this equation by an arbitrary test function w, integrating the advection and stress terms by
parts, and splitting the boundary flux terms into on-interface and off-interface contributions yields

Q Q F\FAB F\FAB
+ / pujum]df— /aijnjdf =0. (3.44)
T'ap Tar

3.7.1.2. Coupling Boundary Conditions

Coupling between the porous and fluid regions is achieved using an interface flux that is imposed as a
Robin-style boundary condition. This approach has been used successfully in the past for coupling
incompressible Darcy and Stokes flows [88]. Here we generalize the coupling for compressible fluids
and Navier-Stokes flow.

The fluxes applied to the porous and fluid continuity equations at the interface I' 4 g are
Fy=1mpg-n+ B(pa—ps) (3.45)
Fg =14 -n+ B(ps —pa), (3.46)
where 14 = pgily, hp = pt, and the free constant 3 is computed as

K
p=c p]f (3.47)
Hg

with h being a measure of the mesh size adjacent to the interface, and c a user-specified scaling
coefficient. The same value of 3 is used on both sides of the interface because that results in excellent
mass conservation even on coarse meshes. If a different value of [3 is used on each side the method is still
convergent but worse mass conservation is observed when solving on under-resolved meshes. Some
attempts have been made to use an averaged penalty coefficient of the form

8= Ba —g Bp (3.48)
K

Ba= M/;Lg (3.49)
g

B = 5 oty = hjjf (3:50)



however they resulted in an impractically large number of Picard iterations to converge for some test
problems.

A distinguishing condition BC for velocity is applied to the low-mach momentum equation in the
form

D D
uj—(u- +u~)=0 (3.51)
where u is the imposed normal component of velocity and u}), is the imposed tangential component
of Veloc1ty The normal component is computed directly from the continuity flux at the interface,

F

D B

Uiy = — 1. (3.52)
p

The tangential component is based on a variation of the classical Beavers-Joseph-Saffman

condition [89, 90] for the slip velocity which has been extended to non-planar surfaces in

multidimensional flow [91], which defines a provisional model velocity

U;'m = —E (n7ij) (3-53)
Qap
where K is the permeability of the porous region at the interface, 1 is the viscosity of the local fluid at
the interface, 7;; is the viscous stress tensor of the fluid at the interface, and o is a dimensionless model
parameter that is a function of the microstructure of the porous material, which has been found to have
typical values near 0.1 [90]. The tangential component of this vector quantity is used as the tangential
component of the distinguishing condition velocity, and is computed as

_ uBJS ( BJS

Gt upPng) ny. (3.54)

3.7.2. Enthalpy Transport
3.7.2.1. Bulk Equations

Porous Gas-Phase Enthalpy Equation The gas-phase enthalpy equation within a porous
region, to be solved for the gas-phase temperature 7}, is

a(znghg) 1 Apgtjghy) _ _6%}}79 4 (9(1;]?9) + %
ot Oz, 0z ot 9 0w
—i—hcv T — T —|— Z ;//fk ;Hdk) hk,g (3-55)

where h, is the mixture-averaged gas-phase enthalpy, A, is the volumetric heat transfer coefficient, T is
the porous condensed-phase temperature, (&2, — w.";,) is the formation and destruction of
gas-phase species due to heterogeneous reactions, and /1, 4 is the gas-phase enthalpy of chemical species
k. The gas-phase energy diftusive flux vector q;-l’g is modeled as

Y= _@Zpng7g7 (3'56)



where D, is the mixture-averaged gas-phase mass diffusivity.

. . . . . . Opg
Note that, in Equation 3.5, there is some concern that the pressure spatial derivative term, ;4 e ,is

incorrect. A crude re-derivation of this equation indicates that its form should instead be ufjg (81/;5 o) A
more formal re-derivation from first principles is required to decide conclusively on the correct form of
this term, so it is left in its current form for now. Additionally, the diffusive flux vector is also of concern
since the current form was derived under the assumption of constant specific heat, equal species mass
diftusivities, and unity Lewis number. These assumptions may not be valid in future simulations,
meaning that this term should possibly be returned to the standard Fick’s law version that includes a
contribution due to enthalpy transport by differential diffusion of chemical species. Again, this term is

left in its current form for the present work.

Multiplying Equation 3.55 by an arbitrary test function w and integrating over the domain €2 while
integrating the advection and diffusion terms by parts, yields the variational form of the enthalpy
equation that is solved for i, using the Galerkin finite element method,

O(bpshg) [ 0(py) Ip A S
Q

k

ow
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j
r

— / gw 1940 + / wqn;dl = 0. (3.57)

Q r

The boundary flux terms are then split into contributions on the interface between regions A and B and
off the interface so that they may be treated separately. The enthalpy equation then takes the form

O(Vpghy) [ O(Upy) op _ e
/w ( 8;] T (atg + Ujvga_; — hey (T - Tg) - Z (‘*’s,fk - ws,dk) g i | Y
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+ / w (pgujghg) nydl + / wqj’gnde+ / wJEdD = 0. (3.58)
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where J4 is the imposed flux on the porous side (A) of the I" 4 5 interface. A detailed description of the
coupling boundary flux is given in Section 3.7.2.2.

Low-Mach Enthalpy Equation The enthalpy equation within the low-Mach fluid region, to be
solved for the fluid temperature 7', is

(oh) | Bpush) _ 0} J+(8§+u]ap)+%_; (359)
J

8t 8xj a{L'j 8
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where h is the mixture-averaged fluid enthalpy, qj is a source term due to radiation absorption and
emission, and p is the fluid pressure. The diffusive flux vector is given by

or

g = —)\a—% + Z phi Yt (3.60)

where ) is the mixture thermal conductivity, hy, is the enthalpy of species £, Y}, is the mass fraction of
species k, and 11y, is the diffusion velocity of species k in the j direction.

Integrating Equation 3.59 over a CVFEM control volume and using the Gauss divergence theorem on
the advective and diffusive flux terms, yields the integral form of the enthalpy equation to be solved,

8q] 8p ap ou;
Q

+/(pujh) nde+/q§’nde:O. (3.61)

r r

The boundary flux terms are then split into contributions on the interface between regions A and B and
off the interface so that they may be treated separately. The enthalpy equation then takes the form

q; dp dp ou;
) gy 1 [ 9% gy — a0 — [ 7, 2% 40
/ /83:] /(aﬁ ]833]) /T”axj
Q

+ / (pujh) n;dl' + / q?njdf%—/ngdF:O, (3.62)
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where J% is the imposed flux on the fluid side (B) of the I" 4 interface. A detailed description of the
coupling boundary condition is given in Section 3.7.2.2.

3.7.2.2. Coupling Boundary Conditions

Coupling enthalpy transport between the porous and fluid regions is complicated by the use of a two
temperature model in the porous region.

To resolve this complication the energy flux applied to the fluid region has a diffusive/conductive
component from the gas phase in the porous region, an advective component from the gas phase in the
porous region, a convective component from the condensed phase in the porous region, and a penalty
coefficient to enforce temperature continuity between the porous gas phase and the fluid. This takes the
form S
A
h __ dlff adv conv

PR o o o
where J diff 5 g 18 the diffusive energy transport from the porous gas phase, J§ adv is the advective energy
transport frorn the porous gas phase, J3°¢" is the convective energy transport from the porous

condensed phase, and (2) is the averaged thermal conductivity / mesh size between the porous and
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fluid regions. As with the flow coupling boundary conditions this same penalty coefficient is used in
both regions to get the best energy conservation on coarse meshes.

The advective energy transport component takes the form

J4Y = Fphas, (3.64)

where h 4 p is the upwinded interface enthalpy (i.e. itis either i 4 or hp depending on the direction of
F'p). The convective component from the condensed phase has the form

hC’U

as

le?gv = (1 - ¢) (Tf - Tc)a (3-65)
where h, is the volumetric heat transfer coefficient of the porous region and a is the specific surface
area (m?/m?) of the porous medium. This formulation of the convective component assumes that the
convective heat transfer between the condensed phase and the free fluid is consistent with the convective
heat transfer in the bulk of the porous medium that results in the volumetric heat transfer term of the
bulk equations.

The coupling back to the porous region is derived based on the assumption that
Thot The=J5" + 5", (3.66)

that is, the fluid region applies advective and diffusive energy transport components to the porous
region as a whole. The flux applied to the condensed phase is assumed to be the same as the convective
flux component it applies to the free fluid,

h‘C’U

as

Jhe=(1=4)—(T. — Ty). (3.67)

The flux applied to the porous gas phase is then given by

- A
Thy = I g~ bt ()@ - ) (.69

where the advective component is computed in the same manner as is done for the advective flux
applied to the fluid region,
d
Jg " = Fahap. (3.69)

3.7.3. Species Transport
3.7.3.1. Bulk Equations

Porous Gas-Phase Species Equation The gas-phase species equation within a porous
region, to be solved for the gas-phase mass fraction Y}, 4 of species k, is

O(bpeYig)  Opytts oYy Og) . . .
Wootka) | Spdatia) S0 (afly —illu) + (=) 670
J
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where (@’ o~ W ") is the formation and destruction of gas-phase species due to heterogeneous
n

< n . . . .
reactions, and ( Wy i — Wy, dk) is the formation and destruction of gas-phase species due to
X TP Yg
homogeneous reactions. The gas-phase species diffusion flux vector g, ;g is modeled as

— )4
Y,g k,g
Qi = —¥pg Dy, : (3.71)
kj 70 O

where Dy, 4 is the gas-phase mass diftusivity for species k. Note that if the mass diffusivities are not equal
for all species, then an additional correction is required to maintain mass conservation.

Multiplying Equation 3.70 by an arbitrary test function w and integrating over the domain {2 while
integrating the advection and diffusion terms by parts, yields the variational form of the species
equation that is solved for Y}, ;, using the Galerkin finite element method,

a(rJ)p Yk, ) - - - m /
/ w (—agt = = (@ — @) — (g — W) ) 42
Q

ow
Oz (PgjgYk.g) dQ“‘/w(pguj,ng,g) n;dl
J T
ow
- a_ijng + /qu] n]dr =0. (372')
Q i T

The boundary flux terms are then split into contributions on the interface between regions A and B
and off the interface so that they may be treated separately. The species equation then takes the form

A%
/ w (—3(1#%1 ko) _ e e A ;”dk)) ds2
Q

ow
o (PottsgYieg) 2 — / ——q,.0dQ
J
+ / W (gt gYe.g) nidl + / wq,}c;ignde—I— / wJ ikl = 0. (3.73)
MIap MTap LaB

where JX’“ is the imposed flux on the porous side (A) of the I' 4 g interface. A detailed description of the
coupling boundary flux is given in Section 3.7.3.2.

Low-Mach Species Equation The species equation within the low-Mach fluid region, to be
solved for the mass fraction Y}, for species £, is

a(ka) a(pujyk) _ aqk] - m
ot oz, om, (374)

where w;” is the volumetric mass formation rate if species Y}, and the diffusive flux vector is given by

Gy = =Pl Y, (3.75)
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with 1 , being the species diffusion velocity. Several forms for this velocity are possible, with the

simplest being

1 0Y%
i = —D——°% .76

for equal mass diffusivities D for all species. A more complex form is needed for unequal mass
diffusivities, which is not presented here.

Integrating Equation 3.74 over a CVFEM control volume and using the Gauss divergence theorem on
the advective and diffusive flux terms yields the integral form of the species equation that is solved,

Y,
/%dﬂ _ /wg’d9+/(pquk) njdr+/q,§jnjdr = 0. (3.77)

Q Q r r

The boundary flux terms are then split into contributions on the interface between regions A and B
and off the interface so that they may be treated separately. The species equation then takes the form

Y,
/ a(gtk)dQ— / W dQ + / (pu;Yy) nydl + / gr;m;dl + / wghdl = 0. (3.78)

Q Q MCap MIap F'aB

where J]};’“ is the imposed flux on the fluid side (B) of the I" 4 g interface. A detailed description of the
coupling boundary condition is given in Section 3.7.3.2.

3.7.3.2. Coupling Boundary Conditions

Coupling species transport across the porous-fluid interface is relatively simple compared to enthalpy
transport. As with the flow coupling Robin style boundary conditions are applied on both the porous
and fluid regions, but with both diffusive and advective flux components.

For the flux of a species £ this takes the form:

: D
JXI@ — ngff —+ FAPng,AB + (Tkp) (Y]ﬁA — Ykz,B) (3_79)
Yi diff Dyp
Jgt = J4" + FppYpap + 5 (Y — Yia) (3.80)

where Y}, 4p is the upwinded interface mass fraction, equivalent to h 45 from the enthalpy coupling.
Once again the same penalty coefficient is used on each side in order to get good mass conservation even
on coarse meshes.
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4. PARTICLES

4.1. INTRODUCTION

The transport of particles through a gas-phase flow is of importance to a tremendous range of
applications. Applications in the area of combustion and fire science include fuel sprays, suppressant
transport and metal particle combustion [92, 93, 94, 95, 96, 97, 98, 99]. These applications typically
have a strong coupling between the heat and mass transfer. For example, fuel spray combustion is
typically limited by the diffusion of the oxidizer towards the particle. In fire suppressant distribution,
the cooling associated with the evaporating suppressant can dramatically slow suppressant evaporation.
In metal particle combustion, in order for the metal oxide combustion product to condense out, the
enthalpy of condensation must be dissipated; this energy dissipation is a combination of radiative and
conductive transport, each of which results in differing heat flux consequences. Also relevant are the
transport of contaminants through the atmosphere and the dynamics of clouds [100]. A large number
of industrial processes share similar physics including powder manufacturing, painting, coating and
ink-jet printing.

This report describes the development of a Lagrangian particle and droplet transport model and its
integration with a computational fluid dynamics (CFD) code that solves, on an Eulerian mesh, the
continuum phase. Conservation of mass, momentum and energy are considered for the coupled system
allowing combustion along with evaporating and condensing particles. Since examples of this type of
flow are typically sprays, this model is sometimes referred to as a spray model, but it can handle general
classes of particulate flows. This model is developed to be suitable for modeling evaporating,
condensing or combusting flows of particles in continuum gas-phase flows. This model is based partly
on the initial implementation of a dilute spray model in the Vulcan fire-physics computational
modeling code [101, 102] as described in [103].

Two significant limitations are stipulated that lead to the simplified conservation equations employed.
First, the spray must be dilute, that is the volume fraction of the particle phase must be small (i.e. less
than 1o percent). Second, the physical density of the particle should be orders of magnitude greater than
the continuum (gas) phase and the particle Reynolds numbers should not be too large or additional
terms will appear in the particle evolution equations [104].

4.1.1. The Spray Equation

For given physical properties of the particle (composition, density, etc.), the particle field is characterized
by the particle locations, velocities, radii and temperatures. This can be expressed in terms of a particle
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distribution function, f, so that:
J(Xp, up, 1, Ty t)duydrydT, (4.1)

is the probable number of droplets per unit volume at location x,, in the velocity range (u,, u, + du,),
the size range (7, 7, + dr,), and the temperature range (7}, T}, + dT},). The evolution of this particle
distribution can be described by an equation of the Fokker-Planck form [10s]:

df du, d dr, d dr, df df

v o+ (e e () + g () = (&), (3), o0
Here, expressions for the particle acceleration, evaporation and heating are required in the third
through fifth terms on the left-hand side. Similar models for particle collision and breakup appear on
the right-hand side. Such models are available in the literature [97, 106] and are described in the earlier
report [103]. Unfortunately, Eq. 4.2 is a differential equation in nine dimensions, a fact which makes
direct numerical evolution prohibitive in the general case. The standard alternative is to represent f
using a fine-grained distribution and Monte Carlo methods. That s, f is represented by a sufficiently
large number of discrete distributions, each representing a number of particles, N,, with the same
particular characteristics (x,, u,, 75, T}, t). All of the N, particles in a fine-grained distribution share
the same evolution equation, and f is found by summing over the discrete distributions. In this
manner, the evolution of f can be described using evolution equations for individual particles. Such
evolution equations are provided in 4.2.

Because it is typically prohibitive to track all of the particles in a flow, representative parcels of particles
are instead tracked. The particles in a given parcel share a common origin and common material
properties. To further simplify the parcel evolution equations, each parcel consists of mono-disperse
(single-diameter) particles so that all particles in the parcel are described by the same set of evolution
equations. For flows where the particle size is distributed over a range of values, it is still necessary to
track a statistically significant number of parcels to reproduce the mean behavior. Typically, a large
number of parcels (tens or hundreds of thousands) are tracked to describe the evolution of the particle

field.

4.1.2. A Combined Eulerian-Lagrangian Approach

The typical approach to CFD is to employ Eulerian descriptions of the flow field. Such an Eulerian
formulation is employed to evolve the gas-phase continuum flow in the present case using standard
methods [107]. To evolve the fine-grained distribution as indicated above, a Lagrangian approach is
necessary [108, 109, 110, 111]. Such an approach has been used in other CFD applications including, for
example, the popular internal combustion engineering simulation code, KIVA [97]. The coupling
between the Eulerian and Lagrangian fields is key to capturing certain relevant physics, and this
coupling is described in detail in 4.2 and in 4.3.

The present paper presumes that turbulent flow fields will be of interest, and that these turbulent flows
cannot be fully resolved. Then, in addition to the continuity, momentum, species, and energy
equations, there will be representations for the turbulent fluctuations. It is common to employ
two-equation models in Reynolds-averaged Navier-Stokes (R ANS) approaches while large-eddy
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simulation (LES) techniques employ estimates of the subgrid fluctuations based on resolved quantities.
For the present purposes, the & — € turbulence model [112] will be presumed with extensions to other
methods being straightforward.

When a particle collides with a solid wall, it is assumed to adhere to the wall if the impact velocity
(kinetic energy) is sufficiently high, and bounces otherwise. In general, adherence is the predominant
result of collisions for the particles considered here. It is well known that fine powders can be
convectively lifted from surfaces and transported elsewhere, but this is beyond the scope of the current
study. Models for the particle breakup due to hydrodynamic forces and for particle collisions are also
available. For these purposes, models developed elsewhere and available in the literature [97, 106] are

employed.

4.2. PARTICLE TRANSPORT MODEL

In this section, the equations describing the evolution of parcels of particles are presented. Models are
presented for the particle motion and for heat and mass transfer (ie. evaporation and combustion).

4.2.1. Particle Acceleration and Trajectories

Particles with densities much greater than that of a the fluid phase (solid or liquid particles in gaseous
flows) are primarily affected by drag forces and body forces. In this limit where p, > p,, the particle
acceleration is written [98]:

dup; _ 3pyCplug — uy| Pp — Pyg
ek Ipd, (ugi — upi) + o )Y (4-3)

where uy, ; and ug ; are the ith component of the particle and gas velocities, respectively, |u, — u,| is the
vector magnitude of the velocity differences, p, and p, are the particle and gas densities, and g; is the i*"
component of the acceleration due to body forces. The particle diameter is d,, and this should be
considered to be the equivalent particle diameter corresponding to a spherical particle. The effects of
non-sphericity on the acceleration can be accounted for through the drag coefficient, Cp. The
gas-velocity to be employed in 4.3 is taken from the Eulerian solution of the continuum field. For
turbulent flows, the sum of the mean (resolved) velocity and a perturbation to that mean, accounting
for the turbulent fluctuations, both contribute to the gas velocity. The effects of turbulent fluctuations
are described in the following section, 4.2.2.

For a spherical particle, the drag coefficient is modeled using standard drag coefficient relations:

24(1+ Re,)*3/Re,  forRe, < 1000
Cp = (4-4)
0.424 forRe, > 1000
The particle Reynolds number, ey, is based on the slip velocity and the particle diameter
d _
Re, = Pytp|tg — | (4.5)

Hg
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Yuen and Chen [113] recommend evaluating the viscosity in 4.5 based on the weighted average of the
properties at the gas-phase side of the particle surface (weighted by two-thirds) and the gas-phase
properties far from the particle (weighted by one-third), the so called ’1/3 rule.” So for properties at the
surface and far field identified with a subscripted f and 0o, respectively, the viscosity would be

ftg = Hoo/3 + 24y /3. (4.6)

A similar relationship is suggested for other transport coefficients (conductivity, diffusivity, etc.). Note
that additional forces are relevant for particles with densities nearer to or less than the continuum phase
(bubbles) and for particles with high Reynolds numbers. A comprehensive overview of the force on
particles is available from Maxey and Riley [104]. Equation 4.3 can be linearized and written

duy,; i — Upg -
Upji _ (Ugi — Up;) X (Pp pg> gi (4.7)

dt Tp Pp

_ Appd,
3psCplug — uy|

Tp (4.8)
where 7, is the particle velocity response time. In the small Reynolds number limit where the drag
coeflicient is inversely proportional to the slip velocity, this linearization is particularly relevant. Given
the particle acceleration from Eq. 4.3, the particle trajectories can be determined by integrating the

simple ODE

dx i
d? = Up,i (49)

Since all the particles within a parcel are the same size, all parcel trajectories are determined by Eqn. 4.9,
subject to turbulence effects described below in 4.2.2.

4.2.2. Particle Dispersion and Turbulence

In CFD modeling of turbulent flows, the full velocity spectrum is generally not resolved. Instead,
certain velocity fluctuations are modeled, being represented through the turbulent kinetic energy, £,
which is half the sum of the squares of the velocity fluctuations. These velocity fluctuations tend to
introduce random fluctuations in the particle velocities that result in real particles being dispersed
relative to the mean continuum flow [114, 115]. For Lagrangian particle methods, this phenomenon is
modeled in two ways: by perturbing the velocity of parcels of particles and by affecting the spatial extent
of the parcel itself.

To account for the effects of the velocity fluctuations on the parcels or particles, the random walk model
of Gosman and Ioannides [108], as modified by Shuen et al. [109], is employed. In this approach, the gas
velocity employed in equations 4.3, 4.5, 4.7, and 4.8 is the sum of the mean gas velocity, (u,;), and a
fluctuating velocity that is sampled from a normal (Gaussian) velocity distribution with a standard
deviation given by 0, = \/2k /3. For LES, k here would be replaced with the subgrid kinetic energy.
Sampling from the inverted cumulative distribution function with a random number uniformly
distributed between zero and unity, RN, gives the appropriate fluctuating velocity. The total and
fluctuating gas velocities are then

Ug; = (Ug,) + ulg,z‘ (4.10)
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Uy ; = V20.erfTY(2RN — 1) (4.1x)

where er f ! is the inverse error function. The time during which a given velocity fluctuation affects a
given parcel is determined by the expected time that the particle takes to cross the eddy inducing the
given velocity fluctuation. Small particles will tend to stay in an eddy for the duration of the eddy

lifetime,
Te = \/3/202/4]6/6 (4-12)

where € is the turbulent energy dissipation rate and C), = 0.09. Larger particles will have sufficient slip
velocity to cross the eddy. The eddy-crossing time is estimated as

L
To = —Tpln [1 — —e} (4.13)

Tpluy — uy|

where the eddy length scaleis L, = Cz/ 302 /€. The eddy interaction time, that is the time over which
a given velocity perturbation affect v, ; in Eqns 4.10 and 4.11, is the minimum of 7. and 7¢. The
particles comprising a parcel are presumed to be distributed about the center of the parcel, tracked by
Eq. 4.9, in a normal (Gaussian) manner with the standard deviation in each direction given by o;, where
1 is either x, y, or z. This distribution is written

ﬁma@¢%=——4%L——wm(—[@‘x”?+@‘ﬂ”?+“‘%“1) (+14)

(27m)3/20,040, 20,2 20,2 20,2

where N, is the total number of particles in the parcel and @, is the center of the parcel. The spatial
extent of the parcel is thus determined by ¢;. This term is affected by unresolved turbulent fluctuations
that act differently on the particles across the parcel. Following Zhou and Yao [110], the spatial extent of
the parcel is the mean square displacement over time

0t =Y |ut(An)?] (4.15)

where u, ; satisfies the ODE
/ !/ /!
du'pi  (ugi —u'p)
dt T

(4.16)

and At; is the time over which «//,, ; acts. Equation 4.16 is obtained by subtracting the instantaneous
particle equations from the mean particle equations. Note that large particles with large 7, are not

dispersed appreciably.

4.2.3. Mass and Energy Exchange between Particles and the Gas
Phase

Particles may exchange mass and energy with the gas phase according to conservation principles across
the interface. The physics of mass and energy transfer are described in detail here because the anticipated
applications include a wide range of physical phenomena that have not been described together.
Included in the phenomena of interest are metal and hydrocarbon particle combustion as well as particle
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condensation and evaporation. Each of these is anticipated to be strongly energetic in the sense that the
product of the evaporation rate with the ethalpy of evaporation and combustion is expected to be
substantial. Further, for evaporation and condensation applications, it is expected that vapor pressures
will range over a sufficiently wide range that the transition from evaporation to condensation should be
correctly described as this often limits evaporation and condensation rates. For metal combustion, the
associated temperatures are sufficiently high so that radiative heat transfer must be considered.

The theory for droplet vaporization and combustion has generally been developed based on a large
number of simplifications [92, 93] including spherical-symmetry, unity Lewis numbers, droplet surfaces
at the boiling temperature, and infinitely fast conduction through the droplet. Recent work provides
guidance as to how these assumptions can be relaxed [116].

4.2.3.1.  Theory for spherically symmetric flow

In general, the theory of heat and mass transfer is developed for spherically symmetric systems and then
corrected to account for increased transfer associated with advection and asymmetry. In this section,
relations are developed based on the assumption of spherical symmetry and corrections is provided in

4.2.3.2.
1
— 4+ r__f," (pr V) =0 (417)

can be integrated to give
me = dmpriv (4.18)

where 1, is the rate of mass evaporation from the particle, v is the Stefan velocity, directed normally
away from the particle, and p is the local vapor density considering both the particle vapor and the
continuum gas concentrations. A coordinate transformation to the variable

o 1
Er = /ro —47rr2()\/cp)dr (4.19)

or

Y e 1
§r = my /TO WdT (4.20)

which represents the ratio of the Stefan velocity to the thermal diffusion velocity, greatly simplifying the
species and energy conservation equations. In Eqns. 4.19 and 4.20, A is the thermal conductivity of the
vapor, ¢, is its specific heat at constant pressure, and D is the evaporating species diffusion coefficient.
The subscript o on the evaporation rate indicates that this evaporation corresponds to that for the
spherically-symmetric case; corrections relating the evaporation rate for the spherically-symmetric case
to that with finite-slip velocities are provided in 4.2.3.2. In the spherically-symmetric case, conservation
equations for conserved scalars, 3, can be written

OBe OBy

— 4+ —— =0 .21
for which an analytic solution

Be = Cy + Che™® (4.22)
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is readily obtained. In non-reacting, non-radiating flows, any mass fraction or temperature can be a
conserved scalar. Other conserved scalars are provided below. The appropriate from of 4.19 and 4.20 to
be used depends on the variable represented by 4.21. Since the diffusion coefficients appearing in 4.20 are
most important near the particle surface, the diffusion coefficient to be employed is that most relevant
at the surface. The choice will be clearly identified below. The application of the Dirichlet boundary
conditions at both the surface and far from the droplet and the application of a Neumann boundary
condition at the surface relate the boundary conditions for the conserved scalar to 11, through &

1 ﬁoo_ﬁf

gk’f = My /TD Wd’r =In|1 + dﬁ (423)

where the subscript f indicates quantities evaluated at the droplet surface, the so-called film state. For
reacting flows ' we will consider two such conserved scalars in the present work. Allowing variable
properties, the temperature oxidizer coupling function is

T

YoWrqeom

Br-o = / cpdT + OVO;WQOb (4.24)
To

where W; is the molecular weight and v; is the stoichiometric coefficient of species 7. The standard
enthalpy of combustion for fuel and oxidizer, per unit mass of fuel evaluated at the film temperature,
Tf, is

hO,fWO Vo hp’f Wpr
0 Z [W} (4.25)
where the last summation is taken over the produces of reaction, p. Note that when there is no
combustion, the second term in Eqn. 4.25 is ignored. For B7_¢, the thermal diffusivity is the relevant
diffusivity so that Eqn. 4.19 is employed in conjunction with Sr_o.

The constants (' and C in 4.22 are evaluated using the boundary conditions for the temperature and
oxidizer at the droplet surface and in the far field. The boundary conditions employed for temperature
are that the heat flux into the particle is balanced by the sum of the enthalpy of vaporization, the heating
of the particle and any radiative losses

dT . dT . di,
471'7’2/\ % ; = —MyCp,f f_T ; = mhvap + Qrad + mpcvvpd_tp

(4.26)
Here, the enthalpy of vaporization is h,qp, the particle specific heat is ¢, ;,, and the radiative heat loss
over the droplet surface is

Qraa = 471, 0(0 Ty — G /4) (4.27)

where a is the particle absorptivity, o is the Stefan-Boltzmann constant, and Gy, is the incident
radiation. The incident radiation is the radiation intensity integrated over all directions, that is, the

"The general configuration considered is a fuel droplet reacting in an oxidizing atmosphere; in the event that, for example,
an oxidizer droplet is reacting in a fuel atmosphere, then the "oxidizer" and "fuel” described would be switched. Also, if
there is no reaction, the results generalize to droplet evaporation where the "fuel” is the evaporating component.
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entire 47 steradian solid angle. If the radiation intensity is I, then G;,, = || 1 1A where d€2 is the
differential solid angle. If the particle is not opaque, the particle absorptivity will be a function of the
particle size [117]. Note that, in Eqn 4.26, the evaporation rate appears without the subscript o,
indicating that this is the evaporation rate corrected for finite-slip velocities as prescribed in 4.42 below.
This is appropriate because the heat and mass flux to the surface are both increased by the relative
droplet motion, while the other terms in 4.26 are not affected by that. The oxidizer is presumed to not
be absorbed by the surface so that a no-flux boundary condition is employed

dYp
— =L Yo +. 28
dér €o,f¥o,r (4.28)

Because the thermal diffusivity is used in definition {7 for S7_o, the ratio of the thermal to mass
diffusivity in the form of th oxidizer Lewis number appears in 4.28. Taking the derivative of Eqn. 4.24
evaluated at the droplet surface and using 4.26 and 4.28, we obtain

dfr-o
dgT f
that will appear in the denominator of Eqn. 4.23. Also the temperature and oxidizer mass fraction must
approach their far field values at large radii. Additional assumptions are required to identify the

(4.29)

_ _hvap . Qfad . mp'cv,p dTp +/ dcpde . YO fWFQComb
m m dt T dfT Leo fV()WO

temperature and the oxidizer mass fraction at the surface; these will be discussed later. Applying these
boundary conditions to 4.22 for Br_o provides an expression for the rate of evaporation in terms of {7
evaluated at the surface of the particle

o 1
=m ———dr=In|1+ By_ .
&,y = mio /T V) r=1In[1+ Br_o] (4-30)

where the Spalding transfer number associated with 87_¢ is

T T (Yoo — Yo r)Wr
fTo Cpoodl — fTo vade + eomb { voWo

31
Qr‘ad + mMpCyp dT fT dcp f T YO fWFqcomb (4 } )
m m To dfT LGO fl/oWO

hvap +

Here the subscripts f and oo indicate the states at the particle surface (on the gas-phase side of the
interface) and the ambient far-field environment, respectively. The denominator in 4.31 represents a
variety of potential sinks for the enthalpy at the droplet surface. These sinks include, in the order in
which they are written, the enthalpy associated with vaporizing the particle, the radiative losses from the
surface, the enthalpy conducted into the particle, the enthalpy flux to the gas-phase due to variable
specific heats, and the enthalpy of combustion lost as a consequence of oxidizer leakage. Note that the
radiative absorption and emission from the particle surface, ()44, are included here in the surface
boundary condition, but the radiative losses from a flame around the droplet must be accounted for by
modifying geomp to provide an effective heat release, the heat release decremented by the near flame
radiative losses. As far as the droplet is concerned, these radiative losses are far enough away to not aftect
the film state except to the extent that radiative flux to the surface is affected.
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The above expressions comprise a relatively complete definition of the physics of particle evaporation,
combustion, and interaction with a radiative field accounting for variable thermophysical properties.
These expressions are simplified by making the assumption that no oxidizer penetrates a flame to reach
the surface, Yo ¢ = 0, and by setting 7y = T leading to

Y OOW com
f;—‘oo Cp OOdT + O7 Fq b
P voWo

4.32
h Qrad + mpcv,p dTp ( 3)
Y mdt

Br_o=

where the denominator is referred to as the effective enthalpy

Qrad mpCyp dTp
he = hva - — . .
11 e R T (4.33)

Equation 4.32 is employed in the numerical models. A coupling function for fuel and oxidizer is similar
written

Bro= L - 20 (434)
T—-0 — W VOWO 4.34
For a species that is evaporating, the flux boundary condition is
dYr
— =Yr, - Y, .
< i f) Fp— Yry (4-35)
and the fuel-oxidizer Spalding mass transfer number is
Yo oW,
Yrf—Yro + Q0 T 1
Br_o = volWo (436)
Ypp — Yy

where Yo ; = 0 has been assumed as in Eq. 4.32. Note that only one of Yo  or Y7 o will be non-zero
based on the current assumption of zero leakage through flames; if combustion is occurring then it will
be Y o thatis zero. The diffusion coefficient appropriate for the fuel-oxidizer coupling function is that
for the fuel so that the second of Eqn 4.19 and 4.20 is used with the diffusion coeflicient specifically that
of the fuel, and the equivalent of Eqn. 4.30 for the fuel-oxidizer system

o 1
=m, —————— =In[l + Bp_ .
Epp=m /TD 47r2(pDy) n| r-o] (437)

4.2.3.2. Extension to multiple oxidizers

Multiple oxidizers is discussed in detail later, in 4.2.4.2.
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4.2.3.3. Correlations for finite slip velocities

The above relationships for the heat and mass transfer are derived for a spherically symmetric field
around the droplet and are valid for droplets with zero slip velocity in the absence of buoyancy.
Empirical correlations are available in terms of the Nusselt and Sherwood numbers parametrized by
Reynolds, Schmidt, and Prandtl numbers to describe the effect of finite slip velocities in modifying the
heat and mass transfer by reducing the boundary layer thickness. The Schmidt and Prandtl numbers are

defined:

C
pr— 2t (4:38)
g
Sc= plu—l% (439)
g=g

These quantities with the subscript g represent appropriate averages for transport properties in the gas
phase boundary layer around the particle. These gas-phase quantities are evaluated using an appropriate
averaging process that will generally be analogous to Eqn. 4.6. The alternative is to tabulate these
quantities using Eqns 4.46 and 4.47. The Nusselt number describes a dimensionless heat transfer rate
to the droplet for a given difference between the ambient and surface temperature,

dT Too YO OOWF Gcomb
Nur= | 2r,cp, — / Cpoodl + ————— 4.40
! < LA ‘f)/( 7 D, voWo ( )

The correction to the evaporation rate employed in the present work is based on measurements by Ranz

and Marshall (1952)

N
ik’ S (14 0.3Re'/2Pr1/?) (4.41)
Nug re=o

This can be introduced into 4.31, and the evaporation rate can be written

NUf

m—= —~
Nuf,Re:O

g (4-42)

The Nusselt number for zero slip velocity, N ¢ ge—o, is included in the relations of the previous
section, specifically in Eq. 4.31. A similar correlation,

Shy
Shf,Re:O

Yo0.00 W,
(YF,f ~YF,00+ 22" F (4-44)
s voWo

which is the dimensionless mass transfer coefficient, so that the evaporation rate for finite slip velocities
can also be written

= (14 0.3Re/2ScY?) (4.43)

can be used for the Sherwood number,

dY,
Shf = (—27’p d_TF

Shy

= 2
Sh re=o

My (4-45)
where m, should be taken from Eqn. 4.37.
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4.2.3.4. Evaporation rates and effective diffusivities

The evaporation rate is seen in Eqn 4.30 and 4.37 to depend linearly on an area-weighted gas-phase
diffusivity. Since accurate evaluation of this weighting is not feasible for the particle transport model,

effect diffusivities,
A = |4nr / h L dr B (4.46)
) efs I v Amri(N/cp) +4

oo 1 -1
D = |4 ————d .
(IO F)eff |: T /7"0 471'7‘2(pr) T’:| (4 47)

are defined. The one-third rule defined in Eq. 4.6 provides a rough guideline for evaluating these
diffusion coefficients in some cases. The effective thermal diffusion coefficient is combined with Eqns.
4.30 and 4.42 to give an evaporating rate based on thermal diffusion

1 = 4y, (0DF), s % In[1+4 Br_o]. (4-48)
The strong dependence of the evaporating rate on the diffusion coefficient, coupled with the fact that
the diffusion coefhicients depend strongly on variations in the compositions and temperature of the
gases around the droplet, mean that the reasonable but judicious choice of diffusion coefficients can
often match observed experimental measurements. Similarly, the mass transfer driven evaporation rate
can be written with the use of Eqns. 4.37, 4.43, and 4.45

h
L In[1+ Br_o] (4-49)

m = 47TTp (pDF)eff m

It is necessary that the evaporation rate predicted by Eqn. 4.49 be equal to that predicted by 4.48. These
equations show that thermal and mass diffusion vary both through their diftusion coefficients and
through difference in boundary layer thickness attributable to finite slip velocities. Both these effects are
combined in an effective Lewis number, Le, ¢, to give

foo dr Nuy
To 471'7’2(pr) Nuf,Re:U

). Amr2(N/cp) Shf re=o

Equations 4.48, 4.49, and 4.50 are used in the computational model for the evaporation rate. Note that
energy and mass conservation must vie the same evaporation rate; this requirement determines the film
state as described in the following section, 4.2.3.s.

4.2.3.5. Closure of film state with effective heat transfer coefficient

The system described by Eqns. 4.48 and 4.49 is closed with two additional assumptions. First, the film
conditions, T’y and Y7, are related through the Clausius-Clapeyron relationship

how (1 1
PF,f - Prefexp |:_ RP (Tf - T f):| (451)

172




where the partial pressure gives the mole fraction through X = Pp, s/ P that can subsequently be
converted to the mass fraction with the relationship Y = XpWp /3, X W), . As provided by Lefebvre
[118], such a relationship is
Toi — T 0.38
hva = hva re e — .
P p,ref (TCTit o Tref) (4 52’)

for Ty < T and zero otherwise. If the critical point temperature is not provided, the code sets T, to
a very large value, essentially making A4, independent of temperature. Second, the droplet heating is
related to the difference between the film temperature and the droplet temperature by assuming an
effective internal heat transfer coefficient in the form of an internal Nusselt number, Nu,, for the
particle so that

mpcv,p% =211y NupAy(Ty — T). (4-53)
This internal Nusselt number, which is different from that for the external heat transfer indicated in
Eqn. 4.42, can be estimated based on the results of numerical studies where the internal droplet was
resolved [116, 119]. There the Nusselt numbers for no circulation and for rapid circulation were
identified as 6.58 and 17.9, respectively, and a transition region was also identified based on the liquid
Peclet number

2 () USUT ace
Pe, = ZLplupt surfoceTp (4:54)
Ap
where
U 12.69|u, — uy|Re)/* (ug) (4.55)
surface — — 4.55
! 16 Iy

which is based on the maximum surface velocity, Ugyy face. This transition was empirically fitted [116]
to

Nu, = 6.58 [1.86 4 0.86tanh [2.245logo (Pe,/30)]] . (4.56)

In [116], both the evaporation rate and the surface temperature were reproduces using Eq. 4.56 with
little error compared to simulations incorporating a detailed internal droplet convection model.
Naturally, the liquid Peclet number should be zero if the particle is below the freezing temperature of
the particle constituent.

The evaporation rates indicated in Eqns. 4.48 and 4.49 must be equal, subject to the constraints of
Eqns. 4.s1and 4.53 based on the closure approximation employed in this section. Equating Eqns. 4.48
and 4.49 leads to a nonlinear equation for the surface temperature that is to be solved. This is readily
solved using Newton’s method as described here. Newton’s method is an iterative root-finding method
written in the form

T+ =17 — g(T7) /g (TF) (4.57)
where g(T) = 0 is the equation for which the root will be found and the superscript n refers to the
iteration number. Equating Eqns. 4.48 and 4.49 and using 4.50 gives

9(Ty) = (1+ Br_o)** —1 - Br_o (4.58)
Difterentiation gives

ydBr—o  dBp-o
dr;  dly

g'(Ty) = Leesp(1 4 Br_o)teerr™! (4-59)
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YO ooWFQComb:| dheff
—lCpoo(Toe —T¢) + ’ — Cpoohle
dBT—O _ |: P ( f) VOWO de P ff ( 60)
de heff 4
YO ooWF)
Yier—Yro + —
dBro _ ( BT oWo ) dYy )
Paum b 1 0.38 1 1 h 1 1
—W W atm vap = + - _ vap -
dYe; | Py R {Tﬁ (Torir — Ty) (Tf Tref)] «rp { R (Tf Tref)]
de B Patm hvap 1 1
Wp—W,+W, Pros exp [— R\ - Ty
4.62)
dheyy = 2mrpNuphy _ Leg (Qraa + 2mry Nup Ay (Ty — T;)] dBr—o (4.63)

de m m(l + BF—O) [ln(l + BF—O)] de
In writing these expressions for ¢, it is assumed that Y y = O and Ty = T7.

Because of the strong nonlinearities in g(7), care must be taken in providing initial conditions to solve
these relations. This is conducted through a two-stage procedure. First, the boiling point temperature is
identified, then a temperature just under the boiling temperature is used as an initial guess for the
iterative solution that determines the film temperature. This procedure arises from a consideration of
the shape of the g(7). For realistic temperatures, those for which 0 < Y} < 1, both g(7) and ¢'(T%),
are monotonically strongly increasing in magnitude. An initial guess with a temperature that is too low
(less than T ) results in a prediction, with the Newton’s method, of a very high temperature on the
successive iteration due to the small magnitude of the derivative, ¢/, for a small T. Typically, this second
iteration will result in a temperature for which Yy > 1 that leads to negative values of B, and the
iteration diverges into non-physical regimes. However, an initial guess that is within the physically
reasonable regime (0 < Y < 1) and yet above the final 7'y will reliably converge. Therefore, the initial
guess of T = 0.999997T,;; is used as an initial guess in determining the film temperature. This method
has been tested for a wide range of conditions and appears robust except for those scenarios where the
denominator of By takes on negative values. (Since 7' can be less than 7, and this can result in the
denominator of By taking on negative values, in which case the iteration may fail.)

Because of the cost and potential stability issues in this method, the fast conduction limit described in
4.2.3.6 is used in the code instead.

4.2.3.6. Closure for surface state assuming fast conduction

The surface state described in the previous section is the most physically realistic state that can be
obtained without solving a differential equation for the heat transfer with the droplet. However,
determining this state involves the iterative solution of a system of nonlinear equations. In the previous
section a robust method of solving these equations is provided, but a simpler approximation may
provide suitable results under certain conditions. This simpler approach is to assume that the heat
transfer within the droplet is fast relative to the heating of the droplet. This is equivalent to taking the
zero Biot number limit, Bi = NusAf/NuyA, — 0, in Eqn. 4.53, in which case Ty = T),. With the
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film state determined by the droplet temperature, the film mass fraction is directly obtained from Eqns.
4.s1and 4.52, and the mass transfer number is obtained from Eq. 4.36 with the evaporation rate
following from Eqn. 4.49. The thermal transfer number is obtained from the mass transfer number by
equating Eqns. 4.49 and 4.48, and the droplet heating is obtained y solving for the enthalpy change of
the particle in Eq. 4.31 to obtain

YO,oo WFQComb

T

= Cpoodl +
MpCy,p dTp — _h . Qrad + fo “ V()WO
- vap .

m dt m BT—O

(4.64)

Sirignano [120] and coworkers have demonstrated that for many conditions, this particular limit is a
poor approximation for at least some of the particle lifetime. In the present models, this limit is
employed in two situations: (a) if the particle temperature is within 1% of the wet bulb temperature, and
(b) if the particle temperature exceeds the wet bulb temperature. As the droplet temperature
approaches the wet bulb temperature, employing this limit is inconsequential. In the latter case, the rate
of droplet cooling is likely to be over predicted, but this is a scenario for which the convergence of the
film state otherwise is not guaranteed. In the interest of creating a more robust model, and because this
particular situation is not anticipated to be predominant, we employ this simpler limit.

4.2.4. Conserved scalars and transfer numbers for various
applications

In 4.2.3.3, expressions are provided for the particle evaporation rate, 4.49 and 4.48, using a model system
of fuel evaporating from the particle and reactive with an oxidizer that diffuses from the ambient gas.
Of significance in those expressions are the transfer numbers defined in 4.2.3.1in Eqns. 4.32 and 4.31,
and these in turn are based upon conserved scalars defined in Eqns. 4.24 and 4.34. In this appendix,
expressions for alternate transfer numbers and conserved scalars are provided for two additional systems:
a simpler system in which evaporating or condensation occurs without any reaction in the boundary
layer (ie. water droplet evaporation or condensation) and a more complicated system in which multiple
oxidizers are involved in the oxidation of the evaporated fuel (relevant to metal oxidation).

4.2.4.1. Simple evaporation and condensation

When species evaporate or condense but do not otherwise react in the boundary layer surrounding the
particle, the species mass fraction of the evaporating/condensing species itself is a conserved scalar. In
this case, the mass transfer number corresponding to Eq. 4.31is simply

Yer— Yioo
Bp_op=———"— 4.65
R A, (4.65)
and the heat transfer number corresponding to 4.32 is
T
ST CpoodT
Br_o = ! (4.66)
h + Q’/‘ad + mpcv,p dTp
) modt
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4.2.4.2. Multiple Oxidizers

For metal oxidation, it is possible to have multiple oxidizers that simultaneously react with the
evaporating metal. These can be expressed with a series of parallel single-oxidizer reactions of the form
F +vo,0; — Yvp, ; P;;. Useful conserved scalars that can be formed with this set of reactions

include v v
F 0,
0= — — E _— .6
5F ) W iVOWO¢ (4 7)
T
Wraq;
Br_ :/ch—i-g. Yo, 4.68
T—0 T D ”/OWOi O ( )

where the enthalpy of reaction of the i-th oxidizer, O;, with F' is given by ¢;. These are analogous to the
conserved scalars defined in Eqns. 4.24 and 4.34. Using these conserved scalars, a mass transfer number
analogous to Eqn. 4.31 is found to be

Wrq;
YF,p - YF,oo + Zz ki
Br o — voWo, (4.69)
F-0O Yrp — Yrs 4.
and the heat transfer number is
Too Yoi,OOWF
fo CpoodI + Zz—W
Br_o = 70,20, (4.70)
Qrad mpcv,p dTp
hypap + —— + —

These can be employed in Eqn. 4.48 and 4.49 to provide expressions for the particle mass burning rate
as a function of the various oxidizer mass fractions far from the particle.

4.2.5. Energy Exchange between Particles and the Gas Phase
Without Mass Transfer

In this section, a simpler scenario is considered where evaporation from and condensation onto particles
is presumed to be negligible. For example, metal particles in dry air at ambient temperatures are unlikely
to participate in evaporation or condensation. Models are presented in this section to treat these
scenarios.

The models described in the previous sections are ill posed to solve these problems because the
formulation is based on a balance between diffusion and the Stefan convective velocity, which is
proportional to the negligible 7. The models in this section are used for the heated particles model.

In the event that there is no mass transfer, the particle heating rate is determined based on the balance
between conductive and radiative transfer. The conductive heat transfer can be expressed using an
effective heat transfer coefficient, thereby taking advantage of available Nusselt number correlations
indicated in 4.2.4.1. Then the relationship for the droplet heating is

dT,

Cop—y = 2rNugrphe(T, — Ty) + 47T047’§(Gm/4 — GT;}). (4.71)

mp
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For the particle with no mass transfer, the closure of the film (or surface) temperature is obtained by
equating the external heat flux, described by the right hand side of Eqn. 4.71, with the internal heat flux,
as indicated on the right hand side of Eqn. 4.53 to obtain the following quartic constraint, which is
solved for T’

Nughs(Ty — Ty) + 20ry(Gin /4 — 0T} ) = Nuphy(Ty — T,,) (4.72)

4.2.6. Further Notes on Radiative Heat Transfer

The expression employed for radiative droplet heating in Eqn. 4.2 is appropriate for relatively large and
opaque particles, referred to as the geometric optics limit. For different particles, the expression for the
absorptivity will change, but otherwise the expressions remain appropriate. To identify the appropriate
absorptivity, it is useful to compare absorption coefficients for particle clouds. The absorption
coefficient, &, in units of inverse length, is an effective cross-sectional area per volume. For large particles
with a condense phase absorptivity give by o, the absorption coefficient is the summation of the
cross-sectional areas time the absorptivity

1
K= chp {m"ia . fo(x; Xo,t)dXi| . (4.73)

For comparison, in the small-particle or Rayleigh limit, the absorption coefficient is proportional to the
volume fraction with the proportionality coming from the complex index of refraction. For
intermediate particles where the particle optical depth is comparable to the particle radius, intermediate
limits are appropriate, and the absorption can range from being proportional to the particle area to
being proportional to the particle volume. The appropriate absorption coefficient, and from it the
particle emissivity, cases can be determined as described in the available texts [117, 121].

