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ABSTRACT
The SIERRA Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of the
ASC �re environment simulation project. The �re environment simulation project is directed at
characterizing both open large-scale pool �res and building enclosure �res. Fuego represents the
turbulent, buoyantly-driven incompressible �ow, heat transfer, mass transfer, combustion, soot, and
absorption coe�cient model portion of the simulation software. Using MPMD coupling, Sce�re and
Nalu handle the participating-media thermal radiation mechanics. This project is an integral part of the
SIERRA multi-mechanics software development project. Fuego depends heavily upon the core
architecture developments provided by SIERRA for massively parallel computing, solution adaptivity,
and mechanics coupling on unstructured grids.
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NOMENCLATURE

Einstein notation is used extensively throughout this report to imply summation over repeated indices,
primarily for multiple directions in integral equations. Indices are also used to denote chemical species
in a gas mixture. When dealing with notation for chemical species, Einstein notation is not implied.
When summation over chemical species is required, we will use a summation operator.

ENGLISH CHARACTER SYMBOLS

𝐶𝑝 mixture speci�c heat at constant pressure

𝐷 mass di�usion coe�cient

𝐷𝑖 mixture-averaged mass di�usion coe�cient for species 𝑖

𝐷𝑖𝑗 mass di�usion coe�cient between species 𝑖 and 𝑗 in a mixture

𝐸 law of the wall parameter, turbulence model

𝑓𝑐 mass fraction of "excess" carbon in a given species (over what may for CO2 from the available
oxygen in the species)

𝐺 scalar radiative �ux

𝑔 magnitude of the gravity vector

𝑔𝑖 component of the gravity vector in the 𝑥𝑖 direction

ℎ mixture enthalpy

ℎ fuel pool depth

j𝑖,𝑔 mass di�usion �ux vector for species 𝑔 in the 𝑥𝑖 direction

ℎ𝑓𝑔 fuel heat of vaporization

𝐾 number of chemical species in a mixture

𝑘 mixture thermal conductivity

𝑘 turbulent kinetic energy

𝐿 length scale

𝐿 integral scale with respect to turbulence
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𝑙 characteristic length scale of the products

𝑚̇ mass �ow rate

𝑀 mass

𝑁 concentration of soot particles per volume

𝑛 concentration of radical nuclei per volume

𝑛𝑖 unit normal vector component in the 𝑥𝑖 direction

𝑝 pressure

𝑃𝑡ℎ thermodynamic pressure

𝑞𝑖 heat �ux vector component in the 𝑥𝑖 direction

𝑅̇ soot/radical-nuclei particle production/consumption rate per volume in a cell

𝑅 universal gas constant

𝑟̇ species mass production/consumption rate per unit volume in cell

𝑟𝑖 position vector

𝑠𝑖 unit direction vector for radiation transport

𝑆 ratio of air mass fraction to fuel mass fraction

𝑆𝜑 source term for scalar variable 𝜑

𝑡 time

𝑇 temperature

𝑢𝑖 velocity component in the 𝑥𝑖 direction

𝑢 velocity component in the 𝑥-direction

𝑢𝜏 friction velocity, turbulence model

𝑢‖ velocity parallel to the wall, turbulence model

𝑢+ dimensionless velocity, turbulence model

𝑣 velocity component in the 𝑦-direction

𝑉 volume of the computation cell (control volume)

𝑤 velocity component in the 𝑧-direction

𝑊 mixture molecular weight

𝑥𝑖 Cartesian coordinate direction

𝑋𝑠 mole fraction of species 𝑠

𝑌𝑠 mass fraction of species 𝑠
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𝑦+ dimensionless distance from wall, turbulence model

GREEK CHARACTER SYMBOLS

𝛼 absorptivity

𝛽 concentration of radical nuclei per mixture mass

𝜉𝑐 mole fraction of carbon available to produce soot

𝜒 weighting function for the reacting portion of the �ne structure

Δ scalar di�erence

𝛿𝑖𝑗 identity matrix

𝜖 total normal emissivity

𝜖 dissipation of turbulent kinetic energy

𝜃 spherical direction angle for radiation transport

𝜑 generic scalar quantity

Φ equivalence ratio

𝛾 volume fraction of turbulent �ne structures

𝛾 coe�cient of surface tension

𝜂 Kolmogorov dissipative turbulent length scale

𝜅 emittance

𝜅 thermal conductivity

𝜅 von Karman constant, turbulence model

𝜆 Taylor turbulent length scale

𝜇 viscosity

𝜈 kinematic viscosity

𝜌 mixture density

𝜌 re�ectivity

𝜎 Stefan-Boltzmann constant

𝜎𝑖𝑗 deviatoric plus pressure stress tensor

𝜏 characteristic time scale

𝜏 transmissivity
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𝜏𝑖𝑗 viscous stress tensor

𝜐 Kolmogorov dissipative turbulent velocity scale

𝜁 stoichiometric coe�cient

SUPERSCRIPT CHARACTER SYMBOLS

𝑛 iteration or time step number

𝑟 indicial notation for reaction number
′ �uctuating quantity with respect to time average
′′ �uctuating quantity with respect to Favre average

^ normalize by stoichiometric values

˙ time rate of change of a variable

˜ Favre-averaged quantity

* value for the turbulent �ne structure in a cell

∘ value for the surrounding structure in a cell

time-averaged quantity

SUBSCRIPT CHARACTER SYMBOLS

air property associated with air

az azimuthal angle

cell property associated with a control volume

co stoichiometric reaction with CO and H2 products

co2 stoichiometric reaction with CO2 and H2O products, also a property associated with CO2

D property associated with diluents

flame property associated with �ame zone

fuel property associated with fuel

𝑔 indicial notation for gas-phase chemical species

h2o property associated with H2O

𝑖 indicial notation for component of a vector or tensor
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inc incident quantity

𝑗 indicial notation for component of a vector or tensor

𝑘 indicial notation for chemical species

min minimum limiting value

mix mixture property

n number of hydrogen atoms in the fuel molecule

n2 property associated with N2

oxy property associated with O2

p number of nitrogen atoms in the fuel molecule

prod property associated with products

q number of oxygen atoms in the fuel molecule

rad property associated with radiation

reac associated with a speci�c chemical reaction (??)

res �ne structure residence

soot property associated with soot

stoich stoichiometric composition

surr property associated with the surroundings

t turbulent quantity

w wall value

zn zenith angle

DIMENSIONLESS GROUPS

Pr Prandtl number, the ratio of viscous and thermal di�usivities

Re Reynolds number, the ratio of inertial and viscous forces

Sc Schmidt number, the ratio of viscous and mass di�usivities
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1. INTRODUCTION

The SIERRA Low Mach Module: Fuego, henceforth referred to as Fuego, is the key element of the
ASC �re environment simulation project. The �re environment simulation project is directed at
characterizing both open large-scale pool �res and building enclosure �res. Fuego represents the
turbulent, buoyantly-driven incompressible �ow, heat transfer, mass transfer, combustion, soot, and
absorption coe�cient model portion of the simulation software. Using MPMD coupling, Sce�re and
Nalu handle the participating-media thermal radiation mechanics. This project is an integral part of the
SIERRA multi-mechanics software development project. Fuego depends heavily upon the core
architecture developments provided by SIERRA for massively parallel computing, solution adaptivity,
and mechanics coupling on unstructured grids.

1.1. ABNORMAL THERMAL ENVIRONMENTS

Fuego is part of a suite of numerical simulation tools used to address abnormal thermal environments
for nuclear weapon systems [1]. From manufacture to disassembly, a weapon will see three types of
environments: normal, hostile, and abnormal. Abnormal environments result from natural
phenomena, such as �res, �oods, tornadoes, earthquakes, lightning strikes, meteor strikes, etc., and
human phenomena, generally classi�ed as “accidents". In general, these phenomena can present
thermal, mechanical, and electrical hazards to a weapon system. Nuclear weapon systems must respond
to these abnormal environments in a deterministically safe manner.

Fire phenomena in the context of the abnormal thermal environment weapons response issue is part of
a three stage process leading from an accident to the system response. For certain scenarios, these stages
are uncoupled and may be sequential in time; in others, the stages are tightly coupled and concurrent in
time.

The �rst stage is the initial accident or environmental scenario that is de�ned typically through
probabilistic studies such as historic data involving accident frequencies of a given type, ignition
probabilities, etc. These are used to de�ne scenarios for deterministic simulation tools that determine
the state of integrity of the weapon system and the distribution of fuel. The weapon integrity is
determined by the mechanical, transient-dynamic environment it sees during an accident. For accident
scenario description, Fuego is intended to handle the distribution of liquid fuels, although initial
implementation will be somewhat limited due to the very broad possibilities (e.g., fuel pools, spills,
sprays, porous �ows) and complexity involved in two-phase �ow.

The second stage is the actual buoyant, turbulent, reacting, �ow that is the source of the thermal hazard
for the weapon system. Fuego and MPMD-coupled Nalu/Sce�re are the primary tools that describe the
�re phenomenology that links an accident description to thermal radiation and convection on a weapon
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system. Fire involves a very complex, coupled set of physical phenomena over a very broad range of time
and length scales. The key features are the turbulent, buoyant �ows involving combustion of the fuel
and air, and the formation of soot which results in participating media radiation (Nalu/Sce�re), and a
range of convection heat transfer conditions from free to forced convection (Fuego).

The third stage is the weapon thermal response. As with the �re itself, the response of the warhead to a
�re is described by very complex, coupled set of physical phenomena. Simulation will require the
coupling of several, separate e�ects codes for a complete description. Heat from the �re is conducted
into the weapon and transmitted by surface-surface radiation. Materials such as foams decompose and
result in pressurization. Conduction across engineered joints is pressure dependent as is the
decomposition process. Materials such as aluminum can potentially melt and relocate. Energetic
materials can decompose and react. Within this environment the engineered fail-safes in the weapon
electrical system must operate with high reliability to ensure nuclear safety.

Because of the number of physical phenomena involved from the accident scenario to the weapon
response for abnormal thermal environments, and the very disparate time and length scales over which
these phenomena occur, it is necessary to have high-performance, massively-parallel, computers to even
consider addressing a problem of this scale and complexity. Further, the key to integrating this suite of
tools is �exibility of coupling and a common database architecture. Thus it is intended that all the
simulation requirements identi�ed above will ride on a common software architecture (SIERRA) with
broad coupling �exibilities.

The principal value of the suite of numerical simulation tools is not the description of the accident to
response process, but the ability to evaluate prevention and mitigation design strategies. Preventative
strategies are primarily applied via administrative controls. Examples include design and maintenance to
minimize fuel levels, separation of fuels from air and ignition sources, and/or weapons separate from the
combination. Mitigation strategies include suppression (either manually through �re-�ghters or by
automated �re suppression equipment), design of thermally activated fail-safes, and containment
design. In general, multiple barriers exist between �re and health consequences to the general public for
nuclear weapons.

1.2. DELIVERABLES

The requirements for Fuego Version 1.0 are described in the Strategic Plan [2] and are summarized as
follows:

• Customer Applications

– Weapons Designers

* Weapons Designers (all phases)

* Weapons Safety Certi�cation

– Facilities Safety

* Prevention Strategies Design/Assessment
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* Mitigation Strategies Design/Assessment

– Nuclear Safety

* Weapons Safety Assessments

* Abnormal Thermal Environments Scenario Assessment

• Scenarios

– All credible accident scenarios involving �re that can occur from creation to disassembly of
any of our nuclear weapon systems.

• Priority Scenarios

– open hydrocarbon pool �re without wind

– open hydrocarbon pool �re with wind

– facility/enclosure with a hydrocarbon fuel �re

• Required Output: Radiative and Convective Heat Flux

– Resolution requirements

* length scale: O(0.1 m)

* time scale: O(10 s)

– Uncertainty requirements

* uncertainty estimates are a required part of an analysis

* range from qualitative analysis to “as low as achievable"

* tolerance: early phase design> late phase design> certi�cation

• Math Model Requirements

– Grid-Resolved Models: All Favre-averaged (RANS)

* mass conservation, variable density

* species conservation (7 gas equations, 2 soot equations)

* momentum conservation (3 equations)

* energy conservation (low Mach number approximation)

* participating media radiation (number of equations ?)

* turbulence model (2 equations)

– Sub-Grid Models

* wall functions for momentum and heat transfer

* sub-grid turbulent mixing for combustion, soot, and radiation (EDC)
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* combustion chemistry and thermochemistry (EDC)

* soot and precursor formation (EDC)

– Material Models

* radiative emission/absorption properties

* transport properties for momentum, energy, and species

* ideal gas law and thermally perfect thermodynamic properties

– Fuel Sources

* liquid hydrocarbon pools

• Computational Requirements

– Compatibility with SIERRA Frameworks

* coupled-mechanics (turbulent combustion, participating media radiation, heat
conduction)

* massively parallel

* distributed memory

* unstructured grid, O(108) elements

– Numerical Methods and Solvers

* proven technology – guaranteed convergence (�rst-order accurate methods, time and
space)

* 3D, control volume, �nite element method (CVFEM)

* transient (but only for time scales long relative to turbulent �uctuation time scales)

* �exible coupling between math models (linearization and segregation)

• Problem Solving Environment Requirements

– Preprocessing for large data sets

– Diagnostics/Postprocessing for large data sets

* sensitivity coe�cients

* virtual measurement comparison; i.e., thermocouple

– Version control

• Veri�cation Requirements

– Guidelines

– Truncation error analysis for all operators

– Regression testing during development
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– Unit testing for major program elements

– Veri�cation testing to establish correct implementation

• Certi�cation Requirements

– Analyst training program

– Review and approval process

• Documentation Requirements

– Implementation Plans for development

– Theory Manual

* math models

* numerical methods

* solution strategies

– User Manual (input syntax and de�nitions)

– Veri�cation Suite

* Truncation error

* Regression tests

* Unit tests

* Veri�cation tests

The following de�nitions describe the release schedule:

• Fuego 𝛼 – math models are in place and a �re problem is demonstrated by the development team

• Fuego 𝛽 – code veri�cation is su�ciently complete that the code can be released to a small group
of “friendly" users; i.e., analysts working on simulation validation

• Fuego 1.0.0 – code is released with documentation and defect tracking

1.3. DOCUMENT ORGANIZATION

This document contains theory and implementation details for the Fuego code. A discussion of the
physical models and governing transport equations (math models) is given in Chapter 2. A discussion of
the numerical methods that we use to solve the governing transport equations is given in Chapter 5.
Implementation details regarding the SIERRA Frameworks are described in Chapter 6. Future math
model improvements are discussed in the appendices.

The Einstein notation of repeated indices is used extensively throughout this document. The only
exception is for equations involving chemical species where an explicit summation operator is used to
imply summation over all chemical species.
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2. MATH MODELS

Fire simulation requires the solution of variable property, high Grashof number, turbulent, low Mach
number �ow including the e�ects of species and soot transport, radiation, and buoyancy. Figure 2.0-1
shows the relation and interconnectivity of the math models as a function of physical conservation law
and length scale. Conservation laws include mass of the mixture, momentum, mass of the individual
species, and energy. Length scales vary from molecular to convection dominated. For purposes of
discussion, length scales are also categorized by the method of resolution.

The transport equations used to describe �re physics are based on two sets of approximations to the
fundamental equations of �uid dynamics. Fast acoustic time scales are removed from the equations
using low Mach number asymptotics, described in Section 2.1. Turbulent transport at high Grashof
numbers is modeled using a Reynolds averaging approach, described in Section 2.4.1.

In what follows, we note that unless speci�cally stated otherwise all units in the equations and
submodel expressions are cgs. For a more extensive treatment of units and unit conversions in Fuego,
please see the “Units and Unit Conversions” section in the User’s Manual. The numerical methods we
use to solve the transport equations are of the �nite volume class. Therefore, we generally write the
transport equations in the integral form.

2.1. LOW MACH NUMBER EQUATIONS

The low Mach number equations are a subset of the full compressible Navier-Stokes (and continuity
and energy) equations, admitting large variations in gas density while remaining acoustically
incompressible. The low Mach number equations are preferred over the full compressible equations for
our problems of interest. We avoid resolving fast-moving acoustic signals which have no bearing on the
transport processes. Derivations of the low Mach number equations are found in Rehm and Baum [3],
Paolucci [4], Majda and Sethian [5], and Merkle and Choi [6]. The equations are derived from the
compressible equations using a perturbation expansion in terms of the lower limit of the Mach number
squared; hence the name. The asymptotic expansion leads to a splitting of pressure into a spatially
constant thermodynamic pressure and a locally varying dynamic pressure. The dynamic pressure is
decoupled from the thermodynamic state and cannot propagate acoustic waves. The thermodynamic
pressure is used in the equation of state and to determine thermophysical properties. The
thermodynamic pressure can vary in time and can be calculated using a global energy balance.
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Figure 2.0-1.. Fire Math Model Coupling in Fuego

2.1.1. Asymptotic Expansion

The asymptotic expansion for the low Mach number equations begins with the full compressible
equations in Cartesian coordinates. The equations are the minimum set required to propagate acoustic
waves. The equations are written in divergence form using Einstein notation (summation over repeated
indices):

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0, (2.1)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕𝜌𝑢𝑗𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑃

𝜕𝑥𝑖
=

𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+ 𝜌𝑔𝑖, (2.2)

𝜕𝜌𝐸

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝐻

𝜕𝑥𝑗
= − 𝜕𝑞𝑗

𝜕𝑥𝑗
+
𝜕𝑢𝑖𝜏𝑖𝑗
𝜕𝑥𝑗

+ 𝜌𝑢𝑖𝑔𝑖. (2.3)

The primitive variables are the velocity components, 𝑢𝑖, the pressure, 𝑃 , and the temperature 𝑇 . The
viscous shear stress tensor is 𝜏𝑖𝑗 , the heat conduction is 𝑞𝑖, the total enthalpy is𝐻 , the total internal
energy is𝐸, the density is 𝜌, and the gravity vector is 𝑔𝑖. The total internal energy and total enthalpy
contain the kinetic energy contributions. The equations are closed using the following models and
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de�nitions:

𝑃 = 𝜌
𝑅

𝑊
𝑇, (2.4)

𝐸 = 𝐻 − 𝑃/𝜌, (2.5)

𝐻 = ℎ+
1

2
𝑢𝑘𝑢𝑘, (2.6)

𝜏𝑖𝑗 = 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
− 2

3
𝜇
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗, (2.7)

𝑞𝑖 = −𝑘 𝜕𝑇
𝜕𝑥𝑖

. (2.8)

The mean molecular weight of the gas is𝑊 , the molecular viscosity is 𝜇, and the thermal conductivity is
𝑘. A Newtonian �uid is assumed along with the Stokes hypothesis for the stress tensor.

The equations are scaled so that the variables are all of order one. The velocities, lengths, and times are
nondimensionalized by a characteristic velocity, 𝑈∞, and a length scale, 𝐿. The pressure, density, and
temperature are nondimensionalized by 𝑃∞, 𝜌∞, and 𝑇∞. The enthalpy and energy are
nondimensionalized by𝐶𝑝,∞𝑇∞. Dimensionless variables are noted by overbars. The dimensionless
equations are:

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢̄𝑗
𝜕𝑥̄𝑗

= 0, (2.9)

𝜕𝜌𝑢̄𝑖
𝜕𝑡

+
𝜕𝜌𝑢̄𝑗𝑢̄𝑖
𝜕𝑥̄𝑗

+
1

𝛾Ma2
𝜕𝑃

𝜕𝑥̄𝑖
=

1

Re

𝜕𝜏𝑖𝑗
𝜕𝑥̄𝑗

+
1

Fr𝑖
𝜌, (2.10)

𝜕𝜌ℎ̄

𝜕𝑡
+
𝜕𝜌𝑢̄𝑗ℎ̄

𝜕𝑥̄𝑗
= − 1

Pr

1

Re

𝜕𝑞𝑗
𝜕𝑥̄𝑗

+
𝛾 − 1

𝛾

𝜕𝑃

𝜕𝑡
(2.11)

+
𝛾 − 1

𝛾

Ma2

Re

𝜕𝑢̄𝑖𝜏𝑖𝑗
𝜕𝑥̄𝑗

+ 𝜌𝑢̄𝑖
𝛾 − 1

𝛾

Ma2

Fr𝑖

− 𝛾 − 1

2
Ma2

(︂
𝜕𝜌𝑢̄𝑘𝑢̄𝑘
𝜕𝑡

+
𝜕𝜌𝑢̄𝑗𝑢̄𝑘𝑢̄𝑘
𝜕𝑥̄𝑗

)︂
.

The groupings of characteristic scaling terms are:

Re =
𝜌∞𝑈∞𝐿

𝜇∞
, Reynolds number, (2.12)

Pr =
𝐶𝑝,∞𝜇∞

𝑘∞
, Prandtl number, (2.13)

Fr𝑖 =
𝑢2∞
𝑔𝑖𝐿

, Froude number, 𝑔𝑖 ̸= 0, (2.14)

Ma =

√︃
𝑢2∞

𝛾𝑅𝑇∞/𝑊
, Mach number, (2.15)

where 𝛾 is the ratio of speci�c heats.
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For small Mach numbers, Ma ≪ 1, the kinetic energy, viscous work, and gravity work terms can be
neglected in the energy equation since those terms are scaled by the square of the Mach number. The
inverse of Mach number squared remains in the momentum equations, suggesting singular behavior. In
order to explore the singularity, the pressure, velocity and temperature are expanded as asymptotic series
in terms of the parameter 𝜖:

𝑃 = 𝑃0 + 𝑃1𝜖+ 𝑃2𝜖
2 . . . (2.16)

𝑢̄𝑖 = 𝑢̄𝑖,0 + 𝑢̄𝑖,1𝜖+ 𝑢̄𝑖,2𝜖
2 . . . (2.17)

𝑇 = 𝑇0 + 𝑇1𝜖+ 𝑇2𝜖
2 . . . (2.18)

The zeroeth-order terms are collected together in each of the equations. The form of the continuity
equation stays the same. The gradient of the pressure in the zeroeth-order momentum equations can
become singular since it is divided by the characteristic Mach number squared. In order for the
zeroeth-order momentum equations to remain well-behaved, the spatial variation of the 𝑃0 term must
be zero. If the magnitude of the expansion parameter is selected to be proportional to the square of the
characteristic Mach number, 𝜖 = 𝛾Ma2, then the 𝑃1 term can be included in the zeroeth-order
momentum equation.

1

𝛾Ma2
𝜕𝑃

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖

(︂
1

𝛾Ma2
𝑃0 +

𝜖

𝛾Ma2
𝑃1 + . . .

)︂
=

𝜕

𝜕𝑥𝑖

(︂
𝑃1 + 𝜖𝑃2 + . . .

)︂
(2.19)

The form of the energy equation remains the same, less the kinetic energy, viscous work and gravity
work terms. The 𝑃0 term remains in the energy equation as a time derivative. The low Mach number
equations are the zeroeth-order equations in the expansion including the 𝑃1 term in the momentum
equations. The expansion results in two di�erent types of pressure and they are considered to be split
into a thermodynamic component and a dynamic component. The thermodynamic pressure is
constant in space, but can change in time. The thermodynamic pressure is used in the equation of state.
The dynamic pressure only arises as a gradient term in the momentum equation and acts to enforce
continuity. The unsplit dimensional pressure is

𝑃 = 𝑃𝑡ℎ + 𝛾Ma2𝑃1, (2.20)

where the dynamic pressure, 𝑝 = 𝑃 − 𝑃𝑡ℎ, is related to a pressure coe�cient

𝑃1 =
𝑃 − 𝑃𝑡ℎ
𝜌∞𝑢2∞

𝑃𝑡ℎ. (2.21)

The resulting unscaled low Mach number equations are:

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0, (2.22)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕𝜌𝑢𝑗𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑝

𝜕𝑥𝑖
=

𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+ (𝜌− 𝜌∘) 𝑔𝑖, (2.23)

𝜕𝜌ℎ

𝜕𝑡
+
𝜕𝜌𝑢𝑗ℎ

𝜕𝑥𝑗
= − 𝜕𝑞𝑗

𝜕𝑥𝑗
+
𝜕𝑃𝑡ℎ
𝜕𝑡

, (2.24)

where the ideal gas law becomes

𝑃𝑡ℎ = 𝜌
𝑅

𝑊
𝑇. (2.25)
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The hydrostatic pressure gradient has been subtracted from the momentum equation, assuming an
ambient density of 𝜌∘. The stress tensor and heat conduction remain the same as in the original
equations.

2.1.2. Variable Thermodynamic Pressure

For a low Mach number set of equations, the time derivative of pressure can only be nonzero in a closed
volume with energy addition or subtraction. Relaxing the low Mach number limit allows a time and
spatially varying pressure to appear in the energy equation (see Section 2.2.3).

2.2. LAMINAR FLOW EQUATIONS

Laminar transport equations are not used for �re problems, but they are important for other classes of
problems such as manufacturing. The low Mach number approximation is assumed (see Section 2.1).

2.2.1. Conservation of Mass

The mass conservation equation of a mixture of gases is given by∫︁
𝜕𝜌

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑢𝑗𝑛𝑗d𝑆 = 0, (2.26)

where 𝑢𝑗 is the mass average velocity of the mixture [7].

2.2.2. Conservation of Momentum

The conservation of momentum equations are given by∫︁
𝜕𝜌𝑢𝑖
𝜕𝑡

d𝑉 +

∫︁
𝜌𝑢𝑖𝑢𝑗𝑛𝑗d𝑆 +

∫︁
𝑃𝑛𝑖d𝑆 =

∫︁
𝜏𝑖𝑗𝑛𝑗d𝑆 +

∫︁
(𝜌− 𝜌∘) 𝑔𝑖d𝑉, (2.27)

where the viscous stress tensor is

𝜏𝑖𝑗 = 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
− 2

3
𝜇
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗. (2.28)

The pressure, 𝑃 , in the momentum equations deserves a special note as this quantity can represent
either the dynamic, i.e., the second term in the Mach number expansion in the case of the low Mach
number assumption, or the static pressure in the case of formally compressibility. In either case, as
shown above the hydrostatic pressure gradient has been removed which gives rise to the far-�eld density,
𝜌∘, in the buoyancy body force. Optionally, we allow for the following sets of buoyancy models:
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1) a Boussinesq buoyancy approximation where the density di�erence is approximated as

(𝜌− 𝜌∘) ≈ −𝜌∘
𝑇∘

(𝑇 − 𝑇∘) , (2.29)

2) a standard buoyant model in which case the pressure above does include the hydrostatic pressure and
the buoyancy right-hand-side source term is,

𝜌𝑔𝑖, (2.30)

3) A Boussinesq approximation for a binary mixture in which case the right-hand-side contribution
is:

𝜌𝑀𝑊 𝑟𝑒𝑓

(︂
1

𝑀𝑊1

− 1

𝑀𝑊2

)︂[︀
𝑌1 − 𝑌 𝑟𝑒𝑓

]︀
𝑔𝑖. (2.31)

The user is referred to the Fuego user manual for exact line commands for each of these buoyancy
options.

Note that zero pressure is almost always a convenient initial condition for a low Mach �uid �ow.
However, in cases without buoyancy, it can be anything, as the value only de�nes the additive constant
for the pressure solve. However, one must ensure that the value matches for both initial and boundary
condition speci�cations.

For buoyant �ow, specifying zero pressure is convenient in tandem with the “di�erential” buoyancy
option. This buoyancy term subtracts o� the hydrostatic contribution such that the source term is
written as

𝜌 (𝜌− 𝜌𝑟𝑒𝑓 ) (2.32)

One can see that using this term along with a zero pressure initial condition allows one to avoid
specifying initial and boundary conditions as the hydrostatic pressure, i.e., as a function of height.

2.2.3. Conservation of Energy

The conservation of energy equation in terms of enthalpy (including a source term due to radiation
absorption and emission) is∫︁

𝜕𝜌ℎ

𝜕𝑡
d𝑉 +

∫︁
𝜌ℎ𝑢𝑗𝑛𝑗d𝑆 = −

∫︁
𝑞𝑗𝑛𝑗d𝑆 −

∫︁
𝜕𝑞𝑟𝑖
𝜕𝑥𝑖

d𝑉

+

∫︁ (︂
𝜕𝑃

𝜕𝑡
+ 𝑢𝑗

𝜕𝑃

𝜕𝑥𝑗

)︂
d𝑉 +

∫︁
𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

d𝑉, (2.33)

where the energy di�usion �ux vector is given by

𝑞𝑗 = −𝜅 𝜕𝑇
𝜕𝑥𝑗

+
𝐾∑︁
𝑘=1

𝜌ℎ𝑘𝑌𝑘𝑢̂𝑗,𝑘, (2.34)

and 𝑢̂𝑗,𝑘 is the di�usion velocity of species 𝑘 in the 𝑗 direction. This form of the energy equation is
derived by starting with the energy equation and supplemental relationships of internal energy and total
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enthalpy provided in Section 2.1.1. The time term and convection term due to kinetic energy are
expanded using the chain rule and simpli�ed by enforcing the continuity equation. The remaining
kinetic energy terms and gravitational force term are removed by dotting velocity with the momentum
equation (to obtain the mechanical energy equation) and subtracting it from the energy equation. This
procedure provides the full material derivative of pressure and the expanded viscous dissipation term.
The last two terms of Equation 2.33 are only active when formal compressibility (in an acoustic sense)
are important (see the Fuego user manual for the appropriate command lines to activate the low speed
compressible and high speed compressible form in Fuego).

For a low Mach number �ow, the time derivative of the pressure appearing above is substituted by the
thermodynamic reference pressure, 𝑃𝑡ℎ, that can only be nonzero in a closed volume with energy
addition or subtraction. However, the low Mach number approximation mandates that the
thermodynamic pressure is always spatially uniform.

The enthalpy of the mixture, ℎ, is a mass-average of the component enthalpies, ℎ𝑘, given by

ℎ =
𝐾∑︁
𝑘=1

ℎ𝑘𝑌𝑘. (2.35)

The energy di�usion �ux vector includes a scaled gradient of temperature whereas the independent
�eld to be solved in Equation 2.33 is enthalpy. The form of the gradient of temperature is derived by
�rst taking the gradient of Equation 2.35 and using the chain rule,

𝜕ℎ

𝜕𝑥𝑗
=

𝐾∑︁
𝑘=1

𝑌𝑘
𝜕ℎ𝑘
𝜕𝑥𝑗

+
𝐾∑︁
𝑘=1

ℎ𝑘
𝜕𝑌𝑘
𝜕𝑥𝑗

. (2.36)

Given the thermodynamic de�nition of speci�c heat, the above equation is given by,

𝜕ℎ

𝜕𝑥𝑗
=

𝐾∑︁
𝑘=1

𝑌𝑘𝐶𝑝𝑘
𝜕𝑇

𝜕𝑥𝑗
+

𝐾∑︁
𝑘=1

ℎ𝑘
𝜕𝑌𝑘
𝜕𝑥𝑗

(2.37)

= 𝐶𝑝
𝜕𝑇

𝜕𝑥𝑗
+

𝐾∑︁
𝑘=1

ℎ𝑘
𝜕𝑌𝑘
𝜕𝑥𝑗

. (2.38)

This equation is rearranged,
𝜕𝑇

𝜕𝑥𝑗
=

1

𝐶𝑝

(︃
𝜕ℎ

𝜕𝑥𝑗
−

𝐾∑︁
𝑘=1

ℎ𝑘
𝜕𝑌𝑘
𝜕𝑥𝑗

)︃
, (2.39)

and substituted into the energy di�usion �ux vector to obtain,

𝑞𝑗 = − 𝜅

𝐶𝑝

(︃
𝜕ℎ

𝜕𝑥𝑗
−

𝐾∑︁
𝑘=1

ℎ𝑘
𝜕𝑌𝑘
𝜕𝑥𝑗

)︃
+

𝐾∑︁
𝑘=1

𝜌ℎ𝑘𝑌𝑘𝑢̂𝑗,𝑘. (2.40)

Commonly, the last two terms in the above equation can be canceled when a simple di�usion model is
assumed (see Section 2.2.4, Equation 2.46) in the limit where the ratio of thermal and mass di�usion is
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equal (unity Lewis number, or equivalently speaking the Prandtl number equals the Schmidt number,
i.e.,

𝐿𝑒𝑢𝑛𝑖𝑡𝑦 =
𝑆𝑐

𝑃𝑟
=
𝛼

𝐷
= 1. (2.41)

For completeness, the thermal di�usivity, Prandtl and Schmidt number are de�ned by,

𝛼 =
𝜅

𝜌𝐶𝑝
, (2.42)

𝑃𝑟 =
𝐶𝑝𝜇

𝜅
=

𝜇

𝜌𝛼
. (2.43)

and

𝑆𝑐 =
𝜇

𝜌𝐷𝑎𝑏

. (2.44)

2.2.4. Conservation of Species

The mass conservation equation for species 𝑘 in a mixture of𝐾 gas phase species is∫︁
𝜕𝜌𝑌𝑘
𝜕𝑡

d𝑉 +

∫︁
𝜌𝑌𝑘𝑢𝑗𝑛𝑗d𝑆 = −

∫︁
𝜌𝑢̂𝑗,𝑘𝑌𝑘𝑛𝑗d𝑆 +

∫︁
𝜔̇𝑘d𝑉, (2.45)

where 𝜔̇𝑘 is the mass generation rate of species 𝑘 per unit volume by homogeneous chemical reactions.
We allow several approximations for the di�usion velocity, 𝑢̂𝑗,𝑘, derived in Appendix 7. The simplest
form is Fickian di�usion with the same value of mass di�usivity for all species,

𝑢̂𝑖,𝑘 = −𝐷 1

𝑌𝑘

𝜕𝑌𝑘
𝜕𝑥𝑖

. (2.46)

This form is used for the Reynolds-averaged form of the equations for turbulent �ow. A more accurate
approximation uses a mixture-averaged di�usion coe�cient, 𝐷̄𝑘, for each species di�usion velocity,

𝑢̂𝑖,𝑘 = −𝐷̄𝑘
1

𝑋𝑘

𝜕𝑋𝑘

𝜕𝑥𝑖
= −𝐷̄𝑘

(︂
1

𝑌𝑘

𝜕𝑌𝑘
𝜕𝑥𝑖

+
1

𝑊

𝜕𝑊

𝜕𝑥𝑖

)︂
. (2.47)

2.2.5. Conservation of Momentum, Axisymmetric with Swirl

Axisymmetric �ows, with or without swirl, are described by two-dimensional equations in cylindrical
coordinates. All azimuthal derivatives are zero (i.e., 𝜕/𝜕𝜃 = 0). The axial coordinate is 𝑥, the radial
coordinate is 𝑟, and the azimuthal coordinate is 𝜃. The radius is retained in the equations and the
purpose will become more clear in the discussion of the discrete integral form. The axial velocity is 𝑢,
the radial velocity is 𝑣, and the azimuthal velocity is𝑤.

31



Axial-Momentum:

𝜕𝜌𝑢𝑟

𝜕𝑡
+

𝜕

𝜕𝑥

(︀
𝜌𝑢2𝑟

)︀
+

𝜕

𝜕𝑟
(𝜌𝑢𝑣𝑟) + 𝑟

𝜕𝑝

𝜕𝑥
=

𝜕

𝜕𝑥
(𝑟𝜏𝑥𝑥) +

𝜕

𝜕𝑟
(𝑟𝜏𝑥𝑟) + 𝜌𝑟𝑔𝑥 (2.48)

Radial-Momentum:

𝜕𝜌𝑣𝑟

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢𝑣𝑟) +

𝜕

𝜕𝑟

(︀
𝜌𝑣2𝑟

)︀
+ 𝑟

𝜕𝑝

𝜕𝑟
− 𝜌𝑤2 =

𝜕

𝜕𝑥
(𝑟𝜏𝑟𝑥) +

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑟)− 𝜏𝜃𝜃 + 𝜌𝑟𝑔𝑟 (2.49)

Azimuthal-Momentum:

𝜕𝜌𝑤𝑟

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢𝑤𝑟) +

𝜕

𝜕𝑟
(𝜌𝑣𝑤𝑟) + 𝜌𝑣𝑤 =

𝜕

𝜕𝑥
(𝑟𝜏𝜃𝑥) +

1

𝑟

𝜕

𝜕𝑟

(︀
𝑟2𝜏𝜃𝑟

)︀
(2.50)

The viscous stress terms for the cylindrical equations are

𝜏𝑥𝑥 = 𝜇

[︂
2
𝜕𝑢

𝜕𝑥
− 2

3

(︂
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑟
+
𝑣

𝑟

)︂]︂
(2.51)

𝜏𝑟𝑥 = 𝜇

[︂
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑟

]︂
(2.52)

𝜏𝑟𝑟 = 𝜇

[︂
2
𝜕𝑣

𝜕𝑟
− 2

3

(︂
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑟
+
𝑣

𝑟

)︂]︂
(2.53)

𝜏𝜃𝜃 = 𝜇

[︂
2
𝑣

𝑟
− 2

3

(︂
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑟
+
𝑣

𝑟

)︂]︂
(2.54)

𝜏𝑟𝜃 = 𝜇𝑟
𝜕

𝜕𝑟

(︁𝑤
𝑟

)︁
(2.55)

𝜏𝑥𝜃 = 𝜇
𝜕𝑤

𝜕𝑥
(2.56)

The azimuthal equation can be simpli�ed by relating the swirl velocity to the angular velocity,𝑤 = 𝑟𝜔.
The momentum equation, written in terms of the angular velocity, is

𝜕𝜌𝜔𝑟

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢𝜔𝑟) +

𝜕

𝜕𝑟
(𝜌𝑣𝜔𝑟) + 2𝜌𝑣𝜔 =

𝜕

𝜕𝑥

(︂
𝑟𝜇
𝜕𝜔

𝜕𝑥

)︂
+

𝜕

𝜕𝑟

(︂
𝑟𝜇
𝜕𝜔

𝜕𝑟

)︂
+ 2𝜇

𝜕𝜔

𝜕𝑟
. (2.57)

The production term that is used in the turbulence model is

Φ = 2

[︃(︂
𝜕𝑢

𝜕𝑥

)︂2

+

(︂
𝜕𝑣

𝜕𝑟

)︂2

+
(︁𝑣
𝑟

)︁2]︃
+

(︂
𝜕𝑢

𝜕𝑟
+
𝜕𝑣

𝜕𝑥

)︂2

− 2

3

(︂
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑟
+
𝑣

𝑟

)︂2

. (2.58)

2.2.6. Laminar Flow Boundary Conditions

The laminar �ow math models require boundary conditions for velocity, pressure, temperature and
enthalpy variables, and mixture composition.
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2.2.6.1. Inflow

There are three types of in�ow boundary conditions. For velocity-speci�ed in�ow, Dirichlet conditions
are applied to velocities in the momentum equations, temperature in the energy equation, and mass
fractions in the species equations. The mass �ow rate at the boundary is speci�ed for the continuity
equation. The pressure �oats to a consistent value. Alternatively, a control volume balance is retained at
the boundary nodes and the convection �uxes are speci�ed.

For pressure-speci�ed in�ow, the out�ow boundary condition is applied with the added condition that
the �ow must enter the domain normal to the mesh boundary. Transport equations are solved for the
momentum, energy and species equations.

2.2.6.2. Outflow

The pressure is speci�ed at integration points on the out�ow boundary. The speci�ed pressure is used
in the surface integration procedure for approximation nodal gradients. The pressure gradients are used
to construct an interpolation for the mass �ow rate at the boundary. Transport equations are solved for
the momentum, energy and species equations. Upwind extrapolation is used for the scalars if the �ow is
leaving the domain. The boundary values of velocity and speci�ed far-�eld values of scalars are used if
the �ow is entering the domain.

2.2.6.3. Wall

It is assumed that there is no mass �ow through the wall. The velocity is speci�ed as a Dirichlet
boundary condition in the momentum equations. The temperature is speci�ed as a Dirichlet boundary
condition in the energy if the wall is isothermal. We currently do not support heterogeneous chemical
reactions at a surface, so there should be no boundary condition applied to the mass fractions.

2.2.6.4. Symmetry Plane

There is no mass �ow rate through the symmetry plane and there is no transport of scalar variables. The
normal stress (pressure and viscous) at the symmetry plane is applied in the momentum equations.

2.3. RADIATION TRANSPORT EQUATION

For applications involving PMR, both the radiative heat �ux and the divergence of the radiative heat
�ux are needed. The radiative heat �ux vector provides the radiative �ux to the boundary of the heat
conduction region. The �ux divergence provides one of the principal volumetric heat sources in the
turbulent combustion region for �re applications.
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2.3.1. Boltzmann Transport Equation

The spatial variation of the radiative intensity corresponding to a given direction and at a given
wavelength within a radiatively participating material, 𝐼(𝑠), is governed by the Boltzmann transport
equation. In general, the Boltzmann equation represents a balance between absorption, emission,
out-scattering, and in-scattering of radiation at a point. For combustion applications, however, the
steady form of the Boltzmann equation is appropriate since the transient term only becomes important
on nanosecond time scales which is orders of magnitude shorter than the fastest chemical reaction [8].

Experimental data shows that the radiative properties for heavily sooting, fuel-rich hydrocarbon
di�usion �ames (10−4% to 10−6% soot by volume) are dominated by the soot phase and to a lesser
extent by the gas phase (Modest [9], pg. 425). Since soot emits and absorbs radiation in a relatively
constant spectrum, it is common to ignore wavelength e�ects when modeling radiative transport in
these environments. Additionally, scattering from soot particles commonly generated by hydrocarbon
�ames is several orders of magnitude smaller that the absorption e�ect and may be neglected [8]. With
these assumptions in mind, the appropriate form of the Boltzmann radiative transport equation for
heavily sooting hydrocarbon di�usion �ames is

𝑠𝑖
𝜕

𝜕𝑥𝑖
𝐼 (𝑠) + 𝜇𝑎𝐼 (𝑠) =

𝜇𝑎𝜎𝑇
4

𝜋
, (2.59)

where 𝜇𝑎 is the absorption coe�cient, 𝐼(𝑠) is the intensity along the direction 𝑠𝑖, and 𝑇 is the
temperature.

The �ux divergence (on the right hand side of Equation 2.33) may be written as a di�erence between the
radiative emission and mean incident radiation at a point,

𝜕𝑞𝑟𝑖
𝜕𝑥𝑖

= 𝜇𝑎
[︀
4𝜎𝑇 4 −𝐺

]︀
, (2.60)

where𝐺 is the scalar �ux. The quantity,𝐺/4𝜋, is often referred to as the mean incident intensity [10].

The scalar �ux and radiative �ux vector represent angular moments of the directional radiative intensity
at a point [9],

𝐺 =

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝐼 (𝑠) sin 𝜃𝑧𝑛𝑑𝜃𝑧𝑛𝑑𝜃𝑎𝑧, (2.61)

𝑞𝑟𝑖 =

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝐼 (𝑠) 𝑠𝑖 sin 𝜃𝑧𝑛𝑑𝜃𝑧𝑛𝑑𝜃𝑎𝑧, (2.62)

where 𝜃𝑧𝑛 and 𝜃𝑎𝑧 are the zenith and azimuthal angles respectively as shown in Figure 2.3-1.

2.3.2. Radiation Intensity Boundary Condition

The radiation intensity must be de�ned at all portions of the boundary along which 𝑠𝑖𝑛𝑖 < 0, where 𝑛𝑖
is the outward directed unit normal vector at the surface. The intensity is applied as a Dirichlet
condition which must be determined from the surface properties and temperature. The di�use surface
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Figure 2.3-1.. Ordinate Direction Definition,
s = sin 𝜃𝑧𝑛 sin 𝜃𝑎𝑧i+ cos 𝜃𝑧𝑛j+ sin 𝜃𝑧𝑛 cos 𝜃𝑎𝑧k

assumption provides reasonable accuracy for many engineering combustion applications. The intensity
leaving a di�use surface in all directions is given by

𝐼 (𝑠) =
1

𝜋

[︀
𝜏𝜎𝑇 4

∞ + 𝜖𝜎𝑇 4
𝑤 + (1− 𝜖− 𝜏) 𝑞𝑟,𝑖𝑛𝑐𝑗 𝑛𝑗

]︀
, (2.63)

where 𝜖 is the total normal emissivity of the surface, 𝜏 is the transmissivity of the surface, 𝑇𝑤 is the
temperature of the boundary, 𝑇∞ is the environmental temperature and 𝑞𝑟,𝑖𝑛𝑐𝑗 is the incident radiation,
or irradiation for direction 𝑗. Recall that the relationship given by Kirchho�’s Law that relates
emissivity, transmissivity and re�ectivity, 𝜌, is

𝜌+ 𝜏 + 𝜖 = 1. (2.64)

where it is implied that 𝛼 = 𝜖.

2.4. TURBULENCE MODELING OVERVIEW

Turbulent reacting �ows involve a very large range of length and time scales, requiring massive
computational resources to directly resolve all of the physical processes for even the most simple
problem. To be able to solve complex problems of interest in a reasonable amount of time, modeling
approximations must be made. A �ltered form of the time-dependent Navier-Stokes, energy, and
species mass conservation equations presented in Section 2.2 are used, and closure models are applied to
the new terms that arise due to the �ltering operation. Temporal �ltering is used in the
Reynolds-Averaged Navier-Stokes (RANS) method, and spatial �ltering is used in the Large Eddy
Simulation (LES) method. The form of the models are dependent on the type of �ltering performed,
and will be discussed for both the RANS and LES approaches in the following sections.

Figure 2.0-1 schematically illustrates the interaction between all of the transport equations across the
full range of length scales. The transport equations are shown in shorthand with the notation T, RA,
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UA, D, S being the transient term, the resolved advection term, the unresolved advection (Reynolds
stresses) term, di�usion term and source term, respectively. Only one transport equation is shown for
each conservation principle, but it is understood that three equations exist for momentum (u,v,w), and
an equation exists for each species being transported (seven in the present model plus two for soot). The
momentum transport equations are strongly interconnected while the species equations are coupled
implicitly through their source terms, thermophysical properties, and conservation of mass of the
mixture.

The length scales in Figure 2.0-1 between the smallest control volume dimension and the largest mesh
dimension are de�ned as being "resolved", and the transport equations are used to solve the physics in
this range. The e�ects of the resolved turbulent scales may be modeled for RANS closures or they may
be directly solved for LES closures. Turbulence length scales can extend down many orders of
magnitude beyond the smallest �nite volume dimension to the Kolmogorov scales, and these subgrid
scales must be modeled in either closure approach.

The output of the closure models is expressed as a source term in the conservation equations for the
mean �ow and as e�ective properties in the radiative transport equation. Hence, the output of the
closure models can be interpreted as being cell-averaged values for the control volume for the
appropriate time scale. For the RANS formulation used here, the time scale is long relative to the
turbulence time scales (i.e., long time average). For LES, the time scale is the local advection time. For
the current suite of models, the momentum closure model is of the lumped-parameter type; that is, it
assumes homogeneity of the subgrid turbulence. The remaining closures, species and energy, are of the
zone-model type; that is, they assume heterogeneity of the species and energy subgrid. Two zones (one
combusting, one not) are used in the current zone models.

For length scales above the length scale of the mesh, the physics is modi�ed via boundary and initial
conditions. Momentum boundary conditions include speci�ed velocity (wind, and mass sources), or
constant pressure (in�ow/out�ow). Species boundary conditions include a mass source for the fuel
(pool model). Thermal boundary conditions include �ux and temperature conditions. The following
sections provide details of the math models for conservation laws and �re physics models used in
SIERRA/Fuego.

2.4.1. RANS Temporal Filtering

In many typical engineering applications, only time averages of physical quantities are of interest. Often,
details of the turbulent �uctuations are of little concern. RANS formulations address this need by
solving a temporally-�ltered form of the transport equations, directly yielding the time-averaged
variables of interest. For this reason, RANS approaches represent a relatively low-cost solution method
at the expense of additional modeling complexity.

An independent variable 𝜑 can be temporally �ltered to obtain its mean 𝜑with the mathematical form
(Tennekes and Lumley [11])

𝜑(𝑥) = lim
𝜏→∞

1

𝜏

∫︁ 𝑡𝑜+𝜏

𝑡𝑜

𝜑(𝑥, 𝑡) d𝑡. (2.65)
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The original variable can be represented as the sum of its mean and �uctuating component, 𝜑 = 𝜑+ 𝜑′,
with the properties that ¯̄𝜑 = 𝜑 and 𝜑′ = 0. This is called the Reynolds decomposition of a variable.

In combustion problems, the overall exothermic process can result in large localized temperature
increases and a correspondingly large density decrease in open systems where the molecular weight
change from reactants to products is small. Allowing for turbulent �uctuations of density, the above
temporal averaging procedure gives rise to additional terms involving time averages of products of
density and other variable (e.g., velocity) �uctuations. An alternative approach to applying the
Reynolds decomposition strictly to all independent variables is to consider a mass-weighted
decomposition known as Favre averaging (Libby and Williams [12], p. 15; Kuo [13], p. 419). This
simpli�es all of the transport equations and eases modeling. A Favre-averaged variable 𝜑 is de�ned in
terms of Reynolds averages as

𝜑 ≡ 𝜌𝜑

𝜌
. (2.66)

A variable can then be decomposed into its Favre-mean and �uctuating component as

𝜑 = 𝜑+ 𝜑′′, (2.67)

where 𝜌𝜑′′ = 0. Note that 𝜑′′ ̸= 0. The relation between time averaged and Favre-averaged quantities
is

𝜑 = 𝜑

(︂
1 +

𝜌′𝜑′

𝜌𝜑

)︂
. (2.68)

Favre averaging is used for all turbulent transport equations solved in SIERRA/Fuego.

For the RANS formulation used here, the laminar conservation equations of Section 2.2 are �rst
temporally �ltered, revealing additional terms that can be simpli�ed by substituting the Favre
decomposition, resulting in the Favre-�ltered equations that will be presented in Section 2.5. This
procedure results in new terms in the equations that consist of time averages of products of �uctuating
quantities, called Reynolds stresses. These moments must be modeled to close the system of
equations.

The length of the time �lter is typically much larger than the time scales of a turbulent �ow, meaning
that all time scales from the largest turbulence scale down to the minimum Kolmogorov scale are
represented by these Reynolds stresses. In a strict sense, there can be no time dependence of a mean
(time-averaged) quantity. However, if there are variations in mean quantities that occur on time
intervals long compared to the averaging interval, then the transient terms for the mean quantities may
be justi�ed and required. For this reason, unsteady RANS simulations are possible with the present
formulation. The available RANS turbulence closure models are discussed in Section 2.6.

2.4.2. LES Spatial Filtering

Unlike the RANS approach which models most or all of the turbulent �uctuations, LES directly solves
for all resolved turbulent length scales and only models the smallest scales below the grid size. In this
way, a majority of the problem-dependent, energy-containing turbulent structure is directly solved in a
model-free fashion. The subgrid scales are closer to being isotropic than the resolved scales, and they
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generally act to dissipate turbulent kinetic energy cascaded down from the larger scales in
momentum-driven turbulent �ows. Modeling of these small scales is generally more straightforward
than RANS approaches, and overall solutions are usually more tolerant to LES modeling errors because
the subgrid scales comprise such a small portion of the overall turbulent structure. While LES is
generally accepted to be much more accurate than RANS approaches for complex turbulent �ows, it is
also signi�cantly more expensive than equivalent RANS simulations due to the �ner grid resolution
required. Additionally, since LES results in a full unsteady solution, the simulation must be run for a
long time to gather any desired time-averaged statistics. The trade-o� between accuracy and cost must
be weighed before choosing one method over the other.

The separation of turbulent length scales required for LES is obtained by using a spatial �lter rather
than the RANS temporal �lter. This �lter has the mathematical form

𝜑(𝑥, 𝑡) ≡
∫︁ +∞

−∞
𝜑(𝑥′, 𝑡)𝐺(𝑥′ − 𝑥) d𝑥′, (2.69)

which is a convolution integral over physical space 𝑥 with the spatially-varying �lter function𝐺. The
�lter function has the normalization property

∫︀ +∞
−∞ 𝐺(𝑥) d𝑥 = 1, and it has a characteristic length

scale Δ so that it �lters out turbulent length scales smaller than this size. In the present formulation, a
simple “box �lter” is used for the �lter function,

𝐺(𝑥′ − 𝑥) =

{︂
1/𝑉 : (𝑥′ − 𝑥) ∈ 𝒱
0 : otherwise

, (2.70)

where 𝑉 is the volume of control volume 𝒱 whose central node is located at 𝑥. This is essentially an
unweighted average over the control volume. The length scale of this �lter is approximated by Δ = 𝑉

1
3 .

This is typically called the grid �lter, as it �lters out scales smaller than the computational grid size.

Similar to the RANS temporal �lter, a variable can be represented in terms of its �ltered and subgrid
�uctuating components as

𝜑 = 𝜑+ 𝜑′. (2.71)

For most forms of the �lter function𝐺(𝑥), repeated applications of the grid �lter to a variable do not
yield the same result. In other words, ¯̄𝜑 ̸= 𝜑 and therefore 𝜑′ ̸= 0, unlike with the RANS temporal
averages.

As with the RANS formulation, modeling is much simpli�ed in the presence of large density variations
if a Favre-�ltered approach is used. A Favre-�ltered variable 𝜑 is de�ned as

𝜑 ≡ 𝜌𝜑

𝜌
(2.72)

and a variable can be decomposed in terms of its Favre-�ltered and subgrid �uctuating component as

𝜑 = 𝜑+ 𝜑′′. (2.73)

Again, note that the useful identities for the Favre-�ltered RANS variables do not apply, so that ¯̃𝜑 ̸= 𝜑
and 𝜑′′ ̸= 0. The Favre-�ltered approach is used for all LES models in SIERRA/Fuego.
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2.5. TURBULENT FLOW EQUATIONS,
FAVRE-AVERAGED

The Favre-averaged turbulent transport equations are derived from the laminar equations of Section 2.2
by passing the equations through either the RANS temporal �lter of Equation 2.65 or the LES spatial
�lter of Equation 2.69. The mathematical form of the equations are essentially identical between the
two �ltering methods, so only a single set of equations will be presented. Care should be taken to
interpret the �lters as either temporal or spatial, depending on the closure models selected. While it is
the Favre-averaged form of the equations that are solved, a comparison of the simple Reynolds-averaged
and the Favre-averaged form is given in Appendix B for reference.

The approach most commonly used in turbulence modeling is called the Boussinesq eddy viscosity
approximation, which relates the turbulent stress tensor to the �ltered strain rate tensor through a
modeled turbulent eddy viscosity. This general modeling approach has shown remarkable success for a
broad range of problems (Wilcox [14]), and is the approach used in SIERRA/Fuego. A similar
approach is used for scalar transport, where the scalar �ux vector is related to scalar gradients through a
modeled di�usion coe�cient.

The following subsections describe the turbulent transport equations expressed in terms of a turbulent
eddy viscosity or turbulent di�usion coe�cient through the Boussinesq approximation. The treatment
of these coe�cients is dependent upon which of the many closure models are selected, and will be
described in Section 2.6.

2.5.1. Conservation of Mass

The integral form of the Favre-�ltered continuity equation used for turbulent transport is∫︁
𝜕𝜌

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑢̃𝑗𝑛𝑗d𝑆 = 0. (2.74)

This equation is in closed form, and no additional modeling is required.

2.5.2. Conservation of Momentum

The integral form of the Favre-�ltered momentum equations used for turbulent transport are∫︁
𝜕𝜌𝑢̃𝑖
𝜕𝑡

d𝑉 +

∫︁
𝜌𝑢̃𝑖𝑢̃𝑗𝑛𝑗d𝑆+

∫︁
𝑝𝑛𝑖d𝑆 =

∫︁
𝜏𝑖𝑗𝑛𝑗d𝑆+

∫︁
𝜏𝑢𝑖𝑢𝑗𝑛𝑗d𝑆+

∫︁
(𝜌− 𝜌∘) 𝑔𝑖d𝑉, (2.75)

where the turbulent stress 𝜏𝑢𝑖𝑢𝑗 is de�ned as

𝜏𝑢𝑖𝑢𝑗 ≡ −𝜌(̃︂𝑢𝑖𝑢𝑗 − 𝑢̃𝑖𝑢̃𝑗). (2.76)
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2.5.2.1. RANS Modeling

For RANS simulations, 𝜏𝑢𝑖𝑢𝑗 represents the Reynolds stress tensor and can be reduced to the form
𝜏𝑢𝑖𝑢𝑗 = −𝜌𝑢′′𝑖 𝑢′′𝑗 by substitution of the Favre decomposition 𝑢𝑖 ≡ 𝑢̃𝑖 + 𝑢′′𝑖 of each variable and
simplifying. The deviatoric (trace-free) part of the stress tensor is de�ned as

𝜏𝐷𝑢𝑖𝑢𝑗 ≡ 𝜏𝑢𝑖𝑢𝑗 −
1

3
𝜏𝑢𝑘𝑢𝑘𝛿𝑖𝑗

= 𝜏𝑢𝑖𝑢𝑗 +
2

3
𝜌𝑘𝛿𝑖𝑗 (2.77)

where the turbulent kinetic energy is de�ned as 𝑘 ≡ 1
2
̃︂𝑢′′𝑘𝑢′′𝑘. The deviatoric part of the Reynolds stress

tensor is modeled by the Boussinesq approximation which relates the Reynolds stresses to the �ltered
strain rate tensor through a modeled turbulent viscosity 𝜇𝑡, resulting in

𝜏𝐷𝑢𝑖𝑢𝑗 = 𝜇𝑡

(︂
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗
𝜕𝑥𝑖

)︂
− 2

3
𝜇𝑡
𝜕𝑢̃𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

= 2𝜇𝑡

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
, (2.78)

where the �ltered strain rate tensor is de�ned by

𝑆𝑖𝑗 ≡
1

2

(︂
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗
𝜕𝑥𝑖

)︂
. (2.79)

Substituting this into Equation 2.77 yields the modeled form of the full Reynolds stress tensor
(Kuo [13], p. 445)

𝜏𝑢𝑖𝑢𝑗 = 2𝜇𝑡

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
− 2

3
𝜌𝑘𝛿𝑖𝑗. (2.80)

The Favre-�ltered momentum equations then become∫︁
𝜕𝜌𝑢̃𝑖
𝜕𝑡

d𝑉 +

∫︁
𝜌𝑢̃𝑖𝑢̃𝑗𝑛𝑗d𝑆 +

∫︁ (︂
𝑝+

2

3
𝜌𝑘

)︂
𝑛𝑖d𝑆 =∫︁

2(𝜇+ 𝜇𝑡)

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
𝑛𝑗d𝑆 +

∫︁
(𝜌− 𝜌∘) 𝑔𝑖d𝑉, (2.81)

where RANS closure models for the turbulent viscosity 𝜇𝑡 are presented in Section 2.6.

2.5.2.2. LES Modeling

For LES, 𝜏𝑢𝑖𝑢𝑗 in Equation 2.75 represents the subgrid stress tensor. The deviatoric part of the subgrid
stress tensor is de�ned as

𝜏𝐷𝑢𝑖𝑢𝑗 ≡ 𝜏𝑢𝑖𝑢𝑗 −
1

3
𝜏𝑢𝑘𝑢𝑘𝛿𝑖𝑗

= 𝜏𝑢𝑖𝑢𝑗 +
2

3
𝜌𝑞2𝛿𝑖𝑗, (2.82)
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where the subgrid turbulent kinetic energy is de�ned as 𝑞2 ≡ 1
2
(̃︂𝑢𝑘𝑢𝑘 − 𝑢𝑘𝑢𝑘). The deviatoric part of

the subgrid stress tensor is then modeled similar to RANS closures as (Moin, et al. [15])

𝜏𝐷𝑢𝑖𝑢𝑗 = 2𝜇𝑡

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
. (2.83)

Substituting this into Equation 2.82 yields the modeled form of the full subgrid stress tensor

𝜏𝑢𝑖𝑢𝑗 = 2𝜇𝑡

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
− 2

3
𝜌𝑞2𝛿𝑖𝑗. (2.84)

For low Mach-number �ows, a vast majority of the turbulent kinetic energy is contained at resolved
scales (Erlebacher, et al. [16]). For this reason, the subgrid turbulent kinetic energy 𝑞2 will not be
directly treated and will instead be included in the pressure as an additional normal stress. The
Favre-�ltered momentum equations then become∫︁

𝜕𝜌𝑢̃𝑖
𝜕𝑡

d𝑉 +

∫︁
𝜌𝑢̃𝑖𝑢̃𝑗𝑛𝑗d𝑆 +

∫︁ (︂
𝑝+

2

3
𝜌𝑞2
)︂
𝑛𝑖d𝑆 =∫︁

2(𝜇+ 𝜇𝑡)

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
𝑛𝑗d𝑆 +

∫︁
(𝜌− 𝜌∘) 𝑔𝑖d𝑉, (2.85)

where LES closure models for the subgrid turbulent eddy viscosity 𝜇𝑡 are presented in Section 2.6.

2.5.3. Conservation of Energy

The integral form of the Favre-�ltered energy equation used for turbulent transport is∫︁
𝜕𝜌ℎ̃

𝜕𝑡
d𝑉 +

∫︁
𝜌ℎ̃𝑢̃𝑗𝑛𝑗d𝑆 = −

∫︁
𝑞𝑗𝑛𝑗d𝑆 −

∫︁
𝜏ℎ𝑢𝑗𝑛𝑗d𝑆 −

∫︁
𝜕𝑞𝑟𝑖
𝜕𝑥𝑖

d𝑉

+

∫︁ (︂
𝜕𝑃

𝜕𝑡
+ 𝑢̃𝑗

𝜕𝑃

𝜕𝑥𝑗

)︂
d𝑉 +

∫︁
𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

d𝑉. (2.86)

The simple Fickian di�usion velocity approximation, Equation 2.46, is assumed, so that the mean
di�usive heat �ux vector 𝑞𝑗 is

𝑞𝑗 = −

[︃
𝜇

Pr

𝜕ℎ

𝜕𝑥𝑗
− 𝜇

Pr

𝐾∑︁
𝑘=1

ℎ𝑘
𝜕𝑌𝑘
𝜕𝑥𝑗

]︃
− 𝜇

Sc

𝐾∑︁
𝑘=1

ℎ𝑘
𝜕𝑌𝑘
𝜕𝑥𝑗

. (2.87)

If Sc = Pr, i.e., unity Lewis number (Le = 1), then the di�usive heat �ux vector simpli�es to
𝑞𝑗 = − 𝜇

Pr
𝜕ℎ̃
𝜕𝑥𝑗

. The viscous dissipation term is closed by

𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

=

(︂
(𝜇+ 𝜇𝑡)

(︂
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗
𝜕𝑥𝑖

)︂
− 2

3

(︂
𝜌𝑘 + 𝜇𝑡

𝜕𝑢̃𝑘
𝜕𝑥𝑘

)︂
𝛿𝑖𝑗

)︂
𝜕𝑢̃𝑖
𝜕𝑥𝑗

=

[︂
2𝜇𝑆𝑖𝑗 + 2𝜇𝑡

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
− 2

3
𝜌𝑘𝛿𝑖𝑗

]︂
𝜕𝑢̃𝑖
𝜕𝑥𝑗

. (2.88)
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The turbulent di�usive �ux vector 𝜏ℎ𝑢𝑗 in Equation 2.86 is de�ned as

𝜏ℎ𝑢𝑗 ≡ 𝜌
(︁̃︂ℎ𝑢𝑗 − ℎ̃𝑢̃𝑗

)︁
. (2.89)

For RANS simulations, 𝜏ℎ𝑢𝑗 represents the turbulent energy di�usive �ux vector and is simpli�ed to
the form 𝜏ℎ𝑢𝑗 = 𝜌ℎ′′𝑢′′𝑗 by substitution of the Favre decomposition of each variable. It is then modeled
by

𝜏ℎ𝑢𝑗 = 𝜌ℎ′′𝑢′′𝑗 = − 𝜇𝑡
Pr𝑡

𝜕ℎ̃

𝜕𝑥𝑗
, (2.90)

where Pr𝑡 is the turbulent Prandtl number and 𝜇𝑡 is the modeled turbulent eddy viscosity from
momentum closure. For LES, 𝜏ℎ𝑢𝑗 represents the subgrid turbulent energy di�usive �ux vector, and is
modeled in the same way as

𝜏ℎ𝑢𝑗 = − 𝜇𝑡
Pr𝑡

𝜕ℎ̃

𝜕𝑥𝑗
, (2.91)

where Pr𝑡 is the subgrid turbulent Prandtl number and 𝜇𝑡 is the modeled subgrid turbulent eddy
viscosity from momentum closure.

The resulting �ltered and modeled turbulent energy equation for both RANS and LES is given in
Libby and Williams [12], p. 25, as∫︁

𝜕𝜌ℎ̃

𝜕𝑡
d𝑉 +

∫︁
𝜌ℎ̃𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁ (︂
𝜇

Pr
+

𝜇𝑡
Pr𝑡

)︂
𝜕ℎ̃

𝜕𝑥𝑗
𝑛𝑗d𝑆 −

∫︁
𝜕𝑞𝑟𝑖
𝜕𝑥𝑖

d𝑉 (2.92)

+

∫︁ (︂
𝜕𝑃

𝜕𝑡
+ 𝑢̃𝑗

𝜕𝑃

𝜕𝑥𝑗

)︂
d𝑉 +

∫︁
𝜏𝑖𝑗
𝜕𝑢𝑗
𝜕𝑥𝑗

d𝑉.

This equation is also given in Gran et al. [17] (without the transient and radiation source terms and the
additional term for laminar transport). The turbulent Prandtl number must have the same value as the
turbulent Schmidt number for species transport to maintain unity Lewis number.

2.5.4. Conservation of Species

The integral form of the Favre-�ltered species equation used for turbulent transport is∫︁
𝜕𝜌𝑌𝑘
𝜕𝑡

d𝑉 +

∫︁
𝜌𝑌𝑘𝑢̃𝑗𝑛𝑗d𝑆 = −

∫︁
𝜏𝑌𝑘𝑢𝑗𝑛𝑗d𝑆 −

∫︁
𝜌𝑌𝑘𝑢̂𝑗,𝑘𝑛𝑗d𝑆 +

∫︁
𝜔̇𝑘d𝑉, (2.93)

where the form of di�usion velocities (see Equation 2.46) assumes the Fickian approximation with a
constant value of di�usion velocity for consistency with the turbulent form of the energy equation,
Equation 2.86.

The turbulent di�usive �ux vector 𝜏𝑌𝑘𝑢𝑗 is de�ned as

𝜏𝑌𝑘𝑢𝑗 ≡ 𝜌
(︁̃︂𝑌𝑘𝑢𝑗 − 𝑌𝑘𝑢̃𝑗

)︁
. (2.94)
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For RANS simulations, 𝜏𝑌𝑘𝑢𝑗 represents the turbulent species di�usive �ux vector and is simpli�ed to
the form 𝜏𝑌𝑘𝑢𝑗 = 𝜌𝑌 ′′

𝑘 𝑢
′′
𝑗 by substitution of the Favre decomposition of each variable. It is then

modeled as

𝜏𝑌𝑘𝑢𝑗 = 𝜌𝑌 ′′
𝑘 𝑢

′′
𝑖 = − 𝜇𝑡

Sc𝑡

𝜕𝑌𝑘
𝜕𝑥𝑖

, (2.95)

where Sc𝑡 is the turbulent Schmidt number for all species and 𝜇𝑡 is the modeled turbulent eddy
viscosity from momentum closure. For LES, 𝜏𝑌𝑘𝑢𝑗 represents the subgrid turbulent species di�usive
�ux vector, and is modeled identically as

𝜏𝑌𝑘𝑢𝑗 = − 𝜇𝑡
Sc𝑡

𝜕𝑌𝑘
𝜕𝑥𝑖

, (2.96)

where Sc𝑡 is the subgrid turbulent Schmidt number for all species and 𝜇𝑡 is the subgrid modeled
turbulent eddy viscosity from momentum closure.

The Favre-�ltered and modeled turbulent species transport equation for both RANS and LES then
becomes (Gran et al. [17])∫︁

𝜕𝜌𝑌𝑘
𝜕𝑡

d𝑉 +

∫︁
𝜌𝑌𝑘𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁ (︂
𝜇

Sc
+

𝜇𝑡
Sc𝑡

)︂
𝜕𝑌𝑘
𝜕𝑥𝑗

𝑛𝑗d𝑆 +

∫︁
𝜔̇𝑘d𝑉. (2.97)

If transporting both energy and species equations, the laminar Prandtl number must be equal to the
laminar Schmidt number and the turbulent Prandtl number must be equal to the turbulent Schmidt
number to maintain unity Lewis number. Although there is a species conservation equation for each
species in a mixture of𝐾 species, only𝐾 − 1 species equations need to be solved since the mass
fractions sum to unity and

𝑌𝑘 = 1−
𝐾∑︁
𝑗 ̸=𝑘

𝑌𝑗. (2.98)

2.5.5. Radiation Transport

The Favre-averaged energy equation, Equation 2.93, requires the time-averaged radiative �ux divergence.
From Equation 2.60, the time-averaged radiative �ux divergence is given by

𝜕𝑞𝑟𝑖
𝜕𝑥𝑖

= 4𝜎𝜇𝑎𝑇 4 − 𝜇𝑎𝐺. (2.99)

For optically thin turbulent eddies, which is the case for many combustion applications, �uctuations in
the absorption coe�cient and the scalar �ux are weakly correlated [8] so Equation 2.99 may be
simpli�ed to

𝜕𝑞𝑟𝑖
𝜕𝑥𝑖

= 4𝜎𝜇𝑎𝑇 4 − 𝜇̄𝑎𝐺̄. (2.100)
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The time averaged scalar �ux is obtained from the time averaged Boltzmann radiative transport
equation

𝑠𝑖
𝜕

𝜕𝑥𝑖
𝐼 (𝑠) + 𝜇̄𝑎𝐼 (𝑠) =

𝜇𝑎𝜎𝑇 4

𝜋
, (2.101)

where the correlation between the turbulent �uctuations in the absorption coe�cient and the intensity
is assumed small to simplify the absorption term.

Both Equation 2.100 and Equation 2.101 include the time averaged emission term, 𝛼𝑇 4, which may
signi�cantly increase the radiative emission from a turbulent �ame above what would be estimated from
the mean temperature and absorption coe�cient values. The details of the closure used for this term are
discussed in the turbulent combustion model section.

2.6. TURBULENCE CLOSURE MODELS

The Favre-�ltered turbulent �ow equations of the previous section have been modeled in terms of 𝜇𝑡,
the turbulent eddy viscosity for RANS simulations and the subgrid turbulent eddy viscosity for LES.
Evaluation of this eddy viscosity is dependent upon the closure model selected. All models supported
by SIERRA/Fuego are described below.

2.6.1. Standard 𝑘-𝜖 RANS Model

The standard 𝑘-𝜖 closure model is a two-equation type of model, where transport equations for the
turbulent kinetic energy and the turbulent dissipation rate are solved to obtain length-scale and
time-scale estimates for the local turbulence �eld, to be used for modeling the turbulent eddy viscosity
𝜇𝑡. The turbulent kinetic energy, 𝑘, and the dissipation rate of turbulent kinetic energy, 𝜖, are given by
(Gran et al. [17]) ∫︁

𝜕𝜌𝑘

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑘𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁
𝜇𝑡
𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗
𝑛𝑗d𝑆 +

∫︁
(𝑃𝑘 − 𝜌𝜖) d𝑉 (2.102)∫︁

𝜕𝜌𝜖

𝜕𝑡
d𝑉 +

∫︁
𝜌𝜖𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁
𝜇𝑡
𝜎𝜖

𝜕𝜖

𝜕𝑥𝑗
𝑛𝑗d𝑆 +

∫︁
𝜖

𝑘
(𝐶𝜖1𝑃𝑘 − 𝐶𝜖2𝜌𝜖) d𝑉, (2.103)

respectively, where the turbulence production rate, 𝑃𝑘, is de�ned as

𝑃𝑘 ≡ −𝜌𝑢′′𝑖 𝑢′′𝑗
𝜕𝑢̃𝑖
𝜕𝑥𝑗

, (2.104)

and is modeled using the same Boussinesq approximation as in Equation 2.80,

𝑃𝑘 = 𝜇𝑡

(︂
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗
𝜕𝑥𝑖

)︂
𝜕𝑢̃𝑖
𝜕𝑥𝑗

− 2

3

(︂
𝜌𝑘 + 𝜇𝑡

𝜕𝑢̃𝑘
𝜕𝑥𝑘

)︂
𝜕𝑢̃𝑚
𝜕𝑥𝑚

=

[︂
2𝜇𝑡

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
− 2

3
𝜌𝑘𝛿𝑖𝑗

]︂
𝜕𝑢̃𝑖
𝜕𝑥̃𝑗

. (2.105)
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The turbulent eddy viscosity is then given by the Prandtl-Kolmogorov relationship,

𝜇𝑡 = C𝜇𝜌𝑘𝜏 . (2.106)

where 𝜏 = 𝑚𝑖𝑛(𝑘
𝜖
, 𝑑𝑡𝑓 ). The �lter time, 𝑑𝑡𝑓 is provided by the temporally �ltered Navier Stokes model

(Tieszen et al. [18]). The parameters𝐶𝜖1,𝐶𝜖2, 𝜎𝑘, and 𝜎𝜖 are adjustable constants.

Frequently, although not formally justi�ed in high Reynolds �ows, the di�usion coe�cient for the
turbulent kinetic energy and turbulence dissipation, Equations 2.102 and 2.103, may include the
molecular viscosity. This option is supported within Fuego by entering the following command line in
the Fuego region block, include molecular viscosity in k-e diffusion term.

2.6.2. Low Reynolds Number 𝑘-𝜖 RANS Model

In the case of the low Reynolds number turbulent �ows, the standard 𝑘-𝜖 transport equations can be
modi�ed to contain additional damping functions to improve their accuracy. The low Reynolds
number model of Launder and Sharma [19] are used here, which modify the turbulent kinetic energy
equation, Equation 2.102, to includes an additional right-hand-side source term

𝑆𝑙𝑟𝑘 = −2𝜇

(︂
𝜕𝑘

𝜕𝑥𝑗

)︂2

(2.107)

and the dissipation rate equation to include the non-isotropic dissipation source term

𝑆𝑙𝑟𝜖 = −2𝜈𝜈𝑇
(︂

𝜕2𝑢̃𝑖
𝜕𝑥𝑘𝜕𝑥𝑗

)︂2

. (2.108)

The constants in the dissipation rate equation are modi�ed by damping coe�cients,𝐶𝜖1 = 𝑓1𝐶𝜖1 and
𝐶𝜖2 = 𝐶𝜖2𝑓2, where 𝑓1 is unity and 𝑓2 = 1− 0.3𝑒−𝑅

2
𝑡 .

The eddy viscosity is then given by
𝜇𝑡 = C𝜇𝜌𝑓𝜇𝑘𝜏 . (2.109)

Wall functions for momentum and turbulence quantities are not used with this model.

2.6.3. RNG 𝑘-𝜖 RANS Model

The RNG 𝑘-𝜖model was derived using a rigorous statistical decomposition of the velocity �eld called
renormalization group (RNG) theory. This model has several signi�cant bene�ts over the standard 𝑘-𝜖
model, including improved accuracy for rapidly strained �ows, swirling �ows, and low Reynolds
number �ows, without additional modi�cations. Additionally, values for the model constants are
derived analytically rather than being evaluated empirically. Papageorgakis and Assanis [20] describe the
version of the RNG 𝑘-𝜖model as implemented here.
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The same turbulent kinetic energy equation as in the standard 𝑘-𝜖model, Equation 2.102, is used for the
RNG 𝑘-𝜖 equation. The turbulent kinetic energy dissipation rate equation is the same as
Equation 2.103, with the addition of a single source term on the right-hand-side of the equation,

𝑆RNG
𝜖 = −𝐶𝜇𝜂

3(1− 𝜂/𝜂𝑜)

1 + 𝛽𝜂3
𝜖2

𝑘
, (2.110)

where𝐶𝜇, 𝛽, and 𝜂𝑜 are model constants, and

𝜂 = (2𝑆𝑖𝑗𝑆𝑖𝑗)
1
2
𝑘

𝜖
. (2.111)

As with the standard 𝑘-𝜖model, the turbulent eddy viscosity is then given by the Prandtl-Kolmogorov
relationship,

𝜇𝑡 = 𝐶𝜇𝜌𝑘𝜏 . (2.112)

2.6.4. 𝑣2-𝑓 RANS Model

Durbin [21] introduced a method for handling the wall region without using either wall functions or
damping functions. In his method a �ne grid is required near the wall (e.g., the �rst grid point is
typically within one dimensionless unit of distance from the wall where the coordinate normal to the
wall is nondimensionalized with the inner scale for a turbulent boundary layer, 𝑦+ = 𝑦𝑢𝜏/𝜈 < 1 at the
�rst grid point, where 𝑢𝜏 is the friction velocity,

√︀
𝜏𝑤/𝜌). The model employs two transport equations

in addition to slightly modi�ed 𝑘 and 𝜖 equations to account for the nonhomogeneous region near the
wall. The eddy viscosity is formulated using the component of turbulent kinetic energy normal to the
wall for velocity scaling (instead of using

√
𝑘 as in the standard 𝑘-𝜖model).

The turbulent kinetic energy, 𝑘, is given by Equation 2.102 while the dissipation rate of turbulent
kinetic energy, 𝜖, is given by∫︁

𝜕𝜌𝜖

𝜕𝑡
d𝑉 +

∫︁
𝜌𝜖𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁
𝜇𝑡
𝜎𝜖

𝜕𝜖

𝜕𝑥𝑗
𝑛𝑗d𝑆 +

∫︁
1

𝑇
(𝐶 ′

𝜖1𝑃𝑘 − 𝐶𝜖2𝜌𝜖) d𝑉. (2.113)

The time scale, 𝑇 , is the usual time scale 𝑘/𝜖, away from the wall region; however, near the wall, if 𝑘/𝜖
becomes smaller than the Kolmogorov time scale

√︀
𝜈/𝜖, then the latter is used for 𝑇 . This is formally

stated by

𝑇 = min

[︃
𝑇1,

𝛼

2
√
3

𝑘

𝑣2𝐶𝜇
√︀
𝑆2

]︃
(2.114)

𝑇1 = max

[︂
𝑘

𝜖
, 6

√︂
𝜈

𝜖

]︂
, (2.115)

where

𝑆2 = 𝑆𝑖𝑗𝑆𝑖𝑗 =
1

4

(︂
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗
𝜕𝑥𝑖

)︂(︂
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗
𝜕𝑥𝑖

)︂
(2.116)
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and the modi�ed constant,𝐶 ′
𝜖1

, is given by

𝐶 ′
𝜖1
= 𝐶𝜖1

(︂
1 + 0.045

√︁
𝑘/𝑣2

)︂
. (2.117)

The model includes a transport equation for 𝑣2,

𝜕𝜌𝑣2

𝜕𝑡
+
𝜕𝜌𝑢̃𝑗𝑣2

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[︃
(𝜇+ 𝜇𝑡)

𝜕𝑣2

𝜕𝑥𝑗

]︃
+ 𝜌𝑘𝑓 − 𝜌𝑁𝑣2

𝑇1
. (2.118)

An elliptic relaxation model equation is formulated to solve for the variable 𝑓 in the above equation.
The purpose of the elliptic relaxation model is to account for nonlocal e�ects such as wall blocking; the
equation is given by

𝑓 − 𝐿2 𝜕

𝜕𝑥𝑗

(︂
𝜕𝑓

𝜕𝑥𝑗

)︂
= 𝐶1

(︁
2/3− 𝑣2/𝑘

)︁
𝑇1

+ 𝐶22𝜈𝑡
𝑆2

𝑘
+ (𝑁 − 1)

𝑣2/𝑘

𝑇1
. (2.119)

Finally, the turbulent eddy viscosity is given by

𝜇𝑡 = 𝐶𝜇𝜌𝑣2𝜏. (2.120)

2.6.5. 𝑘 − 𝜔 RANS Model

The 𝑘 − 𝜔 turbulence model and its variants are similar in structure to the 𝑘 − 𝜖models. However,
instead of computing the turbulent dissipation rate directly, the 𝑘 − 𝜔 model models the transport the
reciprocal of a turbulent timescale referred to as the turbulent frequency. This quantity, 𝜔, can be
related to the turbulent dissipation by

𝜖 = 𝛽*𝑘𝜔. (2.121)

The the transport equations are given by the 2006 model, (Wilcox [22]),

∫︁
𝜕𝜌𝑘

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑘𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁
(𝜇+ 𝜎𝑘

𝜌𝑘

𝜔
)
𝜕𝑘

𝜕𝑥𝑗
𝑛𝑗d𝑉 +

∫︁
(𝑃 𝜔

𝑘 − 𝛽*𝜌𝑘𝜔) d𝑉, (2.122)∫︁
𝜕𝜌𝜔

𝜕𝑡
d𝑉 +

∫︁
𝜌𝜔𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁
(𝜇+ 𝜎𝜔

𝜌𝑘

𝜔
)
𝜕𝜔

𝜕𝑥𝑗
𝑛𝑗d𝑉 +

∫︁ (︂
𝛾
𝜔

𝑘
𝑃 𝜔
𝑘 − 𝛽𝜌𝜔2 +

𝜌𝜎𝑑
𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

)︂
d𝑉.

(2.123)
The user is to note the above standard for writing the e�ective di�usive �ux coe�cient. The model also
has a number of adjustable parameters: 𝛽0 = 0.0708, 𝛽* = 0.09, 𝛾 = 13

25
,𝐶𝑙𝑖𝑚 = 7

8
, 𝜎𝑘 = 0.6, and

𝜎𝜔 = 0.5. The constant 𝛽 is given by,

𝛽 = 𝛽0𝑓𝛽 (2.124)
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where
𝑓𝛽 =

1 + 85𝜒𝜔
1 + 100𝜒𝜔

(2.125)

The value of 𝜒𝜔 is as follows:

𝜒𝜔 = |Ω𝑖𝑗Ω𝑗𝑘𝑆𝑘𝑖
(𝛽*𝜔)3

| (2.126)

The production term is the same as in 𝑘 − 𝜖. Typically limiters are used to prevent it from exceeding the
dissipation rate by too large an amount. Although the 2006 description does not speak of production
limiters, other sources that use the 2006 model do, i.e.

𝑃 𝜔
𝑘 = max (𝑃𝑘, 10𝜌𝑘𝜔) . (2.127)

The value of 10 is expected to be a user speci�ed quantity (see input �le manual for more details). In
general, this term is defaulted to a very high number.

The eddy viscosity is

𝜇𝑇 = 𝜌
𝑘

𝜔̂
. (2.128)

where 𝜔̂ is,

𝜔̂ = max(𝜔,𝐶𝑙𝑖𝑚

√︃
2𝑆𝑖𝑗𝑆𝑖𝑗
𝛽* ). (2.129)

2.6.6. Shear Stress Transport (SST)

It has been observed that standard 1998 𝑘− 𝜔 models display a strong sensitivity to the free stream value
of 𝜔. To remedy, this, an alternative set of transport equations have been used that are based on
smoothly blending the 𝑘 − 𝜔 model near a wall with 𝑘 − 𝜖 away from the wall (see Mentor [23]).
Because of the relationship between 𝜔 and 𝜖, the transport equations for turbulent kinetic energy and
dissipation can be transformed into equations involving 𝑘 and 𝜔. Aside from constants, the transport
equation for 𝑘 is unchanged. However, an additional cross-di�usion term is present in the 𝜔 equation.
Blending is introduced by using smoothing which is a function of the distance from the wall, 𝐹 (𝑦).
The transport equations for the Mentor 2003 model ( [23]) are provided by the following:

∫︁
𝜕𝜌𝑘

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑘𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁
(𝜇+ 𝜎̂𝑘𝜇𝑡)

𝜕𝑘

𝜕𝑥𝑗
𝑛𝑗 +

∫︁
(𝑃 𝜔

𝑘 − 𝛽*𝜌𝑘𝜔) d𝑉, (2.130)∫︁
𝜕𝜌𝜔

𝜕𝑡
d𝑉+

∫︁
𝜌𝜔𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁
(𝜇+ 𝜎̂𝜔𝜇𝑡)

𝜕𝜔

𝜕𝑥𝑗
𝑛𝑗+

∫︁
2(1− 𝐹 )

𝜌𝜎𝜔2
𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
d𝑉+

∫︁ (︂
𝛾

𝜈𝑡
𝑃 𝜔
𝑘 − 𝛽𝜌𝜔2

)︂
d𝑉.

(2.131)
The model coe�cients, 𝜎̂𝑘, 𝜎̂𝜔, 𝛾 and 𝛽 must also be blended, which is represented by

𝜑 = 𝐹𝜑1 + (1− 𝐹 )𝜑2. (2.132)

where 𝜎𝑘1 = 0.85, 𝜎𝑘2 = 1.0, 𝜎𝜔1 = 0.5, 𝜎𝜔2 = 0.856, 𝛾1 = 5
9

, 𝛾2 = 0.44, 𝛽1 = 0.075 and
𝛽2 = 0.0828.
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The blending function is given by
𝐹 = tanh(𝑎𝑟𝑔41), (2.133)

where

𝑎𝑟𝑔1 = min

(︃
max

(︃ √
𝑘

𝛽*𝜔𝑦
,
500𝜇

𝜌𝑦2𝜔

)︃
,
4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝑦2

)︃
. (2.134)

The �nal parameter is

𝐶𝐷𝑘𝜔 = max

(︂
2𝜌𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−10

)︂
. (2.135)

In the 2003 SST model description, the production term is expected to be limited:

𝑃 𝜔
𝑘 = max (𝑃𝑘, 10𝜌𝑘𝜔) . (2.136)

The value of 10 is expected to be a user speci�ed quantity (see input �le manual for more details). In
general, this term is defaulted to a very high number.

An important component of the SST model is the di�erent expression used for the eddy viscosity,

𝜇𝑡 =
𝑎1𝜌𝑘

max (𝑎1𝜔, 𝑆𝐹2)
, (2.137)

where 𝐹2 is another blending function given by

𝐹2 = tanh(𝑎𝑟𝑔22). (2.138)

The �nal parameter is

𝑎𝑟𝑔2 = max

(︃
2
√
𝑘

𝛽*𝜔𝑦
,
500𝜇

𝜌𝜔𝑦2

)︃
. (2.139)

2.6.7. Standard Smagorinsky LES Model

The standard Smagorinsky LES closure model approximates the subgrid turbulent eddy viscosity using
a mixing length-type model, where the LES grid �lter size Δ provides a natural length scale. The
subgrid eddy viscosity is modeled simply as (Smagorinsky [24])

𝜇𝑡 = 𝜌 (𝐶𝑠Δ)2 |𝑆|, (2.140)

where the strain rate tensor magnitude is de�ned as |𝑆| ≡ (2𝑆𝑖𝑗𝑆𝑖𝑗)
1
2 . The constant coe�cient𝐶𝑠

typically varies between 0.1 and 0.24 and should be carefully tuned to match the problem being solved
(Rogallo and Moin [25]). It is assigned a value of 0.17 here.

Although this model is desirable due to its simplicity and e�ciency, care should be taken in its
application. It is known to predict subgrid turbulent eddy viscosity proportional to the shear rate in the
�ow, independent of the local turbulence intensity. Non-zero subgrid turbulent eddy viscosity is even
predicted in completely laminar regions of the �ow, sometimes even preventing a natural transition to
turbulence. Therefore, this model should only be used when this behavior will not adversely a�ect
results.
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2.6.8. Dynamic Smagorinsky LES Model

As mentioned in the previous section, the standard Smagorinsky model requires careful tuning of the
constant model coe�cient for the particular problem being simulated, and it is often overly-dissipative
due to its inability to adapt to the local turbulent environment. Germano et al. [26] developed an
improvement over the standard Smagorinsky model, where the coe�cient𝐶𝑠 is dynamically calculated
based on the local turbulence �eld. A generalization of this method for variable-density �ow is used here
(Moin et al. [15]).

Similar to the standard Smagorinsky LES closure model, the subgrid eddy viscosity is modeled by the
mixing length approximation

𝜇𝑡 = 𝐶𝑅𝜌Δ
2|𝑆|, (2.141)

where the strain rate tensor magnitude is de�ned as |𝑆| ≡ (2𝑆𝑖𝑗𝑆𝑖𝑗)
1
2 . The coe�cient𝐶𝑅 is

dynamically evaluated by taking advantage of scale similarity in the inertial range of the turbulence
spectrum, near the minimum resolved scales. This is done by introducing a “test �lter” which is
identical to the grid �lter de�ned in Equation 2.69 except for having a larger �lter size denoted by Δ̂.
The test �lter of variable 𝜑 is denoted by 𝜑.

The previously-de�ned subgrid stress tensor can be rewritten as

𝜏𝑢𝑖𝑢𝑗 ≡ −(𝜌̃︂𝑢𝑖𝑢𝑗 − 𝜌𝑢̃𝑖𝑢̃𝑗)

= −
(︂
𝜌𝑢𝑖𝑢𝑗 −

𝜌𝑢𝑖 𝜌𝑢𝑗
𝜌

)︂
(2.142)

and an analogous larger-scale “subtest” stress 𝑇𝑢𝑖𝑢𝑗 can be analogously de�ned as

𝑇𝑢𝑖𝑢𝑗 ≡ −

(︃
𝜌𝑢𝑖𝑢𝑗 −

̂︁𝜌𝑢𝑖 ̂︁𝜌𝑢𝑗
^̄𝜌

)︃
, (2.143)

where the ^̄() notation denotes resolved quantities that have been passed through the test �lter. These
two stresses can be related to each other through the algebraic identity of Germano [27],

𝐿𝑢𝑖𝑢𝑗 ≡ 𝑇𝑢𝑖𝑢𝑗 − ̂︂𝜏𝑢𝑖𝑢𝑗 (2.144)

= −

(︃
𝜌𝑢̃𝑖𝑢̃𝑗 −

̂̄︁𝜌𝑢̃𝑖 ̂̄︁𝜌𝑢̃𝑗
^̄𝜌

)︃
. (2.145)

Note that the right-hand side of Equation 2.145 is completely computable in terms of resolved
quantities.

By modeling the two stresses in Equation 2.144 and equating them to Equation 2.145, the model
coe�cient𝐶𝑅 can be dynamically evaluated. The subtest stress is modeled analogously to the subgrid
stress, as

𝜏𝑢𝑖𝑢𝑗 ≈ 2𝐶𝑅𝜌Δ
2 |𝑆|

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
(2.146)

𝑇𝑢𝑖𝑢𝑗 ≈ 2𝐶𝑅 ^̄𝜌Δ̂
2 | ^̃𝑆|

(︂̂̃︁𝑆𝑖𝑗 − 1

3
̂̃︁𝑆𝑘𝑘𝛿𝑖𝑗)︂ , (2.147)
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where𝐶𝑅 is assumed to be the same at both scales. The test-�ltered strain rate tensor is de�ned similar
to |𝑆| as

| ^̃𝑆| ≡
(︁
2̂̃︁𝑆𝑖𝑗 ̂̃︁𝑆𝑖𝑗)︁ 1

2

. (2.148)

Notice that when the modeled forms of 𝜏𝑢𝑖𝑢𝑗 and 𝑇𝑢𝑖𝑢𝑗 are substituted into Equation 2.144,𝐶𝑅 appears
inside a test �ltering operation. Formally solving this system of equations for𝐶𝑅 requires the expensive
proposition of solving an additional set of coupled integro-di�erential equations (Ghosal et al. [28]).
Alternatively, it is common practice to remove𝐶𝑅 from the test �lter with the assumption that it is
varying slowly over distances on the order of the test �lter size. This greatly simpli�es calculations,
although it yields a system of overdetermined equations for this single constant. The square of the error
involved in this approximation is𝑄 = (𝐿𝑖𝑗 − 𝐶𝑅𝑀𝑖𝑗)

2, where

𝐿𝑢𝑖𝑢𝑗 = −

(︃
𝜌𝑢̃𝑖𝑢̃𝑗 −

̂̄︁𝜌𝑢̃𝑖 ̂̄︁𝜌𝑢̃𝑗
^̄𝜌

)︃
(2.149)

𝑀𝑢𝑖𝑢𝑗 = 2^̄𝜌Δ̂2| ^̃𝑆|
(︂̂̃︁𝑆𝑖𝑗 − 1

3
̂̃︁𝑆𝑘𝑘𝛿𝑖𝑗)︂− 2𝜌Δ2 |𝑆|

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
. (2.150)

Minimizing this error in a least-squares fashion yields an expression for the modeled Smagorinsky
coe�cient (Lilly [29]),

𝐶𝑅 =
𝐿𝑢𝑖𝑢𝑗𝑀𝑢𝑖𝑢𝑗

𝑀𝑢𝑖𝑢𝑗𝑀𝑢𝑖𝑢𝑗

, (2.151)

that can be used directly in Equation 2.141 for the subgrid turbulent eddy viscosity.

Due to the above simpli�cations, the model constant𝐶𝑅 can sometimes �uctuate wildly to both large
positive and negative values. These �uctuations can possibly lead to numerical instability, so they must
be controlled. A common solution, and one that is taken here, is to pass the numerator and
denominator of Equation 2.151 through the test �lter, yielding

𝐶𝑅 =
𝐿𝑢𝑖𝑢𝑗𝑀𝑢𝑖𝑢𝑗

𝑀𝑢𝑖𝑢𝑗𝑀𝑢𝑖𝑢𝑗

. (2.152)

This can be crudely justi�ed by recognizing that𝐶𝑅 was already assumed to vary slowly over distances
equal to the test �lter size, so that this �ltering operation is simply enforcing that assumption.

This form of the dynamic Smagorinsky closure model allows energy backscatter, which is an
intermittent transfer of turbulent kinetic energy from small scales to larger scales rather than the typical
cascade from large to small scales. While backscatter can occur in real turbulent �ows, the predicted
negative eddy viscosities of the dynamic Smagorinsky model are more often attributable to model errors
than to a real physical backscatter process. This can easily destabilize a simulation, so negative eddy
viscosity is disallowed in the present formulation.

The only free parameter in the dynamic Smagorinsky closure model is the ratio between the test and
grid �lter sizes, 𝛼 = Δ̂/Δ. Solutions are fairly insensitive to the choice of 𝛼, although values of around
𝛼 = 2 are usually considered optimal (Germano et al. [26]). This ratio is dictated by the box �lter
formulation used in Fuego and the mesh topology selected by the user. The test �lter volume for a
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particular CVFEM node is de�ned as the volume of all surrounding �nite elements that contain that
node. (See Chapter 5 for more information about the CVFEM formulation.) On uniform hexahedral
and uniform quadrilateral meshes, the test �lter ratio will have a value of 2.0. The ratio will be around
1.59 for uniform tetrahedral meshes and around 1.73 for uniform triangular meshes, which are still
reasonable values.

2.6.9. Subgrid-Scale Kinetic Energy One-Equation LES Model

The subgrid scale kinetic energy one-equation turbulence model, or𝐾𝑠𝑔𝑠model, represents a simple
LES closure model. The transport equation for subgrid turbulent kinetic energy is given by∫︁

𝜕𝜌𝑘sgs

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑘sgs𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁
𝜇𝑡
𝜎𝑘

𝜕𝑘sgs

𝜕𝑥𝑗
𝑛𝑗d𝑆 +

∫︁
(𝑃 sgs

𝑘 −𝐷sgs
𝑘 ) d𝑉. (2.153)

The production of subgrid turbulent kinetic energy, 𝑃 sgs
𝑘 , is modeled by Equation 2.105 while the

dissipation of turbulent kinetic energy,𝐷sgs
𝑘 , is given by

𝐷sgs
𝑘 = 𝐶𝜖𝜌

𝑘sgs
3
2

Δ
, (2.154)

where the grid �lter length, Δ, is given in terms of the grid cell volume by

Δ = 𝑉
1
3 . (2.155)

The subgrid turbulent eddy viscosity is then provided by

𝜇𝑡 = 𝐶𝜇𝜖Δ𝑘
sgs 1

2 , (2.156)

where the values of𝐶𝜖 and𝐶𝜇𝜖 are 0.845 and 0.0856, respectively.

Beta Capability:

2.6.10. Dynamic Subgrid-Scale Kinetic Energy
One-Equation LES Model

Similar to the dynamic Smagorinsky model in Section 2.6.8, a dynamic version is developed for the
subgrid kinetic energy model. The standard version with �xed coe�cients over-predicts turbulent
viscosity while the dynamic version is known to o�er a better predictability. In Fuego,𝐶𝜖 and𝐶𝜇𝜖 are
calculated dynamically which is considered to be a standard approach for the dynamic𝐾𝑠𝑔𝑠model
[30]. The concept of “test �lter” is identical to that of the dynamic Smagorinsky model in Section 2.6.8.
Subgrid-scale kinetic energy for grid-�lter and test-�lter levels are

𝑘sgs =
1

2
(̃︂𝑢𝑘𝑢𝑘 − 𝑢𝑘𝑢𝑘) , (2.157)
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𝑘test =
1

2

(︁ ̂̃︂𝑢𝑘𝑢𝑘 − ^̃𝑢𝑘 ^̃𝑢𝑘

)︁
. (2.158)

Exact form of the dissipation𝐷sgs
𝑘 in Equation 2.153 is

𝐷sgs
𝑘 = 2𝜇̄

[︁
𝑆*
𝑖𝑗𝐷

*
𝑖𝑗 − 𝑆*

𝑖𝑗𝐷
*
𝑖𝑗

]︁
(2.159)

where 𝑆*
𝑖𝑗 = 𝑆𝑖𝑗 − 1

3
𝑆𝑘𝑘𝛿𝑖𝑗 ,𝐷*

𝑖𝑗 = 𝐷𝑖𝑗 − 1
3
𝐷𝑘𝑘𝛿𝑖𝑗 , and𝐷𝑖𝑗 = 𝜕𝑢𝑖/𝜕𝑥𝑗 . Meanwhile, 𝑘test dissipates

by both molecular and turbulent viscosities of the grid-�ltered level since the quantity is fully resolved
in the test-�lter level [30].

𝐷test
𝑘 = 2(𝜇̄+ 𝜇𝑡)

[︂
𝑆*
𝑖𝑗𝐷

*
𝑖𝑗 −

̂̃︁𝑆*
𝑖𝑗
̂̃︁𝐷*
𝑖𝑗

]︂
(2.160)

Using scale similarity, Equation 2.154 applies to the test-�lter level as

𝐷test
𝑘 = 𝐶𝜖 ^̄𝜌

𝑘test
3
2

Δ̂
, (2.161)

and therefore,𝐶𝜖 is calculated by

𝐶𝜖 =

2(𝜇̄+ 𝜇𝑡)

[︂
𝑆*
𝑖𝑗𝐷

*
𝑖𝑗 −

̂̃︁𝑆*
𝑖𝑗
̂̃︁𝐷*
𝑖𝑗

]︂
̂︀𝜌𝑘test 3

2/Δ̂
(2.162)

The other coe�cient,𝐶𝜇𝜖 , is computed similarly to the Equation 2.151 as

𝐶𝜇𝜖 =
𝐿𝑢𝑖𝑢𝑗𝑀𝑢𝑖𝑢𝑗

𝑀𝑢𝑖𝑢𝑗𝑀𝑢𝑖𝑢𝑗

, (2.163)

where 𝐿𝑢𝑖𝑢𝑗 is de�ned identically to Equation 2.149 and𝑀𝑢𝑖𝑢𝑗 is simpli�ed by

𝑀𝑢𝑖𝑢𝑗 = 2^̄𝜌Δ̂𝑘test
1
2 ̂̃︁𝑆*

𝑖𝑗. (2.164)

Note that dynamic subgrid kinetic energy model does not require an additional �ltering as in Equation
2.152.

2.6.11. Buoyancy Models for the Production Rate

There are three supported models that augment the production of turbulent kinetic energy via
buoyancy contributions, buoyant vorticity generation [31], Rodi’s [32], and de Ris’ [33] buoyancy
term.

The buoyant vorticity generation model has been developed and validated by Sandia National
Laboratories group 9132 for use in large scale buoyant plumes. The model attempts to augment the
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production of turbulent kinetic energy by adding a source term,𝐺𝐵 to both the turbulent kinetic
energy and dissipation rate equation that is related to the baroclinic torque,

𝐺𝐵 =
𝐶𝑏𝑣𝑔(𝜇+ 𝜇𝑡)|| 𝜕𝜌𝜕𝑥𝑗𝑋

𝜕𝑃
𝜕𝑥𝑗

||
𝜌2

. (2.165)

Please refer to Appendix 10 for a more detailed derivation of the model.

The buoyancy model of Rodi is given by

𝐺𝐵 = 𝛽
𝜇𝑡
𝑃𝑟𝑡

𝜕𝑇

𝜕𝑥𝑗
𝑔𝑗. (2.166)

De Ris’ buoyancy model o�ers two versions - �aming and non-�aming.

𝐶𝑑𝑒𝑟𝑖𝑠(𝜌∞ − 𝜌𝑓 )𝑔⃗𝑘
0.5 �aming (2.167)

𝐶𝑑𝑒𝑟𝑖𝑠Δ𝑘
0.5(|∇𝜌× 𝑔⃗| − ∇𝜌 · 𝑔⃗) non-�aming (2.168)

Default value of the user-de�ned coe�cient𝐶𝑑𝑒𝑟𝑖𝑠 is 0.01. Note that ambient and �ame density, rather
than local density, matters on the �aming version.

In each model, derivatives are evaluated at the subcontrol volume center while the property values are
lumped.

The right hand side of the turbulent kinetic energy equation for all model is 𝑟ℎ𝑠+ =
∫︀
𝐺𝐵𝑑𝑉 . For the

dissipation rate equation, the source term is 𝑟ℎ𝑠+ =
∫︀
𝐶𝜖3

1
𝑇
𝐺𝐵𝑑𝑉 for the buoyant vorticity

generation model while it is 𝑟ℎ𝑠+ =
∫︀
𝐶 ′
𝜖1𝐶𝜖4

1
𝑇
𝐺𝐵𝑑𝑉 otherwise. Recall that the inverse time scale is

determined by the turbulence model of choice, i.e., 𝜖
𝑘

for the standard 𝑘 − 𝜖model and provided in
Equation 2.114 for the 𝑣2-𝑓 model.

Note that the use of the buoyancy models hass not been evaluated with the 𝑣2-𝑓 model.

2.6.12. Turbulence closure model constants

For each of the afore-mentioned turbulence closure models, there are several constant coe�cients
which may be modi�ed by the user in the input deck. Tables 2.6-1, 2.6-2, 2.6-3, and 2.6-4 list these
parameters, their mapping to input deck names, and default values. Each of these default values may be
modi�ed by the user by specifying the respective Turbulence Model Parameter line in the Global
Constants block under the Sierra domain.

2.7. WALL BOUNDARY CONDITIONS FOR
TURBULENCE MODELS

2.7.1. Resolution of Boundary Layer; Momentum

The wall velocity boundary condition is the typical no-slip boundary; a speci�ed value is expected.
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Table 2.6-1.. Constant parameters for 𝑘 − 𝜖 turbulence models.
Turbulence Model Symbol User Input Name Default Value

Standard 𝑘 − 𝜖

𝐶𝜇 Cmu 0.09
𝐶𝜖1 Ceps_1 1.44
𝐶𝜖2 Ceps_2 1.92
𝐶𝜒 Cchi 2.0
𝜎𝑘 Sigma_K 1.0
𝜎𝜖 Sigma_E 1.3

Low Reynolds 𝑘 − 𝜖

𝐶𝜇 Cmu 0.09
𝐶𝜖1 Ceps_1 1.44
𝐶𝜖2 Ceps_2 1.92
𝜎𝑘 Sigma_K 1.0
𝜎𝜖 Sigma_E 1.3
𝐴𝜇 Amu 3.4

RNG 𝑘 − 𝜖

𝐶𝜇 Cmu 0.0837
𝐶𝜖1 Ceps_1 1.42
𝐶𝜖2 Ceps_2 1.68
𝜎𝑘 Sigma_K 0.7194
𝜎𝜖 Sigma_E 0.7194

𝑣2 − 𝑓

𝐶𝜇 Cmu 0.22
𝐶𝜖1 Ceps_1 1.4
𝐶𝜖2 Ceps_2 1.9
𝜎𝑘 Sigma_K 1.0
𝜎𝜖 Sigma_E 1.0
𝐶1 CF_1 0.4
𝐶2 CF_2 0.3
𝛼 Alpha 0.6
𝐶𝑇 Nseg 6.0
𝐶𝐿 CL 0.23
𝐶𝜂 Ceta 70.0

2.7.2. Resolution of Boundary Layer; Turbulence Quantities

The resolution of the boundary layer is expected when the low Reynolds number or 𝑣2-𝑓 model is in
use.

For the 𝑣2-𝑓 model, the wall turbulent kinetic energy and normal �uctuating stress component are each
zero while the dissipation rate is given by

𝜖𝑤 = 2𝜈
𝜕𝑘1/2

𝜕𝑥𝑗

2

. (2.169)

For the low Reynolds number, the wall turbulent kinetic energy is again zero while the dissipation rate,
here considered to be the isotropic dissipation rate, is given as zero.
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Table 2.6-2.. Constant parameters for 𝑘 − 𝜔 turbulence models.
Turbulence Model Symbol User Input Name Default Value

𝑘 − 𝜔

𝛽0 Beta_Zero 0.0708
𝛽* Beta_Star 0.09
𝜎𝑘 Sigma_K 3/5
𝜎𝜔 Sigma_W 0.5
𝛾 Gamma 13/25
𝐶𝑙𝑖𝑚 Clim 7/8

SST

𝐴1 A_One 0.31
𝛽1 Beta_One 0.075
𝛽2 Beta_Two 0.0828
𝛽* Beta_Star 0.09
𝛾1 Gamma_One 5/9
𝛾2 Gamma_Two 0.44
𝜎𝑘1 Sigma_K_One 0.85
𝜎𝑘2 Sigma_K_Two 1.0
𝜎𝜔1 Sigma_W_One 0.5
𝜎𝜔2 Sigma_W_Two 0.856

Table 2.6-3.. Constant parameters for LES turbulence models.
Turbulence Model Symbol User Input Name Default Value

One-equation
𝐶𝑣 Cv 0.5
𝐶𝜖 Ceps 0.845
𝐶𝜇𝜖 Cmueps 0.0856

Standard Smagorinsky 𝐶𝑣 Cv 0.5
𝐶𝑠 Cs 0.17

Dynamic Smagorinsky 𝐶𝑠 Cs 0.17

2.7.3. Resolution of Boundary Layer; Enthalpy

The wall value of enthalpy is computed based on the speci�ed temperature and either reference or local
mass fractions. In the case of a heat �ux boundary condition, the wall node value is computed based on
the control volume balance.

2.7.4. Wall Functions for Turbulent Flow Boundary Conditions

Resolution of the near-wall turbulent boundary layer can require extensive mesh points. Adjacent to
the wall exists an extremely thin viscous sublayer where these forces dominate and are relatively
insensitive to free stream parameters. Following the viscous sublayer is a bu�er layer, the so-called
“log-layer" and, ultimately, the turbulent core. The Van Driest hypothesis of turbulent �ow near solid
boundaries can be used to derive the appropriate form of this log-law zone. In general, the use of wall
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Table 2.6-4.. Constant parameters for miscellaneous turbulence
models. Default values may be changed using the 𝑘 − 𝜖 model
parameters input.
Model Symbol User Input Name Default Value

Buoyant vorticity generation 𝐶𝐵𝑉 𝐺 Cbvg 0.35
𝐶𝜖3 Ceps_3 0.0

Rodi’s source term 𝐶𝜖4 C_eps4 0.0

EDC laminar limit
𝐶𝛾,𝑙𝑎𝑚 Cgammalam 2.0
𝐶𝜏,𝑙𝑎𝑚 Ctaulam 0.02

𝐶𝑙𝑎𝑚,𝑡𝑟𝑎𝑛𝑠 Clamtrans 40.0

functions eliminates the need to resolve the near wall layers by prescribing the wall shear stress and
resulting force based on the law of the wall (Launder and Spalding [34]).

The primary assumptions of the law of the wall are

∙ local equilibrium of turbulent kinetic energy production and dissipation,

∙ constant shear stress within the log-law region,

∙ Couette �ow (pure shear �ow).

2.7.5. Wall Functions; Momentum

The wall shear stress enters the discretization of the momentum equations by the term∫︁
𝜏𝑖𝑗𝑛𝑗𝑑𝑆 = −𝐹𝑤𝑖. (2.170)

Wall functions are used to prescribe the value of the wall shear stress rather than resolving the boundary
layer within the near-wall domain. The fundamental momentum law of the wall formulation, assuming
fully-developed turbulent �ow near a no-slip wall, can be written as (Launder and Spalding [34])

𝑢+ =
𝑢‖
𝑢𝜏

=
1

𝜅
ln
(︀
𝐸𝑦+

)︀
, (2.171)

where 𝑢+ is de�ned by the the near-wall parallel velocity, 𝑢‖, normalized by the wall friction velocity, 𝑢𝜏 .
The wall friction velocity is related to the turbulent kinetic energy by

𝑢𝜏 = 𝐶1/4
𝜇 𝑘1/2. (2.172)

by assuming that the production and dissipation of turbulence is in local equilibrium. Moreover, 𝑦+ is
de�ned as the normalized perpendicular distance from the point in question to the wall,

𝑦+ =
𝜌𝑌𝑝
𝜇

(︂
𝜏𝑤
𝜌

)︂1/2

=
𝜌𝑌𝑝𝑢𝜏
𝜇

(2.173)
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The classical law of the wall is as follows:

𝑢+ =
1

𝜅
ln(𝑦+) + 𝐶 (2.174)

where 𝜅 is the von Karman constant and𝐶 is the dimensionless integration constant that varies based
on authorship and surface roughness. The above expression can be re-written as

𝑢+ =
1

𝜅
ln(𝑦+) +

1

𝜅
ln(exp(𝜅𝐶)) (2.175)

or

𝑢+ =
1

𝜅

(︀
ln(𝑦+) + ln(exp(𝜅𝐶))

)︀
(2.176)

=
1

𝜅
ln(𝐸𝑦+) (2.177)

where𝐸 is referred to in the text as the dimensionless wall roughness parameter and is described by

𝐸 = exp(𝜅𝐶) (2.178)

In Fuego, 𝜅 is set to the value of 0.42 while the value of𝐸 is set to 9.8 for smooth walls1. The viscous
sublayer is assumed to extend to a value of 𝑦+ = 11.63.

The wall shear stress, 𝜏𝑤, can be expressed as

𝜏𝑤 = 𝜌𝑢2𝜏 = 𝜌𝑢𝜏
𝑢‖
𝑢+

=
𝜌𝜅𝑢𝜏

ln (𝐸𝑦+)
𝑢‖ = 𝜆𝑤𝑢‖, (2.179)

where 𝜆𝑤 is simply the grouping of the factors from the law of the wall. For values of 𝑦+ less than 11.63,
the wall shear stress is given by

𝜏𝑤 = 𝜇
𝑢‖
𝑌𝑝
. (2.180)

The force imparted by the wall, for the 𝑖𝑡ℎ component of velocity, can be written as

𝐹𝑤,𝑖 = −𝜆𝑤𝐴𝑤𝑢𝑖‖, (2.181)

where𝐴𝑤 is the total area over which the shear stress acts.

The use of a general, non-orthogonal mesh adds a slight complexity to specifying the force imparted on
the �uid by the wall. As shown in Equation 2.181, the velocity component parallel to the wall must be
determined. Use of the unit normal vector, 𝑛𝑗 , provides an easy way to determine the parallel velocity
component by the following standard vector projection,

Π𝑖𝑗 = [𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗] . (2.182)

Carrying out the projection of a general velocity, which is not necessarily parallel to the wall, yields the
velocity vector parallel to the wall,

𝑢𝑖‖ = Π𝑖𝑗𝑢𝑗 = 𝑢𝑖
(︀
1− 𝑛𝑖

2
)︀
−

𝑛∑︁
𝑗=1;𝑗 ̸=𝑗

𝑢𝑗𝑛𝑖𝑛𝑗. (2.183)

1White [35] suggests values of 𝜅 = 0.41 and 𝐸 = 7.768.
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Note that the component that acts on the particular 𝑖𝑡ℎ component of velocity,

− 𝜆𝑤𝐴𝑤 (1− 𝑛𝑖𝑛𝑖)𝑢𝑖‖, (2.184)

provides a form that can be potentially treated implicitly; i.e., in a way to augment the diagonal
dominance of the central coe�cient of the 𝑖𝑡ℎ component of velocity. The use of residual form adds a
slight complexity to this implicit formulation only in that appropriate right-hand-side source terms
must be added.

2.7.6. Wall Functions; Turbulent Kinetic Energy

The near wall turbulent kinetic energy can be obtained by two di�erent procedures. The most common
approach is to solve a transport equation for the near wall value of turbulent kinetic energy with a
modi�ed production and dissipation term on the right hand side of the turbulent kinetic energy
equation, Equation 2.102. As will be shown below, the form of the near wall production and
dissipation term are determined based on equilibrium arguments, i.e., 𝑃𝑘 = 𝜌𝜖.

Another common approach is to assign the value of turbulent kinetic energy that strictly results in the
equality 𝑃𝑘 = 𝜌𝜖. In this formulation, it is assumed that the convection and di�usive �ux is zero across
the control volume.

Both procedures, which formally do not address the role of buoyancy production, begin with the
determination of the near wall value of the production of turbulent kinetic energy. The turbulent
kinetic energy production term is consistent with the law of the wall formulation and can be expressed
as

𝑃𝑘𝑤 = 𝜏𝑤
𝜕𝑢‖
𝜕𝑦

. (2.185)

The parallel velocity, 𝑢‖, can be related to the wall shear stress by

𝜏𝑤
𝑢+

𝑦+
= 𝜇

𝑢‖
𝑌𝑝
. (2.186)

Taking the derivative of both sides of Equation 2.186, and substituting this relationship into
Equation 2.185 yields,

𝑃𝑘𝑤 =
𝜏 2𝑤
𝜇

𝜕𝑢+

𝜕𝑦+
. (2.187)

Applying the derivative of the law of the wall formulation, Equation 2.171, provides the functional form
of 𝜕𝑢+/𝜕𝑦+,

𝜕𝑢+

𝜕𝑦+
=

𝜕

𝜕𝑦+

[︂
1

𝜅
ln
(︀
𝐸𝑦+

)︀]︂
=

1

𝜅𝑦+
. (2.188)

Substituting Equation 2.188 within Equation 2.187 yields a commonly used form of the near wall
production term,

𝑃𝑘𝑤 =
𝜏𝑤

2

𝜌𝜅𝑢𝜏𝑌𝑝
. (2.189)
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Assuming local equilibrium, 𝑃𝑘 = 𝜌𝜖, and using Equation 2.189 and Equation 2.172 provides the form
of the near wall turbulence dissipation,

𝜖 =
𝑢3𝜏
𝜅𝑌𝑝

=
𝐶

3/4
𝜇 𝑘3/2

𝜅𝑌𝑝
, (2.190)

while the form of the wall shear stress is given by,

𝜏𝑤 = 𝜌𝐶1/2
𝜇 𝑘 (2.191)

Under the above assumptions, the near wall value for turbulent kinetic energy, in the absence of
convection, di�usion, or accumulation is given by,

𝑘 =
𝑢2𝜏

𝐶
1/2
𝜇

. (2.192)

If the second method (Dirichlet condition on near wall turbulent kinetic energy) is to be used, the value
of the wall friction velocity, 𝑢𝜏 , can be obtained in an iterative manner (Sondak and Pletcher [36]) by
use of Equation 2.171. This method has been used and shown to be satisfactory (Elkaim [37]) and
strictly enforces the assumptions of the law of the wall that have already been outlined.

In the method that elects to solve a near wall turbulent kinetic energy transport equation, the
production and dissipation terms in the turbulent kinetic energy transport equation are [potentially]
given by Equation 2.189 and

− 𝜌𝜖 = −𝜌𝐶
3/4
𝜇 𝑘3/2

𝜅𝑌𝑝
, (2.193)

Unfortunately, there does not seem to be one universal description of the near wall turbulent kinetic
energy production term and dissipation term, Equation 2.189 and 2.193, respectively. For example, in
the law of the wall formulation, given by Launder and Spalding [38], the near wall production term is
given by,

𝑃𝑘𝑤 = 𝜏𝑤
𝑢‖
𝑦𝑝
. (2.194)

In this formulation, the wall shear stress is given by the law of the wall formulation, Equation 2.179,
providing the value of 𝑦+ is greater than 11.63 (otherwise, it is given by the laminar shear stress, Equation
2.180). The dissipation term, −𝜌𝜖 is given by

− 𝜌𝜖 = −𝜌𝐶
3/4
𝜇 𝑘3/2

𝜅𝑌𝑝
ln𝐸𝑦+. (2.195)

Note that in the absence of convection, di�usion or accumulation, the above two forms of the near wall
production and dissipation source terms revert to Equation 2.192. Therefore, if the modeled �ow is
consistent with the law of the wall formulations, all methods should yield similar limiting behavior.
Under conditions of non equilibrium, i.e., a separated �ow, or values of 𝑦+ within the viscous sublayer,
some models may perform better. However, it is important to note that if the �ow to be simulated
includes separation and reattachment, or the computation mesh is such that 𝑦+ is within the viscous
sublayer, the law of the wall formulation can provide non sensical results.
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In Fuego, there are currently two general supported methods from which to choose when applying the
near wall turbulent kinetic energy boundary condition. The �rst method, which can be activated by the
command line omit near wall turbulent ke transport equation, is the form of
Equation 2.192 that enforces a Dirichlet condition. The second method is to solve a full control volume
balance for the near wall turbulent kinetic, with convection and di�usion terms, with a modi�ed
production and dissipation term given by either

∙ Equations 2.189 and 2.190.

∙ Equations 2.194 and 2.195

The use of Equations 2.189 and 2.190 can be activated by the command line (within the wall bc block)
use equilibrium production model which is based on the ability to express the wall shear stress
consistent with the assumptions of full equilibrium between production and dissipation,
Equation 2.191. In all cases that do not set a Dirichlet condition for the turbulent kinetic energy, the
assembled buoyancy source terms are not removed.

2.7.7. 𝑘-𝜔 𝑆𝑆𝑇 Wall Functions; Turbulent Kinetic Energy

When a Dirichlet condition is not set for turbulent kinetic energy, the approach in modifying the near
wall production and dissipation terms is followed.

In this approach, the equation for 𝑘 is solved near the wall to remove the assumptions of log layer �ow
one level. However, we invoke the log layer assumption to write,

𝑃𝑘 =
𝜏 2𝑤

𝜌𝜅𝑢𝜏𝑌𝑝
. (2.196)

Balancing production and dissipation in the 𝑘 − 𝜔 model allows us to write,

𝑃𝑘 = 𝜌
𝑢3𝜏
𝜅𝑌𝑝

= 𝜌
(𝛽′)3/4𝑘3/2

𝜅𝑌𝑝
. (2.197)

The dissipation rate is also modi�ed accordingly such that the production equality with dissipation is
retained. An alternative method is to use the approximation of of Launder and Spaulding which
prescribes production as,

𝑃𝑘 = 𝜏𝑤
𝑢||
𝑌𝑝
. (2.198)

In practice, this formulation seems to be less stable since the production and dissipation terms are now
in near-equilibrium.
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2.7.8. Wall Functions; Turbulence Dissipation Transport

Consistently within the literature, the near wall turbulence dissipation is assigned the Dirichlet value
given by Equation 2.190. Frequently, this expression is lagged by one subiteration in an e�ort to
maintain consistency between the Dirichlet wall condition and the freezing of the 𝜖/𝑘 ratio of the
turbulence dissipation equation, Equation 2.103.

2.7.9. Wall Functions; Turbulent Frequency Transport

2.7.9.1. Low Reynolds Number Treatment

The low Reynolds approach for 𝑘 − 𝜔 uses a sequence of Dirichlet conditions similar to what is used
for 𝑘 − 𝜖. However, unlike the latter, 𝑘 − 𝜔 requires no extra damping terms near the wall. When the
wall is resolved, exact Dirichlet conditions are known for both the velocity and 𝑘:

𝑢⃗ = 0, 𝑘 = 0. (2.199)

A Dirichlet condition is also used on 𝜔. While the 𝑘 − 𝜖model is rendered less stable because 𝑘 appears
in this boundary condition, the 𝜔 equation depends only on the near-wall grid spacing. The boundary
condition is

𝜔 =
6𝜈

𝛽𝑦2
, (2.200)

which is valid for 𝑦+ < 3. Above, 𝛽 depends on the model type. If SST is in use, 𝛽 = 𝛽1 while if the
Wilcox model is in use, 𝛽 = 𝛽0.

2.7.9.2. High Reynolds Number Treatment

The high Reynolds approach is also quite similar to the 𝑘 − 𝜖model except 𝜔 is handled di�erently.

2.7.9.3. Automatic Wall Functions

Because 𝜔 has analytic solutions in both the log layer and viscous sub-layer, an automatic treatment is
developed that blends those two solutions to provide Dirichlet conditions for all 𝑦. Let 𝜔ℎ be the high
Reynolds number formulation and 𝜔𝑙 be the low Reynolds version. Then the Dirichlet condition on 𝜔
is

𝜔 = 𝜔𝑙

√︃
1 +

(︂
𝜔ℎ
𝜔𝑙

)︂2

. (2.201)

However, 𝑢𝜏 for the high Reynolds 𝜔 value is computed based on the parallel velocity: The velocity
equation is augmented by a traction force based on the friction velocity 𝑢𝜏 . This quantity may be solved
for iteratively using the law of the wall. A Dirichlet condition is also used for 𝑘, assuming it is in the log
region, which is similar to the 𝑘 − 𝜖model:

𝑘 =
𝑢2𝜏√
𝛽* . (2.202)
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In the case of 𝜔, an analytic expression is known in the log layer:

𝜔 =
𝑢𝜏√
𝛽*𝜅𝑦

, (2.203)

which is independent of 𝑘. Note that some implementations use a prede�ned constant instead of
√
𝛽′,

although the standard values are consistent with these expressions. Because all these expressions require
𝑦 to be in the log layer, they should absolutely not be used unless it can be guaranteed that 𝑦+ > 10,
and 𝑦+ > 25 is preferable.

𝑢𝜏 =

√︃
𝜈

⃒⃒⃒⃒
𝑢||
𝑦

⃒⃒⃒⃒
. (2.204)

The automatic wall function approach is obtained by removing the “omit near wall turbulent ke
equation” line command and activating either the SST or KW turbulence models.

2.7.10. Wall Functions; Enthalpy Transport

For non-adiabatic boundaries, heat loss to the wall must be considered. The use of the Reynolds analogy
provides a functional form of the energy transport similar to the that of the logarithmic law-of-the-wall
momentum formulation. The thermal boundary layer is modeled either as a linear pro�le (𝑦+ < 11.63)
where the thermal boundary layer is dominated by conduction or a logarithmic pro�le where the e�ects
of turbulence dominate over thermal conduction, Versteeg and Malalasekera [39].

The law-of-the-wall used in Fuego has the following form,

𝑞𝑤 =
𝜌 (ℎ𝑤 − ℎ𝑝)𝑢𝜏

𝑇+
, (2.205)

where
𝑇+ = 𝜎𝑇

[︀
𝑢+ + 𝑃

]︀
. (2.206)

The role of 𝑇+ is to account for the fact that the thickness of the thermal conduction layer is
[practically] of a di�erent size than that of the viscous sublayer (momentum).

In the above equation, 𝑃 is the universal “P function” (Jayatilleke [40]) and can be expressed as a
function of the molecular and turbulent Prandtl number,

𝑃 = 9.24

[︃(︂
𝜎

𝜎𝑇

)︂0.75

− 1

]︃(︂
1 + 0.28𝑒𝑥𝑝

[︂
−0.007

𝜎

𝜎𝑇

]︂)︂
, (2.207)

where 𝜎𝑇 and 𝜎 represent the turbulent and molecular Prandtl number, respectively.

Therefore, it is seen that the so-called “P function" is the parameter that functionally changes the
thickness of the thermal conduction layer from that of the viscous sublayer. For example, if one were to
model a high-Prandtl number �uid such as common vegetable oil, one would note that the thickness of
the viscous sublayer is far greater than that of the thermal sublayer. However, for low-Prandtl number
�uids, the opposite is true. The subsequent value of 𝑇+ ensures this functionality.
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In the case of a user de�ned heat �ux at a wall boundary condition, the full quantity is assembled as a
right-hand-side source term. As a post processing step, Equation 2.205 (in temperature form) is
rearranged to provide the wall temperature. In practice, the heat �ux boundary condition block is to be
de�ned on an already de�ned wall boundary condition block (without temperature speci�cation). In
this manner, multiple boundary conditions are “painted” on a particular sideset.

2.7.11. Wall Functions; Scalar Transport

Wall functions for use in a convective di�usive problem, e.g., di�usional transport of fuel (through
multicomponent evaporation) from a jet fuel pool, are not currently supported.

2.8. INLET CONDITIONS FOR TURBULENCE
QUANTITIES

2.8.1. Turbulent Kinetic Energy

The inlet turbulent kinetic energy must be speci�ed for any simulation that involves a velocity-speci�ed
inlet. If actual values of the inlet turbulent kinetic energy are not available, then a suitable value based
on basic de�nitions is used. In general, the kinetic energy associated with the turbulent �ow is de�ned
by,

𝑘 =
1

2

(︁
𝑢′2 + 𝑣′2 + 𝑤′2

)︁
. (2.208)

The turbulence intensity 𝑇𝑖, is related to the kinetic energy by,

𝑇𝑖 =

(︀
2
3
𝑘
)︀1/2

𝑈𝑟𝑒𝑓
. (2.209)

Rearranging Equation 2.209 for the turbulent kinetic energy yields a working form for the speci�cation
of inlet turbulent kinetic energy based on a reference velocity, 𝑈𝑟𝑒𝑓 ,

𝑘 =
3

2
(𝑈𝑟𝑒𝑓𝑇𝑖𝑛)

2 . (2.210)

The value of 𝑈𝑟𝑒𝑓 can typically be taken to be the magnitude of the velocity.

2.8.2. Turbulence Dissipation Rate

As with the turbulent kinetic energy inlet condition for speci�ed velocity, the inlet value of the
turbulence dissipation rate must also be speci�ed. If values are known, for instance based on
experimental data, then the available data should be used. Otherwise, the following assumed form of the
turbulence dissipation rate is used,

𝜖 = 𝐶3/4
𝜇

𝑘3/2

𝑙
, (2.211)
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where 𝑙 = 0.07𝐿; 𝐿 represents a characteristic length scale of an inlet eddy and 𝑘 represents the inlet
turbulent kinetic energy as determined above.

2.9. EDC TURBULENT COMBUSTION MODEL

The combustion submodel is Magnussen’s Eddy Dissipation Concept (EDC) and development details
can be found in Magnussen, et al. [41], Magnussen [42], Byggstyøl and Magnussen [43],
Magnussen [44], Lilleheie, et al. [45], and Gran and Magnussen [46].

2.9.1. Model Characteristics

The underlying assumption in the EDC model is that combustion in turbulent �ows is controlled by
turbulent mixing. The combustion model is an algebraic zone-type model and is in�uenced by local cell
(control volume) values only. The model derivation assumes that the minimum cell dimension is large
relative to the thickness of a �ame (reaction zone) structure. This thickness varies with strain-rate, but
the cell size should not be less than a few millimeters. The equations are not valid for laminar or
near-laminar �ow, but are based on fully developed turbulence arguments. The turbulent combustion
model uses information from three sources: 1) thermochemistry, 2) species and state information from
the cell values, and 3) turbulence kinetic energy and dissipation. From these data, the model creates
source/sink terms for species equations and the energy equation (via radiative transport).

The model function is to provide an integral e�ect of combustion processes occurring within the
control volume for the duration of a time-step. In this manner, reaction zone structures are not
resolved, but the aggregate e�ect of turbulent combustion is modeled. To model the integral e�ect, two
homogeneous zones are de�ned within each control volume for which there is combustion, as shown in
Figure 2.9-1. The zones are termed the reaction zone (�ne structures) and the surrounding zone. The
size and mass exchange rate between these zones are in�uenced by the local turbulence properties and
are the principal means by which turbulent �uctuations are accounted for within the model. The
assumption that each zone is homogeneous is equivalent to assuming that the mixing within each zone
is instantaneous. Since combustion occurs within (but is not limited to) the reaction zone, the
assumptions for combustion correspond to those for a perfectly stirred reactor (PSR). Slower reactions
can also occur in the surroundings, in which case, the assumptions for reaction in the surroundings are
also consistent with PSR assumptions.

2.9.2. Physical Interpretation

Magnussen’s EDC model is derived to be a general combustion model for premixed to non-premixed
scalar �elds and for high to moderate turbulence levels. It is not intended to be used for laminar
combustion. Magnussen’s physical interpretation of combustion is based on the concept that chemical
reaction occurs in regions of the �ow in which the dissipation of turbulent energy takes place, i.e., �ne
structure regions. These regions are concentrated in isolated volumes and represent a small fraction of
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Figure 2.9-1.. Model geometry for Magnussen’s Eddy Dissipa-
tion Concept. The control volume is comprised of two zones;
the properties of each zone are assumed to be adequately repre-
sented by a single set of values (i.e., lumped or perfectly stirred).
The mass exchange between the zones is controlled by turbulent
mixing.

the �ow. The regions have characteristic dimensions that are of the Kolmogorov length scale in one or
two dimensions, but not the third.

Fires are buoyant �ows. Turbulent �res tend to be large, having base diameters above a meter. The
turbulent length scales are large and the �ow velocities are relatively slow, on the order of meters to tens
of meters per second. (Still photographs of reaction zone structure within large �res can be found in
Tieszen, et al. [47]). Therefore, turbulence levels tend to be moderate. Near the base of a �re, the
combustion zone can be characterized as a continuous wrinkled �ame sheet that appears to wrap
around larger turbulent structures. The basic combustion mode is that of a strained di�usion �ame
with large surface area due to the turbulence. At higher elevations in the �re, turbulence levels increase
and the character may change. Premixed combustion is possible as unburned products in the smoke are
re-entrained into the �re. While Magnussen’s model was originally derived in terms of high turbulence
levels resulting in �ne structure regions (i.e., localized regions of high vorticity at dissipation scales), the
model is appropriate for moderate turbulent intensities that occur in �res.

Figure 2.9-2 shows the physical geometry from which the combustion model will be derived for �res.
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Turbulence controls the reaction and surrounding volume fractions and fuel mass transport per unit
volume. In general, turbulent momentum exchange processes result in scalar stirring at all length scales
down to molecular mixing processes which are di�usion controlled. Without length scale information
below the grid scale of the computation, it is impossible to correctly represent the interactions between
all the relevant physical processes at their relevant length scales.

Figure 2.9-2.. Assumed flame surface geometry. 𝐿 is the integral
turbulent length scale. The reaction zone thickness is charac-
terized by the Kolmogorov dissipative turbulent length scale, 𝜂.

Magnussen’s EDC model attempts to represent the mixing processes that are most important to the
overall heat release from combustion. It it based on the assumption that the overall heat release rate is
controlled by the mass transport into the reaction zone. Therefore, considerable e�ort is made to model
turbulent momentum processes that a�ect mass transport into the reaction zone. In the surrounding
gases, turbulent mixing occurs with (in all likelihood) a similar vigor, however, its e�ect on the
combustion rate is considered less important since the turbulence is not directly contributing to mass
transport into the reaction zone. For this reason, there are two di�erent levels of mixing assumptions
made within the model.

With respect to Figure 2.9-1, the turbulence level in each control volume is taken into account in the
consideration of the mass exchange between the reaction zone and the surrounding zone. However,
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within each zone, it is assumed that the properties are instantaneously homogeneous and uniform, i.e.,
perfectly stirred. This perfectly stirred assumption obviously over-predicts mixing within each zone for
any real level of turbulence, and only begins to approximate reality at the highest levels of turbulence.
On the other hand, the perfectly stirred assumption allows point calculations to be made in each zone
for conveniently determining thermochemical properties. Without this assumption, it would be
necessary to specify the gradients within each zone and integrate the speci�ed gradients throughout the
cell to obtain cell averaged property information. The approach here is to assume that over-predicting
mixing within each zone via the perfectly stirred assumption has only a secondary e�ect on heat release
rates within each cell.

2.9.3. Thermochemistry

Within the current strategy, chemical reaction can occur in both zones. However, in the simplest case,
no reaction occurs within the surroundings due to the low temperature and unmixedness; all reaction
occurs within the reaction zone. The notion of zones, perfect stirring within the zones, and type of
chemistry involved are all independent assumptions, but have interrelated consequences. For example,
�nite-rate chemistry involving hundreds or thousands of species could be considered within the zones.
From the perfectly stirred assumption within each zone, the �nite-rate chemistry would be calculated as
if it were occurring in a perfectly stirred reactor. In a real di�usion reaction, there are spatial variations
in species concentrations for real turbulence levels so that the various chemical pathways, as well as heat,
mass, and momentum transport, in a real strained di�usion �ame can be quantitatively di�erent than
those calculated on the basis of perfect stirring. This e�ect is probably the strongest disadvantage of the
perfectly stirred assumption. Only in the limit of in�nitely-fast turbulent mixing does perfect stirring
actually exist. In practice, the computation of detailed, �nite-rate chemistry concurrently with a
three-dimensional �uid mechanics calculation is expensive. Except in the limit where the turbulent
strain rate is high enough that �nite rate chemistry is warranted, it is adequate to use simpler
descriptions of the chemistry. In the case of high strain rates, precalculation of the chemistry is usually
done and the results tabulated in a look-up table to determine extinction limits.

For the current implementation, it is assumed that the chemistry can be represented as irreversible,
“in�nitely-fast” reactions that occur within each reactor. In classical combustion studies, the concept of
“in�nitely-fast” reactions is not usually invoked in the context of a perfectly stirred reactor. In the
context of the current model, the meaning of an “in�nitely-fast” reaction in the �ame zone (a perfectly
stirred reactor) is that the reactant stream entering the reaction zone is converted to products instantly
as it enters the zone, and then the products are mixed instantly throughout the zone. The zone then
re�ects the thermodynamic properties of the combustion products at the adiabatic �ame temperature
for a given composition while the surrounding zone has the properties of reactants (and possibly
previously combusted products) near the cell temperature.

In general, if the turbulent mass exchange rate between the zones (i.e. strain-rate) is su�ciently high that
in�nitely-fast chemistry assumptions do not apply, then �nite-rate reactions within the perfectly stirred
reactor can be used. Residence time scales that warrant �nite-rate considerations tend to be at the
sub-millisecond level. In the current implementation, the case of high turbulence levels leading to
blow-out of a reactor is treated as a limits test. The test method is discussed in Section 2.9.9.
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In principle, it is not necessary to assume irreversible chemistry within each zone. At long time scales
(i.e., low turbulence levels), chemical equilibrium will result. The use of irreversible chemistry avoids
the need to calculate the equilibrium state of the forward and reverse reactions for every combusting cell
at every time step. For the current implementation, the time savings is deemed to be worth the cost in
accuracy.