4.2.7. Input Parameters for Particle Evolution

A large number of parameters are required to specify the evolution of the particles. The parameters
provided in the input file are described in table 4.2-1. In addition, table 4.2-2 specifies those variables
that must be obtained from the gas-phase continuum flow. Because parcels of particles have finite extent
and may span several control volumes, it is sometimes necessary to interpolate values of these gas-phase
variables from several control volumes.

4.3. COUPLING THE LAGRANGIAN AND EULERIAN
FIELDS

The previous section provides a description of the particle evolution given a gas-phase environment. In
this section the means by which the gas-phase environment for a particle is determined from an Eulerian
solution presumed to use a control-volume or similar approach. Following this, the effect of the particle
field on the Eulerian field is described. Finally, to ensure that the coupled evolution proceeds in a
physically realistic manner, it is necessary to identify limits on the time step size.
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Table 4.2-1.. Input parameters related to the particle evolution
provided through the input file

Variable | Input name Units Description

Pp INJP_DENp kg/m? Particle density

T, INJP_Tp K Particle temperature

Wr INJP_MWp kmol/kg Molecular weight of fuel or par-
ticle component

Cop INJP_Clp J/kg/K Particle specific heat

« INJP_Emp none Particle absorptivity,emissivity

Pr INJP_Prf none Film Prandtl number

Sc INJP_Scf none Film Schmidt number

Py INJP_Prefvapp | Pa Reference pressure for vapor-
ization for particle

Trey INJP_Trefvapp | K Reference temperature for va-
porization for particle

hyaprer | INJP_Hvaprefp | J/kg Reference enthalpy of vaporiza-
tion for particle

Torit INJP_Ticp K Critical temperature for parti-
cle

Ty INJP_Tifp K Freezing temperature for parti-
cle

op INJP_STp N/m Particle surface tension

L INJP_mup kg/m/s Particle viscosity

Pr, INJP_Prl none Particle Prandtl number

Qecomb J/kg Enthalpy of combustion for va-
por species evaluated at T’

v mol/ mol Fuel | Stoichiometric coefficients (rel-

ative to evaporating species)




Table 4.2-2.. Variables passed from the gas-phase Eulerian
solver required to evolve the particles

Variable Units Description

Poo kg/m3 Gas-phase density

P Pa Pressure

Ug, Vg, Wy | M/S Mean gas velocity

k m?/s* | Turbulent kinetic energy

€ m? /s Turbulent kinetic energy dissi-
pation rate

T K Gas temperature

w kg/mol | Gas-phase mean molecular
weight

Yr oo N/A Mass fraction of fuel in gas
phase

Y0, N/A Mass fraction of oxidizer in gas
phase

Cpoo J/kg/K | Gas-phase specific heat

g kg/m/s | Gas-phase viscosity

Gin W/m? Incident radiation

4.3.1. Gas-phase environment for parcels

When a parcel of particles spans more than a single control volume, it is appropriate to employ a
weighted average of the gas properties in the control volumes spanned by the parcel. The average is
weighted by the number of particles in a given control volume, which is obtained from f, (x; %o, t)
defined in Eqn. 4.14. Thus, the average value of a gas-phase variable, ¢, for a parcel is

Jy (%) fo (%3 %o, 1) dx
fV fU(X; Xo, t)dX

¢ = (4.74)
where the integral volume may span more than one control volume. This procedure is employed for all
gas phase variables that appear in the droplet evolution equations in 4.2. For transport properties (i.c.
various diffusion coefficients), the gas phase properties employed are evaluated using the ’1/3 rule’ as
indicated for viscosity in Eqn. 4.6.

4.3.2. Effect of the particle phase on the gas phase

The source terms provided in the previous section show how the gas-phase properties affect the
conservation of mass, momentum, and energy for the particles. From Newton’s third law, the action of
the gas phase on the particles must be balanced by an action of the particles on the gas phase. This action
is determined directly from the change in the state of the particle phase as described in the following.
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The source of the mass for a given control volume, V, located at (x, ¢) is determined by summing the
changes in the masses of all the particles in that control volume over the gas-phase time step ot

1 my(t + 0t) — my(t
Sl t) = 3, [P0l [

Jo (X5 %o, t)dX] . (4.75)

Here, the summation is presumed to occur over the P parcels that contribute to the control volume at
(x,t), and the addend in the square brackets corresponds to the mass change and particle number
distribution in each of the P parcels. The similar equation for species concentration incorporates the
conversion of the mass of the particle component to the mass of the gas-phase component. For pure
evaporation, the conversion is trivial, but for combustion where the fuel evaporation corresponds to
oxidizer consumption and the product formation, the expressions become complicated. The general
expression for the species mass source term is

1 [uiVVi my(t 4 0t) — my(t)

Smassi 7t = T 175
(x,) c ) ]

v fo(X; Xo, t)dx] ) (4.76)

Here, v; is the number of moles of species ¢ produced when a mole of the particle component
evaporates, and W; is the molecular weight of species ¢. The particle component is presumed to be the
tuel, denoted with the subscript F, and for pure evaporation reduces to equation 4.7s.

Similarly, the source term for the j-momentum equations is determined by summing the changes in the
particle momentum over all of the particles in a control volume.

Smom,j (X, t) _ _%ZP |:(mp(t + 5t)up:j (t —;ft) _ mp(t)upvj (t) . mp(t)gz)

fo(X;Xo, t)dx]

(4.77)
Note that the last term in Eqn. 4.77 describes the effect of gravitational acceleration on the particle

field.

Ve

The energy source term must account for the enthalpy of vaporization and heat of combustion
associated with the particles as well as the particle heating. It must also account for the change in the
enthalpy of the gas associated with any gases that evaporated or condensed. In addition, it is necessary to
separate out the contributions associated with radiative transport since these do not necessarily affect
the local control volume, but are transported over length scales determined by the radiative transport
equation. The enthalpy source term is

my(t + 5t) [hy(t + 6t) — hy(t)] £ (% %o, )dx|  (4.78)

Senthalpy(xa t) = —Orad — _Z |: p(St

Ve |

my(t +0t) —my(t)] D viWihi(T,) /W _ ]
w2, L [ 1o nax| (479

my(t + 6t) — my(t)] (deomb — Pvap) ) ]
__Z [ 5 . fo(X; X0, t)dx_ (4.80)

where the radiative transport source term is
1

Smd(xa t) = VCZP |:Qrad v, fo(X; Xo’t)dX:| 5 (4-81)
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which provides the interface between the particle field and the radiation transport equation. In general,
the solution of the radiant transport equation requires an absorption coefficient and a contribution to
the emission. These must be defined in such a way that they agree with the radiation absorbed and
emitted by the particle field. To do this, an energy balance for the particle field, but in an Eulerian
frame, is employed. Within the energy conservation equation, the radiant source term appears as a
divergence of the radiation heat flux V - gg. This divergence of the radiation heat flux can be related to
the radiation intensity and the radiation emitted by [117]

Y qdr = <4f€netUTset> - Gin<’€net> (482')

where the subscript net indicates that contributions from the particles must be combined with those
from gases, smoke, and anything else that participates with the radiative field. The angular brackets
indicate that the quantities on the right hand side must be defined based on the appropriate summation
or averaging process over all of these participating media, which may have varying temperatures. In
order to balance the radiant energy flux in and out of the particle with their contribution to Eqn. 4.82,
it is necessary to separate these particle contributions from the net radiant source term. To leading
order, this can be done in an additive manner so that the first term in Eqn. 4.82 is split as

(4knet0Tyyy) = (460 1) + (4Kothers0 T pypers) and the second term is split with

(Knet) = (Kp) + (Kothers). Here the subscript p indicates the contribution associated with the particle
field and the subscript others indicates all other contributions (gases, soot, etc.). Corrections to this
leading order approximation are related to the optical thickness of the control volumes over which the
radiation solve occurs. These corrections arise because a portion of the intensity is absorbed within the
control volume. As long as the control volumes are all optically thin, then this correction is not
important, but it must be accounted for in the radiation solve if that term is important.

Separating out only the contribution of the particle field to the radiation solve gives

(V- QR>p = <4’€pUT;> — Gin(kip) (4.83)

where the angular brackets indicate that the quantities on the right hand side must be defined based on
the appropriate summation over all of the particles in the control volume. In order to ensure energy
conservation between the Lagrangian solution of the particle field and the eulerian solution of the
radiation transfer and energy equations, these appropriate sums are obtained by integrating over the
particle field in a given control volume as in Eqn. 4.81. Here, the emission and absorption contributions
of (Qqq are separated

1 1
Srad(x,t) = VZP |:47T7’§O&0‘T;1/V fo(x; xo,t)dx} - VZP {W?“ioz fo(x; Xo,t)dx} Gin

Ve
(4.84)
so that, equating the first and second terms on the right-hand side of Eqns. 4.83 and 4.84 gives
1
(4r,0Ty) = vzp {47#204023 fo(X; Xo, t)dx} (4-85)
c Ve

and .
(Rp) = {Wﬁa | olx; Xo:t>dxi| Gin (4.86)
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This information is crucial because it defines an energy conservation interface between the particle field
and the radiation field.

The source terms defined in Eqns. 4.75 through 4.80 should be added directly to the gas-phase
conservation equations in the manner appropriate for the chosen numerical method. In the above
relations, it was presumed that the dimensions of the conservation equations solved are those of density,
density time velocity, and density time enthalpy. The radiant flux source term in Eqn. 4.81 should
similarly be added to the radiative transport equation, but in the consistent manner indicated in the

above paragraph.

4.3.3. Time step control

The Lagrangian and Eulerian fields are advanced using an explicit operator splitting approach. The
particles are presumed to be advanced using an ordinary differential equation solver capable of handling
a stiff system. The system can be stiff because the magnitude of the forcing function, the right hand
side, of the various particle evolution equations can vary over orders of magnitude. While the particle
state is evolved, the gas-phase state is presumed to be constant, except as described in the following
paragraph. The source terms indicated in the previous section are accumulated during the particle
evolution, and then they are applied to the gas-phase conservation equations as it is advanced.

There are certain requirements that limit the particle evolution time step. Particle should not move
more than the length of the control volume side without re-evaluating the gas-phase state using the
methods described in 4.3.1. Particles should not evolve for longer than the eddy interaction time defined
as the lesser of times defined in Eqn. 4.12 and 4.13 without determining a new value for u, ; in Eqn. 4.10
and 4.11. These requirements do not necessarily limit the gas-phase evolution time step.

There are also limitations to the gas-phase evolution time step imposed by the particle evolution. The
source of this limitation is the requirement that the treatment of the gas-phase state as constant during
the particle evolution not lead to nonphysical or inaccurate results. For example, if the particles
transferred almost all of their momentum to the gas phase in a single time step (because they were small,
for example), then a problem could arise. Specifically, if the subsequent momentum source term were
large, then the gas could be accelerated to velocities that exceed the initial particle velocities. In the
subsequent time step, the particles would accelerate and the solution procedure could thereby
destabilize. There are two means of avoiding such problems. One approach is to employ an iterative
implicit coupled advance of the Eulerian and Lagrangian state. Such an approach would depend on the
specific algorithms employed for the Eulerian solver. The approach that will be discussed here is a
limitation on the time step size for the coupled Eulerian-Lagrangian system. This limitation is based on
the idea that the change in the Eulerian state relative to the Lagrangian state should not be too dramatic.
This not only provides stability, but helps limit numerical errors.

For mass conservation, the limitation on the time step is based on the idea that the mass added to the
cell should not dramatically affect the pressure (or whatever variable changes to allow additional mass to
entry the control volume gas phase). With .S, in units of density per unit time, the appropriate
limitation on the time step is a time step that leads to no more than a change of §,p in p.

dtmax < 5pp/Smass (4"87)
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That is, the fractional change in the density is limited to ¢,. It is expected that d,, is substantially smaller
than o.1 is appropriate, but this is subject to evaluation and will depend somewhat on the details of a
given simulation. for the conservation of species, similar expressions apply, but with the second term
that provides a sort of absolute tolerance in addition to the relative tolerance indicated above

dtmax < 63@pY;/Smass,i + nYip/Smass,i- (488)

Intuition suggests that the limitation of dy, do not need to be as severe as those on 9, for stability and
that 77y, should be substantially smaller than typical magnitudes for Y; for accuracy. Again, the specific
values will depend on how sensitive the system is on Y;. For momentum, a similar expression is
provided with relative and absolute tolerances

dtmax < 5upui/smom,i + nup/Smom,i (4'89)

where d,,u; and 7),, are indicative of the acceptable uncertainties in the velocity field. Time-step control
based on the enthalpy exchange is easiest to think of in terms of temperature

dtmaaz < 5hpcp,ng/Senthalpy + nhpcpag/senthalpy (490)

where 05, T, and 7y, are indicative of the acceptable uncertainties in the temperature field > .

4.3.4. Particle-surface interactions

Particles interacting with a surface can (1) bounce off of the surface and return to the flow with a
different trajectory, (2) stick to the surface and remain as a deposit or (3) shatter so that smaller droplets
are formed that leave the surface with various trajectories. The appropriate behavior depends primarily
on the ratio of the droplet kinetic energy to the surface energy as determined by the Weber number

We — Podp|Up,i*
o

(4.91)

where o is the surface tension of the condensed phase. A complete model description is available in [122]
with criteria for droplet sticking and bouncing. That paper did not address droplet shattering in detail
and the droplet shattering model is provided in the following paragraph.

Droplets will shatter if the criteria
WePRe)® > Koy = 57.7 (4.92)

is satisfied, which occurs for relatively large droplets traveling at relatively high velocities. Satellite
droplets are presumed to form with uniform sizes given by

7.9-10"0cWe't/Re*®
,dy (4.93)

dp,shatter = maxr ( B
PplUp.i]

*Instead of using Sent¢halpy that includes both the chemical and sensible enthalpy changes, it is better to use a measure of
the change in the sensible enthalpy source term (see Eqn 4.80) where the next to the last set of brackets includes only the
sensible contribution of the species heating and not the chemical enthalpy contribution.
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where the second term in the max function ensures that the empirical relationship given as the first term
does not exceed the original diameter.

If a particle sticks to the surface, it is necessary to track the mass and energy addition to that surface
through a field variable added to the solid object surface set. Mass addition should be tracked on a mass
per solid-element surface area basis. Similarly, the energy deposited on a surface should be tracked based
on ¢y (T — Tsur face)- Erikson and Gill have developed and implemented a model to provide such an
interface for a Calore surface [123].

4.4. VERIFICATION OF PARTICLE EVOLUTION
EQUATIONS

It is generally necessary to check the implementation of the equations described in 4.2 to insure that
they produce the expected effect. This process is referred to as verification. There are several stages of
verification, many of which are focused on software design details, but many of which are intimately
linked with the physics model implementation. In this section, a series of verification tests is presented
that provides a test for the correct implementation of the models described in the previous sections. For
the particle transport models developed here, this is accomplished by taking certain asymptotic limits of
the evolution equations for which an analytical solution exists and insuring that the particle evolution
approaches that solution as the particle properties approach the appropriate limiting values. For
example, in the limit of zero Reynolds number, certain behavior is expected and the particle should
approach that behavior as the diameter approaches zero. The limiting behavior is based on the limiting
behavior of the model equations and is not based on matching particular experimental data, although
many of the limiting behaviors correspond to well known phenomena. The key objective of the
verification process here is to insure that the equations are satisfied, so that when numerical examples are
given, nominal values for material and transport properties are employed.

4.41. Verification of Particle Momentum and Trajectories

In this section the solutions of Eqns. 4.3 through 4.9 are tested. For all of these tests, it is presumed that
the source terms indicated in 4.75 through 4.80 are set to zero so that the gas velocities and other
properties are fixed. Setting the gas-phase source terms to zero is referred to as one-way coupling because
the gas phase aftects the particular phase, but not vice versa.

4.4.1.1. Terminal Velocity

Falling particle will reach a terminal velocity if the gas velocity is held fixed that is given by

8(pp — Pg)Tpi
3pgCplug; — up,l

Upily_yog = Ugi + (4.94)

Because this terminal velocity includes the Reynolds number dependence of the drag coefficient, the
tull range of the drag coefficient can be tested by changing, for example, the particle diameter. Note that
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Table 4.4-1.. Input parameters related to the particle trajectory verification
dp Pp  Hg Pg 9i Tp Upili o Rl o
3-102 10 0.01 1.0 —-1.0 5-10%2 5-1072 1.5-107!
3-100% 10 0.01 1.0 —-10 5-10* 5-100* 1.5-107%
3-100* 10 0.01 1.0 —-1.0 5-10°® 5-10% 1.5-107°

the slip velocity magnitude does appear in the drag coefhicient for a range of values through the
Reynolds number. For these Reynolds numbers (Re,, < 1000), the drag coefficient can be replaced by
the first relationship in Eqn. 4.4 to give

Upil, oy = 2(pp — pg)79i (4.95)
P 9, (1 + Rel? /6)

For Re, > 1000, using the second relationship from Eqn. 4.4 in Eqn. 4.94 yields simply

8(Pp — Pg)TpYi
Upily oo = g + \/M (4.96)

3p,(0.424)

The full range of terminal velocities obtained by varying 1, is shown in Fig 4.4-1. Note that while the
velocities are continuous at Re, = 1000, there is a discontinuity in the rate of change of the velocity
with diameter of Reynolds number at this point.

4.4.1.2. Small Reynolds number

In the limit of small Reynolds number the solution of Eqn. 4.3 approaches that given by Eqn. 4.7 and
4.8 where Cp simplifies to 24/ Re,, so that 7, approaches a constant value even as the velocity changes.
In this case, the analytic solution of Eqn. 4.3, where the gas velocity is fixed, is

Pp — P —t/T —t/T
up»i‘t—ﬂ)o — (US,Z + %) (1 —e t/ P) _|_u2726 t/ P (4.97)

where the superscript 0 indicates the initial conditions. This limit can be tested by approaching zero
Reynolds numbers with successively smaller diameters. The solution to Eqn. 4.9 is obtained is similarly
obtainable by integration of 4.97 once and is

ryi = a0, + (ug n %97) (L—e/m) 4ul o (1= e ™) (498)
p

Using the values indicates in table 4.4-1, and with no heat and mass transfer, particles were evolved from
rest using Fuego. The resulting particle trajectories are compared with those predicted in Eqns. 4.97 and
4.98, and the velocities and positions are plotted in figure 4.4-1.
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Figure 4.4-1.. The Fuego-computed particle velocity and trajec-
tory are compared with predictions from 4.97 and 4.98 in the left
panels. The error in each prediction is shown in the right panel

along with the particle Reynolds number.

Parameters for the

particle evolution are from 4.4-1 with d, from top row to bottom
row being d, = 3-1072,d, = 3-107%,and d, = 3- 107, respectively.
In the right-hand panes the solid cures represent the position
error, the dashed curves represent the velocity error and the
dash-dot-dot curve shows the particle Reynolds humber.
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Table 4.4-2.. Input parameters related to the particle dispersion verification
Fluid properties  Particle properties
k 1.0 Dy 10.0
¢ 1.0 d, 1-1071
Iig 0.01 7, 1-103/18

4.4.1.3. Turbulent dispersion

Verification of particle dispersion is hampered by the fact that it is a stochastic and not deterministic
process. Therefore, verification is conducted by checking that the asymptotic behavior is correct for
large numbers of samples. In an isotropic homogeneous turbulent field, the turbulent dispersion of a
large number of particles should result in the mean square displacement of particles in proportion to
the effective diffusion coefficient and the evolution time. The diffusion coefhicient in the limit where 7,
and not 7¢ determines the eddy interaction time is proportional to [ug + uj, — u, |*7, [124]. For
verification purposes, the mean gas velocity is set to zero so that the effective diffusion coefhicient is
proportional to k. Note that the early time behavior is different, but that the early time behavior decays
over the time scale 7,,. The long-time dispersion behavior averaged over a sufficient statistical sample
should be verified to follow [98]

(x?) o< kTt (4.99)

Such behavior should hold true in a statistical sense for both the dispersion of the mean parcel locations
and for the change in the extent of the parcel itself. Because the dispersion is driven by a Gaussian
process, it can be expected that statistical differences are reduced in proportion to the inverse of the
square root of the number of samples.

To verify the scaling of the particle dispersion, a large number of particles were evolved using specified
fluid variables. All of the mean fluid velocities are set to zero and only the turbulent kinetic energy, &,
combined with time and length-scale information from the turbulent energy dissipation, €, acted on the
particles. In this case, the only force on the particle is associated with uj, ; as defined in Eqns. 4.10 and
4.11. The parameters related to particle dispersion used in the test are given in 4.4-2. The flow was
evolved for a time of 5.0 (nearly 10007,) and simulations were carried out for 100, 1000, and 10, 000
particles. The results are shown in 4.4-2 where the linear dependence of the mean-square displacement
with time is evidence for large particle samples. The large number of samples required to get
convergence is noteworthy.

4.4.2. \Verification of particle heat and mass transfer

There are a number of terms describing the heat and mass transfer to and from particles that must be
tested. In this section, the terms that describe the particle evolution in a constant gas-phase
environment will be tested. To accomplish this, the source terms indicated in Eqn. 4.75 through 4.81are
set to zero so that the gas velocities and other properties are fixed (one-way coupling).
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Figure 4.4-2.. The mean square displacement of particles is
shown as a function of time. Different curves show the statistical
noise associated with different numbers of particles considered.
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Table 4.4-3.. Input parameters related to the particle heating and
cooling verification
Fluid proprties  Particle properties
k 1.0 Py 10.0
¢ 1.0 d, 1-107%
1y 0.01 7,  1-103/18

4.4.2.1. Droplet heating and cooling

If the particles have sufficiently high boiling points and enthalpies of vaporization, the evaporation rate
in Eqn. 4.48 will be zero which implies Br_o = 0. In this case, the droplet heating and cooling are
governed by the equations presented in 4.2.4. There are several limits that can be tested. The most
common situation that is encountered is conduction/convection dominated heating or cooling, and
this can be split into high and low Reynolds number regimes. When radiant heating and cooling are the
most significant processes, the system evolves according to the radiative heat flux terms resulting in
different behavior.

To verify conduction dominated heating or cooling, the particle emissivities are set to zero, eliminating
the radiative interaction terms. This leads to a simplification of Eqn. 4.71

dTp 6 Nuf)\fNup)\p
T T,—1T, _
dt <:0pcv,pd;2>) (Nuf/\f + Nuy), (T ») (4.100)

for which an analytic solution

Tg — Tp — exp |- 6 Nuf)\fNup)\p " (4 IOI)
T, —Tyo PpCo p? Nughs + Nuyh, '

p

is obtained if Ty, N, and Nu,, are constant and T}, ¢ is the initial particle temperature. To verify
radiant heat flux dominated heating or cooling, the gas-phase diffusion coefhicient, A, can be set to zero
and non-evaporating particles can be initialized with appropriately high temperatures for cooling or
with an appropriate incident flux. Neglecting gas-phase conduction, Eqn. 4.71 is written

dT, 3
p_ 2% (G /A — 0T (4.102)
dt PpCopTp p

where the film temperature is equal to the particle temperature for Ay = 0. In this case, the analytic
solution of Eqn. 4.102 is given in implicit form

arg [ (72) ~oo (22)] e (2 750) (2 )l = e
2TOO TOO TOO 4T(§O pro - TOO Tp —|— TOO pCUJ)Tf

(4.103)

where T, = (G, /40)'/* is the temperature seen by the particle.
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4.4.2.2. The wet bulb temperature

The wet bulb state is the state at which droplet heating is zero that occurs when the heat transfer to the
droplet is perfectly balanced by the enthalpy of vaporization and no droplet heating occurs. The droplet
temperature will tend to approach the wet-bulb temperature, either by being heated by excess enthalpy
conducted through the surface or by being cooled when more enthalpy is used in vaporization than is
conducted to the surface. The system of Eqns. 4.71, 4.48, and 4.s1 with (my,c, ,/1)dT,/dt = 0 in Eqn.
4.33 determines the wet bulb state. Droplets with initial temperatures set to the wet bulb temperature
should evolve with no change in the droplet temperature. It is verified in the following sections that
particles initially at the wet bulb temperature do not change temperature, and that droplets approach
the wet bulb temperature from other initial droplet temperatures.

4.4.2.3. d*-Law Evaporation and Condensation

For particles at the wet bulb temperature with no radiative losses there will be no particle heating so that
Br_o and Bp_o are independent of the radius. Then, if the slip velocity is negligible the particle will
evaporate at a rate proportional to the diameter squared, following the well-known d?-law for particle
evaporation

praie -K. (4.104)

To test this behavior, droplet heating should be prevented by setting the droplet temperature to the wet
bulb temperature, the radiative heat transfer should be inhibited by setting the emissivity to zero, and
the particle Reynolds number should approach zero in the sense that errors on the order of Rel/?
introduced by finite slip velocity correlations. In this case, plotting the droplet diameter squared versus
time should yield a linear line with a slope given by

are

K 4m

. 4.105
Tppdy ( )

To verify the d?-law for particle evaporation along with the wet-bulb temperature, three water droplets
are evolved in an atmosphere of humid air. The wet-bulb temperature is computed separately for those
conditions to be 313.9927, and particles are selected at that temperature and 1K above and below that
temperature. The basic fluid and particle properties employed in the simulation are provided in 4.4-4
and the relationship between the initial particle diameter and temperature are indicated in 4.4-5. There
is no flow and gravitational acceleration is not present so that there is no slip velocity maintaining the
zero-Reynolds-number limit. For the conditions given, & = 9.102 - 1075, Using these values the
evaporation times for the three particles are 89.0, 109.9, 132.9s for particles labeled 1, 2, and, 3 in 4.4-s,
respectively. The evaporation times predicted in Fuego are 89.1, 109.9, 123.8s in agreement with the
predictions. The predictions assume that the deviation from the wet bulb temperature are insignificant.
The evolution of d? for the particles indicated in 4.4-5 is shown in 4.4-3; the trajectories are close to
linear as expected and a linear curve fit for each d? profile gives an R? coeficient of unit indicating a
high degree of correlation. Also shown in 4.4-3 is the early evolution of the particle temperature. The
temperature is shown to converge to the computed wet bulb temperature and to maintain itself at that
temperature.
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Figure 4.4-3.. ¢* (left) and 7, (right) as a function of time for evap-

orating water droplets

Table 4.4-4.. Input parameters related to the verification of droplet evaporation.

Fluid proprties Particle properties Evaporation properties
Tyim  400.0K Pp ().791g/cm3 hvaprer 26.694 - 1079
Ugin  5.0g/cm3 | upin 5.0cm/s Toapref 373.0K
Y0 0.01 Cop 4184-107erg/g/K | Poapres 1.0Atm

Yo, 0.23 Y0 1.0 T.rit 647.0K
Yn, 0.76 Pry 0.9
Nuy 2.0 Scy 0.9

Table 4.4-5.. Particle initial conditions for verification of droplet evaporation.

1 2 3
dp[em] 0.11 0.1 0.09
TpimnlK] 314.9927 313.9927 312.9927
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4.4.2.4. d'S-law for Fast Moving Droplets

For particle droplets with large Re,, the available Nusselt and Sherwood number correlations indicate

. , . 1/2 , .
that the evaporation rate should increase with Rep/ for Re, > 10. In these cases, setting the particles
to the wet-bulb temperature with no radiative losses should lead to

d(d'>
<d17; ) =—Kist (4.106)
with
myReb/?Scl/3
lim K1.5 = p—3/2 (4107)
Rep—o0 prdp

being the constant rate of evaporation. Note that as the particle diameter approaches zero its Reynolds
number must also approach zero so that the evaporation rate should transition to a d?-law behavior as it
nears the fully evaporated state.

4.4.3. \Verification of Lagrangian-Eulerian Coupling

The primary objective of this section is to verify that the source terms seen by the particle are
appropriately reflected by equivalent (to the degrees appropriate) source terms in the gas-phase
conservation equations. This primarily tests the source terms indicated in Eqns. 4.75 through 4.81.
Because the particles affect the gas phase in the same way that the gas phase affects the particles, this is
referred to as two-way coupling. The verification problems are formulated as one-dimensional problems
(though the one dimension need not be aligned with the x, y, or z axis) to the maximum extent possible
by employing symmetry boundary conditions on the four sides normal to the flow direction and
imposing an initial uniform flow in the remaining direction. The general configuration employed is a
cylindrical channel as indicated in 4.4-11. This avoids any wall effects and provides a means of
identifying the transfer from inlet conditions to outlet conditions. Further, in all of these tests
gravitational acceleration should be set to zero and the effects of radiation negated by setting the particle
emissivity to zero.

4.4.3.1. Mass conservation

The net mass flux through the system should be constant at steady state. Particles subject to evaporation
will be iso-kinetically injected into the flow near the inlet (just downstream to ensure no effect of
evaporation on the inlet boundary condition). These particles will be allowed to completely evaporate
while they flow with the gas-phase through the domain, and the flow will be allowed to come to steady
state as can be indicated by the constant exit mass flux. At steady-state, the inlet and outlet mass fluxes
should be related according to the integral conservation relation

/ pinug,indA + Mp = poutug,outdA (4'108)
inlet

outlet
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where M is the mass rate of particle injection. The subscripts in and out indicate the state of the
gas-phase fluid at the inlet to the first control volume and the exit from the last control volume. The
integral across the inlet and outlet areas will average out any spatial fluctuations. To facilitate reaching
steady state flow with a reasonable number of particles, it is recommended that particles with a uniform
size be employed. Since particle evaporation rates typically follow the d?-law behavior, it is preferable to
have a relatively large number of particles injected over the evaporative lifetime of a given particle. The
error in Eqn. 4.108 is expected to decrease as the frequency of particle injections is increased.

4.4.3.2. Species conservation

To test the species conservation, the same verification test is employed, but the mass of the individual
species is tracked.

viWiYrp -
= MP = pout}/;,outug,outdA (4.109)

/ PmYz‘,ng,mdA + W
inlet P outlet

The mass source term is written to also account for droplet combustion as relevant. Because the total
mass associated with the system changes, the mass fraction of species that do not evaporate from the
particle or participate in combustion would tend to decrease; that is, the total mass flux increases while
the mass flux of non-evaporating species does not increase. This can act as a second species verification
test.

4.4.3.3. Energy conservation

The configuration for energy conservation is the same as for mass and species conservation:
one-dimensional flow with regular iso-kinetic particle injection and allowed to reach steady state. to test
the coupled energy conservation, three tests are recommended to cover the range of particle behaviors.
These tests would cover non-evaporating particles, evaporating but not combusting particles, and
combusting particles.

The equation describing energy conservation for non-evaporating particles, assuming that the
temperature of the particles equilibrates with the gas-phase before the outlet plane, is best written

/ /)mug,mhg (Tg,m)dA + Mpcv,pr,in = woutpoutug,outhg (Tg,ln)dA + MPCU@TSQ (4'110)
inlet

outlet

where hy represents the gas-phase mixture enthalpy. The equilibrium temperature on the right-hand
side of Eqn. 4.110 is obtained through an iterative solution of that nonlinear equation with the initial
particle and gas temperatures prescribed as T}, ;, and T} ;,,, respectively. Here the outflow gas-phase void
fraction, ¥y, appears in the first term on the right hand side; it is implicitly included in the other
equations in this section, but is unit there based on the state assumptions. Satisfaction of the equality in
Eqn. 4.110 provides a test of the first term on the right-hand side of Eqn. 4.80. Note that the approach
to the equilibrium temperature follows an exponential decay of the form exp~"/"7 so that extending the
domain to double the residence time from ¢ to 2¢ will tend to cause particle and gas temperatures at the
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outlet to be accordingly closer to a factor of exp ¥/ The thermal relaxation time constant for the
non-evaporating particle is

vl
TT _ ppc P%p NUf)\f + Nup)\p ' (4.111)
6 NUf)\fNUp)\p

This provides a additional check on the transient behavior of the system and can be used to evaluate
time step control provided by Eqn. 4.90. Regardless of the time step, the enthalpy transfers should be
conservative at equilibrium.

for the evaporating or combusting particles, the verification test is set up so that the evaporation of the
particles is completed within the domain and that the flow reaches steady state prior to evaluation. In
this sense it is the same arrangement as indicated above for mass and species conservation. These tests
verify the last two terms in Eqn. 4.80. With the particles entirely evaporated, an energy balance gives

/ pznh(Tg,zn)ug,zndA + Mp [hp(Tp,in + QComb)] = / pouth(Tg,out)ug,outdA (4'112')
inlet

outlet

The initial particle enthalpy is defined

hp(Tpin) = hr(Tpin) — hvapres (4.113)

based on the gas-phase enthalpy of the particle species denoted by the subscript /. Again, a nonlinear
solution of this equation is required to determine 7 ..+ because of the nonlinear dependence of the
enthalpy on temperature. To satisfy this equation, it is necessary that the specific heat for the condense
and gaseous phase of the participating species be identical; otherwise particle cooling during
evaporation followed by the warming of products to the equilibrium temperature will result in energy
differences that would have to be accounted for by tracking each droplet temperature in time through
the domain. Further, the critical temperature, T, in Eqn. 4.26, should be set essentially to an
essentially infinite value of force hyap = hyap ref-

4.4.3.4. Momentum conservation

As particles with excess momentum transfer their momentum to the gas-phase flow, the net flow rate
will increase. The momentum verification test described in the present section differs from the other
tests in this section in the sense that a single particle or group of particles is injected at on instant and
there is no continuous injection. The injected particle(s) is(are) allowed to equilibrate with the
gas-phase flow and the net change in momentum is measured. For this purpose, there must be no net
pressure change across the domain boundaries. Integral momentum conservation then gives the final
equilibrium velocity based on

/ PgligindV + Z MpUp in = / PgleqdV Z Mpleq- (4.114)
v p v p

Presuming that the velocity equilibrates across the domain, 1.4 can be brought outside of the integral
and summation for an explicit expression. As for the temperature equilibration test in Eqn. 4.110, there
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is an exponential approach to the equilibrium value that can be used to test transient behavior if spatial
fluctuations in the gas-phase velocity are not too strong. In that case, the equilibrium velocity is
approached with the exponential time constant given by Eqn. 4.7 and 4.8 so that doubling the duration
of the test from ¢ to 2¢ should bring the particle and gas velocities closer by a factor of e t/7r_ Note that
this transient behavior can be used to evaluate the time step criteria provided in Eqn. 4.90 by assessing
the error associated with liberal time steps. Regardless of the time step, though, the momentum transfer
should be conservative at equilibrium.

4.4.3.5. Parallel implementation

All of these tests described in the present section are implemented on both one and four processors with
domains that cross multiple processors to test the passing of particle information across domain
boundaries.

4.4.3.6. Verification Tests for Lagrangian-Eulerian Coupling

In this section, the verification tests suggested in the previous sections are described. Verification tests
for non-reacting iso-kinetic particle flows (energy conservation only), for isothermal and non-iso-kinetic
particle flows (momentum conservation only) and for reacting/evaporating particle flows (mass and
energy conservation) are all included. Together these test all of Eqn. 4.75 through 4.80. Not yet covered
with documented verification problems is the radiation coupling in 4.81.

Energy conservation verification Energy conservation for non-evaporating particles was
verified in Fuego using nominal parameter values for both the particles and the fluid. For the Eulerian
phase, the mass, momentum, and energy equations were evolved, but not the species equations. Under
these conditions, fluid properties are manually specified. The fluid properties listed in table 4.4-6 were
specified as constants. Since the fluid viscosity, specific heat, and Prandtl numbers are specified, the
thermal conductivity is computed from these quantities. The constant specific heat leads to a linear
dependence of enthalpy on temperature, and without loss of generality the enthalpy is set to the
temperature hy(1,) = T}, corresponding to an enthalpy reference temperature of 0K'. The simulation
was carried out in the cylindricalchannel.g configuration with an inlet/outlet area of 3.10583 (with unit
radius, this is nominally 7, but low resolution of the circular cross section leads to a smaller area) and a
length of 20. Particles are inject iso-kinetically at the downstream location 1 unit from the inlet and flow
19 units to the outlet in 19 time units. With iso-kinetic flow, Nu; = 2 and with zero particle viscosity
Nu, = 6.58 from Eqn. 4.56. The particle thermal response time from Eqn. 4.111is 70 = 3.4 and is
sufficiently small that particle thermally equilibrate while traveling the length of the channel.

There are two ways to carry out the energy conservation verification: using Eqn. 4.110 during a period in
which the flow has reached steady state and integrating Eqn. 4.110 in time over the entire simulation.
Both of these approaches are employed here. The surface integrals specified in the conservation
equation were carried out within Ensight. To compute the flux of the particles and associated enthalpy
out of the domain (last terms in 4.110), the particle deposition tracking in Fuego was employed
(keywords: enthalpy_deposition_density, enthalpy_deposition_rate, etc.) and these quantities were
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Table 4.4-6.. Input parameters related to the verification of en-
ergy conservation without evaporation

Fluid proprties Particle properties

Pin 1.0 Pp 10.0
Ug.in 1.0 Up in 1.0
Iig 0.01 M, 0.1
Cpg 1.0 Co.p 100.0
Tyin 300.0 | Tpin 1000.0
hy(Ty.in) 300 Ap 0.1
Pr 1.0 Pry 1.0
Nuy 2.0 Nu, 6.58
JdA  3.10583 | d, 0.01

also integrated over the outlet surface. The balance of the steady-state flux is described first. for the two
terms on the left hand side of 4.110, the boundary conditions provided the values of 931.749 for the
fluid inlet enthalpy flux and 10, 000 for the particle inlet enthalpy. The compute equilibrium
temperature is 834.1134 K from 4.110. The outlet gas temperature was in the range of 883.4 to 834.8
with a mean of 834.1 and the exiting particles are between 832 and 835 K. to supplement the stead-state
enthalpy flux, the integrated enthalpy flux is computed and plotted in 4.4-4. The net input enthalpy
includes the initial domain enthalpy and the enthalpy of all of the injected particles over time can be
compared with the enthalpy in the domain and that which has left the domain. These two quantities
agree to within 0.01%, which is taken to be suitable (the integration of quantities within Ensight does
not use the same algorithms as employed in Fuego, leading to some error). Also examined in this test is
the particle mass deposition rate at the outlet. Because there is no evaporation in this scenario, the
complete particle mass injected should be deposited (or pass through) the outlet. Using the keywords
mass_deposition_density and mass_deposition_rate and integrating these over the outlet surface, 4.4-5
shows that the mass tracked as crossing the outlet plane matches the input particle mass, 0.1, to within
statistical fluctuations.

Momentum conservation verification To verify the momentum transfer within Fuego,
simulations were carried out with ten particles injected into a cylindrical channel. Momentum
conservation for non-evaporating particles was verified using nominal parameter values for both the
particle and the fluid. For the Eulerian phase, the mass and momentum were evolved, but not the
species and energy equations. Under these conditions, fluid proprties are manually specified. The fluid
and particle properties listed in table 4.4-6 were specified as constants. The simulation was carried out
in the cylindrical_channel.g configuration with an inlet/outlet area of 3.10583 (with unit radius, this is
nominally 7, but low resolution of the circular cross-section leads to a smaller area), and a length of 20.
The channel had symmetry boundary conditions on the side to prevent drag from affecting the
momentum field. Particles are injected with an initial velocity of 10 units into a stationary fluid phase at
the initial time. The particles were injected at the time origin with a diameter of 0.12, a density of 10, and
a velocity of 10. The injection occurred as a line of ten particles across the channel (in the narrow
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Figure 4.4-4.. The enthalpy over time in nonreacting channel flow
with hot particles injected. The net input enthalpy includes the
initial domain enthalpy and the enthalpy of all of the injected
particles over time. Squares show the enthalpy associated with
particles in the domain. Circles show the enthalpy of the par-
ticles that have left the domain. Diamonds show the enthalpy
associated with fluid in the domain. Triangles show the excess
enthalpy of fluid that has left the domain (difference between
the outlet enthalpy and inlet that was accounted for in the net
input category). The sum of the categories indicated by symbols
is shown to agree with the net input enthalpy indicating overall
conservation of enthalpy.
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Figure 4.4-5.. The mass deposition rate integrated over the outlet
is shown as a function of time. The corresponding particle inlet
mass flux is 0.1.
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Figure 4.4-6.. The momentum associated with the particle phase,
the fluid phase, and the combined momentum shown. The right-
hand panel shows the initial period in greater detail.

direction). The particle flow direction was oriented lengthwise down the channel and the point of
injection was the midpoint of the channel, 10 units from the inlet and outlet. Zero pressure boundary
conditions were specified on the inlet and outlet that allowed the flow to continue in the absence of any
forces (ie. particle drag).

Based on the values in 4.4-6, the initial momentum imparted by the particles is 0.904779 and the
computed total momentum at the end of the Fuego simulation is 0.893059. That is, the final combined
momentum is 1.3 % less than the initial momentum. The reason for this discrepancy is unclear. The
final particle and fluid momentum are 0.001299 and 0.89176, respectively. The temporal evolution of
the fluid, particle, and total momentum is shown in 4.4-6. There the fluid momentum has been shifted
back one time step (0.o1 units) to account for the staggered time-stepping algorithm: the fluid evolves
based on the previous time steps’ particle momentum transfer. The simulation was evolved for 30 time
units, but no changes for the single precision arithmetic was observed after 21 units.

The velocity after the equilibration is computed to be 1.4379 - 10~2 based on Eqn. 4.114. Carrying out
the Fuego simulation results in an equilibration average velocity of 1.4356 - 1072, which is only 0.1%
below the computed value. The predicted resulting momentum and velocity were computed with
differing methods within Ensight: the momentum was computed using the volume integral while the
velocity was computed using the spatial mean frequency. It is not clear what level of numerical error is
attributable to the Ensight algorithms.

The average gas velocity had equilibrated with within 99% of its final velocity within 1.06 time units.
The value of 7, for this system is 8 - 1072 from 4.8 and the momentum and velocity equilibration times
are somewhat longer than the suggested response time near the particle equilibration time of a few 7,
since the particles were not injected uniformly through the domain. The result is substantial gas-phase
velocity inhomogeneities that take much longer than 7, to dissipate.

Mass and energy conservation verification Mass and energy conservation for evaporating
and reacting particles was verified in Fuego using fluid-phase parameter values taken from the
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Table 4.4-7.. Input parameters related to the verification of mo-
mentum conservation

Fluid proprties  Particle properties

Pin 1.0 Pp 10.0
Ug in 0.0 Up,in 10.0
ng 001 | N, 10
TdA 310583 d, 0.12

thermodynamic databases and evaluated with Cantera. For the eulerian phase, the mass, momentum,
energy, and species equations were evolved. The fluid and particle properties listed in table 4.4-7 were
specified.” Note that the critical temperature for water was set to a large value so that the enthalpy of the
particles could be compute directly from /gy e as in Eqn. 4.113; this initial value of the particle
enthalpy is also given in table 4.4-8 using the value of h (T}, ;) computed in Fuego,

—1.342 - 10" erg/g. Since the fluid composition and enthalpy are specified as boundary conditions or
evolved within Fuego, the viscosity specific heat, and thermal conductivity are computed from these
quantities. The simulation was carried out in the cylindrical_channel.g configuration with an
inlet/outlet area of 3.10583 (with unit radius, this is nominally 7, but low resolution of the circular
cross-section leads to a smaller area) and a length of 20. Particles are injected iso-kinetically at a
downstream location 1 unit from the inlet flow 19 units to the outlet in 19 time units.

Net mass conservation is evaluated using Eqn. 4.108. The fluid-phase mass flux at the inlet, using the
Cantera computed density of 8.776 - 10™*g/cm?, is 1.3628 - 1072g/s. The particle mass flux is
1-107*g/s and combining the inlet mass fluxes gives an expected outlet mass flux of 1.3728 - 1072¢/s.
The value computed from the outlet using Ensight is 1.37284 - 1072¢/s; there is a statistical variation
in this quantity with a standard deviation of 3.7 - 107%¢g/s. In a similar manner, mass conservation for
individual species is evaluated using Eqn. 4.109. For water, the inlet mass flux is 2.7257 - 1075gH,0/s
and the mass injected is 1.0 - 107*g H>O/s. The value computed at the outlet plane is

1.2657 - 10~*gH50 /s which is approximately 1.5% below the expected value of

1.27257 - 107*gH,0/s. The outlet water mass flux has a statistical variation associated with it
characterized by a standard deviation of 5.44 - 10~ 8gH>0/s. While there is no source term for species
like Os, the inlet and outlet mass fluxes can be computed. The inlet flux of O, is 3.13466 - 107390, /s
and that for the outlet is computed to be 3.13470 - 107390, /s, with a standard deviation of

8.5 - 1077gOy/s. Enthalpy conservation is evaluated using 4.112. The enthalpy flux into the domain
associated with the fluid phase is 1.0477 - 107erg/s while that associated with the particle phase is
1.568 - 107erg/s. The difference between these, 5.203 - 10%erg/s, is the expected enthalpy flux at the
outlet, the right hand side of 4.112. Using Ensight to evaluate the enthalpy flux at the outlet gives
5.10647 - 10%erg /s; this is a 2% discrepancy, the source of which is uncertain at this point. There is a
statistical variation in the outlet enthalpy flux characterized by a standard deviation of 6.38 - 10%erg/s,
approximately 0.04% of the total enthalpy change.
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Table 4.4-8.. Input parameters related to the verification of en-
ergy conservation with evaporation.

Fluid proprties Particle properties Evaporation properties
Ty in 400.0K Pp 1.Og/cm3 Nvap,ref 26.694 - 107Y
Ug in 5.0g/cm? | upin 5.0em/s Toapref 373.0K
Y0 0.002 M 1- 10’4g/s Poapref 1.0Atm
Yo, 0.22 Cop 4184-107erg/g/K Terit 1-10°K
Yn, 0.768 Ty in 300.0K hp(Tp,m) —1.568 - 101167“g/g
Sc 0.9 YHQO 1.0
Pr 9.0 Pry 0.9
Nuy 2.0 Scy 0.9
f 1dA  3.10583cm? d, 0.005cm

Table 4.4-9.. Verification sections and the equations tested and validated.

Verification subsections Equations Covered

4.4.1.3 4.3, 4.9, 4.10, 4.11, 4.12

4.4.2.1 4.56, 4.71, 4.72

4.4.2.2, 4.4.2.3 431, 4.33, 4.24, 4.48, 4.49, 4.51,
4.52

4.4.2.4 4415 442, 443, 445

4.4.3.0, 4.4.3.2, 4.4.3.3 4.75, 4.76, 4.80

4434 477

Equations employed but not | 4.4, 4.13, 4.27, 4.32, 4.50, 4.64,

yet fully covered in verification | 4.81, 4.82

tests

4.4.4. \Verification summary

To summarize the verification process, the following table 4.4-9 shows the equations that are covered by
verification tests described in the various sections in this document. The equations that are not fully
covered are also indicated. The lack of verification coverage is only significant for the radiative terms.

4.5. SUMMARY

A Lagrangian model for particle transport coupled with an Eulerian solution for the gas phase is
presented in detail. Models are presented for particle momentum, heat, and mass transfer, including the
effects of turbulence on particle dispersion. Particular attention is paid to heat and mass transfer as these
aspects are critical to the anticipated applications and they have not been well documented in other
references. The heat and mass transfer models account for film temperatures that differ from particle
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Figure 4.4-7.. Condensed-phase conduction is approximated
based on the difference between the film and mean droplet tem-
peratures and on an estimated heat transfer coefficient that de-
scribes a boundary layer thickness. Over this boundary layer
thickness, the temperature difference 7, — 7, is presumed to act.
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Figure 4.4-8.. Terminal velocities for particles as a function of
diameter and particle Reynolds numbers determined from 4.95
and 4.96.
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Figure 4.4-9.. Water droplet evaporation and condensation with
initial temperatures set to the wet bulb temperature. Left plot ex-
hibits the linear d*-law behavior while the right hand plot shows
the droplet temperatures as constant (no heating).

temperatures in a manner that depends on the relative magnitudes of the internal particle heat transfer,
the heat transfer to the particle surface from the gas phase, the heat transfer associated with radiative
fluxes, and the enthalpies associated with evaporation and combustion around the particle. Both the
evaporation and condensation are permitted. A conservative algorithm for coupling the Lagrangian and
Eulerian fields is presented covering mass, species, momentum, and energy transfer between two fields.
Models are also specified for the interactions of the Lagrangian field with solid boundaries.

A comprehensive plan to verify the implementation of the physics models is also presented. The
verification plan touches on the majority of terms in the implemented physics models. Verification tests
are provide for particle momentum, trajectories, heat, and mass transfer in various limiting cases for
which analytic solutions can be obtained. Verification tests to evaluate the coupling between the
Lagrangian and Eulerian fields are also provided. These verification tests are based on the net
conservation of mass, species, energy, and momentum.