Regardless of the assumptions about chemistry employed in modeling the reaction zone, the actual
reaction zones in a �re will very likely be similar to strained di�usion �ames (wrinkled �ame sheets
wrapped into vortical structures). Perhaps higher in a �re with the re-entrainment of smoke, partially
premixed combustion can occur. For di�usion reactions, combustion occurs within a region
encompassing a stoichiometric surface between fuel and air. Therefore, the reaction zone is modeled as
occurring with stoichiometric reactions. The reactants being transported into the reaction zone via
turbulent mixing come from the surroundings zone and thus have the composition of the surroundings.
There will be a limiting amount of one reactant if the combustion is to occur at o�-stoichiometric
conditions. The excess of the other reactant, prior products, and inerts do not participate in chemical
reactions, but are transported in and out of the combustion zone by turbulent mixing. However, their
presence a�ects the zone properties (for example, through their heat capacity).

Combustion products are transported into the surroundings at the same rate as the reactants are
transported into the reaction zone (conservation of mass). However, the perfect stirring assumption for
properties means that these products have uniform properties. In a di�usion reaction, products mix
with fuel on one side of the reaction zone and air on the other. On the fuel side of the reaction zone,
signi�cant amounts of CO and soot can result from interaction between the in�owing fuel and
out�owing products. The formation of CO is important not only from a toxic pollutant perspective
but its formation results in signi�cantly less heat release and lower temperatures. Given the limits of a
two-zone model with perfect mixing within each zone, there is no simple way to model both
stoichiometric combustion and the formation of CO on the fuel side of the reaction. In the current
formulation, an ad hoc approach is used in which combustion in the reaction zone is assumed to occur
in sequential steps, each of which is irreversible and in�nitely fast. The �rst step is stoichiometric
oxidation of the fuel species to CO and H2 products. The second step is the oxidation of CO and H2 to
CO2 and H2O provided there is excess O2 in the reactant stream. If the overall stoichiometry in the
control volume is fuel rich, signi�cant amounts of CO and H2 will be formed, while if it is lean only
CO2 and H2O will be formed.

2.9.4. Chemical Mechanism

For an arbitrary CHNO fuel, the stoichiometric, irreversible reaction to CO and H2 products is given
by

C𝑚H𝑛N𝑝O𝑞 +

(︂
𝑚− 𝑞

2

)︂
O2 +

∑︁
(𝜁𝐷)Diluent ⇒

(𝑚) CO +
(︁𝑛
2

)︁
H2 +

(︁𝑝
2

)︁
N2 +

∑︁
(𝜁𝐷)Diluent, (2.212)

where𝑚, 𝑛, 𝑝, and 𝑞 are the numbers of carbon, hydrogen, nitrogen, and oxygen atoms within the fuel
molecule, respectively, and the terms in parentheses are the stoichiometric coe�cients. The summation
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term for diluents includes all other species present in the reaction stream including nitrogen in air,
combustion products in the surroundings from previous combustion processes, etc. . . Diluents,
including the combustion products, are assumed to have no e�ect on the chemical reaction itself.
However, diluents do have an e�ect on the temperature rise through their speci�c heats and the
presence of products is used as an ignition criteria for the combustion model.

The assumption that combustion products act like diluents (i.e., have no e�ect on the reaction) is
obviously a simpli�cation. Product species include CO, H2, CO2, and H2O. The presence of CO and
H2 in the reactant stream would a�ect equilibrium results; however, irreversible reactions have already
been assumed in the model so the presence of these species does not represent an additional
simpli�cation. On the other hand, the presence of large amounts of CO2 and H2O in the reactant
stream may reduce the amount of O2 consumed for a given amount of fuel due to partial oxidation of
the products via the oxygen in the CO2 and H2O in an overall fuel rich environment. However, this
e�ect is partially compensated since the extra O2 would be consumed by the second reaction.

The second reaction is the subsequent oxidation of CO and H2 to CO2 and H2O. This reaction
oxidizes both the CO and H2 produced by the �rst reaction and any CO and H2 that passed through
the �rst reaction as products (i.e., diluent). The reaction is given by

(𝑚) CO +
(︁𝑛
2

)︁
H2 +

(︁𝑝
2

)︁
N2 +

(︁𝑚
2
+
𝑛

4

)︁
O2 +

∑︁
(𝜁𝑑)Diluent ⇒

(𝑚) CO2 +
(︁𝑛
2

)︁
H2O+

(︁𝑝
2

)︁
N2 +

∑︁
(𝜁𝑑)Diluent. (2.213)

In the current implementation, soot is considered to be a trace species. As such, its mass and energetics
are not considered part of the above chemical reactions. Soot has its own production terms and is
considered to oxidize in proportion to the fuel oxidation in the �rst reaction. See the soot model in
Section 2.12 for details.

2.9.5. Species Consumption/Production Limits

The reactants being transported into the reaction zone come from the surroundings and therefore have
the same composition as the surroundings. As such, the reaction can only proceed within the limits of
available fuel and oxygen from the reactant stream. For example, if there is insu�cient oxygen in the
reactant stream, then all of the oxygen will be consumed by Reaction 1, (Equation 2.212), and the excess
fuel will be passed with products from Reaction 1 to Reaction 2, (Equation 2.213). Reaction 2 will not
take place because all the oxygen was consumed in Reaction 1 (i.e., in both reactions, oxygen is limiting).
If there is insu�cient fuel in Reaction 1, then all the fuel will be consumed and excess oxygen will be
passed to Reaction 2. Depending on the ratio of oxygen to CO and H2, all the secondary fuels may be
consumed or all the oxygen may be consumed.

To �nd the limiting mass, it is convenient to de�ne an equivalence ratio. Equivalence ratios are normally
de�ned in terms of molar ratios, but mass ratios yield the same result [48] and are preferred here since
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mass fractions are used in the transport equations.

Φ =

(︂
𝑌𝑓𝑢𝑒𝑙
𝑌𝑜𝑥𝑦

)︂
𝑚𝑖𝑥(︂

𝑌𝑓𝑢𝑒𝑙
𝑌𝑜𝑥𝑦

)︂
𝑠𝑡𝑜𝑖𝑐

(2.214)

The numerator is the ratio of the actual mass of fuel to oxygen in the reactant stream,(︂
𝑌𝑓𝑢𝑒𝑙
𝑌𝑜𝑥𝑦

)︂
𝑚𝑖𝑥

=
mass Fuel

mass Oxygen

⃒⃒⃒⃒
mix

. (2.215)

The denominator is determined for each reaction. Generically, the �rst and second reactions have the
following form∑︁

(𝜁𝑓𝑢𝑒𝑙) Fuel + 𝜁𝑂2𝑂2 +
∑︁

(𝜁𝐷)Diluent →
∑︁

(𝜁𝑝𝑟𝑜𝑑) Product +
∑︁

(𝜁𝐷)Diluent, (2.216)

where 𝜁 are stoichiometric coe�cients on a molar basis. The stoichiometric fuel to oxygen mass ratio
is

𝑌𝑓𝑢𝑒𝑙
𝑌𝑜𝑥𝑦

⃒⃒⃒⃒
𝑠𝑡𝑜𝑖𝑐

=

∑︀
𝑊𝑓𝑢𝑒𝑙 (𝜁𝑓𝑢𝑒𝑙)

𝑊𝑂2 (𝜁𝑂2)
, (2.217)

where𝑊 is a molecular weight. Speci�cally for the �rst reaction, the stoichiometric mass ratio of
C𝑚H𝑛N𝑝O𝑞 to O2 is

𝑌𝑓𝑢𝑒𝑙
𝑌𝑜𝑥𝑦

⃒⃒⃒⃒
𝑠𝑡𝑜𝑖𝑐

=
(12𝑚+ 𝑛+ 14𝑝+ 16𝑞)

32

(︂
𝑚− 𝑞

2

)︂ . (2.218)

Therefore, the equivalence ratio for the �rst reaction which is based on carbon monoxide and hydrogen
products is given by

Φ1 =

(︂
𝑌𝑓𝑢𝑒𝑙
𝑌𝑜𝑥𝑦

)︂
16 (𝑚− 𝑞)

(12𝑚+ 𝑛+ 14𝑝+ 16𝑞)
, (2.219)

and similarly, the equivalence ratio for the second reaction which is based on carbon dioxide and water
products is given by

Φ2 =

(︂
𝑌𝑐𝑜 + 𝑌ℎ2
𝑌𝑜𝑥𝑦

)︂ 16
(︁
𝑚+

𝑛

2

)︁
(28𝑚+ 𝑛)

. (2.220)

If either equivalence ratio is greater than unity, then the mass of oxygen will be completely consumed by
its reaction. If either equivalence ratio is less than unity, then the mass of fuel will be completely
consumed by its reaction. If either equivalence ratio is unity, then the mass of fuel and oxygen will both
be completely consumed by that reaction. Note that C𝑚H𝑛N𝑝O𝑞 is not a fuel in the second reaction
because if there is any of this fuel left, all the oxygen was consumed in the �rst reaction. Therefore,
under these conditions the second reaction cannot proceed due to lack of oxygen. Also note that the
expression for Φ2 does not identify which secondary fuel, CO or H2, is limiting.

In order to determine the limiting reactant mass in a multi-fuel (or multi-oxidant) system, a more
general approach based on equivalence ratios is required. Consider the reaction
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𝜁𝐴𝐴+ 𝜁𝐵𝐵 → 𝜁𝐶𝐶 + 𝜁𝐷𝐷 where 𝜁 are stoichiometric coe�cients. The stoichiometric mass ratio of
reactant𝐵 to𝐴 is

𝑌𝐵
𝑌𝐴

⃒⃒⃒⃒
𝑠𝑡𝑜𝑖𝑐

=
mass𝐵
mass𝐴

⃒⃒⃒⃒
𝑠𝑡𝑜𝑖𝑐

=
𝑊𝐵𝜁𝐵
𝑊𝐴𝜁𝐴

. (2.221)

Further, 𝑌𝐴 and 𝑌𝐵 are the mass fractions of𝐴 and𝐵 in the mixture and

𝑌𝐵
𝑌𝐴

=
mass𝐵

mass𝐴

⃒⃒⃒⃒
𝑚𝑖𝑥

. (2.222)

The ratio of these quantities is an equivalence ratio; i.e., if

𝑌𝐵
𝑌𝐴

>
𝑊𝐵𝜁𝐵
𝑊𝐴𝜁𝐴

, (2.223)

then𝐴 is the limiting reactant, else𝐵 is the limiting reactant. However, this inequality can be usefully
rearranged. If

𝑌𝐴
𝑊𝐴𝜁𝐴

<
𝑌𝐵

𝑊𝐵𝜁𝐵
, (2.224)

then𝐴 is the limiting reactant. The same procedure can be shown to apply to reactions where there are
more than two reactants; i.e., if

𝑌𝐴
𝑊𝐴𝜁𝐴

<
𝑌𝐵

𝑊𝐵𝜁𝐵
< · · · < 𝑌𝑛

𝑊𝑛𝜁𝑛
, (2.225)

then𝐴 is the limiting reactant of 𝑛 reactants. Therefore,

First Reactant Depleted = min
𝑛

(︂
𝑌𝑛
𝑊𝑛𝜁𝑛

)︂
. (2.226)

Note that the units of 𝑌𝑛/𝑊𝑛𝜁𝑛 are [(mass 𝑛)𝑚𝑖𝑥/(mass 𝑛)𝑠𝑡𝑜𝑖𝑐]/(mass)𝑚𝑖𝑥. Also note that diluents
are not reactants and they are not depleted by the reaction. The min() function should only be applied
to fuels and oxygen, not to all species.

To determine the change in mass fraction, Δ𝑌 𝑚
𝑘 , of reactant species 𝑘 due to reaction𝑚, multiply the

limiting mass expression by the stoichiometric mass of species 𝑘:

Δ𝑌 𝑚
𝑘 = −𝑊𝑘𝜁

𝑚
𝑘 min

𝑛

(︂
𝑌𝑛
𝑊𝑛𝜁𝑛

)︂𝑚
. (2.227)

This expression has units of [(mass 𝑘)𝑠𝑡𝑜𝑖𝑐/(mass 𝑛)𝑠𝑡𝑜𝑖𝑐] × [(mass 𝑛)𝑚𝑖𝑥/(mass)𝑚𝑖𝑥]. Since 𝑛 is the
limiting reactant, the expression within the second set of square brackets is the change in mass fraction
of species 𝑛 due to reaction𝑚; this is because the limiting species 𝑛 is completely used up in the reaction
(i.e., the mass fraction of species 𝑛 goes to zero). The expression within the �rst set of square brackets
modi�es the change in mass fraction of species 𝑛 to yield the change in mass fraction of species 𝑘 due to
reaction𝑚. The change in mass fraction of product species 𝑘 in reaction𝑚 is similar but without the
minus sign in the above expression.
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Since the reactions are given priority, the “products" of Reaction 1 are the “reactants" of Reaction 2.
The new mass fractions in the reactant stream for Reaction 2 are given by

(𝑌𝑘)Reaction 2 reactants = (𝑌𝑘)surr ±Δ𝑌 Reaction 1
𝑘 . (2.228)

As noted above, the sign of the second term, ±Δ𝑌 Reaction 1
𝑘 , is positive for products and negative for

reactants. Similarly, the product composition from Reaction 2 is given by

(𝑌𝑘)Reaction 2 products = (𝑌𝑘)Reaction 2 reactants ±Δ𝑌 Reaction 2
𝑘 . (2.229)

Here again the positive sign on the second term is used for products and negative sign is used for
reactants. Since the reactions are assumed to occur in�nitely fast, the product composition for
Reaction 2 is the composition of the reaction zone,

(𝑌𝑘)flame = (𝑌𝑘)Reaction 2 products . (2.230)

2.9.6. Conservation Laws

For convenience we restate the Favre-averaged species mass conservation equation, Equation 2.97,∫︁
𝜕𝜌𝑌𝑘
𝜕𝑡

d𝑉 +

∫︁
𝜌𝑌𝑘𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁ (︂
𝜇

Sc
+

𝜇𝑡
Sc𝑡

)︂
𝜕𝑌𝑘
𝜕𝑥𝑗

𝑛𝑗d𝑆 +

∫︁
𝜔̇𝑘d𝑉, (2.231)

where 𝜌 is the time averaged density of the mixture, 𝑌𝑘 is the Favre-averaged mass fraction of species 𝑘,
𝑢̃𝑖 is the Favre-averaged velocity of the mixture, 𝜇𝑡 is the turbulent eddy viscosity, Sc𝑡 is the turbulent
Schmidt number, and 𝜔̇𝑘 is the time-averaged mass production rate of species 𝑘 per unit volume of the
mixture. This equation is solved on a mesh, one control volume of which is shown in Figure 2.9-1.
Within the control volume, the species 𝑘 mass consumption/production rate,
𝑚̇𝑘,𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑/𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 = 𝜔̇𝑘𝑉𝑐𝑒𝑙𝑙, is determined by the EDC model, assuming that the mass transfer
process into and out of the reaction zone from the surroundings (cf. Figure 2.9-1) can be represented as
a steady process,

(𝑚̇𝑘)𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑/𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 = (𝑚̇𝑘)𝑓𝑙𝑎𝑚𝑒 − (𝑚̇𝑘)𝑠𝑢𝑟𝑟 . (2.232)

The mixture mass �ow rate between the surroundings and the reaction zone is also assumed to be
steady,

(𝑚̇)𝑓𝑙𝑎𝑚𝑒 = (𝑚̇)𝑠𝑢𝑟𝑟 . (2.233)

Combining these two expressions yields

(𝑚̇𝑘)𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑/𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 =

[︃
(𝑚̇𝑘)𝑓𝑙𝑎𝑚𝑒
(𝑚̇)𝑓𝑙𝑎𝑚𝑒

− (𝑚̇𝑘)𝑠𝑢𝑟𝑟
(𝑚̇)𝑠𝑢𝑟𝑟

]︃
(𝑚̇)𝑓𝑙𝑎𝑚𝑒

=
[︁
(𝑌𝑘)𝑓𝑙𝑎𝑚𝑒 − (𝑌𝑘)𝑠𝑢𝑟𝑟

]︁
(𝑚̇)𝑓𝑙𝑎𝑚𝑒 . (2.234)

It is convenient to normalize this equation with the mass of the control volume, or

(𝑚̇𝑘)𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑/𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
𝑀𝑐𝑒𝑙𝑙

=
[︁
(𝑌𝑘)𝑓𝑙𝑎𝑚𝑒 − (𝑌𝑘)𝑠𝑢𝑟𝑟

]︁ (𝑚̇)𝑓𝑙𝑎𝑚𝑒
𝑀𝑐𝑒𝑙𝑙

. (2.235)

73



The term in the brackets is a function of thermochemistry only and is speci�ed by the chemical
processes derived in the previous section. The second term, the normalized mass transfer rate, is a
function of the turbulent mass exchange rate between the reaction zone and its surroundings. The
derivation of this term is the subject of the next subsection.

2.9.7. Effect Of Turbulence On Combustion Rates

Magnussen derived the e�ect of turbulence on combustion rates in terms of high turbulence levels. The
derivation here will be for moderate turbulence levels for the �ame geometry shown in Figure 2.9-2. The
derivation herein does not include proportionality constants. Rather, dimensional reasoning is used to
establish the relationship between reaction zone surface area, volume, and mass transfer rates with
respect to the prevailing turbulence levels. Constants of proportionality, taken from Magnussen’s
original derivation, are added at the end.

Characteristic scales are needed for the mass transfer velocity into the reaction zone, the reaction zone
surface area, and the reaction zone thickness. The mass transfer velocity into the reaction zone is a
velocity appropriate to di�usional length scales that are being modi�ed by the local strain �eld induced
by the turbulent �ow,

Mass Transfer Velocity ∝ 𝜐. (2.236)

An appropriate di�usional velocity is the Kolmogorov velocity, 𝜐, which is characteristic of dissipative
length scales (i.e., those in which the local strain �eld is being dissipated by di�usional e�ects). From
Kolmogorov’s de�nition, 𝜐 is given by

𝜐 ≡ (𝜈𝜖)1/4 , (2.237)

where 𝜈 is the molecular mixture kinematic viscosity (evaluated at the surrounding temperature), and 𝜖
is the rate of kinetic energy dissipation.

The reaction zone is characterized as a continuous �ame sheet, highly wrinkled and wrapped around
large eddies. The volume of a large eddy is characterized by

Volume𝑒𝑑𝑑𝑦 ∝ 𝐿3, (2.238)

where𝐿 is the characteristic integral length scale of the turbulence. The reaction zone area is assumed to
be proportional to both momentum and scalar in�uences. While all length scales of the turbulent
cascade contribute to wrinkling and stretching the �ame, it is assumed that large changes in surface area
are associated with large length-scale �uctuations. Therefore, it is assumed that the square of the integral
length scale is the most appropriate turbulent length scale for characterizing the reaction zone area.

Species concentrations also a�ect reaction zone area. Obviously, if no fuel is present, no reaction zone
will be present regardless of level of turbulence present. The species in�uence are denoted by a
function, 𝜒, the rationale of which will be described later. Based on these arguments,

Area𝑓𝑙𝑎𝑚𝑒 ∝ 𝜒𝐿2. (2.239)

To obtain property values for each zone in Figure 2.9-1, it is necessary to de�ne the volume fractions of
the reaction zone and surrounding zones. The reaction zone volume fraction is based on a reaction zone
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area and a reaction zone thickness. Since the reaction zone is a strain modi�ed di�usional zone, its
thickness is best modeled with a di�usional length scale that is characteristic of the turbulence-induced
strain �eld. Thus the reaction zone thickness is proportional to the Kolmogorov scale, 𝜂,

Thickness𝑓𝑙𝑎𝑚𝑒 ∝ 𝜂. (2.240)

Kolmogorov’s de�nition of the di�usive length scale is

𝜂 ≡
(︂
𝜈3

𝜖

)︂1/4

. (2.241)

Since this is a characteristic scale analysis, the molecular mixture viscosity is evaluated at the
surrounding temperature. The actual reaction zone thickness will be larger due to the volumetric
expansion (i.e., lower density) in the reaction zone.

Based on these characteristic scales from the assumed reaction zone geometry in Figure 2.9-2,
expressions can be obtained for the mass transfer rate per total mass. The mass exchange rate into the
reaction zone per unit eddy mass is given by

𝑚̇𝑓𝑙𝑎𝑚𝑒

𝑀𝑐𝑒𝑙𝑙

=

(︂
𝑚̇𝑓𝑙𝑎𝑚𝑒

𝑀𝑒𝑑𝑑𝑦

)︂(︂
𝑀𝑒𝑑𝑑𝑦

𝑀𝑐𝑒𝑙𝑙

)︂
. (2.242)

The �rst term on the right hand side is given by

𝑚̇𝑓𝑙𝑎𝑚𝑒

𝑀𝑒𝑑𝑑𝑦

=
(SurroundingDensity) (FlameArea) (MassTransferVelocity)

(EddyDensity) (EddyVolume)
. (2.243)

The interpretation of the second term on the right hand side depends upon �ltering used (i.e., averaging
over scales). For LES, the length scale of the eddy being modeled is proportional to the length scale of
the grid. In this case, the size of the eddy and the grid are the same. Therefore, the second term is unity.
In RANS modeling, the eddy is much larger than the grid, as is the reaction zone surface being
modeled. For RANS, it is assumed that averaged over a su�cient number of eddies, the mass exchange
rate into the reaction zone per unit eddy (�rst term) is uniformly distributed (i.e., independent of length
scale) up to the integral length scales. In this case the second term is irrelevant and is assigned a value of
unity. For example, for an integral scale eddy with a length scale ten times the grid, the mass transfer into
the reaction zone (averaged over many eddies) would be ten times the value for an eddy with a length
scale that is just the size of the grid.

Conservation of mass requires that the mass exchange rate into and out of the reaction zone be identical
so the properties can be evaluated at the thermodynamic state of either the reactant stream
(surroundings) or the product stream (reaction zone). For convenience, they will be de�ned in terms of
the reactant stream temperature and mass fractions. Using the characteristic length and velocity scale
arguments given above yields

𝑚̇𝑓𝑙𝑎𝑚𝑒

𝑀𝑐𝑒𝑙𝑙

∝ (𝜌𝑠𝑢𝑟𝑟) (𝐿
2𝜒) (𝜐)

(𝜌𝑐𝑒𝑙𝑙) (𝐿3)
= 𝜒

𝜐

𝐿

𝜌𝑠𝑢𝑟𝑟
𝜌𝑐𝑒𝑙𝑙

. (2.244)
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The standard integral scale estimate [11] of the rate of energy supply to di�usive scale eddies is

𝜖 ∝ TurbulentKineticEnergy

EddyRollOverTime
∝ 𝑢′2

𝐿/𝑢′
=
𝑢′3

𝐿
. (2.245)

The turbulence kinetic energy is given as

𝑘 =
3

2
𝑢′

2
. (2.246)

Substituting and rearranging gives

𝐿 ∝ 𝑘3/2

𝜖
. (2.247)

Ignoring the constant of proportionality and substituting the results into the de�nition for the
Kolmogorov velocity gives

𝜐 ∝ 𝐿
(︁ 𝜖
𝑘

)︁(︁𝜈𝜖
𝑘2

)︁1/4
. (2.248)

Substituting gives the mass exchange rate into the reaction zone per control volume in terms of standard
turbulence parameters,

𝑚̇𝑓𝑙𝑎𝑚𝑒

𝑀𝑐𝑒𝑙𝑙

∝
(︁𝜈𝜖
𝑘2

)︁1/4 (︁ 𝜖
𝑘

)︁
𝜒
𝜌𝑠𝑢𝑟𝑟
𝜌𝑐𝑒𝑙𝑙

. (2.249)

The function 𝜒 is a scalar correction to take into account species e�ects on the reaction zone area. The
function is bounded between (0,1) with 1 representing optimal species concentrations which will
maximize the reaction zone area and 0 representing prohibitive species concentrations which would
prevent reaction zone formation. Two scalar properties are important, the reactant concentrations and
the product concentration (which acts as an ignition source since ignition is not assumed). Therefore,
the limiter is written as the product of two terms,

𝜒 = 𝜒1𝜒2. (2.250)

The function 𝜒1 is intended to take into account the e�ect of the reactant mass fractions on the reaction
zone surface area. Since the reaction zone surface occurs at stoichiometric concentrations of fuel and
oxygen in a di�usion �ame, stoichiometric concentrations of reactants in a control volume will result in
the largest reaction zone area (controlled by the turbulence levels). In this case, 𝜒1 is unity. On the other
hand, if either fuel or oxygen is zero within a control volume, then 𝜒1 is zero. Between these extremes, a
functional form is assumed which has the correct limiting properties. The function is given by

𝜒1 =
1(︃

𝑌𝑜𝑥𝑦 + 𝑌𝑝𝑟𝑜𝑑

𝑌𝑚𝑖𝑛 + 𝑌𝑝𝑟𝑜𝑑

)︃(︃
𝑌𝑓𝑢𝑒𝑙 + 𝑌𝑝𝑟𝑜𝑑

𝑌𝑚𝑖𝑛 + 𝑌𝑝𝑟𝑜𝑑

)︃ , (2.251)

where the normalized mass fractions are de�ned below.

Overall reaction stoichiometry is determined from the sum of Reactions 1 and 2 in the chemical
reaction section (Equations 2.212 and 2.213). The overall reaction is

C𝑚H𝑛N𝑝O𝑞 +

(︂
𝑚+

𝑛− 2𝑞

4

)︂
O2 +

∑︁
(𝜁𝑑)Diluent ⇒

(𝑚) CO2 +
(︁𝑛
2

)︁
H2O+

(︁𝑝
2

)︁
N2 +

∑︁
(𝜁𝑑)Diluent (2.252)
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For the overall reaction, the mass ratio of oxygen to the mass ratio of fuel for stoichiometric reaction to
CO2 and H2O is given by

𝑆 =

(︂
𝑌𝑜𝑥𝑦
𝑌𝑓𝑢𝑒𝑙

)︂
𝑂𝑝𝑡𝑖𝑚𝑎𝑙

=
(︁
𝑚+

𝑛

4
− 𝑞

2

)︁(︂ 32

12𝑚+ 𝑛+ 14𝑝+ 16𝑞

)︂
. (2.253)

Since mass is conserved in the reaction, 1 + 𝑆 kilograms of product (CO2 and H2O) are produced for
every kilogram of fuel consumed for a fuel/oxygen reaction. Note the mass of diluents, such as the
nitrogen in the air does not change, as a result of the reaction. It is useful to produce normalized mass
fractions based on the masses involved in the stoichiometric reaction.

𝑌𝑜𝑥𝑦 =
𝑌𝑜𝑥𝑦
𝑆

𝑌𝑝𝑟𝑜𝑑 =
𝑌𝑐𝑜2 + 𝑌ℎ2𝑜

1 + 𝑆
𝑌𝑓𝑢𝑒𝑙 =

𝑌𝑓𝑢𝑒𝑙
1

(2.254)

Note that the sum of these terms does not equal unity but one minus the mass fraction of diluent in the
mixture.

The actual reaction may involve the secondary fuels, so a more general expression is required for the
stoichiometric mass ratio of oxygen to fuel (and is used in the Vulcan code).

𝑆 =
SO2FU · 𝑌𝑓𝑢𝑒𝑙 + SO2CO · 𝑌𝑐𝑜 + SO2H2 · 𝑌ℎ2

𝑌𝑓𝑢𝑒𝑙 + 𝑌𝑐𝑜 + 𝑌ℎ2
, (2.255)

SO2FU =
(︁
𝑚+

𝑛

4
− 𝑞

2

)︁(︂ 32

12𝑚+ 𝑛+ 14𝑝+ 16𝑞

)︂
, (2.256)

SO2CO =
32

2 · 28
, (2.257)

SO2H2 =
32

2 · 2
. (2.258)

The product mass fractions are adjusted for the mass of nitrogen that accompanies the oxygen in air –
the nitrogen is treated as a product species. The normalized mass fractions are

𝑌𝑜𝑥𝑦 =
𝑌𝑜𝑥𝑦
𝑆

𝑌𝑝𝑟𝑜𝑑 =
3.39𝑌𝑐𝑜2 + 3.92𝑌ℎ2𝑜

1 + 4.29𝑆
𝑌𝑓𝑢𝑒𝑙 =

𝑌𝑓𝑢𝑒𝑙
1

(2.259)

where

𝑌𝑝𝑟𝑜𝑑|𝑐𝑜2 = 𝑌𝑐𝑜2

(︂
1 + 3.76

𝑀𝑊𝑛2

𝑀𝑊𝑐𝑜2

)︂
, 𝑌𝑝𝑟𝑜𝑑|ℎ2𝑜 = 𝑌ℎ2𝑜

(︂
1 + 1.88

𝑀𝑊𝑛2

𝑀𝑊ℎ2𝑜

)︂
, (2.260)

The molar ratio of nitrogen to oxygen in air is 3.76 and the mass ratio is 3.29. The production mass
fraction, 𝑌𝑝𝑟𝑜𝑑, can be computed directly from the CO2 and H2O mass fractions as long as the only
source of product species in the �ow �eld comes directly from combustion. If there is injection of
product species into the domain from a diluent stream or from an ambient concentration, then a
transport equation should be solved for the product mass fraction (see Section 2.9.12).

Since combustion always occurs at a stoichiometric surface in a di�usion �ame, there is a limiting
reactant mass fraction in a fuel/oxygen mixture within the control volume unless the ratio is
stoichiometric. The limiting reactant mass fraction is given by

𝑌𝑚𝑖𝑛 = min
(︁
𝑌𝑓𝑢𝑒𝑙, 𝑌𝑜𝑥𝑦

)︁
. (2.261)
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The function 𝜒1 can be seen to approach the correct limits most clearly if the mass fraction of products,
𝑌𝑝𝑟𝑜𝑑, is set to zero. If the mixture is fuel lean, 𝑌𝑚𝑖𝑛 = 𝑌𝑓𝑢𝑒𝑙 and 𝜒1 is equal to the fuel to oxygen ratio
which decreases to zero as the fuel mass fraction is decreased. If the mixture is fuel rich, 𝑌𝑚𝑖𝑛 = 𝑌𝑜𝑥𝑦
and 𝜒1 is equal to the oxygen to fuel ratio which decreases to zero as the fuel mass fraction is increased.
At stoichiometric, 𝜒1 is unity.

The function 𝜒2 is intended to take into account the existence of reaction zone surface as a
precondition for reaction zone surface propagation. A stoichiometric surface without reaction can exist
in a �ow �eld if there is no ignition source. An external source is required for ignition. However, once
ignited, reaction zone propagation can be interpreted as new �ame surface being ignited by existing
adjacent reaction zone surface. A good indicator of existing �ame surface is the presence of hot
combustion products within the control volume and this fact is used to create the function 𝜒2.

The value of 𝜒2 is zero if no combustion products are present. If the product mass fraction was
uniformly distributed, then the probability of ignition would increase with the ratio of product mass
fraction to reactant mass fraction. However, the combustion products are not uniformly distributed
but concentrated around the reaction zones, thereby increasing the probability of propagation of
reaction zone surface for a given product mass fraction. The assumed functional form of 𝜒2 that has
these characteristics is

𝜒2 =

(︂
ExistingProductMassFraction

MaxFlameVolume

)︂
(︂
MaxPossibleProductMassFraction

CharacteristicProductVolume

)︂ (2.262)

=

(︂
CharacteristicProductVolume

MaxFlameVolume

)︂(︂
ExistingProductMassFraction

MaxPossibleProductMassFraction

)︂
.

The maximum volume of the reaction zone is the thickness times its area,

𝛾 =
(𝐴𝑟𝑒𝑎 · 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)𝑓𝑙𝑎𝑚𝑒

𝑉 𝑜𝑙𝑢𝑚𝑒𝑒𝑑𝑑𝑦
∝ 𝐿2𝜂

𝐿3
=
𝜂

𝐿
. (2.263)

Using the de�nition for the Kolmogorov length scale and substituting the turbulence kinetic energy for
length scale, 𝐿, gives

𝛾 ∝
(︁𝜈𝜖
𝑘2

)︁3/4
, (2.264)

which is the maximum reaction zone volume per eddy volume. The value of 𝛾1/3 is bounded by one
since the length scale ratio of the �ame volume to eddy volume cannot be larger than one.

The characteristic product volume can be de�ned by assuming the majority of combustion products are
held up within a distance corresponding to the Taylor microscale from the reaction zone surface,

𝛾𝜆 =
(𝐴𝑟𝑒𝑎 · 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)𝑝𝑟𝑜𝑑

𝑉 𝑜𝑙𝑢𝑚𝑒𝑒𝑑𝑑𝑦
∝ 𝐿2𝜆

𝐿3
=
𝜆

𝐿
. (2.265)

Note that this assumption is used only to establish an ignition probability. For actual property
evaluation, it is assumed that the combustion products are well mixed with the surroundings. Taking
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the ratio of the volumes gives,
𝛾𝜆
𝛾

∝ 𝜆

𝜂
. (2.266)

Using the standard de�nition of this ratio (Tennekes and Lumley [11]) gives,

𝜆

𝜂
= Re

1/4
𝐿 . (2.267)

The Reynolds number can be de�ned in terms of turbulent kinetic energy and its dissipation by,

Re𝐿 =
𝑘2

𝜈𝜖
. (2.268)

Substituting gives, (︂
CharacteristicProductVolume

MaximumFlameVolume

)︂
=

(︂
1

𝛾1/3

)︂
. (2.269)

The existing product mass fraction is given by 𝑌𝑝𝑟𝑜𝑑. The maximum possible product mass fraction is
the sum of the existing products and the products that could be formed if all available reactants were to
burn. Since combustion takes place at a stoichiometric surface, the limiting reactant mass fraction is
given by 𝑌𝑚𝑖𝑛. Therefore, 𝜒2 becomes

𝜒2 =

(︂
1

𝛾1/3

)︂(︃
𝑌𝑝𝑟𝑜𝑑

𝑌𝑝𝑟𝑜𝑑 + 𝑌𝑚𝑖𝑛

)︃
. (2.270)

Functionally, 𝜒2 can exceed unity but the product 𝜒1𝜒2 is limited to the range (0,1). The function 𝜒 is
now completely described in terms of species and turbulence properties.

Combining all previous results gives the following result for species consumption/production,

(𝑚̇𝑘)𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑/𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
𝑀𝑐𝑒𝑙𝑙

∝
[︁
(𝑌𝑘)𝑓𝑙𝑎𝑚𝑒 − (𝑌𝑘)𝑠𝑢𝑟𝑟

]︁(︂(︁𝜈𝜖
𝑘2

)︁1/4 (︁ 𝜖
𝑘

)︁
𝜒

(︂
𝜌𝑠𝑢𝑟𝑟
𝜌𝑐𝑒𝑙𝑙

)︂)︂
, (2.271)

where 𝜒 is de�ned above in terms of 𝜒1, 𝜒2.

The above derivation is intended to provide a physical interpretation to Magnussen’s EDC model for
large �res typi�ed by medium turbulence levels with di�usive combustion. Proportionality constants
are needed to close the model. As always, constants can be tweaked for a given �ow to produce the best
result for that �ow. However, we will use the constants as derived for more general �ows (Ertesvåg and
Magnussen [49]). With these constants, the model equations match those from the
KAMELEON-II-FIRE code (Holen et al. [50]).

Using these constants, the maximum reaction zone volume fraction is given by

𝛾 = 9.7
(︁𝜈𝜖
𝑘2

)︁3/4
. (2.272)

Taking into account species limitations, the �ame volume fraction is given by

𝛾𝜒 = 9.7
(︁𝜈𝜖
𝑘2

)︁3/4
𝜒. (2.273)
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The reaction rate of fuel is given by

(𝑚̇𝑘)𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑/𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
𝑀𝑐𝑒𝑙𝑙

∝
[︁
(𝑌𝑘)𝑓𝑙𝑎𝑚𝑒 − (𝑌𝑘)𝑠𝑢𝑟𝑟

]︁(︂
23.6

(︁𝜈𝜖
𝑘2

)︁1/4 (︁ 𝜖
𝑘

)︁
𝜒

(︂
𝜌𝑠𝑢𝑟𝑟
𝜌𝑐𝑒𝑙𝑙

)︂
𝜒3

)︂
. (2.274)

The additional scalar function, 𝜒3 , at the end of Equation 2.274 is multiplier on the combustion rate
that Magnussen found necessary to maintain the mass transfer rate when the product concentration is
high in premixed �ames. Its necessity suggests that perhaps alternate scalings should be examined, but
for consistency with the published model, it is implemented here as

𝜒3 = min

[︃
𝑌𝑝𝑟𝑜𝑑 + 𝑌𝑚𝑖𝑛

𝑌𝑚𝑖𝑛
,

1

𝛾1/3

]︃
. (2.275)

2.9.8. Average Control Volume Properties

The volume and mass exchange process between the two zones is assumed to be constant over a time
step. Consequently, cell averaged properties for the mean �ow equations are a volume weighted sum of
the properties in the two zones. Therefore, all control volume properties are given by

𝜑𝑐𝑒𝑙𝑙 =
𝜑𝑓𝑙𝑎𝑚𝑒𝑉𝑓𝑙𝑎𝑚𝑒 + 𝜑𝑠𝑢𝑟𝑟𝑉𝑠𝑢𝑟𝑟

𝑉𝑐𝑒𝑙𝑙
. (2.276)

The maximum volume fraction of the reaction zone, 𝛾, was determined previously from momentum
considerations. The actual volume fraction is the maximum volume fraction times the scalar function,
𝜒. The surroundings is the volume fraction that remains after the reaction zone volume has been
removed. Therefore,

𝜑𝑐𝑒𝑙𝑙 = 𝜑𝑓𝑙𝑎𝑚𝑒 (𝛾𝜒) + 𝜑𝑠𝑢𝑟𝑟 (1− 𝛾𝜒) . (2.277)

Volume averaged properties given by Equation 2.277 are desired. However, the estimates used to obtain
𝛾𝜒 (i.e., Equation 2.272) are based on uniform cell temperatures. Clearly, the �ame zone will be hotter
than the surroundings, so the volume fraction occupied by the �ame will be larger than given by
Equation 2.277 (and the surroundings fraction smaller).

A �rst order non-isothermal estimate is made to account for �ame volume fraction. This estimate
assumes that the non-homogeneous density �eld does not a�ect the local turbulence �eld (or
alternately, that dilatation cancels the baroclinic generation) such that isothermal, isotropic,
homogeneous turbulence estimates for the turbulent kinetic energy, 𝑘, and its dissipation, 𝜖, hold. (This
assumption is made in virtually all models by the necessity that the fundamental research to quantify
the actual coupling has not been done.)

A mass balance then gives a �rst order estimate for the actual �ame volume fraction at the �ame
temperature. The actual �ame volume at the �ame temperature is given by its isothermal estimate times
the cell mean density (used to obtain the isothermal estimate) divided by the actual �ame density.
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Thus, Equation 2.277 becomes,

𝜑𝑐𝑒𝑙𝑙 = 𝜑𝑓𝑙𝑎𝑚𝑒 (𝛾𝜒)
𝜌𝑐𝑒𝑙𝑙
𝜌𝑓𝑙𝑎𝑚𝑒

+ 𝜑𝑠𝑢𝑟𝑟 (1− 𝛾𝜒)
𝜌𝑐𝑒𝑙𝑙
𝜌𝑠𝑢𝑟𝑟

. (2.278)

Where the mean density is given by

𝜌𝑐𝑒𝑙𝑙 =

[︂
(𝛾𝜒)

𝜌𝑓𝑙𝑎𝑚𝑒
+

(1− 𝛾𝜒)

𝜌𝑠𝑢𝑟𝑟

]︂−1

. (2.279)

An interpretation of Equation 2.278 and Equation 2.279 is that 𝛾𝜒 is, therefore, not a volume fraction
estimate but a mass fraction estimate. However, Reynolds, not Favre averaged properties are desired for
source term closure estimates. In this case, Equation 2.279, is intended as a non-isothermal volume
estimate, which the mass weighted isothermal volume estimate happens to be the best available
estimator until turbulence coupling in reacting �ows can be elucidated. All cell averaged properties are
given by Equation 2.279. Equation 2.277 is intended for clari�cation only.

2.9.9. Limits Testing

Parameters in the EDC model take on limiting values in the presence of piloting conditions and
extinction conditions. The limits are discussing in the following subsections.

2.9.9.1. Ignition Criteria

Ignition will not occur in the above mechanism unless products are formed. An external ignition source
(or pilot �ame) is simulated by setting 𝜒 to be greater than zero (the product mass fraction is set to 0.2
times the maximum products that could be formed by the existing fuel in the current implementation)
in a cell with fuel and oxygen present. This can be done on a cell by cell basis to represent point ignition
sources, or in the whole domain if global ignition is required. If a pilot �ame is to be simulated, the cells
associated with it have 𝜒 set to be greater than zero for the duration of the calculation. If a transient
ignition (e.g., spark) is to be simulated, the cells initially have 𝜒 set to be greater than zero. However,
after a minimum temperature is reached within a cell, 𝑇𝑖𝑔𝑛 (K) (a user input), 𝜒 is no longer speci�ed
but calculated from the species concentrations and turbulence levels as derived previously.

2.9.9.2. Extinction Criteria

Extinction occurs when 𝜒 = 0. This occurs automatically when the fuel and/or air is consumed. Local
extinction can also be caused within a cell due to high turbulence levels. At high turbulence levels, the
reaction zone can be appropriately modeled as a perfectly stirred reactor (PSR). A PSR blows out when
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the residence time is less than a minimum value for a given composition. The residence time, 𝜏𝑟𝑒𝑠, in the
reaction zone volume is given by

𝜏𝑟𝑒𝑠 =
Volume𝑓𝑙𝑎𝑚𝑒

VolumeFlowRate𝑓𝑙𝑎𝑚𝑒
=

(︂
Volume𝑓𝑙𝑎𝑚𝑒
Volume𝑐𝑒𝑙𝑙

)︂
(︂
𝑚̇𝑓𝑙𝑎𝑚𝑒

𝜌𝑠𝑢𝑟𝑟

)︂
⎛⎝𝑀𝑐𝑒𝑙𝑙

𝜌𝑐𝑒𝑙𝑙

⎞⎠

. (2.280)

Simplifying gives
𝜏𝑟𝑒𝑠 =

𝜒𝛾(︂
𝑚̇𝑓𝑙𝑎𝑚𝑒

𝑀𝑐𝑒𝑙𝑙

)︂
𝜌𝑐𝑒𝑙𝑙
𝜌𝑠𝑢𝑟𝑟

. (2.281)

Substituting prior relations gives

𝜏𝑟𝑒𝑠 ∝
𝜒
(︁𝜈𝜖
𝑘2

)︁3/4
𝜒
(︁𝜈𝜖
𝑘2

)︁1/4 (︁ 𝜖
𝑘

)︁ . (2.282)

Simplifying and substituting Magnussen’s constant of proportionality gives

𝜏𝑟𝑒𝑠 =
1

2.43

(︁𝜈
𝜖

)︁1/2
. (2.283)

Comparison of the calculated residence time with a user input minimum residence time (based on
precalculation using a PSR and appropriate chemistry) determines whether or not combustion is
allowed to continue. If so, heat release is calculated as derived herein, and �nite-rate e�ects are not
considered. However, if the calculated residence time is below the minimum value, 𝜒 is set equal to zero
which causes combustion to cease within a cell.

2.9.9.3. Laminar Values

As currently formulated, the model assumes the �ow is fully turbulent and does not model laminar
combustion. Minimum values for the reaction zone volume, 𝛾, and mass transport into the reaction
zone per mass in the cell, 𝑚̇𝑓𝑙𝑎𝑚𝑒/𝑀𝑐𝑒𝑙𝑙, are required in conditions with low turbulence levels to prevent
singularities.

2.9.9.4. Scalar Limits

The mass fractions of fuel, air, and products must remain bounded (0,1). This requires that the
consumption rate for the species with the limiting concentration times the time step must be less than
or equal to the mass of species.
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2.9.10. Cell Value Information Used By Model

The combustion model requires inputs from the transport equations for cell averaged variables at the
start of a time step. These variables include pressure,𝑃𝑡ℎ (dynes/cm2), species mass fractions 𝑌𝑖, density,
𝜌𝑐𝑒𝑙𝑙 (g/cm3), mixture molecular weight,𝑊𝑚𝑖𝑥, (g/mole), turbulent kinetic energy, 𝑘 (cm2/sec2),
dissipation of the turbulent kinetic energy, 𝜖 (cm2/sec3), mixture kinematic viscosity, 𝜈 (cm2/sec),
individual (i.e., chemical plus sensible) enthalpies, ℎ𝑖 (ergs/g), and mixture enthalpy, ℎ𝑐𝑒𝑙𝑙 (ergs/g).

2.9.11. Model Outputs

The two outputs of the combustion model are the species consumption rates and property estimates.

2.9.11.1. Species Consumption Estimates

Noting the general relation between cell averaged values and surrounding values, Equation 2.277, the
surrounding and cell mass fractions can be related to give

[︁
(𝑌𝑘)𝑓𝑙𝑎𝑚𝑒 − (𝑌𝑘)𝑠𝑢𝑟𝑟

]︁
=

[︁
(𝑌𝑘)𝑓𝑙𝑎𝑚𝑒 − (𝑌𝑘)𝑐𝑒𝑙𝑙

]︁
(1− 𝛾𝜒)

. (2.284)

Substituting this result and the de�nition of 𝜏𝑟𝑒𝑠 into the species consumption/production rate gives
the source term in the species transport equation, Equation 2.231,

𝜔̇𝑘 =

[︁
(𝑌𝑘)𝑓𝑙𝑎𝑚𝑒 − (𝑌𝑘)𝑐𝑒𝑙𝑙

]︁
𝜏𝑟𝑒𝑠

(︂
𝛾𝜒

1− 𝛾𝜒

)︂
𝜒3, (2.285)

for the species mass production/consumption rate in a control volume. The subscript 𝑘 is understood
to be for each species, C𝑚H𝑛N𝑝O𝑞, O2, N2, CO, H2, CO2, H2O, and any diluents in the system.

2.9.11.2. Property Estimates

It is important in turbulent processes that nonlinear �uctuating quantities be appropriately
represented. Properties for which nonlinear �uctuations are important include the radiative emissive
power (proportional to the fourth power of temperature) and density.

To get the radiative emissive power, it is �rst necessary to get the temperature within each zone. This is
accomplished by iterative estimate based on the species mass fractions within each zone. Since total
(chemical plus sensible) enthalpy is used for each species, the total enthalpy per unit mass in the control
volume does not change between the reaction zone or the surrounding zone. The partitioning of
chemical and sensible enthalpy is di�erent for the reaction and surrounding zone, but the speci�c total
enthalpy is equal to the cell value de�ned at the beginning of each time step. (Note: this is not a
statement of the energy equation, it is only a statement of property values within each zone and the cell.
Obviously, the enthalpy does vary after radiation transport is allowed to occur and species are allowed to
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advect between cells at the end of the time step as governed by the energy equation). The reaction zone
temperature, 𝑇𝑓𝑙𝑎𝑚𝑒, is obtained from iterative solution of

ℎ𝑓𝑙𝑎𝑚𝑒 =
∑︁

𝑌𝑘ℎ𝑘 (𝑇 )
⃒⃒⃒
𝑓𝑙𝑎𝑚𝑒

, (2.286)

and the surrounding temperature, 𝑇𝑠𝑢𝑟𝑟, is obtained from iterative solution of

ℎ𝑠𝑢𝑟𝑟 =
∑︁

𝑌𝑘ℎ𝑘 (𝑇 )
⃒⃒⃒
𝑠𝑢𝑟𝑟

. (2.287)

The average emissive power is given by

𝜎𝛼𝑇 4
𝑟𝑎𝑑 = 𝜎𝛼̄

(︂
𝑇 4
𝑓𝑙𝑎𝑚𝑒 (𝛾𝜒)

𝜌

𝜌𝑓𝑙𝑎𝑚𝑒
+ 𝑇 4

𝑠𝑢𝑟𝑟 (1− 𝛾𝜒)
𝜌

𝜌𝑠𝑢𝑟𝑟

)︂
(ergs/cm2−s). (2.288)

An important assumption implied by the form of Equation 2.288 is that the turbulent �uctuations
between the temperature and absorption coe�cient are weakly correlated [8]. ( Note that the intent of
the averaging form above is to volume-weight the emissive power from the �ame and surrounding
zones. This form implies that 𝛾𝜒 should be viewed as a mass fraction rather than a volume fraction as
discussed for Equation 2.276. )

The density of each zone can be calculated according to the perfect gas law. For the reaction zone
volume, the density is

𝜌𝑓𝑙𝑎𝑚𝑒 =
𝑃𝑡ℎ𝑊𝑓𝑙𝑎𝑚𝑒

𝑅𝑇𝑓𝑙𝑎𝑚𝑒
, (2.289)

where𝑅 is the universal gas constant and 𝑃𝑡ℎ is the constant thermodynamic pressure. For the
surroundings, the density is

𝜌𝑠𝑢𝑟𝑟 =
𝑃𝑡ℎ𝑊𝑠𝑢𝑟𝑟

𝑅𝑇𝑠𝑢𝑟𝑟
. (2.290)

The soot model uses the temperatures, densities, and mass fractions of reaction zone and surroundings
according to the above estimates.

2.9.12. Combustion Products Transport Equation

The product mass fraction represents the products formed by combustion (CO2 and H2O for
hydrocarbon fuels, and H2O for hydrogen fuel). If any of the product species are injected into the
domain through either an initial condition or boundary condition to simulate a diluent stream or
ambient concentration, their in�uence must be removed in order for the 𝜒2 reaction limiter to function
properly. A transport equation similar to Equation 2.231 is used where the reaction rate is given by

𝜔̇𝑝𝑟𝑜𝑑 = 3.392𝜔̇𝑐𝑜2 + 3.924𝜔̇ℎ2𝑜. (2.291)

This transported product mass fraction can only be formed due to reaction within the domain and
cannot be injected through either initial or boundary conditions. Therefore, the only boundary
conditions that are required are at an out�ow so that products may exit the domain, and a zero value at
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any surfaces where a species Dirichlet condition is applied. All of these cases are handled automatically
so that nothing needs to be speci�ed by the user.

Note that a pilot stream will be unable to ignite a �ame when using this model. It will be treated as an
inert diluent stream, so that the normal ignition model will be required to ignite the �ame. This model
in its current form should not be used for piloted �ames.

Also note that if the only source of products in the simulation is combustion, then the product mass
fraction can be computed directly from the local species mass fractions and solving this transport
equation is unnecessary.

2.9.13. Chemical Equilibrium Models

The EDC combustion model uses a two-step chemical reaction, where the fuel species is consumed by
the reaction in Equation 2.212 to form CO and H2, and then these intermediate species are consumed
by the reaction in Equation 2.213 to form CO2 and H2O. If oxygen is present in excess, then none of the
intermediate species will remain and only CO2 and H2O will be produced. In reality, these reactions
would not proceed to completion, but instead would reach an equilibrium where some of the
intermediate species can persist. This can lead to a signi�cantly di�erent mixture composition and even
a di�erent mixture temperature than what the standard EDC model would predict, especially at higher
temperatures.

Fuego includes two optional models that can include the e�ects of two independent chemical
equilibrium reactions into the standard EDC model, to better predict high-temperature combustion
species and temperatures.

2.9.13.1. CO2 Dissociation Model

At high temperatures, the equilibrium reaction

CO2 ⇔ CO+
1

2
O2 (2.292)

becomes active to dissociate CO2 species back into CO and O2, which has the e�ect to cool the gas
mixture. Including the e�ects of this dissociation reaction will help to control nonphysically-high
temperatures that might result otherwise.

This model will adjust the EDC-reacted mixture (𝑌𝑘)flame in Equation 2.285 to include the e�ects of
equilibrium reaction 2.292. This equilibrium can be modeled by

𝐾𝑝 = exp

(︂
−Δ𝐺𝑜

𝑇

𝑅𝑢𝑇

)︂
, (2.293)

where𝑅𝑢 is the ideal gas constant, 𝑇 is the temperature at which the equilibrium is being calculated,𝐾𝑝

is the equilibrium constant for this dissociation reaction, and Δ𝐺𝑜
𝑇 is the standard-state Gibbs function
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change for this reaction. The equilibrium constant𝐾𝑝 for Equation 2.292 is de�ned as

𝐾𝑝 =

(︀
𝑃CO

𝑃 𝑜

)︀ (︁𝑃O2

𝑃 𝑜

)︁ 1
2(︁

𝑃CO2

𝑃 𝑜

)︁ , (2.294)

where 𝑃CO, 𝑃O2 , and 𝑃CO2 are the partial pressures of CO, O2, and CO2, respectively, and 𝑃 𝑜 is the
reference pressure taken as 1 𝑎𝑡𝑚. The standard-state Gibbs function change for this reaction can be
evaluated in terms of the Gibbs function of formation for each species at temperature 𝑇 ,

Δ𝐺𝑜
𝑇 =

(︂
𝑔𝑜𝑓,CO +

1

2
𝑔𝑜𝑓,O2

− 𝑔𝑜𝑓,CO2

)︂
𝑇ref=𝑇

. (2.295)

The partial pressure of species 𝑘 can be computed by 𝑃𝑘 = 𝑋𝑘𝑃 , where 𝑃 is the static pressure of the
mixture and𝑋𝑘 is the mole fraction of species 𝑘, de�ned as𝑋𝑘 = 𝑛𝑘/𝑛tot with the total number of
moles of all species being de�ned as 𝑛tot =

∑︀
𝑖

𝑛𝑖. After making these substitutions and simplifying, the

equilibrium equation that needs to be solved, written in terms of moles of each species in a �xed-mass
volume, is

𝑛CO 𝑛
1/2
O2

𝑛CO2 𝑛
1/2
tot

(︂
𝑃

𝑃 𝑜

)︂ 1
2

= exp

(︂
−Δ𝐺𝑜

𝑇

𝑅𝑢𝑇

)︂
. (2.296)

Additional equations may be written to enforce conservation of C and O atoms within the reaction
volume,

𝑁𝐶 = 𝑛CO + 𝑛CO2 (2.297)
𝑁𝑂 = 2𝑛CO2 + 𝑛CO + 2𝑛O2 , (2.298)

where𝑁𝐶 and𝑁𝑂 are the �xed number of moles of carbon and oxygen atoms, respectively, during the
equilibrium reaction. Equations 2.296, 2.297, and 2.298 represent a system of three equations that can
be solved for the three unknowns 𝑛CO2 , 𝑛CO, and 𝑛O2 at the equilibrium state.

The numerical solution procedure begins by approximating the number of moles of each species from
the reacted mixture mass fraction vector 𝑌𝑖 as 𝑛𝑖 = 𝑌𝑖/𝑊𝑖, on a per-unit-mass-of-mixture basis.
Eliminating 𝑛CO2 and 𝑛O2 from Equation 2.296 yields a nonlinear equation that can be solved directly
for 𝑛CO from the �xed atom balances at a �xed temperature 𝑇 and pressure 𝑃 ,

𝑛2
CO (𝑁𝑂 − 2𝑁𝐶 + 𝑛CO)−

(︂
𝑃 𝑜

𝑃

)︂
exp

(︂
−2Δ𝐺𝑜

𝑇

𝑅𝑢𝑇

)︂
(𝑁𝐶 − 𝑛CO)

2

(︃
𝑁𝑂 + 𝑛CO + 2

𝑁inert∑︁
𝑗

𝑛𝑗

)︃
= 0,

(2.299)

where
𝑁inert∑︀
𝑗

𝑛𝑗 represents the summation of the number of moles of all species present in the mixture

that do not participate directly in the equilibrium reaction, i.e. all species except for CO2, CO, and
O2.

A standard Newton’s method may be used to iteratively solve 2.299,

𝑛𝑛+1
CO = 𝑛𝑛CO − 𝑓(𝑛CO)

𝑓 ′(𝑛CO)
, (2.300)
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where the function 𝑓(𝑛CO) is Equation 2.299 and the derivative function 𝑓 ′(𝑛CO) is

𝑓 ′(𝑛CO) = 2𝑛CO (𝑁𝑂 − 2𝑁𝐶 + 𝑛CO) + 𝑛2
CO

−
(︂
𝑃 𝑜

𝑃

)︂
exp

(︂
−2Δ𝐺𝑜

𝑇

𝑅𝑢𝑇

)︂[︃
(𝑁𝐶 − 𝑛CO)

2 − 2 (𝑁𝐶 − 𝑛CO)

(︃
𝑁𝑂 + 𝑛CO + 2

𝑁inert∑︁
𝑗

𝑛𝑗

)︃]︃
.

(2.301)

Once this equation is solved for 𝑛CO, then the following equations may be used to evaluate the
remaining equilibrium species moles,

𝑛CO2 = 𝑁𝐶 − 𝑛CO (2.302)

𝑛O2 =
1

2
(𝑁𝑂 − 2𝑁𝐶 + 𝑛CO) . (2.303)

With the new molar mixture de�ned for the equilibrium species, the mass fraction vector may be
reconstructed by 𝑌𝑖 = 𝑛𝑖𝑊𝑖. This new mixture composition will result in a di�erent temperature since
the enthalpy is �xed. After the new temperature is evaluated, this entire procedure may be repeated
iteratively until the mixture temperature converges to within a speci�ed tolerance.

2.9.13.2. H2 Dissociation Model

Similar to the CO2 dissociation model described in 2.9.13.1, at high temperatures the equilibrium
reaction

H2 ⇔ 2H (2.304)

becomes active to dissociate H2 species into H atoms, which has the e�ect to cool the gas mixture.
Including the e�ects of this dissociation reaction in addition to the CO2 dissociation reaction will help
to control nonphysically-high temperatures that might result otherwise.

This model will adjust the EDC-reacted mixture (𝑌𝑘)flame in Equation 2.285 to include the e�ects of
equilibrium reaction 2.304. This equilibrium can be modeled by Equation 2.293, with the equilibrium
constant de�ned as

𝐾𝑝 =

(︀
𝑃H

𝑃 𝑜

)︀2(︁
𝑃H2

𝑃 𝑜

)︁ , (2.305)

where 𝑃H and 𝑃H2 are the partial pressures of H and H2, respectively. The standard-state Gibbs
function change for this reaction can be evaluated in terms of the Gibbs function of formation for each
species at temperature 𝑇 ,

Δ𝐺𝑜
𝑇 =

(︀
2 𝑔𝑜𝑓,H − 𝑔𝑜𝑓,H2

)︀
𝑇ref=𝑇

. (2.306)

Simplifying this equilibrium expression and writing it in terms of the number of moles of each species
in a �xed-mass volume results in the equilibrium equation

𝑛2
H

𝑛H2 𝑛tot

(︂
𝑃

𝑃 𝑜

)︂
= exp

(︂
−Δ𝐺𝑜

𝑇

𝑅𝑢𝑇

)︂
. (2.307)
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An additional equation may be written to enforce conservation of H atoms within the reaction
volume,

𝑁𝐻 = 𝑛H + 2𝑛H2 , (2.308)

where𝑁𝐻 is the �xed number of moles of hydrogen atoms during the equilibrium reaction.
Equations 2.307 and 2.308 represent a system of two equations that can be solved for the two unknowns
𝑛H2 and 𝑛H at the equilibrium state.

Similar to the CO2 dissociation model, the numerical solution procedure begins by approximating the
number of moles of each species from the reacted mixture mass fraction vector 𝑌𝑖 as 𝑛𝑖 = 𝑌𝑖/𝑊𝑖, on a
per-unit-mass-of-mixture basis. Eliminating 𝑛H2 from Equation 2.307 yields a nonlinear equation that
can be solved directly for 𝑛H from the �xed atom balance at a �xed temperature 𝑇 and pressure 𝑃 ,

𝑛2
H − 1

4

(︂
𝑃 𝑜

𝑃

)︂
exp

(︂
−Δ𝐺𝑜

𝑇

𝑅𝑢𝑇

)︂
(𝑁𝐻 − 𝑛h)

(︃
𝑁𝐻 + 𝑛H + 2

𝑁inert∑︁
𝑗

𝑛𝑗

)︃
= 0, (2.309)

where
𝑁inert∑︀
𝑗

𝑛𝑗 represents the summation of the number of moles of all species present in the mixture

that do not participate directly in the equilibrium reaction, i.e. all species except for H2 and H.

A standard Newton’s method may be used to iteratively solve 2.309,

𝑛𝑛+1
H = 𝑛𝑛H − 𝑓(𝑛H)

𝑓 ′(𝑛H)
, (2.310)

where the function 𝑓(𝑛H) is Equation 2.309 and the derivative function 𝑓 ′(𝑛H) is

𝑓 ′(𝑛H) = 2𝑛H − 1

4

(︂
𝑃 𝑜

𝑃

)︂
exp

(︂
−Δ𝐺𝑜

𝑇

𝑅𝑢𝑇

)︂[︃
(𝑁𝐻 − 𝑛H)−

(︃
𝑁𝐻 + 𝑛H + 2

𝑁inert∑︁
𝑗

𝑛𝑗

)︃]︃
. (2.311)

Once this equation is solved for 𝑛H, then the following equations may be used to evaluate the remaining
equilibrium species moles,

𝑛H2 =
1

2
(𝑁𝐻 − 𝑛H) (2.312)

With the new molar mixture de�ned for the equilibrium species, the mass fraction vector may be
reconstructed by 𝑌𝑖 = 𝑛𝑖𝑊𝑖. This new mixture composition will result in a di�erent temperature since
the enthalpy is �xed. After the new temperature is evaluated, this entire procedure may be repeated
iteratively until the mixture temperature converges to within a speci�ed tolerance.

2.10. LAMINAR FLAMELET TURBULENT COMBUSTION
MODEL

Laminar �amelet models for non-premixed turbulent combustion treat turbulent �ames as an ensemble
of laminar di�usion �ames. [51] Nonequilibrium chemistry e�ects may be included in the model by
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accounting for localized �uid strain, resulting in what is classically called the Strained Laminar �amelet
Model (SLFM). Nonadiabatic e�ects may also be included by accounting for losses to the surroundings
in the ensemble of �amelets.

The fundamental assumption is that the chemical time scales of the important reactions are fast enough
that they occur only in a thin layer around stoichiometry, thinner (ideally) than the smallest scales of the
turbulence. De�ning a small quantity 𝜖 = ℓreaction zone/ℓmixing layer ≪ 1, we can examine the governing
equations in that thin region using a multiscale asymptotic expansion as

𝑌𝑖 = 𝑌𝑖(𝜁, 𝜏, 𝑥, 𝑡) + 𝜖𝑌 1
𝑖 (𝜁, 𝜏, 𝑥, 𝑡) + . . . , 𝜁 =

𝑍(𝑥, 𝑡)− 𝑍st

𝜖
and 𝜏 = 𝑡/𝜖2. (2.313)

Collecting the dominant terms, making some standard simpli�cations, and assuming that the chemical
reaction scales as 𝜖−2, the state of the gas depends on the �ow scale𝑍 and 𝜒 = 2𝐷|∇𝑍|2:

𝜌
𝜕𝑌𝑖
𝜕𝑡

− 𝜌𝜒

2

1

Le𝑖

𝜕2𝑌𝑖
𝜕𝑍2

− 𝜔̇𝑖(Φ⃗) = 0

𝜌
𝜕𝑇

𝜕𝑡
− 𝜌𝜒

2

(︂
𝜕2𝑇

𝜕𝑍2
+

1

𝑐𝑝

𝜕𝑐𝑝
𝜕𝑍

𝜕𝑇

𝜕𝑍

)︂
− 𝜔̇𝑇 (Φ⃗) = 0

and 𝑇 (𝑍 = 0, 𝑡) = 𝑇ox., 𝑇 (𝑍 = 1, 𝑡) = 𝑇fuel, 𝑌𝑖(𝑍 = 0, 𝑡) = 𝑌i,ox., 𝑌𝑖(𝑍 = 1, 𝑡) = 𝑌i,fuel,

with 𝜌 = 𝜌(Φ⃗) and 𝑐𝑝 = 𝑐𝑝(Φ⃗), (2.314)

where Φ⃗ is the state vector Φ⃗ = (𝑃th, 𝑇, 𝑌0, 𝑌1, . . . , 𝑌𝑁). The approximation allows us to resolve the
chemical scales in the phase space of the mixture fraction instead of on a three-dimensional grid,
granting dramatic computational savings. If we make the additional assumption that the chemistry is
quasi-steady on the scale of the �ow, then the chemical structure in mixture fraction space can be
pre-computed o�ine from the simulation for a range of �ow parameters 𝜒 and tabulated (using
fuego_tabular_props). During the �ow simulation, the solution of the �amelet simulation can be
queried to determine required �ow properties, e.g. 𝜌 = 𝜌(𝑍, 𝜒). Note that the �amelet formulation in
Eq. 2.314 is speci�cally for a “two-stream” problem, with constant Lewis numbers, where the boundary
and initial conditions of the simulation can be completely described by linear combinations of two
constant state vectors. Additional “streams” and boundary heat losses will require additional transport
equations to be solved.

This section summarizes the basic formulation and implementation details of both the adiabatic and
nonadiabatic �amelet model and SLF model, including both the property table generation procedure in
fuego_tabular_props and the usage of the property table in fuego to evaluate turbulent �ltered
quantities of interest for both adiabatic and nonadiabatic con�gurations.

2.10.1. Adiabatic Property Table Generation

2.10.1.1. Laminar Flamelet Generation

Unstrained �amelet libraries, where nonequilibrium chemistry e�ects may be neglected with respect to
�uid strain rates, can be generated directly with the fuego_tabular_props application. These
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libraries should be used either in laminar �ow or in turbulent �ow where the turbulence/chemistry
interactions may be neglected.

Equilibrium chemistry, Burke-Schumann chemistry, or nonreacting �ow scenarios are supported in
con�gurations where there are two or more streams that may be mixed and potentially reacted. The
stream composition is parameterized by the mixture fraction vector𝑍𝑚, where each of the𝑀
component represents the fraction of mass that originated in that stream, where there are𝑁 streams and
𝑀 = 𝑁 − 1. The mixture fraction for the �nal stream may be evaluated as𝑍𝑁 = 1−

∑︀𝑀
𝑚=1 𝑍𝑚.

The resulting �amelet data can then be assembled into a sequence of multi-dimensional tables of
dependent variable 𝜑 as a function of the mixture fraction vector, 𝜑(𝑍𝑚), and can be used directly for
laminar simulations. Adding turbulence interactions, nonequilibrium e�ects, and nonadiabatic e�ects
will increase the dimensionality of this lookup table and require additional processing. See the following
sections for more information.

2.10.1.2. Strained Laminar Flamelet Libraries

Strained laminar �amelet data may be generated for use in Fuego with the Spit�re code. This data is
two-dimensional in nature, determined by the mixture fraction and a reference scalar dissipation rate 𝜒𝑜
at a reference mixture fraction𝑍𝑜. The instantaneous laminar scalar dissipation rate is de�ned as

𝜒 = 2𝐷
𝜕𝑍

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
, (2.315)

with D being the molecular mass di�usion coe�cient. The reference value 𝜒𝑜 is arbitrary, although
typical choices include the stoichiometric value 𝜒st = 𝜒(𝑍st) or the maximum value
𝜒max = 𝜒(𝑍 = 0.5). Stoichiometric values are used in Fuego. After generating �amelet data with
Spit�re, the fuego_tabular_props application can be used to assemble it into a sequence of
multi-dimensional tables of dependent variable 𝜑 as a function of the mixture fraction vector and
reference scalar dissipation rate, 𝜑(𝑍𝑚, 𝜒𝑜). These tables may be then be used to evaluate properties in
Fuego. Please see section 2.10.6 for details regarding the generation of �amelet libraries with Spit�re.

2.10.1.3. Turbulent Averaging

In turbulent simulations, a �ltered form of the governing equations are solved to reduce the resolution
requirements to an a�ordable level. Temporal �ltering is used in Reynolds Averaged Navier-Stokes
(RANS) models and spatial �ltering is used in Large Eddy Simulation (LES) models. Both types of
�ltering are represented with the notation 𝜑, and are handled similarly in the present work.
Density-weighted, or Favre �ltering greatly simpli�es the treatment of variable-density �ow. A
Favre-�ltered quantity is represented by 𝜑 ≡ 𝜌𝜑/𝜌. Please see the fuego theory manual for further
details.

For use in turbulent simulations, a Favre-�ltered version of the variables in the property table must be
calculated. This is performed by convoluting the property variable with the joint PDF of the
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independent variable sub-�lter �uctuations, and is mathematically expressed as

𝜑(𝑍𝑚,
̃︂𝑍 ′′2, 𝜒̃) =

∞∫︁
0

1∫︁
0

𝜑(𝑍𝑚, 𝜒𝑜) 𝑝𝑍𝜒(𝑍𝑖, 𝜒;𝑍𝑚,
̃︂𝑍 ′′2, 𝜒̃) d𝑍𝑖 d𝜒, (2.316)

where 𝑝𝑍𝜒(𝑍𝑖, 𝜒;𝑍𝑚,̃︂𝑍 ′′2, 𝜒̃) is the joint PDF of sub-�lter �uctuations of the dependent variable 𝜑 in
𝑍𝑖-𝜒 space, parameterized by the �ltered mixture fractions𝑍𝑚 and the variancẽ︂𝑍 ′′2 of mixture fraction
component𝑍𝑖, and the �ltered scalar dissipation rate 𝜒̃. The reference scalar dissipation rate has the
functionality 𝜒𝑜(𝑍𝑖,̃︂𝑍 ′′2, 𝜒̃), which will be discussed in the following section. Variance of only a single
component of mixture fraction,𝑍𝑖, is considered at present for simplicity, although extensions to
include additional components are possible. Statistical independence will be assumed between𝑍𝑖 and 𝜒
�uctuations, so that

𝜑(𝑍𝑚,
̃︂𝑍 ′′2, 𝜒̃) =

∞∫︁
0

1∫︁
0

𝜑(𝑍𝑚, 𝜒𝑜) 𝑝𝑍(𝑍𝑖;𝑍𝑚,
̃︂𝑍 ′′2) 𝑝𝜒(𝜒; 𝜒̃) d𝑍𝑖 d𝜒. (2.317)

For the present work, 𝑝𝑍(𝑍𝑖;𝑍𝑚,̃︂𝑍 ′′2) will be modeled as either a beta PDF or a clipped Gaussian PDF
and 𝑝𝜒(𝜒; 𝜒̃) will be modeled as the delta function 𝛿(𝜒− 𝜒̃).

2.10.1.4. Property Table Implementation

The convolution integral in Equation 2.317 would be prohibitively expensive to evaluate each time a
value for 𝜑 is needed by a turbulent reacting simulation. Therefore, this integral will be pre-calculated
so that each property table query will only involve an interpolation from a table of values.

Storing the �nal 𝜑(𝑍𝑚,̃︂𝑍 ′′2, 𝜒̃) values directly is undesirable since the range of possible 𝜒̃ values for
each �amelet is di�erent, resulting in a non-orthogonal table. Instead, the values 𝜑𝑇 (𝑍𝑚,̃︂𝑍 ′′2, 𝜒𝑜) are
stored in an orthogonal table that is indexed by𝑍𝑚,̃︂𝑍 ′′2, and 𝜒𝑜(𝑍𝑖,̃︂𝑍 ′′2, 𝜒̃). These tabulated values
are calculated by

𝜑𝑇 (𝑍𝑚,
̃︂𝑍 ′′2, 𝜒𝑜) =

∫︁ 1

0

𝜑(𝑍𝑚, 𝜒𝑜) 𝑝𝑍(𝑍𝑖;𝑍𝑚,
̃︂𝑍 ′′2) d𝑍𝑖. (2.318)

The reference scalar dissipation rate 𝜒𝑜 needed for lookup in the table for 𝜑𝑇 (𝑍𝑚,̃︂𝑍 ′′2, 𝜒𝑜) can be
evaluated from the local �ltered scalar dissipation rate 𝜒̃ through laminar �amelet theory. The
instantaneous scalar dissipation rate 𝜒 can be approximated by

𝜒 = 𝜒max exp
(︀
−2[erfc−1(2𝑍)]2

)︀
= 𝜒max𝐹𝜒(𝑍), (2.319)

where 𝜒max is the maximum scalar dissipation rate found in the counter�ow di�usion �ame, which
occurs at the stagnation point where𝑍 = 0.5. (Note that this expression has not yet been extended to
multiple mixture fractions, so that this treatment is only applicable for two-stream problems.) The
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value of 𝜒 at any reference location in the �amelet can be similarly approximated, so that
𝜒𝑜 = 𝜒max𝐹𝜒(𝑍𝑜). Combining these models by equating the unknown 𝜒max yields a closed-form
expression linking the scalar dissipation rate at any location to the reference value on the �amelet with
the same characteristic 𝜒max,

𝜒 = 𝜒𝑜
𝐹𝜒(𝑍)

𝐹𝜒(𝑍𝑜)
. (2.320)

Applying the �ltering operation in Equation 2.317 to both sides of Equation 2.320 for a single-mixture
fraction con�guration yields

𝜒̃ =

∞∫︁
0

1∫︁
0

𝜒𝑜
𝐹𝜒(𝑍)

𝐹𝜒(𝑍𝑜)
𝑝𝑍(𝑍;𝑍,

̃︂𝑍 ′′2) 𝑝𝜒(𝜒; 𝜒̃) d𝑍 d𝜒 (2.321)

=
𝜒𝑜

𝐹𝜒(𝑍𝑜)

∫︁ ∞

0

𝑝𝜒(𝜒; 𝜒̃) d𝜒

∫︁ 1

0

𝐹𝜒(𝑍) 𝑝𝑍(𝑍;𝑍,
̃︂𝑍 ′′2) d𝑍 (2.322)

=
𝜒𝑜

𝐹𝜒(𝑍𝑜)

∫︁ 1

0

𝐹𝜒(𝑍) 𝑝𝑍(𝑍;𝑍,
̃︂𝑍 ′′2) d𝑍, (2.323)

so that the �ltered reference scalar dissipation rate can be calculated from the �ltered quantities
provided by the turbulent �ame simulation as

𝜒𝑜(𝑍,
̃︂𝑍 ′′2, 𝜒̃) =

𝜒̃ 𝐹𝜒(𝑍𝑜)∫︀ 1

0
𝐹𝜒(𝑍) 𝑝𝑍(𝑍;𝑍,

̃︂𝑍 ′′2) d𝑍,
. (2.324)

To decrease computational cost, the integral in the denominator can be interpolated from
pre-calculated values in a two-dimensional table as a function of𝑍 and𝑍 ′′2.

To summarize, the turbulent reacting simulation will query the property table for the variable
𝜑(𝑍𝑚,

̃︂𝑍 ′′2, 𝜒̃). Internally, Equation 2.324 will be used to calculate 𝜒𝑜 as a function of the provided
�ltered independent variables. This value will then be used along with the provided independent
variables to interpolate a value for 𝜑𝑇 (𝑍𝑚,̃︂𝑍 ′′2, 𝜒𝑜) from the stored table that was pre-calculated with
Equation 2.318. This interpolated value will then be returned to the main simulation as the requested
value for 𝜑(𝑍𝑚,̃︂𝑍 ′′2, 𝜒̃).

If turbulence/chemistry interactions are to be neglected in the simulation, the delta function 𝛿(𝑍 − 𝑍)
may be used for 𝑝𝑍(𝑍;𝑍) in Equation 2.324 so that the reference scalar dissipation rate can be
computed simply as

𝜒𝑜(𝑍, 𝜒̃) =
𝜒̃ 𝐹 (𝑍𝑜)

𝐹 (𝑍)
. (2.325)

Once the multidimensional property table has been generated, it can be imported into fuego and
queried for the dependent variables as a function of the independent variables𝑍𝑚,̃︂𝑍 ′′2, and 𝜒̃. Models
are required for each of these independent variables used by the �amelet property table.
Sections 2.10.3–2.10.5 present models for each of these quantities for each of the supported turbulence
closure models.
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2.10.2. Nonadiabatic Property Table Generation

When including the e�ects of radiative or convective heat losses in a �amelet simulation, additional
parameterizations beyond those in the previous section are required. These are the “conserved
enthalpy”, ℎ* and heat loss parameter 𝛾, where the heat loss parameter is de�ned as 𝛾 = ℎ− ℎ*. The
conserved enthalpy is identical to the traditional enthalpy except that its transport equation omits all
source terms (typically due to radiative losses).

This formulation is used as a way to parameterize losses in a manner that is consistent with the opposed
di�usion �ame burner simulations used to generate the �amelet libraries. In these burner simulations,
the in�owing pure stream states are �xed and cannot experience any heat losses; Losses only occur in the
interior of the burner, and are represented by 𝛾 variation. A range of in�owing pure stream states may
also be computed, and are parameterized through ℎ* variation. In this way, the full range of possible
states may be tabulated and retrieved in a �re simulation through values of ℎ and ℎ*, which are both
straightforward to compute.

For turbulent simulations, the Favre-�ltered property variable 𝜑 is evaluated as

𝜑(𝑍𝑚,
̃︂𝑍 ′′2, 𝜒̃, 𝛾, ℎ̃*) =

∞∫︁
−∞

∞∫︁
−∞

∞∫︁
0

1∫︁
0

𝜑(𝑍𝑚, 𝜒𝑜, 𝛾𝑜, ℎ
*
𝑜) 𝑝𝑍𝜒𝛾ℎ*(𝑍𝑚, 𝜒, 𝛾, ℎ

*;

𝑍𝑚,
̃︂𝑍 ′′2, 𝜒̃, 𝛾, ℎ̃*) d𝑍𝑚 d𝜒 d𝛾 dℎ*, (2.326)

where 𝛾𝑜 and ℎ*𝑜 are reference values of the heat loss parameter and the conserved enthalpy, respectively,
to be de�ned in the following sections. Statistical independence will be assumed between �uctuations
of each𝑍𝑚 component, 𝜒, 𝛾, and ℎ*, so that

𝜑(𝑍𝑚,
̃︂𝑍 ′′2, 𝜒̃, 𝛾, ℎ̃*) =

∞∫︁
−∞

∞∫︁
−∞

∞∫︁
0

1∫︁
0

1∫︁
0

𝜑(𝑍𝑚, 𝜒𝑜, 𝛾𝑜, ℎ
*
𝑜) 𝑝𝑍𝑖

(𝑍𝑖;𝑍𝑖,
̃︂𝑍 ′′2) 𝑝𝑍𝑚(𝑍𝑚;𝑍𝑚)

𝑝𝜒(𝜒; 𝜒̃) 𝑝𝛾(𝛾; 𝛾) 𝑝ℎ*(ℎ
*; ℎ̃*) d𝑍𝑖 d𝑍𝑚̸=𝑖 d𝜒 d𝛾 dℎ

*. (2.327)

For the present work, 𝑝𝑍𝑖
(𝑍𝑖;𝑍𝑖,

̃︂𝑍 ′′2) will be modeled as either a beta PDF or a clipped Gaussian PDF,
and 𝑝𝑍𝑚(𝑍𝑚;𝑍𝑚), 𝑝𝜒(𝜒; 𝜒̃), 𝑝𝛾(𝛾; 𝛾), and 𝑝ℎ*(ℎ*; ℎ̃*) will be modeled as the delta functions
𝛿(𝑍𝑚 − 𝑍𝑚), 𝛿(𝛾 − 𝛾), and 𝛿(𝜒− 𝜒̃), 𝛿(𝛾 − 𝛾), and 𝛿(ℎ* − ℎ̃*), respectively.

The convolution integral in Equation 2.327 would be prohibitively expensive to evaluate each time a
value for 𝜑 is needed by a turbulent reacting simulation. Therefore, this integral will be pre-calculated
so that each property table query will only involve an interpolation from a table of values.

Storing the �nal 𝜑(𝑍𝑚,̃︂𝑍 ′′2, 𝜒̃, 𝛾, ℎ̃*) values directly is undesirable since the range of possible 𝜒̃, 𝛾, and
ℎ̃* values for each �amelet is di�erent, resulting in a non-orthogonal table. Instead, the values
𝜑𝑇 (𝑍𝑚,

̃︂𝑍 ′′2, 𝜒𝑜, 𝛾𝑜, ℎ
*
𝑜) are stored in an orthogonal table that is indexed by𝑍𝑚,̃︂𝑍 ′′2, 𝜒𝑜(𝑍𝑖,̃︂𝑍 ′′2, 𝜒̃),
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𝛾𝑜(𝑍𝑖,
̃︂𝑍 ′′2, 𝛾), and ℎ*𝑜(𝑍𝑖, ℎ̃*). These tabulated values are calculated by

𝜑𝑇 (𝑍𝑚,
̃︂𝑍 ′′2, 𝜒𝑜, 𝛾𝑜, ℎ

*
𝑜) =

1∫︁
0

1∫︁
0

𝜑(𝑍𝑚, 𝜒𝑜, 𝛾𝑜, ℎ
*
𝑜) 𝑝𝑍𝑖

(𝑍𝑖;𝑍𝑖,
̃︂𝑍 ′′2) 𝑝𝑍𝑚(𝑍𝑚;𝑍𝑚) d𝑍𝑖 d𝑍𝑚 ̸=𝑖.

(2.328)
The required reference values of 𝛾𝑜 and ℎ*𝑜 are described in the following sections.

2.10.2.1. Boundary heat loss

The addition of a temperature boundary condition on the wall requires a modi�cation of the �amelet
formulation of Eq. 2.314. The equation for a normalized temperature variable, 𝜃 = 𝑇/𝑇ox. − 1, is

𝜕𝑡 (𝜌𝜃) +∇ · (𝜌u𝜃)−∇ · (𝜆∇𝜃) = 𝐿𝐷𝜃 = 𝜔̇𝑇 (𝜃, 𝑌⃗ ) in Ω (2.329)
𝜃(𝑥 ∈ 𝜕Ωfuel) = 𝜃fuel, 𝜃(𝑥 ∈ 𝜕Ωox) = 0, and 𝜃(𝑥 ∈ 𝜕Ωwall) = 𝜃wall, (2.330)

which now has an extra boundary term 𝜃(𝑥 ∈ 𝜕Ωwall) = 𝜃wall. The extra boundary condition remains
when we apply the �amelet approximation, leaving 𝜃(𝑍 = 𝑍wall) = 𝜃wall. The value of the mixture
fraction at the wall, however, is undecided: we only know that ∇𝑍 · 𝑛 = 0. During the simulation, the
value of mixture fraction directly evaluated at the wall can be determined dynamically and the value of
temperature can be computed. Away from the wall, however, one in principle would need to follow the
𝜁 coordinate from the �amelet transformation until it intersects the wall. However, given that
∇𝑍 · 𝑛 = 0, the gradient trajectory in principle is tangential to the wall. Although the �amelet
equation itself is well-posed, the asymptotic derivation of the �amelet model in the very near region to a
nonadiabatic wall and the equations need to modi�ed in some fashion to account.

Flamelets can readily be described when they are adiabatic; in the limit of unity Lewis numbers and
adiabatic systems the enthalpy is a linear function of the mixture fraction. The existence of radiative
transport and wall heat transfer introduces deviations from this linear relationship between ℎ and𝑍 .
Heat losses at the predominant boundary temperature are a common scenario. De�ning a reference
‘boundary temperature’ at 𝑇fr(𝑍) = (1− 𝑍)𝑇ox + 𝑍𝑇fuel, then this case a simpli�ed �amelet
temperature equation with heat losses could be written as

𝜌𝜕𝑡𝑇 − 1

2
𝜌𝜒𝜕2𝑍𝑇 = 𝜔̇𝑇 (Φ⃗)−𝐻𝑇 (𝑇 − 𝑇fr) (2.331)

where𝐻𝑇 represents a heat transfer coe�cient that will be further discussed below. This gives a heat
loss term that is linear in 𝑇 . Alternately, the heat loss can be written speci�cally for radiative-style losses,
𝑞losses = 𝜎(Φ⃗)(𝑇 4 − 𝑇 4

fr). Regardless, with heat loss expressed in terms of 𝑇fr the �amelet enthalpy is
no longer linear in𝑍 but instead takes on a roughly inverted triangular form with an extrema at the
peak temperature, roughly𝑍𝑠𝑡. This has led us to express the di�erence between the adiabatic enthalpy,
de�ned as ℎ𝑐 = ℎox(1− 𝑍) + ℎfuel𝑍 , and the actual �amelet computed enthalpy, ℎ, as 𝛾 = ℎ− ℎ𝑐.
The introduction of 𝛾 is done strictly as an expedient for generation of �amelet libraries. By assuming a
triangular form (or any particular assumed form) we can stretch the table entries into a square format by
tabulating as a function of the stoichiometric value of 𝛾𝑠𝑡. This does require the use of the assumed
form for 𝛾 for converting from the local𝑍 value of 𝛾 = ℎ(𝑍)− ℎ𝑐(𝑍) to 𝛾st. Comparison with DNS
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and unsteady �amelets for laminar �ames shows good agreement with this type of enthalpy defect
model for radiation in unity Lewis number �ames (which is an appropriate assumption for turbulent,
hydrocarbon �res) [52]. We make an assumption of path independence for the solution of at particular
integrated heat loss, but in reality the solution will depend somewhat on the value of𝐻𝑇 and the form
of the added heat loss term.

The compensation for boundary heat loss can be extended to a full range of temperature (below 𝑇fr.) in
the �amelet libraries by not only including an integrated heat loss rate from the �amelets, but also a
translation of the �amelet in enthalpy space. This translation is simply denoted ℎ⋆, where the conserved
enthalpy line is shifted as ℎ𝑐 = ℎox(1− 𝑍) + ℎfuel𝑍 + ℎ⋆. This allows a ful description of wall
boundary heat loss. Having two heat loss parameterizations, however, makes the lookup procedure
non-unique, requiring a method for deciding which point on (𝛾, ℎ⋆) to use for the �amelet lookup. We
prefer 𝛾 and use 𝛾 as much as possible. When 𝛾 is insu�cient, which would is the case for overly cold or
hot walls (wall temperatures outside of the range of temperatures spanned by the solutions of Eq. 2.331).
At the wall boundaries, the conserved enthaply is de�ned to not be a�ected by heat loss while the true
enthalpy is, providing 𝛾 at the wall.

2.10.2.2. Property Table Heat Loss Parameterization

For nonadiabatic �amelet library generation and tabulation, a functional form for the heat loss
parameter 𝛾 in terms of reference quantities is required, similar in concept to the form of 𝜒 in
Equation 2.319. The value of 𝛾 must be zero in each of the pure streams, and should have a maximum
value near the stoichiometric �ame sheet since this quantity typically represents radiative losses to the
environment. A piecewise linear functional form is selected for simplicity. For a single mixture fraction,
this form is simply

𝛾 = 𝛾𝑜 𝐹𝛾(𝑍,𝑍𝑜), (2.332)

where 𝛾𝑜 is a reference heat loss at reference state𝑍𝑜 (selected to be the stoichiometric condition𝑍st)
and the nondimensional function 𝐹𝛾(𝑍,𝑍𝑜) is de�ned as

𝐹𝛾(𝑍,𝑍𝑜) =

{︂
𝑍
𝑍𝑜

: 𝑍 ≤ 𝑍𝑜
1−𝑍
1−𝑍𝑜

: 𝑍 > 𝑍𝑜
. (2.333)

For multiple mixture fractions, 𝛾 is calculated by

𝛾 = 𝛾𝑜 𝐹𝛾(𝑍𝑚, 𝑍𝑜,𝑘𝑚, 𝛾
max
𝑜,𝑘 ), (2.334)

where 𝛾𝑜 is the maximum-magnitude reference heat loss in the vector 𝛾max
𝑜,𝑘 , which contains the

reference heat loss parameters corresponding to maximum thermal losses for the𝐾 stoichiometric
mixture fractions that can be de�ned between stream pairs,𝑍𝑜,𝑘𝑚. The multiple stoichiometric mixture
fractions are necessary because a single unique stoichiometric mixture fraction does not exist when
using multiple mixture fractions.

The functional form for 𝐹𝛾 is quite complex for multiple mixture fractions, and will only be described
brie�y here. In general, for a three-stream problem, there are two independent mixture fractions and the
realizable mixture fraction space is the triangle where the two mixture fractions sum to a value less than
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or equal to unity. The value of 𝐹𝛾 must be zero at the “corners” of this space, where the coordinates are
(0, 0), (0, 1), and (1, 0). The multiple stoichiometric mixture fractions between stream pairs will de�ne
points along the boundaries of this realizable mixture fraction space that represent local maxima in the
heat loss distribution along that boundary. Straight lines may be used to connect these points in
mixture fraction space, forming a “ridge” in the multidimensional 𝐹𝛾 distribution. When de�nable, a
linear �t is used between this ridge and a corner where 𝛾 is zero. When not uniquely de�nable, linear �ts
are used between the ridge and the adjacent boundary value along rays extended from the opposite
corner of the state space. Note that the values 𝛾𝑜,𝑘 are required for the calculation of 𝐹𝛾 so that the �nal
function may be normalized to a unity maximum value with appropriate relative scaling between the
boundary heat loss values. Note that no more than a three-stream con�guration is currently supported
by fuego_tabular_props.

Applying the �ltering operation in Equation 2.327 to both sides of Equation 2.334 yields

𝛾 =

∞∫︁
−∞

∞∫︁
−∞

∞∫︁
0

1∫︁
0

1∫︁
0

𝛾𝑜 𝐹𝛾(𝑍𝑚, 𝑍𝑜,𝑘𝑚, 𝛾
max
𝑜,𝑘 ) 𝑝𝑍𝑖

(𝑍𝑖;𝑍𝑖,
̃︂𝑍 ′′2) 𝑝𝑍𝑚(𝑍𝑚;𝑍𝑚)

𝑝𝜒(𝜒; 𝜒̃) 𝑝𝛾(𝛾; 𝛾) 𝑝ℎ*(ℎ
*; ℎ̃*) d𝑍𝑖 d𝑍𝑚 ̸=𝑖 d𝜒 d𝛾 dℎ

* (2.335)

= 𝛾𝑜

∫︁ ∞

−∞
𝑝ℎ*(ℎ

*; ℎ̃*) dℎ*
∫︁ ∞

−∞
𝑝𝛾(𝛾; 𝛾) d𝛾

∫︁ ∞

0

𝑝𝜒(𝜒; 𝜒̃) d𝜒

1∫︁
0

1∫︁
0

𝐹𝛾(𝑍𝑚, 𝑍𝑜,𝑘𝑚, 𝛾
max
𝑜,𝑘 ) 𝑝𝑍𝑖

(𝑍𝑖;𝑍𝑖,
̃︂𝑍 ′′2) 𝑝𝑍𝑚(𝑍𝑚;𝑍𝑚) d𝑍𝑖 d𝑍𝑚 ̸=𝑖 (2.336)

= 𝛾𝑜

1∫︁
0

1∫︁
0

𝐹𝛾(𝑍𝑚, 𝑍𝑜,𝑘𝑚, 𝛾
max
𝑜,𝑘 ) 𝑝𝑍𝑖

(𝑍𝑖;𝑍𝑚,
̃︂𝑍 ′′2) 𝑝𝑍𝑚(𝑍𝑚;𝑍𝑚) d𝑍𝑖 d𝑍𝑚 ̸=𝑖, (2.337)

so that the �ltered heat loss parameter can be calculated from the �ltered quantities provided by the
turbulent �ame simulation as

𝛾𝑜(𝑍𝑚,
̃︂𝑍 ′′2, 𝛾) =

𝛾
1∫︀
0

1∫︀
0

𝐹𝛾(𝑍𝑚, 𝑍𝑜,𝑘𝑚, 𝛾max
𝑜,𝑘 ) 𝑝𝑍𝑖

(𝑍𝑖;𝑍𝑖,
̃︂𝑍 ′′2) 𝑝𝑍𝑚(𝑍𝑚;𝑍𝑚) d𝑍𝑖 d𝑍𝑚̸=𝑖

. (2.338)

To decrease computational cost, the integral in the denominator can be interpolated from
pre-calculated values in a multi-dimensional table as a function of𝑍𝑚 and̃︂𝑍 ′′2. Equation 2.338 can be
used during a simulation to convert �ltered independent variables to the reference heat loss parameter
required to perform table lookups to retrieve 𝜑𝑇 .

If turbulence/chemistry interactions are to be neglected in the simulation, the delta function
𝛿(𝑍𝑖 − 𝑍𝑖) may be used for 𝑝𝑍𝑖

(𝑍𝑖;𝑍𝑖,
̃︂𝑍 ′′2) in Equation 2.338 so that the reference heat loss parameter

can be computed simply as

𝛾𝑜(𝑍𝑚, 𝛾) =
𝛾

𝐹𝛾(𝑍𝑚, 𝑍𝑜,𝑘𝑚, 𝛾max
𝑜,𝑘 )

. (2.339)
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2.10.2.3. Property Table Conserved Enthalpy Parameterization

For nonadiabatic �amelet library generation and tabulation, a functional form for the conserved
enthalpy ℎ* in terms of reference quantities is required. The value of ℎ* should vary linearly within the
range provided for each of the pure streams as a function of a reference heat loss parameter ℎ*𝑜, with an
appropriate stream-weighted blending for all other compositions.

The stream-weighted mixture properties are computed with an augmented mixture fraction vector𝑍 ′
𝑛

in terms of𝑍𝑚,

𝑍 ′
𝑛 =

[︃
𝑍1, 𝑍2, . . . , 𝑍𝑀 , 1−

𝑀∑︁
𝑚=1

𝑍𝑚

]︃
, (2.340)

where the last component is simply the last implied mixture fraction to recover a unity sum. A reference
augmented mixture fraction is de�ned as the centroid of the realizable mixture fraction space with each
component being identical and equal to

𝑍 ′
𝑜,𝑛 =

1

𝑁
. (2.341)

From these de�nitions, minimum and maximum reference conserved enthalpy values may be computed
as

ℎ*𝑜,min =
𝑁∑︁
𝑛=1

ℎ*stream,min,𝑛 𝑍
′
𝑜,𝑛 (2.342)

ℎ*𝑜,max =
𝑁∑︁
𝑛=1

ℎ*stream,max,𝑛 𝑍
′
𝑜,𝑛, (2.343)

where ℎ*stream,min,𝑛 and ℎ*stream,max,𝑛 are vectors of the minimum and maximum conserved enthalpy in
pure stream 𝑛, respectively. The conserved enthalpy can then be modeled as

ℎ* = ℎ*min,𝑍 +
(︀
ℎ*𝑜 − ℎ*𝑜,min

)︀
𝑎𝑍 , (2.344)

where the mixture-weighted minimum conserved enthalpy is

ℎ*min,𝑍 =
𝑁∑︁
𝑛=1

ℎ*stream,min,𝑛 𝑍
′
𝑛 (2.345)

and the mixture-weighted stream variation proportionality constant is

𝑎𝑍 =
𝑁∑︁
𝑛=1

(︂
ℎ*stream,max,𝑛 − ℎ*stream,min,𝑛

ℎ*𝑜,max − ℎ*𝑜,min

)︂
𝑍 ′
𝑛. (2.346)

Applying the �ltering operation in Equation 2.327 to both sides of Equation 2.344 yields

ℎ̃* = ℎ̃*min,𝑍 +
(︀
ℎ*𝑜 − ℎ*𝑜,min

)︀
𝑎̃𝑍 , (2.347)
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where the two mixture-weighted quantities are now expressed in terms of the augmented �ltered
mixture fraction as

ℎ̃*min,𝑍 =
𝑁∑︁
𝑛=1

ℎ*stream,min,𝑛 𝑍
′
𝑛 (2.348)

and

𝑎̃𝑍 =
𝑁∑︁
𝑛=1

ℎ*stream,max,𝑛 − ℎ*stream,min,𝑛

ℎ*𝑜,max − ℎ*𝑜,min

𝑍 ′
𝑛. (2.349)

This allows the reference conserved enthalpy to be expressed in terms of the �ltered quantities provided
by the turbulent �ame simulation as

ℎ*𝑜(𝑍𝑚, ℎ̃
*) = ℎ*𝑜,min +

ℎ̃* − ℎ̃*min,𝑍

𝑎̃𝑍
. (2.350)

2.10.3. Filtered Scalar Dissipation Rate

2.10.3.1. RANS Model

For RANS turbulence closure models the instantaneous laminar scalar dissipation rate given in
Equation 2.315 can be Favre-�ltered and expanded to the form

𝜌𝜒̃ = 2𝜌𝐷
𝜕𝑍

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
(2.351)

= 2𝜌𝐷
𝜕𝑍

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
+ 4𝜌𝐷

𝜕𝑍 ′′

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
+ 2𝜌𝐷

𝜕𝑍 ′′

𝜕𝑥𝑖

𝜕𝑍 ′′

𝜕𝑥𝑖
. (2.352)

The middle term on the RHS is neglected for constant density �ow [53]. The �rst term is referred to as
the mean scalar dissipation rate

𝜌𝜒̃𝑚 = 2𝜌𝐷
𝜕𝑍

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
(2.353)

and the third term is the perturbation scalar dissipation rate 𝜌𝜒̃𝑝. This term can be modeled as

𝜌𝜒̃𝑝 = 2𝜌𝐷
𝜕𝑍 ′′

𝜕𝑥𝑖

𝜕𝑍 ′′

𝜕𝑥𝑖
(2.354)

≈ 𝐶𝜒𝜌
𝜖

𝑘
̃︂𝑍 ′′2 (2.355)

for RANS-based turbulence closures where 𝜖
𝑘

provides an inverse turbulence time scale,̃︂𝑍 ′′2 is the scalar
variance that will be modeled in Section 2.10.5, and𝐶𝜒 is a model constant that typically has a value of
2.0. [51]

Expressing the molecular mass di�usivity as 𝜌𝐷 = 𝜇/Sc, where 𝜇 is the molecular viscosity and Sc is
the Schmidt number, the modeled total �ltered scalar dissipation rate for RANS closures is

𝜒̃ = 𝜒̃𝑚 + 𝜒̃𝑝 (2.356)

≈ 2

𝜌

𝜇

Sc

𝜕𝑍

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
+ 𝐶𝜒

𝜖

𝑘
̃︂𝑍 ′′2. (2.357)
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2.10.3.2. LES Model

For LES closures Equation 2.356 also applies, so that the total �ltered scalar dissipation rate is the sum of
the mean and the perturbation scalar dissipation rates. The mean scalar dissipation rate is expressed
identically to RANS closures as

𝜒̃𝑚 =
2

𝜌

𝜇

Sc

𝜕𝑍

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
. (2.358)

The perturbation scalar dissipation rate 𝜒̃𝑝 represents the sub-�lter dissipation of scalar variance, and
can be modeled by assuming that sub-�lter dissipation is in local equilibrium with sub-�lter production,
and that the sub-�lter production can be modeled with a gradient transport assumption as [54]

𝜌𝜒̃𝑝 = 2𝜌𝐷
𝜕𝑍 ′′

𝜕𝑥𝑖

𝜕𝑍 ′′

𝜕𝑥𝑖
= −2𝜌𝑢′′𝑖𝑍

′′ 𝜕𝑍

𝜕𝑥𝑖
(2.359)

≈ 2
𝜇𝑡
Sc𝑡

𝜕𝑍

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
, (2.360)

where 𝜇𝑡 is the modeled turbulent eddy viscosity and Sc𝑡 is the turbulent Schmidt number.

This results in the �nal modeled form for the �ltered total scalar dissipation rate for LES closures,

𝜒̃ = 𝜒̃𝑚 + 𝜒̃𝑝 (2.361)

≈ 2

𝜌

(︂
𝜇

Sc
+

𝜇𝑡
Sc𝑡

)︂
𝜕𝑍

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
. (2.362)

2.10.4. Filtered Mixture Fraction

The primary quantity used to identify the chemical state in Flamelet closure models is the mixture
fraction,𝑍 . While there are many di�erent de�nitions of the mixture fraction that have subtle
variations that attempt to capture e�ects like di�erential di�usion, they can all be interpreted as a local
mass fraction of the chemical elements that originated in the fuel stream. [55] The mixture fraction is a
conserved scalar that varies between 0 in the oxidizer stream and 1 in the fuel stream, and is transported
in laminar �ow by the equation

𝜕𝜌𝑍

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑍

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖

(︂
𝜌𝐷

𝜕𝑍

𝜕𝑥𝑖

)︂
, (2.363)

where𝐷 is an e�ective molecular mass di�usivity.

Applying either temporal Favre �ltering for RANS-based treatments or spatial Favre �ltering for
LES-based treatments yields

𝜕𝜌𝑍

𝜕𝑡
+
𝜕𝜌𝑢̃𝑖𝑍

𝜕𝑥𝑖
= −𝜏𝑍𝑢𝑗 +

𝜕

𝜕𝑥𝑖

(︃
𝜌𝐷

𝜕𝑍

𝜕𝑥𝑖

)︃
, (2.364)

99



where sub-�lter correlations have been neglected in the molecular di�usive �ux vector [56] and the
turbulent di�usive �ux vector is de�ned as

𝜏𝑍𝑢𝑗 ≡ 𝜌
(︁̃︂𝑍𝑢𝑖 − 𝑍𝑢̃𝑖

)︁
. (2.365)

Similar to species transport, this sub-�lter correlation is modeled in both RANS and LES closures with
the gradient transport approximation

𝜏𝑍𝑢𝑗 ≈ −𝜌𝐷𝑡
𝜕𝑍

𝜕𝑥𝑖
, (2.366)

where𝐷𝑡 is the turbulent mass di�usivity, modeled as 𝜌𝐷𝑡 = 𝜇𝑡/Sc𝑡 where 𝜇𝑡 is the modeled turbulent
viscosity from momentum transport and Sc𝑡 is the turbulent Schmidt number. Please see the Fuego
theory manual for further details. The molecular mass di�usivity is then expressed similarly as
𝜌𝐷 = 𝜇/Sc so that the �nal modeled form of the �ltered mixture fraction transport equation is

𝜕𝜌𝑍

𝜕𝑡
+
𝜕𝜌𝑢̃𝑖𝑍

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖

[︃(︂
𝜇

Sc
+

𝜇𝑡
Sc𝑡

)︂
𝜕𝑍

𝜕𝑥𝑖

]︃
. (2.367)

In integral form as used in Fuego, the mixture fraction transport equation is∫︁
𝜕𝜌𝑍

𝜕𝑡
𝑑𝑉 +

∫︁
𝜌𝑢̃𝑖𝑍𝑛𝑖 𝑑𝑆 =

∫︁ (︂
𝜇

Sc
+

𝜇𝑡
Sc𝑡

)︂
𝜕𝑍

𝜕𝑥𝑖
𝑛𝑖 𝑑𝑆. (2.368)

2.10.5. Filtered Scalar Variance

2.10.5.1. RANS Model

For RANS-based turbulence closures, a transport equation is solved for the �ltered scalar variance,̃︂𝑍 ′′2.
This equation can be derived by subtracting Equation 2.364 multiplied by𝑍 from the �lter of the
multiple of Equation 2.363 and𝑍 , yielding

𝜕𝜌̃︂𝑍 ′′2

𝜕𝑡
+

𝜕

𝜕𝑥𝑖

(︁
𝜌𝑢̃𝑖
̃︂𝑍 ′′2
)︁

= − 𝜕

𝜕𝑥𝑖

(︁
𝜌𝑢′′𝑖𝑍

′′2
)︁
+

𝜕

𝜕𝑥𝑖

(︃
𝜌𝐷

𝜕𝑍 ′′2

𝜕𝑥𝑖

)︃
+ 2𝑍 ′′2 𝜕

𝜕𝑥𝑖

(︃
𝜌𝐷

𝜕𝑍

𝜕𝑥𝑖

)︃

−2𝜌𝑢′′𝑖𝑍
′′ 𝜕𝑍

𝜕𝑥𝑖
− 2𝜌𝐷

𝜕𝑍 ′′

𝜕𝑥𝑖

𝜕𝑍 ′′

𝜕𝑥𝑖
, (2.369)

where the �ltered mixture fraction variance is de�ned as̃︂𝑍 ′′2 ≡ ̃︁𝑍2 − 𝑍2.

All �ve terms on the RHS of Equation 2.369 require closure models. The �rst term represents turbulent
transport of mixture fraction variance, and is modeled by a gradient-transport assumption as

− 𝜌𝑢′′𝑖𝑍
′′2 ≈ 𝜇𝑡

Sc𝑡

𝜕̃︂𝑍 ′′2

𝜕𝑥𝑖
. (2.370)
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The second and third terms on the RHS of Equation 2.369 taken together represent molecular
di�usion of mixture fraction variance, and is typically neglected with respect to turbulent transport for
su�ciently high Reynolds numbers. Its e�ects are included here with another gradient-transport
assumption of the form

𝜕

𝜕𝑥𝑖

(︃
𝜌𝐷

𝜕𝑍 ′′2

𝜕𝑥𝑖

)︃
+ 2𝑍 ′′2 𝜕

𝜕𝑥𝑖

(︃
𝜌𝐷

𝜕𝑍

𝜕𝑥𝑖

)︃
≈ 𝜕

𝜕𝑥𝑖

(︃
𝜇

Sc

𝜕̃︂𝑍 ′′2

𝜕𝑥𝑖

)︃
. (2.371)

The fourth and �fth terms on the RHS of Equation 2.369 represent production and dissipation of
mixture fraction variance, respectively. The production term is similarly modeled with a gradient
transport assumption as

− 2𝜌𝑢′′𝑖𝑍
′′ 𝜕𝑍

𝜕𝑥𝑖
≈ 2

𝜇𝑡
Sc𝑡

𝜕𝑍

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
. (2.372)

The mixture fraction variance dissipation rate term is equal to the perturbation scalar dissipation rate,

2𝜌𝐷
𝜕𝑍 ′′

𝜕𝑥𝑖

𝜕𝑍 ′′

𝜕𝑥𝑖
= 𝜌𝜒̃𝑝, (2.373)

previously de�ned in Equation 2.354 and modeled in Equation 2.355. An identical treatment of this
term is used here.

The �nal modeled form of the �ltered scalar variance transport equation for RANS turbulence closure
models is

𝜕𝜌̃︂𝑍 ′′2
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𝜕
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𝜕𝑥𝑖
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𝜇𝑡
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𝜕𝑍

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
− 𝜌𝜒̃𝑝. (2.374)

2.10.5.2. LES Model

For LES turbulence closures, the �ltered scalar variancẽ︂𝑍 ′′2 can be modeled with the scaling law [54]

𝜌̃︂𝑍 ′′2 ≈ 𝐶𝑉 𝜌Δ
2 𝜕𝑍

𝜕𝑥𝑖

𝜕𝑍

𝜕𝑥𝑖
, (2.375)

where Δ is a length scale corresponding to the grid �lter size and𝐶𝑉 is a model coe�cient. For the 𝑘sgs
closure and the non-dynamic Smagorinsky closure,𝐶𝑉 has a �xed value of 0.5. For the dynamic
Smagorinsky LES closure,𝐶𝑉 can be dynamically calculated based on the local instantaneous
�ow�eld.

To dynamically evaluate the �ltered scalar variance model coe�cient, begin by de�ning the grid
�lter-scale correlation

𝜏𝑍′′2 ≡ 𝜌̃︂𝑍 ′′2 (2.376)

= 𝜌̃︁𝑍2 − 𝜌𝑍2 (2.377)

= 𝜌𝑍2 −
(︀
𝜌𝑍
)︀2

𝜌
. (2.378)
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Similarly, de�ne an equivalent correlation at a larger test-�lter scale

𝑇𝑍′′2 ≡ ̂︂𝜌𝑍2 −

(︁̂︁𝜌𝑍)︁2
^̄𝜌

. (2.379)

Now, de�ne the quantity 𝐿𝑍′′2 as a combination of these two correlations which reduces to an
expression that can be evaluated in closed form,

𝐿𝑍′′2 ≡ 𝑇𝑍′′2 − ̂︂𝜏𝑍′′2 (2.380)

= ̂̄︂𝜌𝑍2 −

(︁̂̄︁𝜌𝑍)︁2
^̄𝜌

. (2.381)

By modeling the two correlations in Equation 2.380 and equating them to Equation 2.381, the model
coe�cient𝐶𝑉 can be dynamically evaluated. The correlations at the two �lter scales are modeled
analogously as

𝜏𝑍′′2 ≈ 𝐶𝑉 𝜌Δ
2

(︃
𝜕𝑍

𝜕𝑥𝑖

)︃2

(2.382)

𝑇𝑍′′2 ≈ 𝐶𝑉 ^̄𝜌Δ̂
2

[︃
𝜕

𝜕𝑥𝑖

(︃ ̂̄︁𝜌𝑍
^̄𝜌

)︃]︃2
, (2.383)

where Δ̂ is the characteristic test �lter length scale and𝐶𝑉 is assumed to be the same at both scales.

Notice that when the modeled forms of 𝜏𝑍′′2 and 𝑇𝑍′′2 are inserted into Equation 2.380,𝐶𝑉 appears
inside a test �ltering operation. Formally solving this system of equations for𝐶𝑉 requires the expensive
solution of an additional set of coupled integro-di�erential equations [57]. Alternatively, it is common
practice to remove𝐶𝑉 from the test �lter with the assumption that it is varying slowly over distances on
the order of the test �lter size. This greatly simpli�es calculations, although it can result in non-physical
oscillations in the modeled value for𝐶𝑉 . The square of the error involved in this approximation is
𝑄 = (𝐿𝑍′′2 − 𝐶𝑉𝑀𝑍′′2)2, where

𝐿𝑍′′2 = ̂̄︂𝜌𝑍2 −

(︁̂̄︁𝜌𝑍)︁2
^̄𝜌

(2.384)

𝑀𝑍′′2 = ^̄𝜌Δ̂2
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(︃ ̂̄︁𝜌𝑍
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)︃]︃2
− 𝜌Δ2

(︃
𝜕𝑍

𝜕𝑥𝑖

)︃2

. (2.385)

Minimizing this error in a least-squares fashion with respect to𝐶𝑉 yields an expression for the modeled
coe�cient,

𝐶𝑉 =
𝐿𝑍′′2𝑀𝑍′′2

𝑀𝑍′′2𝑀𝑍′′2
, (2.386)

that can be used directly in Equation 2.375 for the �ltered scalar variance.

102



Due to the above simpli�cations, the model coe�cient𝐶𝑉 can sometimes �uctuate wildly, possibly
leading to numerical instabilities. A common solution to control these oscillations, and the one that is
taken here, is to pass the numerator and denominator of Equation 2.386 through a test �lter, yielding

𝐶𝑉 =
𝐿𝑍′′2𝑀𝑍′′2

𝑀𝑍′′2𝑀𝑍′′2

. (2.387)

This can be crudely justi�ed by recognizing that𝐶𝑉 was already assumed to vary slowly over distances
equal to the test �lter size, so that this �ltering operation is simply enforcing that assumption.

2.10.6. Generating Flamelet Libraries with Spitfire

2.10.6.1. Introduction

Spit�re is a Python-C++ code used to solve low-dimensional combustion problems as a preprocessing
step in building tabulated chemistry models for turbulent, sooting �res. In tabulated chemistry models
we constrain the thermochemical state space to a manifold over a small number of reaction variables
which are often conserved scalars. There are two essential steps in building a tabulated chemistry model.
First, solve representative problems such as perfectly stirred reactors or nonpremixed �amelet models,
often performing continuation over parameters such as residence times, scalar dissipation rates, or heat
loss parameters. Second, use the solution data to build a property reconstruction model with either
structured interpolation tables or unstructured regression models (e.g., arti�cial neural networks).
Currently Spit�re solves nonpremixed �amelet equations over parameters of interest and forms the data
into a structured table, after which the Tabular Props application is used to build multidimensional
B-spline representations of properties which may be queried during a simulation by Fuego.

2.10.6.2. User Interfaces

There are two ways for a user to build a �amelet library with Spit�re. The simplest interface, likely
su�cient for most users, works through a simple YAML-style input �le, which can be passed to generate
any of a set of ‘standard’ tables. Section 2.10.6.3 shows several examples of the YAML interface.

The second interface, recommended for developers and advanced users, involves the use of Python. At
the cost of a little bit of Python programming, this interface o�ers extensibility, generality, and more
precise control than the input �le interface. For instance, one can de�ne arbitrarily-complex post
processors for tabulated properties, which would enable straightforward parameter studies in soot
modeling, for instance. Another examplary use of the Python interface is to generate nonadiabatic
�amelet libraries with quasisteady heat loss (a core Spit�re regression test, actually) instead of the
transient heat loss allowed by the input �le interface. The conda package manager may be used to
facilitate installation of Spit�re’s external Python and C++ dependencies, as described in the
SpitfireCore project in the Spitfire repository group at
https://cee-gitlab.sandia.gov/spitfirecodes. Documentation and examples of the
Python interface may be found there as well.
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2.10.6.3. Using the YAML Interface

On the CEE LAN the YAML interface to Spit�re has been sandboxed into a standalone executable.
This removes the need for users to maintain a Python interpreter with Spit�re installed or manage
runtime dependencies with paths and environment variables. This reduces the required input down to
a chemical mechanism data �le in Cantera XML format and an input �le for Spit�re. A �amelet library
may be generated with the following commands. First, load the sierra module to make the Tabular
Props application available. Next, run the standalone generate executable on the input.yaml input
�le. The -n 8 argument tells Spit�re to use eight cores wherever possible. The -t �ag tells Spit�re to
run Tabular Props on its output, meaning that after Tabular Props completes a library �le will be ready
for immediate use with Fuego. Next we discuss the required chemical mechanism data �le and show
some examples, spanning a simple mixing library to a nonadiabatic, turbulent strained laminar �amelet
with soot source terms and radiation sources.

$ module load sierra
$ /usr/netpub/mahanse/spitfire_table/generate -i input.yaml -n 8 -t

Before showing some examples, we note the “parse-only” mode, which only parses the YAML input �le
and dumps a comprehensive version with all defaults included. This is helpful when learning how to
specify new parameters or examining defaults that are implicitly set.

$ /usr/netpub/mahanse/spitfire_table/generate -i input.yaml -p

2.10.6.4. Chemical Mechanism Data

Spit�re uses the Cantera code to manage the speci�cation of thermodynamic (species heat capacities),
transport (viscosity model parameters) and kinetic rate parameters. This data must be provided in
Cantera’s XML format. A number of chemical mechanism �les are provided in the Spit�re code
repositories, and the standalone executable provides several useful mechanism data �les listed in
Table 2.10-1. Many mechanisms of interest for �re scenarios are available online from various sources,
and Cantera provides thorough online resources for building mechanism �les from scratch if desired.

Table 2.10-1.. Chemical mechanism data packaged into the stan-
dalone Spitfire executable

XML Fuel Reference
heptane_LiuEtAl.xml heptane Liu et al. (2004)
ethylene_USC.xml ethylene Wang et al. (2007) (USC-mech)
ethylene_LuoEtAl.xml ethylene Luo et al. (2012) (reduced USC-mech)
methane_GRI30.xml methane GRI-3.0
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2.10.6.5. Simple Mixing Library

The following input is as simple as it gets, which may be used for a mixture of air and n-heptane that is
not reacting (e.g., cold �ow). First, the chemistry-type of the mixture fraction model is speci�ed.
This must be one of unreacted (pure mixing), Burke-Schumann (idealized combustion),
equilibrium (in�nitely fast chemistry), or SLFM (strained laminar �amelet library). Next, the Cantera
mechanism data �le is speci�ed (using the pre-packaged n-heptane mechanism). Following that, the
mass fractions and temperature of the oxidizer and fuel streams are given. The mass fractions may be
speci�ed in any acceptable format for Cantera, but a comma-separated list as shown here is often the
most convenient option.

mixture -fraction -model:
chemistry -type: unreacted
cantera:

xml: heptane_LiuEtAl.xml
oxidizer:

temperature: 300
mass -fractions: ’N2:0.767 ,O2 :0.233 ’

fuel:
temperature: 300
mass -fractions: ’NXC7H16 :1’

This input will produce a �amelet library with the following properties: temperature, viscosity, density,
and isobaric heat capacity of the mixture. By default, Spit�re will write output to the
spitfire_output directory (set with output-directory), all intermediate data will be saved (set
with save-intermediate-data), and the table for Fuego will be named table_for_fuego.h5
(set with fuego-table-file-name). If defaults are unclear or you want to know what else could be
speci�ed, you can run Spit�re in parse-only mode to see a comprehensive summary of the expanded
input �le with all defaults and options. Another option is to generate a table and check the output
directory for the �le named complete_spitfire_input.yaml, which contains the same
information as the parse-only mode produces.

2.10.6.6. Simple Equilibrium Library

There are a number of default parameters left unspeci�ed in this �rst example. Among the most
important are the pressure (defaults to 101325 Pa), heat-loss-type (defaults to adiabatic), and
turbulence-type (defaults to laminar). For instance, to generate the data for an equilibrium
chemistry model at two atmospheres, one could change the chemistry-type and directly set the
pressure. In addition to the properties that are always tabulated, it may be interesting to visualize mass
fractions of certain species in the Fuego simulation. They may be added as shown below.

For equilibrium chemistry it may be important to set details of the grid in the mixture fraction
dimension. In the adjacent example the number of grid points is set to 96 (overwriting the default of 32)
and details of the automatic grid clustering are speci�ed. Spit�re uses a grid clustered around the
stoichiometric mixture fraction by default (leave grid-cluster-point unspeci�ed or specify
stoichiometric to accomplish this). The default value of the grid-cluster-intensity is 4, and
increasing this number leads to a more tightly clustered grid. In cases where a uniform grid is preferred,
simply set the grid-type to uniform.
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mixture -fraction -model:
chemistry -type: equilibrium
pressure: 202650
cantera:

xml: heptane_LiuEtAl.xml
oxidizer:

temperature: 300
mass -fractions: ’N2:0.767 ,O2 :0.233 ’

fuel:
temperature: 485
mass -fractions: ’NXC7H16 :1’

tabulated -quantities:
mass -fractions:

- OH
- C2H2

mixture -fraction -model:
chemistry -type: equilibrium
pressure: 202650
cantera:

xml: heptane_LiuEtAl.xml
oxidizer:

temperature: 300
mass -fractions: ’N2:0.767 ,O2 :0.233 ’

fuel:
temperature: 485
mass -fractions: ’NXC7H16 :1’

tabulated -quantities:
mass -fractions:

- OH
- C2H2

mixture -fraction:
grid -points: 96
grid -type: clustered
grid -cluster -intensity: 6
grid -cluster -point: 0.1

2.10.6.7. Laminar, Adiabatic SLFM Library

To generate a strained laminar �amelet model, the only required change from the simpler examples is
that the chemistry type be set to SLFM. However, we often prefer to specify the number and
distribution of grid points in the mixture fraction and dissipation rate dimensions. For more
information, run Spit�re in parse-only mode with -p to see an expanded input �le.

mixture -fraction -model:
chemistry -type: SLFM
heat -loss -type: adiabatic
turbulence -type: laminar
cantera:

xml: heptane_LiuEtAl.xml
oxidizer:

temperature: 300
mass -fractions: ’N2:0.767 ,O2 :0.233 ’

fuel:
temperature: 485
mass -fractions: ’NXC7H16 :1’

mixture -fraction:
grid -points: 96

scalar -dissipation -rate:
grid -points: 36

2.10.6.8. Turbulent, Nonadiabatic SLFM Library

In this �nal demonstration we incorporate heat loss, radiation and soot source terms, and a presumed
PDF model for turbulence-chemistry interaction. For more information on parameter settings, run
Spit�re in parse-only mode with -p to see an expanded input �le.
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mixture -fraction -model:
chemistry -type: SLFM
heat -loss -type: nonadiabatic -defect
turbulence -type: turbulent
presumed -PDF:

PDF -type: ClipGauss
integrator -type: GaussKronrod
scaled -scalar -variance:

grid -points: 32
mean -mixture -fraction:

grid -points: 32
mean -scalar -dissipation -rate:

grid -points: 32
mean -stoichiometric -enthalpy -defect:

grid -points: 32
minimize -convolution -time: False

cantera:
xml: heptane_LiuEtAl.xml

oxidizer:
temperature: 300
mass -fractions: ’N2:0.767 ,O2 :0.233 ’

fuel:
temperature: 485
mass -fractions: ’NXC7H16 :1’

mixture -fraction:
grid -points: 96

scalar -dissipation -rate:
grid -points: 36
min: 1.e-3
max: 1.e2
reference: stoichiometric

stoichiometric -enthalpy -defect:
grid -points: 36

tabulated -quantities:
include -radiation: True
soot -model: Aksit -Moss

2.11. TURBULENT REACTING MIXING MODELS

In a reacting �ow it is sometimes necessary to limit the �nite-rate chemistry reaction when it occurs in
regions of high turbulence. In this case, turbulent mixing of the reactants limits the �nite-rate (laminar)
chemical reaction, the time scale of which can be calculated as

𝑡c = 𝑁R

∑︀𝑁S

𝑖=1 𝑌𝑖∑︀𝑁S

𝑖=1
dYi

dt

(2.388)

where𝑁R is the number of reactions,𝑁S is the number of species in the reaction, and 𝑌𝑖 represents the
concentration of species 𝑖. The denominator in Equation 2.388 is the production rate of species 𝑖.

2.11.1. Modified EDC Model (PARENTE)

One such model, named here as the PARENTE model, is adopted from [58] which derives explicit
dependencies between the EDC model coe�cients and the turbulent Reynolds (Ret) and Damköhler
(Da) dimensionless numbers. This model is based on EDC and is used to modifty the chemistry
reactions prescribed in the gas phase. The PARENTE turbulent reacting mixing model can can be used
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in addition to or in lieu of the built-in EDC turbulent combustion model found in Section 2.9. The
current model is described as

Da = max

(︂
min

(︂
1

𝑡c

√︂
𝜈

𝜖
, 10

)︂
, 1× 10−10

)︂
(2.389)

Ret =
𝑘2

𝜈𝜖
(2.390)

𝐶𝜏 = min

(︃
𝐶1√︀

Da(Ret + 1)
, 2.1377

)︃
(2.391)

𝐶𝛾 = max
(︁
min

(︁
𝐶2

√︀
Da(Ret + 1), 5.0

)︁
, 0.4082

)︁
(2.392)

𝛾L = 𝐶𝛾

(︁𝜈𝜖
𝑘2

)︁ 1
4 (2.393)

𝜏 * = 𝐶𝜏

√︂
𝜈

𝜖
(2.394)

where 𝑘 represents the turbulent kinetic energy, 𝜖 is the turbulent dissipation and 𝜈 is the kinematic
viscosity of the gas. The constants𝐶1 and𝐶2 can be speci�ed by the user, but default to𝐶1 = 0.05774
and𝐶2 = 0.5. The modi�ed reaction time scale, 𝜏 * is used to solve the reaction equation from time 𝑡𝑛
to 𝑡𝑛+𝜏* . Following this calculation, the reaction source terms for species (𝑆*

𝑌 𝑖) and enthalpy (𝑆*
𝐻) can

be computed. These computed sources are further scaled via the multiplication of a coe�cient 𝜅which
is calculated as

𝜅 =

{︃
1, if 𝛾L ≥ 1

max
(︁
min

(︁
𝛾
𝑒1
L

1−𝛾𝑒2L
, 1
)︁
, 0
)︁
, otherwise

where 𝑒1 = 𝑒2 = 3.0 in our implementation of the model. Following the evaluation of 𝜅, the �nal
source terms for species and enthalpy can be calculated as

𝑆𝑌𝑖 = 𝜅𝑆*
𝑌𝑖

(2.395)

𝑆𝐻 = 𝜅𝑆*
𝐻 (2.396)

respectively.

2.12. SOOT GENERATION MODEL FOR
MULTICOMPONENT COMBUSTION

Soot is an important contributor to radiative exchange within a �re and between a �re and its
surroundings. Soot production, destruction and transport at �ame scales are still active areas of
research, with important chemical/physical processes not understood from a fundamental physics point
of view. Basically, soot particles are carbon-rich solid particles generated in regions of excess pyrolyzate,
such as on the rich side of a di�usion �ame. Unagglomerated soot particles have characteristic
dimensions in the range 0.01–0.05 𝜇m (Zukoski [59]).
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The main purpose of the soot model is for the calculation of the absorption coefficient in the radiant energy
transfer equation. For the current implementation we employ the soot model implemented in the
KAMELEON code because it has been used for large turbulent �re calculations with participating
media radiation. The model is discussed in Magnussen et al. [41] and Magnussen and Hjertager [60] It
is a two-step formulation, �rst described by Tesner et al. [61]. The model for generation and
combustion of soot can be summarized by three principal steps: 1) particle nucleation, where the �rst
solid soot particles (often called radical nuclei) are created as a result of fuel oxidation and pyrolysis, 2)
particle growth, whereby the soot particle size increases due to the addition of material which is
primarily carbon (10–20% mole fraction hydrogen) through a series of reactions and coagulation, 3)
particle oxidation, where soot particles are burned. Additional information is provided in the overview
by Haynes and Wagner [62].

Since the soot model is primarily directed at closing emission/absorption terms in the radiative transfer
equation, engineering approximations are made with respect to its inclusion in the Navier Stokes
equations. Speci�cally, heats of reaction associated with formation and destruction are not accounted
for in the heat balance, and the mass concentrations of soot and radical nuclei are not included in the
species mass balances; they are treated as tracers. The model has a signi�cant amount of empiricism
associated with it, necessitated by the extreme length scale range of soot processes, its complexity, and
the degree to which many processes have yet to be quanti�ed from a �rst principles perspective. The
model choice can be considered to be a pragmatic one based on its prior use in �re calculations.

The present model has been constructed to �t into the same framework as the conceptual model for
turbulent combustion outlined in the theory section for the EDC model. In the following subsections,
the basic mechanisms of soot formation and destruction are presented. These processes occur on a scale
smaller than can be resolved numerically, therefore the following subsections present the basic approach
to the subgrid modeling of the elementary mechanisms, suitable for use in a numerical model.

2.12.1. EDC Soot Model

It is important to note that the processes of turbulent soot formation and combustion occur on a scale
smaller than can be resolved in a numerical approximation. Thus, the averaged governing equations to
be solved numerically must be supplemented with subgrid models to account for these subgrid
processes. The conceptual model for subgrid turbulent soot generation and combustion is consistent
with the two-zone, turbulent, gas-phase, combustion model presented in the last section (see also
Holen [50]). One zone is the �ame zone (�ame structure) and the other is the surrounding zone.

Soot reactions tend to be slower than gas phase hydrocarbon chemistry. Therefore, the in�nitely fast
chemistry limit used for the gas phase chemistry is not employed for soot. The current model assumes
that the formation and combustion rates are long compared to turbulent mixing rates at �ame scales. A
steady-state, steady-�ow assumption is used in the formulation between the production/destruction
rates and the turbulent mixing rates to obtain the soot mass fraction in the �ame zone in an algebraic
manner (avoiding solution of sti� ordinary di�erential rate equations).
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2.12.1.1. Criteria for Soot and Radical Nuclei Formation

To start, the �rst level criteria for formation of soot are

𝑌𝑝𝑟𝑜𝑑 > 𝑌𝑙𝑖𝑚 and 𝛾𝜒 > 0 and 𝑇 ∘ > 𝑇𝑙𝑖𝑚, (2.397)

where 𝑌𝑝𝑟𝑜𝑑 denotes the mass fraction of products, 𝑌𝑙𝑖𝑚 and 𝑇𝑙𝑖𝑚 are minimum values of product mass
fraction and surrounding temperatures allowing soot generation, and 𝛾𝜒 is the volume fraction of the
reaction zone of the current cell. If these conditions are met, then the �rst step is to determine how
much carbon is available over and above what may potentially react with oxygen to produce CO2, via
the 2-step reaction postulated in the chemistry model (see Section 2.9). So, �rst form the elemental mass
fraction of excess (over what may potentially form CO2) carbon in each species,

𝑓𝑐,𝑖 = max

[︂
0,

(︂
𝑌 𝐶
𝑖 − 1

2

𝑊𝐶

𝑊𝑂

𝑌 𝑂
𝑖

)︂]︂
, (2.398)

where 𝑌 𝐶
𝑖 is the mass fraction of carbon in species 𝑖, and 𝑌 𝑂

𝑖 the mass fraction of elemental oxygen in
species 𝑖. For example, for CO (carbon monoxide), 𝑌 𝐶

𝐶𝑂 = 12/ (12 + 16), etc. Also, for CO2, the
excess fraction 𝑓𝑐,𝑐𝑜2 = 0, while for any species containing oxygen but no carbon, the formula for the
excess fraction is constructed to give zero. Hence, the fraction is non-zero only for species containing
carbon but excluding carbon dioxide; i.e., the fuel and carbon monoxide species will have non-zero
excess carbon fraction. With the 2-step reaction process being considered, the CO can be considered a
fuel in the second reaction, in which CO and H2 are oxidized if enough oxygen in available after the �rst
reaction. Thus, the computed carbon fraction, 𝑓𝑐,𝑖, is collectively the available carbon in the “fuel species",
comprised of the actual CHNO fuel and CO, and will be zero for other species (compounds). Note
that this fraction excludes the carbon in the species that can potentially form CO2 via oxidation with the
oxygen present in the species itself.

Now, the mass fraction of carbon potentially available to produce soot can be computed for the
surrounding and �ame zones from the following,

𝑌 ∘
𝑐→𝑠 =

∑︁
𝑖

𝑓𝑐,𝑖𝑌
∘
𝑖 𝑌 *

𝑐→𝑠 =
∑︁
𝑖

𝑓𝑐,𝑖𝑌
*
𝑖 . (2.399)

Again, these mass fractions represent the potentially available carbon in the fuels, separated into �ame
zone and surroundings, for formation of soot. The average mass fraction of soot-producing-carbon
is,

𝑌𝑐→𝑠 = (𝛾𝜒)𝑌 *
𝑐→𝑠 + (1− 𝛾𝜒)𝑌 ∘

𝑐→𝑠. (2.400)

Now we must compare the amount of oxidant (not counting oxidant present in the fuel compound)
actually available for burning these fuels to produce CO2; any excess carbon is available to produce
additional soot and radical nuclei. The amount of oxygen required to react with all of the available
soot-producing-carbon ( 𝑌𝑐→𝑠, which already excludes the oxygen present in the fuel compound) to
produce CO2 is

𝑌𝑂2,𝑚𝑎𝑥 = 2
𝑊𝑂

𝑊𝐶

𝑌𝑐→𝑠. (2.401)

Now, if we can compare this to how much oxygen is actually available, we can decide how much excess
carbon is available to produce soot and radical nuclei. Thus the fraction (molar ratio) of excess carbon
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for producing soot is determined by subtracting o� the amount that will go to stoichiometrically react
with the available oxygen to ultimately produce CO2 in the two-step reaction,

𝜉𝑐 =
𝑌𝑐→𝑠/𝑊𝑐 − 𝑌𝑂2/𝑊𝑂2

𝑌𝑐→𝑠/𝑊𝑐

= 1− 𝑌𝑂2

𝑌𝑂2,𝑚𝑎𝑥

⇒ 1−min

(︂
1,

𝑌𝑂2

𝑌𝑂2,𝑚𝑎𝑥

)︂
, (2.402)

where the last expression is the computational implementation, to take care of “lean" conditions where
there is excess oxidizer, and which will result in zero mole fraction of carbon to produce soot.

In other words, it is assumed that for a given fraction of existing soot that gets mixed by turbulence into
a �ame zone, a fraction 𝜉𝑐, will contribute to the growth of soot in the �ame zone, while the balance,
(1− 𝜉𝑐) will be consumed in the production of CO2. Implicit in this assumption is that soot entering a
�ame will be consumed in proportion to the oxygen present. Therefore in fuel lean regions, soot
entering �ame zones will be preferentially destroyed.

Now we are in a position to determine whether soot and radical nuclei can be formed under present
conditions. They will form if

𝑌𝑐→𝑠 > 𝑌𝑠𝑜𝑜𝑡 𝑋𝑐,𝑠𝑜𝑜𝑡 > 0. (2.403)

The �rst inequality in Equation 2.403 asserts that the available potential-soot-producing carbon in the
fuel must exceed the present amount of soot before enabling generation of additional soot. The
construction of 𝑌𝑐→𝑠 sums the total potential soot-producing-carbon, without distinguishing whether
the carbon exists as soot or fuel. The second requires enough carbon to exceed the requirements for the
combustion reaction; i.e., soot will only be formed under fuel rich conditions.

2.12.1.2. Soot Formation and Termination Models

In general, soot may be considered to be generated in both the reaction zone and in the surrounding
zone. This was the assumption invoked in KAMELEON-II (Holen, et al. [50]). As we shall see, in the
present implementation for multicomponent species problems, formation/destruction is assumed to
take place only in the surrounding �uid. The mass fraction of fuel in the reaction zone is assumed to be
proportional to the mass fraction 𝛾*, and the reacting fraction of the fuel in the reaction zone, 𝜒. The
total rate of radical nuclei formation and destruction is given by a volume averaged sum of the
formation within the reaction zone and the surrounding zone.

Assuming the conditions in Equation 2.403 are met, the rates of formation can be computed. The
following models for soot formation and termination were originally described by Tesner et al. [61] and
have been subsequently modi�ed by Magnussen and co-workers. The elementary mechanisms (subgrid
models for the �re code application) of formation and destruction of radical nuclei was described by
Tesner et al. [61] in the form,

𝑅̇𝑛 = 𝑛0 + (𝑓 − 𝑔)𝑛− 𝑔0𝑁𝑛
[︀
particles/s−m3]︀ , (2.404)

where 𝑛0 is the spontaneous origination rate of radical nuclei in particles/(s-m3) (due to fuel oxidation
and fuel pyrolysis), 𝑓 is the linear branching coe�cient (whereby radical nuclei react to create additional
radical nuclei), 𝑔 is the linear termination coe�cient (where radical nuclei combine with existing radical
nuclei), 𝑛 is the concentration of radical nuclei in particles/m3, 𝑔0 is the linear coe�cient of
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termination on soot particles (where radical nuclei combine with existing soot particles), and𝑁 is the
particle concentration of soot particles (assumed to be spherical with uniform diameter 𝑑𝑝) in
particles/m3. The spontaneous origination rate of radical nuclei was given by Tesner as

𝑛0 = 1.08𝑎0𝜌𝑌𝑓𝑢𝑒𝑙 exp

(︂
− 𝐸

𝑅𝑇

)︂
. (2.405)

The rate of soot particle formation and destruction was given by Tesner et al. as,

𝑅̇𝑁,𝑓 = (𝑎− 𝑏𝑁)𝑛
[︀
particles/s−m3]︀ . (2.406)

The parameters appearing in the foregoing, as determined2 by Tesner et al. [61] and Holen, et al. [50],
are given in Table 2.12-1 Tesner et al. [63] provide additional data for various hydrocarbons.