4.6. EVALUATING TRANSPORT COEFFICIENTS

The droplet burning rate equations involve the area weighted diffusion coefhicients as indicated in Eqn.
4.19 and subsequent equations. While the optimum method of determining the burning rate would
involve the evaluation of these integrals as indicated in Eqns. 4.46 and 4.47, it is useful to estimate the
effects of composition and temperature variations when such accurate evaluations are unfeasible. The
kinetic theory of gases provides a starting point for such estimates, and a simplified overview of the
pertinent results is provided. The single component viscosity is

i vV WWkRT

B 16 WJ,%Q(ZQ)* (4.115)

2
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Figure 4.4-10.. Aluminum particle evaporation with and without
combustion with initial temperatures set to the wet bulb temper-

ature showing the linear d-law behavior.
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Figure 4.4-11.. The general configuration for verification of two-
way coupling. The domain should be of sufficient length that
the particles equilibrate with the gas-phase flow.

where o, is the Lennard-Jones collision diameter and Q222" is the collision integral. The mixture
proprties can be obtained using the Wilkes formula that averages based on mole fraction weighting to
leading order. A square root dependence on the temperature is evident in 4.115, but the collision integral
also includes a temperature dependence and it is found that the viscosities (and the other transport
coeflicients) are proportional to T%7 an empirical fact that is referred to as Sutherland’s law. The
kinetic theory of gases is only marginally successful at predicting the thermal conductivity, but the ratio
of the thermal conductivity to the specific heat is closely related to the viscosity and the Prandtl number
can often be approximated as constant. The binary diffusion coefficient between species ¢ and j is more
simply written as the product of the diffusion coefficient and the density since this removes additional
pressure and temperature dependencies; this is

D 3 W\/QT('RT/WZ',]‘
pLli; = — .

- 16 mop QLD

(4.116)

Here the reduced mass and the reduced cross sections are W; ; = W;W; /(W,; + W) and

0'1»27]- = (O’i + O'j)z.

4.7. LAGRANGIAN PARTICLE CAPABILITIES

4.7.1. Lagrangian Particle Spray: Diameter Cutoffs

The Fuego Lagrangian particle spray capability has a feature which allows an upper (high) and lower
(low) size (diameter) cutoft to be set for particles inserted with a specified distribution (normal, normal
mass, etc.). For distribution types with infinite tails like the standard normal distribution, the particle
spray can select particle sizes small enough that they do not appear in the application of interest or so
large that the assumption of the dilute spray model, inherent to the Fuego Lagrangian particle
implementation, is violated. In specific applications where particles experience energetic chemical
reactions, such as propellant fires, particles below a certain size range react quickly and disappear
without the need to resolve their dynamics. The diameter cutoft feature allows the analyst to use
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standard distribution types while avoiding undesired particle size ranges. When diameter cutofts are
used, the particle pdf is adjusted accordingly to account for the lack of contribution from particle sizes
outside the cutoft limits. The adjusted particle pdfis:

dhigh

pdfnew (d) = pdforiginal (d) H (d - dlow) H (dhigh - d) / pdforiginal (d) (4-117)

dlow

where pdf,riginai(d) is the original, uncutoff particle size pdf, pdf,c.,(d) is the new particle pdf
including low (djo,) and high (dpign) particle size cutoffs, the integral is take on the original particle pdf
with these limits, and H is the heaviside step function. This treatment properly normalizes pdfi,e., (d).
Figure 4.7-1 illustrates this for the case of a normal distribution of particle diameters

(< d>=0.5,0 = 0.1) with and without diameter cutofts at d = 0.3 and d = 0.65. Figure 4.7-2
shows a section of a Fuego input deck utilizing the diameter cutoff functionality.

— Normal pdf with <d>=0.5,6=0.1
S — - pdf adjusted with d cutoffs at 0.3 and 0.65

Figure 4.7-1.. Particle size (diameter) distribution for Lagrangian
particle spray with and without diameter cutoffs set at 0.3 and
0.65
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BEGIN PARTICLE SPRAY sprayl

PARTICLE DEFINITION = solid particles

#spray Geometry
CENTER = -188.8, 6.8, 6.0
NOZZLE RADIUS = 16.8
MORMAL VECTOR = 1 & @

#3ize Distribution Parameters
MASS FLOW RATE = 908.08 # g/s
PARTICLE DIAMETER DISTRIEUTION TYPE = NORMAL
PARTICLE DIAMETER DISTRIBUTION PARAMETER MEAN = 1.8 # cm
PARTICLE DIAMETER DISTRIBUTION PARAMETER STDEV = 8.5 # cm
DIAMETER CUTOFF HIGH = 1.85 & cm
DIAMETER CUTOFF LOW = 8.95 & om
MUMBER. REPRESENTED VECTOR = 18 26 36 46 56 &8 70
DIAMETER NUMBER REPRESENTED VECTOR = 6.1 6.4 6.7 1.6 1.3 1.6 1.9

#Helocity Distribution Parameters
PARTICLE VELOCITY DISTRIBUTION TYPE
PARTICLE VELOCITY DISTRIBUTION PARAMETER VALUE

#Particle Temperature

TEMPERATURE = 306.8

EMD» PARTICLE SPRAY sprayl

CONSTANT
1.8 # cm/s

Figure 4.7-2.. Lagrangian particle spray section of a Fuego input
deck showing use of diameter cutoffs

4.7.2. Lagrangian Particle Spray: Angular Spreading Sprays

The angular spreading spray algorithm was modified in version 4.30 to produce an isotropically
spreading particle spray (within the angular limits specified). Previously, the particle trajectories were
preferentially aligned with the spray axis. For isotropic spread, the cosine of the polar angle (measured
with respect to the spray axis) rather than the angle itself is chosen randomly. The polar angle is then
determined from the inverse cosine of this value.

0 = cos™ " [rand ()] (4.118)

4.7.3. Alumina Absorption Model

Fuego allows for a user to specify the radiation absorption model for alumina in reacting aluminum
particle simulations like propellant fires. The alumina absorption model, usinga FORTRAN
subroutine, can now read from a user input file containing data for the alumina absorption coefficient
as a function of particle temperature. The file contains two columns defining this function. The first
column is temperature; the second is the absorption coefficient. This function is linearly interpolated to
find the absorption coefficient at any temperature of interest. Figure 4.7-3 displays two standard
alumina absorption models alongside a user-specified model.
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Figure 4.7-3.. Alumina absorption coefficient for standard mod-
els Brewster and Kanopka along with a user-specified model

4.7.4. Emission Multiplier

For propellant fire simulations which use the evaporating Lagrangian particle type, analysts have
determined that modifying the particle-radiation coupling can be advantageous to reproducing
experimental results. To address this, Fuego has a capability to modify the particle radiation emission
with a constant multiplier. When the emission multiplier is not set, a default value of 1 is assumed, and
emission = absorption when the particle and fluid temperatures are identical. Particle radiant emission
E, and absorption A, are:

E, = 4raRiospT, fi (4.119)
A, = 47r04R;053T}1 (4.120)

where o is the particle absorptivity, 2, is the particle radius, 0 g is the Stefan-Boltzmann constant, T}, ¢
are the particle and fluid temperatures respectively, and f7 is the emission multiplier described above.
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4.7.5. Lagrangian Particle Spray: Number Represented Function

Lagrangian particle sprays have historically been required to use parcelling (grouping of several particles
into a single parcel) with either a constant mass represented per parcel or constant number represented
per parcel. In propellant fire applications and other reacting particle environments, a more sophisticated
functionality between the number of particles represented per parcel and particle size can increase the
efficiency of simulations. For this reason, Fuego includes a capability to allow the analyst to specify this
function (parcel size vs. particle diameter). This function is specified by a vector for each (number
represented per parcel and diameter). For diameters at or below the lowest specified in the vector, the
number represented is constant and equal to the value at the lowest diameter specified. For diameters at
or above the highest specified in the vector, the number represented is constant and equal to the value at
the largest diameter specified. Intermediate values are linearly interpolated. Figure 4.7-4 diagrams the
way parcelling works for each of the different parcelling schemes.

Parcel Model d=1 d= (0_5)1/3 d- (0.25)1/3

constant N . . .

constant m . . .
- . @ .

Figure 4.7-4.. For a Lagrangian particle spray, the number of par-
ticles contained within a parcel for three representative particle
diameters using constant number, constant mass, and user de-
fined number of particles per parcel. Circles represent parcels
with the points inside representing the number of particles con-
tained in the parcel.
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4.7.6. Lagrangian Particle Insertion: User Definable Mechanism

Previous to version 4.30, Lagrangian particles could be inserted into the domain through two
mechanisms: 1) batch introduction of a group of particles at a specified time with the particle
configuration defined by a particle data file or a filled shape (i.e. cone, cylinder) with shape parameters
or 2) via a particle spray with either a rectangular or circular nozzle and a specified mass flux rate. In
cases where users needed a more novel insertion mechanism, Fuego lacked the capability. Fuego now
includes a mechanism for particle insertion from file data in which users can specify not only particle
positions, velocities, and diameters on insertion, but also particle temperature, number of particles per
parcel, and insertion time. Through this method users have a full range of particle insertion options at
their disposal. The dynamical form for particle introduction is contained within the file data, and does
not rely on templated forms for static shapes or sprays, though those capabilities are still available. Users
can, for instance, introduce particles from a very specific particle size distribution isotropically through
the system with a rate of their choosing or create a particle spray with a conical nozzle with velocity
vectors normal to the nozzle. The only limitation lies in the ability of the user to specify this mechanism
through the particle data file. Figure 4.7-5 shows some examples of particle insertion types available with
this capability. Figures 4.7-6 and 4.7-7 display a conical particle spray generated with this mechanism
from two different perspectives (conical axis lying in the plane of the figure and normal to the figure) at
both early and late times in the simulation. In this case, the particle temperature has been designed to be
a function of the position at which the particle left the spray nozzle. Many other forms are possible.
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Figure 4.7-5.. Examples of particle insertion types that can be
used with particle insert from file mechanism
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Time = 0.0300

T_Particle

5.000e+02
4.500e+02
4.000e+02
3.500e+02
3.000e+02

Figure 4.7-6.. Example of particle spread from a conical shaped
particle spray nozzle at early times. This nonstandard spray
form was generated through the particle creation from file data
mechanism. Here particle temperatures are set to be a function
of their position with the hottest particles leaving the nozzle near
the circular base of the cone.

212



Time = 0.5000

T_Particle

5.000e+02
4.500e+02
4.000e+02
3.500e+02
3.000e+02

Figure 4.7-7.. Same simulation as Fig 4.7-6 but at late time.
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5. NUMERICS

We surveyed commercial codes that provide turbulent combustion capabilities and discovered that most
of those codes are based on finite volume methods. Between commercial evidence and our own
experiences, we came to the conclusion that finite volume methods would provide a robust and stable
means of solving the fire math models. Our selection of finite volume methods is constrained by the
current implementation of software architecture in the SIERR A Frameworks. The mesh must be
unstructured with flow variables located at the element vertices. The domain boundary is coincident
with element faces. The discrete equations are assembled on an element-by-element procedure using the
SIERR A workset approach for cache-use efficiency. The finite volume approach that we implement is
based on the control-volume finite-element method.

Control-volume finite-element methods (CVFEM) are a class of numerical methods for solving the
Navier-Stokes equations of fluid mechanics. Although the methods are applicable to the most general
case of a compressible flow, they are most commonly applied to incompressible flows. This text is a
discussion of the control-volume finite-element methods appropriate for numerical solutions to the
low-Mach number Navier-Stokes equations with heat and mass transfer—the equations used to
describe physical applications such a combustion or chemical vapor deposition.

The CVFEM’s are a combination of desirable features from both the finite-element method (FEM) and
the finite-volume method (FVM), though the CVFEM is truly a finite-volume method. The CVFEM
differed from other FVM’s at its inception in that the CVFEM used non-staggered, unstructured
meshes like a FEM. Concepts from the finite-element method include: 1) the finite-element data
structure and the associated shape functions or interpolation functions, 2) integral equations assembled
on an element-by-element basis, an efficient process for cache-based computer architectures, and 3)
unstructured meshes with arbitrary connectivity (this is not particular to FEM’s, but certainly more
common). Reviews for the finite-element method are given by Zienkiewicz and Taylor [125, 126],
Tezduyar [64], and Gresho [127]. Concepts from the finite volume method include: 1) physically-based
integral formulation constructed from physically-based interpolation functions, 2) conservation
properties at the control-volume level, and 3) both a convecting and convected velocity field to avoid
pressure-velocity decoupling. Some comprehensive reviews for the finite-volume method are given by
Patankar [128], Shyy [129], and Ferziger and Peric [130]. An extensive literature review of control volume
finite element methods (CVFEM) is given in Appendix 8.

The standard mesh configuration for vertex-centered CVFEM’s has all flow variables collocated at the
grid points, also called nodes. The nodes are the vertices of the finite-elements, as shown in Figure 5.0-1.
The finite-volumes, also called control volumes, are centered about the nodes. Each element contains a
set of sub-faces that define control-volume surfaces. The sub-faces consist of the segments or surfaces
that bisect the element faces.
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o——0 Finite Elements and Nodes

I [ERTRERPRETIS {J  Finite Volumes and Faces

X Integration Point

Figure 5.0-1.. Control Volume is Centered about Finite-Element Node

5.1. FLOW SOLVER

The core flow solver is based on a segregated, projection method approach. The projection method is
used to compute the pressure field which is consistent with a velocity field that satisfies continuity. A
pressure-smoothing approach similar to the Rhie/Chow scheme [131] is used to prevent pressure
decoupling on the collocated mesh. An upwind method is used to interpolate convected values to
control volume faces. Detailed descriptions of these methods are discussed in the following sections.

Another prevalent CVFEM method in the literature is the FIELDS method [132, 133]. The continuity
and momentum equations are fully coupled in this approach. We experimented with this approach and
found that the three-dimensional discrete equations were difficult to solve and open boundary
conditions difficult to implement.

5.1.1. Projection Method

The role of pressure smoothing, or explicit stabilization, was first developed in the context of collocated
finite volume schemes by [131]. Although this original paper did not explore the formal error introduced
by this explicit stabilization, [134] later displayed the sensitivity of steady results on relaxation

parameters and provided a methodology to circumvent this issue. In general, such early papers (cf. [135])
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as well as other more recent papers, (cf. [136]) introduced the role of stabilization almost by
happenstance as it entered only through the specific choice of the convecting velocity formula, i.e., the
integration point velocity that forms the mass flow rate.

Studies of [137] and [138], each in the context of a finite element algorithm, have commented on the role
of stabilization that is provided by the approximation of the derived pressure correction system, namely
that L # DG, where L is the given discrete Laplacian operator and D and G are the chosen discrete
divergence and gradient operators, respectively. Numerical algorithms for which the Laplacian operator
does not equal the discrete divergence of gradient operator have been termed “approximate projection”
algorithms (cf. [139] and [140]) in the context of solenoidal flow; in general for non-solenoidal flow the
formalism of the projection derivation results in an affine projection.

Recent work by Sandia National Laboratories has cast the general approximate projection algorithm
within a family of smoothing and time scaling choices. The analysis of choice that has been followed is
to cast the algorithm in terms of an approximate factorization (cf. [141]), and note the added
stabilization (herein also known as pressure smoothing terms), and splitting errors. This analysis
has been extremely useful in understanding the formal accuracy, and even consistency, of a given
numerical scheme.

The analysis of a given computational fluids algorithm in the context of an approximate factorization
begins with the discrete momentum and continuity equations written in matrix form. The matrix A
contains discrete, linearized contributions to the momentum equations from the time derivative,

A G u"t! f
RIEAEE

The discrete nodal gradient and nodal divergence are G and D respectively (note that the operator D
may include aspects of the algorithm due to a variable density field). The function f contains the
additional terms for the momentum equations, e.g., body force terms, lagged stress tensor terms, etc.,
while the function b contains the appropriate terms for a non-solenoidal velocity field, i.e., — f %d‘/.
The pressure is appropriately interpreted as the pressure at the n + % step, (cf. [142]). The form of the
matrix operators can be found in the body of literature for control-volume finite element methods

(cf. [143]). Note that Equation s.1 is not really complete as the boundary condition values are omitted,
however, they are not essential in describing the bulk of the splitting and stabilization analysis as noted
by [144]. The boundary conditions would simply enter through an additional vector on the right-hand
side and modified entries in the matrix operators.

convection, and diffusion terms,

The approximate factorization of Equation s.1 takes the general form of

A 0][I B,G|] [A AB,G (
D B;||o0 I|”| D B;+DB,G |° 52)

The factor By determines the projection time scale. The factor By defines the linear system for

proj Y
pressure. Ideally, By could be selected to cancel splitting errors in the continuity equation. Practically,
the form of B is governed by implementation and linear solver efficiency.
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A completely generalized set of incremental pressure projection methods with potential stabilization
can be written by formally defining the operators B; and By above, here shown as part of the sequence
of equations solved,

ANl = f—Gp"z — Au”, (5.3)
L, ApttE = -D (ﬁ n %QGp”*%) 4 Lop™ % 4 b, (5.4)
un+1 = 11— 7:3GApn+% (5-5)

Laplacian operators acting on a general scalar ¢, which define the approximate nature of the projection
method, are given by,

Lo =nVé-dA, (5.6)
Lyp = 1Ve - dA. (5-7)
5.8)

For an approximate projection method,
L2 7é D%QGa (59)

while for an exact projection,
L, = D”G. (5.10)

Exact projections can be easily constructed on unstructured collocated meshes (cf. [145]), although
classically this results in a wide Laplacian stencil that admits pressure oscillations yet does not add
discrete errors in the continuity solve. We assume that 7; factors defined above are represented by a
diagonal matrix that corresponds to a particular time scale of choice. The relationship between 7; and 7;
is normalization by a density and volume,

=V

The choice of these scaling factors defines the scheme in terms of both stabilization and projection
scaling. For example, the ideal form for 73 is the inverse of A. The exact choice of 73 in a practical sense
affects the stability of the scheme. The stabilization terms are represented by operators including both 7
and T, that are required to prevent velocity and pressure decoupling in schemes for which L # DG.

(5.11)

T

Rearrangement of Equation s.s, in terms of 01, and substitution of this modified equation into
Equation 5.3 and Equation 5.4 provides the full set of splitting and stabilization errors:

o o)L - o]

[ (I— A7) GAp™*2

+ (Ll — D7~'3G)Apn+% + (L2 — D%QG‘)pn_%

(5.12)

The error appearing in the momentum equation is due to splitting and generally can be repaired by
non-linear iteration, although ideally single iteration methods are desired (as shown).
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Again it is emphasized that for approximate projection methods, Ly # D72 G, whereas for exact
projection methods, which are usually based on staggering velocity and pressure, Ly = D72 G and
there is no stabilization error (as there is no need to provide stabilization). Frequently, the stabilization
terms within Equation s.4 are included in a modified provisional velocity (cf. [146]), i.e.,

u=u-+7 Gpn_%, that can often hide the true role of stabilization.

A similar analysis for pressure free projection methods (cf. [147]) can be carried out, in which case
the equations solved are given by,

Aad = f—-Au", (5.13)
—LiA¢"™ = —Du+Li¢" + b, (5-14)
"t = a-— 7~'1G¢n+1, (5.15)

with errors,
AG][ut ] [f N —A7Go 4 Gpita (5.16)
D o pn+1/2 | b (Ll _ D7~'1G) ¢n+1 : 5-1

The error term in the continuity equation is retained to emphasize that this algorithm can be considered
in the context of an approximate projection method. Assuming that the Laplacian and gradient
operators commute, it is necessary to compute p"t1/2 = A73¢" ! to obtain the second-order pressure

field, while the relationship p”+% = ¢"™! will result in a first-order pressure field with splitting error
(I — Am)Gp™*2 ([148]).

Although the above set of algorithms have been written in terms of a two step scheme, i.e., predict G
and correct G by the appropriately scaled scalar gradient, non-linear iterations can also be taken. In this
case, the ¢" "1 and u™*! state are replaced with the £ + 1 state, whereas the n + % pressure state is
replaced by the k& + 1 state. For the residual form, the n'" state is replaced with the current iterate, k"

- . 1 1
state. At convergence within the time step, ¢" ™! = ¢FT1, u" ™ = uF*! and pte = pFta.

5.1.1.1. CVFEM operators

SIERR A/Fuego uses the finite volume technique known as the control volume finite element method
of [149]. Control volumes (the mesh dual) are constructed about the nodes, as shown in Fig. 5.0-1. Each
element contains a set of subfaces that define control-volume surfaces. The subfaces consist of line
segments (2-D) or surfaces (3-D). The 2-D segments are connected between the element centroid and
the edge centroids. The 3-D surfaces are connected between the element centroid, the element face
centroids, and the edge centroids. Integration points also exist within the subcontrol volume centroids.
Such integration points are used for volume integrals such as source terms, the mass matrix, and, if
chosen, gradients.

Defining ¢ i to be the value of ¢ at node K, then the variation of ¢ within an element that contains the
point location x is given by

¢(x) = Y Ni(x)¢x, (5.17)

KeN

where Ny (x) is the shape function associated with node K at position x, and Vs the set of all nodes
that defines the element. For the CVFEM, either trilinear (3-D) or bilinear (2-D) shape functions are
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used. Currently, Fuego supports heterogeneous element topologies consisting of hex, tet, pyramid, and
wedges.

The discrete nodal gradient operator for direction 7 can be written as a surface integral on control
volume L,

G / (b dnz (Z NK(XQ>¢K> ni(Xa)AAom (5'18)
acB;, \KeN

where By, is the set of surface integration points for control volume L. Similarly, the discrete divergence
operator at node L acting on vector u; is

Du = (Du;) = / p(x)u;(x)dn; ~ Z p(x4) < Z NK(xa)uKi> ni(Xa ) AAq, (5.19)
I'p aEBy, KeN

and the Laplacian operator that includes spatially varying timescale, 7, is

0 ONk (X,
Lo = (Lo = [ 7652y~ 3 7(x) ( > %w) my(x)AA  (520)
Iy xj 'T]
a€BL, KeN
Note that an alternative to the gradient operator given in Equation 5.18, which is provided via the

CVFEM is
ONk (x4
Go=(Go)u = | ax P~y (Z gx" )qbK) Vo, (s:21)

o’€By, KeN

where By, is now the set of all subcontrol volume integration points for control volume L (for clarity, o
denotes the subcontrol volume integration point location).

The general term D7G¢ deserves a special note in the case of variable density flows. Specifically, the
interpolation is currently provided by the following equation:

DEG = 3 plxa)Z X“) (Z Nﬂx@%) ni(%4) DA, (5.22)
aEBy, Xa KeN L
- Z 7i(Xa) (Z NK(Xa)%> ni(Xe)AAq. (5-23)
a€By, KeN K

5.2. SMOOTHING ALGORITHMS DEFINED

Now that the smoothing and splitting errors have been formally defined, it is useful to consider three
projection algorithms that have been implemented and verified within SIERR A/Fuego in the context
of the classic two equation k-e model, with steady method of manufactured solutions (MMS)

(cf. [150]).
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5.2.0.1. Fourth-order smoothing with characteristic or time step scaling

In this algorithm, the projection time scales are defined by either

T=T1=T2=T3= Tehar, (5-24)
or

T=1 =7 =13 =IAL (5:25)

Here, characteristic scaling, 7¢pqr, is a diagonal matrix that represents a time scale based on convection
and diftusion contributions, while for time step scaling, the time scale is based on the local time step.
The characteristic scaling very closely follows the standard finite element method stabilization
parameter.

The smoothing and splitting errors are now given by

[A G] [unﬂ } B [f } ., [ (1= AF)G(pr+S — pr i)

Of particular interest to this research is the role of the stabilization term, (L, — D7G) p”+%, on formal
time accuracy when 7 = IA¢ (a scheme that has been shown to display more appealing stability
characteristics). Clearly, a scheme that uses explicit pressure stabilization with time step scaling is
first-order accurate. Expanding this stabilization term shows the fourth-order pressure derivative scaled
by a length scale cubed. Therefore, by refining the time step and mesh, one might be able to show a
second-order accuracy for sufficiently resolved meshes.

In practice, the stabilization terms are carried within the mass flow rate that forms part of the right-hand
side of the Pressure Poisson Equation solve and the convection term for the transport of any scalar field.
The mass flow rate is defined as

Gt
ik — (,Bﬁ n % . ?vhp“%) dA, (5.27)
where the introduction of the over bar is noted to represent interpolation of a nodal field to an
integration point. Note that in the bulk of the collocated unstructured finite volume literature, the
form of the mass flow rate defines the stabilization (the difference between the nodal gradient operator
G and the interior element operator V"*). Above we note the independent interpolation of the density
and velocity rather than o, as is done in Stanford’s ASC Alliance code CDP. It does seem that the full
interpolation of pt may be more consistent, although the effect of this algorithmic detail has not been

explored.

5.2.0.2. Stabilized smoothing

The stabilized projection algorithm is based on the work of [138], that was derived from the monolithic
scheme of [137]. In this algorithm, the projection time scales are defined as

1 = AL+ Tohar- (5.28)
Ty = Tehar- (5.29)
T3 = Tchar- (5-30)
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With the above definitions, the smoothing and splitting errors are now defined as

AG][u] [f N (I — ATopar)G(p"tz — p=2) (30
D o][ptz] |b (Lrgpae — D7uar G)p™t2 + AtL(pnts —pr=3) |© 07

Tchar

The mass flow rate now includes an additional stabilization factor and is now defined as

n—1
mk _ (ﬁﬁ—l— TG‘p/ 2 _ ?Vhanr% _ AtLApn—i-%) dA. (5.32)

Note that at full convergence, the stabilized scheme reduces to the fourth-order characteristic scaling
algorithm.

5.2.0.3. Second-order smoothing with characteristic or time step scaling
In fact, the scaled nodal gradient need not be included in the mass flow rate equation, e.g.,
mk = <pﬁ — ?Vhp“%) dA. (5-33)

This is equivalent to neglecting the 7> Gp”_% term in Equation 5.4, or by defining it = 1.

The smoothing for this algorithm is provided by the local Laplacian operator. The smoothing and
splitting errors for this method are now given by

A Gl[ut T[] [@- A7)G(prTz — pr2) (63)
D o][pt/?] b (L, — D7FG)Ap™*2 + L, p" >
5.2.0.4. Zeroth-order smoothing with time step or characteristic scaling
Certainly, the pressure smoothing can be removed, i.e., 7 = 0, that leads to the following set of
errors,
A G|[ut f (I— AF)G(p"tz —p*2)
nil | = + N il 1 (535)
D o0 pit2 b (LT — DTG)(p 2 —p 2)

where 7 is either the characteristic scale, T4y, Or the simulation time step, IA¢ (with 7 = 73).
Although the converged error is zero, this lack of smoothing can lead to a decoupled pressure field in
certain flows.

Here, the mass flow rate reduces to a simple interpolation of nodal velocities within the element

ik = (pﬁ . ?vmpn%) dA. (5.36)

The unsmoothed algorithm is very similar to the staggered formulation of SIMPLE, (cf. [128]), with
T=A, ! (the inverse of the diagonal matrix from operator A). However, by design, the staggered mesh
arrangement holds the property that (L, — D7G) = 0. In this method, no stabilization is added as
none is required.
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5.2.0.5. Time integration scheme

At present, three time integration schemes are supported in the code base that include: 1) first-order
backward Euler, 2) second-order BDF2 and, 3), the Crank-Nicholson method described in [151].

The general two- and three-state scheme time derivatives are simply written as:

9p¢ 11 _ / (Y1 p" TP o p" ™ + ap" ")

where ; represent the appropriate factors for either Backward Euler or a three-point BDF2 scheme.
The above time derivative is either nodally lumped or evaluated at the subcontrol volume quadrature
points. For a two-state backward Euler scheme, 71 is unity while ~y, is negative unity. For a given variable
time step, the BDF2 factors are,

T o= AtN/ANTL (5-38)
gl % (5-39)
2 = (1+7) (5-40)
V3 = (1127) - (5-41)
For a fixed time step, the y-factors reduce to the canocical (%, -2, %) set.

In the Crank-Nicholson implementation, the generalized method is written as

o n+1 nt+l _ In oo™
a—f ZH%JFQ—U)&—? ; (5-42)

where 1) is a blending coefficient between 1 and 2. Values of 1) of unity result in first-order backward
Euler, while values of 2 result in second order Crank-Nicholson, i.e.,

09" _ (et —¢n) 09"

ot N (5-43)
A linearization is given by
ot At ot '’ 44

where the old time derivative is computed based on the old solution of the partial differential equation
of interest. The above algorithm is especially useful in that it avoids the need to evaluate complex
right-hand side source terms at the n+1 and n state, e.g., simulations that include the need to compute
turbulence production, reaction rate terms, etc.
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5.2.0.6. Variable density

In the case of variable density, the same set of options exists in the code. Specifically, the time derivative
is written as (for backward Euler or BDF2),

dp (P + y2p™ + 3" )
Lav = A .
[ v | 2t (5.45)

For the Crank/Nicolson scheme, the full time term is

Y e Opg”
sk 1— )22 46
T n 7 +(1—mn) 5 (5.46)
where it is noted that the full time derivative at n*" state is saved. The linearization is given by
ap¢n+1 pk¢k_pn¢n ap¢n
A R P e .
5 [N + (1 —mn) T (5.47)

In practice, the usage of the above formula for a second-order density derivative has proven unstable. As
such, 7 is set to unity.

5.3. DISCRETE SYSTEM OF EQUATIONS

The full approximate pressure projection scheme for non-uniform density is now written as

—LopAp™t: = —Dp(i;) — Lnp* + (L — DHG)p* +0, (5.49)
uptt = g — %GLiApTH_%- (5-50)

The variable —7; is the residual that includes body source terms, pressure gradient, the non-symmetric
part of the viscous stress term, T7'#u%, parts of the time term and the left-hand side set of operators
acting on the uf state,

—ri = —nMpu; — Cp(m")uf + Tp;Auf + TPt + Spi — (1 — ) Mg (pul) — Grip™ 2. (5.51)
The mass matrix, M ’L“Aﬁi, is defined by
k
MIEAQZ = Z (Z NK(XO/)%> (Z NK(Xa/)A’LALKz‘> dVa/. (5.52.)
o’'eBp, \KeN KeN

The shape function above, Nk (x,), is frequently evaluated at X/, the coordinates of the vertex
associated with the transport equation, i.e., the case where a lumped mass matrix is used.
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For simplicity, the central difference operator is provided in C'r; At; as

CLAG; = Z m]; (Z NK(XQ)AﬁKi> . (5.53)

a€EBL KeN

In the preceding equation, the mass flow rate has been linearized within the iteration step and may or
may not include the explicit stabilization terms. Moreover, the shape function operator, Nk (X, ), may
be evaluated at the edge midpoints to retain the skew symmetric aspect of the operator C,. By default,
this term is evaluated at the subcontrol surface integration points, which retains the CVFEM canonical
27-point stencil.

The symmetric part of the stress tensor is given by

Tru; = Z (Z NK(Xa)MK) <Z CUV;(—:SCJ&KZ> n;(Xa)AAq, (5-54)

acBr, \KeN KeN

while the non-symmetric stress tensor is given by

T = Y (Z NK<xa>uK) (Z ‘”Vg—(x)K) (%) A (555

aeBp, \KeN KeN
2 dNx (X,
-y (Z NK<xa>uK> (Z %@;) Bipmp(Xa) A Ao,
a€Br, \KeN KeN p

Note that the nodal pressure gradient at node L for control volume L for direction ¢ is defined by
Equation 5.18. The operator, St;, contains the gravitational term as well as the [potentially] subtracted
out hydrostatic term,

Sui= Y (Z Nx (%a) (P = /)mf)> gidVey. (5-56)
o’eBy, KeN
The old time term contribution, M, (pi;"), is defined by

My (pu;") = Z <Z NK<Xa’)pKuKin) dVy. (557)

o’eBy, KeN

Again, o/ € By, is the set of all subcontrol volume integration points for control volume L, o/ € By, is
the set of all subcontrol surface integration points for control volume L, and K € N is the set of all
nodes within the element.

5.3.0.1. Predictor

In general, there are a number of predictors that are supported. The easiest predictor is a simple
g p pp p p
predictor in which the old value is mapped into the current iterate. Predictors that incorporate old time
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derivatives include the forward Euler and Adams-Bashforth methods, e.g.,

Pttt = ¢, ' (5-58)
= "+ Atg", (5-59)

A n A n ) A n
= (2 )P ) (560

5.3.1. Upwind Interpolation for Convection

We currently support several upwind interpolations for convection. The upwind methods are blended
with a centered scheme that becomes dominant below a specified cell-Peclet number.

5.3.1.1.  First Order Upwind

The first scheme is a simple first-order scheme that considers the two nodes adjacent to a control volume
face and extrapolates from the node in the upwind direction.

0B = 3 (1 + 1]} 61+ 5 (07— i) 6 (561

The convention is that flow leaves the control volume to the left (L) and enters the control volume to
the right (R). If the mass flow rate at the face is negative in value, then the node to the right will be
selected.

5.3.1.2. Blending Function

The user specified upwind factor controls the blending between the pure upwind operator and a
blended user-chosen upwind/central operator.

ma = nmaupw + (1 - 77) (Xmaupww + (1 - X) macen) ) (562‘)

where 1) is the user specified first order upwind factor and aupwsp represents the user specified upwind
operator, e.g., MUSCL, modified skew upwind, and even pure upwind.

The centered average of ¢ is computed from the shape functions, so it is based on all nodes in an
element. The shape functions are evaluated at the sub-face centroid. The cell-Peclet number, Pea,, is
used in the blending function (see Figure 5.3-1)

y = (¢Peax)”

" 5+ (CPeay)? (563)

The hybrid upwind factor, ¢, allows one to modify the functional blending function; values of unity
result in the normal blending function response in Figure s.3-1; values of zero yield a pure central
operator, i.e., blending function = o.0; values >> 1 result in a blending function value of unity, i.e.,
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pure upwind. The constant A is implemented as above with a value of 5. This value can not be changed

via the input file.
The cell-Peclet number is computed for each sub-face in the element from the two adjacent left (L) and

right (R) nodes.
% (upi +ur;) (Tri — L)
PeAm — ) 7V ) k) (5'64)

A dot-product is implied by repeated indices.

1.0 i T I ety
c 0.8 + /// i
.9 ;S
e /
S 0ol
IE 0.6 | // ,
o)) rl - A = 5
c I’ --------------- A = 2
= 04 i
T JE Y -
= | A=1
o
0.2 //':; F(z) = zz/(A . zz) ,
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Figure 5.3-1.. Cell-Peclet number blending function.

5.3.1.3. Modified Linear Profile Skew Upwind

Modified linear profile skew upwinding is a simplification to the skew upwinding approach in the
FIELDS scheme [132, 133]. We omit the physical advection correction terms. Integration point values at
control volume subfaces are interpolated from upwind intersection points on the element face. In the
original skew upwind scheme, the intersection point could either be interior subface or element faces.
The interpolation coefficients were computed by inverting a matrix relation between integration point
values and nodal values. The linear profile skew upwinding does not use interior subface intersections —
only element face intersections. The modified scheme throws out nodes on an element face that are

downwind of an interior subface as shown in Figure 5.3-2.

5.3.1.4. MUSCL

The MUSCL approach (see Chap. 21 of Hirsch [152]) for higher order upwinding is adapted to
unstructured meshes. The upwind interpolation is constructed along each edge of an element. The
interpolation makes use of the two end nodes of the edge and the centered gradient constructed at the
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Figure 5.3-2.. Linear profile skew upwind scheme: a) all nodes
on the intersected element face are upwind of the subface, b)
omit nodes on intersected element face that are downwind of
the subface.

two end nodes. The MUSCL approach constructs an interpolation in one dimension from four (or
more) uniformly distributed nodal values. The two edge nodes are ¢; and ¢; 1. The two other nodal
values, ¢;_; and ¢; 19, are interpolated from the unstructured mesh using the nodal gradient
information.

The MUSCL scheme constructs left and right interpolants at the subface of the control volume.
Without the limiter functions, the interpolation is

fap = 0 47 10— R (0= 6) + (L4 8) (6 — 00 (565
g—l/Q = Qit1— i [(1+ &) (Pir1 — &) + (1 = K) (dir2 — Pit1)] (5.66)

where the (i 4+ 1/2) location is between node ¢ and node 7 4 1. On a uniform mesh, x = 1/3 gives a
third-order scheme. A second-order upwind scheme is recovered with k = —1 and a centered scheme is
recovered with Kk = 1.

Limiter functions are introduced to prevent numerical oscillations from occurring.

o = o +1]0-me (L) 0+ 14000 6 00| 667

rL

e = der— 1 |(1+0) () s = 00+ (L= 0@ () (02— 00)] 58)
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where

L i — ¢i
= ——, (5-69)
Giv1 — @i
R Q2 — Diq1
i1 — Di
The limiters are selected to be symmetric such that
1
O (r)=rd (;) ) (5.71)
The limited interpolation functions are
7L 1 L
i1 = it 5(1) (7“ ) (Gix1 — i), (5.72)
- 1
¢fi1/2 = Qit1— 5@ (TR) (¢i+1 - ¢z‘) . (5.73)
The interpolation for the points off the element edge is
(¢z‘ - <Z5z‘—1) = 2V¢iﬁl’z‘+1/2 - (¢i+1 - ¢z‘) ) (5.74)
(¢i+2 - ¢i+1) = 2V¢i+1A$z‘+1/2 - (¢z’+1 - ¢i) ) (5-75)

where Ax; 1/ = 741 — x; is the distance vector along the element edge. Symmetric limiter functions
are:

T+ ||
VanLeer :  ®(r) = : 6
anLeer (r) ] (5.76)
VanAlbada :  &(r) = L H7 (5.77)
n - N=1e 5.77
superbee : ®(r) = max(0, min(2r, 1), min(r, 2)). (5.78)

5.3.1.5. Convection at an Inflow and Outflow Boundary

At an open boundary, the first-order and LPS upwind schemes only make use of information on the
boundary.

For the MUSCL scheme with the flow leaving the domain at node 7, the usual flux limiters are not used.
The slopes are compared between (¢; — ¢;_1) and (¢;—1 — ¢;_2). If the slopes are the same sign, the
unlimited second order upwinding is used. If the slopes are different, then a local interpolation is used.
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Estimate the slope (¢;—1 — ¢i—2) = 2AxV ¢y — (¢ — ¢i—1), where Az; = x; — x;_; is the distance
vector along the element edge. For slopes of the same sign, use a second-order scheme,

- 1
¢¢L = ¢; + B (Vi 1Az — (di — 9i-1)) 555, (5.79)

else, use a first-order scheme, .
OF = ¢ — 3 (i — di1)] - (5-80)

The boundary is the left (L) side. If the flow enters the domain, then use the local value of ¢;.

5.3.1.6. Nonlinear stabilization operator

The “nonlinear stability operator” (NSO) in Fuego is an artifical viscosity method where the added
diffusivity is based on a scaled, pointwise evaluated residual. For a dual volume (£2,,), associated with a
node n, the weak form of the NSO for a scalar variable ¢ is

g . Oxt Oxd
/m v(R) (0piq) g dS;, where g” = 6F 9k (5.81)

where v depends on the evalaution of a local residual R and the gradient of ¢ as

RQ
Gxig OzI

The local residual can be taken, similar to Shakib[153] but in an incompressible context, as the full
residual of the PDE. For a conserved scalar,g, with diftusivity I', R would be

R= [(Time)p + (Adv.),, — (Diﬂ“.)pp] q, (5.83)

with discrete operators representing the individual terms of the advection-diffusion equation. For an
equation with a source term, it would also need appear in the local residual calculation. Another
possibility for choosing /2 would be based on the error of performing the chain-rule on the advection
operator.

R =G (pu'q) — [T (pu') Gig + (Ig) Gi (o)) (5-84)
where G and T represent interpolation and gradients evaluated at an integration point. Both options are

available in Fuego.

The NSO computed from such residuals can add an unnecessarily large amount of dissipation in some
cases. For this reason, we limit the NSO coefficient to the upwind value as

v = min (V(R), 1—10 (pw)' gij (pu)’ ) : (5-85)

-1 . . o .
where g;; = [¢¥] . Additionally, as it’s based on the mesh discretization error, the NSO coefficient
tends to vary strongly on short length scales. For numerical robustness, we average the NSO viscosity
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over control volumes, and then interpolate back to the subcontrol surfaces to evaluate the diffusion
term; that is,
I il
" g™
This operation effectively smooths the NSO viscosity over a patch of elements. The nonlinear
stabilization viscosity is not included at the boundaries.

(5-86)

5.3.2. Variable Density

The discretization of the time derivative requires special attention for variable density flows. The
density time-derivative in the continuity equation must be predicted in a continuous manner. The
density at the new time level in the convection terms and the transport equation time terms must also

be predicted.

The transport equations are solved in conservative form, so density appears in the time derivative. With
a segregated solution strategy, the density at the new time level is not available until the transport
equations have been solved once. A density predictor is required. A generic time term is written as

ap¢ pn+1¢n+l _ pn¢n n¢n+1 _ (bn il
ot At Sl VA

pr—p"
At

(5-87)

There are two approaches to estimating the new density. The simplest approach is to use the most
recent value. The other approach is to use a density predictor. The predicted value of density at the new
time level, p*, is computed from the old density and the current density time derivative. Introduce the
nodal variable T for the discrete density time-derivative such that

S i
At
pr=p"+ AT (5.89)

The density derivative, T*, is always updated at the bottom of the transport equation loop after a new
set of temperatures and mass fractions is available. The two approaches are different for the first
nonlinear sub-iteration within a time step, but yield equivalent values upon subsequent sub-iterations.
The new density is also computed at the bottom of the equation loop. This value is ignored upon
subsequent sub-iterations if using the density predictor. But, this new density value will get copied to
the old time level when the time step is advanced. It is important to note that this new “old” velocity is
not consistent with the density that was used in the old transport equations, but it seems critical to the
success of this approach to do so.

For the first nonlinear iteration within a time step, the effect of the density at the new time level is
predicted by carrying forward the best approximation of the density time-derivative from the last time
step. The continuity equation is implemented as

/T*dV+ /p*u_i"JrlnidS =0, (5.90)
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where the density time-derivative is the most recent value and the density in the convection is estimated
in the same manner as the transport equations. The density time-derivative, T, must be stored as a
persistent nodal variable in order to have a good estimate for the continuity equation from step to

step.

5.3.3. Open Boundary Conditions

Open boundary conditions are used for boundaries where the flow can go either in or out. The
direction of the flow is determined by the local force balance. In this documentation, the open
boundary condition is also referred to as the outflow boundary condition. There are two parts to the
outflow boundary condition. The first part concerns computing a velocity field that satisfies continuity.
The second part concerns selecting the proper convected scalar value depending if the flow is in or out
of the domain. Control volume balances are implemented at open boundaries for continuity,
momentum, and the other transport equations.

® : ®

: ds

X =X

. Pss Pfc
____________ e
® ' ®

Figure 5.3-3.. Boundary mass flux integration locations.

A fixed pressure value is specified for the continuity and momentum equations. The nodal values of
pressure on the boundary are allowed to float. A mass flux condition is formulated at the boundary in
order to drive the boundary pressures towards the specified boundary pressure and to provide a
boundary mass flow rate for the other transport equations. The form of the boundary mass flux is
similar to the pressure-stabilized interior mass fluxes (see section 5.1). The equation for the mass flux ata
boundary face, shown in Figure 5.3-3, is

Mpe = put'n;dS (s-91)

7
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and the interpolation formula for a single velocity component is

= N g (SN G () 5 ) o (- e
be be

(5.92)
The upper case velocities, U;, are nodal velocities, while the lower case velocity, , is the boundary
velocity. The average pressure, P, is computed at the opposing subface centroid and evaluated at the
new time level, n + 1. The boundary pressure, Py, is evaluated at the boundary subface centroid and is
the “specified” pressure. The operator, G5, is the discrete gradient operator for node . In the case of the
semi-discrete formulation, the last term is dropped in Equation 5.92 and f = 1.

The nodal pressure gradient is required for the momentum balance and the boundary mass flux
formulation. The nodal pressure gradient is constructed by a discrete Gauss divergence relation over the
control volumes. The pressure at most control volume subfaces is interpolated from the nodes of the
parent element, even over inflow, wall, and symmetry boundaries. For outflow boundaries, the specified
boundary pressure, Pr,, is used.

Nodal velocities on open boundaries are corrected with the projection.

On pressure-specified open boundaries, the flow will sometimes exit and reenter the domain through
some sort of entrainment process. The process will look non-physical and is due to the artificially
imposed constant pressure. A method of counteracting the reentrance problem is to turn off the
convection terms in the momentum equations for control-volume subfaces which have reentrant flow.
This condition is optional and can be set on a side-set basis.

If the flow is entrained into the domain, then far-field values must be specified for the scalar variables.

5.4. SEGREGATED SOLUTION PROCEDURE

The time integration method is a two-level, backward Euler scheme, requiring data at two time states.
The discrete form of the nonlinear equations is

¢n+1 ¢n

A F (o™, 0"). (5.93)

Sub-iteration is required within the time step to satisfy the nonlinearities. Over one sub-iteration, the
nonlinear equations are solved in a segregated manner. Each segregated equation set is linearized and
solved as a linear problem. During the nonlinear iteration process, a temporary variable may be
introduced to differentiate the old guess at the state (n+1) from the new guess at the state (n+1). A
temporary variable (*) is introduced to hold the new estimate of the state (n+1). The temporary variable
is typically only used in describing the algorithm. Functionally, the (*) variables and (n-+1) variables are
usually represented by the same array within the code. The only time a temporary variable would be
used in the code is if the momentum equations were segregated or if the species diffusion velocities were
not pre-computed.
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Within the transport equations, the convection terms are linearized by freezing the mass flux (density *
velocity * area).

The SIERR A framework provides services to manage the state data between the two time levels. The
SIERR A framework services are insufficient because they only swap pointers. The result of the swap is
that the estimate of the new solution at time (n+1) uses the solution at (n-1) instead of (n), which is too
far away. After the pointer-swap, the SIERR A/Fuego code additionally copies forward the solution at
(n) into the initial guess at (n+1). The array-copy occurs only at the beginning of the sub-iteration
process. The SIERR A/Fuego code also manages the updating between (*) and (n+1) for the delta-form
of the linear system.

The material properties are evaluated at the top of a nonlinear sub-iteration. Density is a STATE
property since it has a time derivative in the continuity equation if properties are variable. Density will
always be treated as a state variable, even if it is constant. All other properties are treated as
TEMPORARY variables. The general workset algorithm that computes properties evaluates them at
the most recent guess of the (n+1) state. There is an additional workset algorithm that evaluates state
properties at both state (n) and (n+1). The state property evaluation is only performed during the
initialization phase. All material properties are evaluated at the nodes. Sub-face and sub-volume values
are averaged using the element shape functions.

A linear solve is performed for each equation set within a nonlinear sub-iteration. There is a solver
object associated with each equation set within the SIERR A framework. The solver object contains the
matrix connectivity and manages the assembly of the matrix components. There will be ten solver
objects for the full turbulent combustion mechanics (the species equations all use the same solver
object). There will also be ten repeated sets of connectivity information.

The ordering of the segregated equations during one nonlinear iteration is given in the following list.
Reduced equation sets for simplified mechanics maintain the same relative ordering.

1. evaluate material properties using the most recent estimate of temperature and composition
2. evaluate turbulent eddy viscosity if turbulent

3. evaluate combustion model species production rates

4. evaluate soot model production rates

5. evaluate gas and soot absorptivity for radiation model

6. solve x-momentum equation, store new predicted x-velocity until all momentum equations have
been evaluated

7. solve y-momentum equation, store new predicted y-velocity until all momentum equations have
been evaluated

8. solve z-momentum equation, store new predicted z-velocity until all momentum equations have
been evaluated

9. update predicted velocities
10. solve continuity equation using predicted velocities, update new pressure
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II.

I2.

13.

4.

Is.

16.

I7.

18.

19.
20.

21.

22.

23.

update new mass fluxes at all control volume sub-faces, including boundaries, and use in
subsequent transport equations

perform the velocity projection and correct all nodal velocities
assemble turbulence friction velocity

solve the turbulent kinetic energy equation if turbulent, store turbulent kinetic energy until
turbulence dissipation equation is solved so that the production and dissipation source terms can

be properly linearized

solve the turbulence dissipation equation if turbulent, update the turbulent kinetic energy and
turbulence dissipation

solve the enthalpy equation
* laminar: solve for temperature
* turbulent: solve for enthalpy

solve each species equation, do not update species mass fractions until all species equations have
been solved

solve the soot equation, store soot mass fraction until soot nuclei equation is solved
solve the soot nuclei equation, update soot mass fraction and soot nuclei mass fraction
compute Nth species mass fraction using summation rule
update temperature or enthalpy at new time level

* laminar: compute enthalpy

* turbulent: extract temperature
extract temperature from enthalpy if laminar

compute new density and time derivative of density

This procedure is repeated within a time step until the desired level of nonlinear equation convergence
is achieved.

5.5.