Table 2.12-1.. Soot model parameters (Tesner et al.(1971); Holen, et al.(1994))
𝑎 𝑓 − 𝑔 𝑔0 𝑏 𝐸/𝑅 𝜌𝑠𝑜𝑜𝑡 𝑎0 𝑑𝑝

[1/s] [1/s] [cm3/part− s] [cm3/part− s] [K] [g/cm3] [part/g − s] [cm]
105 102 10−9 8× 10−8 9× 104 2.0 12.5× 1033 17.85× 10−7

The elementary formation/destruction models of Tesner have been modi�ed by Magnussen et al.
(Holen, et al. [50]) for application to multicomponent �re simulation problems. First, for
implementation into a computer program, transport equations for two �eld variables, radical nuclei
and soot concentrations, are needed. For computational reasons, it is convenient to write all transport
equations in a standard form,∫︁

𝜕𝜌𝜑

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑢𝑗𝜑𝑛𝑗d𝑆 =

∫︁
Λ
𝜕𝜑

𝜕𝑥𝑗
𝑛𝑗d𝑆 + 𝜌𝑆𝜑, (2.407)

written for the arbitrary scalar �eld, 𝜑, which will have units of intensity per unit mass (or be
dimensionless, such as a mass fraction). Thus the computational variables for the soot model are,
respectively, the radical nuclei concentration and soot mass fraction,

𝛽 =
𝑛

𝜌
and 𝑌𝑠𝑜𝑜𝑡 =

𝐶𝑠𝑜𝑜𝑡
𝜌

(2.408)

where𝐶𝑠𝑜𝑜𝑡 denotes the mass concentration of soot (kg/m3). In terms of these variables, the
spontaneous origination of radical nuclei, as modi�ed by Magnussen et al., is determined from,

𝛽∘
0 = 1.08𝑎0 (𝑌

∘
𝑐→𝑠 − 𝑌𝑠𝑜𝑜𝑡) exp

(︂
− 𝐸

𝑅𝑇 ∘

)︂
, (2.409)

𝛽*
0 = 1.08𝑎0 (𝑌

*
𝑐→𝑠 − 𝑌𝑠𝑜𝑜𝑡) exp

(︂
− 𝐸

𝑅𝑇 *

)︂
, (2.410)

2In practice, the variables 𝑎 and 𝑏 are scaled (multiplied) by 1016 while 𝑎0 is scaled (divided) by 1016 thereby e�ectively
reducing the nuclei concentration by this amount.
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in units of part/kg-sec, which, when compared to Tesner’s form, is seen to have been written in terms of
the excess soot-producing carbon, rather than simply being proportional to the fuel concentration, of
which only a fraction is available to produce radical nuclei and soot. Similarly, the linear branching and
termination reactions for radical nuclei can be written in the form,

𝑅̇∘
𝑛,𝑓−𝑔,𝑚𝑜𝑑

𝜌∘
= max (0, 𝑓 ∘

𝑐 ) (𝑓 − 𝑔) 𝛽∘ ≡ max (0, 𝑓 ∘
𝑐 )
𝑅̇∘
𝑛,𝑓−𝑔

𝜌∘
, (2.411)

𝑅̇*
𝑛,𝑓−𝑔,𝑚𝑜𝑑

𝜌*
= max (0, 𝑓 *

𝑐 ) (𝑓 − 𝑔) 𝛽* ≡ max (0, 𝑓 *
𝑐 )
𝑅̇*
𝑛,𝑓−𝑔

𝜌*
, (2.412)

where the scale factors are de�ned by,

𝑓 ∘
𝑐 =

(𝑌 ∘
𝑐→𝑠 − 𝑌𝑠𝑜𝑜𝑡)

𝑌 ∘
𝑐→𝑠

and 𝑓 *
𝑐 =

(𝑌 *
𝑐→𝑠 − 𝑌𝑠𝑜𝑜𝑡)

𝑌 *
𝑐→𝑠

, (2.413)

and represent the fraction of soot-producing carbon available in the surroundings and �ame zone,
respectively. The present formulation reduces the rates by the fraction of soot-producing carbon over
and above that which is already present as soot, represented by the last terms in each equation. In
contrast, the bilinear termination term for generation of soot is indirectly modi�ed through the soot
mass fraction, which is similarly modi�ed (as will be shown shortly). Therefore, the termination term
can simply be expressed in terms of the computational variables as,

𝑅̇*
𝑛,𝑔0

𝜌*
= 𝑔0

𝜌*𝑌 *
𝑠𝑜𝑜𝑡

𝑚𝑝

𝛽* and
𝑅̇∘
𝑛,𝑔0

𝜌∘
= 𝑔0

𝜌∘𝑌 ∘
𝑠𝑜𝑜𝑡

𝑚𝑝

𝛽∘, (2.414)

in which the soot particle concentration has been expressed in terms of the soot mass fraction and an
average mass of a soot particle,𝑚𝑝 (kg),

𝑁 =
(𝜌𝑌𝑠𝑜𝑜𝑡)

𝑚𝑝

and 𝑚𝑝 = 𝜌𝑠𝑜𝑜𝑡
4

3
𝜋

(︂
𝑑𝑝
2

)︂3

(2.415)

𝑚∘
𝑝 =

𝑏

𝑎
𝜌∘𝑌 ∘

𝑐→𝑠, (2.416)

𝑚*
𝑝 =

𝑏

𝑎
𝜌*𝑌 *

𝑐→𝑠, (2.417)

See Table 2.12-1 for data used in these equations. The generation/destruction term for soot are also
modi�ed via the scale factors,

𝑅̇*
𝑠𝑜𝑜𝑡,𝑓𝑜𝑟𝑚,𝑚𝑜𝑑

𝜌*
= 𝑓 *

𝑐𝑚𝑝

(︂
𝑎− 𝑏

(𝜌*𝑌 *
𝑠𝑜𝑜𝑡)

𝑚𝑝

)︂
𝛽* ≡ 𝑓 *

𝑐𝑚𝑝

𝑅̇*
𝑠𝑜𝑜𝑡,𝑓𝑜𝑟𝑚

𝜌*
, (2.418)

𝑅̇∘
𝑠𝑜𝑜𝑡,𝑓𝑜𝑟𝑚,𝑚𝑜𝑑

𝜌∘
= 𝑓 ∘

𝑐𝑚𝑝

(︂
𝑎− 𝑏

(𝜌∘𝑌 ∘
𝑠𝑜𝑜𝑡)

𝑚𝑝

)︂
𝛽∘ ≡ 𝑓 ∘

𝑐𝑚𝑝

𝑅̇∘
𝑠𝑜𝑜𝑡,𝑓𝑜𝑟𝑚

𝜌∘
. (2.419)

to be used in the elementary source expression for the �ame zone and surroundings.
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The production/destruction of soot in the reaction zone should approach zero for 𝑌 *
𝑠𝑜𝑜𝑡 → 𝑌 *

𝑐→𝑠, since
production should cease when the amount of soot equals the maximum available
soot-producing-carbon in the reaction zone. This is easier to see by substituting this form into the
production term,

𝑅̇*
𝑠𝑜𝑜𝑡,𝑓𝑜𝑟𝑚,𝑚𝑜𝑑

𝜌*
= 𝑓 *

𝑐 𝑏 (𝜌
*𝑌 *

𝑐→𝑠 − 𝜌*𝑌 *
𝑠𝑜𝑜𝑡) 𝛽

*. (2.420)

This term vanishes when the soot mass fraction equals the maximum carbon mass fraction, by virtue of
its construction. However, this form is clearly not the form suggested by Tesner [61], the scaling factor
notwithstanding.

2.12.1.3. Soot Combustion Model

The soot combustion model assumes that soot is destroyed in the �ame zone based on two factors 1) the
rate at which it is mixed into the �ame zone, and 2) that there is su�cient oxygen to consume it. The
mixing rate is the same as in Equation 2.285 (in the gas phase combustion model section) where the
species 𝑌𝑘 are treated as follows: In the cell, the fraction of soot that will burn up in the �ame zone is
(1− 𝜉𝑐)𝑌𝑠𝑜𝑜𝑡. In the �ame zone, this mass is converted to CO2, so its mass fraction in the �ame zone is
zero. The radical nuclei concentration is treated similarly. Therefore,

𝑅̇𝑛,𝑐𝑜𝑚𝑏

𝜌
=

(︃
− (1− 𝜉𝑐)

𝑛
𝜌

𝜏𝑟𝑒𝑠

)︃(︂
𝛾𝜒

1− 𝛾𝜒

)︂
𝜒3, (2.421)

𝑅̇𝑠𝑜𝑜𝑡,𝑐𝑜𝑚𝑏

𝜌
=

(︂
− (1− 𝜉𝑐)𝑌𝑠𝑜𝑜𝑡

𝜏𝑟𝑒𝑠

)︂(︂
𝛾𝜒

1− 𝛾𝜒

)︂
𝜒3. (2.422)

It is convenient to de�ne a new timescale,

𝜏ℎ =
(1− 𝛾𝜒) 𝜏𝑟𝑒𝑠

𝜒3

. (2.423)

2.12.1.4. Calculating Properties of the Reaction Zone

The foregoing models for soot and radical nuclei contain properties corresponding to the �ame zone
and surroundings. This section discusses the method employed by Magnussen et al. to compute these
properties. The �ame zone properties are computed by assuming local equilibrium mass transfer due to
turbulent mixing between the reaction zone and surroundings. In other words, the production and
combustion rates are su�ciently slow that the mass concentrations in the �ame zone come to an
equilibrium state with the surroundings via the turbulent mixing rate. This equilibrium rate is assumed
to instantaneously adjust to the new cell conditions at every time step.

For this steady-state, steady �ow approximation, a balance equation can be written for both nucleate
particles and soot mass fraction for the �ame zone. In words, the radical nuclei concentration (or soot
mass fraction) mixed into the �ame zone minus the radical nuclei concentration (or soot mass fraction)
mixed out of the �ame zone plus the production of radical nuclei (or soot) minus the combustion of
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radical nuclei (or soot) equals zero. Note that the combustion rates given above are equal to the mixing
rates times the fraction of radical nuclei concentration (or soot mass fraction) able to combustion. So
the di�erence in these terms is equal to the soot production rates or,

(𝛽* − 𝜉𝑐𝛽)

𝜏ℎ
= 𝛽*

0 +
𝑓 *
𝑐 𝑅̇

*
𝑛,𝑓−𝑔

𝜌*
−
𝑅̇*
𝑛,𝑔0

𝜌*
, (2.424)

(𝑌 *
𝑠𝑜𝑜𝑡 − 𝜉𝑐𝑌𝑠𝑜𝑜𝑡)

𝜏ℎ
= 𝑓 *

𝑐𝑚
*
𝑝

𝑅̇*
𝑠𝑜𝑜𝑡,𝑓𝑜𝑟𝑚

𝜌*
. (2.425)

Solution of these two algebraic equations with two unknowns gives, 𝛽* and 𝑌 *
𝑠𝑜𝑜𝑡, the radical nuclei and

soot concentrations in the �ame zone, respectively. Note that the formation/destruction terms are of a
bilinear form in the soot and radical nuclei concentrations. Thus, to compute the �ame zone values of
radical nuclei and soot mass fractions requires the simultaneous solution of this 2× 2 system of
equations. In particular, substituting for these terms from the formula given above, Equation 2.425 can
be solved for 𝑌 *

𝑠𝑜𝑜𝑡 using Equation 2.420. The result is that the mass fraction of soot in the �ame zone in
terms of the radical nuclei concentration.

𝑌 *
𝑠𝑜𝑜𝑡 =

𝜉𝑐𝑌𝑠𝑜𝑜𝑡 + 𝜏ℎ𝑓
*
𝑐 𝑏𝜌

*𝑌 *
𝑐→𝑠𝛽

*

1 + 𝜏ℎ𝑓 *
𝑐 𝑏𝜌

*𝛽* . (2.426)

Equation 2.426 can be used in Equation 2.424 to form a quadratic equation for 𝛽*,

𝑡𝑖𝑙𝑑𝑒𝑎𝑠 (𝛽
*)2 + 𝑏̃𝑠𝛽

* + 𝑡𝑖𝑙𝑑𝑒𝑐𝑠 = 0, (2.427)

where,

𝑎̃𝑠 = 𝑓 *
𝑐 𝜏ℎ𝜌

* (𝛼̃𝑏+ 𝜏ℎ𝑎𝑔0) , (2.428)

𝑏̃𝑠 = 𝛼̃ + 𝜏ℎ𝜌
*

⎛⎜⎝𝜉𝑐𝑌𝑠𝑜𝑜𝑡𝑔0
𝑏

𝑎
𝜌*𝑌 *

𝑐→𝑠

− 𝑓 *
𝑐 𝑏𝐴

⎞⎟⎠ , (2.429)

𝑐𝑠 = −𝐴, (2.430)

𝐴 = 𝜉𝑐𝛽 + 𝜏ℎ𝛽
*
0 , (2.431)

𝛼̃ = 1− 𝜏ℎ (𝑓 − 𝑔) 𝑓 *
𝑐 . (2.432)

The solution is the negative root of the quadratic, here written in a computationally appropriate
form,

𝛽* =
−2𝑐𝑠

𝑏̃𝑠 +
√︁
𝑏̃2𝑠 − 4𝑎̃𝑠𝑐𝑠

(2.433)

In the limit where

𝑌 *
𝑠𝑜𝑜𝑡 → 𝑌 *

𝑐→𝑠 (2.434)

then the soot mass fraction becomes static and the radical nuclei concentration can be solved for
directly. The result is

𝛽* =
𝜉𝑐𝛽 + 𝜏ℎ𝛽

*
𝑜

1 + 𝜏ℎ
(︀
−𝑓 *

𝑐 (𝑓 − 𝑔) + 𝑎𝑔𝑜
𝑏

)︀ . (2.435)
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2.12.1.5. Calculating Properties of the Surroundings

Having computed the properties of the reaction zone, the properties for the surroundings are calculated
from the de�nition of the cell (average) values,

𝛽∘ =
𝛽 − 𝛾𝜒𝛽*

1− 𝛾𝜒
, (2.436)

𝑌 ∘
𝑠𝑜𝑜𝑡 =

𝑌𝑠𝑜𝑜𝑡 − 𝛾𝜒𝑌 *
𝑠𝑜𝑜𝑡

1− 𝛾𝜒
. (2.437)

𝛽∘ = 𝑚𝑖𝑛

(︂
𝛽∘,

𝑎𝑔𝑜
𝑏

× 10−6

𝜌∘

)︂
(2.438)

Note that there is an upper bound to the number of nucleate particles based on a 50 percent dense
mixture given they are monodisperse at the size given in Table 2.12-1 with mass given by

𝑚 = 𝜌𝑠𝑜𝑜𝑡
4

3
𝜋

(︂
𝑑𝑝
2

)︂3

. (2.439)

Now we are in a position to specify the transport equations and source terms for the soot model.

2.12.2. Transport Equations and Source Terms

Two transport equations for radical nuclei and soot mass fractions need be solved,∫︁
𝜕𝜌𝛽

𝜕𝑡
d𝑉 +

∫︁
𝜌𝛽𝑢𝑗𝑛𝑗d𝑆 =

∫︁
𝜇𝑒𝑓𝑓
𝜎𝑌

𝜕𝛽

𝜕𝑥𝑗
𝑛𝑗d𝑆 +

∫︁
𝜌𝑆𝑛d𝑉, (2.440)

∫︁
𝜕𝜌𝑌𝑠𝑜𝑜𝑡
𝜕𝑡

d𝑉 +

∫︁
𝜌𝑌𝑠𝑜𝑜𝑡𝑢𝑗𝑛𝑗d𝑆 =

∫︁
𝜇𝑒𝑓𝑓
𝜎𝑌

𝜕𝑌𝑠𝑜𝑜𝑡
𝜕𝑥𝑗

𝑛𝑗d𝑆 +

∫︁
𝜌𝑆𝑠𝑜𝑜𝑡d𝑉. (2.441)

In general, the source term, in particles/kg-sec, for radical nuclei is given by,

𝑆𝑛 = 𝛾𝜒

(︃
𝑅̇*
𝑛,𝑓𝑜𝑟𝑚,𝑚𝑜𝑑

𝜌*
−
𝑅̇*
𝑛,𝑐𝑜𝑚𝑏

𝜌*

)︃
+ (1− 𝛾𝜒)

𝑅̇∘
𝑛,𝑓𝑜𝑟𝑚,𝑚𝑜𝑑

𝜌∘
(2.442)

where the form of the net formation/destruction source terms is,

𝑅̇∘
𝑛,𝑓𝑜𝑟𝑚,𝑚𝑜𝑑

𝜌
= 𝛽∘

0 + (𝑓 − 𝑔) 𝛽∘max (0, 𝑓 ∘
𝑐 )− 𝑔0

𝑎𝑌 ∘
𝑠𝑜𝑜𝑡

𝑏𝑌 ∘
𝑐→𝑠

𝛽∘. (2.443)

For each of the reaction and surrounding zones, the (production destruction) of radical nuclei in the
�ame zone is given by the mixing balance, or(︃

𝑅̇*
𝑛,𝑓𝑜𝑟𝑚

𝜌
−
𝑅̇*
𝑛,𝑐𝑜𝑚𝑏

𝜌

)︃
=

(︂
𝛽* − 𝛽

𝜏ℎ

)︂
. (2.444)
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Substituting gives,

𝑆𝑛 = 𝛾𝜒

(︂
𝛽* − 𝛽

𝜏ℎ

)︂
+ (1− 𝛾𝜒)

(︂
𝛽∘
0 + (𝑓 − 𝑔) 𝛽∘max (0, 𝑓 ∘

𝑐 )− 𝑔0
𝑎𝑌 ∘

𝑠𝑜𝑜𝑡

𝑏𝑌 ∘
𝑐→𝑠

𝛽∘
)︂
, (2.445)

The general source term for soot (1/sec) is given by

𝑆𝑠𝑜𝑜𝑡 = 𝑚𝑝𝛾𝜒

(︃
𝑅̇*
𝑠𝑜𝑜𝑡,𝑓𝑜𝑟𝑚,𝑚𝑜𝑑

𝜌*
−
𝑅̇*
𝑠𝑜𝑜𝑡,𝑐𝑜𝑚𝑏

𝜌*

)︃
+ (1− 𝛾𝜒)𝑚𝑝

𝑅̇∘
𝑠𝑜𝑜𝑡,𝑓𝑜𝑟𝑚,𝑚𝑜𝑑

𝜌∘
(2.446)

The (production-destruction) of soot in the �ame zone is likewise given by the mixing balance, or

𝑚𝑝

(︃
𝑅̇*
𝑠𝑜𝑜𝑡,𝑓𝑜𝑟𝑚

𝜌
−
𝑅̇*
𝑠𝑜𝑜𝑡,𝑐𝑜𝑚𝑏

𝜌

)︃
=

(︂
𝑌 *
𝑠𝑜𝑜𝑡 − 𝑌𝑠𝑜𝑜𝑡

𝜏ℎ

)︂
. (2.447)

Substituting gives,

𝑆𝑠𝑜𝑜𝑡 = 𝛾𝜒

(︂
𝑌 *
𝑠𝑜𝑜𝑡 − 𝑌𝑠𝑜𝑜𝑡

𝜏ℎ

)︂
+ (1− 𝛾𝜒) 𝑓 ∘

𝑐 𝑏𝜌
∘ (𝑌 ∘

𝑐→𝑠 − 𝑌 ∘
𝑠𝑜𝑜𝑡) 𝛽

∘, (2.448)

which also follows the practice of using the scale factor and e�ective mass for a soot particle in the
surroundings,𝑚𝑝 = 𝑏𝜌∘𝑌 ∘

𝑐→𝑠/𝑎.

The fact that the soot and radical nuclei concentrations are treated as tracers should be reemphasized.
This means that their concentrations in the gas mixture are assumed insigni�cant such that they do not
enter into calculations of density, or other properties of the mixture.

2.13. ABSORPTIVITY MODEL

The absorption coe�cient submodel calculates a spectrally averaged total absorptivity value for a
homogeneous ( in thermodynamic state and composition ) mixture of gaseous CO2, H2O, and soot
particles. It should be recognized that this model does not account for either the presence of volatilized
hydrocarbon molecules nor for the spectral line broadening e�ects of N2 gas. The following implicit
assumptions are made:

1. Thermodynamic equilibrium between soot and gas phase.

2. Homogeneous mixture over length scale of interest ( cf. input 1 )

3. Individual ( non agglomerated ) spherical soot particles with diameter much smaller than the
radiation wavelength (Rayleigh scattering).

4. Absorptivity of the soot varies inversely with radiation wavelength.

The following quantities are required:

1. Length scale indicating the optical path length of interest,𝐿𝑐𝑒𝑙𝑙 in centimeters.
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2. Mixture temperature, T, in Kelvin.

3. Total mixture pressure, 𝑝𝑚𝑖𝑥, in bar.

4. Partial pressures of the CO2 and H2O gaseous components, 𝑝𝑐𝑜2, 𝑝ℎ2𝑜, in bar.

5. Soot volume fraction,𝑋𝑠𝑜𝑜𝑡.

The absorptivity model generates the following output:

• Spectrally averaged absorptivity, 𝛼, in cm−1.

The absorptivity is based on empirical correlations for the total emittance of a homogeneous, isothermal
mixture with a given optical path length. The correlations used in this model are based on empirical
data covering a range of optical path lengths, temperatures, soot concentrations and pressures:

• 1 cm ≤ 𝐿𝑐𝑒𝑙𝑙 ≤ 103 cm

• 600𝐾 ≤ 𝑇 ≤ 2400𝐾

• 10−8 ≤ 𝑋𝑠𝑜𝑜𝑡 ≤ 10−5

• 0.1 bar ≤ 𝑝𝑐𝑜2, 𝑝ℎ2𝑜 ≤ 1 bar

The absorptivity values provided by the equations in this model are accurate to within 10% - 30% of
their value with greater accuracy at higher temperatures, path lengths, and concentrations.

2.13.1. Theory

The total ( e.g. integrated over all wavelengths ) absorptivity of a homogeneous ( in composition and
temperature ) thickness 𝐿𝑐𝑒𝑙𝑙 layer of CO2 gas, H2O gas, and soot particles may be expressed in terms of
the total emittance of the layer

𝛼 = − 1

𝐿𝑐𝑒𝑙𝑙
log (1− 𝜅) , (2.449)

where 𝛼 is the total absorptivity and 𝜅 is the total emittance. The total emittance of the mixture may be
expressed in terms of the total emittance of the soot and gas phase (Siegel and Howell [10], Eq.
(13-145)),

𝜅 = 𝜅𝑠𝑜𝑜𝑡 + 𝜅𝑔𝑎𝑠 − 𝜅𝑠𝑜𝑜𝑡𝜅𝑔𝑎𝑠, (2.450)

where 𝜅𝑠𝑜𝑜𝑡 and 𝜅𝑔𝑎𝑠 are the total emittance of the soot and gas phase respectively as if the other phase
were not present.

To evaluate the absorptivity within a given control volume, the layer length,𝐿𝑐𝑒𝑙𝑙, is taken to be the
geometric path length through the cell. This assumption ( cf. assumption 2 ) implies that the mixture
composition and temperature are uniform within the given cell. For convenience, the hydraulic
diameter may be used for the layer thickness (in three dimensions),

𝐿𝑐𝑒𝑙𝑙 = 2

[︂
3

4

𝑉

𝜋

]︂1/3
, (2.451)
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where 𝑉 is the cell volume. Alternatively, Tezduyar [64] proposes a more expensive length scale for
�nite element grids,

𝐿𝑐𝑒𝑙𝑙 = 2𝑠 ·

(︃
𝑛𝑒∑︁
𝑖=1

∇𝜑𝑖

)︃
, (2.452)

where, 𝐿𝑐𝑒𝑙𝑙 is the path length through the element in direction 𝑠, and 𝜑𝑖 is the �nite element basis.

2.13.2. Emittance Model

The KAMELEON �re code ( Holen, et al. [50] ) employs the work of Felske and Tien [65] to provide
the emittance of a mixture of CO2, H2O, and soot particles. Assuming the absorptivity of the soot
phase varies inversely with wavelength (Rayleigh scattering theory), a closed form expression may be
obtained for the total emittance of the soot phase,

𝜅𝑠𝑜𝑜𝑡 = 1− 15

𝜋4
Ψ(3)

[︂
1 +

𝑐𝑋𝑠𝑜𝑜𝑡𝑇𝐿𝑐𝑒𝑙𝑙
𝐶2

]︂
, (2.453)

where,𝑋𝑠𝑜𝑜𝑡 is the soot volume fraction, 𝑇 is the temperature,𝐶2 = 0.01438769 m-K is the second
Planck constant, and 𝑐 = 7.0 ( Felske and Charalampopoulos [66] suggest 𝑐 = 5.0 ). The pentagamma
function Ψ(3)(𝑥) is given by Abramowitz and Stegun [67],

Ψ(𝑛) (𝑧) =
d𝑛+1

d𝑧𝑛+1
log [Γ (𝑧)] = (−1)𝑛+1

∫︁ ∞

0

𝑡𝑛𝑒−𝑧𝑡

1− 𝑒−𝑡
d𝑡, 𝑛 = 1, 2, 3, . . . (2.454)

Equation 2.454 may be evaluated by the series expansion (Abramowitz and Stegun [67]),

Ψ(3) (𝑧) = 6
∞∑︁
𝑘=0

1

(𝑧 + 𝑘)4
, (2.455)

and by the seven-term asymptotic expansion,

Ψ(3) (𝑧) =
2

𝑧3
+

3

𝑧4
+

2

𝑧5
− 1

𝑧7
+

4

3𝑧9
− 3

𝑧11
+

10

𝑧13
+ . . . (2.456)

Equation 2.456 is accurate to within 1% of the value given by Equation 2.455 for 𝑧 > 1.6 and accurate to
within 0.1% of the value given by Equation 2.455 for 𝑧 > 2. A plot of the pentagamma function and the
asymptotic expansion are provided in Figure 2.13-1 for reference.

The emittance of the gas phase is given by Leckner [68]. Leckner’s model is relatively involved and
assumes that the path length, 𝐿𝑐𝑒𝑙𝑙, is given in centimeters, the temperature, 𝑇 , is given in Kelvin, and
the pressure, 𝑝, is given in bars. Leckner also de�nes a reference temperature, 𝑇∘ = 273 K, and pressure,
𝑝∘ = 1 bar, for reduction purposes. Two additional quantities used by Leckner are the scaled
temperature, 𝜃 = 𝑇/1000K and the logarithm of the optical path length, 𝜆𝜈 = log10 (𝑝𝜈𝐿𝑐𝑒𝑙𝑙) where
the subscript 𝜈 represents one of the species CO2 or H2O. These quantities are summarized in
Table 2.13-1.
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Figure 2.13-1.. Pentagamma function and asymptotic expansion

The emittance of the gas phase (cf. Equation 2.450) is the sum of the CO2 and H2O contributions less a
correction factor which accounts for overlap in the CO2 and H2O absorption bands,

𝜅𝑔𝑎𝑠 = 𝜅ℎ2𝑜 + 𝜅𝑐𝑜2 −Δ𝜅, (2.457)

where the species emittance at a given partial pressure and temperature is expressed in terms of a scale
emittance, 𝜅𝜈,∘.

𝜅𝜈
𝜅𝜈,∘

= exp
(︀
−𝜉 (𝜆𝑚𝑎𝑥 − 𝜆𝜈)

2)︀(︂ 𝐴𝑃𝐸 +𝐵

𝑃𝐸 + 𝐴+𝐵 − 1
− 1

)︂
+ 1 (2.458)

Table 2.13-2 summarizes the quantities on the right hand side of Equation 2.458. The scale emittance,
𝜅𝜈,∘, for both species is given by the expressions

log (𝜅𝜈,∘) = 𝑎0 +
𝑀∑︁
𝑖=1

𝑎𝑖𝜆
𝑖
𝜈 , (2.459)
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Table 2.13-1.. Parameters used in Leckner’s gas phase emittance model.
Quantity De�nition
Temperature units, [𝑇 ] Kelvin
Path length units, [𝐿𝑐𝑒𝑙𝑙] centimeters
Pressure units, [𝑝] bar
Reference temperature, 𝑇∘ 273 K
Reference pressure, 𝑝∘ 1 bar
Scaled path length, 𝜆𝜈 log10 (𝑝𝜈𝐿𝑐𝑒𝑙𝑙)
Scaled temperature, 𝜃 T/1000K

𝑎𝑖 = 𝑐𝑖0 +
𝑁∑︁
𝑗=1

𝑐𝑖𝑗𝜃
𝑗, (2.460)

where the coe�cients 𝑎𝑖 and 𝑐𝑖𝑗 are given in Table 2.13-3 and Table 2.13-4 for CO2 and H2O respectively.
(Leckner provides several alternative listings for the coe�cients for calculating the total emittance of
CO2. The values listed in Table 2.13-3 are the values employed in the KAMELEON-II-FIRE program
(1994).)

The e�ect of the overlap correction factor in Equation 2.457 is relatively small so Leckner [68] employed
an approximate expression obtained from emittance data for a total pressure of 1 bar and temperatures
between 1000K and 2200K:

Δ𝜅 =

(︂
𝜁

10.7 + 101𝜁
− 0.0089𝜁10.4

)︂
(log10 [(𝑝𝑐𝑜2 + 𝑝ℎ2𝑜)𝐿𝑐𝑒𝑙𝑙])

2.76 , (2.461)

where,
𝜁 =

𝑝ℎ2𝑜
𝑝ℎ2𝑜 + 𝑝𝑐𝑜2

. (2.462)

The following observations are made to clarify the range of applicability of the absorptivity submodel
speci�cally for hydrocarbon combustion applications. The absorptivity model does not account for the
presence of volatilized hydrocarbon molecules which may have strong absorption bands in the infrared
region. The VULCAN/KAMELEON �re code (Holen, et al. [50]) accounts for the presence
hydrocarbon molecules by treating hydrocarbon molecules in the same manner as the CO2 and H2O
product species ( cf. the partial pressure submodel ). This is a convenient although questionable
assumption which provides for a zeroth order treatment of absorption by hydrocarbon molecules.

2.14. FUEL BOUNDARY CONDITION SUBMODEL

In most cases, �res are the result of burning fuel vapor in air. Exceptions include oxygenated and
energetic materials that embody both fuel and oxidizer. The source of fuel vapor may be a gas release,
the vapor which forms over a liquid surface due to its vapor pressure, liquid fuel which is heated above
its vaporization temperature, or solid materials which are heated to the point where combustible gases
are released due to pyrolysis reactions. The purpose of this submodel is to provide the mass �ux and
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Table 2.13-2.. Species-specific parameters used in Equation 2.458.
Quantity CO2 H2O

Equivalent pressure, 𝑃𝐸 𝑃𝐸 = 𝑝𝑚𝑖𝑥

(︂
1 + 0.28

𝑝𝑐𝑜2
𝑝𝑚𝑖𝑥

)︂
𝑃𝐸 = 𝑝𝑚𝑖𝑥

(︃
1 + 1.49

𝑝𝑐𝑜2
𝑝𝑚𝑖𝑥

√︂
𝑇∘
𝑇

)︃
for 𝑇 > 700𝐾
𝜆𝑚𝑎𝑥 = log10 (0.225𝜃

2)
Maxima location, 𝜆𝑚𝑎𝑥 𝜆𝑚𝑎𝑥 = log10 (13.2𝜃

2)
for 𝑇 < 700𝐾
𝜆𝑚𝑎𝑥 = log10 (0.054𝜃

−2)
Coe�cient, 𝜉 𝜉 = 1.47 𝜉 = 0.5
Coe�cient,𝐴 𝐴 = 1.0 + 0.1𝜃−1.45 𝐴 = 1.888− 2.053 log10 𝜃

𝜃 = 2.145 if 𝑇 < 750𝐾
Coe�cient,𝐵 𝐵 = 0.23 𝐵 = 1.1𝜃−1.4

Table 2.13-3.. Coefficients Cij for calculating the scale total emit-
tance of CO2 from Equation 2.459 and Equation 2.460, (valid for
T > 400K).

i j (N=4)
(M=3) 0 1 2 3 4
0 -3.9781 2.7353 -1.9882 0.31054 0.015719
1 1.9326 -3.5932 3.7247 -1.4535 0.20132
2 -0.35366 0.61766 -0.84207 0.39859 -0.063356
3 -0.080181 0.31466 -0.19973 0.046532 -0.0033086

Table 2.13-4.. Coefficients Cij for calculating the scale total emit-
tance of H2O from Equation 2.459 and Equation 2.460, (valid for
T > 400K).

i j (N=2)
(M=2) 0 1 2
0 -2.2118 -1.1987 0.035596
1 0.85667 0.93048 -0.14391
2 -0.10838 -0.17156 0.045915
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temperature of fuel vapor which enters the computational domain at the boundaries. This submodel is
only required if the source of fuel is a solid or liquid since gas releases can be speci�ed as a �ow boundary
condition. Since the generation of fuel vapor from these materials involves, as a minimum, representing
thermal transport within the material including phase change, a simpli�ed approach is taken here to
serve the basic need of present generation �re models. The development of improved, validated models
is presently underway. Present generation models are limited to liquid fuels in the form of pools (i.e., a
de�ned amount of fuel constrained in a pool with �xed, known geometry) and spills onto
non-absorbing substrates. (See Martinez and Hopkins [69] for a model of fuel spill in a porous
medium.) Although the form of the submodel will allow �rst order estimates of �re growth rates, data
acquired to date (Saito et al. [70]) tend to show that relevant �ame spread mechanisms include features
which occur at lengths scales several orders of magnitude below the resolution of present grids.
Additional submodels will be therefore be required to predict �ame spread with con�dence. The
following quantities are required:

1. 𝑇𝑓𝑢𝑒𝑙,𝑣𝑎𝑝, the vaporization temperature of the fuel (K).

2. ℎ𝑓𝑔, the heat of vaporization of the fuel (KJ/kg),

3. 𝐶𝑝𝑙 , the speci�c heat of the liquid fuel (KJ/kg-K),

4. 𝑇𝑓𝑢𝑒𝑙,𝑖𝑛𝑖𝑡, the initial temperature of the liquid fuel (K),

5. 𝛼𝑓𝑢𝑒𝑙,𝑙𝑖𝑞, the absorptivity of the liquid fuel,

6. 𝑞′′𝑟𝑎𝑑, the radiative heat �ux incident on the fuel surface,

7. 𝑞′′𝑐𝑜𝑛𝑣, the convective heat �ux incident on the fuel surface.

The fuel boundary condition submodel generates the following output:

• 𝑚̇′′, the mass �ux of fuel (kg/m2-s).

The fuel pool will be modeled as a mass of liquid that is gradually converted to vapor which in turn
enters the �ow �eld as a distinct species. The fuel vapor generation rate is based on the incident heat �ux
to the pool surface. Data for heavy hydrocarbon fuels (Gritzo, et al. [71, 72]) show the following:

• After the initial transient (which includes �ame spread) the fuel burning (and hence
vaporization) rate is steady.

• Heating of the fuel is limited to the top 1.5 cm (which greatly exceeds the penetration depth for
combined thermal transport in semitransparent media).

• Fuel transport occurs within the pool due to the preservation of a fuel free surface and the
presence of a non-uniform heat �ux to the fuel surface.

• The temperature at the free surface of the fuel is spatially uniform and approximately equal to
the mean of the distillation curve for multi-component fuels.

Given these observations, the present submodel includes two options for calculating the fuel
vaporization. These options are used for both pool and spill �res.
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2.14.1. Option 1: Constant, Specified Mass Flux

In this option, the output of the submodel will be speci�ed directly by the user. Fuel will be released at
the boundaries de�ned by a fuel free surface. Since the burning rate is constant, the mass �ux can be
considered constant. Fuel burn rate data (for example, Blinov and Khudiakov [73]) are available as a
function of pool size for a variety of fuels. This option neglects the physical process of fuel heating and
is therefore only appropriate for steady burning �res. The spatial variation of fuel vaporization is also
neglected.

2.14.2. Option 2: Mass Flux as a Function of Incident Heat Flux

Neglecting the transport of liquid fuel within the pool, the local fuel vapor mass �ux is given by

𝑚̇′′ =
𝛼𝑓𝑢𝑒𝑙,𝑙𝑖𝑞𝑞

′′
𝑟𝑎𝑑 + 𝑞′′𝑐𝑜𝑛𝑣

ℎ𝑓𝑔 + 𝐶𝑝𝑙 (𝑇𝑓𝑢𝑒𝑙,𝑣𝑎𝑝 − 𝑇𝑓𝑢𝑒𝑙,𝑖𝑛𝑖𝑡)
. (2.463)

This option includes the physical process of fuel heating and is therefore appropriate as a zeroth order
estimate during �re growth. The spatial variation of fuel vaporization is also neglected.

Before to the surface of the fuel reaches its vaporization temperature, the KAMELEON �re code
(Holen, et al. [50]) models the heating of the fuel in the same manner as the heating of solid surfaces.
The heat transferred into the material is determined using a linearized approximation for the
temperature distribution in the media by

𝑞𝑎𝑏𝑠 =
𝜌𝐶𝑝 (𝑇𝑠 − 𝑇𝑝)

2
ℎ (2.464)

where 𝑞𝑎𝑏𝑠 is the heat absorbed by the material, 𝑇𝑠 is the temperature at the exposed surface of the
control volume, and 𝑇𝑝 is the temperature at the control volume center, ℎ is the fuel thickness, and 𝜌
and𝐶𝑝 are the material density and speci�c heats, respectively.

Due to low di�usivity and high opacity of hydrocarbon fuels, the temperature gradient in the liquid
fuel develops quickly, is considerably larger than the linear approximation, and does not extend to the
lower surface of the fuel. The transient fuel heating occurs at the same short time and length scales as
�ame spread. The inclusion of this feature is not suggested until a more rigorous technique for
modeling �ame spread can be developed.

2.15. FUEL SPREADING SUBMODEL

The VULCAN/KAMELEON �re code includes a model which represents the spreading of fuel on a
non-absorbing substrate. This feature allows the simulation of �res resulting from fuel spills. Various
correlations (Mans�eld and Linley [74]) and global, quasi-steady-state, algebraic models (Cline and
Koenig [75]; Magnoli [76]) have been developed to determine the size of a circular pool �re resulting
from a fuel spill. Since these models are global in nature, and do not include the e�ects of complex
geometries resulting from obstacles, they will not be included as submodel options. The following
quantities are required:
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1. 𝜌𝑓𝑢𝑒𝑙, the density of the liquid fuel,

2. 𝜇𝑓𝑢𝑒𝑙, the viscosity of the liquid fuel,

3. 𝑄𝑟𝑒𝑙𝑒𝑎𝑠𝑒, the volumetric �ow of fuel released by the spill,

4. 𝐴𝑠, the surface area of the element,

5. 𝛾, the surface tension coe�cient of the liquid fuel.

The fuel boundary condition submodel generates the following output:

• ℎ, the depth of fuel (m).

The following assumptions are invoked as part of the fuel spreading model presently in VULCAN.

1. The fuel is su�ciently thin for inertial forces to be neglected as compared to shear forces.

2. The velocity components in the fuel are always horizontal.

3. The substrate is smooth, horizontal and non-absorbing.

4. The �ow is laminar.

5. The interface between the fuel and air at the front of the spreading fuel is parabolic.

6. The shear stress is zero at the top of the �lm.

Given the preceding assumptions, the spread of fuel is driven by the di�erence between hydrostatic
pressure due to variations in fuel depth. The transport can then be represented by

𝜕ℎ

𝜕𝑡
=

𝜕

𝜕𝑥𝑗

(︂
𝜌𝑓𝑢𝑒𝑙𝑔ℎ

3

3𝜇𝑓𝑢𝑒𝑙

)︂
𝜕ℎ

𝜕𝑥𝑗
+ 𝑆. (2.465)

Equation 2.465 is solved explicitly to track the fuel thickness along the �at surface. Boundary conditions
and source terms are de�ned as follows to represent various physical features.

1. Drains - The depth of fuel is set equal to zero for cells occupied by drains. The volume of fuel
transported into the drain cell is removed via a negative source term. occupied by drains. The
volume of fuel transported into the drain cell is removed via a negative source term.

2. Obstacles - The fuel depth and the gradient of the fuel depth is set equal to zero at the interface
between obstacles and surrounding cells.

3. Release Locations - The source term is de�ned by the volumetric �ow of released fuel divided by
the surface area of the element (i.e. 𝑄𝑟𝑒𝑙𝑒𝑎𝑠𝑒/𝐴𝑠).

The fuel will spread up until the hydrostatic pressure gradient is balanced by surface tension forces.
Subject to the preceding assumptions, the minimum fuel depth is given by

ℎ𝑚𝑖𝑛 =

√︃
2𝑠

𝜌𝑓𝑢𝑒𝑙𝑔
, (2.466)

where 𝑠 is the coe�cient of surface tension for the fuel. The reduction in fuel depth due to the
vaporization of fuel is calculated by the same technique used to de�ne the fuel vapor boundary
condition for pool �res.
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2.16. VOLUME OF FLUID MODEL

Beta Capability: The volume-of-�uid capability is a beta feature. The numerics for
laminar isothermal �ow are well tested, but advanced features such as non-isothermal
reacting and evaporating simulations are more experimental.

The volume-of-�uid (VOF) capability allows simulation of two-phase systems. The phases are tracked
with a conserved scalar, 𝛼, which is the volume fraction of �uid in a given control volume. This scalar is
1 in the liquid, 0 in the gas, and between 0 and 1 in the transition region.

There are a number of numerical challenges associated with multi-phase modeling using a di�use
interface. Many of these challenges exist regardless of whether one uses a level set or a volume-of-�uid
approach, or some hybrid of the two.

2.16.1. Governing Equation

The basic advection equation for the volume fraction (𝛼) in VOF equations is

𝜕𝛼

𝜕𝑡
+ 𝑢⃗ · ∇𝛼 = 𝑆𝛼 (2.467)

Expanding the conservative form of the convection term with the chain rule as

∇ · (𝑢⃗𝛼) = 𝑢⃗ · ∇𝛼 + 𝛼 (∇ · 𝑢⃗) (2.468)

we can express the governing equation in corrected conservative form as

𝜕𝛼

𝜕𝑡
+∇ · (𝑢⃗𝛼) = 𝛼 (∇ · 𝑢⃗) + 𝑆𝛼 (2.469)

where the right hand side term is 0 for an incompressible �ow with no phase change. The standard
advection operator is typically too di�usive for practical use, so one of two approaches are typically
used:

1. A geometric advection operator [77, 78, 79, 80]

2. An additional interface compression term [81, 82]
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Several varieties of geometric advection operators have been proposed in the literature [77, 78, 79, 80],
many of which are only applicable for 2D quadrilateral meshes. Those that can be extended to higher
dimensions often do so at considerable complexity. For a more detailed discussion of the di�erent
options, see [83]. The form implemented here uses the interface compression approach to modify the
governing equation to be

𝜕𝛼

𝜕𝑡
+∇ · (𝑢⃗𝛼) +∇ · (𝑢𝑐𝛼(1− 𝛼)) = 𝛼 (∇ · 𝑢⃗) + 𝑆𝛼 (2.470)

where 𝑢𝑐 is the compressive velocity. A common form for this is

𝑢𝑐 = 𝐶𝛼|𝑢⃗|𝑛⃗ (2.471)

where𝐶𝛼 is a constant and 𝑛⃗ is the normal vector at the phase interface.

When phase change is present, the source term 𝑆𝛼 is non-zero. The volume source of liquid due to
evaporation is

𝑆𝛼 = −𝑚̇𝑒𝑣𝑎𝑝

𝜌𝐿
(2.472)

The evaporation term is calculated using the method described by Hardt and Wondra [84] which
converts an evaporative mass �ux to a volume source using the interphase area,𝐴, and the mass �ux
predicted by the evaporation model,𝑚′′

𝑒𝑣𝑎𝑝, as

𝑚̇𝑒𝑣𝑎𝑝 = 𝑚
′′

𝑒𝑣𝑎𝑝𝐴 (2.473)

𝐴 = 𝑊 |∇𝛼|
∫︀
|∇𝛼|𝑑𝑉∫︀
𝑊 |∇𝛼|𝑑𝑉

(2.474)

𝑊 = 𝛼 (2.475)

One variation of this that we explored is𝑊 = (1− 𝛼)2, which is well suited for a di�use interface
approach. We �nd that the form by Hardt and Wondra is sometimes destabilizing to the di�use
interface and leads to an arti�cially high surface regression rate. For a very simple 1D problem or a sharp
interface method, the𝑊 = (1− 𝛼)2 weighting scheme places all the evaporation outside the liquid
and does not correctly predict the surface regression rate. However, it can be better for a di�use
interface representation since evaporation acts as a stabilizing liquid sink to counteract interface
di�usion. When using a sharp interface method or a 1D problem where there is no interface di�usion,
the weighting of Hardt and Wondra (𝑊 = 𝛼) should be used.

Di�erent evaporation models can be used to de�ne𝑚′′
𝑒𝑣𝑎𝑝. The model used by Hardt and Wondra uses

deviation from the saturation temperature to de�ne the rate as
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𝑚
′′

𝑒𝑣𝑎𝑝 = 𝐾(𝑇 − 𝑇𝑠𝑎𝑡) (2.476)

𝐾 =
2𝛽

2− 𝛽

ℎ𝑓𝑔√
2𝜋𝑅

𝜌𝑔
𝑇 1.5
𝑠𝑎𝑡

(2.477)

This form is only physically applicable to either fully saturated gasses, or interface temperatures above
the boiling point since it does not take into account the gas composition. As such, this model only
allows positive evaporation rates (so no condensation) in order to produce realistic behavior during
heat-up and away from the hot regions of the simulation. When using a multi-species gas, the more
complete Hertz-Knudsen-Langmuir model can be used, where the rate is driven by the di�erence
between the partial pressure of the vapor and the saturation pressure. This model will be added to the
available evaporation models once the multi-species gas treatment is complete.

2.16.2. Interface Reconstruction

When the phase interface is represented by a volume-of-�uid variable, numerical di�usion in the normal
advection operator causes the interface (cells with volumes of �uid between 0 and 1) to become wider
over time. Although the total volume of liquid is conserved, the volume inside the 𝛼 = 0.5 isosurface
may change as a result, and the e�ect of the higher density liquid will be felt well outside the correct
liquid interface location. Techniques to counter-act this di�usion in volume-of-�uid include using
compressive advection operators in the VOF equation, using a separate anti-di�usive sharpening step,
using a geometric reconstruction of the interface to de�ne the advection, and using sharpening and
liquid relocation schemes.

With a level set approach, the interface location is de�ned by the 𝜑 = 0 contour. By de�nition, the
interface does not become di�use, but there are no guarantees of global conservation of liquid either.
Techniques to address this typically involve doing a volume-conserving redistancing operation to the
level set �eld. Such operations can preserve the total volume of liquid, but may not preserve the local
shape of the liquid-gas interface.

In both VOF and level set approaches, calculation of the interface curvature is required to determine
surface tension forces. This is done by taking the divergence of the interface normal vector (𝑛⃗).

𝜅 = −∇ · 𝑛⃗ (2.478)

It should be immediately apparent that 𝜅will contain not only discretization error from the divergence
operator, but also discretization error from the calculation of the normal vector, which is itself a
gradient of some other quantity (call it 𝛼𝑠 here, it could be the level set �eld, the volume of �uid �eld, or
a smoothed version of either).

𝑛⃗ =
∇𝛼𝑠

|∇𝛼𝑠|+ 𝜖
(2.479)
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The simple approach to use 𝛼𝑠 = 𝛼 results in considerable noise in the interface normal vector
calculation, particularly in regions of high curvature relative to mesh sizes. In the coupled level set VOF
approach (CLSVOF), 𝛼𝑠 is the companion level set distance function that is either advected along with
the volume fraction or redistanced from the volume fraction contour at 0.5 (so 𝛼𝑠 = 𝜑).

In Fuego we have implemented both a CLSVOF approach and a di�usive approach, where 𝛼𝑠 is a
di�usively smoothed version of the volume fraction �eld, 𝛼, using a user-speci�ed Fourier number (𝐹𝑜)
and number of iterations.

𝛼0
𝑠 = 𝛼 (2.480)

𝛼𝑛+1
𝑠 = 𝛼𝑛𝑠 + 𝐹𝑜Δ𝑥2∇2𝛼𝑛𝑠 (2.481)

In addition, recall that the analytical curvature for a spherical drop is a function of radius: 𝜅 = 2/𝑟 .
This means that if 𝜅 is calculated in cells that span an interface of �nite, non-zero width, there will also
be a spatial variation of 𝜅 across that interface. This means that although in reality the surface tension
force is applied sharply at the interface, in a di�use interface scheme it will be applied over a �nite
interface thickness of several cells.

This noise and spatial variation in the curvature translates directly into noise in the surface tension force
and is the sole cause of the so-called “parasitic currents” that plague di�use interface methods. Many
authors have demonstrated that when using a uniform, analytically prescribed curvature the parasitic
currents in the classical static drop test drop to machine precision levels if the forces are otherwise
properly balanced.

There are various techniques for improving the curvature calculation. Calculation of the normal vector
when the VOF �eld is sharp is very noisy, so VOF schemes often use a smoothed �eld or higher order
least squares technique. Coupled level set VOF (CLSVOF) carries a level set �eld along to use for
calculating this normal vector on a smooth �eld (the level set �eld).

Finally, once the interface has been advected and sharpened, and the curvature has been properly
calculated, the surface tension force must be integrated into the momentum and continuity equations
in such a manner as to not induce spurious velocities. This is known as the “balanced force” technique,
and involves including a surface tension force vector consistently with the pressure gradient.

2.16.3. Continuity Equation

In order to handle the high density ratios in multiphase simulations, the form of the continuity
equation is modi�ed by dividing both sides of the equation by density. Interpolation of nodal
quantities to subcontrol surfaces is an important consideration to note. Quantities interpolated to faces
are indicated with an 𝑓 subscript in the following equations, while nodal quantities are given no
subscript.

The regular form of the pressure Poisson equation in discrete form is
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∑︁
𝑓

(𝜏𝑓∇𝑝𝑓 · 𝐴𝑓 ) =
∑︁
𝑓

(︁
(𝜌𝑢⃗)𝑓 · 𝐴𝑓 + (𝜏∇𝑝)𝑓 · 𝐴𝑓

)︁
(2.482)

which includes the projected nodal gradient of pressure ∇𝑝. In the prior form, the projected nodal
gradient ∇𝑝was calculated using the divergence theorem as

∇𝑝 = 1

𝑉

∑︁
𝑓

𝑝𝑓𝐴𝑓 (2.483)

For the VOF implementation we use the method described by Francois et al. [85] to calculate a
projected nodal density-scaled force term (𝐹 ) based on calculation of forces at faces, which includes
both pressure gradient and surface tension forces. The balanced force term is

𝐹 = ∇𝑝− 𝜅𝜎∇𝛼 (2.484)

and the projection from subcontrol faces to nodes is done using the method by Francois as

𝐹𝑗 =

∑︀
𝑓 (∇𝑝𝑓,𝑗 − (𝜎𝜅)𝑓∇𝛼𝑓,𝑗) /𝜌𝑓∑︀

𝑓 |𝐴𝑓,𝑗|
(2.485)

This term is updated after the solution to the pressure equation, when updated values for pressure and
volume-of-�uid have both been calculated in order to keep them synchronized. This nodal force term is
included as a source term in the momentum equation (negative, scaled by volume, and multiplied by
nodal density) and can be added to the 4th order pressure projection scheme in discrete form as

∑︁
𝑓

(︃(︂
𝜏

𝜌

)︂
𝑓

∇𝑝𝑓 · 𝐴𝑓

)︃
=
∑︁
𝑓

(︃
𝑢⃗𝑓 · 𝐴𝑓 +

(︁
𝜏𝐹
)︁
𝑓
· 𝐴𝑓 +

(︂
𝜏

𝜌

)︂
𝑓

(𝜎𝜅)𝑓∇𝛼𝑓 · 𝐴𝑓

)︃
(2.486)

where 𝐹 is the projected nodal density-weighted balanced force, 𝜅 is the curvature, and 𝜎 is the surface
tension.

The advantage of this projection scheme over a simpler approach where one might de�ne the nodal
force term (as done by Lin et al. [86]) as

𝐹 =
1

𝑉

(︃∑︁
𝑓

𝑝𝑓𝐴𝑓 − 𝜎𝜅
∑︁
𝑓

𝛼𝑓𝐴𝑓

)︃
(2.487)

is that in such a scheme the evaluation of curvature (𝜅) occurs at a di�erent location than the gradient
of the volume-of-�uid term (∇𝛼). In the presence of gradients in 𝜅–which are guaranteed to occur in
real problems–this introduces a force imbalance that can cause signi�cant spurious non-physical
currents in the �uid. Spatial inaccuracies in curvature are the primary cause of spurious currents in
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VOF simulations – and a baseline test for any balanced force implementation is to see how a static drop
with a prescribed (not calculated) value for curvature behaves. In a properly balanced force
implementation the resulting parasitic currents should be basically zero (on the order of machine
precision). However, a weakness of relying solely on a prescribed curvature test is that it fails to show the
force imbalance that arises in the projected nodal force calculation due to interpolation of the curvature.
The form published by Francois et al. [85] and implemented in Sierra/Fuego not only recovers
machine-precision parasitic currents with the prescribed curvature test, but also keeps them acceptably
low when using calculated curvatures.

In addition, when there is phase change there is an additional source term on the right hand side of this
equation, which is

𝑆 = 𝑚̇𝑒𝑣𝑎𝑝

(︂
1

𝜌𝑔
− 1

𝜌𝐿

)︂
(2.488)

2.16.4. Property Evaluation

When using VOF, you are required to provide three material models. There is one model for the liquid,
one for the gas, and one top level model. The top level model simply speci�es the names for the
materials to use for gas and liquid, as well as specifying properties like surface tension. Properties needed
for �ow calculations are combined from the liquid and gas properties using the following rules

A simple averaging is used for non-speci�c quantities,

𝜑 = 𝛼𝜑𝐿 + (1− 𝛼)𝜑𝑔 (2.489)

where 𝜑 is thermal conductivity (𝑘), density (𝜌), viscosity (𝜇), absorption (𝑎), or
density-pressure-derivative (𝜕𝜌

𝜕𝑝
).

For speci�c quantities, such as speci�c heat (𝐶𝑝) and enthalpy (ℎ), a density-weighted average is used

𝜑 =
𝛼𝜌𝐿𝜑𝐿 + (1− 𝛼)𝜌𝑔𝜑𝑔

𝜌
(2.490)

For properties that are only relevant for the gas phase, the property value is simply copied from the gas
phase

𝜑 = 𝜑𝑔 (2.491)

Examples include species enthalpy, mass di�usivity, and molecular weight.
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3. MPMD RADIATION

This chapter outlines the use of Multiple-Program-Multiple-Data (MPMD) coupling to perform
radiation solves with two di�erent codes: Sce�re and Nalu. MPMD coupling allows the radiation solve
to occur on an entirely di�erent set of processors using an executable other than Fuego.

3.1. INPUT DECK CONVERSION

The Conversion of a Fuego/Syrinx input deck to a Fuego MPMD input deck is straightforward. The
basic steps to convert a Syrinx case to a Fuego-Nalu case are:

1. Delete the Syrinx region, PMR material, PMR solver, and PMR mesh (�nite element) blocks
from the Fuego input deck.

2. Delete all transfer blocks to or from the PMR region and all calls to them from solution control
(see Section 3.1.1).

3. Add the USE MPMD RADIATION command to the Fuego input deck in the Fuego region block
to activate the MPMD coupling.

4. Add the SKIP STEPS FOR PMR command in the Fuego procedure or time blocks if you want to
run the PMR solve less frequently than every time step.

5. Specify emissivity, transmissivity, radiation environment temperature, and radiation boundary
temperature in the Fuego boundary condition blocks. If any of these are omitted defaults will be
used. Default conditions are emissivity = 1, transmissivity = 0, and boundary temperature equal
to the local or wall temperature depending on the boundary type.

6. Copy the template Nalu input �le from Section 3.1.2 and update the name of the mesh �le.

7. (Optional) Update the quadrature and numerical scheme in the Nalu input deck per your
problem requirements.

8. (Optional) If using a particle region, transfer absorption and radiation sources from the particle
region to the Fuego region, and transfer scalar �ux from the Fuego region to the particle region
(see Section 3.3).

9. Run your case using an MPMD launch command (see Section 3.1.4).
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3.1.1. Transfers

In prior Fuego-Syrinx simulations the user would speci�cally call out which �elds to transfer between
Fuego and Syrinx in the input �le, or call out a pre-de�ned transfer that would automatically de�ne
�elds to transfer. With MPMD PMR the transfers are always determined automatically, so nothing is
required in the input deck with regards to transfers to or from the PMR code.

The Fuego to PMR transfers are:

• Radiative source (rad_source,𝑅𝑠). This is calculated by Fuego either from the temperature �eld
or combustion model (EDC or mixture fraction) and is sent on all volume nodes. For the
non-reacting laminar case, this term is

𝑅𝑠 =
𝜎

𝜋
𝛼𝑇 4 (3.1)

and for reacting cases it is either tabulated or otherwise modi�ed to include sub-grid e�ects.

• Absorption coe�cient (absorption, 𝛼). Calculated using the current property model and sent on
all volume nodes.

• Emissivity. Calculated in Fuego and sent on all surface nodes.

• Transmissivity. Calculated in Fuego and sent on all surface nodes.

• Boundary Source. Calculated in Fuego using the emissivity (𝜀), transmissivity (𝜏 ), radiation
boundary temperature (𝑇𝑏), radiation environment temperature (𝑇𝑒), and band fractions (𝑓𝑒, 𝑓𝑏)
if doing a spectral calculation. This is sent on all surface nodes.

𝑆𝐵𝐶 = 𝜎
(︀
𝜀𝑇 4

𝑏 𝑓𝑏 + 𝜏𝑇 4
𝑒 𝑓𝑒
)︀

(3.2)

• Boundary Beam Source. Calculated in Fuego on all surface nodes only if the beam model is in
use.

The PMR to Fuego transfers are:

• Scalar �ux (scalar_�ux,𝐺). Calculated by the PMR code and sent back on all volume nodes, this
is used to apply the radiative source term to the enthalpy equation.

𝑆ℎ = 𝑉𝑠𝑐𝑣 (𝛼𝐺− 4𝜋𝑅𝑠) (3.3)

This source term is linearized using the laminar form of𝑅𝑠 to give

𝑆ℎ,𝑙ℎ𝑠 = 𝑉𝑠𝑐𝑣
16𝛼𝜎𝑇 3

𝐶𝑝
(3.4)

• Radiative Flux (radiative_�ux). Calculated by the PMR code this �ux vector is sent back on all
volume nodes and is primarily used for post-processing.
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• Incident Flux (incident_�ux). The incident �ux on all surfaces is calculated by Nalu and sent
back to Fuego. Sce�re does not send this �eld, so when coupling with Sce�re Fuego calculates
this term using the radiative �ux vector on all surfaces.

3.1.2. Nalu Input Deck

The corresponding Nalu input deck for Fuego/Nalu MPMD calculations is shown in the following
sections. The Nalu input �le is YAML formatted, so spaces and indentation matter.

3.1.2.1. Header

The �le header de�nes a simulation name (sim1 here) and names a time integrator block to use (ti1
here, must match the name used in the following time integrator section).

Since the PMR solve is steady state, no time stepping parameters are required for the time integrator
block. All that is required is to list the two realms in use for an MPMD PMR problem.

The linear_solvers block de�nes the list of linear solvers to use. Nalu PMR only solves one
equation system so there need only be one solver speci�ed here.

In general, nothing in this section should need to be modi�ed unless you want to adjust the linear solver
settings.

Simulations:
- name: sim1

time_integrator: ti1

Time_Integrators:
- StandardTimeIntegrator:

name: ti1

realms:
- pmrRealm
- MPMDRealm

linear_solvers:

- name: solve_scalar
type: tpetra
method: gmres
preconditioner: sgs
tolerance: 1e-5
max_iterations: 100
kspace: 100
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output_level: 0
write_matrix_files: no

3.1.2.2. Transfers

The transfers section declares that we will be doing an MPMD PMR transfer. This section should not
be modi�ed - the transfers are all pre-de�ned.

transfers:

- name: xfer_fluid_pmr
realm_pair: [MPMDRealm, pmrRealm]
coupling_physics: mpmd_pmr

- name: xfer_fluid_pmr2
realm_pair: [pmrRealm, MPMDRealm]
coupling_physics: mpmd_pmr

3.1.2.3. Realms

The Realms section (similar to a Region in a Sierra input deck) lists the two Realms needed for a PMR
problem. The �rst is an MPMD realm, which requires no parameters. The second is the main PMR
realm.

Like Fuego, Nalu uses automatic decomposition of the mesh using RIB, so the speci�cation of a
decomposition method is not required. If desired, automatic_decomposition_type: rcb can be
added after the mesh: line.

The most common parameters to change in the PMR realm are:

• Name of the mesh �le.

• Numerical scheme (Edge-Upwind, Edge-SUCV, or Element-SUCV).

• PMR quadrature rule (quadrature_type) and order (quadrature_order). Valid options for
quadrature type are Thurgood (default), LevelSymmetric, PNTN, and UserDefined. If the
quadrature_type command is omitted, Thurgood is used.

• Number of nonlinear iterations. If the problem has non-zero re�ectivity on a surface (typically
from non-unity emissivity) then multiple nonlinear iterations are required to reach convergence.
Note that you may see max_iterations de�ned in RadiativeTransport in some cases. The
proper one to change is at the equation_systems level, set to 3 in the example below. The one
in RadiativeTransport can be omitted and will default to 1.
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realms:

- name: MPMDRealm
mesh: MPMDVirtual
type: MPMDRealmType

- name: pmrRealm
mesh: ./100cmCube.g
use_edges: yes

boundary_conditions:
- wall_boundary_condition: walls

target_name: all_surfaces

material_properties:
target_name: all_blocks

equation_systems:
name: theEqSys
max_iterations: 3

solver_system_specification:
intensity: solve_scalar

systems:
- RadiativeTransport:

name: myRTE
convergence_tolerance: 1.e-8
quadrature_order: 6
quadrature_type: Thurgood
activate_upwind: no
deactivate_sucv: no

output:
output_data_base_name: pmr.e
output_frequency: 1
output_node_set: no
output_variables:
- absorption_coefficient
- intensity_bc
- scalar_flux
- radiative_heat_flux
- radiation_source
- irradiation
- emissivity
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- transmissivity

Setting the numerical scheme required modifying a few parameters together. Examples of these settings
are:

• Edge-Upwind

use_edges: yes
activate_upwind: yes
deactivate_sucv: yes

• Edge-SUCV

use_edges: yes
activate_upwind: no
deactivate_sucv: no

• Element-SUCV

use_edges: no
activate_upwind: no
deactivate_sucv: no

You should not use any combinations of use_edges, activate_upwind, and deactivate_sucv
not shown in the list above.

Nalu supports the Thurgood quadrature (identical to 𝑇𝑛 from Syrinx), which has 8𝑁2 ordinate
directions,𝑁 being the order of the quadrature; level-symmetric quadrature (Lathrop Carlson) orders
2,4,6,8,12, and 16; and 𝑃𝑁 -𝑇𝑁 (for any even order) which has𝑁(𝑁 + 2) ordinate directions. The
default quadrature is Thurgood.

Nalu requires the user to specify the name of the sidesets to be used in the boundary_conditions
speci�cations. For most cases the all_surfaces alias can be used. In the case where it cannot be used
(e.g. a mesh with internal sidesets), the wall BC sidesets can be supplied as a list (e.g.
[surface_1, surface_2, surface_3])

Nalu has no concept of temperatures, since Fuego transfers only radiative intensities. Although there is
are temperature �elds de�ned in Nalu they will not have values applied in them and there is no need to
output them.

Fuego MPMD simulations will terminate Nalu when Fuego is �nished executing, so there is no need to
specify an end time or any other end criteria.
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3.1.3. SceFire Input Deck

Sce�re input decks have the following structure:

<?xml version="1.0" encoding="utf-8"?>
<SCEPTRE_Input>

<Mesh_File>100cmCube.g</Mesh_File>
<Output_Prefix>radResults.e</Output_Prefix>
<Output_Format>Simple</Output_Format>
<Output_Options>

<Verbosity>high</Verbosity>
</Output_Options>
<XS_File>thermal-fromShawn.xslib</XS_File>
<Sn_Options>

<Sn_Order>6</Sn_Order>
<Angular_Quadrature_Type>Level_Symmetric</Angular_Quadrature_Type>
<!--Angular_Quadrature_Type>Lebedev</Angular_Quadrature_Type-->

</Sn_Options>
<Enable_User_Defined_Solvers>true</Enable_User_Defined_Solvers>
<Solvers>

<Solver name="1stOrder">
<Solver_Form>First_Order</Solver_Form>
<Error_Control_Options>

<Maximum_Number_Iterations>20</Maximum_Number_Iterations>
<Convergence_Tolerance>1.e-8</Convergence_Tolerance>

</Error_Control_Options>
</Solver>

</Solvers>
<Solver_Assignment explicit="true">

<Solver_By_Group>
<Group index="1">1stOrder</Group>

</Solver_By_Group>
</Solver_Assignment>

</SCEPTRE_Input>

The Sce�re input deck requires very little user input. The �rst required component is the Mesh_File,
here speci�ed as “100cmCube.g”. The Sce�re mesh does not need to be identical to the Fuego �uid
mesh �le, but currently Sce�re uses a closest node interpolation of data, so that limitation should be
taken into consideration. Di�erent decompositions (including numbers of processors) for the Sce�re
mesh relative to the Fuego Fluid mesh can e�ectively be used. The name of the output �le
(radResults.e) is a required entry, though most users will only use output from the Fuego exodus �les.
Using the “Simple” output format suppresses the Sce�re output.

The Angular_Quadrature_Type is set here to Level_Symmetric, though Lebedev is also available
in Sce�re. The user also selects the order of the Angulare_Quadrature (Sn_Order), here set to 6.
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Level_Symmetric quadratures, as in Syrinx, have𝑁(𝑁 + 2) ordinate directions, where𝑁 is the
Sn_Order. The First_Order solver should be left unchanged for all current Fuego/Sce�re MPMD
simulations, though Maximum Iterations and Convergence tolerances can be changed at the user?s
discretion. The rest of the Sce�re input deck should remain unchanged. Note that the user does not
need to specify any boundary conditions in the Sce�re input deck.

3.1.4. Running MPMD Jobs

The command to run in MPMD mode is di�erent from what was used to run Fuego-Syrinx cases. To
run Fuego-Syrinx cases you simply ran a parallel job of Fuego using something like

mpirun -np 100 fuego -i fire.i

In this case one executable would use 100 cores, so both Fuego and Syrinx were taking turns using the
same CPU resources. With MPMD runs you are launching two separate MPI jobs with two di�erent
codes that can communicate. An example MPMD launch command would look like

mpirun -np 100 fuego -i fire.i : -np 100 nalu -i pmr.i

However, there is no requirement any more that the two codes use the same number of cores, so
depending on the mesh and computational costs you may choose a di�erent allocation per code. For
example, if your PMR solve is very expensive you may allocate more cores to Nalu than Fuego:

mpirun -np 50 fuego -i fire.i : -np 150 nalu -i pmr.i

Special care must be taken when submitting MPMD jobs on the HPCs or any queued environment. By
default, the two MPMD codes cannot share cores so to launch the case above on an HPC you would
need to request an allocation 200 cores. This is unnecessarily wasteful though since Nalu would not be
using its 150 cores while Fuego runs, and Fuego would not be using its 50 cores while Nalu runs. To get
around this, you must enable oversubscription. Since Fuego and Nalu run sequentially (never executing
at the same time) you can allow them to share resources. To get an allocation of 100 cores and use them
all for both codes you must add additional mpi �ags:

mpiexec --oversubscribe --bind-to core:overload-allowed -np 100 \
fuego -i fire.i : --bind-to core:overload-allowed -np 100 nalu -i pmr.i

Keep in mind that the speci�c command to use can be platform dependent. A more complete example
submission script on an HPC may look like
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#!/bin/bash

#SBATCH --nodes=10
#SBATCH --time=48:00:00
#SBATCH --account=xxxxxxxx
#SBATCH --job-name=fire
#SBATCH --partition=batch

nodes=$SLURM_JOB_NUM_NODES
cores=36

module load sierra
export OMPI_MCA_rmaps_base_oversubscribe=1
mpiexec --oversubscribe \

--bind-to core:overload-allowed \
--npernode $cores --n $(($cores*$nodes)) fuego -i fire.i : \
--bind-to core:overload-allowed \
--npernode $cores --n $(($cores*$nodes)) nalu -i pmr.i

Contact sierra-help@sandia.gov if you need more help or encounter issues running MPMD
jobs.

3.2. SPECTRAL RADIATION TRANSPORT

Fuego now supports spectral radiation calculations through MPMD coupling with either Sce�re or
Nalu (not Syrinx). Spectral radiation transport is instantiated in an MPMD Fuego input deck through
a spectral model section similar to the following:

BEGIN RAD TRANSPORT SPECTRAL MODEL SPECIFICATION spectralRadModel
Spectral Band Model = LINEAR
Spectral Subband Model = AVERAGE
Minimum Frequency = 1.0e13
Maximum Frequency = 2.0e13
Number Spectral Bands = 2

END RAD TRANSPORT SPECTRAL MODEL SPECIFICATION

The spectral model utilized in Fuego is based on the concept of spectral bands, which means that the
user must describe frequency bands over which radiation absorptivities are averaged. In this context, a
richer set of data is available to the analyst, including radiation transport terms (banded absorptivity,
scalar �ux, and radiative �ux) than is available through the standard gray (nonbanded) radiation
transport description that has been available to Fuego analysts for many years.

Spectral transport makes use of spectral data �les that the user must provide. Files are named as:
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Species-data.dat

Where “Species” is the name of the chemical species whose spectral transport properties are being
described. Each species present (all species for EDC simulations) or those output through the use of
output variables in mixture fraction simulations must have all necessary spectral data �les available in
the working directory when a spectral transport calculation is performed. Spectral data �les have the
following structure:

𝑇1 𝐹1,1 𝐴1,1

· · ·
𝑇1 𝐹1,𝑁1 𝐴1,𝑁1

· · ·
𝑇𝑀 𝐹𝑀,1 𝐴𝑀,1

· · ·
𝑇𝑀 𝐹𝑀,𝑁𝑀

𝐴𝑀,𝑁𝑀

For each temperature 𝑇𝑥 of the M temperatures speci�ed in the spectral data �les, there are𝑁𝑋

frequencies (𝐹𝑥,1 through 𝐹𝑥,𝑁𝑋
) speci�ed with corresponding absorptivity values (𝐴𝑥,1 through

𝐴𝑥,𝑁𝑥). Temperatures within these �les are required to be in non-decreasing order and frequencies must
be ordered in increasing value within a speci�c temperature. Absorptivities are expected to be in units
of 𝑐𝑚2/𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒, which is a number density weighted absorptivity. Unit conversion within the Fuego
input deck is required if the desired units of the simulation are not cgs. The ideal gas law and knowledge
of the mass fraction of each species is used to calculate the number density.

For the spectral radiation model speci�ed here, the name of the particular spectral model is given as
spectralRadModel, but could be any valid string. For this case, a LINEAR “Spectral Band Model” is
used, where the set of spectral bands, in this case 2 as speci�ed by “Number of Spectral Bands” are
equally divided along the linear spectral frequency range with “Minimum Frequency = 1.0e13” Hz and
“Maximum Frequency = 2.0e13” Hz. One could alternatively choose a LOGARITHMIC Spectral Band
Model where bands are divided up equally in logarithmic frequency space.

In this case, we have chosen an AVERAGE “Spectral Subband Model”, which indicates that averaging of
absorptivities for frequencies within a spectral band will follow standard (unweighted) averaging over
the particular spectral band. A PLANCK_AVERAGE Spectral Subband Model is also available where
integrations are weighted by their Planck black-body spectrum contribution.
PLANCK_AVERAGE_WITH_REFERENCE_TEMPERATURE is a �nal choice that a user can select where the
band contributions are weighted by the Planck black body-spectrum at a speci�ed user reference
temperature. If this �nal option is used, a user must also specify a reference temperature, which can be
done through: Planck Subband Model Reference Temperature = 2000.0 Here the Reference
temperature is set to 2000.0 K, but could be any nonzero temperature.

Please also note that if running a spectral case with Nalu multiple non-linear iterations should be
speci�ed. This is currently necessary to converge the system even if the equation system is linear.
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Beta Capability:

3.2.1. Spectral properties on surfaces

Fuego can now perform spectral radiation calculations with banded emissivities de�ned on surfaces.
This is a beta feature, and still requires additional testing. A command similar to the one shown below is
used to de�ne banded emissivities on surfaces:

BEGIN WALL BOUNDARY CONDITION ON SURFACE SURFACE_1
INTERFACE BOUNDARY
EMISSIVITY SPECTRAL FILE NAME = SURFACE_1_SPECTRAL.DATA
TRANSPARENT BAND EMISSIVITY = 1.0

END WALL BOUNDARY CONDITION ON SURFACE SURFACE_1

Similar to the spectral radiation model described in Section 3.2, a spectral data �le containing the
emissivity bands must be provided for each surface (provided by the "EMISSIVITY SPECTRAL FILE
NAME =" command in the above). These �les have a structure similar to the species spectral �les:

𝑇1 𝐹1,1 𝜀1,1
· · ·
𝑇1 𝐹1,𝑁1 𝜀1,𝑁1

· · ·
𝑇𝑀 𝐹𝑀,1 𝜀𝑀,1

· · ·
𝑇𝑀 𝐹𝑀,𝑁𝑀

𝜀𝑀,𝑁𝑀

Similar to the species spectral �les, each temperature 𝑇𝑥 of the𝑀 temperatures speci�ed in the spectral
�le have𝑁𝑋 frequencies de�ned, each with a corresponding emissivty value (𝜀𝑋,1 through 𝜀𝑋,𝑁𝑥 .
Temperatures within these �les must be de�ned in a non-decreasing order, with frequencies within each
temperature group ordered in increasing value.

In addition to de�ning a spectral emissivity �le, an additional emissivity for the transparent band can be
de�ned as a general expression; this value is defaulted to 1. In the above example, the transparent band
emissivity is de�ned as a constant (of 1).

3.3. PARTICLE RADIATION TERMS

Particle Radiation contributions are also still available in Fuego simulations with Lagrangian particle
types that have radiation contributions (heated, CPD, evaporating, general chemistry, wild�re).
Previously, the user would specify transfers of necessary thermal/radiation �elds between Fuego and
Syrinx, which would resemble the following:
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BEGIN TRANSFER pmr_to_particle
COPY VOLUME NODES FROM pmr_region TO particle_region
SEND BLOCK block_1 TO block_1
SEND FIELD scalar_flux STATE none TO scalar_flux STATE new

END TRANSFER pmr_to_particle

BEGIN TRANSFER particle_to_pmr
COPY VOLUME NODES FROM particle_region to pmr_region
send field particle_absorption_coeff state new to particle_absorption_coeff state none
SEND FIELD particle_rte_source STATE new TO particle_rte_source STATE none

END TRANSFER particle_to_pmr

For MPMD Radiation transport simulations involving Lagrangian particles, the user now removes the
pmr(Syrinx) to particle transfers and instead adds these to the already-present set of �uid to particle
transfers as is seen in the following:

BEGIN TRANSFER fluid_to_particle
COPY VOLUME NODES FROM fluid_region TO particle_region
SEND BLOCK block_1 TO block_1
...
SEND FIELD scalar_flux STATE none TO scalar_flux STATE new

END TRANSFER fluid_to_particle

BEGIN TRANSFER particle_to_fluid
COPY VOLUME NODES FROM particle_region TO fluid_region
SEND BLOCK block_1 TO block_1
...
send field particle_absorption_coeff state new to particle_absorption_coeff state none
send field particle_rte_source state new to particle_rte_source state none

END TRANSFER particle_to_fluid

3.4. BEAM (DIRECTED FLUX)

Fuego users are able to now specify beam or directed �ux boundary conditions for use in MPMD
simulations with PMR. A beam boundary condition is speci�ed in the Fuego input deck in the
following manner:

#CONVERGING/DIVERGING BEAM
BEGIN BEAM RADIATION BOUNDARY SPECIFICATION

BEAM RADIATION BOUNDARY MODEL = FOCUSED
FOCAL POINT = FX FY FZ
FOCAL POWER = FP
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FOCUSED BEAM TYPE = DIVERGING (OR CONVERGING)
CONSTRAIN TO SURFACES = sideA sideB ...
BEAM TEMPERATURE = BT

END BEAM RADIATION BOUNDARY SPECIFICATION

In the above case, a focused beam boundary BEAM RADIATION BOUNDARY MODEL = FOCUSED is
de�ned where the FOCAL POINT of the beam, either sourcing from or arriving at this point are
(FX, FY, FZ). The user speci�es whether the beam diverges from this point or converges to this focal
point. For the DIVERGING beam, the focal point needs to lie outside the simulation domain, whereas
for the CONVERGING case, the focal point could lie in or outside the domain. The focal power is
speci�ed as FP which is the integrated power of the beam assuming the intensity is spherically isotropic.
For a converging case, the power should be properly scaled to respect the actual solid angle over which
the beam converges to the focal point. For instance if the converging beam actually occupies a solid
angle of 𝜋, the FOCAL POWER should be scaled up by a factor of 4 = 4𝜋/𝜋 since if the beam were
incident from all solid angles, the total beam power would increase by this factor. Beams can be
constrained to arrive through the domain through only a �xed set of external surfaces if so desired as
indicated through CONSTRAIN TO SURFACES = sideA sideB.... The user also speci�es the
BEAM TEMPERATURE for cases using spectral radiation transport, since the beam power must then be
parceled out among the de�ned spectral bands.

Another “directed” or beam-type boundary condition is available, where the user speci�es not a focused
beam but rather a plane wave as is seen below:

#PLANE WAVE
BEGIN BEAM RADIATION BOUNDARY SPECIFICATION

BEAM RADIATION BOUNDARY MODEL = PLANE_WAVE
PLANE WAVE BEAM DIRECTION = WX WY WZ
PLANE WAVE INTENSITY = PWI
CONSTRAIN TO SURFACES = sideA sideB ...
BEAM TEMPERATURE = 3000.0

END BEAM RADIATION BOUNDARY SPECIFICATION

In this case, the BEAM RADIATION BOUNDARY MODEL = PLANE_WAVE, indicates a plane-wave type
source is to be used. The user also speci�es the direction for the plane wave as
PLANE WAVE BEAM DIRECTION = WX WY WZ. The direction must be non-zero. The intensity of the
plane-wave in units of Power per area is de�ned through PLANE WAVE INTENSITY = PWI. The
ability to constrain the beam to only certain external surfaces is identical to that for the focused beam
above as is the beam temperature.

One should keep in mind that for both beam types (focused and plane wave), beam vectors at external
surfaces are only calculated for nodes on surfaces where the inner (dot) product of outwardly directed
area vector and the beam �ux vector is less than 0, indicating that a user speci�ed beam must enter
rather than exit the simulation domain. Of course, given the physics internal to the domain of
simulation, a radiative �ux vector can exit the simulation, but we disallow the possibility of a user
specifying an outwardly directed beam that does not result from internal physics.
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Beta Capability:

3.5. ONE-DIMENSIONAL COMPOSITE FIRE
BOUNDARY CONDITION

3.5.1. Conceptual Overview

Fuego includes a boundary condition that is capable of modeling the thermal decomposition and
outgassing of a thin sheet of porous material at the boundary surface, initially intended to simulate the
combustion of a sheet of carbon �ber composite material. Variation through the material thickness is
assumed to be locally one-dimensional. The actual implementation is quite �exible, allowing the
simulation of the thermal response of essentially any �nite-thickness material that can optionally
undergo a user-speci�ed chemical decomposition mechanism.

Figure 3.5-1 illustrates a two-dimensional representation of the virtual mesh used for this 1D composite
�re boundary condition. One layer of elements above the boundary is shown, within which Fuego
performs its normal �uid solve using the control volume �nite element CVFEM method. The CVFEM
sub-control volumes are demarcated with dashed lines. An equal-order interpolation methodology is
used, so that all solution variables are stored at the element vertices.

For this boundary condition, a series of independent one-dimensional virtual domains exist behind
each CVFEM surface node, and each virtual 1D domain has a cross-sectional area that matches the
group of CVFEM boundary sub-control surfaces that contain the single “parent” surface node. A
classical cell-centered �nite volume methodology is used for the 1D virtual domains, where the
discretization, storage, and numerical solutions all occur within the boundary condition
implementation and only interact with the main CVFEM �ow solution through �uxes and solution
variables at the exposed surface.

Each 1D domain is assumed to have a �xed geometry that is �lled with a simple porous material that is
allowed to react chemically to form gaseous species. Since the overall volume of each element is �xed,
the porosity of each volume is assumed to increase as species are converted from solid to gas. It is
assumed that the gaseous species within the pores of the solid phase are of secondary concern, and as
such no discrete transport equation is solved for them. The approximation is instead made that all gases
generated within the porous material appear instantaneously at the surface of the material as a �ux into
the main �uid solution. It would be straightforward to solve additional transport equations for �uid
�ow within the porous material if that level of �delity were to become necessary, as in the case of
oxidative reactions where oxygen must di�use through the exposed surface into the porous material
before reactions may occur.
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Figure 3.5-1.. Representative mesh layout for 1-D composite fire
boundary condition

3.5.2. Model Formulation

3.5.2.1. Transport Equations

Within the solid phase of the porous material, one-dimensional transport equations for continuity,
chemical species, and energy are solved in the form:

𝜕𝜌

𝜕𝑡
= 𝜔̇′′′

𝑐 (3.5)

𝜕𝜌𝑌𝑘
𝜕𝑡

= 𝜔̇′′′
𝑘 (3.6)

𝜌𝑐
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥

(︂
𝑘
𝜕𝑇

𝜕𝑥

)︂
+ 𝑞′′′, (3.7)

where 𝜌, 𝑐, and 𝑘 are the mixture-averaged bulk density, speci�c heat, and thermal conductivity,
respectively, 𝑌𝑘 is the mass fraction of chemical species 𝑘, 𝑇 is the temperature of the solid phase, 𝑞′′′ is
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the volumetric heat generation rate due to chemical reactions, 𝜔̇′′′
𝑘 is the volumetric mass generation rate

of chemical species 𝑘, and 𝜔̇′′′
𝑐 is the overall mass generation rate computed as 𝜔̇′′′

𝑐 =
∑︀
𝑘

𝜔̇′′′
𝑘 .

3.5.2.2. Material Models

The composite material used for this boundary condition is assumed to be of a �xed volume, i.e. there is
no structural deformation allowed. The bulk density of the multi-species solid mixture is assumed to be
a function of the density of each component species in their native porous state, as

𝜌 =

(︃∑︁
𝑘

𝑌𝑘
𝜌𝑘

)︃−1

, (3.8)

where 𝜌𝑘 is the porous density of species 𝑘, provided as a material model by the user. This model for the
mixture bulk density is only used to compute the initial bulk density �eld, which is subsequently solved
directly from Equation 3.5.

The porosity of the mixture is assumed to follow the model

𝜓 =
∑︁
𝑘

𝑋𝑘𝜓𝑘, (3.9)

where𝑋𝑘 is the volume fraction of species 𝑘,

𝑋𝑘 = 𝜌
𝑌𝑘
𝜌𝑘
, (3.10)

and 𝜓𝑘 is the porosity of pure species 𝑘, modeled as

𝜓𝑘 = 1− 𝜌𝑖
𝜌𝑠0,𝑘

, (3.11)

where 𝜌𝑠0,𝑘 is the density of the solid (non-porous) species 𝑘 at a reference temperature. Note that the
porosity does not appear explicitly in any of the transport equations or subsequent material models, so
that it is never computed as part of the boundary condition solution. It would only appear in transport
equations for the gaseous species occupying the pores of the solid skeleton, if this level of detail were
ever to be added to this model.

In their most detailed form, the bulk thermal conductivity and speci�c heat are evaluated as a volume
average and mass average of the individual species properties, respectively, as

𝑘 =
∑︁
𝑘

𝑋𝑘𝑘𝑘 (3.12)

𝑐 =
∑︁
𝑘

𝑌𝑘𝑐𝑘, (3.13)

although a species-independent model for the overall bulk property may be used if the individual
species properties are not known.
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The last quantities that require a model are the volumetric species mass production rates, 𝜔̇′′′, and the
volumetric heat production rate, 𝑞′′′. These quantities can be provided by the user in two di�erent
ways. The traditional approach is to supply them using standard material property evaluations as a part
of the material model de�nition. These are arbitrary functions that themselves may be dependent on
any of the solution variables or other material properties. If a nonreacting material is desired, then these
terms may be simply modeled as zero.

The second way of supplying these quantities is by including a chemistry description block in the
material model, which allows the user to specify multiple reactions and variable composition gas
production.

3.5.2.3. Boundary Conditions

The exposed surface of the composite material interacts thermally with the environment through
several mechanisms, including convective heat transfer and both radiation absorption and emission.
These external �uxes must balance the conduction inside the composite material at the surface, as

𝑞′′′ = 𝑞′′′conv + 𝑞′′′rad
= 𝑞′′′conv + 𝜖

(︀
𝜎𝑇 4

1 − 𝑞′′′irr
)︀

(3.14)

where 𝑞′′′conv is the convective �ux imposed on the surface by the external laminar or turbulent boundary
condition treatment, 𝑇1 is the temperature solution from the �rst control volume in the composite
material used to model the gray emission, and 𝑞′′′irr is the external radiative �ux incident on the surface.

On the back-side of the virtual composite material, optional convective and radiative heat transfer to a
quiescent environment is modeled as

𝑞′′′b = 𝑞′′′b,conv + 𝑞′′′b,rad

= ℎ𝑐 (𝑇𝑁 − 𝑇ref) + 𝜎𝜖𝑏
(︀
𝑇 4
𝑁 − 𝑇 4

ref

)︀
(3.15)

where ℎ𝑐 is a user-speci�ed convection coe�cient, 𝜖𝑏 is a user-speci�ed back-side emissivity, 𝑇ref is the
modeled ambient environment temperature, and 𝑇𝑁 is the temperature of the solution node closest to
the back-side surface, assumed to be equal to the back-side surface temperature itself.

3.5.2.4. Numerical Implementation - Original

A segregated, implicit solution technique is used to numerically integrate Equations 3.5–3.7. The
discretized form of the continuity equation, Equation 3.5, is derived by �rst integrating it over the �nite
volume 𝑉 and the time step Δ𝑡 to yield∫︁

Δ𝑡

[︂∫︁
𝑉

𝜕𝜌

𝜕𝑡
𝑑𝑉 −

∫︁
𝑉

𝜔̇′′′
𝑐 𝑑𝑉

]︂
𝑑𝑡 = 0 (3.16)

∫︁
Δ𝑡

[︂
𝑉𝑖
𝜕𝜌𝑖
𝜕𝑡

− 𝑉𝑖𝜔̇
′′′
𝑐,𝑖

]︂
𝑑𝑡 = 0. (3.17)
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Discretizing the temporal derivative using a �rst-order backward di�erence approximation and solving
for the bulk density at the new time step yields

𝑉𝑖
(︀
𝜌𝑛+1
𝑖 − 𝜌𝑛𝑖

)︀
− 𝑉𝑖𝜔̇

′′′
𝑐,𝑖Δ𝑡 = 0 (3.18)

𝜌𝑛+1
𝑖 = 𝜌𝑛𝑖 + 𝜔̇′′′

𝑐,𝑖Δ𝑡. (3.19)

where the mesh indices are de�ned in Figure 3.5-2. Note that this equation is linearized by evaluating the
source term at the most recent estimate of the 𝑛+ 1 solution state.

Figure 3.5-2.. Mesh index definition for 1-D composite fire boundary condition

The species transport equations, Equation 3.6, undergoes an identical transformation,∫︁
Δ𝑡

[︂∫︁
𝑉

𝜕𝜌𝑌𝑘
𝜕𝑡

𝑑𝑉 −
∫︁
𝑉

𝜔̇′′′
𝑘 𝑑𝑉

]︂
𝑑𝑡 = 0 (3.20)

∫︁
Δ𝑡

[︂
𝑉𝑖
𝜕𝜌𝑖𝑌𝑘
𝜕𝑡

− 𝑉𝑖𝜔̇
′′′
𝑐,𝑖

]︂
𝑑𝑡 = 0. (3.21)

𝑉𝑖
(︀
𝜌𝑛+1
𝑖 𝑌 𝑛+1

𝑘,𝑖 − 𝜌𝑛𝑖 𝑌
𝑛
𝑘,𝑖

)︀
− 𝑉𝑖𝜔̇

′′′
𝑘,𝑖Δ𝑡 = 0 (3.22)

𝑌 𝑛+1
𝑘,𝑖 =

𝜌𝑛𝑖 𝑌
𝑛
𝑘,𝑖 + 𝜔̇′′′

𝑘,𝑖Δ𝑡

𝜌𝑛+1
𝑖

, (3.23)

where the bulk density at the new time level is used from Equation 3.19, and the source term is evaluated
from the most recent estimate of the 𝑛+ 1 solution state.

The energy equation also undergoes a similar transformation, but with added complexity due to the
inclusion of spatial derivatives. Equation 3.7 is �rst integrated in both space and time, and the Gauss
divergence theorem is used to remove one level of spatial derivatives in the di�usive �ux term,∫︁

Δ𝑡

[︂∫︁
𝑉

𝜌𝑐
𝜕𝑇

𝜕𝑡
𝑑𝑉 −

∫︁
𝑉

𝜕

𝜕𝑥

(︂
𝑘
𝜕𝑇

𝜕𝑥

)︂
𝑑𝑉 −

∫︁
𝑉

𝑞′′′𝑑𝑉

]︂
𝑑𝑡 = 0 (3.24)

∫︁
Δ𝑡

[︂∫︁
𝑉

𝜌𝑐
𝜕𝑇

𝜕𝑡
𝑑𝑉 −

∫︁
𝐴

𝑛 ·
(︂
𝑘
𝜕𝑇

𝜕𝑥

)︂
𝑑𝐴−

∫︁
𝑉

𝑞′′′𝑑𝑉

]︂
𝑑𝑡 = 0. (3.25)
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Integrating numerically in space yields∫︁
Δ𝑡

[︃
𝜌𝑖𝑐𝑖𝑉𝑖

𝜕𝑇𝑖
𝜕𝑡

−

(︃(︂
−𝐴𝑘𝜕𝑇

𝜕𝑥

)︂
𝑖− 1

2

+

(︂
𝐴𝑘

𝜕𝑇

𝜕𝑥

)︂
𝑖+ 1

2

)︃
− 𝑞′′′𝑖 𝑉𝑖

]︃
𝑑𝑡 = 0 (3.26)

∫︁
Δ𝑡

[︃
𝜌𝑖𝑐𝑖𝑉𝑖

𝜕𝑇𝑖
𝜕𝑡

+ 𝐴𝑖− 1
2
𝑘𝑖− 1

2

(︃
𝑇𝑖 − 𝑇𝑖−1

Δ𝑥𝑖− 1
2

)︃
− 𝐴𝑖+ 1

2
𝑘𝑖+ 1

2

(︃
𝑇𝑖+1 − 𝑇𝑖
Δ𝑥𝑖+ 1

2

)︃
− 𝑞′′′𝑖 𝑉𝑖

]︃
𝑑𝑡 = 0, (3.27)

and then integrating in time and linearizing the equation by evaluating the coe�cients at the most
recent estimate of the 𝑛+ 1 solution state yields

𝜌𝑖𝑐𝑖𝑉𝑖

(︂
𝑇 𝑛+1
𝑖 − 𝑇 𝑛𝑖

Δ𝑡

)︂
+ 𝐴𝑖− 1

2
𝑘𝑖− 1

2

(︃
𝑇 𝑛+1
𝑖 − 𝑇 𝑛+1

𝑖−1

Δ𝑥𝑖− 1
2

)︃
− 𝐴𝑖+ 1

2
𝑘𝑖+ 1

2

(︃
𝑇 𝑛+1
𝑖+1 − 𝑇 𝑛+1

𝑖

Δ𝑥𝑖+ 1
2

)︃
− 𝑞′′′𝑖 𝑉𝑖 = 0.

(3.28)
This leads to a tridiagonal system of coupled linear equations for the temperature at time level (𝑛+ 1),
which is solved using a direct method with the DGTSL module of the SLATEC library.

The continuity, species, and energy equations are solved sequentially in the order described, and the
solution is repeated until the maximum normalized change in the temperature solution,

𝑇err =
|𝑇 𝑛+1 − 𝑇 *|

𝑇 𝑛+1
(3.29)

satis�es the user-speci�ed tolerance, where 𝑇 * is the solution from the previous iteration.

Please see the Fuego user’s manual for details on the usage of this boundary condition.

3.5.2.5. Numerical Implementation - New

When using the new form of the composite BC, where the chemical mechanism is speci�ed using a
chemistry description, the numerical implementation is slightly di�erent. The �nite volume
discretization used is the same, but the system of equations is solved monolithically using the
user-speci�ed ODE solver. The solver handles time stepping during the sub-integration to reduce the
overall error below the speci�ed threshhold.

Additionally, when constructing the monolithic system with the new form the DOFs are temperature
and𝑁 species masses, rather than the prior approach of using temperature, density, and𝑁 − 1 species
mass fractions.
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3.6. NON-CONFORMAL DG BOUNDARY CONDITION

3.6.1. Conceptual Overview

The non-conformal boundary condition uses the DG approach described by Domino [87] and is
currently implemented for turbulence models, continuity, momentum, and heat conduction. The
non-conformal boundary condition is applied where you have two domains,𝐴 and𝐵, which share a
discontinuous interface with individual sidesets, 𝑆𝐴 and 𝑆𝐵 . The algorithm is applied in two passes,
�rst iterating over all integration points in 𝑆𝐴 and �nding the matching face in 𝑆𝐵 , then by iterating
over the integration points in 𝑆𝐵 and �nding the matching face in 𝑆𝐴. The generic �ux of a scalar, 𝜑 at
an integration point on 𝑆𝐴 is

𝑄̂𝐴 =

[︃
(𝑞𝐴𝑗 𝑛

𝐴
𝑗 − 𝑞𝐵𝑗 𝑛

𝐵
𝑗 )

2
+ 𝜆𝐴(𝜑𝐴 − 𝜑𝐵)

]︃
𝐴𝐴𝑓 + 𝑚̇𝐴 (𝜑

𝐴 + 𝜑𝐵)

2
+ 𝜂

|𝑚̇𝐴|
2

(𝜑𝐴 − 𝜑𝐵), (3.30)

where 𝑞𝑗 is the di�usive �ux, 𝑚̇ is the mass �ux, and 𝜆 is the interior penalty coe�cient.

Prior investigations have shown that pressure oscillations can be minimized by using the current
integration point normal direction for both di�usive �uxes, so 𝑛𝐵𝑗 = −𝑛𝐴𝑗 .

The penalty term, 𝜆𝐴 is given by

𝜆𝐴 =
(Γ𝐴/𝐿𝐴 + Γ𝐵/𝐿𝐵)

2
, (3.31)

where Γ is the di�usive �ux coe�cient and 𝐿 is an element length scale.

The advection coe�cient, 𝜂, de�nes the degree of upwinding to use. A value of 𝜂 = 1 results in a fully
upwind scheme, while 𝜂 = 0 results in a central di�erence scheme. When using a hybrid approach, this
value is calculated locally based on the Peclet number.

3.6.1.1. Continuity

The mass �ow rate at the non-conformal boundary includes the pressure stabilization terms, as

𝑚̇𝐴 =

⎡⎣(𝜌𝑢𝐴𝑗 + 𝑎𝐴𝑝𝐺
𝐴
𝑗 𝑝− 𝑎𝐴𝑝

𝜕𝑝𝐴

𝜕𝑥𝑗
)𝑛𝐴𝑗 − (𝜌𝑢𝐵𝑗 + 𝑎𝐵𝑝 𝐺

𝐵
𝑗 𝑝− 𝑎𝐵𝑝

𝜕𝑝𝐵

𝜕𝑥𝑗
)𝑛𝐵𝑗

2
+ 𝜆𝐴(𝑝𝐴 − 𝑝𝐵)

⎤⎦𝐴𝐴𝑓 .
(3.32)
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3.6.2. Performance Considerations

There is a computational cost associated with the use of the non-conformal interface. This is largely due
to two tasks: a search to match integration points with opposing faces on both non-conformal
boundaries, and the resulting changes to the linear system stencil if the interface moves. Preliminary
testing has shown that the cost of reinitializing the linear system with a new stencil is at least an order of
magnitude greater than the cost of the search. For this reason, the algorithm implemented in Fuego will
do an extra search in order to only reinitialize the linear system when the stencil actually changes. The
user can expand the search boxes used in the stencil de�nition in order to reduce the number of linear
system reinitializations by setting the “Search Expansion Factor” in the non-conformal boundary
condition speci�cation. This number is the approximate diametrical size increase in the stencil in terms
of number of elements.

3.6.3. Non-Conformal Moving Walls

The non-conformal BC in Fuego supports having a moving surface as one side of the interface. This is
implemented by providing a shell block containing nodal displacements on one side of the interface.
Then non-conformal search will search for matching faces in opposing blocks and shells. If a shell is
found, an appropriate wall boundary condition is applied at the integration point, while if a non-shell
element is found the interior algorithms described previously are used.
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3.7. POROUS-FLUID COUPLING ALGORITHM

This section provides a brief overview of the current porous/�uid coupling algorithm, as it is intended
to be used in simulations of composite �res using Fuego to model the �uid region and coupling to Aria
to model the porous region.. This is a loosely-coupled algorithm, relying on framework interpolation
transfers of nodal �elds between the porous region and the low-Mach �uid region and region-region
Picard loops to converge the overall problem within a timestep.

Note that the shorthand is adopted where the porous region is described as region𝐴 and the low-Mach
free �uid region is described as region𝐵, with the interface between them referred to as Γ𝐴𝐵 and other
boundaries not a part of this interface are referred to as Γ∖Γ𝐴𝐵 .

3.7.1. Fluid Flow

3.7.1.1. Bulk Equations

Porous Continuity Equation The porous region contains a condensed phase (the solid skeleton
of the porous system) and a gas phase occupying the pores of the condensed phase. The condensed
phase is not discussed explicitly in this description, although it interacts with the gas phase through
things like its permeability and porosity, and its decomposition which can produce gas-phase mass
through chemical source terms.

The porous gas-phase continuity equation within a porous region, to be solved for the gas-phase
pressure 𝑝𝑔, is

𝜕(𝜓𝜌𝑔)

𝜕𝑡
+
𝜕(𝜌𝑔𝑢𝑗,𝑔)

𝜕𝑥𝑗
= 𝜔̇′′′

𝑓𝑔, (3.33)

where 𝜓 is the mixture-averaged condensed-phase porosity, 𝜌𝑔 is the gas-phase density, and 𝑢𝑗,𝑔 is the
gas-phase velocity vector computed from Darcy’s approximation as

𝑢𝑗,𝑔 = − 𝐾̄

𝜇𝑔

(︂
𝜕𝑝𝑔
𝜕𝑥𝑗

+ 𝜌𝑔𝑔𝑗

)︂
, (3.34)

where 𝐾̄ is the mixture-averaged condensed-phase permeability, 𝜇𝑔 is the gas-phase viscosity, and 𝑔𝑗 is
the gravity vector. The term 𝜔̇′′′

𝑓𝑔 represents the formation rate of gas-phase mass from the condensed
phase.

Multiplying Equation 3.33 by an arbitrary test function𝑤 and integrating over the domain Ω while
integrating the advection term by parts, yields the variational form of the continuity equation that is
solved for 𝑝𝑔 using the Galerkin �nite element method,∫︁

Ω

𝑤

(︂
𝜕(𝜓𝜌𝑔)

𝜕𝑡
− 𝜔̇′′′

𝑓𝑔

)︂
𝑑Ω−

∫︁
Ω

𝜕𝑤

𝜕𝑥𝑗
𝜌𝑔𝑢𝑗,𝑔𝑑Ω +

∫︁
Γ

𝑤𝜌𝑔𝑢𝑗,𝑔𝑛𝑗𝑑Γ = 0, (3.35)
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where 𝑛𝑗 is the boundary surface normal. The boundary �ux term is then split into contributions on
the interface between regions𝐴 and𝐵 and o� the interface so that they may be treated separately. The
continuity equation then takes the form∫︁

Ω

𝑤

(︂
𝜕(𝜓𝜌𝑔)

𝜕𝑡
− 𝜔̇′′′

𝑓𝑔

)︂
𝑑Ω−

∫︁
Ω

𝜕𝑤

𝜕𝑥𝑗
𝜌𝑔𝑢𝑗,𝑔𝑑Ω

+

∫︁
Γ∖Γ𝐴𝐵

𝑤𝜌𝑔𝑢𝑗,𝑔𝑛𝑗𝑑Γ +

∫︁
Γ𝐴𝐵

𝑤𝐹𝐴𝑑Γ = 0, (3.36)

where 𝐹𝐴 is the imposed �ux on the porous side (𝐴) of the Γ𝐴𝐵 interface. A detailed description of the
coupling boundary �ux is given in Section 3.7.1.2

Low-Mach Continuity Equation The continuity equation within the low-Mach �uid region, to
be solved for the pressure 𝑝, is

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 𝑆, (3.37)

where 𝜌 is the �uid density, 𝑢𝑗 is the �uid velocity, and 𝑆 is a generic mass volumetric source term.
Integrating Equation 3.37 over a CVFEM control volume and using the Gauss divergence theorem on
the advection and di�usive �ux terms, yields the integral form of the continuity equation that is
solved, ∫︁

Ω

(︂
𝜕𝜌

𝜕𝑡
− 𝑆

)︂
𝑑Ω +

∫︁
Γ

𝜌𝑢𝑗𝑛𝑗𝑑Γ = 0. (3.38)

Similar to the porous continuity equation, the boundary �ux term is split into contributions both on
and o� the Γ𝐴𝐵 interface, yielding∫︁

Ω

(︂
𝜕𝜌

𝜕𝑡
− 𝑆

)︂
𝑑Ω +

∫︁
Γ∖Γ𝐴𝐵

𝜌𝑢𝑗𝑛𝑗𝑑Γ +

∫︁
Γ𝐴𝐵

𝐹𝐵𝑑Γ = 0. (3.39)

The interface coupling �ux is described in Section 3.7.1.2.

Low-Mach Momentum Equation The momentum equation within the low-Mach �uid region,
to be solved for the velocity 𝑢𝑖, is

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕𝜌𝑢𝑗𝑢𝑖
𝜕𝑥𝑗

=
𝜕𝜎𝑖𝑗
𝜕𝑥𝑗

+ 𝜌𝑔𝑖 (3.40)

where the Cauchy stress tensor is given by

𝜎𝑖𝑗 = 𝜏𝑖𝑗 − 𝑝𝛿𝑖𝑗 (3.41)

in terms of the viscous stress tensor

𝜏𝑖𝑗 = 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
− 2

3
𝜇
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗. (3.42)
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Integrating Equation 3.40 over a CVFEM control volume and using the Gauss divergence theorem on
the advection and di�usive �ux terms, yields the integral form of the momentum equation that is
solved, ∫︁

Ω

𝜕𝜌𝑢𝑖
𝜕𝑡

𝑑Ω +

∫︁
Γ

𝜌𝑢𝑗𝑢𝑖𝑛𝑗𝑑Γ−
∫︁
Γ

𝜎𝑖𝑗𝑛𝑗𝑑Γ−
∫︁
Ω

𝜌𝑔𝑖𝑑Ω = 0. (3.43)

Multiplying this equation by an arbitrary test function𝑤, integrating the advection and stress terms by
parts, and splitting the boundary �ux terms into on-interface and o�-interface contributions yields∫︁

Ω

𝜕𝜌𝑢𝑖
𝜕𝑡

𝑑Ω−
∫︁
Ω

𝜌𝑔𝑖𝑑Ω +

∫︁
Γ∖Γ𝐴𝐵

𝜌𝑢𝑗𝑢𝑖𝑛𝑗𝑑Γ−
∫︁

Γ∖Γ𝐴𝐵

𝜎𝑖𝑗𝑛𝑗𝑑Γ

+

∫︁
Γ𝐴𝐵

𝜌𝑢𝑗𝑢𝑖𝑛𝑗𝑑Γ−
∫︁

Γ𝐴𝐵

𝜎𝑖𝑗𝑛𝑗𝑑Γ = 0. (3.44)

3.7.1.2. Coupling Boundary Conditions

Coupling between the porous and �uid regions is achieved using an interface �ux that is imposed as a
Robin-style boundary condition. This approach has been used successfully in the past for coupling
incompressible Darcy and Stokes �ows [88]. Here we generalize the coupling for compressible �uids
and Navier-Stokes �ow.

The �uxes applied to the porous and �uid continuity equations at the interface Γ𝐴𝐵 are

𝐹𝐴 = 𝑚̇𝐵 · 𝑛̂+ 𝛽(𝑝𝐴 − 𝑝𝐵) (3.45)
𝐹𝐵 = 𝑚̇𝐴 · 𝑛̂+ 𝛽(𝑝𝐵 − 𝑝𝐴), (3.46)

where 𝑚̇𝐴 = 𝜌𝑔𝑢𝑔, 𝑚̇𝐵 = 𝜌𝑢⃗, and the free constant 𝛽 is computed as

𝛽 = 𝑐
𝐾̄𝜌𝑔
𝜇𝑔ℎ

(3.47)

with ℎ being a measure of the mesh size adjacent to the interface, and 𝑐 a user-speci�ed scaling
coe�cient. The same value of 𝛽 is used on both sides of the interface because that results in excellent
mass conservation even on coarse meshes. If a di�erent value of 𝛽 is used on each side the method is still
convergent but worse mass conservation is observed when solving on under-resolved meshes. Some
attempts have been made to use an averaged penalty coe�cient of the form

𝛽 =
𝛽𝐴 + 𝛽𝐵

2
(3.48)

𝛽𝐴 =
𝐾̄𝜌𝑔
𝜇𝑔ℎ

(3.49)

𝛽𝐵 =
𝜏 𝑐

ℎ
, or 𝛽𝐵 =

𝜇

ℎ𝑃𝑟𝑒𝑓
, (3.50)
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however they resulted in an impractically large number of Picard iterations to converge for some test
problems.

A distinguishing condition BC for velocity is applied to the low-mach momentum equation in the
form

𝑢𝑗 − (𝑢𝐷𝑗,𝑛 + 𝑢𝐷𝑗,𝑡) = 0, (3.51)

where 𝑢𝐷𝑗,𝑛 is the imposed normal component of velocity and 𝑢𝐷𝑗,𝑡 is the imposed tangential component
of velocity. The normal component is computed directly from the continuity �ux at the interface,

𝑢𝐷𝑗,𝑛 =
𝐹𝐵
𝜌
𝑛𝑗. (3.52)

The tangential component is based on a variation of the classical Beavers-Joseph-Sa�man
condition [89, 90] for the slip velocity which has been extended to non-planar surfaces in
multidimensional �ow [91], which de�nes a provisional model velocity

𝑢BJS
𝑗 = −

√
𝐾̄

𝛼𝜇
(𝑛𝑖𝜏𝑖𝑗) (3.53)

where 𝐾̄ is the permeability of the porous region at the interface, 𝜇 is the viscosity of the local �uid at
the interface, 𝜏𝑖𝑗 is the viscous stress tensor of the �uid at the interface, and 𝛼 is a dimensionless model
parameter that is a function of the microstructure of the porous material, which has been found to have
typical values near 0.1 [90]. The tangential component of this vector quantity is used as the tangential
component of the distinguishing condition velocity, and is computed as

𝑢𝐷𝑗,𝑡 = 𝑢BJS
𝑗 −

(︀
𝑢BJS
𝑘 𝑛𝑘

)︀
𝑛𝑗. (3.54)

3.7.2. Enthalpy Transport

3.7.2.1. Bulk Equations

Porous Gas-Phase Enthalpy Equation The gas-phase enthalpy equation within a porous
region, to be solved for the gas-phase temperature 𝑇𝑔, is

𝜕(𝜓𝜌𝑔ℎ𝑔)

𝜕𝑡
+
𝜕(𝜌𝑔𝑢𝑗,𝑔ℎ𝑔)

𝜕𝑥𝑗
= −

𝜕𝑞ℎ,𝑔𝑗
𝜕𝑥𝑗

+

(︂
𝜕(𝜓𝑝𝑔)

𝜕𝑡
+ 𝑢𝑗,𝑔

𝜕𝑝𝑔
𝜕𝑥𝑗

)︂
+ℎ𝑐𝑣

(︀
𝑇 − 𝑇𝑔

)︀
+
∑︁
𝑘

(︀
𝜔̇′′′
𝑠,𝑓𝑘 − 𝜔̇′′′

𝑠,𝑑𝑘

)︀
ℎ𝑘,𝑔 (3.55)

where ℎ𝑔 is the mixture-averaged gas-phase enthalpy, ℎ𝑐𝑣 is the volumetric heat transfer coe�cient, 𝑇 is
the porous condensed-phase temperature,

(︀
𝜔̇′′′
𝑠,𝑓𝑘 − 𝜔̇′′′

𝑠,𝑑𝑘

)︀
is the formation and destruction of

gas-phase species due to heterogeneous reactions, and ℎ𝑘,𝑔 is the gas-phase enthalpy of chemical species
𝑘. The gas-phase energy di�usive �ux vector 𝑞ℎ,𝑔𝑗 is modeled as

𝑞ℎ,𝑔𝑗 = −𝜓𝜌𝑔𝐷𝑔
𝜕ℎ𝑔
𝜕𝑥𝑗

, (3.56)
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where𝐷𝑔 is the mixture-averaged gas-phase mass di�usivity.

Note that, in Equation 3.55, there is some concern that the pressure spatial derivative term, 𝑢𝑗,𝑔 𝜕𝑝𝑔𝜕𝑥𝑗
, is

incorrect. A crude re-derivation of this equation indicates that its form should instead be 𝑢𝑗,𝑔
𝜓

𝜕(𝜓𝑝𝑔)

𝜕𝑥𝑗
. A

more formal re-derivation from �rst principles is required to decide conclusively on the correct form of
this term, so it is left in its current form for now. Additionally, the di�usive �ux vector is also of concern
since the current form was derived under the assumption of constant speci�c heat, equal species mass
di�usivities, and unity Lewis number. These assumptions may not be valid in future simulations,
meaning that this term should possibly be returned to the standard Fick’s law version that includes a
contribution due to enthalpy transport by di�erential di�usion of chemical species. Again, this term is
left in its current form for the present work.

Multiplying Equation 3.55 by an arbitrary test function𝑤 and integrating over the domain Ω while
integrating the advection and di�usion terms by parts, yields the variational form of the enthalpy
equation that is solved for ℎ𝑔 using the Galerkin �nite element method,∫︁
Ω

𝑤

(︃
𝜕(𝜓𝜌𝑔ℎ𝑔)

𝜕𝑡
−
(︂
𝜕(𝜓𝑝𝑔)

𝜕𝑡
+ 𝑢𝑗,𝑔

𝜕𝑝𝑔
𝜕𝑥𝑗

)︂
− ℎ𝑐𝑣

(︀
𝑇 − 𝑇𝑔

)︀
−
∑︁
𝑘

(︀
𝜔̇′′′
𝑠,𝑓𝑘 − 𝜔̇′′′

𝑠,𝑑𝑘

)︀
ℎ𝑔,𝑘

)︃
𝑑Ω

−
∫︁
Ω

𝜕𝑤

𝜕𝑥𝑗
(𝜌𝑔𝑢𝑗,𝑔ℎ𝑔) 𝑑Ω +

∫︁
Γ

𝑤 (𝜌𝑔𝑢𝑗,𝑔ℎ𝑔)𝑛𝑗𝑑Γ

−
∫︁
Ω

𝜕𝑤

𝜕𝑥𝑗
𝑞ℎ,𝑔𝑗 𝑑Ω +

∫︁
Γ

𝑤𝑞ℎ,𝑔𝑗 𝑛𝑗𝑑Γ = 0. (3.57)

The boundary �ux terms are then split into contributions on the interface between regions𝐴 and𝐵 and
o� the interface so that they may be treated separately. The enthalpy equation then takes the form∫︁
Ω

𝑤

(︃
𝜕(𝜓𝜌𝑔ℎ𝑔)

𝜕𝑡
−
(︂
𝜕(𝜓𝑝𝑔)

𝜕𝑡
+ 𝑢𝑗,𝑔

𝜕𝑝𝑔
𝜕𝑥𝑗

)︂
− ℎ𝑐𝑣

(︀
𝑇 − 𝑇𝑔

)︀
−
∑︁
𝑘

(︀
𝜔̇′′′
𝑠,𝑓𝑘 − 𝜔̇′′′

𝑠,𝑑𝑘

)︀
ℎ𝑔,𝑘

)︃
𝑑Ω

−
∫︁
Ω

𝜕𝑤

𝜕𝑥𝑗
(𝜌𝑔𝑢𝑗,𝑔ℎ𝑔) 𝑑Ω−

∫︁
Ω

𝜕𝑤

𝜕𝑥𝑗
𝑞ℎ,𝑔𝑗 𝑑Ω

+

∫︁
Γ∖Γ𝐴𝐵

𝑤 (𝜌𝑔𝑢𝑗,𝑔ℎ𝑔)𝑛𝑗𝑑Γ +

∫︁
Γ∖Γ𝐴𝐵

𝑤𝑞ℎ,𝑔𝑗 𝑛𝑗𝑑Γ +

∫︁
Γ𝐴𝐵

𝑤𝐽𝐻𝐴 𝑑Γ = 0. (3.58)

where 𝐽𝐻𝐴 is the imposed �ux on the porous side (𝐴) of the Γ𝐴𝐵 interface. A detailed description of the
coupling boundary �ux is given in Section 3.7.2.2.

Low-Mach Enthalpy Equation The enthalpy equation within the low-Mach �uid region, to be
solved for the �uid temperature 𝑇 , is

𝜕(𝜌ℎ)

𝜕𝑡
+
𝜕(𝜌𝑢𝑗ℎ)

𝜕𝑥𝑗
= −

𝜕𝑞ℎ𝑗
𝜕𝑥𝑗

−
𝜕𝑞𝑟𝑗
𝜕𝑥𝑗

+

(︂
𝜕𝑝

𝜕𝑡
+ 𝑢𝑗

𝜕𝑝

𝜕𝑥𝑗

)︂
+ 𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

(3.59)
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where ℎ is the mixture-averaged �uid enthalpy, 𝑞𝑟𝑗 is a source term due to radiation absorption and
emission, and 𝑝 is the �uid pressure. The di�usive �ux vector is given by

𝑞ℎ𝑗 = −𝜆 𝜕𝑇
𝜕𝑥𝑗

+
∑︁
𝑘

𝜌ℎ𝑘𝑌𝑘𝑢̂𝑗𝑘, (3.60)

where 𝜆 is the mixture thermal conductivity, ℎ𝑘 is the enthalpy of species 𝑘, 𝑌𝑘 is the mass fraction of
species 𝑘, and 𝑢̂𝑗𝑘 is the di�usion velocity of species 𝑘 in the 𝑗 direction.

Integrating Equation 3.59 over a CVFEM control volume and using the Gauss divergence theorem on
the advective and di�usive �ux terms, yields the integral form of the enthalpy equation to be solved,∫︁

Ω

𝜕(𝜌ℎ)

𝜕𝑡
𝑑Ω +

∫︁
Ω

𝜕𝑞𝑟𝑗
𝜕𝑥𝑗

𝑑Ω−
∫︁
Ω

(︂
𝜕𝑝

𝜕𝑡
+ 𝑢𝑗

𝜕𝑝

𝜕𝑥𝑗

)︂
𝑑Ω−

∫︁
Ω

𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

𝑑Ω

+

∫︁
Γ

(𝜌𝑢𝑗ℎ)𝑛𝑗𝑑Γ +

∫︁
Γ

𝑞ℎ𝑗 𝑛𝑗𝑑Γ = 0. (3.61)

The boundary �ux terms are then split into contributions on the interface between regions𝐴 and𝐵 and
o� the interface so that they may be treated separately. The enthalpy equation then takes the form∫︁

Ω

𝜕(𝜌ℎ)

𝜕𝑡
𝑑Ω +

∫︁
Ω

𝜕𝑞𝑟𝑗
𝜕𝑥𝑗

𝑑Ω−
∫︁
Ω

(︂
𝜕𝑝

𝜕𝑡
+ 𝑢𝑗

𝜕𝑝

𝜕𝑥𝑗

)︂
𝑑Ω−

∫︁
Ω

𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

𝑑Ω

+

∫︁
Γ∖Γ𝐴𝐵

(𝜌𝑢𝑗ℎ)𝑛𝑗𝑑Γ +

∫︁
Γ∖Γ𝐴𝐵

𝑞ℎ𝑗 𝑛𝑗𝑑Γ +

∫︁
Γ𝐴𝐵

𝑤𝐽ℎ𝐵𝑑Γ = 0, (3.62)

where 𝐽ℎ𝐵 is the imposed �ux on the �uid side (𝐵) of the Γ𝐴𝐵 interface. A detailed description of the
coupling boundary condition is given in Section 3.7.2.2.

3.7.2.2. Coupling Boundary Conditions

Coupling enthalpy transport between the porous and �uid regions is complicated by the use of a two
temperature model in the porous region.

To resolve this complication the energy �ux applied to the �uid region has a di�usive/conductive
component from the gas phase in the porous region, an advective component from the gas phase in the
porous region, a convective component from the condensed phase in the porous region, and a penalty
coe�cient to enforce temperature continuity between the porous gas phase and the �uid. This takes the
form

𝐽ℎ𝐵 = 𝐽diff
𝐴,𝑔 + 𝐽adv

𝐴,𝑔 + 𝐽conv
𝐴,𝑐 +

(︂
𝜆

ℎ

)︂
(𝑇𝑓 − 𝑇𝑔), (3.63)

where 𝐽diff
𝐴,𝑔 is the di�usive energy transport from the porous gas phase, 𝐽adv

𝐴,𝑔 is the advective energy
transport from the porous gas phase, 𝐽conv

𝐴,𝑐 is the convective energy transport from the porous
condensed phase, and

(︀
𝜆
ℎ

)︀
is the averaged thermal conductivity / mesh size between the porous and
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�uid regions. As with the �ow coupling boundary conditions this same penalty coe�cient is used in
both regions to get the best energy conservation on coarse meshes.

The advective energy transport component takes the form

𝐽adv
𝐴,𝑔 = 𝐹𝐵ℎ𝐴𝐵, (3.64)

where ℎ𝐴𝐵 is the upwinded interface enthalpy (i.e. it is either ℎ𝐴 or ℎ𝐵 depending on the direction of
𝐹𝐵). The convective component from the condensed phase has the form

𝐽conv
𝐴,𝑐 = (1− 𝜓)

ℎ𝑐𝑣
𝑎𝑠

(𝑇𝑓 − 𝑇𝑐), (3.65)

where ℎ𝑐𝑣 is the volumetric heat transfer coe�cient of the porous region and 𝑎𝑠 is the speci�c surface
area (𝑚2/𝑚3) of the porous medium. This formulation of the convective component assumes that the
convective heat transfer between the condensed phase and the free �uid is consistent with the convective
heat transfer in the bulk of the porous medium that results in the volumetric heat transfer term of the
bulk equations.

The coupling back to the porous region is derived based on the assumption that

𝐽ℎ𝐴,𝑔 + 𝐽ℎ𝐴,𝑐 = 𝐽diff
𝐵 + 𝐽adv

𝐵 , (3.66)

that is, the �uid region applies advective and di�usive energy transport components to the porous
region as a whole. The �ux applied to the condensed phase is assumed to be the same as the convective
�ux component it applies to the free �uid,

𝐽ℎ𝐴,𝑐 = (1− 𝜓)
ℎ𝑐𝑣
𝑎𝑠

(𝑇𝑐 − 𝑇𝑓 ). (3.67)

The �ux applied to the porous gas phase is then given by

𝐽ℎ𝐴,𝑔 = 𝐽diff
𝐵 + 𝐽adv

𝐵 − 𝐽ℎ𝐴,𝑐 +

(︂
𝜆

ℎ

)︂
(𝑇𝑔 − 𝑇𝑓 ), (3.68)

where the advective component is computed in the same manner as is done for the advective �ux
applied to the �uid region,

𝐽adv
𝐵 = 𝐹𝐴ℎ𝐴𝐵. (3.69)

3.7.3. Species Transport

3.7.3.1. Bulk Equations

Porous Gas-Phase Species Equation The gas-phase species equation within a porous
region, to be solved for the gas-phase mass fraction 𝑌𝑘,𝑔 of species 𝑘, is

𝜕(𝜓𝜌𝑔𝑌𝑘,𝑔)

𝜕𝑡
+
𝜕(𝜌𝑔𝑢𝑗,𝑔𝑌𝑘,𝑔)

𝜕𝑥𝑗
= −

𝜕𝑞𝑌,𝑔𝑘𝑗
𝜕𝑥𝑗

+
(︀
𝜔̇′′′
𝑠,𝑓𝑘 − 𝜔̇′′′

𝑠,𝑑𝑘

)︀
+
(︀
𝜔̇′′′
𝑔,𝑓𝑘 − 𝜔̇′′′

𝑔,𝑑𝑘

)︀
(3.70)
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where
(︀
𝜔̇′′′
𝑠,𝑓𝑘 − 𝜔̇′′′

𝑠,𝑑𝑘

)︀
is the formation and destruction of gas-phase species due to heterogeneous

reactions, and
(︀
𝜔̇′′′
𝑔,𝑓𝑘 − 𝜔̇′′′

𝑔,𝑑𝑘

)︀
is the formation and destruction of gas-phase species due to

homogeneous reactions. The gas-phase species di�usion �ux vector 𝑞𝑌,𝑔𝑘𝑗 is modeled as

𝑞𝑌,𝑔𝑘𝑗 = −𝜓𝜌𝑔𝐷𝑘,𝑔
𝜕𝑌𝑘,𝑔
𝜕𝑥𝑗

, (3.71)

where𝐷𝑘,𝑔 is the gas-phase mass di�usivity for species 𝑘. Note that if the mass di�usivities are not equal
for all species, then an additional correction is required to maintain mass conservation.

Multiplying Equation 3.70 by an arbitrary test function𝑤 and integrating over the domain Ω while
integrating the advection and di�usion terms by parts, yields the variational form of the species
equation that is solved for 𝑌𝑘,𝑔 using the Galerkin �nite element method,∫︁

Ω

𝑤

(︂
𝜕(𝜓𝜌𝑔𝑌𝑘,𝑔)

𝜕𝑡
−
(︀
𝜔̇′′′
𝑠,𝑓𝑘 − 𝜔̇′′′

𝑠,𝑑𝑘

)︀
−
(︀
𝜔̇′′′
𝑔,𝑓𝑘 − 𝜔̇′′′

𝑔,𝑑𝑘

)︀)︂
𝑑Ω

−
∫︁
Ω

𝜕𝑤

𝜕𝑥𝑗
(𝜌𝑔𝑢𝑗,𝑔𝑌𝑘,𝑔) 𝑑Ω +

∫︁
Γ

𝑤 (𝜌𝑔𝑢𝑗,𝑔𝑌𝑘,𝑔)𝑛𝑗𝑑Γ

−
∫︁
Ω

𝜕𝑤

𝜕𝑥𝑗
𝑞𝑌,𝑔𝑘𝑗 𝑑Ω +

∫︁
Γ

𝑤𝑞𝑌,𝑔𝑘𝑗 𝑛𝑗𝑑Γ = 0. (3.72)

The boundary �ux terms are then split into contributions on the interface between regions𝐴 and𝐵
and o� the interface so that they may be treated separately. The species equation then takes the form∫︁

Ω

𝑤

(︂
𝜕(𝜓𝜌𝑔𝑌𝑘,𝑔)

𝜕𝑡
−
(︀
𝜔̇′′′
𝑠,𝑓𝑘 − 𝜔̇′′′

𝑠,𝑑𝑘

)︀
−
(︀
𝜔̇′′′
𝑔,𝑓𝑘 − 𝜔̇′′′

𝑔,𝑑𝑘

)︀)︂
𝑑Ω

−
∫︁
Ω

𝜕𝑤

𝜕𝑥𝑗
(𝜌𝑔𝑢𝑗,𝑔𝑌𝑘,𝑔) 𝑑Ω−

∫︁
Ω

𝜕𝑤

𝜕𝑥𝑗
𝑞𝑌,𝑔𝑘𝑗 𝑑Ω

+

∫︁
Γ∖Γ𝐴𝐵

𝑤 (𝜌𝑔𝑢𝑗,𝑔𝑌𝑘,𝑔)𝑛𝑗𝑑Γ +

∫︁
Γ∖Γ𝐴𝐵

𝑤𝑞𝑌,𝑔𝑘𝑗 𝑛𝑗𝑑Γ +

∫︁
Γ𝐴𝐵

𝑤𝐽𝑌𝑘𝐴 𝑑Γ = 0. (3.73)

where 𝐽𝑌𝑘𝐴 is the imposed �ux on the porous side (𝐴) of the Γ𝐴𝐵 interface. A detailed description of the
coupling boundary �ux is given in Section 3.7.3.2.

Low-Mach Species Equation The species equation within the low-Mach �uid region, to be
solved for the mass fraction 𝑌𝑘 for species 𝑘, is

𝜕(𝜌𝑌𝑘)

𝜕𝑡
+
𝜕(𝜌𝑢𝑗𝑌𝑘)

𝜕𝑥𝑗
= −

𝜕𝑞𝑌𝑘𝑗
𝜕𝑥𝑗

+ 𝜔̇′′′
𝑘 (3.74)

where 𝜔̇′′′
𝑘 is the volumetric mass formation rate if species 𝑌𝑘, and the di�usive �ux vector is given by

𝑞𝑌𝑘𝑗 = −𝜌𝑢̂𝑗,𝑘𝑌𝑘, (3.75)
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with 𝑢̂𝑗,𝑘 being the species di�usion velocity. Several forms for this velocity are possible, with the
simplest being

𝑢̂𝑗,𝑘 = −𝐷 1

𝑌𝑘

𝜕𝑌𝑘
𝜕𝑥𝑗

(3.76)

for equal mass di�usivities𝐷 for all species. A more complex form is needed for unequal mass
di�usivities, which is not presented here.

Integrating Equation 3.74 over a CVFEM control volume and using the Gauss divergence theorem on
the advective and di�usive �ux terms yields the integral form of the species equation that is solved,∫︁

Ω

𝜕(𝜌𝑌𝑘)

𝜕𝑡
𝑑Ω−

∫︁
Ω

𝜔̇′′′
𝑘 𝑑Ω +

∫︁
Γ

(𝜌𝑢𝑗𝑌𝑘)𝑛𝑗𝑑Γ +

∫︁
Γ

𝑞𝑌𝑘𝑗𝑛𝑗𝑑Γ = 0. (3.77)

The boundary �ux terms are then split into contributions on the interface between regions𝐴 and𝐵
and o� the interface so that they may be treated separately. The species equation then takes the form∫︁

Ω

𝜕(𝜌𝑌𝑘)

𝜕𝑡
𝑑Ω−

∫︁
Ω

𝜔̇′′′
𝑘 𝑑Ω +

∫︁
Γ∖Γ𝐴𝐵

(𝜌𝑢𝑗𝑌𝑘)𝑛𝑗𝑑Γ +

∫︁
Γ∖Γ𝐴𝐵

𝑞𝑌𝑘𝑗𝑛𝑗𝑑Γ +

∫︁
Γ𝐴𝐵

𝑤𝐽𝑌𝑘𝐵 𝑑Γ = 0. (3.78)

where 𝐽𝑌𝑘𝐵 is the imposed �ux on the �uid side (𝐵) of the Γ𝐴𝐵 interface. A detailed description of the
coupling boundary condition is given in Section 3.7.3.2.

3.7.3.2. Coupling Boundary Conditions

Coupling species transport across the porous-�uid interface is relatively simple compared to enthalpy
transport. As with the �ow coupling Robin style boundary conditions are applied on both the porous
and �uid regions, but with both di�usive and advective �ux components.

For the �ux of a species 𝑘 this takes the form:

𝐽𝑌𝑘𝐴 = 𝐽diff
𝐵 + 𝐹𝐴𝜌𝑔𝑌𝑘,𝐴𝐵 +

(︂
𝐷𝑘𝜌

ℎ

)︂
(𝑌𝑘,𝐴 − 𝑌𝑘,𝐵) (3.79)

𝐽𝑌𝑘𝐵 = 𝐽diff
𝐴 + 𝐹𝐵𝜌𝑌𝑘,𝐴𝐵 +

(︂
𝐷𝑘𝜌

ℎ

)︂
(𝑌𝑘,𝐵 − 𝑌𝑘,𝐴) (3.80)

where 𝑌𝑘,𝐴𝐵 is the upwinded interface mass fraction, equivalent to ℎ𝐴𝐵 from the enthalpy coupling.
Once again the same penalty coe�cient is used on each side in order to get good mass conservation even
on coarse meshes.
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4. PARTICLES

4.1. INTRODUCTION

The transport of particles through a gas-phase �ow is of importance to a tremendous range of
applications. Applications in the area of combustion and �re science include fuel sprays, suppressant
transport and metal particle combustion [92, 93, 94, 95, 96, 97, 98, 99]. These applications typically
have a strong coupling between the heat and mass transfer. For example, fuel spray combustion is
typically limited by the di�usion of the oxidizer towards the particle. In �re suppressant distribution,
the cooling associated with the evaporating suppressant can dramatically slow suppressant evaporation.
In metal particle combustion, in order for the metal oxide combustion product to condense out, the
enthalpy of condensation must be dissipated; this energy dissipation is a combination of radiative and
conductive transport, each of which results in di�ering heat �ux consequences. Also relevant are the
transport of contaminants through the atmosphere and the dynamics of clouds [100]. A large number
of industrial processes share similar physics including powder manufacturing, painting, coating and
ink-jet printing.

This report describes the development of a Lagrangian particle and droplet transport model and its
integration with a computational �uid dynamics (CFD) code that solves, on an Eulerian mesh, the
continuum phase. Conservation of mass, momentum and energy are considered for the coupled system
allowing combustion along with evaporating and condensing particles. Since examples of this type of
�ow are typically sprays, this model is sometimes referred to as a spray model, but it can handle general
classes of particulate �ows. This model is developed to be suitable for modeling evaporating,
condensing or combusting �ows of particles in continuum gas-phase �ows. This model is based partly
on the initial implementation of a dilute spray model in the Vulcan �re-physics computational
modeling code [101, 102] as described in [103].

Two signi�cant limitations are stipulated that lead to the simpli�ed conservation equations employed.
First, the spray must be dilute, that is the volume fraction of the particle phase must be small (i.e. less
than 10 percent). Second, the physical density of the particle should be orders of magnitude greater than
the continuum (gas) phase and the particle Reynolds numbers should not be too large or additional
terms will appear in the particle evolution equations [104].

4.1.1. The Spray Equation

For given physical properties of the particle (composition, density, etc.), the particle �eld is characterized
by the particle locations, velocities, radii and temperatures. This can be expressed in terms of a particle
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distribution function, f, so that:

𝑓(x𝑝,u𝑝, 𝑟𝑝, 𝑇𝑝; 𝑡)𝑑u𝑝𝑑𝑟𝑝𝑑𝑇𝑝 (4.1)

is the probable number of droplets per unit volume at location x𝑝 in the velocity range (u𝑝,u𝑝 + 𝑑u𝑝),
the size range (𝑟𝑝, 𝑟𝑝 + 𝑑𝑟𝑝), and the temperature range (𝑇𝑝, 𝑇𝑝 + 𝑑𝑇𝑝). The evolution of this particle
distribution can be described by an equation of the Fokker-Planck form [105]:

𝑑𝑓

𝑑𝑡
+∇ · (u𝑝𝑓)+∇𝑢 ·

(︂
𝑑u𝑝
𝑑𝑡

𝑓

)︂
+

𝑑

𝑑𝑟𝑝
·
(︂
𝑑𝑟𝑝
𝑑𝑡
𝑓

)︂
+

𝑑

𝑑𝑇𝑝
·
(︂
𝑑𝑇𝑝
𝑑𝑡
𝑓

)︂
=

(︂
𝑑𝑓

𝑑𝑡

)︂
𝑐𝑜𝑙𝑙

+

(︂
𝑑𝑓

𝑑𝑡

)︂
𝑏𝑟𝑘

. (4.2)

Here, expressions for the particle acceleration, evaporation and heating are required in the third
through �fth terms on the left-hand side. Similar models for particle collision and breakup appear on
the right-hand side. Such models are available in the literature [97, 106] and are described in the earlier
report [103]. Unfortunately, Eq. 4.2 is a di�erential equation in nine dimensions, a fact which makes
direct numerical evolution prohibitive in the general case. The standard alternative is to represent 𝑓
using a �ne-grained distribution and Monte Carlo methods. That is, 𝑓 is represented by a su�ciently
large number of discrete distributions, each representing a number of particles,𝑁𝑝, with the same
particular characteristics (x𝑝,u𝑝, 𝑟𝑝, 𝑇𝑝, 𝑡). All of the𝑁𝑝 particles in a �ne-grained distribution share
the same evolution equation, and 𝑓 is found by summing over the discrete distributions. In this
manner, the evolution of 𝑓 can be described using evolution equations for individual particles. Such
evolution equations are provided in 4.2.

Because it is typically prohibitive to track all of the particles in a �ow, representative parcels of particles
are instead tracked. The particles in a given parcel share a common origin and common material
properties. To further simplify the parcel evolution equations, each parcel consists of mono-disperse
(single-diameter) particles so that all particles in the parcel are described by the same set of evolution
equations. For �ows where the particle size is distributed over a range of values, it is still necessary to
track a statistically signi�cant number of parcels to reproduce the mean behavior. Typically, a large
number of parcels (tens or hundreds of thousands) are tracked to describe the evolution of the particle
�eld.

4.1.2. A Combined Eulerian-Lagrangian Approach

The typical approach to CFD is to employ Eulerian descriptions of the �ow �eld. Such an Eulerian
formulation is employed to evolve the gas-phase continuum �ow in the present case using standard
methods [107]. To evolve the �ne-grained distribution as indicated above, a Lagrangian approach is
necessary [108, 109, 110, 111]. Such an approach has been used in other CFD applications including, for
example, the popular internal combustion engineering simulation code, KIVA [97]. The coupling
between the Eulerian and Lagrangian �elds is key to capturing certain relevant physics, and this
coupling is described in detail in 4.2 and in 4.3.

The present paper presumes that turbulent �ow �elds will be of interest, and that these turbulent �ows
cannot be fully resolved. Then, in addition to the continuity, momentum, species, and energy
equations, there will be representations for the turbulent �uctuations. It is common to employ
two-equation models in Reynolds-averaged Navier-Stokes (RANS) approaches while large-eddy
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simulation (LES) techniques employ estimates of the subgrid �uctuations based on resolved quantities.
For the present purposes, the 𝑘 − 𝜖 turbulence model [112] will be presumed with extensions to other
methods being straightforward.

When a particle collides with a solid wall, it is assumed to adhere to the wall if the impact velocity
(kinetic energy) is su�ciently high, and bounces otherwise. In general, adherence is the predominant
result of collisions for the particles considered here. It is well known that �ne powders can be
convectively lifted from surfaces and transported elsewhere, but this is beyond the scope of the current
study. Models for the particle breakup due to hydrodynamic forces and for particle collisions are also
available. For these purposes, models developed elsewhere and available in the literature [97, 106] are
employed.