DISCRETE TRANSPORT EQUATIONS

The discrete form of the linearized equations are presented in this section. The nonlinear solution
q
procedure consists of repeated approximate Newton linearizations and linear solves of the discrete

equation,

Adp =b. (5-94)

234



The matrix A is based on an approximate linearization of F' from Equation s5.93 about a predicted value
o, o
1 OF
“ AL 30| (5.95)

The right-hand side, b, of the linearized equation represents the residual of the nonlinear equation,

b=F(¢",¢") - % (5.96)
If the nonlinear equation is converged, the right-hand side will be zero. The linear equations are solved
in delta-form. The solution vector consists of the change in the unknown rather than the new value of
the unknown.

There are four solution states in the nonlinear solver algorithm. The time level n is the old time level.
The state * represents predicted values at the new time level before the linear solve. The state **
represents the values after the linear solve. The time level (n + 1) is the new time level. Within the
nonlinear iteration cycle, values at the new time level (n + 1) are copied to the predicted level * before
the next iteration.

There are three stages to the assembly of the matrix that result from the linearization. The first stage is
the assembly of element contributions. The elements contain control-volume sub-faces that are internal
to the mesh. The second state is the assembly of flux boundary conditions. The flux boundary
conditions contribute to the control-volume sub-faces on the boundary of the mesh. The flux
boundary condition contributions are full element contributions because they may involve both
boundary and interior nodes. The third stage is the enforcement of Dirichlet boundary conditions.

The element matrix contributions are processed by first evaluating surface integral fluxes at sub-faces
and then evaluating volume integral terms at sub-volumes. The flux is evaluate at a sub-face and then
added or subtracted from the two adjacent control-volumes. The sub-face area components are
constructed such that the face normal direction points from the left adjacent node to the right adjacent
node. Fluxes are subtracted from the left node (L) and added to the right node (R). The left and right
adjacent nodes for a give sub-face number within an element are given in Tables 5.8-8, 5.8-13,

and 5.8-18.

The linearization of each transport equation can be broken into contributions from the time term,
convection, diffusion, and sources.

A = A4 A+ AY 4 A (5.97)
b = b+ b+ b b (5.98)

The linear system is assembled on an element-by-element basis. Each element contributes and N x N
element matrix where [V is the number of nodes in the element. The nodal contribution from node J
for the control volume about node I is A; ;. Nodal variables in the following discussion are symbolized
by capital letters. Linear averages of variables at face k are

pe = Y Nyl (5.99)
7

o= Y Nl (s100)
7
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The density predictor (see Section s.3.2) may be used to compute the density at the new time level for
the time derivative term.

The convection operator for a face 7 is C; ; and is described in Section s.3.1.

Gradients of variables at face k are:

pxIZ%k 7 Py = ZaNJkPJ pzzzaé\fk 7 (s.101)
J 7

um:;%kUJ Uy = ZaNJkUJ uZ:;G;ZJkUJ (5.102)

—Zaé\;’k vy = EjjaN“’ka szEjﬁ%kVJ (5.103)

wy = Z}: % kWJ w, = Z aNJ ) W; w, = % kWJ (5-104)

tx—;%kn t, = ZaN"kTJ tz—;%k% (5.105)

5.5.1. Positive-Flow Convention and Integration Quadrature

The sign on a flux integral is defined such that flow into a control volume is positive and flow out of a
control volume is negative. The equations are assembled into the implicit matrix and right-hand side
such that the time derivative contribution of an unknown is positive. In reference to the model
differential equation, Equation 5.93, any implicit terms that contribute to the control volume balance,
F(¢), in a positive sense must be moved to the implicit left-hand side, switching signs.

The control volume balance is assembled on an element-by-element basis. Each element contributes
terms from fluxes over its internal sub-control volume faces and volumetric terms from its internal
sub-control volumes. A flux is computed for each sub-control volume face. The flux contribution is
then summed into the two adjacent control volumes, adjusting the sign according to whether the flux is
in or out of the control volume. The convention is that the sub-face normal direction between two
adjacent control volumes is positive from the lower local sub-volume number to the higher sub-volume
number in a local node numbering sense. The consistent treatment of fluxes is a requirement for
conservation. Each sub-control volume face is numbered the same as the element edge number. The
two adjacent control volumes for each edge number are given in Tables 5.8-8, 5.8-13, and 5.8-18 for
different element types.

The elemental flux contributions are assembled into a global control volume matrix. Each control
volume balance is written in terms of coeflicients multiplying the surrounding nodal values. In terms of
matrix terminology for two-dimensional elements, the matrix coefficient for Node s of Figure 5.0-1,
associated with the control volume center, is the diagonal term and should be positive. All other nodal
coefhicients for the control volume balance are the off-diagonal terms and complete one row of a global
flux-balance matrix.
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The control volume flux integrals are evaluated using numerical quadrature. The integral term for each
control volume sub-face and sub-volume is evaluated using a single quadrature point. The number of
quadrature points for the surface fluxes in an element is equivalent to the number of sub-faces. For
example, a quadrilateral element will have four sub-face quadratures and four sub-volume quadratures.
A hexahedral element will have twelve sub-face quadratures and eight sub-volume quadratures.

In three-dimensional elements, the control-volume sub-faces may not be planar. Care must be taken to
conserve surface area over a control-volume to prevent non-physical sources and sinks. The sub-faces in
a three-dimensional element are defined by bilinear surfaces and the discrete surface area differential is
also a bilinear function. Since the quadrature for a bilinear function is exact if evaluated at the
mid-point, the current quadrature strategy will ensure surface area conservation.

The quadrature coefficients are customarily derived such that the integration ranges from —1to 1,s0a
mapping is required to quadrature space.

b a1 B
[ e = 5 [ 1 (5100)
(5.107)
§ = b;aer;ag (5.108)

The integrand is evaluated at discrete points, called Gauss points, and summed using weighting
functions.

1
/_ PO = wr (&) (5.109)

For a one-point quadrature, §; = 0 and w; = 2.

5.5.2. X-Momentum, 3D Laminar Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

AVT
Ai,[ += PITAy (s.110)

bt[ - = (PIUI — p1U; ) Ttl (5.111)

The convection term is computed at each face & and assembled to the left (IL) and right (IR)) control
volumes.

Ay += Ciy (5.112)
A?R,J - = CZ,J (5.113)
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b, —= ZCZ,JU;
J

bir += ZCZ,JU;
7

(5-114)

(5.115)

The viscous stress term is computed at each face & and assembled to the left (IL) and right (IR)) control
volumes. Only the solenoidal part of the stress term is used for the matrix. The stress term may or may

not include the molecular viscosity, depending on the user specified model.

ONy 0Ny ON;
Fr, = _Hk<WkAx+8_ykAy+WkAz)

A?L,J += FrJ
ACIZR,J = Iy

Tex = Mk (u; + u;';)

Ty = (U +0))

Toe = e (uf +wy)

fr = = (TwaAs + TayAy + 702 AL)

bCIiL —= Jr

bl += [

The pressure is assembled in the form of a volume integral. The pressure gradients have been

pre-computed at nodes use a surface-integral approximation.

OP|*
- = 2 AV,
I oz |, !

5.5.3. Y-Momentum, 3D Laminar Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

LAV
Afr+= PI_AtI
bt] - = (PJVI —piVr ) _AtI
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(5-125)
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The convection term is computed at each face k& and assembled to the left (IL) and right (IR) control

volumes.

c _ *
AL, += Ciy
c o *
Alpy —= Ciy

by, —= ZCZ,JVJ*
J

bip += ZCI:,JVJ*
7

(5.128)
(5.129)

(5-130)

(5.131)

The viscous stress term is computed at each face & and assembled to the left (IL) and right (IR)) control

volumes. Only the solenoidal part of the stress term is used for the matrix.

ON; ON, ONy
Py, = _Mk<%kAm+a_ykAy+WkAz)

AlL, += Fuy
A?R,J —= b

Tye = e (V) +u)

Tyy = Mk (U; + U;)

Ty = Mk (U: + w;)

fr = —(7yds+ 1A, + 7 AL)
b?L —= Ji
bl += [k

The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.

OP|"
B = 2| Ay
I ayl 1
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5.5.4. Z-Momentum, 3D Laminar Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

LAV
A+ = i, tI (5.142)
bt[ - = (pIWI — Wi ) _At] (5.143)

The convection term is computed at each face k and assembled to the left (IL) and right (IR)) control
volumes.

Apy += Ciy (5.144)

A?R,J - = CZ,J (5-145)

by —= ZCZ,JWj (5-146)
J

i += Y Ci,W; (5.147)
7

The viscous stress term is computed at each face k and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

Frg = — <% kAm + a@—]\;] kAy + % kAz) (5.148)
A?LJ += FrJ (5.149)
A?RJ - = Fk,J (5.150)

Too = k(W +ul) (5.151)
Ty = Mk (w; + U;) (5.152)
Too = g (W) +wy) (5.153)

fir = = (Tl +TyAy + 7. A,) (5.154)
b, —= fi (5-155)
Vin += Ji (5.156)
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The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.

OP|*
by —= ———| Alp (5.157)
I 0z I

5.5.5. Buoyancy, Momentum Transport

The body force imposed by the buoyancy term can be constructed in one of three ways.

5.5.5.1. Boussinesq Form

For the Boussinesq approximation, the body force is evaluated at the sub-volume centroid, &, for
sub-volume /.

b— = 9_9 (Z Nyl Ty — To) AV, (5.158)
N\ J

5.5.5.2. Differential Form

For the “differential” form, the hydrostatic component of pressure has been removed. The body force is
evaluated at the control-volume centroid, for sub-volume 1.

bi+ = (p; — po) gAVT (5-159)

5.5.5.3. Full Form

The body force is evaluated at the control-volume centroid, for sub-volume /.

b+ = p1gAV; (5.160)
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5.5.6. Mass Transport — 3D Continuity

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

. . AV
b — = (p; — r}) Ttl (5.161)

The convection term is computed at each face k& and assembled to the left (IL) and right (IR) control
volumes using the Rhie/Chow scheme from Section s.1.

ON; ON; ON;
Fog = —fAt[ —=| Ao+ —=| 4+ ——| A. 16
" d ( oz |, - Ay |, i 9z |, ) (s162)
A?L,J += FrJ (5.163)
A(IiR,J —= Fy (5.164)

U = ZNJ’k Uy+f— 92| TP +/f Uk—ZNJ\JUJ (5.165)
J P VY J
Gio= DNV ST oo e | S DN V) (sa66)
J P VAT J
Wy = ZNJ|kWJ+f_ Z_z _pz) +f<wk_ZNJ|JWJ) (5.167)
J J J J
e = p(upA, v A, + wid.) (5.168)
bip —= 1y, (5.169)
bip += 1y (s.170)

Velocity correction and new mass flow rate.....

5.5.7. Energy, 3D Laminar Transport

The laminar energy equation is linearized with respect to the temperature. The time term is lumped.
The time-term contribution is evaluated for each sub-volume. The density must also be linearized for
stability.

H:\ AV,
At — xevk o1\ = r L .
11T <Plcp,1 Pr T ) AL (5.171)
AV
by — = (p1Hf — piHY) th (5.172)
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The convection term is computed at each face k& and assembled to the left (IL) and right (IR) control
volumes.

Al += OQ;IC;,J (5.173)

A?R,J - = OI?;IO;,J (5.174)

b, —= > Cph'H; (5-175)
7

big += Y Cri'H; (5.176)
7

The heat conduction term is computed at each face k and assembled to the left (IL) and right (IR)
control volumes.

Frg = —kg (%kAx+8a_]\?§]kAy+%kAz) (5-177)
ACIlL,J += FrJ (5-178)
Alp, —= Fiy (5.179)

g = —Fki (t;AI +t, A, + t’;Az) (5.180)
b, —= (5181)
b;lR = @ (5.182)

5.5.8. Temperature, 3D Laminar Transport

The laminar temperature equation is linearized with respect to the temperature. The time term is
lumped. The time-term contribution is evaluated for each sub-volume.

AV,
Ai,[ += PI—AtI (5.183)
v, — = (piT7 — p}I7) Ttl (5.184)

The convection term is computed at each face k& and assembled to the left (IL) and right (IR) control
volumes.
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Ay += GO (s.185)

A?R,J - = C;ZJEI (5.186)

Vi, —= Y Oy (5.187)
J

b <= YOI (5189
J

The heat conduction term is computed at each face k and assembled to the left (IL) and right (IR)
control volumes.

R 8NJ 8NJ 8NJ

F = — —=—= s+ — A —| A, a8
k.7 Cp,k(ax T | YT e, (5189)
A?L,J += Iy (5190)
Alp, —= P (5.191)

Kk * * *
Gp = —— (tIAx + tyAy + tZAZ) (5.192)

Cok

o, —= (5.193)
bW += (5.194)

A correction for variable specific heat is applied as a volume term. The correction is computed at the
centroid of the sub-volume, &, for control volume I.

K
b+ = 5 (teCra + 1,Cpy +1:C,) AV (5.195)
p

5.5.9. Species, 3D Laminar Transport

There is a species equations for each species. The mass fraction is Y, where s is the species number. The
time term is lumped. The time-term contribution is evaluated for each sub-volume.

AVy

A+ = pi——
1,1 Pr At

(5-196)
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btj - = (PIY;,I - PIYS,I) At (5197)
The convection term is computed at each face & and assembled to the left (IL) and right (IR)) control
volumes.

Aq, += Oy (5.198)

b, —= Y Crivy, (5:200)
J

i += > Ciilyy, (5.201)
J

The mass diffusion term is computed at each face & and assembled to the left (IL) and right (IR) control
volumes.

Frg = —ppDsp (% kA:r: + 88_]\;] kAy + % k;AZ) (5.202)
Al += Fuy (5.203)
Alpy —= Fry (5.204)

fr = =Dy (ysiAs +ys; Ay +ysiA.) (5.205)
b, —= Ju (5.206)
bip += Ja (5.207)

5.5.10. X-Momentum, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

LAV
A+ = PIT; (5.208)
bi’ - = (PIUJ —p1U; ) _AtI (5.209)
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The convection term is computed at each face k& and assembled to the left (IL) and right (IR) control
volumes.

Ay += Ciy (5.210)

A?R,J - = C;,J (5.211)

b, —= Y Cr,U; (5.212)
J

bip += ZCZ,JU; (5-213)
7

The viscous stress term is computed at each face k£ and assembled to the left (IL) and right (IR)) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

8NJ aNJ aA]VJ
F = - — A, + —| A — A, .
k,J (/J“k + MT,k) < O i + ay B} Y + Oz i (5 2'14)
ACIILJ += FrJ (5.215)
A?RJ —_ = FkJ (5.216)
Tew = (ke + prg) (ug +up) (5.217)
Tay = ﬂk + k) UZ ) (5.218)
Tee =  (r+ K, k) (uz + wa:) (5.219)
fr = =Ty + ToyAy + 10 AL) (5.220)
b, —= Ju (5.221)
bﬂlR + = fi (5.222)
The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.
OP|"
b; —= —| AV] .
1 ax ; I (S 2’2'3)
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5.5.11. Y-Momentum, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

LAV
Apr+ = IOITtI (5.224)
A AV,
by == (Vi = oIV %, (5.225)

The convection term is computed at each face & and assembled to the left (IL) and right (IR)) control
volumes.

Ay += Gy (5.226)

A?R,J - = C;,J (5227)

Vi —= > CrVi (5.228)
7

bin += ZCZ,JVf (5.229)
7

The viscous stress term is computed at each face k and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

Fs = —<uk+uT,k>(%kAm+aa—]z’kAy+%kAz) (5:230)
ACIlL,J += FrJ (5.231)
A?R,J - = Fk,J (5.232)

Tye = (e + prg) (v + ul) (5233)
Tyy = (W +prg) (U +v ) (5.234)
Tye = (e + prg) (U + wy) (5.235)
fo = = (A + Ty Ay + 7. AL) (5.236)
b, —= fx (5.237)
bin += Ji (5-238)
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The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.

oP|*
b; —= —| AV, 5.239)
I ay ; I (

5.5.12. Z-Momentum, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

LAV
Al += PI AL (5.240)

bt[ - = (/OIWI —piW; ) Ttl (5.241)

The convection term is computed at each face k and assembled to the left (IL) and right (IR) control
volumes.

Apy += Cry (5.242)

A?R,J - = CZ,J (5.243)

b, —= > Ci,W; (5:244)
7

bin += ZCZ,JWj (5-245)
7

The viscous stress term is computed at each face k and assembled to the left (IL) and right (IR)) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

3NJ aNJ a]\[J
F = - —| A+ —| A — 1 A, 246
k,J (/Lk =+ /’LTJC) < o i + ay } Y + Oz i (5 24 )
ACIlL,J += Fiy (5.247)
A§R7J - = Fk:,J (5248)
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Too = (i + prr) (W) +ul)
Ty = (e + pr) () + %)
T = (e + prg) (0] +wy)
fio = = (Teds +7yAy + 7. A,)
b?L —= Jr
b?R += Jr

The pressure is assembled in the form of a volume integral. The pressure gradients have been
p g p g
pre-computed at nodes use a surface-integral approximation.

OP|*
by —= —| A
I 0z |; Vi

5.5.13. Turbulent Kinetic Energy, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

AV,
Apr+= PIT;

AV,

by — = (0K} — piK}) AL

(5-255)

(5-256)

(5-257)

The convection term is computed at each face k and assembled to the left (IL) and right (IR) control

volumes.

c o n+1
AfL, += CF5

c _ n+1
AIR,J - Ck,J
c _ n+1 *
bIL - E :Ck,J KJ
J
c . n+1 *
bip += E :Ck,J Kj
J

(5-258)
(5-259)

(5.260)

(5.261)

The viscous stress term is computed at each face k and assembled to the left (IL) and right (IR) control

volumes. Only the solenoidal part of the stress term is used for the matrix.
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Mk a-ZVJ aNJ 8NJ
F, = R (20, Y, Py 26

k.J Ok ( oz |, + oy | vt 0z |, (5:262)
A?L,J += Frg (5.263)
ACIIR,J - = Fk,J (5.264)
fr = —“UL: (ki A, + k2 A, + k2AL) (5.265)

W, —= fi (5.266)

b += [ (5.267)

The turbulence production is assembled in the form of a volume integral. The velocity derivatives are
computed at the sub-volume centroids.

2
d = 2(ui+v§+w§) —g(u_,,c—l—vy—i-wz)2
+ o (uy+va)” + (024 wy) + (we + )’ (5.268)
b5 4+ = urdAV; (5.269)

The turbulence dissipation is assembled in the form of a volume integral. The terms are evaluated at the
node associated with the control volume.

E*
Ajr+=pr KI* AV; (s-270)
I
by — = prETAV; (5.271)

5.5.14. Turbulence Dissipation, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

LAV
A?I + - pITtI (5'2‘72‘)
* % n n AV
bi - = (pIEI — Pr EI) Ttl (5.273)

The convection term is computed at each face k& and assembled to the left (IL) and right (IR) control
volumes.
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A5, += G (5274)

A?R,J - = CZ,LJ;I (5-275)

oo —= Y Cii'E; (5.276)
J

Vi += Y Cii'E; (5-277)
J

The viscous stress term is computed at each face k and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix. As with the turbulent kinetic
energy transport equation, the molecular viscosity may augment the effective diffusivity.

pry [ ONy ONy ON;

R, = -Hoe (04, 9, )y 278
o O ( oz |, + oy |, vt 0z |, (5:278)
Al += Fuy (5.279)
A?R,J —= Fiy (5.280)
fo = EE (oA, peA, + AL (5.281)

b?L —= £ (5.282)

bip += fa (5-283)

The velocity derivatives are computed at the sub-volume centroids using velocities at the new time level
(n+1).

2
o = Z(Ui—i—vi—kwﬁ) —g(ux+vy+wz)2
+ o (uy )+ (v wy) 4 (wy +u.)? (5.284)
E*
b; += urCo®—LAV; (5-285)

Kj

The turbulence dissipation is assembled in the form of a volume integral. The terms are evaluated at the
node associated with the control volume.

E*
Al + = piCq ?{kAVI (5-286)
I
s ET .
b — = p1Ce,— ETAV; (5287)
I



5.5.15. Energy, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

LAV
Ai,[ += PIT; (5288)
b — = (pjH] — piHY) Ttl (5.289)

The convection term is computed at each face & and assembled to the left (IL) and right (IR)) control
volumes.

Al += C/?;l (5-290)

A;R,J - = C/?jl (5-291)

b, —= > Cph'H; (5-292)
J

Vi += > CritHj (5.293)
J

The heat conduction term is computed at each face k and assembled to the left (IL) and right (IR)
control volumes.

Al o+ = Fy (5.295)
A?R,J _ Fk,J (5.296)
@ = - (% + /IiLr;) (oA +hi A, + hiA,) (5297)

W — = g (5-298)

M 4= g (5-299)
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5.5.16. Species, 3D Turbulent Transport

There is a species equations for each species. The mass fraction is Y, where s is the species number. The
time term is lumped. The time-term contribution is evaluated for each sub-volume.

LAV
A+ = rix; tI (5.300)
ES ES n n AV
bt[ - = (PIY;,I - PIYL,I) _Atl (5.301)

The convection term is computed at each face & and assembled to the left (IL) and right (IR)) control
volumes.

A, += O (5.302)

A?R,J - = CI?,TTI (5.303)

b, —= Y Crivy, (5:304)
J

bip += ZCI?jIY:J (5:305)
J

The mass diffusion term is computed at each face k and assembled to the left (IL) and right (IR) control
volumes.

AL, += By (5:307)
Aby, —= F (5-308)
fo = - <% i ’S‘%;) (ysiAs +ysi A, + ysiAL) (5:309)
v, —= f (5:310)
Wir += [ (53u)

The chemical production source terms from the EDC model are applied at the centroid of the control
volume. The production term is constructed from the rate, the fine structure mass fractions, and the
average mass fractions.
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Ajp+ =7 1AV] (5312)

Wsg = TsI (YSf}S—Y;I) (5:313)
b += wsAV; (5-314)

5.5.17. Soot Transport, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

LAV
Ajp+ = PIT; (5315)
b? — = (p1ST — P1ST) _AtI (5.316)

The convection term is computed at each face & and assembled to the left (IL) and right (IR)) control
volumes.

Afpy += G (5-317)

Algys — = C}?jl (5.318)

b, —= Y Cri's; (5-319)
J

g += > Cri's; (5:320)
J

The diffusion term is computed at each face k and assembled to the left (IL) and right (IR) control
volumes.

e Mk ON; 0N ON;
Fry = (B BTR) (O I g T g .
& (SC+SCT) < ar |, T ey LT e |, (5:321
ACIlL,J += Fiy (5-322)
Alp, —= Fug (5:323)
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N VU7 WU
fr = (SC + SCT> (SIA;B +s,A, + SZAz) (5-324)

b, —= fi (5.325)
b += fi (5.326)

The soot production source term from the EDC model is applied at the centroid of the control
volume.

b? + = c':-}soot,IA‘/I (5327)

5.5.18. Soot Nuclei Transport, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

AV,
Al 4= pITtI (5:328)

bi — = (piN; — piNT) Ttl (5329)

The convection term is computed at each face & and assembled to the left (IL) and right (IR)) control
volumes.

Af, += G (5.330)

A?R,J - = C}?j (5.331)

Wi, —= > CriINg (5-332)
J

b += Y Cii'Nj (5:333)
J

The diftusion term is computed at each face k and assembled to the left (IL) and right (IR)) control
volumes.
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Fo, = _(%+%) (%kAIJraa—]\;kAﬁ%kAz) (5-334)
Al += Fis (5-335)
Alpy —= Fi (5-336)

P (% . g%f) (A, + 3 A, + ntAL) (5337)
W, o—= f (5-338)
M, 4= f (5-339)

The soot nuclei production source term from the EDC model is applied at the centroid of the control
volume.

b + = Wnua,1AVI (5.340)

5.6. DISCRETE BOUNDARY CONDITIONS

The Dirichlet boundary conditions are applied directly in the linear solver. The flux boundary
conditions are linearized and then assembled to the linear system. The flux boundary conditions are
processed on a face-by-face basis. The data available with each face includes all the data on the parent
element.

5.6.1. Symmetry, 3D Momentum

The viscous stresses can only impart a normal force at a symmetry boundary. The only other force
contribution is from the pressure. The pressure is integrated over the boundary using the boundary
nodal values.

The normal viscous force component is assembled to the right hand side only for the laminar
equations.

The viscous stress and sub-face normal are computed at each sub-face on the element face. The
integrated sub-face force is assembled to its adjacent node.

aui 8Uj
Fui=p ( oz, + 8%) njAy (5.341)

where 1 is the unit sub-face normal vector and A,, is the area of the sub-face.
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5.6.2. Outflow, 3D Mass

The mass flux at a pressure-specified outflow boundary is given by Equation 5.92. The pressure at the
face in the equation is Py, and is the specified value (see Figure 5.3-3). The interior sub-face pressure is
P, and is an average of nodal pressures. The fully assembled Poisson equation for pressure will have
positive diagonal coefficients. Note that the form of Equation 5.92 will contribute a positive diagonal
value. The nodal pressure gradient, Gijp?St, contains the influence of the specified pressure. The
difference of the nodal pressure gradient and the boundary pressure gradient cancels the influence of the
specified pressure in the outflow boundary condition. The specified pressure at the boundary only

directly influences the momentum balance.

5.6.3. Outflow, 3D Momentum

The outflow boundary condition is applied to boundaries with either pressure-specified inflow or
pressure-specified outflow. The viscous stresses are integrated over the boundary, but the viscous force
normal to the boundary is neglected.

If the flow is entering the domain, the convected velocity is a combination of a specified tangential
velocity (coflow) and a normal velocity. The normal velocity is constructed from the local nodal
values.

If the flow exits the domain, the convected velocity values are interpolated from nodal velocities in the
element adjacent to the boundary, similar to the interior scheme discussed in Section s.3.1. The
convected velocities are blended from an upwind interpolation (nearest boundary node) and centered
interpolation. The shape functions for the centered interpolation are taken from the interior sub-face
that is directly opposite the boundary sub-face. The upwind scheme will extrapolate from the nearest
node and the linear profile skew upwind scheme will interpolate to the boundary sub-face centroid.

5.6.4. Outflow, 3D Energy and Temperature

The outflow boundary condition is applied to boundaries with either pressure-specified inflow or
pressure-specified outflow. The heat conduction is integrated over the boundary. The transport of
enthalpy by mass diffusion for a multicomponent system is not yet implemented (cdm - 9/26/10).

If the flow is entering the domain, the convected enthalpy is set to a far-field reference value.

The convected enthalpy values are interpolated from nodal enthalpies in the element adjacent to the
boundary, similar to the interior scheme discussed in Section 5.3.1. The convected enthalpies are blended
from an upwind interpolation (nearest boundary node) and centered interpolation. The shape
functions for the centered interpolation are taken from the interior sub-face that is directly opposite the
boundary sub-face. The upwind scheme will extrapolate from the nearest node and the linear profile
skew upwind scheme will interpolate to the boundary sub-face centroid.
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5.6.5. Outflow, 3D Species and Soot

The outflow boundary condition is applied to boundaries with either pressure-specified inflow or
pressure-specified outflow. The mass diffusion is integrated over the boundary.

If the flow is entering the domain, the convected mass fractions are set to far-field reference values.

The convected species mass fraction values are interpolated from nodal mass fractions in the element
adjacent to the boundary, similar to the interior scheme discussed in Section s.3.1. The convected mass
fractions are blended from an upwind interpolation (nearest boundary node) and centered
interpolation. The shape functions for the centered interpolation are taken from the interior sub-face
that is directly opposite the boundary sub-face. The upwind scheme will extrapolate from the nearest
node and the linear profile skew upwind scheme will interpolate to the boundary sub-face centroid.

5.6.6. Outflow, 3D Turbulent Kinetic Energy

The outflow boundary condition is applied to boundaries with either pressure-specified inflow or
pressure-specified outflow. If the flow is entering the domain, the convected turbulent kinetic energy is
set by one of two ways:

e user specified value for turbulent kinetic energy, e.g. o.0.,

e calculated entrainment value based on user specified turbulence intensity, 75, and the relationship

kip = (Urefirin)Q . (5342')

DO | o

The reference velocity at the integration point, U,., is determined by the current integration point
mass flow rate divided by a characteristic area divided by the integration point density.

The convected turbulent kinetic energy is blended from an upwind interpolation (nearest boundary
node) and centered interpolation. The shape functions for the centered interpolation are taken from
the interior sub-face that is directly opposite the boundary sub-face. The upwind scheme will
extrapolate from the nearest node and the linear profile skew upwind scheme will interpolate to the
boundary sub-face centroid.

5.6.7. Outflow, 3D Turbulence Dissipation

The outflow boundary condition is applied to boundaries with either pressure-specified inflow or
pressure-specified outflow. If the flow is entering the domain, the convected turbulence dissipation rate
is set by one of two ways:

e user specified value for turbulent dissipation rate, e.g. 0.0.,

o calculated entrainment value based on user specified turbulence intensity, characteristic length and
the relationship
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32

€ =C,° “Tp, (5:343)

where [ = 0.07L; L represents the user-specified characteristic length of large turbulent structures. The
integration point turbulent kinetic energy is again based on the user specified turbulence intensity in
conjunction with Equation s.342.

The convected turbulent dissipation rate is blended from an upwind interpolation (nearest boundary
node) and centered interpolation. The shape functions for the centered interpolation are taken from
the interior sub-face that is directly opposite the boundary sub-face. The upwind scheme will
extrapolate from the nearest node and the linear profile skew upwind scheme will interpolate to the
boundary sub-face centroid.

5.6.8. Wall, 3D Turbulent Momentum

The effect of the wall force imparted by the wall on the fluid, as outlined in Section 2.7.5, is handled by
the standard law of the wall formulation. To explain this procedure, consider a two dimensional
element with two faces that consist of a wall boundary side set, Figure 5.6-1.

Figure 5.6-1.. Integration locations for a wall boundary.

The resulting discretization of the ith—component of velocity, for the boundary face that is a wall can be
expressed as follows,

where A, is the area, n; is the unit normal to the wall, and ), is the wall shear stress factor from law of
the wall,
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PR
Aw = In (By™)’ (5:345)
The parallel velocity component in Equation 5.344 is determined by the projection of the nodal velocity
onto each of the four (hex) or three (tet) subcontrol boundary faces (see Equation 2.182). In many
respects, this procedure is very much like that of a cell-centered scheme in that the nodal velocity is
assumed to act over all boundary faces. The paramount difference is the ability of one nodal velocity to
be applied to a multitude of faces of potentially different orientation.

As indicated in Section 2..7.s, the friction velocity at the centroid of the boundary face is determined by
a nonlinear solution procedure that will now be described. The procedure begins by use of
Equation 2.171, rearranged to form the function F,

Uy EpY u,
F(ur) =u) — ;l" (pr) : (5-346)

The objective is to determine the value of the friction velocity such that the function, F, is minimized.
A Newton solve is therefore constructed that has the following standard iteration form,

Fk
it =k — (5-347)
where F* is defined by Equation 5.346 evaluated at the k™" iteration level, and F”* is defined by
1 EpYu.*
) LA — {1+ln (M)} . (5.348)
K 7

The procedure by which the normal distance to the wall is determined is based on the method outlined
by the vertex-centered CFD code TASCflow [154]. In the procedure, the normal distance to the wall is
linked to the grid by the evaluation of the normal distance from the subcontrol volume center to the
boundary face. Therefore, the normal distance to the wall can be determined by the following steps:

e Determination of the coordinates of the subcontrol volume center by a shape function loop over all
nodes. This step in the procedure mandates a SIERR A heterogeneous (face-element) workset
algorithm.

e The determination of a vector, &;, from the subcontrol volume center to the respective nodal
location.

e The use of the perpendicular projection operator, P, which is defined by,

P, = —nin;, (5-349)

and finally,
® The determination of the normal distance by
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Y, = Vrii?+ w02+ a1 52 (5:350)

For convenience, the density and viscosity used in all of the above equations are nodal quantities. In
other words, the physical properties are not interpolated to the centroid of the boundary face.

Once the wall shear stress factor is evaluated, it is required that the appropriate component of the
velocity parallel to the boundary face is used appropriately within the respective momentum equations.
As was discussed in the section on non-orthogonal momentum math models, Section 2..7.s, the parallel
velocity can be written in component form (see Equation 2.183).

5.6.8.1. X-Momentum

The x-momentum wall force, £}, is expressed as
Fu1 = = A Ay, (5-351)
where u, | is defined as

uy = (1= nf) g — (1 — nains) uz g — (1 — ning) us pa. (5-352)

Note that the form of Equation s.352 allows for an implicit treatment of the force imparted by the wall
on the fluid by the factor

Aody (1—n7). (5-353)

5.6.8.2. Y-Momentum

The y-momentum wall force, F, is expressed as

Fuo = —Ap Ay, (5354)

where uy is defined as

Uy = (1 —=n3) uzng — (1 — nong) ui g — (1 — nong) us pa. (5.355)

Note that the form of Equation s.355 allows for an implicit treatment of the force imparted by the wall
on the fluid by the factor

AwAy (1= n2?). (5-356)
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5.6.8.3. Z-Momentum

The z-momentum wall force, F,3 is expressed as
Fus = =\ Apug), (5-357)
where u3) is defined as

ug = (1 —n3) ugna — (1 — n3ni) uing — (1 — ngne) us pa. (5.358)

Note that the form of Equation s5.358 allows for an implicit treatment of the force imparted by the wall
on the fluid by the factor

AwAy (1 —n3) . (5-359)

5.6.9. Wall, 3D Turbulent Kinetic Energy

As described in Section 2.7.6, the wall boundary condition for turbulent kinetic energy can be applied
in a variety of ways. In general, there are two supported methods.

The first method is specify the near-wall turbulent kinetic energy as a Dirichlet condition whose value is
determined by the assumption of local equilibrium between production and dissipation of turbulent
kinetic energy.

The second method is to solve a transport equation for the near wall turbulent kinetic energy whose
form utilizes a modified production and dissipation term based on the assumption of local equilibrium
between production and dissipation of turbulent kinetic energy. The use of a full control volume
equation for the near wall turbulent kinetic energy in the presence of non-zero convection and diffusion
coefhicients is a violation of the very tenants of the law of the wall formulation which implicitly assumes
pure shear flow behavior. Nevertheless, this method is frequently used.

The Dirichlet method consists of the determination of each integration point turbulent kinetic energy
by use of the following equation,

u?

ki = v ) (5360)
P Cﬁ/g

The value of u, is determined by a nonlinear iteration solve of the law of the wall formulation. The
integration point values are area weighted and assembled into the nodal location. The nodal value of the
turbulent kinetic energy is given by the accumulated area weighed integration point turbulent kinetic
energy divided by the total face area.
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5.6.10. Wall, 3D Turbulence Dissipation

Consistent with all of literature, the near-wall value of turbulent dissipation is determined from
iteration-lagged values of friction velocity,

3
n+1l __ Ur

1 U 36
i Y, (5-361)

€

As with the implementation of the turbulent kinetic energy, the value computed in Equation s.361 is
area weighted and assembled to the nodal location. The Dirichlet condition is determined by the
assembled quantity divided by the entire area of the boundary faces that are “owned” by the node.

5.7. CONJUGATE HEAT TRANSFER

5.7.1. General Formulation

A conjugate heat transfer problem is one in which conductive heat transfer in a solid region is coupled
to the convective heat transfer in a neighboring fluid. In its most general form, the coupling at the
boundary is governed by the conservation of energy, such that heat flux out of the solid is equal to heat
flux into the fluid:

qs-n=gqy-n (5362)

where q; and q are the heat flux in the solid and fluid, respectively, and n is the surface normal directed
into the solid and out of the fluid.

The exact form in which equation (5.362) is implemented depends on whether the fluid flow is laminar
or turbulent, since different expressions must be used in these cases for q ;. The heat flux in the solid is
always due to conduction alone, but there are several possible choices that could be made for the
discretization of this flux in space and time.

5.7.2. Time Integration

In Fuego, conjugate heat transfer is implemented through loose coupling between the fluid and solid
regions, meaning that at each time step, each region is solved separately by treating information from
the neighboring region as “given”, and no extra iterations are done between regions to ensure
convergence at a single time step. The specific algorithm used can be described as a
temperature-forward, flux-back scheme. At a given time step 7, the fluid equations are solved using the
current solid temperature as a Dirichlet boundary condition; the temperature field of the fluid is thus
updated to state nn + 1 everywhere except on the boundary. Then, the heat flux in the fluid at step n + 1
is computed and transferred to the solid. Finally, the solid region is solved, updating to state n + 1 using
the information from the fluid as a flux boundary condition.
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Rather than applying the fluid heat flux directly to the solid, we choose to write the solid boundary
condition in the form of a convective heat flux boundary condition:

qs(x) - 1 = h(x) (Too(x) — Ts(x)) (5363)

where h is a convection coeflicient, Tt is the fluid temperature away from the wall, and 7 is the solid
surface temperature. Both h and T, are computed from the fluid temperature field in a way that will be
specified, while 7 is left free in the solution of the solid region temperature. This formulation can be
shown to be more stable than the alternative of simply transferring the heat flux in the fluid and
applying it as a pure Neumann boundary condition to the solid.

Using superscripts to denote time step, the loosely coupled integration scheme can thus be written as:

TJ?H =T onl'y, (5.3642)
QT (x) = A" () (TR (%) = T8 (%)) onTy, (5:364b)

where I ¢4 is the fluid-solid interface.

5.7.3. Discretization of Conduction Region Boundary Condition

The quantity that is needed for a flux boundary condition condition in our CVFEM formulation is the
heat flux integrated over the interface surface area associated with each node on the surface. Equation
(5.364b) is applied to the conduction region at each surface node by assuming that i, T and T, can be
treated as constants on that node’s sub-control surfaces:

Zj‘_l = /SCS qs - ndA = h?—HA] (T;—j}l — T:}’l) (5.365)
I

where Ay is the surface area associated with node I. The nodal data ! and T/**} are computed from
the fluid solution at time step 1 4 1 (see section 5.7.4), while T:}Ll is a degree of freedom solved during
the conduction region solution.

5.7.4. Computation of Convection Temperature and Coefficient

On the fluid side, the total heat transfer associated with a node on the fluid-solid interface is the integral
of the heat flux over that node’s sub-control surfaces on the interface:

Q?ijl = / q?“ -ndA. (5.366)
SCS;

Consider the case in which fluid and solid surfaces meshes conform exactly at the interface. Then, every
fluid node can be associated with a corresponding solid node, and using Equations (5.362) and (5.365)

we have:
Qi = Qi (5-3672)
= hy A (T =T (5.367b)
~ A (TR =T (5.367¢)
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where the last line (where T}‘jl is substituted for Tg}rl) follows approximately from (5.364a); this
approximation is of the same order accuracy as the time integration scheme, and for steady state it is
exact. In cases in which the surface meshes do not conform exactly, the nodal values of h; and T’ 1 are
passed through an interpolation transfer, introducing a small amount of error.

The total heat transfer () s, ; must be decomposed into two components: Qyy,; representing the
variables of the fluid at nodes on the surface (“wall”), and () 1 representing variables at nodes away
from the surface:

Q1= Qw1+ Qoo (5.368)

The way in which this decomposition is done depends on whether the flow is laminar or turbulent, as
will be discussed. Comparing this decomposition with (5.367¢), it is clear that:

Qw,r = —hiATy (5.3692)
Qoo,[ = h[A]TOOJ (5369b)
Rearranging:
Qw1

hy = — <L .

I oA (5.370a)
Qoo I

T = ’ .370b
ol = (s.370b)

Finally, we must define the decomposition of @) 7 ; for laminar and turbulent flow. It is possible when
using this approach to end up with negative values for h, which appear non-physical to the analyst and
are detrimental to the numerical stability of the conduction solve since they reduce diagonal dominance
of the linear system. Since the choice of these parameters is arbitrary as long as they reproduce the
correct energy flux, when this occurs we reverse the sign of /1; and re-compute T s as

Tooy = 221 4 Ty 1 (5.371)

5.7.4.1. Resolution of Boundary Layer

The fluid velocity at the solid surface is zero for laminar flows and turbulent flow models in which the
boundary layer is resolved, so all heat transfer in the fluid near walls is due to conduction:

q;(x) = =k (x) VT (x) (5:372)

where 1 is the thermal conductivity of the fluid. Substituting this into (5.366) and using the finite
element interpolation for T'(x) gives:

Qui=- [ kY (n VN)TsdA (5:373)
scs; 5

where Ny and T are respectively the FEM shape function and temperature degree of freedom
associated with node J.
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The most obvious way of decomposing () 7.7 is by breaking the summation into two summations, one
over boundary nodes, one over oft-boundary nodes:

Qf,[ = — / Ry Z(n : VNJ)TJdA (5.37421)
SCS1 - jeB

Qoo = _/ kY (0 VN,)T,dA (5-374b)
scsi g

where B is the set of nodes on the wall.

These quantities, when substituted into (5.370), give the computed values of Ay and T ;.

5.7.4.2. Turbulent flow modeling with wall functions

In turbulent flow where the boundary layer is not resolved, wall boundary conditions are applied by
assuming that the first layer of nodes in the fluid lies not exactly on the solid interface, but slightly away
from the wall in the turbulent boundary layer. Various laws of the wall can then be used to relate
quantities at these nodes to the wall values. The enthalpy wall boundary condition for turbulent flow
can be written in the form (see section ??):

Q1= crAr(Hr — Hwp) (5.375)

where H is the nodal enthalpy, Hyy,; is the corresponding enthalpy exactly at the wall, and cr is a
coefficient that depends on the flow variables. The most obvious decomposition is to let

Qw,r = —crArHw,r and Qo 1 = cr ArH. However, this most obvious decomposition is incorrect.
The difficulty is that enthalpy is measured on a relative scale, rather than an absolute scale like
temperature. For example, consider the case where H; = 0. This does not imply that 77 = 0; in Fuego,
it usually corresponds to something near standard temperature and pressure. However, the obvious
decomposition when substituted into (5.370) gives o, ; = 0, which is clearly the wrong value for the
conduction region boundary condition.

Thus, we should choose a decomposition that has () 1 = 0 only if T, ; should be zero. The correct
choice is:

H;y — H
Qwr = —ciTw (ﬁ) (5.376a)
Hr — Hwy
wi=cil; | =————= 376b
Q,I Cr I<TI_TI/V,I) (537 )

where Ty, 1 is the wall temperature (which for conjugate heat transfer has been obtained from the solid
at the previous time step), and 77 is the temperature value at node / (slightly away from the wall). These
expressions are undefined if 77 = Tyy,j; in that case, the fraction AH /AT is approximated using the
limiting value given by the specific heat c,,.
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5.8. ELEMENT TOPOLOGY AND SHAPE FUNCTIONS

The standard mesh configuration for cell-centered CVFEM’s is to co-locate all flow variables at the
nodes, also called grid points. The nodes are the vertices of the finite-elements, as shown in Figure s5.0-1.
The finite-volumes, also called control volumes, are centered about the nodes. Each element contains a
set of sub-faces that define control-volumes. The sub-faces consist of the segments or surfaces that bisect
the element faces. For example, each control volume on an orthogonal mesh of rectangular elements is
defined by four neighboring elements with contributions from the nine nodal values.

Interpolation functions are formed inside each element. In standard finite element methods, the
interpolation functions are called shape functions and they are used to evaluate the integral
quadratures. The same bilinear or trilinear shape functions are used in CVFEM to construct fluxes at
the sub-faces. Finite-element basis functions are used as interpolation functions to integrate fluxes over
control volume faces which are internal to an element. The control-volume flux interpolation functions
are element based; a restriction by choice, motivated by code development considerations. In an
element-based scheme, only information that defines an element may be used to assemble fluxes. Nodal
information outside the element cannot be used. As a result, the global spatial accuracy is restricted to
second order.

Isoparametric shape functions are used for quadrilateral and hexahedral elements. The geometry of an
isoparametric element is approximated with the same shape function as the solution variables so that
the bilinear/trilinear variation within remains independent of orientation. Triangular and tetrahedral
elements do not require an isoparametric formulation because they are linear. The triangles and
tetrahedra can be made to look like isoparametric elements in order to create a general element
evaluation algorithm.

5.8.1. Quadrilateral Elements

The quadrilateral element has four nodes and four control volume faces. The element configuration is
shown in Figure 5.8-1. The parametric variables are  and 7, and they are coincident with the faces of the
control volumes. The control volume faces are formed by the straight line segments the connect the
bisection points of opposing element edges. The parametric variables have the range —1 < ¢ < 1and
-1<n<1L

Geometric information inside the element is interpolated from the nodal coordinates. Derivatives of the
physical coordinates are the most fundamental geometric quantity, contributing to the surface areas and
gradients.

r = N, X, y = Ny Yy (5:377)
Tk y 2 Tty 378
% = o o6~ e (5.378)
Oor  ON, dy  ONg
Tk y 2y .

9 = on Xk an ~ on k (5-379)
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The subscripts on the shape functions correspond to the element-local node numbering. The
isoparametric shape functions and shape function derivatives for quadrilateral elements are given in
Table 5.8-1.

Node 4 Node 3
® . ®
Face3§n
l—g ............
Face 4 : Face 2
Face 1
@ @
Node 1 Node 2

Figure 5.8-1.. Quadrilateral element topology and numbering

Table 5.8-1.. Nodal shape functions and derivatives for quadrilateral elements

node N 88_]; %—]7\77

L | j1=90-n) | —30=n)|-30-9
2 | 1(1+90=-n)| (Q=n)|-30+9
3 | 1+ 0+n) | j0+n)| 1(1+8
4 1 30-90+n) | —1(1+n)| 1(1-9

The physical surface differentials are related to differentials in parametric space. The surface area
differentials, n,d A are derived from their three-dimensional counterpart, Equation 5.383, where z, = 0,
y¢e = 0,and 2z, = 1. The derivatives used in the mapping from a differential in parametric space to a
differential in physical space are evaluated using Equations 5.378 and 5.379. The differential surfaces of a
control-volume sub-face are surfaces of constant § or 1). Along Face 1 and 3, the differential d§ = 0.
Along Face 2 and 4, the differential dn = 0. For the purposes of constructing a general-purpose
computational flux algorithm, integration over both parametric components is retained. On each face,
only one surface area component will be non-zero.

n;dS = [ —Ye Tg ]df + [ Yy —Ty }dn (5.380)

The usefulness of the general approach will become more apparent when triangular elements are
considered.

268



The normals to the control-volume surfaces are positive in the direction of positive coordinate axes. The
normal to a {-constant face is along the positive §-axis. The normal to a n-constant face is along the
positive n-axis. The signs on the differentials are selected such that the fluxes have the proper signs
relative to the control volume. The values of the element variables and the surface differentials at the
control-volume faces are given in Table 5.8-2. The differential d7 is negative for Face 3 because the
direction for out/in flow from Node 3 to Node 4 is opposite in direction of the surface normal defined

Table 5.8-2.. Element variable values and differentials at control-
volume faces for quadrilateral elements. Face-to-edge number

mapping.
face | Edge (Node,y; — Nodey, ) | & n | d€ | dn
1 1—2 0| —3|0]1
2 2—3 10 1]o0
3 3—4 0| 5 0]-1
4 1—4 -5 0] 10

Volume integrals require the volume differential, dzdy. In terms of the element parameters, the volume
differential is

dxdy = Jdé&dn, (5.381)
where
J = Teyy — TyYe. (5.382)

The quadrature points and differential values are shown in Table 5.8-3.
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Table 5.8-3.. Element variable values and differentials at sub-
control volume centers for quadrilateral elements.

sub-volume | ¢ n | dédn
1 1
1 —3 —3 I
2 -3l 1
3 s3] 1
4 -1 1

5.8.2. Triangular Elements

The triangular element has three nodes and three control volume faces. The element configuration is
shown in Figure 5.8-2. The control volume faces run from the centroid of the element to the element
edge bisection points. The parametric coordinate system is defined by the triangle natural coordinates,

Node 3

Face 2
e

Face 3
Face 1

Node 1 Node 2

Figure 5.8-2.. Triangular element topology and numbering

L1, Ly and L3, since a Cartesian mapping cannot be defined. The natural coordinates are the shape
functions. As an example, the value of L; at an interpolation point is the shape function associated with
Node 1. The value of Ly is the fraction of the element triangle area covered by a sub-triangle, formed by
the interpolation point and the edge opposite of Node 1, shown in Figure 5.8-3. For consistency with the
quadrilateral element notation, the (£, ) parametric variables are defined as ¢ = L; and 7 = Ly, where
L3 is defined by the fact that the natural coordinates always sum to one. The linear shape functions and
shape function derivatives for triangular elements are given in Table 5.8-4.
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a) L1 b) L2 c¢) L3

Figure 5.8-3.. Triangular natural coordinate system, shaded area
corresponds to opposite node.

Table 5.8-4.. Nodal shape functions and derivatives for triangular elements.

node N %%[ %—]:
1 19 1 0
2 n 0 1
3 1—-¢&—n | —1] -1

The surface integrals are tricky because there is no surface that lays on a line of constant £ or 7. Along
Facer,1/2 > & >1/3and1/2 > n > 1/3. Along Face2,1/3 > ¢ > 0and 1/3 <7 < 1/2. Along
Face3, 1/3 < ¢ < 1/2and 1/3 > n > 0. The integrations are taken from the centroid to the element
edges. The values of the element variables and the surface differentials at the control-volume faces are
given in Table 5.8-5.

The form of the volume differentials are the same as with the quadrilateral elements. For volume
integrals, quadrature points and differential values are shown in Table s5.8-6.

5.8.3. Hexahedral Elements

For hexahedral elements, there are eight nodes and twelve subfaces defining control volumes, shown in
Figure 5.8-4. The shape functions are trilinear functions of the element variables, &, 7, and (. The shape
functions and derivatives at each node are given in Table 5.8-7. The control volume sub-face
numbering, shown in Table 5.8-8, follows the convention that the face has the same number as the
element edge that connects the nodes that define the two adjacent sub-control volumes.

The surface integrals require the vector of differential surface area components, (dA4,,dA4,, dA,),
which is equivalent to the differential surface area .S multiplied by the unit surface normal vector n;.
Since the control volume surfaces are constructed using four points within an element, it is noted that
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Table 5.8-5.. Element variable values and differentials at control-
volume faces for triangular elements

face | Edge ( Nodegys — Nodey, ) | £ | | d§ | dn
1 1—2 515 g | —3
: 253 IBEE
3 3—1 & | g :l 3

Table 5.8-6.. Element variable values and differentials at sub-
control volume centers for triangular elements.

sub-volume | & | n | dédn
7 5 1
1 | 2| @
5 7 1
2 2| 12| @
5 5 1
3 2| 24| @

assuming the surfaces are planar results in an error. Sometimes this error is deemed acceptable, and a
faster algorithm is used to compute the surface area and volume. However, when strict conservation is
required, an exact algorithm using a polyhedral decomposition is employed to compute the exact
volume and surface area. These are detailed below.

5.8.3.1. Volume and Area Calculation Assuming Planar Surfaces

The differential surface area, n;d.S, is calculated in parametric space by taking the cross-product of two
differential surface-tangent vectors. Let the surface be described by the collection of points S(z, y, z).
For example, a tangent vector in the {-direction is 0x;/0&. The normal surface area component for all
three possible surface parameterizations is

B 8x1 Gscj (‘317 8x] 8@ 8:@

where €;;y, is the alternating unit tensor and defines the cross product.

1 ifijk equals an even permutation 123, 231, or 312
€ijk = 0 if7jk contains a repeated index (5384)
—1 ifijk equals an odd permutation 132, 213, or 321
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Figure 5.8-4.. Hexahedral element topology and numbering

Using a shortened notation,

nas = [ |53 [563] [564] ] anac
+ [|5e] [5eml |5eg| ace
+ [ |5 (5] ] dsan
where the Jacobian notation is defined by
Ox,y) _ [:vg Ty }
a(&,n) Ye Yy |-

(5-385)

(5.386)

The values of the element variables and the surface differentials at the control-volume faces are given in

Table 5.8-8.

Volume integrals require the volume differential, dzdydz. In terms of the element parameters, the

volume differential is

drdydz = Jdédndd,

where

LeYn=¢ — T¢Yn=¢
TnYcze — TeYczn
L Yezn — TnYe=¢

The quadrature points and differential values are shown in Table 5.8-9.
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Table 5.8-7.. Nodal shape functions and derivatives for hexahe-
dral elements. Range is (-1,1).

node N %_ng %_]: %—JQY

1 50=-90-n0-0 | —50-n0-0|—501-90-0 | —501-A-mn)
2 | §1+9A-n1-0| §A-nNA-¢Q | -51+1-¢0) | —5A+E1L—n)
3 s1+90+n)(1-0 | s0+n1-¢ | §A+HA-0 | 51+ +n)
4 1 50-90+nA-¢ | —sQ+nA-¢ | §1-90A-¢ | -5(1-A+n)
5 s(1-90-nA+Q | —sA-nA+Q | -51-901A+¢ | §A-&1-n)
6 | 1+OA-n+Q| §A-nNA+Q) | —z1+HA+Q | A+E1—n)
T sA+OA+n) A+ | A+ A+ | sA+HA+O | A+ +n)
8 | s(1-90+n(1+Q) | —5A+nA+¢) | §1-901+¢ | A-&1+n)
5.8.3.2. Exact Volume and Surface Area Calculation

When the planar surface assumption for the control volumes is insufficient, the volume and surface
areas can be calculated exactly. To accomplish this, a set of subcontrol points is constructed that defines
the subcontrol surfaces. The locations and numbering of these subcontrol points are shown in

Figure 5.8-5. The coordinates of the edge points are the average of the two adjacent vertices, the
coordinates of the facial points are the average of the four vertices defining the face, and the coordinates

of the interior point is the average of the eight vertices defining the volume.

The 12 subcontrol surfaces for the Hexahedron are the defined using points in counterclockwise

ordering as shown in Table 5.8-10. These surfaces are further broken down into four triangles defined by

the four points on the surface and a simply averaged midpoint. The four triangles are defined by points
{5,1,2},{5,2,3},{5,3,4},and {5, 4, 1}, respectively. The area vectors of each triangle are summed
to calculate the total surface area vector. Noting that the triangles are planar, the area vector of each
triangle is calculated exactly using half the cross product of any two right-hand oriented vectors.

The eight subcontrol volumes are defined using the points shown in Table 5.8-11. The formula to
calculate the exact volume is based on the Gauss Divergence formula,

v,

al’k
—dV =
8xk

(5-389)

The surfaces for the surface integral are decomposed into triangular facets as in the surface area

calculation. To accomplish the decomposition, the coordinates on each face are averaged to the
midpoints, and thus each hexahedral volume is constructed using 14 coordinates—eight vertices and six
facial midpoints, resulting in 2.4 total facets. Since the triangular facets are planar, the normal is constant
over the surface. Thus, the surface integral over each triangular facet is equivalent to the scalar product

274




Table 5.8-8.. Element variable values and differentials at control-
volume faces for hexahedral elements. Face-to-edge number

mapping.

face | Edge ( Nodeoy — Nodey, ) | £ n ¢ | dnd¢ | ACdE | dedn
1 1—2 0| —3|—3 1 0 0
2 2—3 51 0]—3] 0 1 0
3 314 0 +]-1] 41 0 0
4 1—4 -0 0|—-3] O 1 0
5 5—6 o -3 | 1 0 0
6 6—7 ool 3] 0 1 0
7 78 o 2| 3| -1 0 0
8 5—8 -3 0| 3| O 1 0
9 15 -2 =3l 0] 0 0 1
10 2—6 1 —3| 0] 0 0 1
11 37 o3l o] 0 0 1
12 4—8 -3 3| 0] 0 0 1

of the outward facing normal area vector and the centroid coordinates, Z. The total surface integral is
the sum of the integrals on each triangular facet,

24 24 24
V= 7{ rrnpdS = my / ppdS = Ty, / ds, o0 =A. (5.390)
o0 i—1 Ay i—=1 Ay i=1

The area vectors are calculated as described above. The centroid coordinates are simply the average of
the three vertices constructed the triangular facet.

5.8.4. Tetrahedral Elements

For tetrahedral elements, there are four nodes and six subfaces defining control volumes, shown in
Figure 5.8-6. The parametric coordinate system is defined by the tetrahedron natural coordinates, L1,
Ly, L3, and Ly, since a Cartesian mapping cannot be defined. The natural coordinates are the shape
functions. As an example, the value of L; at an interpolation point is the shape function associated with
Node 2. The value of L; is the fraction of element tetrahedral volume covered by a sub-tetrahedron,
formed by the interpolation point and the face opposite of Node 2. For consistency with the hexahedral
element notation, the (&, 7, ¢) parametric variables are defined as £ = Ly, = Ly, and { = L3, where
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Table 5.8-9.. Element variable values and differentials at sub-
control volume centers for hexahedral elements.

¢ | dédnd¢

I

sub-volume | &

3

1

(0] ~ D ot W~ w [\]
NI | NI [N [N | N [N [N | N
[T T I G T T B CT T I O e I Y e I T T

NI= | N= [ N= [N= | N (N [N [ N

L, is defined by the fact that the natural coordinates always sum to one. The control volume sub-face
numbering, shown in Table 5.8-13, follows the convention that the face has the same number as the
element edge that connects the nodes that define the two adjacent sub-control volumes.

The values of the element variables and the surface differentials at the control-volume faces are given in
Table 5.8-13.

Again the control volumes are constructed using surfaces defined with four points and two methods are
available to define the surface area and volume.

5.8.4.1. Volume and Area Calculation Assuming Planar Surfaces

The form of the volume differentials are the same as with the hexahedral elements. For volume integrals,
quadrature points and differential values are shown in Table 5.8-14.

5.8.4.2. Exact Volume and Surface Area Calculation

Following the approach in Section 5.8.3.2, a set of subcontrol coordinates is defined to decompose the
tetrahedral element, which are shown in Figure 5.8-7.

Six subcontrol surfaces for the tetrahedron are the defined using points in counterclockwise ordering as
shown in Table 5.8-15. Surface area vectors are calculated using the same approach as in Section 5.8.3.2.

Four subcontrol volumes are defined using the points shown in Table 5.8-16. Since the subcontrol
volumes are hexahedrons, the same volume calculation is used as above.
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Figure 5.8-5.. Hexahedron subcontrol points humbering

5.8.5. Wedge Elements

For wedge elements, there are six nodes and nine subfaces defining control volumes. The parametric
coordinate system is a linear hybrid of triangular natural coordinates. The natural coordinates are the
shape functions. The local coordinates £ and 7 are in the plane of the triangular surfaces while  is in the
normal direction. The control volume sub-face numbering, shown in Table 5.8-18, follows the
convention that the face has the same number as the element edge that connects the nodes that define
the two adjacent sub-control volumes.

5.8.5.1. Volume and Area Calculation Assuming Planar Surfaces

The values of the element variables and the surface differentials at the control-volume faces are given in
Table 5.8-18.

For volume integrals, quadrature points and difterential values are shown in Table 5.8-19.

5.8.5.2. Exact Volume and Surface Area Calculation
Following the approach in Section s.8.3.2, a set of subcontrol coordinates is defined to decompose the
wedge element, which are shown in Figure 5.8-8.

Nine subcontrol surfaces for the tetrahedron are the defined using points in counterclockwise ordering
as shown in Table 5.8-20. Surface area vectors are calculated using the same approach as in
Section 5.8.3.2.
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Table 5.8-10.. Subcontrol face definitions for exact surface area
calculation on hexahedral elements.

Face Point Set
I 21 | 9 | 13 | 27
2 25 | 10 | 13 | 27
3 m| 13|27 24
4 2 |26 |27 | 13
5 14 | 21 | 27 | 18
6 18 | 15 | 25 | 27
7 18 | 16 | 24 | 27
8 17 | 18 | 27 | 26
9 20 | 21 | 27 | 26
10 | 21 | 19 | 25 | 27
o | 23| 24| 27| 25
2 | 22|26 |27 | 24

Table 5.8-11.. Subcontrol volume definitions for exact volume
calculation on hexahedral elements.

Volume Point Set

I I | 9 | 13|12 ]|20] 21|27 ]26
2 9 | 2 |10 | 13|21 |19 |25 |27
3 13|10 3 |1 |27 |25 |23 24
4 2| 13| 10| 4 | 2627|2422
5 20|21 |27 (26| 5 |14 |18 | 17
6 21 |19 | 25 |27 | 14 | 6 | 15 | 18
7 27 25|23 |24 |18 |15 | 7 | 16
8 26 |27 |24 | 22|17 |18 | 16 | 8

Six subcontrol volumes are defined using the points shown in Table 5.8-21. Since the subcontrol
volumes are hexahedrons, the same volume calculation is used as above.

5.8.6. Pyramid Elements

For pyramid elements, there are five nodes and eight subfaces defining control volumes. The local
coordinates £ and 7 are in the plane of the quadrilateral surfaces while  is in the normal direction. The
control volume sub-face numbering, shown in Table s5.8-23, follows the convention that the face has the
same number as the element edge that connects the nodes that define the two adjacent sub-control
volumes.
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Node 4

Node 2

Figure 5.8-6.. Tetrahedral element topology and numbering

Table 5.8-12.. Nodal shape functions and derivatives for tetrahe-
dral elements. Range is (0,1).

ON ON ON
node N a_f 8_77 a—c

1 | 1-¢—n—¢|-1|-1]-1

2 ¢ 1l o] o
3 n 0] 1] 0
4 ¢ 0] o 1

5.8.6.1. Volume and Area Calculation Assuming Planar Surfaces

The values of the element variables and the surface difterentials at the control-volume faces are given in
Table 5.8-23.

For volume integrals, quadrature points and differential values are shown in Table 5.8-24.

5.8.6.2. Exact Volume and Surface Area Calculation

It is noted here that for pyramid elements, the planar assumption is not good even on the reference
element. The volume that composes the tip is an octohedron four planar faces and four highly skewed
faces. Computations have shown that the planar assumption results in severe conservation errors.
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Table 5.8-13.. Element variable values and differentials at
control-volume faces for tetrahedral elements. Face-to-edge
number mapping.

face | Edge (Node,y — Nodei, ) | £ | 1 | ¢ | dpd¢ | d¢d€ | d&dn

17 7 7
17 17 7
7| |z
3 1 —3 48 48 48
7 7 17
17 7 17
6 34 Loy

Table 5.8-14.. Element variable values and differentials at sub-
control volume centers for tetrahedral elements.

sub-volume | & | n | ¢ | dédnd¢
1 17| 17| o1r
96 | 96 | 96
9 45 | 17 | 17
9 | 96 | 96
3 17 | a5 | 17
96 | 96 | 96
4 17| 17 | 45
96 | 96 | 96

Following the approach in Section 5.8.3.2, a set of subcontrol coordinates is defined to decompose the
pyramid element, which are shown in Figure 5.8-9.

Eight subcontrol surfaces for the tetrahedron are the defined using points in counterclockwise ordering
as shown in Table 5.8-25. Surface area vectors are calculated using the same approach as in
Section 5.8.3.2.

Five subcontrol volumes are defined using the points shown in Table 5.8-26. The first four subcontrol
volumes are hexahedrons, so the same volume calculation is used as above. The tip of the pyramid
composes an octohedron, but the computation of the volume is only slightly different. The Gauss
Divergence Theorem is still used to calculate the volume. However, because the four faces on the
pyramid faces must be planar, these faces are decomposed into two triangles—composed of the face
midpoint and the pyramid tip vertex—instead of four triangles. The four-point faces interior to the
triangle are not planar and are decomposed into four triangles, resulting in 24 triangular facets total.
Equation 5.390 is then applied to compute the volume.
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Figure 5.8-7.. Tetrahedron subcontrol points numbering

Table 5.8-15.. Subcontrol face definitions for exact surface area

calculation on tetrahedral elements.

Table 5.8-16.. Subcontrol volume definitions for exact volume
calculation on tetrahedral elements.

Face Point Set
I s | 8 15| 14
2 8|15 || 6
3 7 1B|5
4 |14 |15 13
5 4 |10 | 11| 1§
6 oo |13]|i15

Volume Point Set
I 1| s | 8|7 1214|1513
2 216 |8 |5 |10]|1|I15]I4
3 31718 9 | B|Is| 1
4 4|10 |14 |12 |9 |1 |15]| 13
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Table 5.8-17.. Nodal shape functions and derivatives for wedge
elements. Range is (0,1) and (-1,1).

node N o o ox
1 50=&6=n)1-¢) | —501-0 | —3(1-0 | —3(1-€&~-n)
2 561 =0 310 0 —3
3 31(1 =) 0] 31-0) —357
4 1 30=¢=n+¢ | —501+¢) | —50+¢) | 30-&-n)
5 36(1+¢) 3(1+¢) 0 3
6 311+ ) 0] 31+¢) 371

Table 5.8-18.. Element variable values and differentials at
control-volume faces for wedge elements. Face-to-edge num-
ber mapping.

face | Edge (Nodeoy — Nodey, ) | € | n | ¢ | dnd¢ | d¢d¢ | dédn
1 1—2 | 3l-3
2 23 2131
3 1—3 sl sl —3
4 45 1IN
5 5—6 13| 3
6 4—6 sl 3
7 1—4 =2 0
8 25 L1220
9 36 S0
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Table 5.8-19.. Element variable values and differentials at sub-
control volume centers for wedge elements.

sub-volume | & | n | ¢ | dédnd(C
1 %% | 3
: 15| 2| 2
3 % 1| 3
4 2|2 | 2
5 15| % | 3
6 % 1| 3

Figure 5.8-8.. Wedge subcontrol points numbering
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Table 5.8-20.. Subcontrol face definitions for exact surface area
calculation on wedge elements.

Face Point Set
I 7 | 10| 21 | 17
2, 8§ |10 | 21 | 19
3 I0 | 9 |20 21
4 o |17 | 21 | 14
5 4 | 12 | 19 | 2I
6 13 | 14 | 21 | 20
4 16 | 17 | 21 | 20
8 I7 |15 | 19 | 21
9 20 | 21 | 19 | 18

Table 5.8-21.. Subcontrol volume definitions for exact volume
calculation on wedge elements.

Volume Point Set
I 1 |16 |17 6| 9 |20 21|10
2 0|7 7 |21 | 17 | 15 | I9
3 9 |10 8| 2|20 21 | 19 | 18
4 20 |16 |17 | 21| 13 | 4 |10 | 14
5 21 |17 |15 |19 | 14 | 11 | 4 | 12
6 20|21 |19 |18 | 13 |14 | 11| 6

Table 5.8-22.. Nodal shape functions and derivatives for pyramid

elements. Range is (-1,1) and (0,1).

node N %Lgf %\; %_Jgf
1| =90 =10 | —3(1=n1 =) | -1 =1 —¢) | —3(1 =&)(1 —n)
2 | j0+90 -1 -0 | ;0= -0 | =31+ -¢) | =31+ (1 —n)
31 11+ +n(1 -0 | 01+n1-0 | ;0+HA - | —z1+HA+n)
4 1 30-90+n01-¢) | —31+nA -0 | 1 -=90—=¢) | —3(1 =& +n)
5) ¢ 0 1
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Table 5.8-23.. Element variable values and differentials at
control-volume faces for pyramid elements. Face-to-edge num-
ber mapping.

face

Edge ( Node,,; — Node;, )

¢ | dnd¢

dcde

dgdn

1

1—2

2—3

45
104

3—4

1—4

104

1—5

A1
120

2—5

41
120

3—5

A1
120

O | | O | O = | W | N

4 —5

A1
120

Table 5.8-24.. Element variable values and differentials at sub-
control volume centers for pyramid elements.

sub-volume | ¢ n ¢ | dédndC

1 | 10| 4
48 48 | 240
9 19 [ 19| a
48 48 | 240
3 v [ 19 | 4
48 48 | 240
4 w1 |4
48 | 48 | 240

3

5 0 0 :

Table 5.8-25.. Subcontrol face definitions for exact surface area
calculation on pyramid elements.

Face Point Set
I 6 |10 |19 13
2, 7 | 10|19 | 15
3 8§ |10 | 19| 17
4 9 | 18 | 19 | 10
5 12 | 13 | 19 | 18
6 o5 |19 |13
7 4 117 11915
8 16 | 18 | 19 | 17
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Figure 5.8-9.. Pyramid subcontrol points humbering

Table 5.8-26.. Subcontrol volume definitions for exact volume
calculation on pyramid elements.

Volume Point Set
I I 10| 9 |12 13|19 |18
2 6 7 10| 13|11 |15 |19
3 7 0|15 |14 |17 |19
4 9|10 9| 4 |18 |19 | 17|16
5 s |19 |16 |18 |12 |13 |11 |15 |14 |17
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5.9. INTERPOLATION FUNCTIONS AND NEGATIVE
COEFFICIENTS

A sufficient condition for a monotonic differencing scheme is that all the off-diagonal terms in the
stencil be of opposite sign from the diagonal term [155]. Coefficient sets with mixed signs in the
off-diagonal entries can potentially admit oscillatory solutions. In this section, the sign convention is
that diagonal elements are negative and oft-diagonal elements should be greater than or equal to zero.
The term “negative coefficients” refers to one or more negative oft-diagonal coeflicients. Schemes with
positive coefficients are usually considered important only when designing upwind convection
operators, but they may be just as important for diffusion operators. Monotonic diftusion operators are
most useful for artificial viscosity schemes and projection methods in application to the low Mach
number Navier-Stokes equations. Positive coeflicients are particularly important for the Poisson
equation that arises when calculating a velocity correction to the continuity equation. The computed
field for the velocity potential should be smooth so that no oscillations are introduced into the pressure

field.

Mixed-sign off-diagonal coeflicients commonly arise in finite-element-like methods for describing the
diffusion operator. Christie and Hall [156] note that applying the Galerkin finite-element method
(GFEM) with bilinear quadrilateral elements to harmonic functions sometimes results in negative
coefhicients. It was later discovered that there is a threshold element aspect ratio for positivity, and
negative coefficients are produced on meshes of rectangular elements above that threshold value. Several
authors note that the threshold aspect ratio for the quadrilateral element is v/2 with GFEM and the
value is v/3 with the control volume finite-element method (CVFEM) [157, 158, 154]. The values for the
aspect ratio limits only strictly apply to orthogonal structured meshes. Notably, the five-point difference
stencil for the 2D finite-difference method never generates negative coeflicients. By deduction, the
integral formulas that use extra stencil points, introduced by the element-based methods, generate
negative coefficients.

A word on oscillations is required before continuing. Smooth solutions are possible with negative
coefhicients. Finite-element and finite-volume analysis codes for diffusion processes, such as conduction
heat transfer, may never experience oscillations. A forcing function is required to induce the
oscillations, like a boundary layer with the convection-diffusion equation [159] or an ill-behaved source
term in the continuity equation. The mass balance for a control volume is the source term in the
projection method. If the mass balance from a time integration step is particularly bad, the projection
scheme must smooth large errors. If there are negative coefhicients for the velocity potential, then
resulting velocity potential field may be non-smooth, which causes the pressure field to be non-smooth.
The result is oscillations which grow into the solution and make for a non-robust solution process.

Causes of negative-coefficients are being studied in order to design robust solution algorithms for the
Navier-Stokes equations. The numerical method of primary interest is the CVFEM, though results for
the GFEM are included for comparison. The GFEM community describes negative-coefhicient effects as
“hour-glassing”. The “hour-glass" oscillations are most common to reduced-integration formulations
for the diffusion equation, and stabilization methods [160, 127] have been developed to damp the
oscillations. In the CVFEM [143, 161], negative coefhicients are prevented by shifting the integration
points for the diffusion flux formulation out towards the edges of the control volumes and elements.
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The method is termed “integration point shifting" in this section. There is no general way to control the
coefhicient signs when skewed quadrilateral elements are used with arbitrary connectivities. Coefficient
control is not a panacea for negative coefficients since integration point shifting generally reduces the
accuracy. Ultimately, the proper mesh will have no negative coefficients at all.

In this section, the numerics behind negative coefficients are discussed for the diffusion operator given

by
09
a—nidS, (5-391)
L
where the surface differential is defined by Eqns. 5.385. Integration point shift functions are derived for
the CVFEM diffusion operator. Shift functions are presented for both two and three dimensions which
guarantee coefficient positivity for a particular element aspect ratio. Also, the integration point shifting

for CVFEM is shown to be similar to hour-glass stabilization for GFEM.

5.9.1. Positive Coefficients for Orthogonal Meshes

Negative coefficients arise in the off-diagonal coefficients when the aspect ratio of an element becomes
large. Consider the elemental flux contributions to the control volume centered about Node 3, shown
in Fig. 5.9-1. The first off-diagonal node to have a negative coefficient is the side node farthest from the
control volume center, Node 4. The negative coefficient is associated with the vertical flux over the long
horizontal face. At the integration point on the long horizontal face, the flux is approximated by an
average of the difference between Nodes 3 and 2 and the difference between Nodes 4 and 1. The
weighting between the two differences is determined by the location of the integration point. The
negative coeflicient is removed by removing the influence from the Node 4-1 difference. The integration
point is shifted farther from Nodes 4 and 1, towards Nodes 2 and 3. The integration points are shifted
such that the element-level coefficients are positive, a sufficient condition for global positivity.

ni

|
!
!

X

1 2

Figure 5.9-1.. Control volume faces in a single element. Contri-
butions to the the control volume centered about node 3.

Integration point shift functions and the critical aspect ratio are derived for isoparametric quadrilateral
elements with bilinear shape functions, and hexahedral elements with trilinear shape functions. Only
the orthogonal form is considered. Linear triangles are discussed since they can also produce negative
coefhicients. For linear elements, only the element geometry (mesh quality) can be modified to control
negative coefhicients. With isoparametric bilinear and trilinear elements, both the geometry and the

288



location of the integration point control negativity. In addition, integration point shifting is compared
to finite-element hour-glass control. Positive coefficients are achieved by either shifting the element
integration points or applying the hour-glass stabilization matrix, and in some cases the two are
identical.

5.9.1.1. Aspect Ratio Definition

In this section, the isoparametric coordinates for an element are oriented such that the aspect ratio is
greater than or equal to one. In two dimensions, the aspect ratio for an orthogonal element is the ratio
between edge lengths. In three dimensions, each element has two aspect ratios since there are potentially
three different edge lengths. The aspect ratios are taken relative to the shortest of the edge lengths which
has a reference length of one.

5.9.1.2. Quadrilateral Elements

The coefficients for the diffusion operator result from the combination of two basic second-order
accurate diffusion operators: the edge operator and the centroid operator, shown in Fig. 5.9-2. The two
operators represent the extremes in evaluating derivatives using the bilinear shape function within the
element. The edge scheme always gives positive coeflicients while the centroid scheme gives rise to
negative coeflicients above a certain aspect ratio. The centroid scheme results from evaluating all the
derivatives for the four control volume sub-faces at the element centroid, equivalent to reduced
integration [160] in GFEM. The edge scheme results from evaluating the derivatives out at the ends of
the sub-faces in CVFEM or out at the nodes in GFEM. The edge scheme returns the standard five-point
finite-difference operator. The traditional CVFEM [161] uses an equal weighting of the edge and the
centroid scheme. The GFEM uses one part edge to two parts centroid. The GFEM is more prone to
oscillations with high aspect ratio elements than the CVFEM because it contains a larger weighting of
the centroid scheme. The single-point-integrated GFEM element will be the most unstable since it is a
pure centroid scheme.

[ J L L ] [ J L ]
[ - @ L ] % @ @
X
XX X
X
@ @ L ] % [} L J
a b C

Figure 5.9-2.. Flux integration points (X) determine nodal (e) con-
tributions to the coefficient stencil: a) mid-face rule of CVFEM,
b) edge—operator, c) centroid—operator (one-point integration).

The coefhicient signs for a rectangular element are controlled by moving the integration points away
from the centroid of the element. The smallest value of the integration point shift that satisfies
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coeflicient positivity is found by symbolically integrating the diffusion flux over a control volume.
Consider the diffusion operator evaluated over a collection of equal-size rectangular elements. Each
element is longer by a factor of AR in the x-direction than the y-direction, where AR is the aspect ratio
of the elements. The integration points can be shifted in the {-direction by s and in the 7)-direction by ¢.
The element coefficients that contribute to the equation centered at Node 3 in Fig. 5.9-1 are:

14+ AR? —2sAR? — 2t
SAR
—1+3AR? 4+ 2s AR + 2t
SAR
3+ 3AR? + 2sAR? + 2t
SAR (5-392)
3— AR? +2sAR* + 2t
SAR

o1

G2 -

¢z —

G4

The positivity constraint for Node 3 comes from coefficient 4 in the element matrix, where the
coefficient becomes negative for large values of aspect ratio. The s-shift removes the effect of aspect
ratio, while the ¢-shift has no effect on negativity. For CVFEM, the integration points on vertical faces,
in the longer x-direction, should be shifted from the mid-faces out towards the element edges by s. The
y-direction flux is the only flux effected by the shift so the y-direction flux is the flux associated with
negative coeflicients. The minimal amount of s-shift required to maintain positivity depends upon the
aspect ratio,
1AR? -3

R
The maximum aspect ratio for which the unshifted CVFEM remains monotone is V/3. A similar
formula exists for GFEM, where s and ¢ are shifted from the Gauss points at 4-1/+/3. The element
coefficients that contribute to the equation centered at Node 3 in Fig. 5.9-1 are:

AR > /3. (5:393)

34 3ARY — (14 v3s) AR — (1+3t)

b1 12AR

34 3AR? + (1+3s) AR + (1+3t)

b2 12AR

=3 3AR? — (1+3s) AR — (1 +3t)

b 12AR

3—3AR® + (1+/3s)" AR? + (1 + V3t)"
12AR

(5394)

4 .

Similar to the CVFEM, the s-shift is the only shift that affects the aspect ratio term. The positivity
constraint for Node 3 comes from coefficient 4 in the element matrix,

3AR? —4 1

SARE 5 AR > V2. (5-395)

The maximum aspect ratio for which the unshifted GFEM remains monotone is V2.

290



The shift values are very sensitive to the aspect ratio, out to an aspect ratio of about four. The values of
the integration point shift function are plotted as a function of the aspect ratio in Fig. 5.9-3. At that
aspect ratio, the shifted integration points are near the edge of the element. Since the requisite
integration point shift rapidly reaches the element edge for increasing aspect ratio, it can be argued that
the maximum shift should always be taken. It will be shown in the section on accuracy that integration
point shifting leads to a general loss in accuracy on non-orthogonal meshes. Therefore, it may be
desirable to use Equation 5.393 to compute the minimal shift for each element. The accuracy
consideration must be traded against the algorithmic complexity of computing geometry-dependent

shape functions for each element.

0.5

N
'S
e

=
w
—T—

1
1
1

1
o
e

—— CVFEM, min(AR) = sqrt(3)
==== GFEM, min(AR) = sqrt(2)

=
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T

Integration Point Shift
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1
]
]
]
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Element Aspect Ratio
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Figure 5.9-3.. Integration point locations must be shifted out to-
wards the element-edge with increasing element aspect ratio.

5.9.1.3. Reduced Integration

One-point integration methods for quadrilateral and hexahedral elements are popular because they are
computationally efficient. Sometimes, oscillations occur and are called hour-glass modes after the
displaced element shapes. Hour-glass stabilization methods prevent the hour-glass oscillations from
occurring. The hour-glass terms are derived by examining the eigenmodes of the finite-elements and
noting that there are missing mode shapes when the elements are integrated at the center [160]. The
stabilization term adds the effects of the missing mode shapes back into the element formulation.

It is shown here that the hour-glass stabilization terms have the same effect on the element coefhicients as
shifting the integration points in two-dimensional elements. Both the hour-glass stabilization and the
integration-point shifting modify the discretization to look more like a five-point scheme; or, more like
the edge scheme of the previous section. The H-stabilization method is commonly used [127] in the
GFEM with reduced integration. For quadrilateral elements, the element matrix for the hour-glass
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stabilization term is

-1 1 -1 1
1 -1 1 -1

Cos | 1 1 1 1| (5-396)
1 -1 1 -1

where the constant (', contains scaling information. The first row of the hour-glass stabilization
matrix, Equation 5.396, can also be derived by subtracting the matrix coefficients for the one-point
integrated GFEM, Equation 5.397,

b1 : 1+ AR? b5 : _ 14+AR?
A o MR (5.397)
P2 4AR Py : 4AR

from the coefficients for the five-point difference scheme, Equation 5.398,

. . 1+ AR?
¢1 . 0 ¢3 . 2AR ( 8)
by - AR2 by 1 5-39
2 2AR 4 - 2AR

The resulting coefhicient set is identical to the hour-glass stabilization matrix, Equation 5.396, if the
multiplier Cy, = (1 + AR?)/4AR. The hour-glass stabilization matrix is added to a diffusion
operator to make it look more like a five-point finite difference scheme. Note that the multiplier used by
GFEM practitioners [127] is Ct,g = 1. The hour-glass stabilization matrix can also be used with other
schemes. The multiplier for standard GFEM is Cy,g = (1 + AR?)/6.AR. The multiplier for standard
CVFEM is Cyg = (1+.AR?)/8AR, though conservation is only guaranteed on rectangular meshes.

5.9.1.4. Triangular Elements

Linear triangular elements can also produce negative oft-diagonal coefficients. There are no
shift-functions for triangles since the gradients are constant over the element. Negative coefficients
result from the geometry of the element.

Nodal coefhicients for a triangular element are computed for the diffusion flux contributions, shown in
Fig. 5.9-4. The nodal coefficients for the diffusion flux contribution to the control volume centered
about Node 1 are

Itana (1 + tan? )

o1 2 tan (3 (tan o + tan 3)
' 1 (tanatan g — 1)

X 2 (tana + tan j3) (5399)
. 11

¥ 2 tan 3

where the base edge length is 7 and the two adjacent vertex angles are aw and 3. The conditions required
to ensure that all the off-diagonal terms remain positive are combined from constraints on all three
control volume contributions,
tana > 0
tan 8 > 0 (5.400)
tanatan g > 1.
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The triangular element yields positive off-diagonal coefficients if 0 < av < 7/2,0 < 8 < 7/2, and
/2 < o+ 8 < m. The triangle must be acute.

1/ & P\,
r

Figure 5.9-4.. Triangular element geometry in defined by edge
length and two vertex angles.

In a previous work [162], quadrilateral elements were subdivided into triangular elements using
edge-swapping, along with a Delaunay algorithm, to minimize the effect of negative coefficients. Given
a collection of nodes, a Delaunay triangulation of the nodes will generate triangles where the minimum
angle between vertices is maximized, leading to near-equilateral triangles that satisty Equation s5.400.

5.9.1.5. Hex Elements

The aspect ratio limit for the CVFEM diffusion operator with orthogonal, hexahedral elements can be
as large as V2 if the base is square. The three-dimensional element is more difficult to control because
there are two aspect ratios. The local element node numbering for a hexahedron is defined in Fig. 5.8-4.
Let the edge length between Nodes 1 and 2 be of value A, the edge length between Nodes 1 and 4 be of
value B, and the edge length between Nodes 1 and s be of value C. These are the &, 1, and ¢ directions.
The parametric representation of the nodal coefficients for the element contribution to the control
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volume centered about Node 1 is

9( A2B®+ B2C?+ (2A?)

o1 -

64ABC
_ 3(—A2B% 4+ 3B2C2 — (2A?)
02 64ABC
_ 3(—A2B2 4 3B2C? + 3C2A2)
03 64ABC
. 3(—A2B% — B2(C? 4 3C%A2)
01 64ABC
(3A2B2 — B2C? — (242)
b5 cIABC (s.401)
. (3A2B2 4 3B2C2 — (242)
% - 64ABC
. ( AQBQ + BQCZ + C2A2)
o7 64ABC
‘ (3A2B2 — B2(C? + 3C242)
05 : 64ABC '

The region for positive coefficients is plotted in Fig. 5.9-5 which comes from examining coefficients for
Nodes 2, 4, and 5. The maximum allowable aspect ratios occur for the case of a square base. If the base
edges are longer than the vertical edge, then the maximum aspect ratio is V2. If the vertical edge is
longer than a base edge, the maximum aspect ratio is 1/ 3/2.

2.5_----|""|""|""|""
20 | ]

1.5 F ]

(C/B)*

1.0 | .

0.5 | 7 ]

0.0-....I....I....I....I....-
0.0 0.5 1.0 1.5 2.0 2.5

(C/A)

Figure 5.9-5.. Limits of Edge-Length Ratio for Positive Coefficients in 3D CVFEM.

The integration points in the CVFEM scheme can be shifted by s, ¢, and w in the &, 1, and ¢ directions.
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The conditions for positive coefficients are

1 1 S U
A21—-2s B?23+42t C?23+2u

11 L1 1 s100)
B21-20 (?3+2u A%3 4 925 5402
11 L1 11

C21—-2u A?2342s B23+2¢
The relations are nonlinear and require iteration to extract the limiting values of s, ¢, and .
The coefhicients that are generated by the standard GFEM operator in three dimensions have no
allowable maximum aspect ratio. The only element shape that does not have negative coefficients is a

cube, and even then the coefficients of the six nearest nodes are zero. The parametric representation of
the nodal coefficients for the element contribution to the equation associated with Node 1 are

4( A’B*+ B?C*+ (C*A?)

o1 B 36ABC

' 2(-A’B* 4+ 2B°C? — (*A?)
02 36 ABC

' (—A2B? 4+ 2B%C? + 2C% A?)
93 36ABC

' 2(—A’B? — B?C?+20C7A?)
01 36ABC

2(242B% — B2C? — (?A?)

b5 GABC (5.403)

' (2A2B? + 2B2C? — (24?)
% - 36ABC

. ( AZBQ + B202 + C2A2>
o7 36ABC

_ (2A2B2 — B2C? + 202 A2)
05 : 36ABC '

The contributions from Nodes 2, 4, and 5 are such that there will be negative coefhicients for any
element shape other than a cube.

Single-point integration is also used for the GFEM hexahedral element. Unfortunately, there is not a
clear analogy between the integration point shift and hour-glass stabilization in three dimensions. The
element matrix for the hour-glass stabilization term is

(4 2 0 2 2 0 -2 0
29 4 2 0 0 2 0 -2
0 2 -4 2 -2 0 2 0
2 0 2 -4 0 -2 0 2
Cel 9 0 2 0 -4 2 0 2| (s-404)
0 2 0 -2 2 —4 2 0
2 0 2 0 0 2 —4 2
L 0-2 0 2 2 0 2 —4|
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where the constant C,, contains scaling information. The hour-glass stabilization matrix does act to
make the diagonal terms more negative, and the problematic off-diagonal terms more positive.

5.10. H-ADAPTIVITY MESHING

Note: we currently only allow uniform refinement with no load balancing (12/01). We have not yet
decided on a scheme for integrating fluxes over h-refined meshes. We have not yet decided on a
prolongation approach for the mass flow rate at faces.

5.10.1. H-Adaptivity and Flux Construction

The equation assembly in our control volume method is based on integrating fluxes over control
volume sub-faces within an element. A typical h-adapted patch of elements is shown in Figure 5.10-1.
The “hanging nodes" do not have control volumes associated with them. Rather, they are constrained
to be a linear combination of the two parent edge nodes. There is no element assembly procedure to
compute fluxes for the “handing sub-faces" associated with the hanging nodes that occur along the
parent-child element boundary.

One possibility is to create a sub-set of element faces that contain hanging-nodes. The fluxes across the
hanging sub-faces can then be processed using local nodal information. This precludes computing
localized gradients across the face.

The SIERR A h-adaptive scheme is driven at the element level. Refinement occurs within the element
and the topology of refined elements is the same as the parent element. If the topology restriction was
relaxed, then the following schemes could be used.

Aftosmis [163] describes a vertex-centered finite-volume scheme on unstructured Cartesian meshes. A
transitional set of control volumes are formed about the hanging nodes, shown in Figure 5.10-2. on
unstructured meshes. (This would require a series of specialized master elements to deal with the
different transition possibilities in SIERR A and would be a burden on the application teams.)

Kallinderis [164] describes a vertex-centered finite-volume scheme on unstructured quad meshes.
Hanging nodes are treated with a constraint condition. The flux construction for a node on a
refinement boundary is based on the unrefined parent elements, leading to a non-conservative
scheme.

Kallinderis [165] describes a vertex-centered finite-volume scheme on unstructured tetrahedral meshes.
Hanging nodes are removed by splitting the elements on the “unrefined” side of the refinement
boundary. Mavriplis [166] uses a similar technique, but extends it to a general set of heterogeneous
elements, shown in Figure 5.10-3. (This would require a change to the topology rules in SIERR A as well
as splitting elements along the refinement boundary, but there would be little impact on the application
codes other than supporting heterogeneous meshes.)
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Use lin¢ar
constraints _f(_)r
nodal condition,

---4---+--=—_Subfaces have
| no fluxes

Figure 5.10-1.. Control volume definition on an h-adapted mesh
with hanging nodes. (Four-patch of parent elements with refine-
ment in bottom-right element.)

5.10.1.1. Prolongation and Restriction

Nodal variables are interpolated between levels of the h-adapted mesh hierarchy using the traditional
prolongation and restriction operators defined over an element. The prolongation operation is used to
compute values for new nodes that arise from element sub-division. The parent element shape
functions are used to interpolate values from the parent nodes to the sub-divided nodes.

Prolongation and restriction operators for element variables and face variables are required to maintain
mass flow rates that satisfy continuity.

5.10.1.2. Mass Continuity

Care must be taken to ensure continuity of mass between control volumes that contain hanging
sub-faces. Especially since control-volume balances at hanging nodes are replaced by constraint
conditions.

We need a list of the hanging faces as well as a means of identifying the hanging nodes on each face.
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Figure 5.10-2.. Control volume definition on an h-adapted mesh
with transition control volumes about the hanging nodes. (Four-
patch of parent elements with refinement in bottom-right ele-
ment.)

5.10.1.3. Nodal Gradients

The nodal gradients are approximated by integrating over the surface of the control volume and
applying the discrete form of the Gauss divergence theorem. There are two possible approaches for
dealing with the hanging sub-faces. In the first approach, the hanging sub-faces are processed separately.
In the second approach, the sub-faces are ignored but the unclosed surface integral is corrected by a
reference value, namely the nodal value associated with the control volume centroid,

99
817

av = / (¢ — ¢p) ngdS (5-405)

5.10.2. Dynamic Load-Balancing

Dynamic load-balancing is required as the mesh is adaptively refined across parallel processors. Some
processors may end up with more refined elements, so the work load increases. We will use the Zoltan
dynamics load-balancing package to drive the load-balancing. We need a good measure of the compute
load, most likely a combination of the time to assemble equations and the solve them.
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Figure 5.10-3.. Control volume definition on a heterogeneous h-
adapted mesh with no hanging nodes. (Four-patch of parent
elements with refinement in bottom-right element and splitting

in adjacent parent elements.)
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6. IMPLEMENTATION

This is a software implementation description for the ASC application code Fuego. The Fuego code is
part of the multi-mechanics suite of codes built upon the SIERR A Frameworks. The SIERR A
Frameworks are designed primarily for unstructured, finite-element mechanics codes. The Fuego code
is based on a finite-volume method. Finite-volume framework requirements that differ from traditional
finite-element frameworks are defined throughout the document. The limitation to vertex-centered
finite volume schemes is particular challenging for the implementation of turbulence model wall
functions and h-adaptive meshing.

The SIERR A Frameworks [167] provide a hierarchy for describing a mechanics code or a
multi-mechanics code. At the top level is the domain which contains all the support infrastructure for
the code. Within the domain is the procedure which manages time integration and the exchange of data
between any multi-mechanics components. Within the procedure can be multiple regions. A region
contains a description of some particular physics. Within a region is a collection of mechanics which can
either be the math models that describe the physics or part of a solution algorithm.

The bulk of the Fuego code exists at the region level and below. The region-level design philosophy for
the Fuego code is based on a core continuity/momentum transport capability with a configurable set of
transport math models. The sub-mechanics within the region define the collection of transport
equations that describe the physics. In this sense, Fuego itself is capable of supporting multi-mechanics
within its own context because it can generate multiple regions, each with a different collection of
transport equations.

We use a finite-volume scheme for the discrete form of the Fuego math models, derived from the
control-volume, finite-element methods (CVFEM). The most significant difference between our
CVFEM implementation in SIERR A and a FEM implementation is in the application of boundary
conditions. Most of the boundary conditions for CVFEM are applied as fluxes. The fluxes over an
element face are constructed from all the information in the parent element. The fluxes are linearized
such that there are both matrix and right-hand-side contributions.

6.1. SIERRA FRAMEWORKS

The Fuego code is built upon the SIERR A Frameworks. The SIERR A Frameworks are written in C++
and make extensive use of standard template library (§TL) container classes. A good understanding of
STL is useful in understanding how to use the SIERR A Frameworks and access data within the
Frameworks. Much of the code design documentation is scattered throughout in-source comment-lines
and the product design documents (PDD) that accompany each source code check-in to the version
control repository. A description of SIERR A Frameworks functionality is contained in the SIERR A
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requirements document [168]. The Frameworks theory and design are described in the design
document [167]. The following taxonomy describes some of the key mechanisms of the SIERR A
Frameworks:

procedure The procedure support class contains methods for manipulating the procedure object. The
procedure controls the time integration process and the exchange of information between regions
via a transfer. Multi-mechanics code coupling usually occurs within the procedure between
difterent regions.

region The region support class contains methods for manipulating the region object. The region
contains the description of the math models and the solution procedures for advancing a time
step. Most of the code that makes an application code unique is contained within the region. The
regions are designed to have no direct dependency on procedure code or code from other regions.
All external data is loaded into local control data or loaded via transfers.

transfer The transfer object is invoked within a procedure in order to move data between regions. Each
region has its own mesh even though they may fill the same physical space. The transfer object
manages the interpolation of data between the meshes.

mechanics A mechanics is a generic object within the Frameworks and contains methods for operating
on itself or other mechanics objects. It may invoke workset algorithms to efficiently process data.

instance An instance is a member of a list of a mechanics object. An instance is typically unique in its
association with a mesh object.

context A context is alabel that is applied to a collection of objects.

extent An extent is the collection of objects that have the same context.

iterator An iterator is a method of looping through a list of objects.

mesh object A mesh object is part of mesh; i.e., an element block, side-set, or node-set.

workset The Frameworks uses a caching strategy to process floating-point information. The
Frameworks processes the governing equations associated with the math models on an
element-by-element basis. A workset is a collection of elements that are processed at one time
such that all the local data required for the evaluation will fit in cache. Heterogeneous worksets
are used for boundary condition flux processing. A heterogeneous workset is defined by an iterate
such as a collection of element faces in a side-set, but processes data based on the parent topology
such as the parent elements.

workset algorithm The method for processing a workset is a workset algorithm. Local variables are
registered with the algorithm that have associativity with global data. The Frameworks manages
the transfer of data to and from the workset algorithm via assembles, scatters, and gathers.

solver A solver object is responsible for assembling a linear system, applying boundary conditions and
constraints, and solving the linear system. This object is the interface to the linear solver packages.

library A library is a method of storing lists of data.

control data The control data is a dynamic list of integer, real, and string data that is accessed by string

labels.
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master element A master element defines the topology of an elements and provides methods for
specifying integration locations, performing interpolations, and processing geometry (areas,
volumes, and gradients).

parser The parser system is a method for transferring information from a formatted text input file to
the application code. The SIERR A Frameworks supplies a parsed input system. There are three
parts to the parsing system: 1) a database of commands using XML, 2) call-backs that are
provided by the application code to take action on a line command, and 3) code for linking the
XML commands to the call-backs.

The Frameworks objects that form the foundations of an application code are created during the

parsing phase.

6.2. FUEGO FRAMEWORKS

The SIERR A/Fuego code is a collection of C++ and FORTR AN code. The routines written in C++
contain the frameworks—type operations such as solution algorithms, data management, and variable
registration. The routines written in FORTR AN contain the element and boundary condition
routines that describe the math models. Some of the Fuego frameworks source code files are listed in
Table 6.2-1 with their functionality. These files contain one or more subroutines or functions.

The matrix assembly and linear solve procedures are managed by the SIERR A Frameworks solver
objects. The “support” classes listed above for element routines and boundary condition routines
register themselves with the solver in the parsing phase. The solver then calls its registered methods to
assemble the matrix.

The code is assigned a version number consisting of three digit fields, separated by two periods, X.Y.Z.
The first digit field (leftmost) is the major number. The major number will be o during development
and will increment to 1 upon the official release. The second field is the minor number and represents
significant jumps in capability. During development, the minor number will increment with each code
stage. The third digit field (rightmost) is the patch level and represents minor modifications and
bug-fixes. Changes in input syntax also force a patch level increment. The initial version numbering
schedule is shown below.

0.1.0 - Stage One, PUVW, laminar convection, isothermal, uniform

0.2.0 - Stage Two, PUVWT, laminar convection, thermal, uniform

0.3.0 - Stage Three, PUVWKE, turbulent convection, isothermal, uniform
0.4.0 - Stage Four, PUVWKEHRY, turbulent convection, thermal, nonuniform
0.5.0 - Stage Five, PUVWKEHY, add EDC model for turbulent combustion

0.6.0 - Stage Six, PUVWKEHYS, soot and fire
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Version-number matching is enforced for the input file. The code will abort if the requested version
number does not match the current internal code version number.

The default repository configuration of Fuego is to have code-coupling turned on. The code-coupling
feature is activated in the repository in order to run the nightly regression tests for
coupled-mechanics.

6.2.1. Framework Control Data

The control data are dynamic lists of integers, reals, and strings, which are used to store data. In Fuego,
the control data is used to store solution parameters and user-defined constants. There is control data
that exists at different scopes within the SIERR A Frameworks. There is control data for the procedure,
the region, instances of an element mechanics, and instances of a generic mechanics.

A control datum is referenced by a string label. The string-matching is case-sensitive. The Fuego code
will use all-capital letters for control data labels. The control data is registered dynamically in the source
code, usually during the parsing phase.

The procedure control data contains information about the time integration process, shown in
Table 6.2-2. For the purpose of mechanics code-coupling, it should be as mechanics-generic as

possible.