4.2. PARTICLE TRANSPORT MODEL

In this section, the equations describing the evolution of parcels of particles are presented. Models are
presented for the particle motion and for heat and mass transfer (ie. evaporation and combustion).

4.2.1. Particle Acceleration and Trajectories

Particles with densities much greater than that of a the �uid phase (solid or liquid particles in gaseous
�ows) are primarily a�ected by drag forces and body forces. In this limit where 𝜌𝑝 ≫ 𝜌𝑔, the particle
acceleration is written [98]:

𝑑𝑢𝑝,𝑖
𝑑𝑡

=
3𝜌𝑔𝐶𝐷|u𝑔 − u𝑝|

4𝜌𝑝𝑑𝑝
(𝑢𝑔,𝑖 − 𝑢𝑝,𝑖) +

(︂
𝜌𝑝 − 𝜌𝑔
𝜌𝑝

)︂
𝑔𝑖 (4.3)

where 𝑢𝑝,𝑖 and 𝑢𝑔,𝑖 are the 𝑖𝑡ℎ component of the particle and gas velocities, respectively, |u𝑔 − u𝑝| is the
vector magnitude of the velocity di�erences, 𝜌𝑝 and 𝜌𝑔 are the particle and gas densities, and 𝑔𝑖 is the 𝑖𝑡ℎ
component of the acceleration due to body forces. The particle diameter is 𝑑𝑝 and this should be
considered to be the equivalent particle diameter corresponding to a spherical particle. The e�ects of
non-sphericity on the acceleration can be accounted for through the drag coe�cient,𝐶𝐷. The
gas-velocity to be employed in 4.3 is taken from the Eulerian solution of the continuum �eld. For
turbulent �ows, the sum of the mean (resolved) velocity and a perturbation to that mean, accounting
for the turbulent �uctuations, both contribute to the gas velocity. The e�ects of turbulent �uctuations
are described in the following section, 4.2.2.

For a spherical particle, the drag coe�cient is modeled using standard drag coe�cient relations:

𝐶𝐷 =

{︃
24(1 +𝑅𝑒𝑝)

2/3/𝑅𝑒𝑝 𝑓𝑜𝑟𝑅𝑒𝑝 < 1000

0.424 𝑓𝑜𝑟𝑅𝑒𝑝 > 1000
(4.4)

The particle Reynolds number,𝑅𝑒𝑝, is based on the slip velocity and the particle diameter

𝑅𝑒𝑝 =
𝜌𝑔𝑑𝑝|u𝑔 − u𝑝|

𝜇𝑔
(4.5)
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Yuen and Chen [113] recommend evaluating the viscosity in 4.5 based on the weighted average of the
properties at the gas-phase side of the particle surface (weighted by two-thirds) and the gas-phase
properties far from the particle (weighted by one-third), the so called ’1/3 rule.’ So for properties at the
surface and far �eld identi�ed with a subscripted 𝑓 and ∞, respectively, the viscosity would be

𝜇𝑔 = 𝜇∞/3 + 2𝜇𝑓/3. (4.6)

A similar relationship is suggested for other transport coe�cients (conductivity, di�usivity, etc.). Note
that additional forces are relevant for particles with densities nearer to or less than the continuum phase
(bubbles) and for particles with high Reynolds numbers. A comprehensive overview of the force on
particles is available from Maxey and Riley [104]. Equation 4.3 can be linearized and written

𝑑𝑢𝑝,𝑖
𝑑𝑡

=
(𝑢𝑔,𝑖 − 𝑢𝑝,𝑖)

𝜏𝑝
+

(︂
𝜌𝑝 − 𝜌𝑔
𝜌𝑝

)︂
𝑔𝑖 (4.7)

𝜏𝑝 =
4𝜌𝑝𝑑𝑝

3𝜌𝑔𝐶𝐷|u𝑔 − u𝑝|
(4.8)

where 𝜏𝑝 is the particle velocity response time. In the small Reynolds number limit where the drag
coe�cient is inversely proportional to the slip velocity, this linearization is particularly relevant. Given
the particle acceleration from Eq. 4.3, the particle trajectories can be determined by integrating the
simple ODE

𝑑𝑥𝑝,𝑖
𝑑𝑡

= 𝑢𝑝,𝑖 (4.9)

Since all the particles within a parcel are the same size, all parcel trajectories are determined by Eqn. 4.9,
subject to turbulence e�ects described below in 4.2.2.

4.2.2. Particle Dispersion and Turbulence

In CFD modeling of turbulent �ows, the full velocity spectrum is generally not resolved. Instead,
certain velocity �uctuations are modeled, being represented through the turbulent kinetic energy, 𝑘,
which is half the sum of the squares of the velocity �uctuations. These velocity �uctuations tend to
introduce random �uctuations in the particle velocities that result in real particles being dispersed
relative to the mean continuum �ow [114, 115]. For Lagrangian particle methods, this phenomenon is
modeled in two ways: by perturbing the velocity of parcels of particles and by a�ecting the spatial extent
of the parcel itself.

To account for the e�ects of the velocity �uctuations on the parcels or particles, the random walk model
of Gosman and Ioannides [108], as modi�ed by Shuen et al. [109], is employed. In this approach, the gas
velocity employed in equations 4.3, 4.5, 4.7, and 4.8 is the sum of the mean gas velocity, ⟨𝑢𝑔,𝑖⟩, and a
�uctuating velocity that is sampled from a normal (Gaussian) velocity distribution with a standard
deviation given by 𝜎𝑢 =

√︀
2𝑘/3. For LES, 𝑘 here would be replaced with the subgrid kinetic energy.

Sampling from the inverted cumulative distribution function with a random number uniformly
distributed between zero and unity,𝑅𝑁 , gives the appropriate �uctuating velocity. The total and
�uctuating gas velocities are then

𝑢𝑔,𝑖 = ⟨𝑢𝑔,𝑖⟩+ 𝑢′𝑔,𝑖 (4.10)
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𝑢′𝑔,𝑖 =
√
2𝜎𝑢𝑒𝑟𝑓

−1(2𝑅𝑁 − 1) (4.11)

where 𝑒𝑟𝑓−1 is the inverse error function. The time during which a given velocity �uctuation a�ects a
given parcel is determined by the expected time that the particle takes to cross the eddy inducing the
given velocity �uctuation. Small particles will tend to stay in an eddy for the duration of the eddy
lifetime,

𝜏𝑒 =
√︀

3/2𝐶3/4
𝜇 𝑘/𝜖 (4.12)

where 𝜖 is the turbulent energy dissipation rate and𝐶𝜇 = 0.09. Larger particles will have su�cient slip
velocity to cross the eddy. The eddy-crossing time is estimated as

𝜏𝐶 = −𝜏𝑝 𝑙𝑛
[︂
1− 𝐿𝑒

𝜏𝑝|u𝑔 − u𝑝|

]︂
(4.13)

where the eddy length scale is 𝐿𝑒 = 𝐶
3/4
𝜇 𝑘3/2/𝜖. The eddy interaction time, that is the time over which

a given velocity perturbation a�ect 𝑢𝑔,𝑖 in Eqns 4.10 and 4.11, is the minimum of 𝜏𝑒 and 𝜏𝐶 . The
particles comprising a parcel are presumed to be distributed about the center of the parcel, tracked by
Eq. 4.9, in a normal (Gaussian) manner with the standard deviation in each direction given by 𝜎𝑖, where
𝑖 is either 𝑥, 𝑦, or 𝑧. This distribution is written

𝑓𝜎(𝑥⃗;𝑥𝑜, 𝑡) =
𝑁𝑝

(2𝜋)3/2𝜎𝑥𝜎𝑦𝜎𝑧
𝑒𝑥𝑝

(︂
−
[︂
(𝑥− 𝑥𝑜)

2

2𝜎𝑥2
+

(𝑦 − 𝑦𝑜)
2

2𝜎𝑦2
+

(𝑧 − 𝑧𝑜)
2

2𝜎𝑧2

]︂)︂
(4.14)

where𝑁𝑝 is the total number of particles in the parcel and 𝑥𝑜 is the center of the parcel. The spatial
extent of the parcel is thus determined by 𝜎𝑖. This term is a�ected by unresolved turbulent �uctuations
that act di�erently on the particles across the parcel. Following Zhou and Yao [110], the spatial extent of
the parcel is the mean square displacement over time

𝜎𝑥
2 =

∑︁[︁
𝑢′𝑝,𝑖

2
(Δ𝑡𝑖)

2
]︁

(4.15)

where 𝑢′𝑝,𝑖 satis�es the ODE
𝑑𝑢′𝑝,𝑖
𝑑𝑡

=
(𝑢′𝑔,𝑖 − 𝑢′𝑝,𝑖)

𝜏𝑝
(4.16)

and Δ𝑡𝑖 is the time over which 𝑢′𝑝,𝑖 acts. Equation 4.16 is obtained by subtracting the instantaneous
particle equations from the mean particle equations. Note that large particles with large 𝜏𝑝 are not
dispersed appreciably.

4.2.3. Mass and Energy Exchange between Particles and the Gas
Phase

Particles may exchange mass and energy with the gas phase according to conservation principles across
the interface. The physics of mass and energy transfer are described in detail here because the anticipated
applications include a wide range of physical phenomena that have not been described together.
Included in the phenomena of interest are metal and hydrocarbon particle combustion as well as particle
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condensation and evaporation. Each of these is anticipated to be strongly energetic in the sense that the
product of the evaporation rate with the ethalpy of evaporation and combustion is expected to be
substantial. Further, for evaporation and condensation applications, it is expected that vapor pressures
will range over a su�ciently wide range that the transition from evaporation to condensation should be
correctly described as this often limits evaporation and condensation rates. For metal combustion, the
associated temperatures are su�ciently high so that radiative heat transfer must be considered.

The theory for droplet vaporization and combustion has generally been developed based on a large
number of simpli�cations [92, 93] including spherical-symmetry, unity Lewis numbers, droplet surfaces
at the boiling temperature, and in�nitely fast conduction through the droplet. Recent work provides
guidance as to how these assumptions can be relaxed [116].

4.2.3.1. Theory for spherically symmetric flow

In general, the theory of heat and mass transfer is developed for spherically symmetric systems and then
corrected to account for increased transfer associated with advection and asymmetry. In this section,
relations are developed based on the assumption of spherical symmetry and corrections is provided in
4.2.3.2.

𝜕𝜌

𝜕𝑡
+

1

𝑟2
𝜕

𝜕𝑟
(𝜌𝑟2𝜈) = 0 (4.17)

can be integrated to give
𝑚̇𝑜 = 4𝜋𝜌𝑟2𝜈 (4.18)

where 𝑚̇𝑜 is the rate of mass evaporation from the particle, 𝜈 is the Stefan velocity, directed normally
away from the particle, and 𝜌 is the local vapor density considering both the particle vapor and the
continuum gas concentrations. A coordinate transformation to the variable

𝜉𝑇 =

∫︁ ∞

𝑟𝑜

1

4𝜋𝑟2(𝜆/𝑐𝑝)
𝑑𝑟 (4.19)

or
𝜉𝐹 = 𝑚̇𝑜

∫︁ ∞

𝑟𝑜

1

4𝜋𝑟2(𝜌𝐷𝐹 )
𝑑𝑟 (4.20)

which represents the ratio of the Stefan velocity to the thermal di�usion velocity, greatly simplifying the
species and energy conservation equations. In Eqns. 4.19 and 4.20, 𝜆 is the thermal conductivity of the
vapor, 𝑐𝑝 is its speci�c heat at constant pressure, and𝐷𝐹 is the evaporating species di�usion coe�cient.
The subscript 0 on the evaporation rate indicates that this evaporation corresponds to that for the
spherically-symmetric case; corrections relating the evaporation rate for the spherically-symmetric case
to that with �nite-slip velocities are provided in 4.2.3.2. In the spherically-symmetric case, conservation
equations for conserved scalars, 𝛽𝑘, can be written

𝜕𝛽𝑘
𝜕𝜉𝑘

+
𝜕2𝛽𝑘

𝜕𝜉𝑘
2 = 0 (4.21)

for which an analytic solution
𝛽𝑘 = 𝐶1 + 𝐶2𝑒

−𝜉𝑘 (4.22)
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is readily obtained. In non-reacting, non-radiating �ows, any mass fraction or temperature can be a
conserved scalar. Other conserved scalars are provided below. The appropriate from of 4.19 and 4.20 to
be used depends on the variable represented by 4.21. Since the di�usion coe�cients appearing in 4.20 are
most important near the particle surface, the di�usion coe�cient to be employed is that most relevant
at the surface. The choice will be clearly identi�ed below. The application of the Dirichlet boundary
conditions at both the surface and far from the droplet and the application of a Neumann boundary
condition at the surface relate the boundary conditions for the conserved scalar to 𝑚̇𝑜 through 𝜉𝑘

𝜉𝑘,𝑓 = 𝑚̇𝑜

∫︁ ∞

𝑟𝑜

1

4𝜋𝑟2(𝜌𝐷)
𝑑𝑟 = ln

⎛⎜⎜⎝1 +
𝛽∞ − 𝛽𝑓

− 𝑑𝛽

𝑑𝜉𝑘
|𝑓

⎞⎟⎟⎠ (4.23)

where the subscript 𝑓 indicates quantities evaluated at the droplet surface, the so-called �lm state. For
reacting �ows 1 we will consider two such conserved scalars in the present work. Allowing variable
properties, the temperature oxidizer coupling function is

𝛽𝑇−𝑂 =

∫︁ 𝑇

𝑇𝑜

𝑐𝑃𝑑𝑇 +
𝑌𝑂𝑊𝐹 𝑞𝑐𝑜𝑚𝑏
𝜈𝑂𝑊𝑂

(4.24)

where𝑊𝑖 is the molecular weight and 𝜈𝑖 is the stoichiometric coe�cient of species 𝑖. The standard
enthalpy of combustion for fuel and oxidizer, per unit mass of fuel evaluated at the �lm temperature,
𝑇𝑓 , is

𝑞𝑐𝑜𝑚𝑏 = ℎ𝐹,𝑓 +
ℎ𝑂,𝑓𝑊𝑂𝜈𝑂
𝑊𝐹𝜈𝐹

−
∑︁[︂

ℎ𝑝,𝑓𝑊𝑝𝜈𝑝
𝑊𝐹𝜈𝐹

]︂
(4.25)

where the last summation is taken over the produces of reaction, 𝑝. Note that when there is no
combustion, the second term in Eqn. 4.25 is ignored. For 𝛽𝑇−𝑂, the thermal di�usivity is the relevant
di�usivity so that Eqn. 4.19 is employed in conjunction with 𝛽𝑇−𝑂.

The constants𝐶1 and𝐶2 in 4.22 are evaluated using the boundary conditions for the temperature and
oxidizer at the droplet surface and in the far �eld. The boundary conditions employed for temperature
are that the heat �ux into the particle is balanced by the sum of the enthalpy of vaporization, the heating
of the particle and any radiative losses

4𝜋𝑟2𝜆

(︃
𝑑𝑇

𝑑𝑟

⃒⃒⃒⃒
𝑓

)︃
= −𝑚̇𝑜𝑐𝑝,𝑓

(︃
𝑑𝑇

𝜉𝑇

⃒⃒⃒⃒
𝑓

)︃
= 𝑚̇ℎ𝑣𝑎𝑝 +𝑄𝑟𝑎𝑑 +𝑚𝑝𝑐𝑣,𝑝

𝑑𝑇𝑝
𝑑𝑡

(4.26)

Here, the enthalpy of vaporization is ℎ𝑣𝑎𝑝, the particle speci�c heat is 𝑐𝑣,𝑝, and the radiative heat loss
over the droplet surface is

𝑄𝑟𝑎𝑑 = 4𝜋𝑟𝑝
2𝛼(𝜎𝑇𝑝

4 −𝐺𝑖𝑛/4) (4.27)

where 𝛼 is the particle absorptivity, 𝜎 is the Stefan-Boltzmann constant, and𝐺𝑖𝑛 is the incident
radiation. The incident radiation is the radiation intensity integrated over all directions, that is, the

1The general con�guration considered is a fuel droplet reacting in an oxidizing atmosphere; in the event that, for example,
an oxidizer droplet is reacting in a fuel atmosphere, then the "oxidizer" and "fuel" described would be switched. Also, if
there is no reaction, the results generalize to droplet evaporation where the "fuel" is the evaporating component.
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entire 4𝜋 steradian solid angle. If the radiation intensity is 𝐼 , then𝐺𝑖𝑛 =
∫︀
4𝜋
𝐼𝑑Ω where 𝑑Ω is the

di�erential solid angle. If the particle is not opaque, the particle absorptivity will be a function of the
particle size [117]. Note that, in Eqn 4.26, the evaporation rate appears without the subscript 0,
indicating that this is the evaporation rate corrected for �nite-slip velocities as prescribed in 4.42 below.
This is appropriate because the heat and mass �ux to the surface are both increased by the relative
droplet motion, while the other terms in 4.26 are not a�ected by that. The oxidizer is presumed to not
be absorbed by the surface so that a no-�ux boundary condition is employed

𝑑𝑌𝑂
𝑑𝜉𝑇

= −𝐿𝑒𝑂,𝑓𝑌𝑂,𝑓 . (4.28)

Because the thermal di�usivity is used in de�nition 𝜉𝑇 for 𝛽𝑇−𝑂, the ratio of the thermal to mass
di�usivity in the form of th oxidizer Lewis number appears in 4.28. Taking the derivative of Eqn. 4.24
evaluated at the droplet surface and using 4.26 and 4.28, we obtain(︃

𝑑𝛽𝑇−𝑂
𝑑𝜉𝑇

⃒⃒⃒⃒
𝑓

)︃
= −ℎ𝑣𝑎𝑝 −

𝑄𝑟𝑎𝑑

𝑚̇
− 𝑚𝑝𝑐𝑣,𝑝

𝑚̇

𝑑𝑇𝑝
𝑑𝑡

+

∫︁ 𝑇

𝑇𝑜

𝑑𝑐𝑝,𝑓
𝑑𝜉𝑇

𝑑𝑇 − 𝑌𝑂,𝑓𝑊𝐹 𝑞𝑐𝑜𝑚𝑏
𝐿𝑒𝑂,𝑓𝜈𝑂𝑊𝑂

(4.29)

that will appear in the denominator of Eqn. 4.23. Also the temperature and oxidizer mass fraction must
approach their far �eld values at large radii. Additional assumptions are required to identify the
temperature and the oxidizer mass fraction at the surface; these will be discussed later. Applying these
boundary conditions to 4.22 for 𝛽𝑇−𝑂 provides an expression for the rate of evaporation in terms of 𝜉𝑇
evaluated at the surface of the particle

𝜉𝑇,𝑓 = 𝑚𝑂

∫︁ ∞

𝑟𝑜

1

4𝜋𝑟2(𝜆/𝑐𝑝)
𝑑𝑟 = ln [1 +𝐵𝑇−𝑂] (4.30)

where the Spalding transfer number associated with 𝛽𝑇−𝑂 is

𝐵𝑇−𝑂 =

∫︀ 𝑇
𝑇𝑂
𝑐𝑝,∞𝑑𝑇 −

∫︀ 𝑇
𝑇𝑂
𝑐𝑝,𝑓𝑑𝑇 + 𝑞𝑐𝑜𝑚𝑏

[︂
(𝑌𝑂,∞ − 𝑌𝑂,𝑓 )𝑊𝐹

𝜈𝑂𝑊𝑂

]︂
ℎ𝑣𝑎𝑝 +

𝑄𝑟𝑎𝑑

𝑚̇
+

(︂
𝑚𝑝𝑐𝑣,𝑝
𝑚̇

𝑑𝑇𝑝
𝑑𝑡

)︂
−
∫︀ 𝑇
𝑇𝑂

𝑑𝑐𝑝,𝑓
𝑑𝜉𝑇

𝑑𝑇 +
𝑌𝑂,𝑓𝑊𝐹 𝑞𝑐𝑜𝑚𝑏
𝐿𝑒𝑂,𝑓𝜈𝑂𝑊𝑂

(4.31)

Here the subscripts 𝑓 and ∞ indicate the states at the particle surface (on the gas-phase side of the
interface) and the ambient far-�eld environment, respectively. The denominator in 4.31 represents a
variety of potential sinks for the enthalpy at the droplet surface. These sinks include, in the order in
which they are written, the enthalpy associated with vaporizing the particle, the radiative losses from the
surface, the enthalpy conducted into the particle, the enthalpy �ux to the gas-phase due to variable
speci�c heats, and the enthalpy of combustion lost as a consequence of oxidizer leakage. Note that the
radiative absorption and emission from the particle surface,𝑄𝑟𝑎𝑑, are included here in the surface
boundary condition, but the radiative losses from a �ame around the droplet must be accounted for by
modifying 𝑞𝑐𝑜𝑚𝑏 to provide an e�ective heat release, the heat release decremented by the near �ame
radiative losses. As far as the droplet is concerned, these radiative losses are far enough away to not a�ect
the �lm state except to the extent that radiative �ux to the surface is a�ected.
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The above expressions comprise a relatively complete de�nition of the physics of particle evaporation,
combustion, and interaction with a radiative �eld accounting for variable thermophysical properties.
These expressions are simpli�ed by making the assumption that no oxidizer penetrates a �ame to reach
the surface, 𝑌𝑂,𝑓 = 0, and by setting 𝑇𝑓 = 𝑇𝑂 leading to

𝐵𝑇−𝑂 =

∫︀ 𝑇∞
𝑇𝑓

𝑐𝑝,∞𝑑𝑇 +
𝑌𝑂,∞𝑊𝐹 𝑞𝑐𝑜𝑚𝑏

𝜈𝑂𝑊𝑂

ℎ𝑣𝑎𝑝
𝑄𝑟𝑎𝑑

𝑚̇
+

(︂
𝑚𝑝𝑐𝑣,𝑝
𝑚̇

𝑑𝑇𝑝
𝑑𝑡

)︂ (4.32)

where the denominator is referred to as the e�ective enthalpy

ℎ𝑒𝑓𝑓 = ℎ𝑣𝑎𝑝 +
𝑄𝑟𝑎𝑑

𝑚̇
+

(︂
𝑚𝑝𝑐𝑣,𝑝
𝑚̇

𝑑𝑇𝑝
𝑑𝑡

)︂
. (4.33)

Equation 4.32 is employed in the numerical models. A coupling function for fuel and oxidizer is similar
written

𝛽𝑇−𝑂 =
𝑌𝐹
𝑊𝐹

− 𝑌𝑂
𝜈𝑂𝑊𝑂

(4.34)

For a species that is evaporating, the �ux boundary condition is(︃
𝑑𝑌𝐹
𝑑𝜉𝐹

⃒⃒⃒⃒
𝑓

)︃
= 𝑌𝐹,𝑝 − 𝑌𝐹,𝑓 (4.35)

and the fuel-oxidizer Spalding mass transfer number is

𝐵𝐹−𝑂 =
𝑌𝐹,𝑓 − 𝑌𝐹,∞ +

𝑌𝑂,∞𝑊𝐹

𝜈𝑂𝑊𝑂

𝑌𝐹,𝑝 − 𝑌𝐹,𝑓
(4.36)

where 𝑌𝑂,𝑓 = 0 has been assumed as in Eq. 4.32. Note that only one of 𝑌𝑂,∞ or 𝑌𝐹,∞ will be non-zero
based on the current assumption of zero leakage through �ames; if combustion is occurring then it will
be 𝑌𝐹,∞ that is zero. The di�usion coe�cient appropriate for the fuel-oxidizer coupling function is that
for the fuel so that the second of Eqn 4.19 and 4.20 is used with the di�usion coe�cient speci�cally that
of the fuel, and the equivalent of Eqn. 4.30 for the fuel-oxidizer system

𝜉𝐹,𝑓 = 𝑚̇𝑜

∫︁ ∞

𝑟𝑜

1

4𝜋𝑟2(𝜌𝐷𝐹 )
= ln[1 +𝐵𝐹−𝑂] (4.37)

4.2.3.2. Extension to multiple oxidizers

Multiple oxidizers is discussed in detail later, in 4.2.4.2.
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4.2.3.3. Correlations for finite slip velocities

The above relationships for the heat and mass transfer are derived for a spherically symmetric �eld
around the droplet and are valid for droplets with zero slip velocity in the absence of buoyancy.
Empirical correlations are available in terms of the Nusselt and Sherwood numbers parametrized by
Reynolds, Schmidt, and Prandtl numbers to describe the e�ect of �nite slip velocities in modifying the
heat and mass transfer by reducing the boundary layer thickness. The Schmidt and Prandtl numbers are
de�ned:

𝑃𝑟 =
𝑐𝑝,𝑔𝜇𝑔
𝜆𝑔

(4.38)

𝑆𝑐 =
𝜇𝑔
𝜌𝑔𝐷𝑔

(4.39)

These quantities with the subscript 𝑔 represent appropriate averages for transport properties in the gas
phase boundary layer around the particle.These gas-phase quantities are evaluated using an appropriate
averaging process that will generally be analogous to Eqn. 4.6. The alternative is to tabulate these
quantities using Eqns 4.46 and 4.47. The Nusselt number describes a dimensionless heat transfer rate
to the droplet for a given di�erence between the ambient and surface temperature,

𝑁𝑢𝑓 =

(︃
2𝑟𝑝𝑐𝑝,𝑔

𝑑𝑇

𝑑𝑟

⃒⃒⃒⃒
𝑓

)︃⧸︃(︃∫︁ 𝑇∞

𝑇𝑓

𝑐𝑝,∞𝑑𝑇 +
𝑌𝑂,∞𝑊𝐹 𝑞𝑐𝑜𝑚𝑏

𝜈𝑂𝑊𝑂

)︃
(4.40)

The correction to the evaporation rate employed in the present work is based on measurements by Ranz
and Marshall (1952)

𝑁𝑢𝑓
𝑁𝑢𝑓,𝑅𝑒=0

= (1 + 0.3𝑅𝑒1/2𝑃𝑟1/3) (4.41)

This can be introduced into 4.31, and the evaporation rate can be written

𝑚̇ =
𝑁𝑢𝑓

𝑁𝑢𝑓,𝑅𝑒=0

𝑚̇𝑜 (4.42)

The Nusselt number for zero slip velocity,𝑁𝑢𝑓,𝑅𝑒=0, is included in the relations of the previous
section, speci�cally in Eq. 4.31. A similar correlation,

𝑆ℎ𝑓
𝑆ℎ𝑓,𝑅𝑒=0

= (1 + 0.3𝑅𝑒1/2𝑆𝑐1/3) (4.43)

can be used for the Sherwood number,

𝑆ℎ𝑓 =

(︃
−2𝑟𝑝

𝑑𝑌𝐹
𝑑𝑟

⃒⃒⃒⃒
𝑓

)︃⧸︃(︂
𝑌𝐹,𝑓 − 𝑌 𝐹,∞+

𝑌𝑂,∞𝑊𝐹

𝜈𝑂𝑊𝑂

)︃
(4.44)

which is the dimensionless mass transfer coe�cient, so that the evaporation rate for �nite slip velocities
can also be written

𝑚̇ =
𝑆ℎ𝑓

𝑆ℎ𝑓,𝑅𝑒=0

𝑚̇𝑜 (4.45)

where 𝑚̇𝑜 should be taken from Eqn. 4.37.
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4.2.3.4. Evaporation rates and effective diffusivities

The evaporation rate is seen in Eqn 4.30 and 4.37 to depend linearly on an area-weighted gas-phase
di�usivity. Since accurate evaluation of this weighting is not feasible for the particle transport model,
e�ect di�usivities, (︂

𝜆

𝑐𝑝

)︂
𝑒𝑓𝑓

=

[︂
4𝜋𝑟𝑝

∫︁ ∞

𝑟𝑜

1

4𝜋𝑟2(𝜆/𝑐𝑝)
𝑑𝑟

]︂−1

(4.46)

(𝜌𝐷𝐹 )𝑒𝑓𝑓 =

[︂
4𝜋𝑟𝑝

∫︁ ∞

𝑟𝑜

1

4𝜋𝑟2(𝜌𝐷𝐹 )
𝑑𝑟

]︂−1

(4.47)

are de�ned. The one-third rule de�ned in Eq. 4.6 provides a rough guideline for evaluating these
di�usion coe�cients in some cases. The e�ective thermal di�usion coe�cient is combined with Eqns.
4.30 and 4.42 to give an evaporating rate based on thermal di�usion

𝑚̇ = 4𝜋𝑟𝑝 (𝜌𝐷𝐹 )𝑒𝑓𝑓
𝑆ℎ𝑓

𝑆ℎ𝑓,𝑅𝑒=0

ln [1 +𝐵𝑇−𝑂] . (4.48)

The strong dependence of the evaporating rate on the di�usion coe�cient, coupled with the fact that
the di�usion coe�cients depend strongly on variations in the compositions and temperature of the
gases around the droplet, mean that the reasonable but judicious choice of di�usion coe�cients can
often match observed experimental measurements. Similarly, the mass transfer driven evaporation rate
can be written with the use of Eqns. 4.37, 4.43, and 4.45

𝑚̇ = 4𝜋𝑟𝑝 (𝜌𝐷𝐹 )𝑒𝑓𝑓
𝑆ℎ𝑓

𝑆ℎ𝑓,𝑅𝑒=0

ln [1 +𝐵𝑇−𝑂] (4.49)

It is necessary that the evaporation rate predicted by Eqn. 4.49 be equal to that predicted by 4.48. These
equations show that thermal and mass di�usion vary both through their di�usion coe�cients and
through di�erence in boundary layer thickness attributable to �nite slip velocities. Both these e�ects are
combined in an e�ective Lewis number, 𝐿𝑒𝑒𝑓𝑓 , to give

𝐿𝑒𝑒𝑓𝑓 =

∫︀∞
𝑟𝑜

𝑑𝑟

4𝜋𝑟2(𝜌𝐷𝑓 )

𝑁𝑢𝑓
𝑁𝑢𝑓,𝑅𝑒=0∫︀∞

𝑟𝑜

𝑑𝑟

4𝜋𝑟2(𝜆/𝑐𝑝)

𝑆ℎ𝑓
𝑆ℎ𝑓,𝑅𝑒=0

(4.50)

Equations 4.48, 4.49, and 4.50 are used in the computational model for the evaporation rate. Note that
energy and mass conservation must vie the same evaporation rate; this requirement determines the �lm
state as described in the following section, 4.2.3.5.

4.2.3.5. Closure of film state with effective heat transfer coefficient

The system described by Eqns. 4.48 and 4.49 is closed with two additional assumptions. First, the �lm
conditions, 𝑇𝑓 and 𝑌𝑓 , are related through the Clausius-Clapeyron relationship

𝑃𝐹,𝑓 = 𝑃𝑟𝑒𝑓𝑒𝑥𝑝

[︂
−ℎ𝑣𝑎𝑝

𝑅

(︂
1

𝑇𝑓
− 1

𝑇𝑟𝑒𝑓

)︂]︂
(4.51)
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where the partial pressure gives the mole fraction through𝑋𝐹 = 𝑃𝐹,𝑓/𝑃 that can subsequently be
converted to the mass fraction with the relationship 𝑌𝐹 = 𝑋𝐹𝑊𝐹/Σ𝑘𝑋𝑘𝑊𝑘 . As provided by Lefebvre
[118], such a relationship is

ℎ𝑣𝑎𝑝 = ℎ𝑣𝑎𝑝,𝑟𝑒𝑓

(︂
𝑇𝑐𝑟𝑖𝑡 − 𝑇𝑓
𝑇𝑐𝑟𝑖𝑡 − 𝑇𝑟𝑒𝑓

)︂0.38

(4.52)

for 𝑇𝑓 < 𝑇𝑐𝑟𝑖𝑡 and zero otherwise. If the critical point temperature is not provided, the code sets 𝑇𝑐𝑟𝑖𝑡 to
a very large value, essentially making ℎ𝑣𝑎𝑝 independent of temperature. Second, the droplet heating is
related to the di�erence between the �lm temperature and the droplet temperature by assuming an
e�ective internal heat transfer coe�cient in the form of an internal Nusselt number,𝑁𝑢𝑝, for the
particle so that

𝑚𝑝𝑐𝑣,𝑝
𝑑𝑇𝑝
𝑑𝑡

= 2𝜋𝑟𝑝𝑁𝑢𝑝𝜆𝑝(𝑇𝑓 − 𝑇𝑝). (4.53)

This internal Nusselt number, which is di�erent from that for the external heat transfer indicated in
Eqn. 4.42, can be estimated based on the results of numerical studies where the internal droplet was
resolved [116, 119]. There the Nusselt numbers for no circulation and for rapid circulation were
identi�ed as 6.58 and 17.9, respectively, and a transition region was also identi�ed based on the liquid
Peclet number

𝑃𝑒𝑝 =
2𝜌𝑝𝑐𝑣,𝑝𝑈𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑟𝑝

𝜆𝑝
(4.54)

where

𝑈𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
12.69|u𝑝 − u𝑔|𝑅𝑒1/3𝑝

16

(︂
𝜇𝑔
𝜇𝑝

)︂
(4.55)

which is based on the maximum surface velocity, 𝑈𝑠𝑢𝑟𝑓𝑎𝑐𝑒. This transition was empirically �tted [116]
to

𝑁𝑢𝑝 = 6.58 [1.86 + 0.86𝑡𝑎𝑛ℎ [2.245𝑙𝑜𝑔10 (𝑃𝑒𝑝/30)]] . (4.56)

In [116], both the evaporation rate and the surface temperature were reproduces using Eq. 4.56 with
little error compared to simulations incorporating a detailed internal droplet convection model.
Naturally, the liquid Peclet number should be zero if the particle is below the freezing temperature of
the particle constituent.

The evaporation rates indicated in Eqns. 4.48 and 4.49 must be equal, subject to the constraints of
Eqns. 4.51 and 4.53 based on the closure approximation employed in this section. Equating Eqns. 4.48
and 4.49 leads to a nonlinear equation for the surface temperature that is to be solved. This is readily
solved using Newton’s method as described here. Newton’s method is an iterative root-�nding method
written in the form

𝑇 𝑛+1
𝑓 = 𝑇 𝑛𝑓 − 𝑔(𝑇 𝑛𝑓 )/𝑔

′(𝑇 𝑛𝑓 ) (4.57)

where 𝑔(𝑇𝑓 ) = 0 is the equation for which the root will be found and the superscript 𝑛 refers to the
iteration number. Equating Eqns. 4.48 and 4.49 and using 4.50 gives

𝑔(𝑇𝑓 ) = (1 +𝐵𝑇−𝑂)
𝐿𝑒𝑒𝑓𝑓 − 1−𝐵𝐹−𝑂 (4.58)

Di�erentiation gives

𝑔′(𝑇𝑓 ) = 𝐿𝑒𝑒𝑓𝑓 (1 +𝐵𝑇−𝑂)
(𝐿𝑒𝑒𝑓𝑓−1)𝑑𝐵𝑇−𝑂

𝑑𝑇𝑓
− 𝑑𝐵𝐹−𝑂

𝑑𝑇𝑓
(4.59)
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𝑑𝐵𝑇−𝑂

𝑑𝑇𝑓
=

−
[︂
𝑐𝑝,∞(𝑇∞ − 𝑇𝑓 ) +

𝑌𝑂,∞𝑊𝐹 𝑞𝑐𝑜𝑚𝑏
𝜈𝑂𝑊𝑂

]︂
𝑑ℎ𝑒𝑓𝑓
𝑑𝑇𝑓

− 𝑐𝑝,∞ℎ𝑒𝑓𝑓

ℎ𝑒𝑓𝑓
(4.60)

𝑑𝐵𝐹−𝑂

𝑑𝑇𝑓
=

(︂
𝑌𝐹,𝑓 − 𝑌𝐹,∞ +

𝑌𝑂,∞𝑊𝐹

𝜈𝑂𝑊𝑂

)︂
(𝑌𝐹,𝑝 − 𝑌𝐹,𝑓 )2

𝑑𝑌𝐹,𝑓
𝑑𝑇𝑓

(4.61)

𝑑𝑌𝐹,𝑓
𝑑𝑇𝑓

=

−𝑊𝐹𝑊𝑔
𝑃𝑎𝑡𝑚
𝑃𝑟𝑒𝑓

ℎ𝑣𝑎𝑝
𝑅

[︂
1

𝑇𝑓
2 +

0.38

(𝑇𝑐𝑟𝑖𝑡 − 𝑇𝑓 )

(︂
1

𝑇𝑓
− 1

𝑇𝑟𝑒𝑓

)︂]︂
𝑒𝑥𝑝

[︂
−ℎ𝑣𝑎𝑝

𝑅

(︂
1

𝑇𝑓
− 1

𝑇𝑟𝑒𝑓

)︂]︂
𝑊𝐹 −𝑊𝑔 +𝑊𝑔

𝑃𝑎𝑡𝑚
𝑃𝑟𝑒𝑓

𝑒𝑥𝑝

[︂
−ℎ𝑣𝑎𝑝

𝑅

(︂
1

𝑇𝑓
− 1

𝑇𝑟𝑒𝑓

)︂]︂
(4.62)

𝑑ℎ𝑒𝑓𝑓
𝑑𝑇𝑓

=
2𝜋𝑟𝑝𝑁𝑢𝑝𝜆𝑝

𝑚̇
− 𝐿𝑒𝑓 [𝑄𝑟𝑎𝑑 + 2𝜋𝑟𝑝𝑁𝑢𝑝𝜆𝑝(𝑇𝑓 − 𝑇𝑝)]

𝑚̇(1 +𝐵𝐹−𝑂) [ln(1 +𝐵𝐹−𝑂)]

𝑑𝐵𝐹−𝑂

𝑑𝑇𝑓
(4.63)

In writing these expressions for 𝑔′, it is assumed that 𝑌𝑂,𝑓 = 0 and 𝑇𝑂 = 𝑇𝑓 .

Because of the strong nonlinearities in 𝑔(𝑇𝑓 ), care must be taken in providing initial conditions to solve
these relations. This is conducted through a two-stage procedure. First, the boiling point temperature is
identi�ed, then a temperature just under the boiling temperature is used as an initial guess for the
iterative solution that determines the �lm temperature. This procedure arises from a consideration of
the shape of the 𝑔(𝑇𝑓 ). For realistic temperatures, those for which 0 < 𝑌𝑓 < 1, both 𝑔(𝑇𝑓 ) and 𝑔′(𝑇𝑓 ),
are monotonically strongly increasing in magnitude. An initial guess with a temperature that is too low
(less than 𝑇𝑓 ) results in a prediction, with the Newton’s method, of a very high temperature on the
successive iteration due to the small magnitude of the derivative, 𝑔′, for a small T. Typically, this second
iteration will result in a temperature for which 𝑌𝑓 > 1 that leads to negative values of𝐵𝑚 and the
iteration diverges into non-physical regimes. However, an initial guess that is within the physically
reasonable regime (0 < 𝑌𝑓 < 1) and yet above the �nal 𝑇𝑓 will reliably converge. Therefore, the initial
guess of 𝑇 = 0.99999𝑇𝑏𝑜𝑖𝑙 is used as an initial guess in determining the �lm temperature. This method
has been tested for a wide range of conditions and appears robust except for those scenarios where the
denominator of𝐵𝑇 takes on negative values. (Since 𝑇𝑓 can be less than 𝑇𝑝 and this can result in the
denominator of𝐵𝑇 taking on negative values, in which case the iteration may fail.)

Because of the cost and potential stability issues in this method, the fast conduction limit described in
4.2.3.6 is used in the code instead.

4.2.3.6. Closure for surface state assuming fast conduction

The surface state described in the previous section is the most physically realistic state that can be
obtained without solving a di�erential equation for the heat transfer with the droplet. However,
determining this state involves the iterative solution of a system of nonlinear equations. In the previous
section a robust method of solving these equations is provided, but a simpler approximation may
provide suitable results under certain conditions. This simpler approach is to assume that the heat
transfer within the droplet is fast relative to the heating of the droplet. This is equivalent to taking the
zero Biot number limit,𝐵𝑖 ≈ 𝑁𝑢𝑓𝜆𝑓/𝑁𝑢𝑝𝜆𝑝 → 0, in Eqn. 4.53, in which case 𝑇𝑓 = 𝑇𝑝. With the
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�lm state determined by the droplet temperature, the �lm mass fraction is directly obtained from Eqns.
4.51 and 4.52, and the mass transfer number is obtained from Eq. 4.36 with the evaporation rate
following from Eqn. 4.49. The thermal transfer number is obtained from the mass transfer number by
equating Eqns. 4.49 and 4.48, and the droplet heating is obtained y solving for the enthalpy change of
the particle in Eq. 4.31 to obtain

𝑚𝑝𝑐𝑣,𝑝
𝑚̇

𝑑𝑇𝑝
𝑑𝑡

= −ℎ𝑣𝑎𝑝 −
𝑄𝑟𝑎𝑑

𝑚̇
+

∫︀ 𝑇∞
𝑇𝑓

𝑐𝑝,∞𝑑𝑇 +
𝑌𝑂,∞𝑊𝐹 𝑞𝑐𝑜𝑚𝑏

𝜈𝑂𝑊𝑂

𝐵𝑇−𝑂
(4.64)

Sirignano [120] and coworkers have demonstrated that for many conditions, this particular limit is a
poor approximation for at least some of the particle lifetime. In the present models, this limit is
employed in two situations: (a) if the particle temperature is within 1% of the wet bulb temperature, and
(b) if the particle temperature exceeds the wet bulb temperature. As the droplet temperature
approaches the wet bulb temperature, employing this limit is inconsequential. In the latter case, the rate
of droplet cooling is likely to be over predicted, but this is a scenario for which the convergence of the
�lm state otherwise is not guaranteed. In the interest of creating a more robust model, and because this
particular situation is not anticipated to be predominant, we employ this simpler limit.

4.2.4. Conserved scalars and transfer numbers for various
applications

In 4.2.3.3, expressions are provided for the particle evaporation rate, 4.49 and 4.48, using a model system
of fuel evaporating from the particle and reactive with an oxidizer that di�uses from the ambient gas.
Of signi�cance in those expressions are the transfer numbers de�ned in 4.2.3.1 in Eqns. 4.32 and 4.31,
and these in turn are based upon conserved scalars de�ned in Eqns. 4.24 and 4.34. In this appendix,
expressions for alternate transfer numbers and conserved scalars are provided for two additional systems:
a simpler system in which evaporating or condensation occurs without any reaction in the boundary
layer (ie. water droplet evaporation or condensation) and a more complicated system in which multiple
oxidizers are involved in the oxidation of the evaporated fuel (relevant to metal oxidation).

4.2.4.1. Simple evaporation and condensation

When species evaporate or condense but do not otherwise react in the boundary layer surrounding the
particle, the species mass fraction of the evaporating/condensing species itself is a conserved scalar. In
this case, the mass transfer number corresponding to Eq. 4.31 is simply

𝐵𝐹−𝑂 =
𝑌𝐹,𝑓 − 𝑌𝐹,∞
𝑌𝐹,𝑝 − 𝑌𝐹,𝑓

(4.65)

and the heat transfer number corresponding to 4.32 is

𝐵𝑇−𝑂 =

∫︀ 𝑇∞
𝑇𝑓

𝑐𝑝,∞𝑑𝑇

ℎ𝑣𝑎𝑝 +
𝑄𝑟𝑎𝑑

𝑚̇
+

(︂
𝑚𝑝𝑐𝑣,𝑝
𝑚̇

𝑑𝑇𝑝
𝑑𝑡

)︂ (4.66)
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4.2.4.2. Multiple Oxidizers

For metal oxidation, it is possible to have multiple oxidizers that simultaneously react with the
evaporating metal. These can be expressed with a series of parallel single-oxidizer reactions of the form
𝐹 + 𝜈𝑂𝑖

𝑂𝑖 → Σ𝜈𝑃𝑖,𝑗
𝑃𝑗,𝑖. Useful conserved scalars that can be formed with this set of reactions

include
𝛽𝐹−𝑂 =

𝑌𝐹
𝑊𝐹

−
∑︁

𝑖

𝑌𝑂𝑖

𝜈𝑂𝑊𝑂𝑖

(4.67)

𝛽𝑇−𝑂 =

∫︁ 𝑇

𝑇𝑓

𝑐𝑝𝑑𝑇 +
∑︁

𝑖

𝑊𝐹 𝑞𝑖
𝜈𝑂𝑊𝑂𝑖

𝑌𝑂𝑖
(4.68)

where the enthalpy of reaction of the 𝑖-th oxidizer,𝑂𝑖, with 𝐹 is given by 𝑞𝑖. These are analogous to the
conserved scalars de�ned in Eqns. 4.24 and 4.34. Using these conserved scalars, a mass transfer number
analogous to Eqn. 4.31 is found to be

𝐵𝐹−𝑂 =

𝑌𝐹,𝑝 − 𝑌𝐹,∞ +
∑︀

𝑖

𝑊𝐹 𝑞𝑖
𝜈𝑂𝑖

𝑊𝑂𝑖

𝑌𝐹,𝑝 − 𝑌𝐹,𝑓
(4.69)

and the heat transfer number is

𝐵𝑇−𝑂 =

∫︀ 𝑇∞
𝑇𝑓

𝑐𝑝,∞𝑑𝑇 +
∑︀

𝑖

𝑌𝑂𝑖,∞𝑊𝐹

𝜈𝑂𝑖
𝑊𝑂𝑖

ℎ𝑣𝑎𝑝 +
𝑄𝑟𝑎𝑑

𝑚̇
+

(︂
𝑚𝑝𝑐𝑣,𝑝
𝑚̇

𝑑𝑇𝑝
𝑑𝑡

)︂ (4.70)

These can be employed in Eqn. 4.48 and 4.49 to provide expressions for the particle mass burning rate
as a function of the various oxidizer mass fractions far from the particle.

4.2.5. Energy Exchange between Particles and the Gas Phase
Without Mass Transfer

In this section, a simpler scenario is considered where evaporation from and condensation onto particles
is presumed to be negligible. For example, metal particles in dry air at ambient temperatures are unlikely
to participate in evaporation or condensation. Models are presented in this section to treat these
scenarios.

The models described in the previous sections are ill posed to solve these problems because the
formulation is based on a balance between di�usion and the Stefan convective velocity, which is
proportional to the negligible 𝑚̇. The models in this section are used for the heated particles model.

In the event that there is no mass transfer, the particle heating rate is determined based on the balance
between conductive and radiative transfer. The conductive heat transfer can be expressed using an
e�ective heat transfer coe�cient, thereby taking advantage of available Nusselt number correlations
indicated in 4.2.4.1. Then the relationship for the droplet heating is

𝑚𝑝𝑐𝑣,𝑝
𝑑𝑇𝑝
𝑑𝑡

= 2𝜋𝑁𝑢𝑓𝑟𝑝𝜆𝑓 (𝑇𝑔 − 𝑇𝑓 ) + 4𝜋𝛼𝑟2𝑝(𝐺𝑖𝑛/4− 𝜎𝑇 4
𝑓 ). (4.71)

176



For the particle with no mass transfer, the closure of the �lm (or surface) temperature is obtained by
equating the external heat �ux, described by the right hand side of Eqn. 4.71, with the internal heat �ux,
as indicated on the right hand side of Eqn. 4.53 to obtain the following quartic constraint, which is
solved for 𝑇𝑓

𝑁𝑢𝑓𝜆𝑓 (𝑇𝑔 − 𝑇𝑓 ) + 2𝛼𝑟𝑝(𝐺𝑖𝑛/4− 𝜎𝑇 4
𝑓 ) = 𝑁𝑢𝑝𝜆𝑝(𝑇𝑓 − 𝑇𝑝) (4.72)

4.2.6. Further Notes on Radiative Heat Transfer

The expression employed for radiative droplet heating in Eqn. 4.27 is appropriate for relatively large and
opaque particles, referred to as the geometric optics limit. For di�erent particles, the expression for the
absorptivity will change, but otherwise the expressions remain appropriate. To identify the appropriate
absorptivity, it is useful to compare absorption coe�cients for particle clouds. The absorption
coe�cient, 𝜅, in units of inverse length, is an e�ective cross-sectional area per volume. For large particles
with a condense phase absorptivity give by 𝛼, the absorption coe�cient is the summation of the
cross-sectional areas time the absorptivity

𝜅 =
1

𝑉𝑐

∑︁
𝑝

[︂
𝜋𝑟2𝑝𝛼

∫︁
𝑉𝑐

𝑓𝜎(x;xo, 𝑡)𝑑x

]︂
. (4.73)

For comparison, in the small-particle or Rayleigh limit, the absorption coe�cient is proportional to the
volume fraction with the proportionality coming from the complex index of refraction. For
intermediate particles where the particle optical depth is comparable to the particle radius, intermediate
limits are appropriate, and the absorption can range from being proportional to the particle area to
being proportional to the particle volume. The appropriate absorption coe�cient, and from it the
particle emissivity, cases can be determined as described in the available texts [117, 121].

4.2.7. Input Parameters for Particle Evolution

A large number of parameters are required to specify the evolution of the particles. The parameters
provided in the input �le are described in table 4.2-1. In addition, table 4.2-2 speci�es those variables
that must be obtained from the gas-phase continuum �ow. Because parcels of particles have �nite extent
and may span several control volumes, it is sometimes necessary to interpolate values of these gas-phase
variables from several control volumes.

4.3. COUPLING THE LAGRANGIAN AND EULERIAN
FIELDS

The previous section provides a description of the particle evolution given a gas-phase environment. In
this section the means by which the gas-phase environment for a particle is determined from an Eulerian
solution presumed to use a control-volume or similar approach. Following this, the e�ect of the particle
�eld on the Eulerian �eld is described. Finally, to ensure that the coupled evolution proceeds in a
physically realistic manner, it is necessary to identify limits on the time step size.
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Table 4.2-1.. Input parameters related to the particle evolution
provided through the input file
Variable Input name Units Description
𝜌𝑝 INJP_DENp 𝑘𝑔/𝑚3 Particle density
𝑇𝑝 INJP_Tp 𝐾 Particle temperature
𝑊𝐹 INJP_MWp 𝑘𝑚𝑜𝑙/𝑘𝑔 Molecular weight of fuel or par-

ticle component
𝑐𝑣,𝑝 INJP_Clp 𝐽/𝑘𝑔/𝐾 Particle speci�c heat
𝛼 INJP_Emp none Particle absorptivity,emissivity
𝑃𝑟 INJP_Prf none Film Prandtl number
𝑆𝑐 INJP_Scf none Film Schmidt number
𝑃𝑟𝑒𝑓 INJP_Prefvapp 𝑃𝑎 Reference pressure for vapor-

ization for particle
𝑇𝑟𝑒𝑓 INJP_Trefvapp 𝐾 Reference temperature for va-

porization for particle
ℎ𝑣𝑎𝑝,𝑟𝑒𝑓 INJP_Hvaprefp 𝐽/𝑘𝑔 Reference enthalpy of vaporiza-

tion for particle
𝑇𝑐𝑟𝑖𝑡 INJP_T1cp 𝐾 Critical temperature for parti-

cle
𝑇𝑓𝑟 INJP_T1fp 𝐾 Freezing temperature for parti-

cle
𝜎𝑝 INJP_STp 𝑁/𝑚 Particle surface tension
𝜇𝑝 INJP_mup 𝑘𝑔/𝑚/𝑠 Particle viscosity
𝑃𝑟𝑝 INJP_Prl none Particle Prandtl number
𝑞𝑐𝑜𝑚𝑏 𝐽/𝑘𝑔 Enthalpy of combustion for va-

por species evaluated at 𝑇𝑓
𝜈𝑖 mol/ mol Fuel Stoichiometric coe�cients (rel-

ative to evaporating species)
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Table 4.2-2.. Variables passed from the gas-phase Eulerian
solver required to evolve the particles

Variable Units Description
𝜌∞ 𝑘𝑔/𝑚3 Gas-phase density
𝑃 𝑃𝑎 Pressure
𝑢𝑔, 𝑣𝑔,𝑤𝑔 𝑚/𝑠 Mean gas velocity
𝑘 𝑚2/𝑠2 Turbulent kinetic energy
𝜖 𝑚2/𝑠3 Turbulent kinetic energy dissi-

pation rate
𝑇∞ 𝐾 Gas temperature
𝑊 𝑘𝑔/𝑚𝑜𝑙 Gas-phase mean molecular

weight
𝑌𝐹,∞ N/A Mass fraction of fuel in gas

phase
𝑌𝑂,∞ N/A Mass fraction of oxidizer in gas

phase
𝑐𝑝,∞ 𝐽/𝑘𝑔/𝐾 Gas-phase speci�c heat
𝜇𝑔 𝑘𝑔/𝑚/𝑠 Gas-phase viscosity
𝐺𝑖𝑛 𝑊/𝑚2 Incident radiation

4.3.1. Gas-phase environment for parcels

When a parcel of particles spans more than a single control volume, it is appropriate to employ a
weighted average of the gas properties in the control volumes spanned by the parcel. The average is
weighted by the number of particles in a given control volume, which is obtained from 𝑓𝜎(x;xo, 𝑡)
de�ned in Eqn. 4.14. Thus, the average value of a gas-phase variable, 𝜑, for a parcel is

𝜑 =

∫︀
𝑉
𝜑(x, 𝑡)𝑓𝜎(x;xo, 𝑡)𝑑x∫︀
𝑉
𝑓𝜎(x;xo, 𝑡)𝑑x

(4.74)

where the integral volume may span more than one control volume. This procedure is employed for all
gas phase variables that appear in the droplet evolution equations in 4.2. For transport properties (i.e.
various di�usion coe�cients), the gas phase properties employed are evaluated using the ’1/3 rule’ as
indicated for viscosity in Eqn. 4.6.

4.3.2. Effect of the particle phase on the gas phase

The source terms provided in the previous section show how the gas-phase properties a�ect the
conservation of mass, momentum, and energy for the particles. From Newton’s third law, the action of
the gas phase on the particles must be balanced by an action of the particles on the gas phase. This action
is determined directly from the change in the state of the particle phase as described in the following.
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The source of the mass for a given control volume, 𝑉𝑐, located at (x, 𝑡) is determined by summing the
changes in the masses of all the particles in that control volume over the gas-phase time step 𝛿𝑡

𝑆𝑚𝑎𝑠𝑠(x, 𝑡) = − 1

𝑉𝑐

∑︁
𝑃

[︂
𝑚𝑝(𝑡+ 𝛿𝑡)−𝑚𝑝(𝑡)

𝛿𝑡

∫︁
𝑉𝑐

𝑓𝜎(x;xo, 𝑡)𝑑x

]︂
. (4.75)

Here, the summation is presumed to occur over the 𝑃 parcels that contribute to the control volume at
(x, 𝑡), and the addend in the square brackets corresponds to the mass change and particle number
distribution in each of the 𝑃 parcels. The similar equation for species concentration incorporates the
conversion of the mass of the particle component to the mass of the gas-phase component. For pure
evaporation, the conversion is trivial, but for combustion where the fuel evaporation corresponds to
oxidizer consumption and the product formation, the expressions become complicated. The general
expression for the species mass source term is

𝑆𝑚𝑎𝑠𝑠,𝑖(x, 𝑡) = − 1

𝑉𝑐

∑︁
𝑃

[︂
𝜈𝑖𝑊𝑖

𝑊𝐹

𝑚𝑝(𝑡+ 𝛿𝑡)−𝑚𝑝(𝑡)

𝛿𝑡

∫︁
𝑉𝑐

𝑓𝜎(x;xo, 𝑡)𝑑x

]︂
. (4.76)

Here, 𝜈𝑖 is the number of moles of species 𝑖 produced when a mole of the particle component
evaporates, and𝑊𝑖 is the molecular weight of species 𝑖. The particle component is presumed to be the
fuel, denoted with the subscript 𝐹 , and for pure evaporation reduces to equation 4.75.

Similarly, the source term for the 𝑗-momentum equations is determined by summing the changes in the
particle momentum over all of the particles in a control volume.

𝑆𝑚𝑜𝑚,𝑗(x, 𝑡) = − 1

𝑉𝑐

∑︁
𝑃

[︂(︂
𝑚𝑝(𝑡+ 𝛿𝑡)𝑢𝑝,𝑗(𝑡+ 𝛿𝑡)−𝑚𝑝(𝑡)𝑢𝑝,𝑗(𝑡)

𝛿𝑡
−𝑚𝑝(𝑡)𝑔𝑖

)︂∫︁
𝑉𝑐

𝑓𝜎(x;xo, 𝑡)𝑑x

]︂
(4.77)

Note that the last term in Eqn. 4.77 describes the e�ect of gravitational acceleration on the particle
�eld.

The energy source term must account for the enthalpy of vaporization and heat of combustion
associated with the particles as well as the particle heating. It must also account for the change in the
enthalpy of the gas associated with any gases that evaporated or condensed. In addition, it is necessary to
separate out the contributions associated with radiative transport since these do not necessarily a�ect
the local control volume, but are transported over length scales determined by the radiative transport
equation. The enthalpy source term is

𝑆𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦(x, 𝑡) = −𝑆𝑟𝑎𝑑 −
1

𝑉𝑐

∑︁
𝑃

[︂
𝑚𝑝(𝑡+ 𝛿𝑡) [ℎ𝑝(𝑡+ 𝛿𝑡)− ℎ𝑝(𝑡)]

𝛿𝑡

∫︁
𝑉𝑐

𝑓𝜎(x;xo, 𝑡)𝑑x

]︂
(4.78)

− 1

𝑉𝑐

∑︁
𝑃

[︂
[𝑚𝑝(𝑡+ 𝛿𝑡)−𝑚𝑝(𝑡)]

∑︀
𝑖𝜈𝑖𝑊𝑖ℎ𝑖(𝑇𝑔)/𝑊𝐹

𝛿𝑡

∫︁
𝑉𝑐

𝑓𝜎(x;xo, 𝑡)𝑑x

]︂
(4.79)

− 1

𝑉𝑐

∑︁
𝑃

[︂
[𝑚𝑝(𝑡+ 𝛿𝑡)−𝑚𝑝(𝑡)] (𝑞𝑐𝑜𝑚𝑏 − ℎ𝑣𝑎𝑝)

𝛿𝑡

∫︁
𝑉𝑐

𝑓𝜎(x;xo, 𝑡)𝑑x

]︂
(4.80)

where the radiative transport source term is

𝑆𝑟𝑎𝑑(x, 𝑡) =
1

𝑉𝑐

∑︁
𝑃

[︂
𝑄𝑟𝑎𝑑

∫︁
𝑉𝑐

𝑓𝜎(x;xo, 𝑡)𝑑x

]︂
, (4.81)
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which provides the interface between the particle �eld and the radiation transport equation. In general,
the solution of the radiant transport equation requires an absorption coe�cient and a contribution to
the emission. These must be de�ned in such a way that they agree with the radiation absorbed and
emitted by the particle �eld. To do this, an energy balance for the particle �eld, but in an Eulerian
frame, is employed. Within the energy conservation equation, the radiant source term appears as a
divergence of the radiation heat �ux ∇ · 𝑞𝑅. This divergence of the radiation heat �ux can be related to
the radiation intensity and the radiation emitted by [117]

∇ · 𝑞𝑅 = ⟨4𝜅𝑛𝑒𝑡𝜎𝑇 4
𝑛𝑒𝑡⟩ −𝐺𝑖𝑛⟨𝜅𝑛𝑒𝑡⟩ (4.82)

where the subscript 𝑛𝑒𝑡 indicates that contributions from the particles must be combined with those
from gases, smoke, and anything else that participates with the radiative �eld. The angular brackets
indicate that the quantities on the right hand side must be de�ned based on the appropriate summation
or averaging process over all of these participating media, which may have varying temperatures. In
order to balance the radiant energy �ux in and out of the particle with their contribution to Eqn. 4.82,
it is necessary to separate these particle contributions from the net radiant source term. To leading
order, this can be done in an additive manner so that the �rst term in Eqn. 4.82 is split as
⟨4𝜅𝑛𝑒𝑡𝜎𝑇 4

𝑛𝑒𝑡⟩ = ⟨4𝜅𝑝𝜎𝑇 4
𝑝 ⟩+ ⟨4𝜅𝑜𝑡ℎ𝑒𝑟𝑠𝜎𝑇 4

𝑜𝑡ℎ𝑒𝑟𝑠⟩ and the second term is split with
⟨𝜅𝑛𝑒𝑡⟩ = ⟨𝜅𝑝⟩+ ⟨𝜅𝑜𝑡ℎ𝑒𝑟𝑠⟩. Here the subscript 𝑝 indicates the contribution associated with the particle
�eld and the subscript 𝑜𝑡ℎ𝑒𝑟𝑠 indicates all other contributions (gases, soot, etc.). Corrections to this
leading order approximation are related to the optical thickness of the control volumes over which the
radiation solve occurs. These corrections arise because a portion of the intensity is absorbed within the
control volume. As long as the control volumes are all optically thin, then this correction is not
important, but it must be accounted for in the radiation solve if that term is important.

Separating out only the contribution of the particle �eld to the radiation solve gives

(∇ · 𝑞𝑅)𝑝 = ⟨4𝜅𝑝𝜎𝑇 4
𝑝 ⟩ −𝐺𝑖𝑛⟨𝜅𝑝⟩ (4.83)

where the angular brackets indicate that the quantities on the right hand side must be de�ned based on
the appropriate summation over all of the particles in the control volume. In order to ensure energy
conservation between the Lagrangian solution of the particle �eld and the eulerian solution of the
radiation transfer and energy equations, these appropriate sums are obtained by integrating over the
particle �eld in a given control volume as in Eqn. 4.81. Here, the emission and absorption contributions
of𝑄𝑟𝑎𝑑 are separated

𝑆𝑟𝑎𝑑(x, 𝑡) =
1

𝑉𝑐

∑︁
𝑃

[︂
4𝜋𝑟2𝑝𝛼𝜎𝑇

4
𝑝

∫︁
𝑉𝑐

𝑓𝜎(x;xo, 𝑡)𝑑x

]︂
− 1

𝑉𝑐

∑︁
𝑃

[︂
𝜋𝑟2𝑝𝛼

∫︁
𝑉𝑐

𝑓𝜎(x;xo, 𝑡)𝑑x

]︂
𝐺𝑖𝑛

(4.84)
so that, equating the �rst and second terms on the right-hand side of Eqns. 4.83 and 4.84 gives

⟨4𝜅𝑝𝜎𝑇 4
𝑝 ⟩ =

1

𝑉𝑐

∑︁
𝑃

[︂
4𝜋𝑟2𝑝𝛼𝜎𝑇

4
𝑝

∫︁
𝑉𝑐

𝑓𝜎(x;xo, 𝑡)𝑑x

]︂
(4.85)

and
⟨𝜅𝑝⟩ =

1

𝑉𝑐

∑︁
𝑃

[︂
𝜋𝑟2𝑝𝛼

∫︁
𝑉𝑐

𝑓𝜎(x;xo, 𝑡)𝑑x

]︂
𝐺𝑖𝑛 (4.86)
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This information is crucial because it de�nes an energy conservation interface between the particle �eld
and the radiation �eld.

The source terms de�ned in Eqns. 4.75 through 4.80 should be added directly to the gas-phase
conservation equations in the manner appropriate for the chosen numerical method. In the above
relations, it was presumed that the dimensions of the conservation equations solved are those of density,
density time velocity, and density time enthalpy. The radiant �ux source term in Eqn. 4.81 should
similarly be added to the radiative transport equation, but in the consistent manner indicated in the
above paragraph.

4.3.3. Time step control

The Lagrangian and Eulerian �elds are advanced using an explicit operator splitting approach. The
particles are presumed to be advanced using an ordinary di�erential equation solver capable of handling
a sti� system. The system can be sti� because the magnitude of the forcing function, the right hand
side, of the various particle evolution equations can vary over orders of magnitude. While the particle
state is evolved, the gas-phase state is presumed to be constant, except as described in the following
paragraph. The source terms indicated in the previous section are accumulated during the particle
evolution, and then they are applied to the gas-phase conservation equations as it is advanced.

There are certain requirements that limit the particle evolution time step. Particle should not move
more than the length of the control volume side without re-evaluating the gas-phase state using the
methods described in 4.3.1. Particles should not evolve for longer than the eddy interaction time de�ned
as the lesser of times de�ned in Eqn. 4.12 and 4.13 without determining a new value for 𝑢𝑔,𝑖 in Eqn. 4.10
and 4.11. These requirements do not necessarily limit the gas-phase evolution time step.

There are also limitations to the gas-phase evolution time step imposed by the particle evolution. The
source of this limitation is the requirement that the treatment of the gas-phase state as constant during
the particle evolution not lead to nonphysical or inaccurate results. For example, if the particles
transferred almost all of their momentum to the gas phase in a single time step (because they were small,
for example), then a problem could arise. Speci�cally, if the subsequent momentum source term were
large, then the gas could be accelerated to velocities that exceed the initial particle velocities. In the
subsequent time step, the particles would accelerate and the solution procedure could thereby
destabilize. There are two means of avoiding such problems. One approach is to employ an iterative
implicit coupled advance of the Eulerian and Lagrangian state. Such an approach would depend on the
speci�c algorithms employed for the Eulerian solver. The approach that will be discussed here is a
limitation on the time step size for the coupled Eulerian-Lagrangian system. This limitation is based on
the idea that the change in the Eulerian state relative to the Lagrangian state should not be too dramatic.
This not only provides stability, but helps limit numerical errors.

For mass conservation, the limitation on the time step is based on the idea that the mass added to the
cell should not dramatically a�ect the pressure (or whatever variable changes to allow additional mass to
entry the control volume gas phase). With 𝑆𝑚𝑎𝑠𝑠 in units of density per unit time, the appropriate
limitation on the time step is a time step that leads to no more than a change of 𝛿𝜌𝜌 in 𝜌.

𝑑𝑡𝑚𝑎𝑥 < 𝛿𝜌𝜌/𝑆𝑚𝑎𝑠𝑠 (4.87)
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That is, the fractional change in the density is limited to 𝛿𝜌. It is expected that 𝛿𝜌 is substantially smaller
than 0.1 is appropriate, but this is subject to evaluation and will depend somewhat on the details of a
given simulation. for the conservation of species, similar expressions apply, but with the second term
that provides a sort of absolute tolerance in addition to the relative tolerance indicated above

𝑑𝑡𝑚𝑎𝑥 < 𝛿𝑌𝑖𝜌𝑌𝑖/𝑆𝑚𝑎𝑠𝑠,𝑖 + 𝜂𝑌𝑖𝜌/𝑆𝑚𝑎𝑠𝑠,𝑖. (4.88)

Intuition suggests that the limitation of 𝛿𝑌𝑖 do not need to be as severe as those on 𝛿𝜌, for stability and
that 𝜂𝑌𝑖 should be substantially smaller than typical magnitudes for 𝑌𝑖 for accuracy. Again, the speci�c
values will depend on how sensitive the system is on 𝑌𝑖. For momentum, a similar expression is
provided with relative and absolute tolerances

𝑑𝑡𝑚𝑎𝑥 < 𝛿𝑢𝜌𝑢𝑖/𝑆𝑚𝑜𝑚,𝑖 + 𝜂𝑢𝜌/𝑆𝑚𝑜𝑚,𝑖 (4.89)

where 𝛿𝑢𝑢𝑖 and 𝜂𝑢 are indicative of the acceptable uncertainties in the velocity �eld. Time-step control
based on the enthalpy exchange is easiest to think of in terms of temperature

𝑑𝑡𝑚𝑎𝑥 < 𝛿ℎ𝜌𝑐𝑝,𝑔𝑇𝑔/𝑆𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦 + 𝜂ℎ𝜌𝑐𝑝,𝑔/𝑆𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦 (4.90)

where 𝛿ℎ𝑇𝑔 and 𝜂ℎ are indicative of the acceptable uncertainties in the temperature �eld 2 .