The Fuego region control data contains information relevant to the solution procedure for the fire
physics math models, shown in Table 6.2-3. The region control data is also a means for passing
information back to the calling procedure.

The boundary condition mechanics instance control data, shown in Table 6.2-s, is used to hold
information for the boundary conditions. The boundary conditions are implemented as generic
mechanics objects. When the boundary condition needs specified values, use either a CONSTANT
value, a FUNCTION, or a user-supplied SUBROUTINE. The “function name" must match an entry
in the FUNCTION library. The “subroutine name" must match a valid subroutine that has been
linked to the code.

6.2.2. Framework Procedure

The procedure code manages the time integration and the exchange of data between regions. The
procedure object is based on the Afgo_Procedure class (see Figure 6.2-1), which is derived from a
Fmwk_Procedure class. The Afgo_Procedure class contains additional timing information. The
procedure supports a fixed time step and a variable time step that is set according to a fixed CFL
number. The time step control information is defined in the time-control input block. Within the
time-control block are multiple time-step blocks. The time step block defines valid time step control
parameters for a period of time. The time-step blocks must be contiguous in time. The Fuego code does
not use the time-control block TERMINATION time for a stopping criterion. The start and stop
times are defined by commands within the procedure.
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Two methods are required for the Afgo_Procedure_Support class — initialize() and execute(). The
initialize() method registers control data, initializes the time and step size, calls the initialize() method
for each region, initializes the transfer objects if there are coupled mechanics, sets up the region
evaluation ordering if there are multiple regions, and initializes all material properties with STATE
association. The SIERR A Frameworks will generate a default region iterator where the ordering is
alphabetical by name. The regions should be called in a specific order, so the region type list defines the
evaluation ordering. There is a region list that defines the processing order of the different regions of the
same type. These lists are stored in the procedure control data.

The execute() method performs the time integration. Fuego only supports a transient solution
procedure. The transient solver performs nonlinear iteration over regions within a time step until that
time step is declared converged, and then advances to the next time step. Within a nonlinear iteration,
each region is processed. For each region, there is first an optional pre-nonlinear processing step that
usually involves loading region control data. The region execute() method is then called to solve the
equations. An optional post-nonlinear processing step is taken for the region, usually consisting of a
data transfer. After the nonlinear iteration is finished, the solution variables are advanced and the time
Step process starts over.

The time-advancement method provided by SIERR A rotates the states of the state variables by
swapping pointers. In our solution strategy, the solution in the (N+1) state is always used as an initial
guess in the nonlinear solution procedure. When the states are swapped, the initial solution in the
(N+1) slot is actually the solution from the (N) slot of the previous time step which is now the (N-1)
solution. In order to get the best initial guess, the Fuego code provides additional methods to copy the
solution in the new (N) state forward to the new (N+1) state for all nodal and element state variables.
The state manipulation is actually called out of the region code since this requirement is particular to
the Fuego mechanics. The state copy is only performed for the first subiteration within the time step
(remember there is subiteration over regions within a time step and subiteration over equation sets
within a region).

6.2.3. Framework Region

The region code manages the nonlinear solve of the nonlinear equations describing a sub-mechanics
(see Figure 6.2-2). The matrix assembly, linear-solve, and scatter operations are handled entirely by the
Fmwk_LinearSolver class and the finite element interface (FEI). Each equation set in the fire mechanics
has an associated linear_solver. The linear_solver is told, in the parser registration phase, which workset
algorithm to use to build matrix contributions.

A region object is based on the Afgo_Region class, derived from the Fmwk_Region class. The
Afgo_Region contains the material property_evaluator object Afgo_Material and references to all the
nodal data. The region code requires two methods — initialize() and execute(). The linear solver
processing order is defined in initialize(). The linear solvers are labeled according to the equation set
they are solving: “solve_p", “solve_u", “solve_v", “solve_w", “solve_k", “solve_e", “solve_t", “solve_h",
“solve_y", “solve_n", and “solve_s". The initialize() object then calls the initialize object for all the
element mechanics instances. The material property_evaluator objects are then initialized.
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The execute() method manages the nonlinear iterative solve. Just as the procedure code will perform
iterations over the region within a time step, the region code calls for a specified number of iterations
over the equation sets within the region. On the first time through the region code, for each time step at
the procedure level, the state management routines are invoked. Material properties are evaluated by the
property_evaluator object at the beginning of each nonlinear iteration within the region. The solver list
is iterated upon to loop through the equation set solves. The nodal pressure gradient contribution to
the momentum equations is added by the setRHS() method. The interior equations and flux boundary
conditions are assembled using the loadBlock() method of the linear_solver. The nodal boundary
conditions are then applied through a call to loadBC(). The equations are solved and the solution is
scattered back to the global nodal arrays. We use the delta-form of the linear system, so additional state
management routines are required to copy the solution “delta” into the solution variable.

When there are multiple species transport equations, an additional temporary array is used to act as a
solution array with the linear solver. Special data management routines are used to locally gather and
scatter mass fractions from the global “mass_fraction" array to the local “ysolve" array.

When solving the transport equations for turbulent kinetic energy and turbulence dissipation, the
updating of the turbulent kinetic energy is lagged until both equations have been solved. This allows for
a constant value of k /€ in the source terms of both equations.

There is only one material defined for a region. The material may be a multicomponent gas.

6.2.4. Element Mechanics

Element mechanics are a special class of mechanics that know how to loop over elements (see

Figure 6.2-3) by association with element topology through a master element. Elements are processed by
worksets, so the mechanics is described by a workset algorithm. A workset is a collection of elements
that can be processed (assembled) while remaining in cache memory. All element mechanics workset are
currently (12/o1) hard-wired for hexahedral elements until the convection operator routines can be
generalized.

The transport equations can be configured for a particular collection of physics. The collection of
transport equations is defined by the sub-mechanics of the problem. The sub-mechanics labels are
described in Table 6.2-6.

The SIERR A Frameworks code processes the workset algorithm, loading the workset variables from
global variables, scattering workset variables back to global variables, assembling the matrix and
right-hand side, and assembling other global variables from workset variables. The data management
routines for the workset algorithms are all contained in Afgo_ElemMech_Support.C. The names and
descriptions of the workset algorithms are given in Table 6.2-7. The laminar form of the equations are
separate from the turbulent form.
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6.2.5. Boundary Conditions

We primarily use flux boundary conditions, but also support fixed (Dirichlet) boundary conditions.
Flux boundary conditions make use of the element information adjacent to the boundary face,
generating an element matrix contribution. The flux boundary conditions are implemented as
heterogeneous workset algorithms. There are four flux boundary condition classes:
Afgo_InflowBC_Support, Afgo_OutflowBC_Support, Afgo_SymmetryBC_Support, and
Afgo_WallBC_Support. Each class contains all the workset algorithms needed to evaluate flux
boundary conditions for each of the transport equations. All flux boundary condition routines are
currently (12/01) hard-wired for quadrilateral faces with hexahedral parent elements.

The flux boundary condition worksets are not registered until after all the nodal variables have been
created. The flux boundary condition classes have mechanics algorithms for the registration phase and
workset algorithms for the assembly phase.

The fixed boundary conditions, shown in Table 6.2-8, are derived off of the nodal_contribution() class
within the Fmwk_LinearSolver class. There is an Afgo_DirichletBC class to encapsulate the
boiler-plate methods.

Each boundary condition mechanics can have several “instances”. Each instance shares the same
specified data, but is mapped to a unique collection of side sets and node sets. Each instance has its own
control data.

The data specific to a boundary condition is obtained through the boundary condition instance control
data. Specified values, such as velocity or pressure or temperature, can be either constant, a piecewise
linear function of one of the coordinate axes, or derived from a user-supplied subroutine.

6.2.6. Material

Material properties in Fuego are evaluated using a property_evaluator software object. All properties
are computed as nodal variables. Nodal values are interpolated to sub-faces and sub-volumes. The
material properties are evaluated once outside of the equation-set loop in the region code. The
material_evaluator evaluates properties by list. A list of property names is defined during the
initialization that defines all the properties required to evaluate the equations.

Raw property data is stored in the MATERIAL_PROPERTIES and FUNCTIONS libraries, one
entry for each type of material requested. Currently (11/30/99), only two means of specifying material
properties is supported: specified functions and Chemkin calls. The specified function properties are
defined by the user in the input file. Constant values are defined by a constant function. The second
means of defining properties is through Chemkin. A modified form of the Chemkin linking files will be
placed in the material library entry (see table).

The material property_evaluator object is located in an Afgo_Region object. There is only one material
evaluator per region. Material properties for thermal and/or nonuniform flows must be evaluated using
the Chemkin libraries [169, 170]. A modified version of the Chemkin libraries is installed in the

SIERRA system. The Chemkin FORTR AN routines have been modified such that there are no
common blocks, so the API of some subroutines has changed. Three files need to be present in order to
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run Fuego — the Chemkin input file, the ASCII Chemkin linking file, and the ASCII transport linking
file.

6.2.7. Master Elements

The master element classes contain the topological information required to define interpolations,
integrations, and geometry processing (areas, volumes, and gradients) within an element. The master
elements specific to the element-assembled CVFEM used in the Fuego code are shown in Table 6.2-9.
The fluid flow sub-mechanics currently (12/01) only make use of the hexahedral elements. The heat
conduction sub-mechanics make use of all CVFEM master elements.

6.2.8. User Subroutines

The FUEGO code allows subroutines to be defined and used to set quantities in the code such and
boundary conditions (inflow profiles), transport terms, and initial conditions. The only restriction on

the subroutine being called is its signature or parameter list. Defined signatures are listed in
Table 6.2-10

The subroutine must be dealt with in parsing, initialization, and workset areas of the code. In every
case, the relevant parsing callbacks are in the “register_commands" member function associated with
the input class.

With respect to initialization, the boundary condition classes are the most involved. Here, each
mechanics instance has its own user subroutine and associated user constants. When the parsing triggers
a subroutine callback, the appropriate flag is set and the subroutine name is stored. The handler then
stores the subroutine name and any constants associated with it in the instance’s control data. There is
no other initialization to be done for subroutines, although it is important to guard any function (load
curve) calls (or function initialization) with a check on the “type" of condition being set (constant, load
curve, or subroutine).

In the workset portion of the boundary condition codes, the variable in question (associated with a
subroutine) will need to be calculated. At this stage, the variable “type" within the code gets checked; if
it’s a subroutine type, the code takes its name from the instance control data. At that point, the
subroutine pointer itself can be retrieved from the framework registry, its signature checked, and a call
made to load the relevant boundary data.

In the transport equations, things are a bit less complicated: the region control data contains the
appropriate subroutine associations. However, it could have one for each transport variable. Parsing
callbacks are again defined in the “register_commands” member function. In this case, the parsing
callback looks at the variable indicated by the parsing (eg. a source term for pressure) and creates an
association within the region control data for that particular variable and the given subroutine name. As
with the boundary condition implementation, there is precious little to do to initialize a user
subroutine. The only task the callback has is to register the subroutine name in the region’s control data
for later use.
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In the workset portion of the code, the source term subroutines are called immediately after the
FORTRAN element routine. If the appropriate flags are set, the subroutine name is retrieved from the
region’s control data, the subroutine pointer is retrieved from the framework registrar, and the
signature checked. At this stage, the subroutine can be called. The subroutine takes from the user
source terms for the right hand side and the diagonal entries on the left hand side of the discretized
algebraic equations.

Like the source term implementations, initial condition user subroutines are less complicated than the
boundary condition implementations. Again, the parsing callbacks are triggered in the
“register_commands" member function and again, there is little to do in initialization but store the
subroutine name in the instance’s control data. In the “workset” part of the code (or that part that
corresponds to a workset algorithm), the existence of a subroutine association is checked. From there,
the code can retrieve the subroutine pointer from the framework registry, check its signature, and call it.
In the initial condition class, the call is made by overloading the set_nodal_variable member function.
The subroutine pointer is passed in as a parameter and the appropriate nodal variable is set with the
subroutine a single node at a time.

The signatures associated with each use in the FUEGO code are listed in Table 6.2-11.

Fuego Procedure

time integration
inter—region data transfer

Syrinx

Region Fuego Region

Region

Figure 6.2-1.. Fuego Procedure Class

308



Fuego Region

e advance fluid mechanics one time step

e assemble and solve transport equations
e manage sub—mechanics
» evaluate material properties

PP3DH

Element Mechanics \ Framework

Linear Solver

Boundary Condition
Block Contribution

Figure 6.2-2.. Fuego Region Class

PP3DH Element Mechanics

WorkSet Registration WorkSet Algorithm
define work variables process geometry
map gather/scatters average properties
map linear solver feed element routines

Element Routine
evaluate equations
construct element matrices
for linearized system

Figure 6.2-3.. Fuego Element Mechanics Class

309



Table 6.2-

1.. Fuego Frameworks Classes

Afgo_Procedure_Support.C

Time integration procedures and state data management.

Afgo_Region_Support.C

Nonlinear solution procedure within a time-step and linear
solver interactions.

Afgo_Region_Parsing.C

Region-speciﬁc parsing routines.

Afgo_ConstuctElemMech.C

Maybe element mechanics support object to an element block.

Afgo_ElemMech_Support.C

Workset algorithms for the transport equations.

Afgo_ElemMech_Register.C

Workset registration and solver registration for for the transport
equation workset algorithms.

Afgo_Dirichlet_*_Support.C

Data management for Dirichlet boundary conditions.

Afgo_Input_*BC_Support.C

Input parsing for flux boundary conditions.

Afgo_InflowBC_Support.C

Workset algorithms for the flux boundary conditions at an in-
flow.

Afgo_InflowBC_Register.C

Workset registration and solver registration for the flux boundary
conditions at an inflow.

Afgo_OutflowBC_Support.C

Workset algorithms for the flux boundary conditions at an out-
flow.

Afgo_OutflowBC_Register.C

Workset registration and solver registration for the flux boundary
conditions at an outflow.

Afgo_SymmetryBC_Support.C

Workset algorithms for the flux boundary conditions at a sym-
metry plane.

Afgo_SymmetryBC_Register.C

Workset registration and solver registration for the flux boundary
conditions at a symmetry plane.

Afgo_WallBC_Support.C

Workset algorithms for the flux boundary conditions at a wall.

Afgo_WallBC_Register.C

Workset registration and solver registration for the flux boundary
conditions at a wall.

Afgo_Material.C

Material property evaluation methods.

Afgo_ConstlnitCond_Support.C

Methods to set the initial conditions.

Table 6.2-2

.. Fuego Procedure Control Data

CODE_VERSION

“0.0.0", fuego version number must match code

RESTART_VERSION

PROCEDURE_CONVERGENCE

“TRUE" | “FALSE", have we converged within this time step

PROCEDURE_SUBITERATION

o, number of subiterations taken within time step

MAX _PROCEDURE_SUBITERATION | 1, maximum subiterations within time step

DEBUG_LEVEL

o | 1, enable debug messages

PMR_SKIP

1, step interval for evaluating participating media radiation (PMR)

NUM_TIME_PERIODS

0, the number of time step definition blocks

GLOBAL_TIMESTEP_COUNTER

0, the total number of time steps taken

TIMEBLOCK_TIMESTEP_COUNTER

0, the number of time steps taken within the time block

310

“0.0.0", restart file created with a version number must match current




Table 6.2-3.. Fuego Region Control Data

DEBUG_LEVEL

o | 1, provide debugging information

COORDINATE_SYSTEM

coordinate system

REGION_CONVERGENCE

0| 1, has this nonlinear iteration sequence converged

REGION_CUTOFF

o, if all equations meet their nonlinear residual tolerance on the first
subiteration, then shut down the code

REGION_SUBITERATION

o, number of nonlinear iterations over equation sets

MIN_REGION_SUBITER ATIONS

1, minimum number of nonlinear iterations.

MAX_REGION_SUBITERATIONS

1, maximum number of nonlinear iterations.

CONT_NONLIN_TOLERANCE

1.0e-8, tolerance on continuity equation nonlinear residual for stop-
ping sub-iteration process

XMOM_NONLIN_TOLERANCE

1.0¢-8, tolerance on x-momentum equation nonlinear residual for stop-
ping sub-iteration process

YMOM_NONLIN_TOLERANCE

1.0¢e-8, tolerance on y-momentum equation nonlinear residual for stop-
ping sub-iteration process

ZMOM_NONLIN_TOLERANCE

1.0¢-8, tolerance on z-momentum equation nonlinear residual for stop-
ping sub-iteration process

TEMP_NONLIN_TOLERANCE

1.0¢-8, tolerance on temperature equation nonlinear residual for stop-
ping sub-iteration process

ENTH_NONLIN_TOLERANCE

1.0e-8, tolerance on enthalpy equation nonlinear residual for stopping
sub-iteration process

SPEC_NONLIN_TOLERANCE

1.0¢-8, tolerance on species equation nonlinear residual for stopping
sub-iteration process

TRBK_NONLIN_TOLERANCE

1.oe-8, tolerance on turbulent kinetic energy equation nonlinear resid-
ual for stopping sub-iteration process

TRBE_NONLIN_TOLERANCE

1.0¢-8, tolerance on turbulence dissipation equation nonlinear residual
for stopping sub-iteration process

CONT _URF 1.0, under-relaxation factor
XMOM_URF 1.0, under-relaxation factor
YMOM_URF 1.0, under-relaxation factor
ZMOM_URF 1.0, under-relaxation factor
TEMP_URF 1.0, under-relaxation factor
ENTH_URF 1.0, under-relaxation factor
SPEC_URF 1.0, under-relaxation factor
TRBK_URF 1.0, under-relaxation factor
TRBE_URF 1.0, under-relaxation factor
TVISC_URF 1.0, under-relaxation factor

L NORM_SCALING 1.0, Scale L2 norm by number of nodes
TIME_STEP 0.0, fixed time step, copied from the procedure

TIME_STEP_TYPE

o, for h-adaptive scheme

WRITE_STATUS

flag to write status info

CURRENT_TIME

0.0, the current time at the (N+1) time level

CURRENT_TIME

0.0, the current time at the (N+1) time level

SUB_MECHANICS

PUVW | PUVWT | PUVWKE | PUVWY, define math models (equa-

tion sets) to solve.

PERSISTENT_TEMPERATURE

define a temperature for code-coupling, only
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STATE_EVALUATION_MODE

USE_REFERENCE_STATE | USE_REFERENCE_MASS_FRACT]
| USE_REFERENCE TEMPERATURE |
USE_ACTUAL_STATE, defines independent variables for ma-
terial property evaluation within the element block

USE_REFERENCE_TEMPER ATURES

“TRUE" | “FALSE", use library reference value for property eval.

NUMBER_MATERIALS

1, number of materials in the region

NUM_SV_PROPS

o, number of properties to evaluate.

SV_PROP_NAMES[]

list of property names, match material library, string

SV_PROP_VARS][]

list of workset variable names for property variables, string

RESIDUAL_FILENAME

wn

, write the nonlinear residual history

BUOYANCY “NONE" | “BUOYANT" | “DIFFERENTIAL" | “BOUSSINESQ",
activate buoyancy body force terms using one of the listed models
GRAVITY]] gravity vector

BUOYANCY_REF_TEMPERATURE

0.0, buoyancy reference temperature

BUOYANCY REF_MASS_FRACTION XXX

0.0, buoyancy reference mass fraction of species XXX

BUOYANCY REF_DENSITY

0.0, buoyancy reference density

BUOYANCY MASS_REF

o | 1, use mass fractions

BUOYANCY MOLE_REF

o | 1, use mole fractions

NUMBER_OF_SPECIES

o, number of species

MULTICOMPONENT

0| 1, species transport equations are active

SOLVER_SPECIES. NUMBER

o, the species equation are we currently solving

TURBULENCE_MODEL

“laminar” | “k_e" | “vaf" | “kl", turbulence model definition.

NEED_YP

o | 1, compute normal distance from wall

NEED_UTAU

o | 1, compute friction velocity

BUOYANT VORTICITY GEN

o | 1,add BVG model

ADD_MOLECULAR_VISC

o | 1, add molecular viscosity to turbulence model diffusion

OMIT_WALL_TKE

o | 1, wall be treatment for turb ke

TURBULENCE_MODEL_CMU

0.0, k-e model parameter from global constant library

TURBULENCE_MODEL_SIGMA_K

0.0, k-e model parameter from global constant library

TURBULENCE_MODEL_SIGMA_E

0.0, k-e model parameter from global constant library

TURBULENCE_MODEL_CEPS 1

0.0, k-e model parameter from global constant library

TURBULENCE_MODEL_CEPS_2

0.0, k-e model parameter from global constant library

TURBULENCE_MODEL_CEPS 3

0.0, buoyant vorticity generation constant from global constant library

TURBULENCE_MODEL_CBVG

0.0, buoyant vorticity generation constant from global constant library

TURBULENCE_MODEL_CF 1

0.0, v2-f model parameter from global constant library

TURBULENCE_MODEL_CF 2

0.0, v2-f model parameter from global constant library

TURBULENCE_MODEL_ALPHA

0.0, v2-f model parameter from global constant library

TURBULENCE_MODEL_NSEG

0.0, v2-f model parameter from global constant library

TURBULENCE_MODEL_CL

0.0, v2-f model parameter from global constant library

TURBULENCE_MODEL_CETA

0.0, v2-f model parameter from global constant library
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MINIMUM_TIME_STEP

0.0, minimum allowable time step

MAXIMUM_TIME_STEP

0.0, maximum allowable time step

TIME_STEP_CHANGE_FACTOR

1.0, rate at which time step is allowed to change for step to step

CFL_LIMIT 0.0, criterion for specifying time step

MAX CFL 0.0, the maximum CFL number over the mesh
MIN_CFL 0.0, the minimum CFL number over the mesh

MAX REY 0.0, the maximum cell Reynolds number over the mesh
MIN_REY 0.0, the minimum cell Reynolds number over the mesh

SIZE_SOLVER_LIST

1
number of solvers (equation sets)

SOLVER_LIST([]

<« "
solve_puvw
evaluation ordering for equation sets

UPWIND_FACTOR

0.0s, blending factor for pure first-order upwind convection

UPWIND_METHOD

upwind convection method

UPWIND_LIMITER

slope limiter for MUSCL scheme

HYBRID_FACTOR

1.0, multiplier for cell-Peclet number to control hybrid scheme blend-

ing

RHIE_CHOW _SCALING

o | 1, activate the scaled Rhie/Chow scheme

PRESSURE_SMOOTHING

o | 1, activate the fourth-order pressure smoothing

OMIT_DENSITY_DERIVATIVE

o | 1, remove density time derivative from continuity

DENSITY_PREDICTOR

o | 1, use a density predictor in time

THERMODYNAMIC_PRESSURE_IS_VARIABLE

o | 1, all thermodynamic pressure to vary

SCALE_ENTHALPY

o | 1, scale the enthalpy equation

ENTHALPY_FORM

o | 1, use the enthalpy form of the energy equation

EDC_COMBUSTION

o | 1, activate the combustion model

EDC_SOOT

o | 1, activate the soot model

EDC_ABSORPTION

o | 1, activate the radiation absorption model

EDC_REACTION_TIME_SCALE

0.0, characteristic time scale for a chemical reaction

IGNITION_TIME

0.0, time at which the flow is ignited

PRODUCT_MIN

0.0, the minimum mass fraction of products required to ignite

FUEL_NAME

0.0, the name of the fuel species

SOOT_TEMPERATURE_MIN

0.0, the lower limit on temperature for producing soot

SINTEF_SOOT_MODEL

o | 1, use the SINTEF soot model

INDEX_OXY o, the index number for oxygen in the species list
INDEX_FUEL 0, the index number for fuel in the species list
INDEX_CO 0, the index number for carbon monoxide in the species list
INDEX CO2 0, the index number for carbon dioxide in the species list
INDEX Ha 0, the index number for hydrogen in the species list
INDEX H20 o, the index number for water in the species list

STOICH_O2_FUEL

o, the stoichiometric ratio of oxygen to fuel

STOICH_O2_CO

0, the stoichiometric ratio of oxygen to carbon monoxide

STOICH_O2_H2

0, the stoichiometric ratio of oxygen to hydrogen
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Table 6.2-4.. Fuego Element Mechanics Instance Control Data

formationTime

time required to form matrix, for load-balancing

loadMeasure

the number of elements processed, for load-balancing

MATERIAL_NAME

name from MATERIAL_LIBR ARY entry, define material for this el-
ement block

Table 6.2-5.. Fuego BC Mechanics Instance Control Data

VARIABLE TYPE(]

“CONSTANT", “NULL", variable is constant

VARIABLE_TYPE[]

“FUNCTION", “X"|“Y"|“Z", variable is a function of X|Y|Z

VARIABLE_TYPE[]

“SUBROUTINE", name, variable comes from a subroutine

pressure

0.0 | “function name" |, constant value or function name for subrou-

tine name
. <« . " b
x-velocity 0.0 | “function name" |, constant value or function name for subrou-
tine name
. « . " .
y-velocity 0.0 | “function name” |, constant value or function name for subrou-
tine name
. <« . " 1
z-velocity 0.0 | “function name" |, constant value or function name for subrou-
tine name
temperature 0.0 | “function name" |, constant value or function name for subrou-

tine name

OMIT_DIFFUSION_TERMS

turn off the diffusion terms for an outflow boundary

FLOW_MUST_EXIT DOMAIN

force flow to leave domain for an outflow boundary

Table 6.2-6.. Fuego Sub-Mechanics Definitions

T heat conduction, 1 equation

PUVW isothermal, uniform, laminar flow, 4 equations

PUVWT thermal, temperature-form, uniform, laminar flow, 5 equations

PUVWH thermal, enthalpy-form, uniform, laminar flow, 5 equations

PUVWY isothermal, nonuniform, laminar flow, (3+NSPEC) equations

PUVWHY thermal, enthalpy-form, nonuniform, laminar flow,
(4+NSPEC) equations

PUVWKE isothermal, uniform, turbulent flow, 6 equations

PUVWKEH thermal, uniform, turbulent flow, 7 equations

PUVWKEY isothermal, nonuniform, turbulent flow, (s+NSPEC) equations

PUVWKEHY thermal, nonuniform, turbulent flow, (6+NSPEC) equations

PUVWKEHYSN | thermal, nonuniform, soot, turbulent flow, (84+NSPEC) equa-

tions
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Table 6.2-7.. Fuego Element-Mechanics Workset Definitions

assemble_gradient

approximate the gradient of a scalar at nodes by integrating
over control-volume faces, assembling the element-level contri-
butions into the global nodal arrays. This routine is used for the
MUSCL convection scheme.

assemble_pressure_gradient

approximate the gradient of the pressure at nodes by integrating
over control-volume faces, assembling the element-level contri-
butions into the global nodal arrays. This routine is used for a
Rhie/Chow formulation for the continuity equation.

compute_cfl

compute the maximum and minimum cfl number over the ele-
ments

compute_ap

assemble the diagonal scaling term thatis used in the Rhie/Chow
interpolation for mass flow rate

laminar_p

assemble the continuity equation

laminar_p_update

reassemble the continuity equation, but only update the mass
flow rate

laminar_u assemble the laminar x-momentum equation
laminar v assemble the laminar y-momentum equation
laminar_w assemble the laminar z-momentum equation
laminar_t assemble the laminar temperature equation
laminar_h assemble the laminar enthalpy equation
laminar_y assemble a laminar species equation

turbulent_u

assemble the turbulent x-momentum equation

turbulent v

assemble the turbulent y-momentum equation

turbulent w

assemble the turbulent z-momentum equation

turbulent_h

assemble the turbulent enthalpy equation

turbulent_y

assemble a turbulent species equation

turbulent_s

assemble a turbulent soot equation

turbulent_n

assemble a turbulent soot transport equation

turbulent_k

assemble a turbulent kinetic energy transport equation, k-e
model

turbulent_e

assemble a turbulence dissipation transport equation, k-e model

turbulent_k_vaf

assemble a turbulent kinetic energy transport equation, va-f
model

turbulent_e_vaf

assemble a turbulence dissipation transport equation, va-f model

turbulent_v2

assemble a turbulent v2 transport equation, v2-f model

turbulent_f

assemble a turbulent Helmholtz equation, v2-f model
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Table 6.2-8.. Fuego

Dirichlet Boundary Condition Definitions

Afgo_Dirichlet_U_Support

fixed nodal x-velocity component

Afgo_Dirichlet_V_Support

fixed nodal y-velocity component

Afgo_Dirichlet_W_Support

fixed nodal y-velocity component

Afgo_Dirichlet_P_Support

fixed nodal pressure

Afgo_Dirichlet_T_Support

fixed nodal temperature

Afgo_Dirichlet_ H_Support

fixed nodal enthalpy

Afgo_Dirichlet_Y_Support

fixed nodal mass fraction

Afgo_Dirichlet_K_Support

fixed nodal turbulent kinetic energy

Afgo_Dirichlet_E_Support

fixed nodal turbulence dissipation

Afgo_Dirichlet_Wall_K_Support

fixed nodal turbulent kinetic energy, wall function implementa-
tion

Afgo_Dirichlet_Wall_E_Support

fixed nodal turbulence dissipation, wall function implementa-
tion

Afgo_Dirichlet_V2F_E_Support

fixed nodal turbulence dissipation, v2-f model implementation

Table 6.2-9.. Fuego Master Element Definitions

Ehex HS8 scs eight-node hexahedral element for CVFEM, integration loca-
tions at sub-faces and element faces
Ehex HS8 scv eight-node hexahedral element for CVFEM, integration loca-

tions at sub-volume

Etet_Te4 scs

four-node tetrahedron element for CVFEM, integration loca-
tions at sub-faces and element faces

Etet_Te4 scv

four-node tetrahedron element for CVFEM, integration loca-
tions at sub-volume

Ewed W6_scs six-node wedge element for CVFEM, integration locations at
sub-faces and element faces
Ewed_W6_scv | six-node wedge element for CVFEM, integration locations at

sub-volume

Ehex 3DTr3_scs

three-node triangular element for CVFEM, integration locations
at sub-volumes

Ehex_3DQ4_scs

four-node quadrilateral element for CVFEM, integration loca-
tions at sub-volumes

Table 6.2-10.. User Subroutine Argument Lists

Apub_ftx3_sub

int*, real®, real®, real®, int*, int*, real*, int*

Apub_ftxsspec_sub

int*, real®, real*, int*, real*, int*, int*, real*, int*

Afgo_fmmsfgo_sub

real*

int*, int*, int*, real*, real*, real*, real*, real*, real*, real*, real*, real*

bl
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Table 6.2-11.. User Subroutine Signature Type

Heat BC Apub_ftx3_sub

Convection BC Apub_ftx3_sub

Radiation BC Apub_ftx3_sub

Fixed BC Apub_ftx3_sub, Apub_ftx3spec_sub
Inflow BC Apub_ftx3_sub, Apub_ftx3spec_sub
Outflow BC Apub_ftx3_sub

Wall BC Apub_ftx3_sub, Apub_ftxsspec_sub
Initial Conditions | Apub_ftx3spec_sub

Source Terms Afgo_fmmsfgo_sub

317







BIBLIOGRAPHY

Tieszen, S. R., A. R. Lopez, C. D. Moen, T. Y. Chu, V. F. Nicolette, W. Gill, S. P. Burns, and W.
C. Moftatt. “SIERR A/Fuego and SIERR A/Syrinx Verification and Validation Plan, Version
2.0". internal report, Sandia National Laboratories, 2001.

Tieszen, S. R., T. Y. Chu, V. F. Nicolette, K. ]. Dowding, B. F. Blackwell, A. R. Lopez, W. Gill,
and S. P. Burns. “Fire Environment Simulation: Fuego/Syrinx Strategic Development Plan".
unpublished report, Sandia National Laboratories, May 1999.

Rehm, R. G. and H. R. Baum. “The Equations of Motion for Thermally Driven Buoyant
Flows". Journal of Research of the National Bureau of Standards, 83:279, 1978.

Paolucci, S. “On the Filtering of Sound Waves from the Navier-Stokes Equations". Technical
Report SAND Report 82-8257, Sandia National Laboratories, Livermore, CA, December 1982.

Majda, A. and J. Sethian. “The Derivation and Numerical Solution of the Equations for Zero
Mach Number Combustion". Combustion Science and Technology, 42:185-20s, 198s.

Merkle, C. L. and Y. H. Choi. “Computation of Compressible Flows at Very Low Mach
Numbers". AIAA Paper 86—03s1, AIAA 24th Aerospace Sciences Meeting, Reno, NV, January
1986.

Bird, R. B., W. E. Stewart and E. N. Lightfoot. Transport Phenomena. John Wiley and Sons,
1960.

Burns, S. P. “Turbulence Radiation Interaction Modeling in Combustion Simulations”.
Technical report, Sandia National Laboratories, Albuquerque, NM, 1999.

Modest, M. F. Radiation Heat Transfer. McGraw Hill Book Company, New York, 1993.

Siegel R. and J. R. Howell. Thermal Radiation Heat Transfer, 3rd ed. Hemisphere Publishing,
Washington, D.C., 1992.

Tennekes, H. and J. L. Lumley. A First Course in Turbulence. MIT Press, Cambridge, 1972.

Libby, P. A. and F. A. Williams.
Turbulent Reacting Flows, Fundamental Aspects, Topics in Applied Physics, V. 44.

Springer-Verlag., 1980.

Kuo, K. K. Principles of Combustion. John Wiley and Sons, 1986.

Wilcox, D. C. Turbulence Modeling for CFD. DCW Industries, 2nd edition, 1998.

319



[15] Moin, P., K. Squires, W. Cabot, and S. Lee. A dynamic subgrid-scale model for compressible
turbulence and scalar transport. Phys. Fluids A, 3(11):2746-2757, 1991.

[16] Erlebacher, G., M. Y. Hussaini, C. G. Speziale, and T. A. Zang. Toward the large-eddy simulation
of compressible turbulent flows. J. Fluid Mech., 238:155-18s5, 1992.

[17] Gran,I. M. C. Melaaen, and B. F. Magnussen. “Numerical Simulation of Local Extinction
Effects in Turbulent Combustor Flows of Methane and Air". In 2s5th Symposium on
Combustion, pages 1283-1291. The Combustion Institute, 1994.

[18] Tieszen, S.R.,S. P. Domino, A. R. Black. Validation of a simple turbulence model suitable for
closure of temporally-filtered Navier-Stokes equations using a helium plume. Technical Report
SAND Report 2005-3210, Sandia National Laboratories, Albuquerque, NM, June 200s.

[19] Launder, G. E. and B. I. Sharma. Application of the energy dissipation model of turbulence to
the calculation of flow near a spining disc. Letters in Heat and Mass Transfer, x1(2):131-138, 1974.

[20] Papageorgakis, G. C. and D. N. Assanis. Comparison of linear and nonlinear RNG-based k-¢
models for incompressible turbulent flows. Numerical Heat Transfer, Part B, 35(1):1-22, 1999.

[21] Durbin, P. A. “Near-Wall Turbulence Closure Modeling Without Damping Functions".
Theoretical and Computational Fluid Dynamics, 3:1-13, 1991.

[22] Wilcox, D. C. “Formulation of the k-w turbulence model revisisted". 45th AIAA Aerospace
Sciences Meeting and Exhibit, 2007.

[23] Menter, F. R., Kuntz, M. and R. Langtry. “Ten years of industrial experience with the SST
turbulence model”. Turb, Heat and Mass Trans, 2003.

[24] Smagorinsky, J. General circulation experiments with the primitive equations. i. the basic
experiment. Monthly Weather Review, 91:99-164, 1963.

[25] Rogallo, R.S. and P. Moin. Numerical simulation of turbulent flows. Annual Review of Fluid
Mechanics, 16:99-137, 1984.

[26] Germano, M., U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy viscosity
model. Physics of Fluids A, 3(7):1760-176s, July 1991.

[27] Germano, M. Turbulence: The filtering approach. Journal of Fluid Mechanics, 238:325-336,
1992.

[28] Ghosal, S., T. S. Lund, P. Moin, and K. Akselvoll. A dynamic localization model for large-eddy
simulation of turbulent flow. Journal of Fluid Mechanics, 286:229-255, 1995.

[29] Lilly, D. K. A proposed modification of the germano subgrid-scale closure model. Physics of
Fluids A, 4(3):633-635, March 1992.

[30] Kim, W. W. and S. Menon. “Application of the localized dynamic subgrid-scale model to
turbulent wall-bounded flows”. 35th AIAA Aerospace Sciences Meeting and Exhibit, 1997.

[31] Nicolette, V. F. and S. R. Tieszen. “ Effect of Turbulent Kinetic Energy Source Terms on Pool
Fire Simulations with the & — € Model". Technical report, Internal Memorandum to
Distribution, Official Use Only, Sandia National Laboratories, 2000.

320



[32]

[33]

Rodi W. Turbulence Models and their Applications in Hydrolics - A State of the Art Review.
Publication of teh International Association for Hydrolic Research, Delf, Netherlands, 1984.

de Ris, J. L. Mechanism of buoyant turbulent diffusion flames. Procedia Engineering, 62:13—27,

2013.

[34] Jones, W. P. and B. E. Launder. “The Prediction of Laminarization with a Two-Equation Model

[35]
[36]

[37]

(38]

[39]

of Turbulence". International Journal of Heat and Mass Transfer, 15:301-314, 1972.

White, F. M. Viscous Fluid Flow. McGraw-Hill, Inc., 2nd ed., 1991.

Sondak, D. L. and R. H. Pletcher. “ Application of wall functions to generalized nonorthogonal
curvilinear coordinate systems ". AIAA Journal, 33(1):33—41, January 199s.

Elkaim, D., M. Reggio, and R. Camarero. “Control Volume Finite-Element Solution of a
Confined Turbulent Diffusion Flame". Numerical Heat Transfer, Part A, 23(3):259-279, 1993.

Launder, B. E. and D. B. Spalding. “The Numerical Computation of Turbulent Flows".
Computer Methods in Applied Mechanics and Engineering, 3:269-289, 1974.

Versteeg, H. K. and W. Malalasekera. An Introduction to Computational Fluid Dynamincs.
Longman Group LTD, 199s.

[40] Jayatilleke, C. L. V. “The Influence of Prandtl Number and Surface Roughness on the

[44]

[45]

Resistance of Laminar Sub-Layer to Momentum and Heat Transfer”. Progress in Heat and Mass

Transfer, 1, 1969.

Magnussen, B. F., G. H. Hjertager, J. G. Olsen, and D. Bhaduri. “Effect of Turbulent Structure
and Local Concentrations on Soot Formation and Combustion in C2Hz2 Diffusion Flames". In
Seventeenth Symposium (International) on Combustion, pages 1383-1393. The Combustion
Institute, Pittsburgh, 1979.

Magnussen, B. F. “On the Structure of Turbulence and a Generalised Eddy Dissipation Concept
for Chemical Reactions in Turbulent Flow". 9th AIAA Sc. Meeting, St. Louis, 1981.

Byggstyel, S. and B. F. Magnussen. “A Model for Extinction in Turbulent Flows". In et al.
Bradbury, editor, 4" Symposium on Turbulent Shear Flow, pages 381-39s. Springer-Verlag,
Berlin, 1983.

Magnussen, B. F. “Heat Transfer in Gas Turbine Combustors — A Discussion of Combustion,
Heat and Mass Transfer in Gas Turbine Combustors”. In Conference Proceedings no. 390,
Advisory Group for Aerospace Research and Development (AGARD), 198s.

Lilleheie, N. I, I. Ertesvig, T. Bjorge, S. Byggstyel, and B. F. Magnussen. “Modeling and
Chemical Reactions, Review of Turbulence and Combustion Models". Technical report, The
Foundation for Scientific and Industrial Research, Norwegian Institute of Technology, SINTEF
Report STF15 A89024, July 1989.

Gran, I. and B. F. Magnussen. “A Numerical Study of a Bluff-body Stabilized Diffusion Flame.
Part 2: Influence of Combustion Modeling and Finite Rate Chemistry”. Combustion Science
and Technology, 119:191-217, 1996.

321



[47]

[56]

[s9]

[60]

Tieszen, S. R., V. F. Nicolette, L. A. Gritzo, J. K. Holen, D. Murray, and J. L. Moya. “Vortical
Structures In Pool Fires: Observation, Speculation, and Simulation". Technical report,
SANDo96-2607, Sandia National Laboratories, Albuquerque, NM, November 1996.

Strehlow, R. A. Combustion Fundamentals. McGraw-Hill, New York, 1984.

Ertesvag, I. S. and B. F. Magnussen. “The Eddy-dissipation turbulence energy cascade model".
Technical report, Department of Applied Mechanics, Thermodynamics and Fluid Dynamics,
The Norwegian University of Science and Technology, Trondheim, Norway (In Preparation),

1997.

Holen, J., B. Laksa, B. F. Magnussen, and B. E. Vembe. “KAMELEON-II-Fire Theory Manual,
A Description of the Mathematical Models, Numerical Methods, and Solution Procedures".
Technical report, The Foundation for Scientific and Industrial Research, Norwegian Institute of
Technology, Trondheim, Norway, SINTEF Report STF1s Fo4070, November 1994.

N. Peters. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress
in Energy and Combustion Science, 10:319-339, 1984.

Danny Messig, Franziska Hunger, Jens Keller, and Christian Hasse. Evaluation of radiation
modeling approaches for non-premixed flamelets considering a laminar methane air flame.
Combustion and Flame, 160(2):251-264, 2013.

T. Poinsot and D. Veynante. Theoretical and Numerical Combustion. R. T. Edwards, Inc.,
Philadelphia, PA, 2005s.

C. D. Pierce and P. Moin. A dynamic model for subgrid-scale variance and dissipation rate of a
conserved scalar. Physics of Fluids, 10(12), 3041-3044.

R. W. Bilger. The structure of turbulent nonpremixed flames. In Proceedings of the 22nd
Symposium (International) on Combustion, pages 475-488. The Combustion Institute,
Pittsburg, PA, 1988.

G. Erlebacher, M. Y. Hussaini, C. G. Speziale, and T. A. Zang. Toward the large eddy simulation
of compressible turbulent flows. ICASE Report 87-20, NASA Langley Research Center,
Hampton, VA, 1987. Also available as NASA CR 178273.

S. Ghosal, T.S. Lund, P. Moin, and K. Akselvoll. A dynamic localization model for large-eddy
simulation of turbulent flow. Journal of Fluid Mechanics, 286:229-255, 1995.

Parente, A. and Malik, M. R. and Contino, F. and Cuoci,A. and Dally, B. B. “Extension of the
Eddy Dissipation Concept for turbulence/chemistry interactions to MILD combustion”. Fuel,
163:98-111, 2016.

Zukoski, E. E. “Properties of Fire Plumes”. In G. Cox, editor, Combustion Fundamentals of
Fire. Academic Press, New York, 199s.

Magnussen, B. F. and G. H. Hjertager. “On Mathematical Modeling of Turbulent Combustion
with Special Emphasis on Soot Formation and Combustion". In Sixteenth Symposium
(International) on Combustion, pages 719—729. The Combustion Institute, Pittsburgh, 1977.

322



[e1]

[62]

[63]

[64]

[74]

[75]

Tesner, P. A., T. D. Snegiriova, and V. G. Knorre. “Kinetics of dispersed carbon formation”.
Combustion and Flame, 17:253-260, 1971.

Haynes, B. S. and H. G. Wagner. “Soot Formation". Progress in Energy and Combustion
Science, 7:229-273, 1981.

Tesner, P. A., E. I. Tsygankova, L. P. Guilazetdinov, V. P. Zuyev, and G. V. Loshakova. “The
formation of soot from aromatic hydrocarbons in diffusion flames of hydrocarbon-hydrogen
mixtures”. Combustion and Flame, 17:279-285, 1971.

Tezduyar, T. E. “Stabilized Finite Element Formulations for Incompressible Flow
Computations". In, editor, Advances in Applied Mechanics, volume 28, pages 1—44. Academic
Press, Inc., 1992.

Felske, J. D. and C. L. Tien. “Calculation of the Emissivity of Luminous Flames". Combustion
Science and Technology, 7:23-31, 1973.

Felske, J. D. and T. T. Charalampopoulos. “Gray Gas Weighting Coefhcients for Arbitrary
Gas-Soot Mixtures". International Journal of Heat and Mass Transfer, 25(12):1849-18s5, 1982.

Abramowitz, M. and I. A. Stegun. Handbook of Mathematical Functions. National Bureau of
Standards, 1964.

Leckner, B. “Spectral and Total Emissivity of Water Vapor and Carbon Dioxide". Combustion
and Flame, 19:33—48, 1972.

Martinez, M. J. and P. I. Hopkins. “Modeling Subsurface Multiphase Transport of JP8 During a
Fuel Spill Fire". Technical report, SAND2000-2464, Sandia National Laboratories,
Albuquerque, NM, October 2000.

Saito, K. G. Tashtoush, C. Cremers, and L. A. Gritzo. “Flame Spread over JP8 Aircraft Fuel". to
appear in Combustion Science and Technology, 1997.

Gritzo, L. A., E. A. Boucheron, and D. Murray. “Fuel Temperature Distribution and Burning
Rate in Large Pool Fires". NIST Annual Conference on Fire Research, Gaithersburg, MD,
October 1996.

Gritzo, L. A., V. F. Nicolette, S. R. Tieszen, and J. L. Moya. “Heat Transfer to the Fuel Surface in
Large Pool Fires". In S. H. Chan, editor, Transport Phenomenon in Combustion, pages 701-712.

Taylor and Francis, 1996.

Blinov, V. I. and G. N. Khudiakov. “Diffusion Burning of Liquids". Technical report, English
Translation: U.S. Army Engineering Research and Development Labs, Fort Belvoir, VA, Report
AERDL-T-1490-A, 1961.

Mansfield, J. M. and L. J. Linley. “Measurement and Statistical Analysis of Flame Temperatures
from Large Fuel Spill Fires". Technical report, NWC TP 7061, Naval Air Warfare Center, China
Lake, CA, 93555, 1991.

Cline, D. D. and L. N. Koenig. “The Transient Growth of an Unconfined Pool Fire". Fire
Technology, 19(3):149-162, 1983.

323



Magnoli, D. E. “A Model for Fuel Fire Duration and Application to the B-1B Bomber". Technical
report, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-ID-112576, 1992.

Mencinger, J. and Zun, I. Journal of Computational Physics, 230:644-663, 2011.

Martinez, J. and Chesneau, X. and Zeghmati, B. Computational Mechanics, 37:182-193, 2006.

Sun, M. Advances in Pure Mathematics, 3:219—~225, 2013.

Huang, M. and Wu, L. and Chen, B. Numerical Heat Transfer, Part B: Fundamentals,
61:412—437, 2012.

Lee, H. and Rhee, S. Journal of Mechanical Science and Technology, 29:1849-1857, 201s.

Raeini, A. and Blunt, M. and Bijeljic, B. Journal of Computational Physics, 231:5653-5668, 2012.

[83] Jofre, L. and Lehmkuhl, O. and Castro, J. and Olivia, A. In Lisbon Portugal, editor, European

Conference on Computational Fluid Dynamics, 2010.

Hardt, S. and Wondra, F. Journal of Computational Physics, 227:5781-5895, 2008.

Francois, M. M. and Cummins, S. J. and Dendy, E. D. and Kothe, D. B. and Sicilian, J. M. and
Williams, M. W. Journal of Computational Physics, 213:141-173, 2006.

Lin, S. and Yan, J. and Kats, D. and Wagner, G. Journal of Computational Physics, 380:119-142,
2019.

S. P. Domino. Towards verification of sliding mesh algorithms for complex applications using
mms. Proceedings of the 2010 Summer Program, Center for Turbulence Research, 2010.

M. Discacciati, A. Quarteroni, and A. Valli. Robin-Robin domain decomposition methods for
the Stokes-Darcy coupling. SIAM Journal of Numerical Analysis, 45(3):1246-1268, 2007.

G. S. Beavers and D. D. Joseph. Boundary conditions at a naturally permeable wall. J. Fluid
Mech., 30:197-207, 1967.

P. G. Saffman. On the boundary condition at the surface of a porous medium. Studies in
Applied Mathematics, 50(2):93-101, 1971.

R. H. Davis and H. A. Stone. Flow through beds of porous particles. Chemical Engineering
Science, 48(23):3993-4005, 1993.

Law, C. K. “Recent Advances in Droplet Vaporization and Combustion”. Prog. Energy
Combust Sci., 8(3):171-201, 1982.

Sirignano, W. A. “Fuel Droplet Vaporization and Spray Combustion Theory". Prog. Energy
Combust Sci., 9(4):291-322, 1983.

Faeth, G. M. “Evaporation and combustion of sprays”. Prog. Energy Combust Sci., 9:1-76, 1983.

Amsden, A. A, etal. “KIVA: A Computer Program for Two-and Three-Dimensional Fluid
Flows with Chemical Reactions and Fuel Sprays”, 198s.

Faeth, G.M. “Mixing, Transport and Combustion in Sprays”. Prog. Energy Combust Sci.,
13:293-34s, 1987.

324



[97]

[98]

[100]

[1o1]

[102]

[103]

[104]

[105]
[106]

[107]
[108]

[r09]

[x10]

[xxx]

[xx2]

[113]

[x14]

Amsden, A.A., PO’Rourke, and T.D. Butler. “KIVA-II: A Computer Program for Chemically
Reactive Flows with Sprays"”, 1989.

Crowe, C., M. Sommerfeld, and Y. Tsuji. “Multiphase flows with droplets and particles”". CRC
Press, New York, NY, 1998.

Sommerfeld, M. and H.H. Qiu. “Experimental studies of spray evaporation in turbulent flow”".
International Journal of Heat and Fluid Flow, 19(1):10-22, 1998.

Shaw, R.A. “ Particle-turbulence interactions in atmospheric clouds”. Annual Review of Fluid
Mechanics, 35:183-227, 2003.

Holen, J., M. Brostrom, and B.F. Magnussen. “Finite Difference Calculation of Pool Fire". Proc.
Combust. Instit., 23:1677-1683, 1990.

Yoon, S.S., et al. “Numerical modeling and experimental measurements of a high speed
solid-cone water spray for use in fire suppression applications”. International Journal of
Multiphase Flow, 30(11):1369-88, 2004.

DesJardin, P.E. and L.A. Gritzo. “A Dilute Spray Model for Fire Simulations: Formulation,
Usage and Benchmark Problems”. “Sandia Technical Report”, 2002.

Maxey, M.R. and ] J. Riley. “Equation of motion for a small rigid sphere in a nonuniform flow".

Phys. Fluids, 26(4):883-889, 1983.
Williams, F.A. “Spray Combustion and Atomization”. Physics of Fluids, 1(6):541-54s, 1958.

O’Rourke, P.J. and A.A. Amsden. “The TAB Method for Numerical Calculation of Spray
Droplet Breakup”. SAE Technical Paper 872089, 1987.

Patankar, S.V. “Numerical Heat Transfer and Fluid Flow". Taylor and Francis, 1980.

Gosman, A.D. and E. Ioannides. “Aspects of computer simulation of liquid-fueled combustors".
ATAA Paper 81-0323, 1981.

Shuen, ].S., L.D. Chen, and G.M. Faeth. “Evaluation of a stochastic model of particle dispersion
in a turbulent round jet". AIChE Journal, 29(1):167—70, 1983.

Zhou, Q. and S.C. Yao. “Group modeling of impacting spray dynamics”. International
Journal of Heat and Mass Transfer, 35(1):121—9, 1992.

Dukowicz, J.K. “A Particle-Fluid Numerical Model for Liquid Sprays”. Journal of
Computational Physics, 35(2):229—253, 1980.

Jones, W.P. and B.E. Launder. “Prediction of Laminarization with a 2-Equation Model
of Turbulence”. Int. J. Heat Mass Transfer, 15:301, 1972.

Yuen, M.C. and LW. Chen. “On Drag of Evaporating Liquid Droplets”. Combust. Sci.
Technol., 14(4-5-6):147—154, 1976.

Taylor, G.I. “Diffusion by continuous movement". Proc. London Math. Soc., 20:196—211,
1921.

325



[xx5]

[116]

[xx7]
[1x8]

Snyder, W.H. and J.L. Lumley. “Some measurements of particle velocity autocorrelation
functions in a turbulent flow". Journal of Fluid Mechanics, 48:41, 1971.

Abramzon, B. and W.A. Sirignano. “Droplet vaporization model for spray combustion
calculations”. International Journal of Heat and Mass Transfer, 32(9):1605—18, 1989.

Modest, M.F. “Radiative Heat Transfer". Academic Press, second ed. edition, 2003.

Lefebvre, A.H. “Atomization And Sprays". Hemisphere, 1988.

[9] Johns, L.E. and R.B. Beckmann. “Mechanism of dispersed-phase mass transfer in viscous

[r20]

[x21]

[r22]

[r23]

[r24]

[x25]

[126]

[127]

[r28]

single-drop extraction systems”. Amer. Instit. Chem. Eng. J., 12(1):10—16, 1966.

Sirignano, W.A. “Fluid Dynamics and Transport of Droplets and Sprays”. Cambridge
University Press, New York, NY, 1999.

van de Hulst, H.C. “Light Scattering by Small Particles”". Dover, New York, 1981.

Yoon, S.S., et al. “Numerical Modeling and Experimental Measurements of Water Spray
Impact and Transport over a Cylinder”. Int. J. Multiphase Flow, 200s.

Erikson, WW. and W. Gill. “Analytic Model for Propellant Fire Heat Transfer with
Deposition”. JANNAF 4oth CS, 28th APS, 22nd PSHS and 4th MSS Joint Meeting,
2005.

O’Rourke, P.J. “Statistical properties and numerical implementation of a model for
droplet dispersion in a turbulent gas”. Journal of Computational Physics, 83(2):345—60,

1989.

Zienkiewicz, O. C. and R. L. Taylor. The Finite Element Method, 4th ed., Vol. 1.
McGraw-Hill, 1989.

Zienkiewicz, O. C. and R. L. Taylor. The Finite Element Method, 4th ed., Vol. 2.
McGraw-Hill, 1991.

Gresho, P. M, S. T. Chan, R. L. Lee, and C. D. Upson. “A Modified Finite Element
Method for Solving the Time-Dependent, Incompressible Navier-Stokes Equations. Part
I: Theory". International Journal for Numerical Methods in Fluids, 4:557—598, 1984.

Patankar, S. V. “Recent Developments in Computational Heat Transfer”. Journal of
Heat Transfer, mo(4B):1037—104s, 1988.

[129] Shyy, W. “Elements of Pressure-Based Computational Algorithms for Comples Fluid

[130]

[131]

Flow and Heat Transfer". In Hartnett, J. P. and T. F. Irvine, editor,
Advances in Heat Transfer, volume 24, pages 191—275. Academic Press, Inc., 1994.

Ferziger, J. H. and M. Peri¢. Computational Methods for Fluid Dynamics.
Springer-Verlag, 1996.

Rhie, C. M. and W. L. Chow. “Numerical Study of the Turbulent Flow Past an Airfoil
with Trailing Edge Separation”. AIAA Journal, 21(x1):1525—1532, November 1983.

326



[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Schneider, G. E. and M. J. Raw. “Control Volume Finite-Element Method for Heat
Transfer and Fluid Flow Using Colocated Variables—1. Computational Procedure”.
Numerical Heat Transfer, 11(4):363—390, 1987.

Schneider, G. E. and M. J. Raw. “Control Volume Finite-Element Method for Heat
Transfer and Fluid Flow Using Colocated Variables—2. Application and Validation".
Numerical Heat Transfer, 11(4):391—400, 1987.

Majumdar, S. “Role of Under-relaxation in Momentum Interpolation for Calculation of
Flow with Non-staggered Grids". Numerical Heat Transfer, 13:125—132, 1988.

Peri¢, M., R. Kessler, and G. Scheuerer. “Comparison of Finite-Volume Numerical
Methods with Staggered and Colocated Grids". Computers and Fluids, 16(4):389—403,
1988.

Papageorgakopoulos, J, G. Arampatzis, D. Assimacopoulos, and N. C. Markatos.
“Enhancement of the momentum interpolation method on non-structured grids". Int. J.
Numer. Meth. Fluids, 33:1—22, 2000.

Codina, R. “Pressure stability in fractional step finite element methods for
incompressible flows". J. Comp. Phys., 170:112—140, 2001.

Soto, O. R., F. Lohner, and J. Cebral. “An implicit monolithic time accurate finite
element scheme for incompressible flow problems”. AIAA-2001-2616, 2001.

Almgren, A. S., J. B. Bell, and W. Y. Crutchfield. “Approximate projection methods:
part L inviscid analysis”". SIAM ]. Sci. Comp., 22:1139—1159, 2000.

Codina, R. and S. Badia. “On some pressure segregation methods of fractional-step type
for the finite element approximation of incompressible flow problems”. Comp.
Methods. Appl. Mech. Engr., r70:112—140, 200s.

Dukowicz, J. K. and A. S. Dvinsky. “Approximate Factorization as a High Order
Splitting for the Implicit Incompressible Flow Equations”. Journal of Computational

Physics, 102:336—347, 1992.

Strikwerda, J. C. and Y. S. Lee. "The accuracy of the fractional step method". SIAM ]J.
Numer. Anal., 37:37—48, 1999.

Schneider, G. E. Elliptic Systems: Finite-Element Method I. In Minkowycz, W. J., E. M.
Sparrow, G. E. Schneider and R. H. Pletcher, editor,

Handbook of Numerical Heat Transfer, chapter 10, pages 379—420. John Wiley & Sons,
Inc., 1988.

Perot, J. B. “An Analysis of the Fractional Step Method". Journal of Computational
Physics, 108:51—58, 1993.

Chorin, A. J. “Numerical Solution of the Navier-Stokes Equations”. Mathematics of
Computation, 22(104):745—762, 1968.

Kim, D. and H. Choi. “A second-order time-accurate finite volume method for unsteady
incompressible flow on hybrid unstructured grids". J. Comp. Phys., 162:411—4238, 2000.

327



[147]

[148]

[149]

[150]

[x51]

[152]

[x53]

[x54]

[155]

[156]

[x57]

[158]

[159]

[x60]

[x61]

Kim, J. and P. Moin. “Application of a Fractional Step Method to Incompressible
Navier-Stokes Equations”. Journal of Computational Physics, 59(2):308—323, 198s.

Brown, D. L., R. Cortez, and M. Minion. “Accurate projection method for the
incompressible Navier-Stokes equations”. J. Comp. Phys., 168:464—499, 2001.

Schneider, G. E. “Preliminary Results of a Novel Fluid Flow Prediction Procedure
Applied to Axi-Symmetric Problems". AIAA Paper 87-1639, 22nd Thermophysics
Conference, Honolulu, HA, June 1987.

Domino et. al. “Fuego Verification Manual”. Sandia National Laboratories,
http://scico.sandia.gov/fuego, 2007.

Ober, C. C. and J. N. Shadid. “Studies on the accuracy of time-integration methods for
the radiation-diffusion equations”. J. Comp. Phys., 195:743—772, 2004.

Hirsch, C. Numerical Computation of Internal and External Flows, Volume 2. John
Wiley & Sons, 1990.

F. Shakib, T. J. R. Hughes, and J. Zdenek. A new finite element formulation for
computational fluids dynamics: The compressible euler and navier stokes equations.
Comp. Meth. in App. Mech and Engr., 89:141—219, 1991.

“TASCflow Theory Documentation”. Technical report, Advanced Scientific Computing,
Ltd., Waterloo, Ontario, 199s.

Jameson, A. “Artificial Diffusion, Upwind Biasing, Limiters and Their Effect on
Accuracy and Multigrid Convergence in Transonic and Hypersonic Flows". AIAA Paper
93-3359, 1ith AIAA Computational Fluid Dynamics Conference, Orlando, FL, July 1993.

Christie, I. and C. Hall. “The Maximum Principle for Bilinear Elements”. International
Journal for Numerical Methods in Engineering, 20(3):549—553, 1984.

Yeap, C. F. and J. A. Pearce. “A Unified Subroutine for the Solution of 2D and 3D
Axisymmetric Diffusion Equation”. Advances in Engineering Software, 11(3):118—127,

1989.
Blackwell, B. F., R. J. Cochran, and R. E. Hogan. “A Formal Method for Computing

Thermal Conductors for Arbitrary, Complex Geometries”". ASME-HTD Vol. 311, pp.
31—42, 30th National Heat Transfer Conference, Portland, OR, August 199s.

Gresho, P. M, and R. L. Lee. “Don’t Suppress the Wiggles—They’re Telling You
Something”. Computers and Fluids, 9(2):223—253, 1981.

Flanagan, D. P. and T. Belytschko. “A Uniform Strain Hexahedron and Quadrilateral
with Orthogonal Hourglass Control”. International Journal for Numerical Methods in

Engineering, 17:679—706, 1981.
Baliga, B. R. and S. V. Patankar. Elliptic Systems: Finite-Element Method II. In
Minkowycz, W. J., E. M. Sparrow, G. E. Schneider and R. H. Pletcher, editor,

Handbook of Numerical Heat Transfer, chapter 11, pages 421—462. John Wiley & Sons,
Inc., 1988.

328



[162] Forsyth, P. A. “Control Volume Finite Element Approach to NAPL Groundwater
Contamination”. SIAM Journal on Scientific and Statistical Computing,

12(5):1029—1057, 1991.

[163] Aftosmis, M. “Upwind Method for Simulation of Viscous Flow on Adaptively Refined
Meshes”. AIAA Journal, 32(2):268—277, 1994.

[164] Kallinderis, Y. G. and J. R. Baron. “Adaptive Methods for a New Navier-Stokes
Algorithm". AIAA Journal, 27(x):37—43, 1989.

[165] Kallinderis, Y. and P. Vijayan. “Adaptive Refinement-Coarsening Scheme for
Three-Dimensional Unstructured Meshes". AIAA Journal, 31(8):1440—1447, 1993.

[166] Mavriplis, D. J. “Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed
Element Unstructured Meshes". International Journal for Numerical Methods in Fluids,

34(2):93—111, 2000.

[167] Edwards, H. C. “SIERRA Framework Core Services: Theory and Design”. version o.04,
unpublished, 2001.

[168] Taylor, L. M., H. C. Edwards, and J. R. Stewart. “Functional Requirements for
SIERRA, Version 1.0 beta”. internal report, Sandia National Laboratories, 1999.

[169] Kee, R. ]., F. M. Rupley, and J. A. Miller. “CHEMKIN-II: A Fortran Chemical Kinetics
Package for the Analysis of Gas-Phase Chemical Kinetics". Technical Report
SANDS89-8009B, Sandia National Laboratories, Livermore, 1991.

[r70] Kee, R.]J., G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller. “A Fortran
Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport
Properties”. Technical Report SAND86-82.46, Sandia National Laboratories, Livermore,

1991.

[x71] Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird. Molecular Theory of Gases and Liquids.
Wiley, 1954.

[r72] Kleijn, C. R., Th. H. van der Meer, and C. J. Hoogendoorn. “A Mathematical Model for
LPCVD in a Single Wafer Reactor”. Journal of the Electrochemical Society,
136(11):3423—4333, 1989.

[173] Kee, R. ]J., F. M. Rupley, and J. A. Miller. “The Chemkin Thermodynamic Data Base".
Technical Report SANDS87-8215B, Sandia National Laboratories, Livermore, 1992.

[174] Baliga, B. R. and S. V. Patankar. “A New Finite-Element Formulation for
Convection-Diffusion Problems”. Numerical Heat Transfer, 3(4):393—409, 1980.

[x7s] Baliga, B. R.
“A Control Volume Based Finite Element Method for Convective Heat and Mass Transfer”.
PhD thesis, University of Minnesota, Minneapolis, MN, 1978.

[176] Baliga, B. R. and S. V. Patankar. “A Control Volume Finite-Element Method for
Two-Dimensional Fluid Flow and Heat Transfer”. Numerical Heat Transfer,

6(3):245—261, 1983.

329



[r77] Schneider, G. E. and M. Zedan. A Control Volume Based Finite Element Formulation of
the Heat Conduction Equation. In H. E. Collicott and P. E. Bauer, editor,
Spacecraft Thermal Control, Design and Operation, volume 86, pages 305—327. Progress
in Astronautics and Aeronautics, 1983.

[r78] Schneider, G. E. and M. J. Raw. “A Skewed, Positive Influence Coefficient Upwinding
Procedure for Control-Volume-Based Finite-Element Convection-Diffusion
Computation”. Numerical Heat Transfer, 9(1):1—26, 1986.

[r79] Swaminathan, C. R. and V. R. Voller. “Streamline Upwind Scheme for Control-Volume
Finite Elements, Part I. Formulations”. Numerical Heat Transfer, Part B, 22(1):95—107,

1992.

[180] Patankar, S. V. Numerical Heat Transfer and Fluid Flow. Hemisphere, 1980.

[x81] Winslow, A. M. “Numerical Solution of the Quasilinear Poisson Equation in a
Nonuniform Triangle Mesh". Journal of Computational Physics, 1(2):149—-172, 1966.

[182] Ramadhyani, S. and S. V. Patankar. “Solution of the Poisson Equation: Comparison of
the Galerkin and Control-Volume Methods". International Journal for Numerical
Methods in Engineering, 15:1395—1418, 1980.

[x83] Baliga, B. R., T. T. Pham and S. V. Patankar. “Solution of Some Two-Dimensional
Incompressible Fluid Flow and Heat Transfer Problems Using a Control Volume
Finite-Element Method". Numerical Heat Transfer, 6(3):263—282, 1983.

[184] Prakash, C. and S. V. Patankar. “A Control Volume-Based Finite-Element Method for
Solving the Navier-Stokes Equations Using Equal-Order Velocity-Pressure
Interpolation”. Numerical Heat Transfer, 8(3):259—280, 198s.

[185s] Ramadhyani, S. and S. V. Patankar. “Solution of the Convection-Diffusion Equation by
a Finite-Element Method Using Quadrilateral Elements”. Numerical Heat Transfer,

8(s5):595—612, 198s.

[186] Raithby, G. D. “Skew Upstream Differencing Schemes for Problems Involving Fluid
Flow". Computer Methods in Applied Mechanics and Engineering, 9:153—164, 1976.

[187] Raw, M. J.
“A New Control-Volume-Based Finite Element Procedure for the Numerical Solution of the Fluid Flow
PhD thesis, University of Waterloo, Ontario, Canada, 198s.

[188] LeDain-Muir, B. and B. R. Baliga. “Solution of Three-Dimensional
Convection-Diffusion Problems Using Tetrahedral Elements and Flow-Oriented
Upwind Interpolation Functions”. Numerical Heat Transfer, 9(2):143—162, 1986.

[189] Prakash, C. “An Improved Control Volume Finite-Element Method for Heat and Mass
Transfer, and for Fluid Flow Using Equal-Order Velocity-Pressure Interpolation”.
Numerical Heat Transfer, 9(3):253—276, 1986.

330



[190] Prakash, C. “Examination of the Upwind (Donor-Cell) Formulation in Control Volume
Finite Element Methods for Fluid Flow and Heat Transfer”. Numerical Heat Transfer,

11(4):401— 416, 1987.

[191] Hookey, N. A., B. R. Baliga and C. Prakash. “Evaluation and Enhancements of Some
Control Volume Finite-Element Methods—1. Convection-Diffusion Problems".
Numerical Heat Transfer, 14(3):255—272, 1988.

[192] Hookey, N. A. and B. R. Baliga. “Evaluation and Enhancements of Some Control
Volume Finite-Element Methods—1. Incompressible Fluid Flow Problems". Numerical
Heat Transfer, 14(3):273—293, 1988.

[193] van Doormaal, J. P. and G. D. Raithby. “Enhancements of the SIMPLE Method for
Predicting Incompressible Fluid Flows". Numerical Heat Transfer, 7:147—163, 1984.

[194] Swaminathan, C. R. and V. R. Voller. “Streamline Upwind Scheme for Control-Volume
Finite Elements, Part II. Implementaion and Comparison with the SUPG
Finite-Element Scheme”. Numerical Heat Transfer, Part B, 22(1):109—124, 1992.

[195] Brooks, A. N. and T. J. R. Hughes. “Streamline Upwind/Petrov-Galerkin Formulations
for Convection Dominated Flows with Particular Emphasis on the Incompressible
Navier-Stokes Equations”. Computer Methods in Applied Mechanics and Engineering,

32:199—259, 1982.

[196] Baliga, B. R. and H. J. Saabas. “Control-Volume Finite Element Methods for
Incompressible Fluid Flow". Invited Keynote Lecture on Fluid Mechanics, III Portuguese
Conference on Computational Mechanics, Coimbra, Portugal, September 1992.

[197] Naterer, G. F. and G. E. Schneider. “Physical Influences of Integration Point Equations
On a Control-Volume-Based Finite Element Method for Compressible Flows". AIAA
Paper 92-036s, 30th Aerospace Sciences Meeting, Reno, NV, January 1992.

[198] Swaminathan, C. R., V. R. Voller and S. V. Patankar. “A Streamline Upwind Control
Volume Finite Element Method for Modeling Fluid Flow and Heat Transfer Problems".
Finite Elements in Analysis and Design, 13(2-3):169—184, 1993.

[199] Saabas, H. J. and B. R. Baliga. “Co-Located Equal-Order Control-Volume
Finite-Element Method for Multidimensional, Incompressible, Fluid Flow—Part I:
Formulation". Numerical Heat Transfer, Part B, 26(4):381—407, 1994.

[200] Saabas, H. J. and B. R. Baliga. “Co-Located Equal-Order Control-Volume
Finite-Element Method for Multidimensional, Incompressible, Fluid Flow—Part II:
Verification". Numerical Heat Transfer, Part B, 26(4):409—424, 1994.

[201] Masson, C., H. J. Saabas and B. R. Baliga. “Co-Located Equal-Order Control-Volume
Finite Element Method for Two-Dimensional Axisymmetric Incompressible Fluid
Flow". Internation Journal for Numerical Methods in Fluids, 18(x):1—26, 199 4.

[202] Masson, C. and B. R. Baliga. “A Control Volume Finite-Element Method for Dilute
Gas-Solid Particle Flows". Computers and Fluids, 23(8):1073—1096, 1994.

331



[203] Karimian, S. M. H. and G. E. Schneider. “Numerical Solution of Two-Dimensional
Incompressible Navier-Stokes Equations: Treatment of Velocity-Pressure Coupling”.
AIAA Paper 94-2359, 25sth AIAA Fluid Dynamics Conference, Colorado Springs, CO,

June 1994.

[204] Karimian, S. M. H. and G. E. Schneider. “Pressure-Based Computational Method for
Compressible and Incompressible Flows". Journal of Thermophysics and Heat Transfer,

8(2):267-274,1994.

[205] Deng, G. B., ]J. Piquet, P. Queutey and M. Visonneau. “Incompressible Flow
Calculations With a Consistent Physical Interpolation Finite Volume Approach”.
Computers and Fluids, 23(8):1029—1047, 199 4.

[206] Costa, V. A. F,, L. A. Oliveira and A. R. Figueiredo. “A Control-Volume Based Finite
Element Method for Three-Dimensional Incompressible Turbulent Fluid Flow, Heat
Transfer, and Related Phenomena”. International Journal for Numerical Methods in
Fluids, 21(7):591—613, 1995.

[207] Karimian, S. M. H. and G. E. Schneider. “Application of a Control-Volume-Based
Finite-Element Formulation to the Shock Tube Problem (TN)". AIAA Journal,

33(1):165—, 1995.

[208] Karimian, S. M. H. and G. E. Schneider. “Pressure-Based Control-Volume Finite
Element Method for Flow at All Speeds”. AIAA Journal, 33(9):1611—1618, September 199s.

[209] Padra, C. and A. Larreteguy. “A-Posteriori Error Estimator for the Control-Volume
Finite-Element Method as Applied to Convection-Diffusion Problem”. Numerical Heat
Transfer, Part B, 27(1):63—80, 1995.

[210] Larreteguy, A. E. “An Equal-Order Control-Volume Finite-Element Method for Fluid
Flow in Arbitrary Triangulations”. Numerical Heat Transfer, Part B, 28: 401—413, 1995.

[211] Harms, T. M., T. W. von Backstrom and J. P. du Plessis. “Simplified Control-Volume
Finite-Element Method". Numerical Heat Transfer, Part B, 30(2):179—194, 1996.

[212] Comini, G., S. Del Giudice, and C. Nonino. “Energy Balances in CVFEM and GFEM
Formulations of Convection-Type Problems”. International Journal for Numerical
Methods in Engineering, 39(13):2249—2263, 1996.

[213] Neises, J. and L. Steinbach. “Finite Element Integration for the Control Volume
Method". Communications in Numerical Methods in Engineering, 12(9):543—556, 1996.

[214] Volker, S., T. Burton and S. P. Vanka. “Finite-Volume Multigrid Calculation of
Natural-Convection Flows on Unstructured Grids". Numerical Heat Transfer, Part B,
30(1):1—22, 1996.

[215] Botta, N. and D. Hempel. “Finite-Volume Projection Method for Incompressible Flows
on Triangular Grids". Hamburger Beitrige zur Angewandten Mathematik, Reihe A,
Preprint 110, September 1996.

332



[216] Darbandi, M. and G. E. Schneider. “Momentum Variable Procedure for Solving
Compressible and Incompressible Flows". AIAA Journal, 35(12):1801—-1805, 1997.

[217] B.R. Baliga. “Control-Volume Finite Element Methods for Fluid Flow and Heat
Transfer”. In Minkowycz, W. J. and E. M. Sparrow, editor,
Advances in Numerical Heat Transfer, Volume 1, pages 97—135. Taylor and Francis, 1997.

[218] O’Rourke, P. J., and M. S. Sahota. “A Variable Explicit/Implicit Numerical Method for
Calculating Advection on Unstructured Meshes". Journal of Computational Physics,

143:312—345, 1998.

[219] Gresho, P. M. and R. L. Sani. Incompressible Flow and the Finite Element Method.
John Wiley and Sons, 1998.

[220] Venditti, D. A. and B. R. Baliga. “An h-Adaptive Strategy for CVFEM Simulations of
Viscous Incompressible Flow". Proc. 6th Annual Conference of the Computational
Fluid Dynamics Society of Canada (CFD 98), pp. VIII-65—VIII-70, Quebec City, Canada,

June 7-9,1998.

[221] Reyes, M., J. Rincon, J. and J. Damia. “Simulation of Turbulent Flow in Irregular
Geometries Using a Control-Volume Finite-Element Method". Numerical Heat Transfer,

Part B, 39(1):79—90, 2001.

[222] Campos Silva, J. B. and L. F. M. de Moura. “A Control-Volume Finite-Element Method
(CVFEM) for Unsteady, Incompressible, Viscous Fluid Flows". Numerical Heat Transfer,

Part B, 40(1):61—82, 2001.

[223] Zhao, Y., J. Tai, and F. Ahmed . “Simulation of Micro Flows with Moving Boundaries
Using High-Order Upwind FV Method on Unstructured Grids”. Computational
Mechanics, 28:66—7s, 2002.

[224] Kettleborough, C. F., S. R. Husain, and C. Prakash. “Solution of Fluid Flow Problems
with the Vorticity-Streamfunction Formulation and the Control Volume Based
Finite-Element Method". Numerical Heat Transfer, Part B, 16(1):31—58, 1989.

[225] Choudhury, S. and R. A. Nicolaides. “Discretization of Incompressible
Vorticity-Velocity Equations on Triangular Meshes”. Internation Journal for Numerical
Methods in Fluids, 11(6):823—, 1990.

[226] Krakov, M. S. “Control Volume Finite-Element Method for Navier-Stokes Equations in
Vortex-Streamfunction Formulation". Numerical Heat Transfer, Part B, 21(2):125—14s,

1992.

[227] Elkaim, D., M. Reggio, and R. Camarero. “Simulating Two-Dimensional Turbulent
Flow by Using the k-c Model and the Vorticity-Streamfunction Formulation”.
International Journal for Numerical Methods in Fluids, 14(8):961—980, 1992.

[228] Elkaim, D., F. McKenty, M. Reggio, and R. Camarero. “Control Volume Finite Element
Solution of Confined Turbulent Swirling Flows". International Journal for Numerical
Methods in Fluids, 19(2):135—152, 1994.

333



[229] Banaszek, J. A. “A Conservative Finite Element Method for Heat Conduction

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

Problems”. International Journal for Numerical Methods in Engineering, 20:2033—2050,
1984.

Blackwell, B. F. “Numerical Prediction of One-Dimensional Ablation Using a Finite
Control Volume Procedure with Exponential Differencing”. Numerical Heat Transfer,

14:17—34, 1988.

Abboud, J. B. and H. Hardisty. “Control-Volume Energy-Balance FE Formulations of
the 8-Node Hexahedron Element”. Communications in Applied Numerical Methods,

7:141—153, 1991.

Blackwell, B. F. and R. E. Hogan. “Numerical Solution of Axisymmetric Heat
Conduction Problems Using Finite Control Volume Technique”. Journal of
Thermophysics and Heat Transfer, 7:462—471, 1993.

Blackwell, B. F. and R. E. Hogan. “One-Dimensional Ablation Using Landau
Transformation and Finite Control Volume Procedure”. Journal of Thermophysics and
Heat Transfer, 8(2):282—287, 1994.

Ferguson, W. J. and I. W. Turner. “Control Volume Finite Element Model of
Mechano-Sorptive Creep in Timber". Numerical Heat Transfer, Part A, 29(2):147—164,

1996.

Ferguson, W. J. and I. W. Turner. “A Control Volume Finite Element Numerical
Simulation of the Drying of Spruce”. Journal of Computational Physics, 125(x):590—70,

1996.

Ferguson, W. J. “A Control Volume Finite Element Numerical Solution of Creep
Problems”. International Journal for Numerical Methods in Engineering, 40(18):3463—,

1997-

Letniowski, F. W. and P. A. Forsyth. “A Control Volume Finite Element Method for
Three-Dimensional NAPL Groundwater Contamination”. International Journal for
Numerical Methods in Fluids, 13(8):955—970, 1991.

Fung, L. S. K., A. D. Hiebert, and L. X. Nghiem. “Reservoir Simulation With a
Control-Volume Finite Element Method". SPE Reservoir Engineering, 7(3):349—, 1992.

Durlofsky, L. J. “Accuracy of Mixed and Control Volume Finite Element
Approximations to Darcy Velocity and Related Quantities”. Water Resources Research,

30(4):965—973, 1994.

[240] Eymard, R. and F. Sonier. “Mathematical and Numerical Properties of Control-Volume,

[241]

Finite-Element Scheme for Reservoir Simulation”. SPE Reservoir Engineering,
9(4):283—, 1994.

Fung, L. S. K,, L. Buchanan, and R. Sharma. “Hybrid-CVFE Method for Flexible-Grid
Reservoir Simulation”. SPE Reservoir Engineering, 9(3):188—194, 1994.

334



[242] Jones, ]. E., Z. Cai, S. F. McCormick, and T. F. Russell. “Control-Volume Mixed Finite
Element Methods”. Technical Report TR-97-16, ICASE, Langley, VA, February 1997.

[243] Gottardi, G. and M. Venuttelli. “A Control-Volume Finite-Element Model for
Two-Dimensional Overland Flow". Advances in Water Resources, 16(5):277—, 1993.

[244] Di Giammarco, P., E. Todini and P. Lamberti. “A Conservative Finite Elements
Approach to Overland Flow: The Control Volume Finite Element Formulation”. Journal

of Hydrology, 175(1-4):267—291, 1996.
[245] Onate, E., M. Cervera, and O. C. Zienkiewicz. “A Finite Volume Method for Structural

Mechanics”. Internation Journal for Numerical Methods in Engineering, 37:181—201,
1994.

[246] Bailey, C. and M. Cross. “A Finite Volume Procedure to Solve Elastic Solid Mechanics
Problems in Three Dimensions on an Unstructured Mesh". Internation Journal for
Numerical Methods in Engineering, 38:1757—-1776, 1995.

[247] Evans, G. H. “ Turbulence Modeling with v2-f Transport Equations”. Technical report,
Sandia National Laboratories, Livermore, CA, 1999.

[248] Evans, G. H. “ Turbulent Convective Heat Transfer with Applications to Sandia Fire
Modeling". Technical report, Sandia National Laboratories, Livermore, CA, 2000.

[249] Winters, W. S., G. H. Evans, and C. D. Moen. “CURRENT - A Computer Code for
Modelling Two-Dimensional, Chemically Reacting, Low Mach Number Flows".
Technical Report SAND Report 97—8202, Sandia National Laboratories, Livermore,
CA, October 1996.

[250] Durbin, P. A. e-mail communication, October 8, 1999.

[251] Patel, V. C., W. Rodi, and G. Scheuerer. “Turbulence Models for Near-Wall and Low
Reynolds Number Flows: A Review". AIAA Journal, 23:1308—-1319, 198s.

[252] Durbin, P. A. “Application of a Near-Wall Turbulence Model to Boundary Layers and
Heat Transfer”. International Journal of Heat and Fluid Flow, 14:316—323, 1993.

[253] Durbin, P. A. “Separated Flow Computations with the & — ¢ — v? Model". AIAA
Journal, 33:659—664, 1995.
[254] Parneix, S., M. Behnia, and P. A. Durbin. “Predictions of Turbulent Heat Transfer in an

Axisymmetric Jet Impinging on a Heated Pedestal”. Journal of Heat Transfer,
121:43—49, 1999.

[2s5] Behnia, M., S. Parneix, and P. A. Durbin. “Prediction of Heat Transfer in an
Axisymmetric Turbulent Jet Impinging on a Flat Plate”. International Journal of Heat
and Mass Transfer, 41:1845—1855, 1998.

[256] Hussain, A. K. M. F. and W. C. Reynolds. “Measurements in Fully Developed Turbulent
Channel Flow". Trans. ASME J. Fluids Engineering, pages 568—s80, December, 1975.

335



[257] Moin, P. and J. Kim. “Numerical investigation of turbulent channel flow". J. Fluid
Mech., 118:341—377, 1982.

[258] Cox, G. “Turbulent Closure and the Modeling of Fire by Using Computational Fluid
Dynamics”. Philosophical Transactions of the Royal Society of London, A,

356:2835—2854, 1998.

[259] Chomiak, J. and J. R. Nisbet. Combustion and Flame, 102:371—386, 199s.

336



7. TRANSPORT PROCESSES

We provide detailed derivations of the approximate form of the transport equations.

APPENDIX A. MULTICOMPONENT TRANSPORT

Gas-phase mass transport and chemical reactions are modeled with the multicomponent transport
equations. The gas-phase species transport equations are:

8pY;] + 8pu]Y;] _ _8pﬁj,9}/9 + wg, (71)
ot 6xj al'j

where the summation rule has been suspended for the species index, g. The mass fractions of the
chemical species are Y, the chemical source terms are wg, and the diffusion velocities are @; 4. The
diffusion velocities are functions of both mass diffusion and thermal diffusion, and are defined by the
multicomponent diffusion equation [171, 13]. Diffusion due to pressure gradients or body forces is
neglected. The diffusion equation can be manipulated into a form that is more readily applied
algorithmically [172]. The mass diffusion flux is defined as j; ; = —pt; 4V

Y, pY,D, OW 10T
: D o 9g—g9g=-"" DT_
lig = =P g@xz ( %74 81:,» 9T Ox;
Jim DnT 10T
Y,D,W — .
Z {W Do,  W.Dy, T 0z, 7:2)
n=1;n#g

The multicomponent diftusion coefhicients are D, the binary diffusion coefhicients are D;;, the
thermal diffusion coefficients are D;, and the molecular weight is W. The multicomponent diffusion

coefficients are defined to be
NS -1
D, = J )
> )
=Lj#i

The modified form of the equations helps decouple the equations for a segregated solution approach.
Equation 7.2 must first be solved for the mass diffusion fluxes as a closure equation. The equations are
not linearly independent over all the species, so one equation must be replaced with the constraint that
> Jji,g = 0. The chemical properties and rate terms are computed using CHEMKIN [169, 170, 173].

For coupled heat and mass transfer, the heat flux term in the energy equation is modified:

q; = sz Z Ji g (7~4)

The term involving the Dufour effect from thermal dlffusmn is neglected.
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APPENDIX B. TIME-AVERAGING AND
FAVRE-AVERAGING

The time-averaged and Favre-averaged transport equations are given in the following section.

B.1. Conservation of Mass

The continuity equation:

(a) time averaged:

8 -

(b) Favre averaged:
P
/ a—fdv v / Bin;dS =0 (7.6)

B.2. Conservation of Momentum

The momentum transport equations:

(a) time averaged:

— yowi L
Oty o [ 0 :’dV + / 5 m;dS + / wlngdS + / Wpun;dS
+ /u_ip/_u;-njds—k/pulu nde—i-/]_midS

(b) Favre averaged:

/ ag;”dv+ / Bitti;ndS + / pridsS = / 7S — / TndS + / 50: AV (7.8)
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B.3. Conservation of Energy

The energy transport equation, assume Lewis number is one (see Section 2.5.3):

(a) time averaged:

(b) Favre averaged:

8,0h . 'k Oh - aqr
B dV+/phujnde:/C 8x]anS /ph uin;dS — /&rzdv (7.9)

B.4. Conservation of Species

The species transport equation:

(a) time averaged:

opY
ot

’Y’ _ _ [
v+ / AV + / pY 1ain;dS + / pYu/n;dS + / w;p'Y/n;dS
- /Ykpu anS+/ pYiuin;dS

(b) Favre averaged:

Y, . - - _

APPENDIX C. DISCRETE 2D/AXISYMMETRIC
TRANSPORT EQUATIONS

The transport equations for two-dimensional, axisymmetric flow are given in section 2.2.5. These
equation descriptions are a work—in—progress; caveat emptor.
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C.1. X-Momentum (axial), 2D Laminar Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

LAV
App+= 'OITtI (7.12)
b? - = (PIUI — prU;f ) _Atl (7.13)

The convection term is computed at each face k& and assembled to the left (IL) and right (IR) control
volumes.

A?L,J += CI:J (7.14)

A?R,J - = C;,J (7.15)

b, —= Y Ci,U; (7.16)
J

bin += ZCZ,JU; (7.17)
J

The viscous stress term is computed at each face & and assembled to the left (IL) and right (IR)) control
volumes. Only the solenoidal part of the stress term is used for the matrix. The stress term may or may
not include the molecular viscosity, depending on the user specified model.

ON; ON;

Frg = —g <8_x kAz + n kAy) (7.18)
AfrlL,J += Fiy (7.19)
A?RJ - = Fk,J (7.20)

Tew =k (up +uy) (7.21)
I (722)
fo = = (Tede + TuyAy) (7.23)
v, —= f (7.24)
b?R += fr (7.25)
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The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.

oP|*
by —= O IAVI (7.26)

C.2. Y-Momentum (radial), 2D Laminar Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

LAV
A+ = PI AL (7.27)

by — = (0;Vi — V1) Ttl (7.28)

The convection term is computed at each face k and assembled to the left (IL) and right (IR)) control
volumes.

Apy += Ciy (7.29)

A?R,J - = CZ,J (7.30)

v, —= > Ci, Vi (7.31)
7

bin += ZOZ,J‘/; (7.32)
7

The viscous stress term is computed at each face k and assembled to the left (IL) and right (IR)) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

ON; ON; )
Fy. = —U <— A+ ——| A (7.33)
k,J s\ op ) ay |
AC]lLVJ + = Fk:,J (7.34)
A?R7J - = Fk:,J (7.35)
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Tye = e (U 4 ) (7.36)
Tyy = Mk (v; + U;) (7:37)

fo = —(Teds + 1y 4,) (738)
v, —= fu (7-39)
b += T (7.40)

There is a radial force contribution from the azimuthal stresses. These are evaluated for sub-volumes.

A
Frg = Qﬂk? (7.41)
A?C7J += Fiy (7-42)
(7.43)

v
Too = 2/%; (7.44)
fr = T (7.45)
ble —= fu (7.46)

There is an acceleration force from swirl. These are evaluated for sub-volumes.

bic+ = pW?A, (7.47)

The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.
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C.3. /-Momentum (swirl), 2D Laminar Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume. We solve for
the angular velocity, {2, instead of the azimuthal velocity, w.

LAV
Ai’,["f_ = PITtI (7.49)

AV;
bt _ — *Q* _ nQn .
1 (p1€% — p7Q27) At (7.50)
The convection term is computed at each face k and assembled to the left (IL) and right (IR) control
volumes.

A?L,J += CI:,J (7.51)

A?R,J - = CZ,J (7.52)

b, —= > Ci, (7.53)
J

Br += > Ci, (7.54)
J

The viscous stress term is computed at each face k and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

ON; ON;

Frg = —u <8_x kAz + ¥ kAy) (7.55)
ACIILJ += FrJ (7.56)
Alpy —= Fry (757)

Tow = i (W)) (7.58)
Ty = i (w)) (7.59)
fio = —(Tds +TAy) (7.60)
bLIiL —= fx (7.61)
b?R += Jk (7.62)
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190
bi+ = 2u=——AV; (7.63)
r Or

There is a Coriolis force from swirl. These are evaluated for sub-volumes.

bio— = 2pVW A, (7.64)

C.4. Mass Transport — 2D Continuity

There is no net flow through the azimuthal face if an axisymmetric coordinate system is used.

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

. AV
b — = (p; — ) Ttl (7.65)

The convection term is computed at each face k£ and assembled to the left (IL) and right (IR)) control
volumes using the Rhie/Chow scheme from Section s.1.

ON; ON;
F; = —fAt| —| A, + —| A .66
A?L,J += Fry (7.67)
A?R,J —= Fry (7.68)

. A oP
Uy = ZNJ‘kUJ‘i‘f?(Z%
J J

- p;;> +f (uk ~3 N, Uf}) (7.69)
J

J
vio= D) NV = (Z aa—P —p;;) +f (v;s -> Nﬂﬂf) (7.70)
J P J Yl J
g = p(updy +upAy) (7.71)
b;L — = (7.72)
b;R += my (7~73)

Velocity correction and new mass flow rate.....
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C.5. Energy, 2D Laminar Transport

The laminar energy equation is linearized with respect to the temperature. The time term is lumped.
The time-term contribution is evaluated for each sub-volume. The density must also be linearized for
stability.

H:\ AV,

t _ o T ey § _I
AI,I + = (Plcp,l Pr T; ) At (7.74)
bl} — = (pyH; — prHY) _AtI (7.75)

The convection term is computed at each face k& and assembled to the left (IL) and right (IR) control
volumes.

Al += C/?,#C;,J (7.76)

A?R,J - = CQ,TJICSJ (7.77)

b, —= > Cph'H; (7.78)
J

Vi += > CritH; (7.79)
J

The heat conduction term is computed at each face k and assembled to the left (IL) and right (IR)
control volumes.

Fo;, = —kKg <% kAm + 38_]\;] kAy> (7.80)
A?L,J += Ik (7.81)
ACIIR,J —= Fiy (7.82)

@ =~k (GA+1A,) (7.83)
v, —= & (7.84)
bir += (7.85)



C.6. Temperature, 2D Laminar Transport

The laminar temperature equation is linearized with respect to the temperature. The time term is
lumped. The time-term contribution is evaluated for each sub-volume.

LAV
Apyt+ = b, (7.86)
by — = (piT7 — piT7) _Atl (7.87)

The convection term is computed at each face k and assembled to the left (IL) and right (IR)) control
volumes.

Afp; += Ogjl (7.88)

Afpy —= Og:;l (7.89)

Voo —= Y Cii'T; (7.90)
J

bip += ZCIZleT; (7.91)
J

The heat conduction term is computed at each face k and assembled to the left (IL) and right (IR)
control volumes.

ki [ ONy ON;

Fryg = —@ (E . z T (9_y kAy) (7.92)
Al += Fiy (7.93)
Afpy —= Fiy (7.94)

@ = —% (t:4, + €3A,) (7.95)
v, —= q 7.96)
Vi, += q (7.97

A correction for variable specific heat is applied as a volume term. The correction is computed at the
centroid of the sub-volume, &, for control volume /.

K

C’Z

p

Vit = — (t,Cp0 + t,Cp ) AV, (7.98)
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C.7. Species, 2D Laminar Transport

There is a species equations for each species. The mass fraction is Y, where s is the species number. The
time term is lumped. The time-term contribution is evaluated for each sub-volume.

LAV
A+ = rix; tI (7.99)
bl} - = (PIYS,I - pIYS,I) Tt] (7.100)

The convection term is computed at each face k& and assembled to the left (IL) and right (IR) control
volumes.

A;L,J + = C/?jl (7.101)

A;R,J - = Cl?jfl (7.102)

i —= Y CRiYy, (7.103)
J

bip += ZCI?jl}/sTJ (7.104)
J

The mass diffusion term is computed at each face & and assembled to the left (IL) and right (IR) control
volumes.

P = —abu (G2 4+ 5 A) (7105
A?L,J += FrJ (7.106)
A?R,J —= FrJ (7.107)
fo = —peDey (ysiAs +ysiA,) (7.108)
b, —= fe (7.109)
blp += fa (7.110)
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8. REVIEW OF CONTROL VOLUME
FINITE ELEMENT METHODS

The earliest reference to control-volume finite-element methods is the 1980 work by Baliga and
Patankar [174] for the convection-diffusion equation, a refinement of Baliga’s 1978 dissertation [175].
Baliga and Patankar [176] first apply their approach to the Navier-Stokes equations of fluid mechanics
in 1983. At the same time, Schneider and Zedan [177] develop a control-volume finite-element for heat
conduction. Schneider and Raw [178] then develop a control-volume finite-element method for fluid
flow in 1986. The work of Baliga/Patankar and Raw/Schneider are the foundations for two of the main
control-volume finite-element methods that are used today for fluid mechanics. A third control-volume
finite-element method is adapted from Galerkin Least Squares (GLS) finite-element methods by
Swaminathan and Voller [179] in 1992, but there is no evidence of widespread use.

There are three difficult issues that must be addressed in all numerical methods for the Navier-Stokes
equations: 1) stability at high Reynolds number and Peclet numbers, where pure centered differencing
for the convection terms, or the analogs in FEM and FVM, can lead to numerical oscillations, 2.
coupling of the pressure and velocity field, where “checker-boarding” can occur when the variables are
co-located and use similar interpolations, and 3) updating of the pressure field. There are three main
schools of thought in the CVFEM community for addressing the three issues above. With the
Baliga/Patankar approach, upwinding is achieved with exponential shape functions on linear triangular
and tetrahedral elements. Originally, pressure-velocity coupling was attained using mixed-order
elements. Later, an equal-order scheme was developed that involved pressure terms in the interpolation
functions. Convecting and convected velocities were maintained for pressure-velocity coupling. The
pressure is solved using a projection method similar to the SIMPLER [180] algorithm. The method is
practically limited to triangles and tetrahedra because of the form of the interpolation functions. With
the Raw/Schneider approach, upwinding is achieved using the skewed upwinding or positive influence
coefficient approaches. The pressure and velocity are solved fully coupled using an approximation of the
transport equations as an interpolation function. Two velocity fields are maintained, a convecting and a
convected field. The method is applicable to all element forms and has been successfully implemented
in a commercial computational fluid dynamics code, TASCflow [154]. With the Swaminathan/Voller
approach, the methods of streamline upwinding and pressure stabilization are adapted from
finite-element methods. There is only a small amount of literature on this particular CVFEM.

The following historical synopsis of CVFEM’s addresses research for solving the pressure-based
incompressible Navier-Stokes equations and the more elementary convection-diffusion equations.

1966 Winslow [181] presents a control volume formulation for a Poisson equation based on linear
triangular elements. This work is important because it is one of the first applications of the finite
volume method on unstructured meshes.
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1980 Ramadhyani and Patankar [182] compare the accuracy of the Galerkin finite element method
with a control volume method for the Laplacian operator. They use bilinear shape functions and
rectangular elements, where the control volume method uses the bilinear shape functions as
interpolation functions. The numerical errors of the control volume method are half those of the
finite element method.

Baliga and Patankar [174] introduce a flow-oriented upwind interpolation for
convection-diffusion problems on triangular elements, a refinement of 1978 dissertation

work [175]. The upwinding is introduced through an interpolation function based on a locally
analytic solution to the velocity-aligned transport equation, resulting in exponential shape
functions. They solve both radial heat conduction in a rotating hollow cylinder for Peclet
numbers up to 100, and the transport of a step scalar field, all with specified velocity fields. The
directional upwinding provides better solutions than uniform first-order upwinding.

1983 Baliga and Patankar [176] develop a mixed-interpolation scheme for solving the Navier-Stokes
equations with heat transfer on triangular elements. The mixed interpolation keeps the pressure
from decoupling from velocity. The pressure is solved by applying the continuity equation over
macro-triangles. The interpolation function for the convecting velocity contains the pressure
gradient. Each macro-triangle is subdivided into four sub-triangles for the momentum and
energy equations. The flow-oriented upwind scheme is used to interpolate velocity and
temperature for their respective transport equations. The velocity is assumed to vary linearly over
the element for computing mass flow rates. The equations are solved in a segregated manner
using an approach similar to the SIMPLER method [180]. This work is the first application of
the CVFEM for the Navier-Stokes equations.

Baliga, Pham, and Patankar [183] apply the mixed-interpolation scheme [176] to fluid flow and
heat transfer. They solve flow between rotating cylinders for Reynolds numbers up to 1000, fully
developed flow in a square duct with a laterally imposed velocity for Reynolds numbers up to
100, natural convection in rectangular enclosures for Rayleigh numbers up to 10%, and natural
convection in a trapezoidal enclosure for Rayleigh numbers up to 10°.

1985 Prakash and Patankar [184] solve the Navier-Stokes equations with an equal-order interpolation
for velocity and pressure on triangular elements. The mass flow velocity, used for continuity, is
different from that derived from momentum, thus avoiding staggering or mixed-interpolation.
The flow-oriented upwind scheme is used to interpolate the convected velocity for the
momentum equation while the pressure gradient is treated as an element-constant source term.
The coeflicient matrices for momentum are used to define the velocities for the continuity
equation which include the now-unknown pressure gradient across control volume faces. They
use a pressure correction approach similar to the SIMPLER algorithm to update velocity and
accelerate convergence. The continuity and momentum equations are segregated in the solution
process. They solve flow between rotating cylinders for Reynolds numbers up to 1000, and
natural convection in a closed cavity with a Boussinesq-type buoyancy term for Grashof numbers
up to 10°. The solutions are more accurate than with the mixed interpolation scheme of
Baliga [176]. They note problems with negative coefficients during the first iterations of a
solution.
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Ramadhyani and Patankar [185] extend the flow-oriented upwind interpolation scheme from
linear triangles to bilinear quadrilateral elements for convection-diffusion problems. Three-point
quadratures (Simpsons Rule) are used to evaluate flux integrals, as in all the previously
mentioned work. They argue that one-point quadratures are less accurate because of the
nonlinear nature of the interpolation functions, but only at intermediate values of cell-Reynolds
number. They present solutions for five different test cases, including the convection of scalar
profiles and diffusion in rotating systems. After this article, there are no further publications for
quadrilateral or hexahedral elements using methods developed by Baliga, Patankar, and Prakash.

1986 Schneider and Raw [178] develop a positive influence-coeflicient extension to skewed upwind
interpolation [186] for convection terms, based on 1985 dissertation work [187]. They apply the
scheme to the convection-diffusion equation on quadrilateral elements. Diffusion terms are
calculated by integrating the gradients of the isoparametric, bilinear interpolation functions.
They solve several convected-scalar cases and claim smooth solutions where the methods of Baliga
and Patankar exhibit oscillations. The skewed upwind method has less dependence on the
element orientation than flow-oriented streamline upwinding.

LeDain-Muir and Baliga [188] extend the flow-oriented upwind interpolation scheme to linear
tetrahedral elements in three dimensions for the convection-diffusion problem. Each tetrahedron
contains six control volume faces. A single unit normal is calculated for each control volume face.
For integration, each face is subdivided into two triangles. A three-point quadrature is used on
each triangular subface where the sample points are taken along the midpoints of the triangle
edges. They solve radial heat conduction in a rotating hollow sphere, scalar transport of a step
profile, and transport with radial convection between concentric spheres.

Prakash [189] modifies the flow-oriented upwind interpolation to include source terms from the
transport equations on triangular elements, with applications to the incompressible
Navier-Stokes equations. The pressure gradient in the momentum equations is treated as a
source term in the interpolation function for velocity, directly coupling the pressure to the
velocity. The source term has a streamwise-linear influence on the interpolation function. The
mass flux is calculated using the new interpolation function instead of assuming a linear
variation. The pressure is then calculated through the continuity equation by directly applying
the new velocity interpolation function, replacing the SIMPLER scheme but keeping the
segregated approach. A pressure correction step is included to make sure the velocity
interpolation function satisfies continuity. He solves flow between rotating cylinders up to a
Reynolds number of 1000, the lid-driven cavity for Reynolds numbers up to 400, and natural
convection in a square cavity for Grashof numbers up to 10°. The solutions are more accurate
than with the original collocated scheme of Praskash and Patankar [184].

1987 Schneider and Raw [132, 133] extend the positive-coefficient, skewed upwind interpolation [178]
to the incompressible Navier-Stokes equations on quadrilateral elements. They use a
element-local discretization of the transport equations to derive interpolation functions at
control volume faces that couple the velocity and pressure. The convection terms are constructed
with the positive-coefficient, skewed upwinding. The skewed upwinding couples all the control
volume face values together within an element, so an internal matrix inversion must be applied to
calculate individual face values. The momentum and continuity equations are solved all at once
as a coupled system. They solve convection of a scalar field with a step profile, the lid-driven
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cavity for Reynolds numbers up to 1000, the inviscid forward-facing step to test the conservation
of total pressure, and flow between rotating cylinders. Grid convergence studies suggest spatial
accuracy near second order. They call their method Finite Element Difference Scheme (FIELDS).

Schneider [149] extends their algorithm [132] to cylindrical, axisymmetric coordinates and
presents solutions for the cylindrical driven cavity.

Prakash [190] examines a donor-cell method for replacing flow-oriented upwind interpolation
on triangular elements. The donor cell method provides positive coefficients, where the
flow-oriented upwinding can yield negative coefficients, leading to oscillations. The donor-cell
scheme is applied to several of the previous convected scalar problems and the thermally driven
cavity. The scheme exhibits excessive diffusion and is not generally recommended.

1988 Hookey, Baliga, and Prakash [191] modify the treatment of the source term in the flow-oriented
upwind interpolation for triangular elements relative to the previous source term modifications
of Prakash [189]. A crossflow-quadratic multiplier is added for the source term in the the
interpolation function. They apply the scheme to the convection-diftusion equation for radial
heat conduction between rotating cylinders and radial heat conduction in radial flow between
cylinders. The new source treatment proves better than the previous scheme of Prakash only
when the flow has multidimensional features.

1988 Hookey and Baliga [192] apply the flow-oriented upwind interpolation with the modified source
treatment [191] to the incompressible Navier-Stokes equations on triangles. Instead of calculating
pressure by applying the interpolation functions directly to the continuity equation as was done
by Prakash [189], a method similar to SIMPLEC [193] is used. The previous approach converged
poorly at higher Reynolds numbers. A pressure correction approach is still employed to force the
interpolation function for velocity to satisfy continuity, but with the penalty of an enlarged
stencil for the pressure-correction equation. The continuity and momentum equations are
solved simultaneously. They solve a polar lid-driven cavity for Reynolds numbers up to 380 and
the natural convection for Rayleigh numbers up 10°. Solutions are compared against results
from the older methods of Prakash [189] and Baliga [176], and prove to be more accurate.

Reviews of control volume finite element methods for fluid flow and heat transfer are given in
the Handbook of Numerical Heat Transfer by both Baliga [143] and Schneider [161]. They
provide implementation details for many of the methods published to date.

1992 Swaminathan and Voller [179, 194] extend of the ideas of the Streamline-Upwind
Petrov-Galerkin (SUPG) method [195] to solving the convection-diffusion equation with
quadrilateral elements. They solve several convected-scalar problems and compare the results to a
FEM implementation of the SUPG scheme. The CVFEM analog of SUPG performs just as well,
except for time accurate solutions where the phase error is larger. The SUPG method provides
better solutions than the skew upwinding or flow-oriented upwinding for heat conduction
between rotating cylinders, but worse for the scalar transport of a step profile.

Baliga and Saabas [196] provide a critical review of control volume finite element methods. They
criticize the schemes of Hookey [192] and Raw [132] for being too expensive, computationally.
They introduce the mass advection weighted scheme of Saabas where he adapts the concept of
positive influence-coefficients from Schneider and Raw to the formulation of Baliga and Prakash.
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They call the original flow-oriented upwind scheme of Baliga and Patankar FLO, the source-term
modified scheme of Prakash FLOS, and the mass advection-weighted scheme of Saabas MAW.
The FLO(S) schemes result in mixed-sign oft-diagonal coefficients if the triangular elements are
obtuse, potentially admitting oscillations. Additionally, many of the schemes developed to date,
for CVFEM, over-specify the pressure boundary conditions, leading to poor convergence.

Naterer and Schneider [197] extend the approach of Schneider and Raw [132] to compressible
flow. An explicit predictor-corrector time integration is used for transient solutions. The
influence-coefficient matrices are used to interpolate density, velocity, and internal energy at
control volume faces at an intermediate time level. These values are then used to correct the state
variables using a forward Euler integration. They solve a transient shock tube problem for an
initial pressure ratio of 10, flow through a converging-diverging nozzle with an area ratio of 2, and
Mach 3 supersonic flow over a forward-facing step.

1993 Swaminathan, Voller, and Patankar [198] extend the streamline-upwind Petrov-Galerkin method
and the pressure-stabilized Petrov-Galerkin [195] method to a conservative form for the control
volume finite element method. The streamline-upwind control-volume, pressure-stabilized
control-volume (SUCV/PSCV) method is applied to the incompressible Navier-Stokes equations
with quadrilateral elements. They evaluate the integrals using mid-point quadrature and solve
the segregated equations using a SIMPLER approach. They solve the lid-driven cavity ata
Reynolds number of 400, natural convection in a square enclosure for a Rayleigh number of 10°,
and natural convection in a cylindrical annulus at a Rayleigh number of 10%.

1994 Saabas and Baliga [199, 200] adapt the positive influence-coefficient scheme of Schneider and
Raw [132] to triangular and tetrahedral elements and call the method mass advection weighting
(MAW). They introduce a new control volume construction for tetrahedral elements. Their
tetrahedral element contains one four-point planar face and two three-point planar faces, whereas
the control volume construction of LeDain-Muir [188] contained six four-point surfaces. The
reduced number of control volume faces makes the MAW scheme less expensive to apply, but the
element shape functions become dependent on the shape of each element. They solve for
pressure using the original approach of Prakash [184] with a SIMPLER method. The solution
technique is segregated. For solving practical problems, they recommend using the FLO scheme
for the convection terms and switching to the MAW scheme only if there are problems with
negative coefhicients. They advise against using the FLOS schemes of Prakash [189] and
Hookey [192] because they typically do not provide enough improvement in accuracy to justify
their slower convergence properties. Additionally, they claim that carrying pressure gradient
terms in the velocity interpolation function requires the boundary conditions for pressure to be
over-specified for inflow/outflow problems. They solve the 2D lid-driven cavity for Reynolds
numbers up to 1000, 2D turbulent flow over a backward-facing step using a £ — € turbulence
model for a Reynolds number of about 10, 3D natural convection in a cavity for Rayleigh
numbers up to 10%, and a turbulent jet injection into crossflow for jet Reynolds numbers up to
53600. The MAW scheme is required for the jet problem because of negative coefficient
problems with the FLO scheme.

Masson, Saabas, and Baliga [201] extend the MAW scheme of Saabas [199] to axisymmetric flows
with triangular elements. They solve developing pipe flow for a Reynolds number of 40, pipe
flow with a step constriction up to a Reynolds number of 1000, natural convection in a
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cylindrical enclosure for a Grashof number of 2 and Prandtl number of 2500, and flow through
and arterial section for Reynolds numbers up to 350.

Masson and Baliga [202] apply the MAW scheme of Saabas [199] to dilute-particle flows with
triangular elements. They solve equations for the gas phase and the dispersed phase. They solve
for flow through a constricted channel for a Reynolds number of 100 and Stokes numbers
between 1073 and 10!, and for flow in a split inertial separator for a Reynolds number of 200.

Karimian and Schneider [203] improve the velocity-pressure coupling of the original
Schneider-Raw scheme [132]. The original scheme, referred to as FIELDS, has poor performance
for inviscid flow. They improve the coupling by adding a discrete continuity relation to the
interpolation functions for the convecting velocity. The additional terms help smooth
oscillations that occur for a mass sink test problem. They verify the new interpolation function
on the lid-driven cavity for Reynolds numbers up to 3200, and the backward-facing step for
Reynolds numbers up to 230.

Karimian and Schneider [204] extend the method of Schneider and Raw [132] to both
compressible and incompressible flow for the quasi-one-dimensional Euler equations. They solve
for flow through a converging-diverging nozzle with an area ratio of 2.035 with and without a

shock.

Deng et al. [205] present a new flux reconstruction scheme to replace the FIELDS scheme of
Schneider and Raw [133]. They note that the FIELDS scheme is similar to the original work of
Rhie and Chow [131] who where some of the first researchers to solve incompressible flow on
collocated grids. Deng takes features of both schemes to create a compact reconstruction that
does not require matrix inversions to calculate the integration point values in terms of nodal
values. Since they question the consistency of the FIELDS scheme, they call their new scheme
consistent physical interpolation (CPI). They apply the scheme to two and three-dimensional
Navier-Stokes calculations on structured Cartesian meshes. They solve the lid-driven cavity for
Reynolds numbers up to 1000, a 3D lid-driven cavity for Reynolds numbers up to 1000, and
turbulent vortex shedding over a square cylinder for a Reynolds number of 22000.

1995 Costa et al. [206] apply the MAW scheme of Saabas [199] to three-dimensional turbulent flows
with tetrahedral elements. They solve a turbulent jet injected into a crossflow for jet Reynolds
number up to 53600, and flow through a T-junction in ducts at Reynolds numbers near 90000.

Karimian and Schneider [207] apply control-volume finite-element methods to a shock-tube

problem.

Karimian and Schneider [208] extend the FIELDS scheme and the convecting velocity
corrections to compressible flow. They solve the lid-driven cavity for Reynolds numbers up to
3200, flow over a shallow bump in a channel with Mach numbers from 0.5 to 1.65, and flow
through a ramped inlet for a Mach number of 2.5.

Padra and Larreteguy [209] develop an error estimator with mesh refinement for the
convection-diffusion equation. They use the formulation of Baliga and Patankar [174] with
triangles. Larreteguy [210] then extends the scheme to fluid flow with triang]es.
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1996 Harms ez 4l. [211] introduce a simplified interpolation function for the control volume finite
element method. They develop a method for applying analytic shape functions on
nonorthogonal meshes. They apply the scheme to flow between rotating cylinders for Reynolds
numbers up to 1000 and the scalar transport of a step profile.

Comini et al. [212] compare CVFEM and GFEM formulations for the convection-diffusion
equations.

Neises and Steinbach [213] develop a control volume finite element method based on a mixed
interpolation approach to facilitate pressure-velocity coupling and artificial dissipation for
convective stability. They begin with a Galerkin finite element method and then manipulate
off-diagonal terms to force conservation. They solve a laminar, 3D obstructed channel flow for
Reynolds number from 0.1 to 50000.

Vélker, Burton, and Vanka [214] apply a multigrid solution technique to a control volume finite
element method on triangular elements. Linear interpolation is used throughout the triangles
with a three-point quadrature to integrate fluxes. The pressure is solved using the SIMPLE
method. They solve natural convection problems in square, triangular, and semicircular cavities
for Rayleigh numbers up to 10°.

Botta and Hempel [215] describe a finite-volume projection method for unstructured, triangular
meshes with element-centered variables.

1997 Darbandi and Schneider [216] develop a scheme for both compressible and incompressible flow
using a momentum variable formulation of the Schneider/Raw scheme [132, 133]. The
interpolation formula for the convecting velocities is derived from an approximation of the
momentum equation with an additional velocity-weighted continuity equation term. Solutions
are demonstrated for velocities up to Mach o.9.

Baliga [217] gives an overview of the control volume finite element method as applied to fluid
flow.

1998 O’Rourke and Sahota [218] develop an edge-based scheme in 3D for the convection operator.
The convection operator is constructed from a multidimensional upwind scheme. Within each
element, the quadrature points are associated with edge mid-points instead of sub-face
mid-points, so the amount of work is reduced over the traditional CVFEM.

Gresho and Sani [219] compare CVFEM methods to GFEM methods.

Venditti and Baliga [220] describe an error estimation strategy for incompressible flow with
CVFEM.

2001 Reyes, Rincon, and Damia [221] present a CVFEM approach for turbulent flow with wall
functions.

Campos Silva and de Moura [222] present a method for 9-noded quad elements with the mass
advection weighted scheme.

2002 Zhao, Tai and Ahmed [223] implement a 2D CVFEM on triangles for micro flows. They use an
upwind scheme where nodal gradient are used to reconstruct the high-order fluxes at the control
volume faces.
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With respect to fluid flow, the CVFEM methods have been developed primarily for triangular and
tetrahedral elements [174, 176, 184, 188, 189, 191, 192, 199, 201]. Development focused on triangular and
tetrahedral elements because the shape functions are linear and gradient terms become constant over the
element. Constant first derivatives simplify the formulation of many of the schemes. Fewer articles have
been published on the use of quadrilateral elements [18s, 178, 132, 179, 198] in two dimensions and no
articles have been published for CVFEM with hexahedral elements in three dimensions. In addition,
there have been CVFEM formulations for the streamline-vorticity

equations [224, 225, 226, 227, 37, 228], for the heat equation [177, 229, 230, 231, 232, 233, 234, 235, 236],
for flow in porous media [162, 237, 238, 239, 240, 241, 242], for overland flows [243, 244], and for linear
elasticity [245, 246].
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9. TURBULENCE MODELING WITH
V2-F TRANSPORT EQUATIONS

The level 1 turbulence model in FUEGO is the standard k& — ¢ turbulence model with constants and
wall functions established for forced convection flows. The v2-f turbulence model is a modified & — ¢
turbulence model [21] that has been implemented and evaluated recently for several flows without [247]
and with [248] heat transfer in the Sandia research code CURRENT [249]. The v2-f model has been
implemented in FUEGO recently as an unsupported feature. As an initial test of the FUEGO
implementation, model results for a fully developed, isothermal, turbulent flow in a channel are
compared with results from a 1D code [250]. Using 60 non-uniformly spaced grid points across the
half-height of the channel, good agreement is obtained for a channel flow at Re;, = ugh/v = 13,800
where / is the half-height of the channel and u; is the centerline velocity. This grid results in

yT = yu, /v = 0.5 at the center of the subcontrol volume that is adjacent to the channel wall.

The next steps will be to compare the model for heat transfer with other model results and experiments
in flow regimes of forced and mixed convection for several flow geometries (channel or tube flow,
stagnation flow and separated flow). While the forced flow results can be compared with other
numerical and experimental work, there is much less information available for the mixed convection
regime.

APPENDIX A. INTRODUCTION

Although radiation is the dominant heat transfer mechanism in a pool fire, convection can be
significant for some conditions. The convective heat transfer regime most likely to exist in a pool fire is
turbulent mixed convection where both buoyancy and forced flow effects (due to external wind or air
flow induced by the large density changes associated with the fire) can be important. The flow regimes
and geometries encountered range from flow over a flat surface (e.g., the ground) to impinging and
separated flow (e.g., objects lying on the ground either in or adjacent to the fire). Turbulent transport
processes are typically modeled using the Boussinesq hypothesis to relate the turbulent transport terms
(stresses or fluxes that result from averaging the dependent variables in the conservation equations) to
the mean rate of strain. For example, the Reynolds stresses are often modeled as:

I (axj + 5%) ZP0ijk (9.1)
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where k is the kinetic energy of turbulence, 5uju;, and i is the turbulent viscosity, which in the widely

used k — € model of turbulence is given by:

]{32
Mt = C“pT, (92’)
€ is the mean viscous dissipation, defined by:
_(ou  Oup\ Oul
c=v 055]' + 83:1 8.17]' (93)

In the standard form of the £ — € model (Launder and Spalding [38]), which we are using in the level 1
fire code modeling, the transport equations for £ and e are given by:
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and C,, = 0.09, C,, = 1.45,C,, = 1.92,04 = 1.0, 0, = 1.3.

The above constants have been determined through extensive numerical studies on primarily
isothermal, high Reynolds number, turbulent shear flows. The boundary conditions for the transport
equations in turbulent flow have traditionally involved the use of wall functions to avoid the
computational cost of resolving the very steep gradients of the variables near the wall. These wall
functions assume knowledge of the profiles of the variables (e.g., velocity and temperature) near the
wall, and in the case of the turbulence parameters assumptions are made about the transport processes
in the wall region (e.g., production and dissipation of turbulent kinetic energy are in balance).

Alternatively, if computational costs are not a concern, the wall function approach is abandoned;
instead, a fine grid is used near the wall and boundary conditions are applied directly at the wall (e.g.,
zero values of the velocity components, specified temperature, k = 0 and € = 00). In this case (referred
to as the low Reynolds number modification to the standard k — € model of turbulence, Jones and
Launder [34]), however, the coeflicients in the above equations are no longer constant but become
dependent on the distance from the wall (modeled using damping functions). A review of the low
Reynolds number turbulence models is given in Patel et al. [251]. Both wall functions and damping
functions require empirical information or assumptions about the gradients of the variables near a wall;
neither case is desirable, since a primary reason for solving transport equations is to predict the spatial
variation of the dependent variables. Recently, Durbin [21] has presented the v2-f modification of the

k — e turbulence model that avoids both wall functions and damping functions by solving two
additional transport equations. The model has been tested for several forced convection flows,

with [252] and without [253] heat transfer; more recently it has been applied successfully to convective
heat transfer problems in stagnation flow with (Parneix et al. [254]) and without (Behnia et al. [255])
separated flow regions.
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APPENDIX B. THE V2-F MODEL

Durbin [21] introduced a method for handling the wall region without using either wall functions or
damping functions. In his method a fine grid is required near the wall (e.g., the first grid point is
typically within one dimensionless unit of distance from the wall where the coordinate normal to the
wall is nondimensionalized with the inner scale for a turbulent boundary layer, y© = yu, /v < 1 atthe
first grid point, where u is the friction velocity, y/7,,/p). The model employs two transport equations
in addition to slightly modified & — € equations to account for the nonhomogeneous region near the
wall. The eddy viscosity is formulated using the component of turbulent kinetic energy normal to the
wall for velocity scaling (instead of using V'k as done in the standard k — € model):

The time scale, 7', is the usual time scale, k /€, away from the wall region; however, near the wall, if & /¢
becomes smaller than the Kolmogorov time scale, \/7//e, then the latter is used for 7". The model
includes a transport equation for v?:
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An elliptic relaxation model equation is formulated to solve for the variable f in the above equation.
The purpose of the elliptic relaxation model is to account for nonlocal effects such as wall blocking; the
equation is given by:

2/3 —v?/k 2 o2

The turbulent kinetic energy equation 9.4 remains the same in the v2-f model; however, the dissipation
equation 9.5 is modified as follows:
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The time and length scales in the above equations are given by:

T = min

11, L_L (9.11)
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and the constants are given by: C'él =Cy (1 + 0.045 k/ﬁ), C,=14C,=19,C,=0.22,
C1=04,0,=03,a0a=06,N=6,C;, =0.23,C, =70,0, = 1.0.

Boundary conditions at a no-slip, solid wall are given by:

ko= v?=f=0 (9.15)
e = 2wk(1)/y(1)* (9.16)

where k(1) and y(1) are the turbulent kinetic energy and the normal distance from the wall at the
center of the subcontrol volume that is adjacent to the wall. The € condition at the wall node is
determined by weighting the above expression for each subcontrol volume associated with the wall node
by the subcontrol volume wall surface area, accumulating the values for all the subcontrol volumes that
make up the boundary control volume associated with the wall node, and dividing by the total wall
surface area for the boundary control volume.

APPENDIX C. TEST PROBLEM

The equations and boundary conditions for the v2-f model have been implemented in FUEGO. A 1-D
code for solving the equations of fully developed, isothermal, turbulent flow in a channel was obtained
from Durbin [250] and is used here to verify the model implementation. The Reynolds number chosen
for the verification test is Rej, = uqh /v = 13,800 where h is the half-height of the channel and u, is
the centerline velocity. This condition was chosen for verification and validation purposes because it has
been studied thoroughly both experimentally [256] and numerically [257]. From [256],

ur/uq = 0.0464 at Rej, = 13,800, and h = 3.175cm. Properties of nitrogen at 300K, ratm are used
in the FUEGO calculations: p = 1.138x107%g/cm?® and p = 1.813x10"*g/cm — s. This gives a
Reynolds number based on the friction velocity u, and the channel height 2/ of 1280.6 to use in
Durbin’s 1D channel code. The profiles of velocity, turbulent kinetic energy &, turbulent dissipation
rate €, and v2 computed from the 1D simulation are used as inlet profiles for the FUEGO (version 0.5.2)
calculation. The 3D FUEGO simulation included one element in the lateral (z) direction; symmetry
conditions were imposed on the minimum and maximum z planes; symmetry was also imposed at the
channel centerline (y = 0). Outflow boundary conditions with p = 0 were imposed at the outflow
boundary (z = 8cm). Three different meshes were used to discretize the half-width of the channel: a
fine mesh with 26 nodes where the smallest to largest mesh spacing ratio was 0.375; a finer mesh with 40
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nodes where the smallest to largest mesh spacing ratio was o.1; and a finest mesh with 6o nodes where
the smallest to largest mesh spacing ratio was 0.075s. For these meshes the values of y ¥ (= (h — y)u, /v)
at the center of the subcontrol volume that is adjacent to the channel wall are ~ 3, 1, and 0.5,
respectively. The finest mesh FUEGO velocity profile at the outlet of the channel (x = 8cm) is
compared with the 1D profile and with the experimental data of Hussain and Reynolds in the near wall
region in Figure C-1. The velocity in Figure C-1 is normalized with the centerline velocity; the distance
from the wall, A — ¥, is normalized with the half-height of the channel /.

Near—wall velocity profile
turbulent channel flow; Re_h = 13,800
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Figure C-1.. Near wall profiles of velocity, Re=13,800 (fuego-0.5.2).

Velocity profiles across the half-width of the channel are shown in dimensional form in Figure C-2.
Included in the Figure is the velocity profile from a FUEGO k — € calculation which solved the &
transport equation for the control volume adjacent to the wall and used the code option use equilibrium
production model. The k — € calculation used 10 equally spaced elements across the channel half-height
and is described in detail in the verification chapter of this document dealing with wall functions in
turbulent flow.

The finest mesh FUEGO turbulent kinetic energy profile at the outlet of the channel (x = 8cm) is
compared with the 1D profile and with a k profile formed from a combination of the experimental data
of Hussain and Reynolds for v/ 2 and the LES calculation of Moin and Kim for v'? and w'? in the near
wall region in Figure C-3. The k values are normalized with 2.

The variation of turbulent kinetic energy across the half-height of the channel is compared with
Durbin’s 1D profile in Figure C-4. A profile of k computed using the & — € model is included for
reference.
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fully developed turbulent channel flow
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Figure C-2.. Profiles of velocity, Re=13,800 (fuego-0.5.2).

The variation of turbulent dissipation across the half-height of the channel is compared with Durbin’s
1D profile shown in Figure C-s5. A profile of € computed using the & — € model is included for

reference.

Profiles of € normalized with h/u.? in the near wall region are shown in Figure C-6 as a function of y
for the three meshes and compared with Durbin’s 1D profile. Good agreement is obtained for the finest
mesh.

Profiles of v2 across the half-height of the channel at the channel exit ( = 8 cm) for the three meshes
are compared in Figure C-7 with the 1D profile of Durbin. Good agreement with the 1D profile is
obtained for the finest mesh FUEGO calculation; note that for the finest mesh ¢ at the center of the
subcontrol volume that is adjacent to the channel wall is ~ o.s.

APPENDIX D. NUMERICAL IMPLEMENTATION ISSUES
AND DETAILS

In the course of verification and validation of the v2-f model in Fuego, several convergence related issues
have emerged. Poor and/or lack of convergence that did not respond to modifications in the CFL
criterion or the underrelaxation factors or the projection scheme became severe issues for the turbulent
mixed convection flat plate validation study. As a result, some rather drastic steps were taken to obtain
convergence.
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Near—wall turbulent kinetic energy profile
turbulent channel flow; Re_h = 13,800
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Figure C-3.. Near wall profiles of turbulent kinetic energy, Re=13,800 (fuego-0.5.2).

First, the order of solution and update of the turbulence variables was modified. The resulting order of
solution and update became the following: (1) solve the f equation and update f; (2) solve the k
equation, then the epsilon equation, and finally the v2 equation; (3) update k, epsilon, and v2.

Second, as noted in the model formulation above, the time scale used in the f and v2 equations differs
from the time scale used in the epsilon equation and the turbulent viscosity formula; 7' (no realizability
constraint) is used in the f and v2 equations, whereas T (including the realizability constraint) is used in
the epsilon equation and turbulent viscosity. Also, Durbin’s original model has epsilon/k in the sink
term in the v2 equation; this has been replaced by 1/77 as noted in the above model formulation. This
modification was determined by Svengingsson to have a large stabilizing effect on the v2-f model in
solutions of gas turbine flows. Usage of the realizability constraint in the time scale in some of the
turbulence equations and not others has appeared on and oft in publications of the v2-f model over the
years.

Third, apply limiters to the time and length scales and to the source terms in the turbulence equations
and the coefficient of the production term in the epsilon equation. These limiters have been hardwired
in the code (must be changed in source code and then the code is recompiled); they serve to allow the
v2-f model to adjust to the initial condition. Once the adjustment is made, then the limiters can be
removed and the simulation remains stable. Without the use of limiters, the model can be unstable.
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fully developed turbulent channel flow
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Figure C-4.. Profiles of turbulent kinetic energy, Re=13,800 (fuego-0.5.2).

APPENDIX E. PLAN

The goal is to have a model for turbulent mixed convection heat transfer in FUEGO that provides a
more accurate prediction of the convective heat transfer to surfaces in or near fires than the standard
k — € model provides without increasing the cost dramatically. The v2-f model seems to be a good
starting point for such a model. The next steps will involve applying the model to solve for the
convection heat transfer in flow regimes of forced and mixed convection for channel flow, boundary
layer flow, and separated flow. Comparisons will be made with published numerical solutions and
experimental data. While the forced flow results can be compared with other numerical and
experimental work, there is much less information available for the turbulent mixed convection
regime.
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fully developed turbulent channel flow
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Figure C-5.. Profiles of turbulent dissipation, Re=13,800 (fuego-0.5.2).
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10. BUOYANT VORTICITY
GENERATION MODEL

The turbulence models most commonly employed in commercial fire CFD tools (or production codes,
i.e., codes that are not research codes) are based upon the k£ — € model of turbulence [38, 34]. Such
models have well-known strengths and weaknesses, and are used primarily because they are robust, i.e.,
they yield reasonable results for many different scenarios of interest. The use of the £ — € turbulence
model for fire simulation is somewhat surprising, as the model was derived for flows with primarily
shear-generated turbulence, whereas fires are flows with primarily buoyancy-generated turbulence.
Most CFD fire simulation tools employ a standard £ — € turbulence model (some with low Reynolds
number modifications). When fires in enclosures are simulated, a correction term is often included to
account for thermal stratification effects that tend to dampen turbulent kinetic energy in the hot gas
layer near the ceiling of the enclosure (cf, [258]). This correction was first suggested by Rodi [32], and
is referred to herein as 'Rodi’s term.’ In some of the results that follow, reference is made to the
’standard k& — € model.” This is assumed to include Rodi’s term for buoyant turbulence, as his model is
’standard’ for most of the literature regarding conventional CFD fire simulations.

.1. The Present Work

The goal of the present work is to develop a model of buoyancy-induced turbulence for pool fires using
a buoyant vorticity-based generation mechanism. The models developed previously (¢ f, [31], while
promising, had several shortcomings that needed to be overcome. First, the authors believed that the
model needed to be put on a more solid theoretical foundation. Chomiak and Nisbet [259] had relied
upon similarities to flows involving bubble dynamics in developing key parts of their formulation.
Second, the previous model relied upon an upper limit on the buoyant production term. This limit was
felt to be a severe hindrance in applying the model over a broad range of fire environments, and
therefore a significant shortcoming. Third, previous models yielded a build up of eddy viscosity not
only in the plume, but also in regions far removed from it. In view of these shortcomings, it was deemed
necessary to develop another model of buoyancy-generated turbulence for pool fires.

.2. Model Development

The standard equations relevant to momentum transport and turbulence are presented first to establish
a background. This is followed by a derivation of the buoyancy-generated turbulence modifications for
the modeling of pool fires.
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The momentum equation (written in integral form) can be written as:

/ag?idV+/ﬁaiﬂj”de+/ﬁ”idS: /Fijnjds_/ i //anSJr/(ﬁ_pO)gidv o)

where variables with an overbar are Reynolds averaged, variables with a tilde are Favre-averaged (density
weighted), and the double prime (") indicates a fluctuation. The second to the last term on the right
hand side (RHS) involving the velocity fluctuations is commonly referred to as the Reynolds stress
term. It is this term that requires modeling in order to close the set of equations (which also includes

conservation of mass, species, and energy (or enthalpy)).

Invoking the Boussinesq eddy viscosity assumption, the Reynolds stress term can be written as:

—od" = L ,
pu; uj bt (axj + 8xi) 3 (p +uta k) 0ij

9
Tt — gﬁkéij’ (10.2)

where mu, is the turbulent eddy viscosity, snd is given by the Prandtl-Kolmogorov relationship,

k2
e = Cup~—. (10.3)

When expressions for k and /epsilon are put forth, then the Reynolds stress term can be evaluated, a
closed set of equations is obtained, and a solution to the suite of momentum, mass, species, and
enthalpy equations can (in theory) be obtained.

The standard form of the k — € equations for buoyant flow is modified as follows. The equation for
turbulent kinetic energy (see Equation 2.102 for the original form) can be written as

/ Pk / it dS = / pu Ok 48+ / (P, — pé + G)dV. (10.4)
O (9$]

The term G represents a source term due to buoyancy, and needs to be modeled (the term P, is the
standard source term due to shear). The equation for the dissipation of turbulent kinetic energy (see
Equation 2.103 for the original form) can be written as

/ 9P 4y + / peimn;ds = [ X o€ 2 n,dS + / %(Cdpk—cgzpacggGB)dV (10.5)

o 0x;

The term G  appears in this equation also.
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3. A new model for buoyancy generated turbulence

In view of the limitations and weaknesses of previous models, the development of a new model was
undertaken. From Equation 2.102 we note that:

/ Ok 4y _ / GpdV. (10.6)

Since we are using a k — € based turbulence model, shear-generated turbulence influences the
momentum equations through a turbulent eddy viscosity (or diffusivity). Therefore, we want the
influence of buoyancy-generated turbulence to manifest itself also as an eddy viscosity. From
Equation 2.106, we can see that, for the shear-generated turbulence case:

_k? _k
e = Cup? = Cupzk k. (10.7)

Since we want the same effect (i.e., the same eddy viscosity) when the turbulence is buoyancy-generated,
we can write

[t = g (10.8)

(8) From Equation 10.7 and Equation 10.8, we can derive a relationship between the
buoyancy-generated turbulence quantities and the shear-generated turbulence quantities that will
ensure proper representation of the eddy viscosity for the buoyancy-generated turbulence case,

kTS = kBTB (10-9)

where the subscript s indicates a shear-related quantity, and the subscript B represents a
buoyancy-related quantity. Note that we could also write as k = k;, but have chosen to not include the
subscript s on k (and below on epsilon) in order to be consistent with the previous equations and
naming convention. Rearranging equation Equation 10.9,

kg = Bl (10.10)

B

The appropriate time scale for shear-generated turbulence is given by:

Ts =k

(r0.11)
€

With proper representation of both kg and 75 for buoyancy-generated turbulence in Equation 10.10,
then the proper impact of buoyancy-generated turbulence on the momentum equations (via
Equation 2.106) will be obtained.
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An appropriate time scale for buoyancy-generated turbulence can be deduced by noting that the
turbulence in pool fires is generated primarily as a result of buoyant vorticity generation (for a more
detailed discussion, see [47] ). From the vorticity equation, we note that

a_w L iGradRacGraalP (10.12)
ot 12 712
where the double vertical bars indicate that a magnitude must be taken (since the resultant of the cross
product is itself a vector). This time scale is based on the mechanism for buoyant vorticity generation
(BVG), and is inversely proportional to the square root of the cross product of the local density gradient
and the pressure gradient. Making use of equations and 10.12 and 10.11 we can re-write Equation 10.10
as:

Or, making use of equation (3):

(14)

Examining equation (6), and noting that GB can also be related to the rate of change with time of the
buoyancy-generated turbulent kinetic energy, , we can re-write (6) as:

(15)

Adding in a constant of proportionality, CBVG, the source term to the k-equation due to
buoyancy-generated turbulence becomes:

(16)

Note that CBVG is not the only constant that must be determined for the model. The equation for the
dissipation of turbulent kinetic energy, equation (s), also contains a constant (C??) that must be
determined. The determination of these two constants is done by comparing the results of the model to
experimental data. Calibration of these constants is presently underway.

4. Implementation Issues

If the present model is implemented into a code which uses an essentially incompressible scheme, it has
been observed that there can be problems with the model during the first several time steps. The large
pressure pulse that occurs upon startup results in very high values of the pressure gradient. Although
this pressure pulse generally only lasts for the first several time steps, it can wreak havoc with the
solution by generating significant values of Gy, in regions far removed from the plume itself.

5. Summary

This new model is hereafter referred to as the BVG model (for Buoyant Vorticity Generation model),
and has also been implemented into the Sandia VULCAN fire simulation. The model appears to work
for non-reacting as well as reacting buoyant flows. Work is underway to calibrate the constants against
experimental data.
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11. PROPOSED RESTART FIX FOR DT
SCALING ALGORITHM

A solution to the fuego restart problem, within the context of the “dt” scaling algorithm, is provided
herein. The development of the algorithm, which centers about the construction of the appropriate
mass conserving integration point mass flow rates, provides a method for calculation of the appropriate
mass conserving integration point flow rates that is strictly a function of the previous projected pressure
and velocity field. Moreover, the interpolation provides for a more satistying method for cases of
variable density. Therefore, this method requires no framework necessity of integration point data
structure saving. The equivalence of this new interpolation formula with the slightly corrected current
formulation will be demonstrated.

It is important to note that the traditional Rhie-Chow scaling, which requires the “old” mass flow rates
at integration points still requires the framework capability of data structure restart support at
integration points.

The derivation begins with the development of the “dt” scaling algorithm adopted by Jones. For
completeness, the following derivation is again repeated.

The form of the convecting velocity as derived from a semi-discrete form of the momentum equations is
similar, except that the pressure gradient scaling term is the limiting value for small time step. With this
form, the transient correction term is not required.

The derivation begins with the semi-discrete formulation of the momentum equations,

P = U+ AL (Fin+1 + bi) — AtVp! (1)

where FZLH represents the convection and diffusion terms and b; contains the non-solenoidal stress and
any potential buoyancy terms. An analogous form of a semi-discrete integration point velocity can be
written as,

Pttt = plul + At (FI 4 byy) — AV (11.2)

wp

Equation 111 is rearranged to provide the following term in Equation 11.2,

pput 4+ At (F 4 b)) = pnU™ + At (™ + b)) = p 0 + AtVp; (13)
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The results from Equation 11.3 are substituted within Equation 11.2 to yield the final form of the face
mass flow rate,

P =S NprUr + At SN Gyt — V! (11.4)
) 3 j

The above equation is approximated and implemented within Fuego as,

pr“%ﬂ = Pip Z NU; + At Z N; Z Gip; — VpZD_H (1rs)
i i j

where the * represents the provisional scalar value; the most current density is discussed in
Section 5.3.2.

In the proposed method, however, let us not make the assumption of somewhat constant density
thereby retaining Equation 11.4 as the form of the convecting velocity.

It is now important to note that the use of the convecting velocity formula based on interpolated values
from the momentum field includes a error term that is due to the fact that the discrete momentum
equation was solved to a user specified tolerance. In reality, this is not such a great issue when compared
to the staggered grid community as the convecting velocities used for the continuity equation are the
velocities that result from the momentum solve.

Equation 11.4 is substituted within the discrete continuity equation to form the pressure equation.
Once the continuity equation is solved, the new pressure field is first applied within Equation 11.4, to
obtain the conserved mass flow rates and then within the nodal velocity correction to obtain the
appropriate nodal velocity field, Equation 11.6

pIUIT = piUF = ALY G (ot = ) (11.6)

J

It is now proposed that the equivalent form of Equation 11.4 can be written as,

Pt = 3" Nipr UM+ A DTN Gt = Vp! (11.7)
% 3 j

where it is noted that provisional values are substituted by the projected variables.

Upon adoption of the above equation, the mass conserving flow rates can be determined by the latest
projected velocity and pressure field. Therefore, without approximation, the appropriate mass flow
rates can be computed upon restart. This statement, the equivalence of Equation 11.7 and Equation 11.4,
is easily verified by substitution of the rearranged nodal correction equation, Equation 11.6, within
Equation 11.7,
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7 7 J ) J % J

(11.8)

= Z Nip:U + At Z N, Z Gip; — VPZDH (11.9)
i @ J

Therefore, having shown the equivalence of these two equations it seems that the ability to use restart
for the dt scaling algorithm is complete.

Note that use of Equation 11.7 would require a different placing of the nodal pressure gradient
evaluation and a slightly different weighting of the nodal mass flow rate within the velocity
interpolation routine.

At this point, I do not recommend that we change the form of the integration point velocity formula
other than to include the proper presumption that density is not constant, Equation 11.4. In fact, due to
inconsistencies between the presumption of constant density, e.g., Equation 11.5, the equivalence
between Equation 11.5 and Equation 11.7 can not be demonstrated. However, the justification for this
shortcut approach has never been justified by a sensitivity of this interpolation in variable density

flows.

Therefore, Equation 11.7 will only be used upon restart.

372



12. VIRTUAL THERMOCOUPLE MODEL

The purpose of the virtual thermocouple model as implemented in Fuego is to approximate the
temperature that would be obtained from a thermocouple, given the results of a CED simulation.

APPENDIX A. THEORETICAL DESCRIPTION OF THE
MODEL

Neglecting conduction through the thermocouple, the governing equations describing heat transfer to
the thermocouple are written as

oT
pcp‘/tca =V. qr — hAtc (T - Too) ) (IZ'I)
or alternatively,
oT
/pcpa dV = j{qr ‘ndA— fh (T — Tw) dA, (12.2)

where q,- is the radiative heat flux vector, h is the turbulent heat transfer coefficient, and T, is the
surrounding gas temperature. In equation (12.2), the integrals are evaluated over the surface of the
thermocouple.

A.1. Convective Heat Flux

The heat transfer coeflicient is given in terms of the Nusselt number, the gas phase thermal
conductivity, and the pertinent thermocouple length scale, /, as

Nu = % (r2.3)

Correlations for Nusselt Number

The Nusselt number is given as a function of the Reynolds and Prandtl numbers by the following
correlation, obtained from Incropera & Dewitt (1996) for a cylinder in cross-flow:

Nu=0.3+

4/5
0.62Re'/2 pyl/3 Re 5/81*
: (12.4)

1+ (0.4/ Pr)2/3)"/* 282,000
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with the Reynolds number and Prandtl number given by

Cpytg

Re = ug_épg7 Pr—=——97 (12.5)
Ag

Hg

The subscript g emphasizes that these properties are evaluated in the gas phase. The length scale, /, is
the thermocouple diameter. The velocity, ug, is the component of the gas velocity perpendicular to the
thermocouple.

A.2. Radiative Heat Flux

Given the incident spectral radiation intensity field, / = fooo I, d), the total radiative heat flux in
direction s may be obtained as

27 ™
q, = / / 1(0, ¢)scos@sinf df do, (12.6)
o Jo

where s is the directional vector,
s = sin #sin ¢i + cos 6 + sin 6 cos ¢k, (12.7)

as depicted in figure A-1. However, we are interested in only the heat flux incident on the faces of the

AY

— 0

Figure A-1.. Coordinate system, showing the vector s

control volume which contain the thermocouple. The incident heat flux on any surface, qT[ , may be
obtained as

2T T
I — 1(60.0) F(0 Osind db d I2.
it = | [ 10.0)F(0.0)costsing an ao. (128)

where

F(0,¢) =max (0,—n-s), (12.9)
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and n is the outward-pointing unit-vector normal for the given surface.

Assuming that the thermocouple emits radiation according to the Plank distribution, the net radiative
heat flux at any point on the thermocouple may be written as

G = . q' — 0T, (r2.10)

where . and €, are, respectively, the absorptivity and emissivity of the thermocouple, and qf: is given by
(12.8).

A.3. Working Assumptions

There are several working assumptions:

1. The thermocouple does not aftect the flow field in any way (i.e. one-way coupling to the model).
This implies the next assumption:

2. The thermocouple exists entirely within a single computational cell. Ideally, the thermocouple
dimensions should be small relative to the computational mesh. Otherwise, the assumption that
the thermocouple does not affect the flow field is invalid.

3. Negligible attenuation of the irradiation between the edge of the computational cell and the
thermocouple surface,

4. Negligible conduction along the thermocouple.

5. Spectral emission from the thermocouple is assumed to follow the Plank distribution, i.e. the
total emissive power is proportional to 0T,

6. All thermocouple properties are homogeneous and constant (do not vary with space, or time).
7. The emissivity and absorptivity of the thermocouple are equal, e, = a.

8. The heat transfer coeflicient and convective temperature, T, are homogeneous over the
thermocouple.

9. The thermal conductivity of the thermocouple is sufficiently large that conduction through the
thermocouple is fast relative to the convective and radiative time scales. This implies that the
thermocouple is at a single, uniform temperature.

Several of these assumptions stem from the assumption that the thermocouple exists within a single
computational cell. For a more detailed treatment, details of the thermocouple geometry must be
specified to a level where meshing the thermocouple itself may be required.

APPENDIX B. MODEL IMPLEMENTATION

This section describes the implementation of the model, including the user interface, numerical
discretization, and solution strategy.
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B.1. User Interface

The following quantities must be supplied by the user:

* Orientation. The three components of the thermocouple orientation vector must be specified.
The orientation vector need not be a unit-normal; it will be normalized internally.

* Diameter and length of the thermocouple.
* Heat capacity, density, and emissivity of the thermocouple.
* Initial temperature of the thermocouple.

* Optionally, the user may request that the steady solution for the thermocouple temperature be
found, rather than the transient solution. In this case, the initial temperature of the
thermocouple is not required.

B.2. Discrete Equations
Fully Discretized Governing Equation

Given the assumptions listed in §A.3, the fully discrete equation for the thermocouple temperature may
be obtained using a backward-Euler difference in time as
1 _ "

T
pepVie——

A7 Z Afcﬂ- (ac q{,’i — €CU(Tn+1)4) — hA; (T”—"1 — TOO) , (r2.11)

where Vi, = mD?L /4 is the thermocouple volume and A;. = 7D(D/2 + L) is the thermocouple
surface area.

Equation (12.11) may be rewritten as a fourth-order polynomial in 7"

a(T™ ™ + bT™ ! 4 ¢ = 0, (12.12)
with coefficients given by
a = £.0 Z Ab s (12.13)
Vie
b = pcitt + hA;, (12.14)
P Vic im
c = —z—tT — hA; Ty — Z Afc,iac qii. (r2.15)

If requested, the model will compute the steady-state solution to (12.11) by replacing (12.14) and (12.15)
with

b = hA., (12.16)
¢ = —hATe— > Ab ocq, (12.17)
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B.3. Solution Procedure

The solution procedure may be outlined as follows

1. Obtain £, - the time increment over which we wish to update the thermocouple temperature.
This is nominally the timestep determined from the procedure.

2. Select At. This should be chosen such that the time-integration of the thermocouple
temperature is sufficiently accurate. Details are discussed in §B.s.

3. Compute a from (12.13).

p

4. Compute the projected thermocouple area, Ay, ;. This is discussed in greater detail in §B.4.

5. Compute the convective heat transfer coefficient, h.
6. Compute the contribution to ¢ from the incident radiative flux: ) _, Afc,i@c qu
7. Compute b from (12.14).
8. Sett = 0. Set 7" via the supplied initial condition or using the value from the previous solution.
o. whilet <t
¢ Compute ¢ from (12.15).

* Solve (12.12) for 7. This is obtained using Newton’s method.

e Advancetime:t =t + At; Tm =TnH,

B.4. Determining the Projected Thermocouple Area

We must compute the area of the thermocouple projected on each CV face for use in equation (12.15).

The total thermocouple area must be projected to each CV face to determine AY, ..

Given the surface unit normal, n; and the thermocouple orientation unit-vector p, we may write the
projected thermocouple area on face 7 as

A?c,i = [Acna(P - 1m4)] + [Agige(m; - 1;)] (12.18)

where
Aend - %D27 (12"19)
Asige = DL, (12.20)

m; is a unit-vector perpendicular to p (i.e. m; - p = 0), L is the thermocouple length, and D is the
diameter, as given by the user. The vector m; represents the area unit-vector for the side of the
thermocouple and is given as
n,—(p-m)p
In; — (p-ny) p|
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The projected area, A}

tc.i» is constrained by

Af‘,)c 7
0<——<1, (12.22)
a;
where a; is the full area of CV face 7. This implies constraints on both the thermocouple length and
diameter. Specifically, the thermocouple must fit within a CV. The length and diameter may be no
greater than what will fit in the CV given the thermocouple orientation.

The constraint mentioned above must be enforced within each CV. Note that for the model

assumptions listed in §A.3 to be valid, we really require that A7, ;/a; < 1. This is not currently
P

enforced. The only constraint currently imposed is that A7, ;/a; < 1. Currently, the code will issue
warnings if A7, ;/a; > 0.1.

B.5. Selection of Timestep

The timestep is selected based on the minimum of three criteria:
At = min(7,, 7, 7¢) (12.23)

where 7, is the convection timescale, 7, is the radiation timescale, and 74 = tcpq/Mmin. In other words,
T; is a timescale that is defined by the minimum number of timesteps that should be taken over time
interval [0, tenql-

The convective timescale is obtained from the analytic solution of the pure convective problem

hAtc >
Tt) =T+ |T(0) —T|ex t], 12.2.
() =T 4 1700) = TuJoxp (25 (224)
implying that
_ PepVic
T, = WA (12.25)

The radiative timescale is currently determined in a very heuristic manner as

1/4
Tr = (P%Wa) . (12.26)

UAtC
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