4.3.4. Particle-surface interactions

Particles interacting with a surface can (1) bounce o� of the surface and return to the �ow with a
di�erent trajectory, (2) stick to the surface and remain as a deposit or (3) shatter so that smaller droplets
are formed that leave the surface with various trajectories. The appropriate behavior depends primarily
on the ratio of the droplet kinetic energy to the surface energy as determined by the Weber number

𝑊𝑒 =
𝜌𝑝𝑑𝑝|u𝑝,𝑖|2

𝜎
(4.91)

where 𝜎 is the surface tension of the condensed phase. A complete model description is available in [122]
with criteria for droplet sticking and bouncing. That paper did not address droplet shattering in detail
and the droplet shattering model is provided in the following paragraph.

Droplets will shatter if the criteria

𝑊𝑒0.5𝑅𝑒0.25𝑝 > 𝐾𝑐𝑟𝑖𝑡 = 57.7 (4.92)

is satis�ed, which occurs for relatively large droplets traveling at relatively high velocities. Satellite
droplets are presumed to form with uniform sizes given by

𝑑𝑝,𝑠ℎ𝑎𝑡𝑡𝑒𝑟 = 𝑚𝑎𝑥

(︂
7.9 · 1010𝜎𝑊𝑒1.4/𝑅𝑒2.8

𝜌𝑝|u𝑝,𝑖|2
, 𝑑𝑝

)︂
(4.93)

2Instead of using 𝑆𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦 that includes both the chemical and sensible enthalpy changes, it is better to use a measure of
the change in the sensible enthalpy source term (see Eqn 4.80) where the next to the last set of brackets includes only the
sensible contribution of the species heating and not the chemical enthalpy contribution.
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where the second term in the max function ensures that the empirical relationship given as the �rst term
does not exceed the original diameter.

If a particle sticks to the surface, it is necessary to track the mass and energy addition to that surface
through a �eld variable added to the solid object surface set. Mass addition should be tracked on a mass
per solid-element surface area basis. Similarly, the energy deposited on a surface should be tracked based
on 𝑐𝑣,𝑝(𝑇𝑝 − 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒). Erikson and Gill have developed and implemented a model to provide such an
interface for a Calore surface [123].

4.4. VERIFICATION OF PARTICLE EVOLUTION
EQUATIONS

It is generally necessary to check the implementation of the equations described in 4.2 to insure that
they produce the expected e�ect. This process is referred to as veri�cation. There are several stages of
veri�cation, many of which are focused on software design details, but many of which are intimately
linked with the physics model implementation. In this section, a series of veri�cation tests is presented
that provides a test for the correct implementation of the models described in the previous sections. For
the particle transport models developed here, this is accomplished by taking certain asymptotic limits of
the evolution equations for which an analytical solution exists and insuring that the particle evolution
approaches that solution as the particle properties approach the appropriate limiting values. For
example, in the limit of zero Reynolds number, certain behavior is expected and the particle should
approach that behavior as the diameter approaches zero. The limiting behavior is based on the limiting
behavior of the model equations and is not based on matching particular experimental data, although
many of the limiting behaviors correspond to well known phenomena. The key objective of the
veri�cation process here is to insure that the equations are satis�ed, so that when numerical examples are
given, nominal values for material and transport properties are employed.

4.4.1. Verification of Particle Momentum and Trajectories

In this section the solutions of Eqns. 4.3 through 4.9 are tested. For all of these tests, it is presumed that
the source terms indicated in 4.75 through 4.80 are set to zero so that the gas velocities and other
properties are �xed. Setting the gas-phase source terms to zero is referred to as one-way coupling because
the gas phase a�ects the particular phase, but not vice versa.

4.4.1.1. Terminal Velocity

Falling particle will reach a terminal velocity if the gas velocity is held �xed that is given by

𝑢𝑝,𝑖|𝑡→∞ = 𝑢𝑔,𝑖 +
8(𝜌𝑝 − 𝜌𝑔)𝑟𝑝𝑔𝑖

3𝜌𝑔𝐶𝐷|𝑢𝑔,𝑖 − 𝑢𝑝,𝑖|
. (4.94)

Because this terminal velocity includes the Reynolds number dependence of the drag coe�cient, the
full range of the drag coe�cient can be tested by changing, for example, the particle diameter. Note that
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Table 4.4-1.. Input parameters related to the particle trajectory verification
𝑑𝑝 𝜌𝑝 𝜇𝑔 𝜌𝑔 𝑔𝑖 𝜏𝑝 𝑢𝑝,𝑖|𝑡→∞ 𝑅𝑒𝑝|𝑡→∞

3 · 10−2 10 0.01 1.0 −1.0 5 · 10−2 5 · 10−2 1.5 · 10−1

3 · 10−3 10 0.01 1.0 −1.0 5 · 10−4 5 · 10−4 1.5 · 10−4

3 · 10−4 10 0.01 1.0 −1.0 5 · 10−6 5 · 10−6 1.5 · 10−7

the slip velocity magnitude does appear in the drag coe�cient for a range of values through the
Reynolds number. For these Reynolds numbers (𝑅𝑒𝑝 < 1000), the drag coe�cient can be replaced by
the �rst relationship in Eqn. 4.4 to give

𝑢𝑝,𝑖|𝑡→∞ =
2(𝜌𝑝 − 𝜌𝑔)𝑟

2
𝑝𝑔𝑖

9𝜇𝑔(1 +𝑅𝑒
2/3
𝑝 /6)

. (4.95)

For𝑅𝑒𝑝 > 1000, using the second relationship from Eqn. 4.4 in Eqn. 4.94 yields simply

𝑢𝑝,𝑖|𝑡→∞ = 𝑢𝑔,𝑖 +

√︃
8(𝜌𝑝 − 𝜌𝑔)𝑟𝑝𝑔𝑖
3𝜌𝑔(0.424)

. (4.96)

The full range of terminal velocities obtained by varying 𝑟𝑝 is shown in Fig 4.4-1. Note that while the
velocities are continuous at𝑅𝑒𝑝 = 1000, there is a discontinuity in the rate of change of the velocity
with diameter of Reynolds number at this point.

4.4.1.2. Small Reynolds number

In the limit of small Reynolds number the solution of Eqn. 4.3 approaches that given by Eqn. 4.7 and
4.8 where𝐶𝐷 simpli�es to 24/𝑅𝑒𝑝 so that 𝜏𝑝 approaches a constant value even as the velocity changes.
In this case, the analytic solution of Eqn. 4.3, where the gas velocity is �xed, is

𝑢𝑝,𝑖|𝑡→∞ =

(︂
𝑢0𝑔,𝑖 +

(𝜌𝑝 − 𝜌𝑔)

𝜌𝑝

)︂(︀
1− 𝑒−𝑡/𝜏𝑝

)︀
+ 𝑢0𝑝,𝑖𝑒

−𝑡/𝜏𝑝 (4.97)

where the superscript 0 indicates the initial conditions. This limit can be tested by approaching zero
Reynolds numbers with successively smaller diameters. The solution to Eqn. 4.9 is obtained is similarly
obtainable by integration of 4.97 once and is

𝑥𝑝,𝑖 = 𝑥0𝑝,𝑖 +

(︂
𝑢0𝑔,𝑖 +

(𝜌𝑝 − 𝜌𝑔)

𝜌𝑝
𝑔𝑖𝜏𝑝

)︂(︀
1− 𝑒−𝑡/𝜏𝑝

)︀
+ 𝑢0𝑝,𝑖𝜏𝑝

(︀
1− 𝑒−𝑡/𝜏𝑝

)︀
(4.98)

Using the values indicates in table 4.4-1, and with no heat and mass transfer, particles were evolved from
rest using Fuego. The resulting particle trajectories are compared with those predicted in Eqns. 4.97 and
4.98, and the velocities and positions are plotted in �gure 4.4-1.
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Figure 4.4-1.. The Fuego-computed particle velocity and trajec-
tory are compared with predictions from 4.97 and 4.98 in the left
panels. The error in each prediction is shown in the right panel
along with the particle Reynolds number. Parameters for the
particle evolution are from 4.4-1 with 𝑑𝑝 from top row to bottom
row being 𝑑𝑝 = 3 ·10−2, 𝑑𝑝 = 3 ·10−3, and 𝑑𝑝 = 3 ·10−4, respectively.
In the right-hand panes the solid cures represent the position
error, the dashed curves represent the velocity error and the
dash-dot-dot curve shows the particle Reynolds number.
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Table 4.4-2.. Input parameters related to the particle dispersion verification
Fluid properties Particle properties
𝑘 1.0 𝜌𝑝 10.0
𝜖 1.0 𝑑𝑝 1 · 10−4

𝜇𝑔 0.01 𝜏𝑝 1 · 103/18

4.4.1.3. Turbulent dispersion

Veri�cation of particle dispersion is hampered by the fact that it is a stochastic and not deterministic
process. Therefore, veri�cation is conducted by checking that the asymptotic behavior is correct for
large numbers of samples. In an isotropic homogeneous turbulent �eld, the turbulent dispersion of a
large number of particles should result in the mean square displacement of particles in proportion to
the e�ective di�usion coe�cient and the evolution time. The di�usion coe�cient in the limit where 𝜏𝑒
and not 𝜏𝐶 determines the eddy interaction time is proportional to |u𝑔 + u′

𝑔 − u𝑝|2𝜏𝑝 [124]. For
veri�cation purposes, the mean gas velocity is set to zero so that the e�ective di�usion coe�cient is
proportional to 𝑘. Note that the early time behavior is di�erent, but that the early time behavior decays
over the time scale 𝜏𝑝. The long-time dispersion behavior averaged over a su�cient statistical sample
should be veri�ed to follow [98]

⟨𝑥2⟩ ∝ 𝑘𝜏𝑝𝑡 (4.99)

Such behavior should hold true in a statistical sense for both the dispersion of the mean parcel locations
and for the change in the extent of the parcel itself. Because the dispersion is driven by a Gaussian
process, it can be expected that statistical di�erences are reduced in proportion to the inverse of the
square root of the number of samples.

To verify the scaling of the particle dispersion, a large number of particles were evolved using speci�ed
�uid variables. All of the mean �uid velocities are set to zero and only the turbulent kinetic energy, 𝑘,
combined with time and length-scale information from the turbulent energy dissipation, 𝜖, acted on the
particles. In this case, the only force on the particle is associated with 𝑢′𝑔,𝑖 as de�ned in Eqns. 4.10 and
4.11. The parameters related to particle dispersion used in the test are given in 4.4-2. The �ow was
evolved for a time of 5.0 (nearly 1000𝜏𝑝) and simulations were carried out for 100, 1000, and 10, 000
particles. The results are shown in 4.4-2 where the linear dependence of the mean-square displacement
with time is evidence for large particle samples. The large number of samples required to get
convergence is noteworthy.

4.4.2. Verification of particle heat and mass transfer

There are a number of terms describing the heat and mass transfer to and from particles that must be
tested. In this section, the terms that describe the particle evolution in a constant gas-phase
environment will be tested. To accomplish this, the source terms indicated in Eqn. 4.75 through 4.81 are
set to zero so that the gas velocities and other properties are �xed (one-way coupling).
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Figure 4.4-2.. The mean square displacement of particles is
shown as a function of time. Different curves show the statistical
noise associated with different numbers of particles considered.
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Table 4.4-3.. Input parameters related to the particle heating and
cooling verification

Fluid proprties Particle properties
𝑘 1.0 𝜌𝑝 10.0
𝜖 1.0 𝑑𝑝 1 · 10−4

𝜇𝑔 0.01 𝜏𝑝 1 · 103/18

4.4.2.1. Droplet heating and cooling

If the particles have su�ciently high boiling points and enthalpies of vaporization, the evaporation rate
in Eqn. 4.48 will be zero which implies𝐵𝑇−𝑂 = 0. In this case, the droplet heating and cooling are
governed by the equations presented in 4.2.4. There are several limits that can be tested. The most
common situation that is encountered is conduction/convection dominated heating or cooling, and
this can be split into high and low Reynolds number regimes. When radiant heating and cooling are the
most signi�cant processes, the system evolves according to the radiative heat �ux terms resulting in
di�erent behavior.

To verify conduction dominated heating or cooling, the particle emissivities are set to zero, eliminating
the radiative interaction terms. This leads to a simpli�cation of Eqn. 4.71

𝑑𝑇𝑝
𝑑𝑡

=

(︂
6

𝜌𝑝𝑐𝑣,𝑝𝑑2𝑝

)︂(︂
𝑁𝑢𝑓𝜆𝑓𝑁𝑢𝑝𝜆𝑝
𝑁𝑢𝑓𝜆𝑓 +𝑁𝑢𝑝𝜆𝑝

)︂
(𝑇𝑔 − 𝑇𝑝) (4.100)

for which an analytic solution

𝑇𝑔 − 𝑇𝑝
𝑇𝑔 − 𝑇𝑝,0

= 𝑒𝑥𝑝

[︂
−
(︂

6

𝜌𝑝𝑐𝑣,𝑝𝑑2𝑝

)︂(︂
𝑁𝑢𝑓𝜆𝑓𝑁𝑢𝑝𝜆𝑝
𝑁𝑢𝑓𝜆𝑓 +𝑁𝑢𝑝𝜆𝑝

)︂
𝑡

]︂
(4.101)

is obtained if 𝑇𝑔,𝑁𝑢𝑓 , and𝑁𝑢𝑝 are constant and 𝑇𝑝,0 is the initial particle temperature. To verify
radiant heat �ux dominated heating or cooling, the gas-phase di�usion coe�cient, 𝜆𝑓 , can be set to zero
and non-evaporating particles can be initialized with appropriately high temperatures for cooling or
with an appropriate incident �ux. Neglecting gas-phase conduction, Eqn. 4.71 is written

𝑑𝑇𝑝
𝑑𝑡

=
3𝛼

𝜌𝑝𝑐𝑣,𝑝𝑟𝑝
(𝐺𝑖𝑛/4− 𝜎𝑇 4

𝑝 ) (4.102)

where the �lm temperature is equal to the particle temperature for 𝜆𝑓 = 0. In this case, the analytic
solution of Eqn. 4.102 is given in implicit form

1

2𝑇 3
∞

[︂
𝑡𝑎𝑛−1

(︂
𝑇𝑝
𝑇∞

)︂
− 𝑡𝑎𝑛−1

(︂
𝑇𝑝,0
𝑇∞

)︂]︂
− 1

4𝑇 3
∞

[︂
𝑙𝑛

[︂(︂
𝑇𝑝𝑇∞

𝑇𝑝,0 − 𝑇∞

)︂(︂
𝑇𝑝,0 + 𝑇∞
𝑇𝑝 + 𝑇∞

)︂]︂]︂
=

3𝛼𝜎𝑡

𝜌𝑐𝑣,𝑝𝑟𝑓
.

(4.103)
where 𝑇∞ = (𝐺𝑖𝑛/4𝜎)

1/4 is the temperature seen by the particle.
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4.4.2.2. The wet bulb temperature

The wet bulb state is the state at which droplet heating is zero that occurs when the heat transfer to the
droplet is perfectly balanced by the enthalpy of vaporization and no droplet heating occurs. The droplet
temperature will tend to approach the wet-bulb temperature, either by being heated by excess enthalpy
conducted through the surface or by being cooled when more enthalpy is used in vaporization than is
conducted to the surface. The system of Eqns. 4.71, 4.48, and 4.51 with (𝑚𝑝𝑐𝑣,𝑝/𝑚̇)𝑑𝑇𝑝/𝑑𝑡 = 0 in Eqn.
4.33 determines the wet bulb state. Droplets with initial temperatures set to the wet bulb temperature
should evolve with no change in the droplet temperature. It is veri�ed in the following sections that
particles initially at the wet bulb temperature do not change temperature, and that droplets approach
the wet bulb temperature from other initial droplet temperatures.

4.4.2.3. 𝑑2-Law Evaporation and Condensation

For particles at the wet bulb temperature with no radiative losses there will be no particle heating so that
𝐵𝑇−𝑂 and𝐵𝐹−𝑂 are independent of the radius. Then, if the slip velocity is negligible the particle will
evaporate at a rate proportional to the diameter squared, following the well-known 𝑑2-law for particle
evaporation

𝑑(𝑑2𝑝)

𝑑𝑡
= −𝐾. (4.104)

To test this behavior, droplet heating should be prevented by setting the droplet temperature to the wet
bulb temperature, the radiative heat transfer should be inhibited by setting the emissivity to zero, and
the particle Reynolds number should approach zero in the sense that errors on the order of𝑅𝑒1/2 are
introduced by �nite slip velocity correlations. In this case, plotting the droplet diameter squared versus
time should yield a linear line with a slope given by

𝐾 =
4𝑚̇

𝜋𝜌𝑝𝑑𝑝
. (4.105)

To verify the 𝑑2-law for particle evaporation along with the wet-bulb temperature, three water droplets
are evolved in an atmosphere of humid air. The wet-bulb temperature is computed separately for those
conditions to be 313.9927, and particles are selected at that temperature and 1𝐾 above and below that
temperature. The basic �uid and particle properties employed in the simulation are provided in 4.4-4
and the relationship between the initial particle diameter and temperature are indicated in 4.4-5. There
is no �ow and gravitational acceleration is not present so that there is no slip velocity maintaining the
zero-Reynolds-number limit. For the conditions given,𝐾 = 9.102 · 10−5. Using these values the
evaporation times for the three particles are 89.0, 109.9, 132.9𝑠 for particles labeled 1, 2, and, 3 in 4.4-5,
respectively. The evaporation times predicted in Fuego are 89.1, 109.9, 123.8𝑠 in agreement with the
predictions. The predictions assume that the deviation from the wet bulb temperature are insigni�cant.
The evolution of 𝑑2 for the particles indicated in 4.4-5 is shown in 4.4-3; the trajectories are close to
linear as expected and a linear curve �t for each 𝑑2 pro�le gives an𝑅2 coe�cient of unit indicating a
high degree of correlation. Also shown in 4.4-3 is the early evolution of the particle temperature. The
temperature is shown to converge to the computed wet bulb temperature and to maintain itself at that
temperature.
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Figure 4.4-3.. 𝑑2 (left) and 𝑇𝑝 (right) as a function of time for evap-
orating water droplets

Table 4.4-4.. Input parameters related to the verification of droplet evaporation.
Fluid proprties Particle properties Evaporation properties

𝑇𝑔,𝑖𝑛 400.0𝐾 𝜌𝑝 0.791𝑔/𝑐𝑚3 ℎ𝑣𝑎𝑝,𝑟𝑒𝑓 26.694 · 10−9

𝑢𝑔,𝑖𝑛 5.0𝑔/𝑐𝑚3 𝑢𝑝,𝑖𝑛 5.0𝑐𝑚/𝑠 𝑇𝑣𝑎𝑝,𝑟𝑒𝑓 373.0𝐾
𝑌𝐻2𝑂 0.01 𝑐𝑣,𝑝 4.184 · 107𝑒𝑟𝑔/𝑔/𝐾 𝑃𝑣𝑎𝑝,𝑟𝑒𝑓 1.0𝐴𝑡𝑚
𝑌𝑂2 0.23 𝑌𝐻2𝑂 1.0 𝑇𝑐𝑟𝑖𝑡 647.0𝐾
𝑌𝑁2 0.76 𝑃𝑟𝑓 0.9
𝑁𝑢𝑓 2.0 𝑆𝑐𝑓 0.9

Table 4.4-5.. Particle initial conditions for verification of droplet evaporation.
1 2 3

𝑑𝑝[𝑐𝑚] 0.11 0.1 0.09
𝑇𝑝,𝑖𝑛[𝐾] 314.9927 313.9927 312.9927
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4.4.2.4. 𝑑1.5-law for Fast Moving Droplets

For particle droplets with large𝑅𝑒𝑝, the available Nusselt and Sherwood number correlations indicate
that the evaporation rate should increase with𝑅𝑒1/2𝑝 for𝑅𝑒𝑝 ≫ 10. In these cases, setting the particles
to the wet-bulb temperature with no radiative losses should lead to

𝑑(𝑑1.5𝑝 )

𝑑𝑡
= −𝐾1.5𝑡 (4.106)

with

lim
𝑅𝑒𝑝→∞

𝐾1.5 =
𝑚̇𝑜𝑅𝑒

1/2
𝑝 𝑆𝑐1/3

𝜋𝜌𝑝𝑑
3/2
𝑝

(4.107)

being the constant rate of evaporation. Note that as the particle diameter approaches zero its Reynolds
number must also approach zero so that the evaporation rate should transition to a 𝑑2-law behavior as it
nears the fully evaporated state.

4.4.3. Verification of Lagrangian-Eulerian Coupling

The primary objective of this section is to verify that the source terms seen by the particle are
appropriately re�ected by equivalent (to the degrees appropriate) source terms in the gas-phase
conservation equations. This primarily tests the source terms indicated in Eqns. 4.75 through 4.81.
Because the particles a�ect the gas phase in the same way that the gas phase a�ects the particles, this is
referred to as two-way coupling. The veri�cation problems are formulated as one-dimensional problems
(though the one dimension need not be aligned with the x, y, or z axis) to the maximum extent possible
by employing symmetry boundary conditions on the four sides normal to the �ow direction and
imposing an initial uniform �ow in the remaining direction. The general con�guration employed is a
cylindrical channel as indicated in 4.4-11. This avoids any wall e�ects and provides a means of
identifying the transfer from inlet conditions to outlet conditions. Further, in all of these tests
gravitational acceleration should be set to zero and the e�ects of radiation negated by setting the particle
emissivity to zero.

4.4.3.1. Mass conservation

The net mass �ux through the system should be constant at steady state. Particles subject to evaporation
will be iso-kinetically injected into the �ow near the inlet (just downstream to ensure no e�ect of
evaporation on the inlet boundary condition). These particles will be allowed to completely evaporate
while they �ow with the gas-phase through the domain, and the �ow will be allowed to come to steady
state as can be indicated by the constant exit mass �ux. At steady-state, the inlet and outlet mass �uxes
should be related according to the integral conservation relation∫︁

𝑖𝑛𝑙𝑒𝑡

𝜌𝑖𝑛𝑢𝑔,𝑖𝑛𝑑𝐴+ 𝑀̇𝑝 =

∫︁
𝑜𝑢𝑡𝑙𝑒𝑡

𝜌𝑜𝑢𝑡𝑢𝑔,𝑜𝑢𝑡𝑑𝐴 (4.108)
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where 𝑀̇ is the mass rate of particle injection. The subscripts 𝑖𝑛 and 𝑜𝑢𝑡 indicate the state of the
gas-phase �uid at the inlet to the �rst control volume and the exit from the last control volume. The
integral across the inlet and outlet areas will average out any spatial �uctuations. To facilitate reaching
steady state �ow with a reasonable number of particles, it is recommended that particles with a uniform
size be employed. Since particle evaporation rates typically follow the 𝑑2-law behavior, it is preferable to
have a relatively large number of particles injected over the evaporative lifetime of a given particle. The
error in Eqn. 4.108 is expected to decrease as the frequency of particle injections is increased.

4.4.3.2. Species conservation

To test the species conservation, the same veri�cation test is employed, but the mass of the individual
species is tracked. ∫︁

𝑖𝑛𝑙𝑒𝑡

𝜌𝑖𝑛𝑌𝑖,𝑖𝑛𝑢𝑔,𝑖𝑛𝑑𝐴+
𝜈𝑖𝑊𝑖𝑌𝐹,𝑃
𝑊𝐹

𝑀̇𝑝 =

∫︁
𝑜𝑢𝑡𝑙𝑒𝑡

𝜌𝑜𝑢𝑡𝑌𝑖,𝑜𝑢𝑡𝑢𝑔,𝑜𝑢𝑡𝑑𝐴 (4.109)

The mass source term is written to also account for droplet combustion as relevant. Because the total
mass associated with the system changes, the mass fraction of species that do not evaporate from the
particle or participate in combustion would tend to decrease; that is, the total mass �ux increases while
the mass �ux of non-evaporating species does not increase. This can act as a second species veri�cation
test.

4.4.3.3. Energy conservation

The con�guration for energy conservation is the same as for mass and species conservation:
one-dimensional �ow with regular iso-kinetic particle injection and allowed to reach steady state. to test
the coupled energy conservation, three tests are recommended to cover the range of particle behaviors.
These tests would cover non-evaporating particles, evaporating but not combusting particles, and
combusting particles.

The equation describing energy conservation for non-evaporating particles, assuming that the
temperature of the particles equilibrates with the gas-phase before the outlet plane, is best written∫︁

𝑖𝑛𝑙𝑒𝑡

𝜌𝑖𝑛𝑢𝑔,𝑖𝑛ℎ𝑔(𝑇𝑔,𝑖𝑛)𝑑𝐴+ 𝑀̇𝑝𝑐𝑣,𝑝𝑇𝑝,𝑖𝑛 =

∫︁
𝑜𝑢𝑡𝑙𝑒𝑡

𝜓𝑜𝑢𝑡𝜌𝑜𝑢𝑡𝑢𝑔,𝑜𝑢𝑡ℎ𝑔(𝑇𝑔,𝑖𝑛)𝑑𝐴+ 𝑀̇𝑝𝑐𝑣,𝑝𝑇𝑒𝑞 (4.110)

where ℎ𝑔 represents the gas-phase mixture enthalpy. The equilibrium temperature on the right-hand
side of Eqn. 4.110 is obtained through an iterative solution of that nonlinear equation with the initial
particle and gas temperatures prescribed as 𝑇𝑝,𝑖𝑛 and 𝑇𝑔,𝑖𝑛, respectively. Here the out�ow gas-phase void
fraction, 𝜓𝑜𝑢𝑡, appears in the �rst term on the right hand side; it is implicitly included in the other
equations in this section, but is unit there based on the state assumptions. Satisfaction of the equality in
Eqn. 4.110 provides a test of the �rst term on the right-hand side of Eqn. 4.80. Note that the approach
to the equilibrium temperature follows an exponential decay of the form 𝑒𝑥𝑝−𝑡/𝜏𝑇 so that extending the
domain to double the residence time from 𝑡 to 2𝑡will tend to cause particle and gas temperatures at the
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outlet to be accordingly closer to a factor of 𝑒𝑥𝑝−𝑡/𝜏𝑇 . The thermal relaxation time constant for the
non-evaporating particle is

𝜏𝑇 =

(︂
𝜌𝑝𝑐𝑣,𝑝𝑑

2
𝑝

6

)︂(︂
𝑁𝑢𝑓𝜆𝑓 +𝑁𝑢𝑝𝜆𝑝
𝑁𝑢𝑓𝜆𝑓𝑁𝑢𝑝𝜆𝑝

)︂
. (4.111)

This provides a additional check on the transient behavior of the system and can be used to evaluate
time step control provided by Eqn. 4.90. Regardless of the time step, the enthalpy transfers should be
conservative at equilibrium.

for the evaporating or combusting particles, the veri�cation test is set up so that the evaporation of the
particles is completed within the domain and that the �ow reaches steady state prior to evaluation. In
this sense it is the same arrangement as indicated above for mass and species conservation. These tests
verify the last two terms in Eqn. 4.80. With the particles entirely evaporated, an energy balance gives∫︁

𝑖𝑛𝑙𝑒𝑡

𝜌𝑖𝑛ℎ(𝑇𝑔,𝑖𝑛)𝑢𝑔,𝑖𝑛𝑑𝐴+ 𝑀̇𝑝 [ℎ𝑝(𝑇𝑝,𝑖𝑛 + 𝑞𝑐𝑜𝑚𝑏)] =

∫︁
𝑜𝑢𝑡𝑙𝑒𝑡

𝜌𝑜𝑢𝑡ℎ(𝑇𝑔,𝑜𝑢𝑡)𝑢𝑔,𝑜𝑢𝑡𝑑𝐴 (4.112)

The initial particle enthalpy is de�ned

ℎ𝑝(𝑇𝑝,𝑖𝑛) = ℎ𝐹 (𝑇𝑝,𝑖𝑛)− ℎ𝑣𝑎𝑝,𝑟𝑒𝑓 (4.113)

based on the gas-phase enthalpy of the particle species denoted by the subscript 𝐹 . Again, a nonlinear
solution of this equation is required to determine 𝑇𝑔,𝑜𝑢𝑡 because of the nonlinear dependence of the
enthalpy on temperature. To satisfy this equation, it is necessary that the speci�c heat for the condense
and gaseous phase of the participating species be identical; otherwise particle cooling during
evaporation followed by the warming of products to the equilibrium temperature will result in energy
di�erences that would have to be accounted for by tracking each droplet temperature in time through
the domain. Further, the critical temperature, 𝑇𝑐𝑟𝑖𝑡 in Eqn. 4.26, should be set essentially to an
essentially in�nite value of force ℎ𝑣𝑎𝑝 = ℎ𝑣𝑎𝑝,𝑟𝑒𝑓 .

4.4.3.4. Momentum conservation

As particles with excess momentum transfer their momentum to the gas-phase �ow, the net �ow rate
will increase. The momentum veri�cation test described in the present section di�ers from the other
tests in this section in the sense that a single particle or group of particles is injected at on instant and
there is no continuous injection. The injected particle(s) is(are) allowed to equilibrate with the
gas-phase �ow and the net change in momentum is measured. For this purpose, there must be no net
pressure change across the domain boundaries. Integral momentum conservation then gives the �nal
equilibrium velocity based on∫︁

𝑉

𝜌𝑔𝑢𝑔,𝑖𝑛𝑑𝑉 +
∑︁
𝑝

𝑚𝑝𝑢𝑝,𝑖𝑛 =

∫︁
𝑉

𝜌𝑔𝑢𝑒𝑞𝑑𝑉
∑︁
𝑝

𝑚𝑝𝑢𝑒𝑞. (4.114)

Presuming that the velocity equilibrates across the domain, 𝑢𝑒𝑞 can be brought outside of the integral
and summation for an explicit expression. As for the temperature equilibration test in Eqn. 4.110, there
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is an exponential approach to the equilibrium value that can be used to test transient behavior if spatial
�uctuations in the gas-phase velocity are not too strong. In that case, the equilibrium velocity is
approached with the exponential time constant given by Eqn. 4.7 and 4.8 so that doubling the duration
of the test from 𝑡 to 2𝑡 should bring the particle and gas velocities closer by a factor of 𝑒−𝑡/𝜏𝑇 . Note that
this transient behavior can be used to evaluate the time step criteria provided in Eqn. 4.90 by assessing
the error associated with liberal time steps. Regardless of the time step, though, the momentum transfer
should be conservative at equilibrium.

4.4.3.5. Parallel implementation

All of these tests described in the present section are implemented on both one and four processors with
domains that cross multiple processors to test the passing of particle information across domain
boundaries.

4.4.3.6. Verification Tests for Lagrangian-Eulerian Coupling

In this section, the veri�cation tests suggested in the previous sections are described. Veri�cation tests
for non-reacting iso-kinetic particle �ows (energy conservation only), for isothermal and non-iso-kinetic
particle �ows (momentum conservation only) and for reacting/evaporating particle �ows (mass and
energy conservation) are all included. Together these test all of Eqn. 4.75 through 4.80. Not yet covered
with documented veri�cation problems is the radiation coupling in 4.81.

Energy conservation verification Energy conservation for non-evaporating particles was
veri�ed in Fuego using nominal parameter values for both the particles and the �uid. For the Eulerian
phase, the mass, momentum, and energy equations were evolved, but not the species equations. Under
these conditions, �uid properties are manually speci�ed. The �uid properties listed in table 4.4-6 were
speci�ed as constants. Since the �uid viscosity, speci�c heat, and Prandtl numbers are speci�ed, the
thermal conductivity is computed from these quantities. The constant speci�c heat leads to a linear
dependence of enthalpy on temperature, and without loss of generality the enthalpy is set to the
temperature ℎ𝑔(𝑇𝑔) = 𝑇𝑔, corresponding to an enthalpy reference temperature of 0𝐾 . The simulation
was carried out in the cylindricalchannel.g con�guration with an inlet/outlet area of 3.10583 (with unit
radius, this is nominally 𝜋, but low resolution of the circular cross section leads to a smaller area) and a
length of 20. Particles are inject iso-kinetically at the downstream location 1 unit from the inlet and �ow
19 units to the outlet in 19 time units. With iso-kinetic �ow,𝑁𝑢𝑓 = 2 and with zero particle viscosity
𝑁𝑢𝑝 = 6.58 from Eqn. 4.56. The particle thermal response time from Eqn. 4.111 is 𝜏𝑇 = 3.4 and is
su�ciently small that particle thermally equilibrate while traveling the length of the channel.

There are two ways to carry out the energy conservation veri�cation: using Eqn. 4.110 during a period in
which the �ow has reached steady state and integrating Eqn. 4.110 in time over the entire simulation.
Both of these approaches are employed here. The surface integrals speci�ed in the conservation
equation were carried out within Ensight. To compute the �ux of the particles and associated enthalpy
out of the domain (last terms in 4.110), the particle deposition tracking in Fuego was employed
(keywords: enthalpy_deposition_density, enthalpy_deposition_rate, etc.) and these quantities were
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Table 4.4-6.. Input parameters related to the verification of en-
ergy conservation without evaporation

Fluid proprties Particle properties
𝜌𝑖𝑛 1.0 𝜌𝑝 10.0
𝑢𝑔,𝑖𝑛 1.0 𝑢𝑝,𝑖𝑛 1.0

𝜇𝑔 0.01 𝑀̇𝑝 0.1
𝑐𝑝,𝑔 1.0 𝑐𝑣,𝑝 100.0
𝑇𝑔,𝑖𝑛 300.0 𝑇𝑝,𝑖𝑛 1000.0

ℎ𝑔(𝑇𝑔,𝑖𝑛) 300 𝜆𝑝 0.1
𝑃𝑟 1.0 𝑃𝑟𝑓 1.0
𝑁𝑢𝑓 2.0 𝑁𝑢𝑝 6.58∫︀
𝑑𝐴 3.10583 𝑑𝑝 0.01

also integrated over the outlet surface. The balance of the steady-state �ux is described �rst. for the two
terms on the left hand side of 4.110, the boundary conditions provided the values of 931.749 for the
�uid inlet enthalpy �ux and 10, 000 for the particle inlet enthalpy. The compute equilibrium
temperature is 834.1134𝐾 from 4.110. The outlet gas temperature was in the range of 883.4 to 834.8
with a mean of 834.1 and the exiting particles are between 832 and 835𝐾 . to supplement the stead-state
enthalpy �ux, the integrated enthalpy �ux is computed and plotted in 4.4-4. The net input enthalpy
includes the initial domain enthalpy and the enthalpy of all of the injected particles over time can be
compared with the enthalpy in the domain and that which has left the domain. These two quantities
agree to within 0.01%, which is taken to be suitable (the integration of quantities within Ensight does
not use the same algorithms as employed in Fuego, leading to some error). Also examined in this test is
the particle mass deposition rate at the outlet. Because there is no evaporation in this scenario, the
complete particle mass injected should be deposited (or pass through) the outlet. Using the keywords
mass_deposition_density and mass_deposition_rate and integrating these over the outlet surface, 4.4-5
shows that the mass tracked as crossing the outlet plane matches the input particle mass, 0.1, to within
statistical �uctuations.

Momentum conservation verification To verify the momentum transfer within Fuego,
simulations were carried out with ten particles injected into a cylindrical channel. Momentum
conservation for non-evaporating particles was veri�ed using nominal parameter values for both the
particle and the �uid. For the Eulerian phase, the mass and momentum were evolved, but not the
species and energy equations. Under these conditions, �uid proprties are manually speci�ed. The �uid
and particle properties listed in table 4.4-6 were speci�ed as constants. The simulation was carried out
in the cylindrical_channel.g con�guration with an inlet/outlet area of 3.10583 (with unit radius, this is
nominally 𝜋, but low resolution of the circular cross-section leads to a smaller area), and a length of 20.
The channel had symmetry boundary conditions on the side to prevent drag from a�ecting the
momentum �eld. Particles are injected with an initial velocity of 10 units into a stationary �uid phase at
the initial time. The particles were injected at the time origin with a diameter of 0.12, a density of 10, and
a velocity of 10. The injection occurred as a line of ten particles across the channel (in the narrow
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Figure 4.4-4.. The enthalpy over time in nonreacting channel flow
with hot particles injected. The net input enthalpy includes the
initial domain enthalpy and the enthalpy of all of the injected
particles over time. Squares show the enthalpy associated with
particles in the domain. Circles show the enthalpy of the par-
ticles that have left the domain. Diamonds show the enthalpy
associated with fluid in the domain. Triangles show the excess
enthalpy of fluid that has left the domain (difference between
the outlet enthalpy and inlet that was accounted for in the net
input category). The sum of the categories indicated by symbols
is shown to agree with the net input enthalpy indicating overall
conservation of enthalpy.
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Figure 4.4-5.. The mass deposition rate integrated over the outlet
is shown as a function of time. The corresponding particle inlet
mass flux is 0.1.
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Figure 4.4-6.. The momentum associated with the particle phase,
the fluid phase, and the combined momentum shown. The right-
hand panel shows the initial period in greater detail.

direction). The particle �ow direction was oriented lengthwise down the channel and the point of
injection was the midpoint of the channel, 10 units from the inlet and outlet. Zero pressure boundary
conditions were speci�ed on the inlet and outlet that allowed the �ow to continue in the absence of any
forces (ie. particle drag).

Based on the values in 4.4-6, the initial momentum imparted by the particles is 0.904779 and the
computed total momentum at the end of the Fuego simulation is 0.893059. That is, the �nal combined
momentum is 1.3 % less than the initial momentum. The reason for this discrepancy is unclear. The
�nal particle and �uid momentum are 0.001299 and 0.89176, respectively. The temporal evolution of
the �uid, particle, and total momentum is shown in 4.4-6. There the �uid momentum has been shifted
back one time step (0.01 units) to account for the staggered time-stepping algorithm: the �uid evolves
based on the previous time steps’ particle momentum transfer. The simulation was evolved for 30 time
units, but no changes for the single precision arithmetic was observed after 21 units.

The velocity after the equilibration is computed to be 1.4379 · 10−2 based on Eqn. 4.114. Carrying out
the Fuego simulation results in an equilibration average velocity of 1.4356 · 10−2, which is only 0.1%
below the computed value. The predicted resulting momentum and velocity were computed with
di�ering methods within Ensight: the momentum was computed using the volume integral while the
velocity was computed using the spatial mean frequency. It is not clear what level of numerical error is
attributable to the Ensight algorithms.

The average gas velocity had equilibrated with within 99% of its �nal velocity within 1.06 time units.
The value of 𝜏𝑝 for this system is 8 · 10−2 from 4.8 and the momentum and velocity equilibration times
are somewhat longer than the suggested response time near the particle equilibration time of a few 𝜏𝑝
since the particles were not injected uniformly through the domain. The result is substantial gas-phase
velocity inhomogeneities that take much longer than 𝜏𝑝 to dissipate.

Mass and energy conservation verification Mass and energy conservation for evaporating
and reacting particles was veri�ed in Fuego using �uid-phase parameter values taken from the

199



Table 4.4-7.. Input parameters related to the verification of mo-
mentum conservation

Fluid proprties Particle properties
𝜌𝑖𝑛 1.0 𝜌𝑝 10.0
𝑢𝑔,𝑖𝑛 0.0 𝑢𝑝,𝑖𝑛 10.0
𝜇𝑔 0.01 𝑁𝑝 10∫︀
𝑑𝐴 3.10583 𝑑𝑝 0.12

thermodynamic databases and evaluated with Cantera. For the eulerian phase, the mass, momentum,
energy, and species equations were evolved. The �uid and particle properties listed in table 4.4-7 were
speci�ed.’ Note that the critical temperature for water was set to a large value so that the enthalpy of the
particles could be compute directly from ℎ𝑣𝑎𝑝,𝑟𝑒𝑓 as in Eqn. 4.113; this initial value of the particle
enthalpy is also given in table 4.4-8 using the value of ℎ𝐹 (𝑇𝑝,𝑖𝑛) computed in Fuego,
−1.342 · 1011𝑒𝑟𝑔/𝑔. Since the �uid composition and enthalpy are speci�ed as boundary conditions or
evolved within Fuego, the viscosity speci�c heat, and thermal conductivity are computed from these
quantities. The simulation was carried out in the cylindrical_channel.g con�guration with an
inlet/outlet area of 3.10583 (with unit radius, this is nominally 𝜋, but low resolution of the circular
cross-section leads to a smaller area) and a length of 20. Particles are injected iso-kinetically at a
downstream location 1 unit from the inlet �ow 19 units to the outlet in 19 time units.

Net mass conservation is evaluated using Eqn. 4.108. The �uid-phase mass �ux at the inlet, using the
Cantera computed density of 8.776 · 10−4𝑔/𝑐𝑚3, is 1.3628 · 10−2𝑔/𝑠. The particle mass �ux is
1 · 10−4𝑔/𝑠 and combining the inlet mass �uxes gives an expected outlet mass �ux of 1.3728 · 10−2𝑔/𝑠.
The value computed from the outlet using Ensight is 1.37284 · 10−2𝑔/𝑠; there is a statistical variation
in this quantity with a standard deviation of 3.7 · 10−6𝑔/𝑠. In a similar manner, mass conservation for
individual species is evaluated using Eqn. 4.109. For water, the inlet mass �ux is 2.7257 · 10−5𝑔𝐻2𝑂/𝑠
and the mass injected is 1.0 · 10−4𝑔𝐻2𝑂/𝑠. The value computed at the outlet plane is
1.2657 · 10−4𝑔𝐻2𝑂/𝑠which is approximately 1.5% below the expected value of
1.27257 · 10−4𝑔𝐻2𝑂/𝑠. The outlet water mass �ux has a statistical variation associated with it
characterized by a standard deviation of 5.44 · 10−8𝑔𝐻2𝑂/𝑠. While there is no source term for species
like𝑂2, the inlet and outlet mass �uxes can be computed. The inlet �ux of𝑂2 is 3.13466 · 10−3𝑔𝑂2/𝑠
and that for the outlet is computed to be 3.13470 · 10−3𝑔𝑂2/𝑠, with a standard deviation of
8.5 · 10−7𝑔𝑂2/𝑠. Enthalpy conservation is evaluated using 4.112. The enthalpy �ux into the domain
associated with the �uid phase is 1.0477 · 107𝑒𝑟𝑔/𝑠while that associated with the particle phase is
1.568 · 107𝑒𝑟𝑔/𝑠. The di�erence between these, 5.203 · 106𝑒𝑟𝑔/𝑠, is the expected enthalpy �ux at the
outlet, the right hand side of 4.112. Using Ensight to evaluate the enthalpy �ux at the outlet gives
5.10647 · 106𝑒𝑟𝑔/𝑠; this is a 2% discrepancy, the source of which is uncertain at this point. There is a
statistical variation in the outlet enthalpy �ux characterized by a standard deviation of 6.38 · 103𝑒𝑟𝑔/𝑠,
approximately 0.04% of the total enthalpy change.
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Table 4.4-8.. Input parameters related to the verification of en-
ergy conservation with evaporation.

Fluid proprties Particle properties Evaporation properties
𝑇𝑔,𝑖𝑛 400.0𝐾 𝜌𝑝 1.0𝑔/𝑐𝑚3 ℎ𝑣𝑎𝑝,𝑟𝑒𝑓 26.694 · 10−9

𝑢𝑔,𝑖𝑛 5.0𝑔/𝑐𝑚3 𝑢𝑝,𝑖𝑛 5.0𝑐𝑚/𝑠 𝑇𝑣𝑎𝑝,𝑟𝑒𝑓 373.0𝐾

𝑌𝐻2𝑂 0.002 𝑀̇ 1 · 10−4𝑔/𝑠 𝑃𝑣𝑎𝑝,𝑟𝑒𝑓 1.0𝐴𝑡𝑚
𝑌𝑂2 0.22 𝑐𝑣,𝑝 4.184 · 107𝑒𝑟𝑔/𝑔/𝐾 𝑇𝑐𝑟𝑖𝑡 1 · 109𝐾
𝑌𝑁2 0.768 𝑇𝑝,𝑖𝑛 300.0𝐾 ℎ𝑝(𝑇𝑝,𝑖𝑛) −1.568 · 1011𝑒𝑟𝑔/𝑔
𝑆𝑐 0.9 𝑌𝐻2𝑂 1.0
𝑃𝑟 9.0 𝑃𝑟𝑓 0.9
𝑁𝑢𝑓 2.0 𝑆𝑐𝑓 0.9∫︀
1𝑑𝐴 3.10583𝑐𝑚2 𝑑𝑝 0.005𝑐𝑚

Table 4.4-9.. Verification sections and the equations tested and validated.
Veri�cation subsections Equations Covered
4.4.1.3 4.3, 4.9, 4.10, 4.11, 4.12
4.4.2.1 4.56, 4.71, 4.72
4.4.2.2, 4.4.2.3 4.31, 4.33, 4.24, 4.48, 4.49, 4.51,

4.52
4.4.2.4 4.41 , 4.42, 4.43, 4.45
4.4.3.1, 4.4.3.2, 4.4.3.3 4.75, 4.76, 4.80
4.4.3.4 4.77
Equations employed but not
yet fully covered in veri�cation
tests

4.4, 4.13, 4.27, 4.32, 4.50, 4.64,
4.81, 4.82

4.4.4. Verification summary

To summarize the veri�cation process, the following table 4.4-9 shows the equations that are covered by
veri�cation tests described in the various sections in this document. The equations that are not fully
covered are also indicated. The lack of veri�cation coverage is only signi�cant for the radiative terms.

4.5. SUMMARY

A Lagrangian model for particle transport coupled with an Eulerian solution for the gas phase is
presented in detail. Models are presented for particle momentum, heat, and mass transfer, including the
e�ects of turbulence on particle dispersion. Particular attention is paid to heat and mass transfer as these
aspects are critical to the anticipated applications and they have not been well documented in other
references. The heat and mass transfer models account for �lm temperatures that di�er from particle
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Figure 4.4-7.. Condensed-phase conduction is approximated
based on the difference between the film and mean droplet tem-
peratures and on an estimated heat transfer coefficient that de-
scribes a boundary layer thickness. Over this boundary layer
thickness, the temperature difference 𝑇𝑓−𝑇𝑑 is presumed to act.

Figure 4.4-8.. Terminal velocities for particles as a function of
diameter and particle Reynolds numbers determined from 4.95
and 4.96.
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Figure 4.4-9.. Water droplet evaporation and condensation with
initial temperatures set to the wet bulb temperature. Left plot ex-
hibits the linear 𝑑2-law behavior while the right hand plot shows
the droplet temperatures as constant (no heating).

temperatures in a manner that depends on the relative magnitudes of the internal particle heat transfer,
the heat transfer to the particle surface from the gas phase, the heat transfer associated with radiative
�uxes, and the enthalpies associated with evaporation and combustion around the particle. Both the
evaporation and condensation are permitted. A conservative algorithm for coupling the Lagrangian and
Eulerian �elds is presented covering mass, species, momentum, and energy transfer between two �elds.
Models are also speci�ed for the interactions of the Lagrangian �eld with solid boundaries.

A comprehensive plan to verify the implementation of the physics models is also presented. The
veri�cation plan touches on the majority of terms in the implemented physics models. Veri�cation tests
are provide for particle momentum, trajectories, heat, and mass transfer in various limiting cases for
which analytic solutions can be obtained. Veri�cation tests to evaluate the coupling between the
Lagrangian and Eulerian �elds are also provided. These veri�cation tests are based on the net
conservation of mass, species, energy, and momentum.

4.6. EVALUATING TRANSPORT COEFFICIENTS

The droplet burning rate equations involve the area weighted di�usion coe�cients as indicated in Eqn.
4.19 and subsequent equations. While the optimum method of determining the burning rate would
involve the evaluation of these integrals as indicated in Eqns. 4.46 and 4.47, it is useful to estimate the
e�ects of composition and temperature variations when such accurate evaluations are unfeasible. The
kinetic theory of gases provides a starting point for such estimates, and a simpli�ed overview of the
pertinent results is provided. The single component viscosity is

𝜇𝑖 =
5

16

√
𝜋𝑊𝑘𝑅𝑇

𝜋𝜎2
𝑘Ω

(2,2)* (4.115)
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Figure 4.4-10.. Aluminum particle evaporation with and without
combustion with initial temperatures set to the wet bulb temper-
ature showing the linear 𝑑2-law behavior.
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Figure 4.4-11.. The general configuration for verification of two-
way coupling. The domain should be of sufficient length that
the particles equilibrate with the gas-phase flow.

where 𝜎𝑘 is the Lennard-Jones collision diameter and Ω(2,2)* is the collision integral. The mixture
proprties can be obtained using the Wilkes formula that averages based on mole fraction weighting to
leading order. A square root dependence on the temperature is evident in 4.115, but the collision integral
also includes a temperature dependence and it is found that the viscosities (and the other transport
coe�cients) are proportional to 𝑇 0.7, an empirical fact that is referred to as Sutherland’s law. The
kinetic theory of gases is only marginally successful at predicting the thermal conductivity, but the ratio
of the thermal conductivity to the speci�c heat is closely related to the viscosity and the Prandtl number
can often be approximated as constant. The binary di�usion coe�cient between species 𝑖 and 𝑗 is more
simply written as the product of the di�usion coe�cient and the density since this removes additional
pressure and temperature dependencies; this is

𝜌𝐷𝑖,𝑗 =
3

16

𝑊̄
√︀
2𝜋𝑅𝑇/𝑊𝑖,𝑗

𝜋𝜎2
𝑖,𝑗Ω

(1,1)* . (4.116)

Here the reduced mass and the reduced cross sections are𝑊𝑖,𝑗 = 𝑊𝑖𝑊𝑗/(𝑊𝑖 +𝑊𝑗) and
𝜎2
𝑖,𝑗 = (𝜎𝑖 + 𝜎𝑗)

2.

4.7. LAGRANGIAN PARTICLE CAPABILITIES

4.7.1. Lagrangian Particle Spray: Diameter Cutoffs

The Fuego Lagrangian particle spray capability has a feature which allows an upper (high) and lower
(low) size (diameter) cuto� to be set for particles inserted with a speci�ed distribution (normal, normal
mass, etc.). For distribution types with in�nite tails like the standard normal distribution, the particle
spray can select particle sizes small enough that they do not appear in the application of interest or so
large that the assumption of the dilute spray model, inherent to the Fuego Lagrangian particle
implementation, is violated. In speci�c applications where particles experience energetic chemical
reactions, such as propellant �res, particles below a certain size range react quickly and disappear
without the need to resolve their dynamics. The diameter cuto� feature allows the analyst to use
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standard distribution types while avoiding undesired particle size ranges. When diameter cuto�s are
used, the particle pdf is adjusted accordingly to account for the lack of contribution from particle sizes
outside the cuto� limits. The adjusted particle pdf is:

𝑝𝑑𝑓𝑛𝑒𝑤 (𝑑) = 𝑝𝑑𝑓𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (𝑑)𝐻 (𝑑− 𝑑𝑙𝑜𝑤)𝐻 (𝑑ℎ𝑖𝑔ℎ − 𝑑) /

∫︁ 𝑑ℎ𝑖𝑔ℎ

𝑑𝑙𝑜𝑤

𝑝𝑑𝑓𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (𝑑) (4.117)

where 𝑝𝑑𝑓𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑑) is the original, uncuto� particle size pdf, 𝑝𝑑𝑓𝑛𝑒𝑤(𝑑) is the new particle pdf
including low (𝑑𝑙𝑜𝑤) and high (𝑑ℎ𝑖𝑔ℎ) particle size cuto�s, the integral is take on the original particle pdf
with these limits, and𝐻 is the heaviside step function. This treatment properly normalizes 𝑝𝑑𝑓𝑛𝑒𝑤(𝑑).
Figure 4.7-1 illustrates this for the case of a normal distribution of particle diameters
(< 𝑑 >= 0.5, 𝜎 = 0.1) with and without diameter cuto�s at 𝑑 = 0.3 and 𝑑 = 0.65. Figure 4.7-2
shows a section of a Fuego input deck utilizing the diameter cuto� functionality.

Figure 4.7-1.. Particle size (diameter) distribution for Lagrangian
particle spray with and without diameter cutoffs set at 0.3 and
0.65
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Figure 4.7-2.. Lagrangian particle spray section of a Fuego input
deck showing use of diameter cutoffs

4.7.2. Lagrangian Particle Spray: Angular Spreading Sprays

The angular spreading spray algorithm was modi�ed in version 4.30 to produce an isotropically
spreading particle spray (within the angular limits speci�ed). Previously, the particle trajectories were
preferentially aligned with the spray axis. For isotropic spread, the cosine of the polar angle (measured
with respect to the spray axis) rather than the angle itself is chosen randomly. The polar angle is then
determined from the inverse cosine of this value.

𝜃 = 𝑐𝑜𝑠−1 [𝑟𝑎𝑛𝑑 ()] (4.118)

4.7.3. Alumina Absorption Model

Fuego allows for a user to specify the radiation absorption model for alumina in reacting aluminum
particle simulations like propellant �res. The alumina absorption model, using a FORTRAN
subroutine, can now read from a user input �le containing data for the alumina absorption coe�cient
as a function of particle temperature. The �le contains two columns de�ning this function. The �rst
column is temperature; the second is the absorption coe�cient. This function is linearly interpolated to
�nd the absorption coe�cient at any temperature of interest. Figure 4.7-3 displays two standard
alumina absorption models alongside a user-speci�ed model.
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Figure 4.7-3.. Alumina absorption coefficient for standard mod-
els Brewster and Kanopka along with a user-specified model

4.7.4. Emission Multiplier

For propellant �re simulations which use the evaporating Lagrangian particle type, analysts have
determined that modifying the particle-radiation coupling can be advantageous to reproducing
experimental results. To address this, Fuego has a capability to modify the particle radiation emission
with a constant multiplier. When the emission multiplier is not set, a default value of 1 is assumed, and
emission = absorption when the particle and �uid temperatures are identical. Particle radiant emission
𝐸𝑝 and absorption𝐴𝑝 are:

𝐸𝑝 = 4𝜋𝛼𝑅2
𝑝𝜎𝑆𝐵𝑇

4
𝑝 𝑓𝐸 (4.119)

𝐴𝑝 = 4𝜋𝛼𝑅2
𝑝𝜎𝑆𝐵𝑇

4
𝑓 (4.120)

where 𝛼 is the particle absorptivity,𝑅𝑝 is the particle radius, 𝜎𝑆𝐵 is the Stefan-Boltzmann constant, 𝑇𝑝,𝑓
are the particle and �uid temperatures respectively, and 𝑓𝐸 is the emission multiplier described above.
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4.7.5. Lagrangian Particle Spray: Number Represented Function

Lagrangian particle sprays have historically been required to use parcelling (grouping of several particles
into a single parcel) with either a constant mass represented per parcel or constant number represented
per parcel. In propellant �re applications and other reacting particle environments, a more sophisticated
functionality between the number of particles represented per parcel and particle size can increase the
e�ciency of simulations. For this reason, Fuego includes a capability to allow the analyst to specify this
function (parcel size vs. particle diameter). This function is speci�ed by a vector for each (number
represented per parcel and diameter). For diameters at or below the lowest speci�ed in the vector, the
number represented is constant and equal to the value at the lowest diameter speci�ed. For diameters at
or above the highest speci�ed in the vector, the number represented is constant and equal to the value at
the largest diameter speci�ed. Intermediate values are linearly interpolated. Figure 4.7-4 diagrams the
way parcelling works for each of the di�erent parcelling schemes.

Figure 4.7-4.. For a Lagrangian particle spray, the number of par-
ticles contained within a parcel for three representative particle
diameters using constant number, constant mass, and user de-
fined number of particles per parcel. Circles represent parcels
with the points inside representing the number of particles con-
tained in the parcel.

209



4.7.6. Lagrangian Particle Insertion: User Definable Mechanism

Previous to version 4.30, Lagrangian particles could be inserted into the domain through two
mechanisms: 1) batch introduction of a group of particles at a speci�ed time with the particle
con�guration de�ned by a particle data �le or a �lled shape (i.e. cone, cylinder) with shape parameters
or 2) via a particle spray with either a rectangular or circular nozzle and a speci�ed mass �ux rate. In
cases where users needed a more novel insertion mechanism, Fuego lacked the capability. Fuego now
includes a mechanism for particle insertion from �le data in which users can specify not only particle
positions, velocities, and diameters on insertion, but also particle temperature, number of particles per
parcel, and insertion time. Through this method users have a full range of particle insertion options at
their disposal. The dynamical form for particle introduction is contained within the �le data, and does
not rely on templated forms for static shapes or sprays, though those capabilities are still available. Users
can, for instance, introduce particles from a very speci�c particle size distribution isotropically through
the system with a rate of their choosing or create a particle spray with a conical nozzle with velocity
vectors normal to the nozzle. The only limitation lies in the ability of the user to specify this mechanism
through the particle data �le. Figure 4.7-5 shows some examples of particle insertion types available with
this capability. Figures 4.7-6 and 4.7-7 display a conical particle spray generated with this mechanism
from two di�erent perspectives (conical axis lying in the plane of the �gure and normal to the �gure) at
both early and late times in the simulation. In this case, the particle temperature has been designed to be
a function of the position at which the particle left the spray nozzle. Many other forms are possible.
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Figure 4.7-5.. Examples of particle insertion types that can be
used with particle insert from file mechanism
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Figure 4.7-6.. Example of particle spread from a conical shaped
particle spray nozzle at early times. This nonstandard spray
form was generated through the particle creation from file data
mechanism. Here particle temperatures are set to be a function
of their position with the hottest particles leaving the nozzle near
the circular base of the cone.
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Figure 4.7-7.. Same simulation as Fig 4.7-6 but at late time.
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5. NUMERICS

We surveyed commercial codes that provide turbulent combustion capabilities and discovered that most
of those codes are based on �nite volume methods. Between commercial evidence and our own
experiences, we came to the conclusion that �nite volume methods would provide a robust and stable
means of solving the �re math models. Our selection of �nite volume methods is constrained by the
current implementation of software architecture in the SIERRA Frameworks. The mesh must be
unstructured with �ow variables located at the element vertices. The domain boundary is coincident
with element faces. The discrete equations are assembled on an element-by-element procedure using the
SIERRA workset approach for cache-use e�ciency. The �nite volume approach that we implement is
based on the control-volume �nite-element method.

Control-volume �nite-element methods (CVFEM) are a class of numerical methods for solving the
Navier-Stokes equations of �uid mechanics. Although the methods are applicable to the most general
case of a compressible �ow, they are most commonly applied to incompressible �ows. This text is a
discussion of the control-volume �nite-element methods appropriate for numerical solutions to the
low-Mach number Navier-Stokes equations with heat and mass transfer—the equations used to
describe physical applications such a combustion or chemical vapor deposition.

The CVFEM’s are a combination of desirable features from both the �nite-element method (FEM) and
the �nite-volume method (FVM), though the CVFEM is truly a �nite-volume method. The CVFEM
di�ered from other FVM’s at its inception in that the CVFEM used non-staggered, unstructured
meshes like a FEM. Concepts from the �nite-element method include: 1) the �nite-element data
structure and the associated shape functions or interpolation functions, 2) integral equations assembled
on an element-by-element basis, an e�cient process for cache-based computer architectures, and 3)
unstructured meshes with arbitrary connectivity (this is not particular to FEM’s, but certainly more
common). Reviews for the �nite-element method are given by Zienkiewicz and Taylor [125, 126],
Tezduyar [64], and Gresho [127]. Concepts from the �nite volume method include: 1) physically-based
integral formulation constructed from physically-based interpolation functions, 2) conservation
properties at the control-volume level, and 3) both a convecting and convected velocity �eld to avoid
pressure-velocity decoupling. Some comprehensive reviews for the �nite-volume method are given by
Patankar [128], Shyy [129], and Ferziger and Peric [130]. An extensive literature review of control volume
�nite element methods (CVFEM) is given in Appendix 8.

The standard mesh con�guration for vertex-centered CVFEM’s has all �ow variables collocated at the
grid points, also called nodes. The nodes are the vertices of the �nite-elements, as shown in Figure 5.0-1.
The �nite-volumes, also called control volumes, are centered about the nodes. Each element contains a
set of sub-faces that de�ne control-volume surfaces. The sub-faces consist of the segments or surfaces
that bisect the element faces.
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Figure 5.0-1.. Control Volume is Centered about Finite-Element Node

5.1. FLOW SOLVER

The core �ow solver is based on a segregated, projection method approach. The projection method is
used to compute the pressure �eld which is consistent with a velocity �eld that satis�es continuity. A
pressure-smoothing approach similar to the Rhie/Chow scheme [131] is used to prevent pressure
decoupling on the collocated mesh. An upwind method is used to interpolate convected values to
control volume faces. Detailed descriptions of these methods are discussed in the following sections.

Another prevalent CVFEM method in the literature is the FIELDS method [132, 133]. The continuity
and momentum equations are fully coupled in this approach. We experimented with this approach and
found that the three-dimensional discrete equations were di�cult to solve and open boundary
conditions di�cult to implement.

5.1.1. Projection Method

The role of pressure smoothing, or explicit stabilization, was �rst developed in the context of collocated
�nite volume schemes by [131]. Although this original paper did not explore the formal error introduced
by this explicit stabilization, [134] later displayed the sensitivity of steady results on relaxation
parameters and provided a methodology to circumvent this issue. In general, such early papers (cf. [135])
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as well as other more recent papers, (cf. [136]) introduced the role of stabilization almost by
happenstance as it entered only through the speci�c choice of the convecting velocity formula, i.e., the
integration point velocity that forms the mass �ow rate.

Studies of [137] and [138], each in the context of a �nite element algorithm, have commented on the role
of stabilization that is provided by the approximation of the derived pressure correction system, namely
that L ̸= DG, where L is the given discrete Laplacian operator and D and G are the chosen discrete
divergence and gradient operators, respectively. Numerical algorithms for which the Laplacian operator
does not equal the discrete divergence of gradient operator have been termed “approximate projection”
algorithms (cf. [139] and [140]) in the context of solenoidal �ow; in general for non-solenoidal �ow the
formalism of the projection derivation results in an a�ne projection.

Recent work by Sandia National Laboratories has cast the general approximate projection algorithm
within a family of smoothing and time scaling choices. The analysis of choice that has been followed is
to cast the algorithm in terms of an approximate factorization (cf. [141]), and note the added
stabilization (herein also known as 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑡𝑒𝑟𝑚𝑠), and splitting errors. This analysis
has been extremely useful in understanding the formal accuracy, and even consistency, of a given
numerical scheme.

The analysis of a given computational �uids algorithm in the context of an approximate factorization
begins with the discrete momentum and continuity equations written in matrix form. The matrix A
contains discrete, linearized contributions to the momentum equations from the time derivative,
convection, and di�usion terms, [︂

A G
D 0

]︂ [︂
u𝑛+1

𝑝𝑛+1/2

]︂
=

[︂
f
b

]︂
. (5.1)

The discrete nodal gradient and nodal divergence are G and D respectively (note that the operator D
may include aspects of the algorithm due to a variable density �eld). The function f contains the
additional terms for the momentum equations, e.g., body force terms, lagged stress tensor terms, etc.,
while the function b contains the appropriate terms for a non-solenoidal velocity �eld, i.e., −

∫︀
𝜕𝜌
𝜕𝑡
𝑑𝑉 .

The pressure is appropriately interpreted as the pressure at the 𝑛+ 1
2

step, (cf. [142]). The form of the
matrix operators can be found in the body of literature for control-volume �nite element methods
(cf. [143]). Note that Equation 5.1 is not really complete as the boundary condition values are omitted,
however, they are not essential in describing the bulk of the splitting and stabilization analysis as noted
by [144]. The boundary conditions would simply enter through an additional vector on the right-hand
side and modi�ed entries in the matrix operators.

The approximate factorization of Equation 5.1 takes the general form of[︂
A 0
D B1

]︂ [︂
I B2G
0 I

]︂
=

[︂
A AB2G
D B1 +DB2G

]︂
. (5.2)

The factor B2 determines the projection time scale. The factor B1 de�nes the linear system for
pressure. Ideally, B1 could be selected to cancel splitting errors in the continuity equation. Practically,
the form of B1 is governed by implementation and linear solver e�ciency.
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A completely generalized set of incremental pressure projection methods with potential stabilization
can be written by formally de�ning the operators B1 and B2 above, here shown as part of the sequence
of equations solved,

AΔû = f −G𝑝𝑛−
1
2 −Au𝑛, (5.3)

−L1Δ𝑝
𝑛+ 1

2 = −D
(︁
û+ 𝜏2G𝑝

𝑛− 1
2

)︁
+ L2𝑝

𝑛− 1
2 + 𝑏, (5.4)

u𝑛+1 = û− 𝜏3GΔ𝑝𝑛+
1
2 . (5.5)

Laplacian operators acting on a general scalar 𝜑, which de�ne the approximate nature of the projection
method, are given by,

L1𝜑 = 𝜏1∇𝜑 · 𝑑A, (5.6)
L2𝜑 = 𝜏2∇𝜑 · 𝑑A. (5.7)

(5.8)

For an approximate projection method,

L2 ̸= D𝜏2G, (5.9)

while for an exact projection,
L2 = D𝜏2G. (5.10)

Exact projections can be easily constructed on unstructured collocated meshes (cf. [145]), although
classically this results in a wide Laplacian stencil that admits pressure oscillations yet does not add
discrete errors in the continuity solve. We assume that 𝜏𝑖 factors de�ned above are represented by a
diagonal matrix that corresponds to a particular time scale of choice. The relationship between 𝜏𝑖 and 𝜏𝑖
is normalization by a density and volume,

𝜏𝑖 =
𝜏𝑖
𝜌𝑉

. (5.11)

The choice of these scaling factors de�nes the scheme in terms of both stabilization and projection
scaling. For example, the ideal form for 𝜏3 is the inverse of A. The exact choice of 𝜏3 in a practical sense
a�ects the stability of the scheme. The stabilization terms are represented by operators including both 𝜏1
and 𝜏2 that are required to prevent velocity and pressure decoupling in schemes for which L ̸= DG.

Rearrangement of Equation 5.5, in terms of û, and substitution of this modi�ed equation into
Equation 5.3 and Equation 5.4 provides the full set of splitting and stabilization errors:

[︂
A G
D 0

]︂ [︂
u𝑛+1

𝑝𝑛+1/2

]︂
=

[︂
f
b

]︂
+

[︂
(I−A𝜏3)GΔ𝑝𝑛+

1
2

(L1 −D𝜏3G)Δ𝑝𝑛+
1
2 + (L2 −D𝜏2G)𝑝𝑛−

1
2

]︂
. (5.12)

The error appearing in the momentum equation is due to splitting and generally can be repaired by
non-linear iteration, although ideally single iteration methods are desired (as shown).
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Again it is emphasized that for approximate projection methods, L2 ̸= D𝜏2G, whereas for exact
projection methods, which are usually based on staggering velocity and pressure, L2 = D𝜏2G and
there is no stabilization error (as there is no need to provide stabilization). Frequently, the stabilization
terms within Equation 5.4 are included in a modi�ed provisional velocity (cf. [146]), i.e.,
ũ = û+ 𝜏2G𝑝

𝑛− 1
2 , that can often hide the true role of stabilization.

A similar analysis for 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑓𝑟𝑒𝑒 projection methods (cf. [147]) can be carried out, in which case
the equations solved are given by,

Aû = f −Au𝑛, (5.13)
−L1Δ𝜑

𝑛+1 = −Dû+ L1𝜑
𝑛 + 𝑏, (5.14)

u𝑛+1 = û− 𝜏1G𝜑
𝑛+1, (5.15)

with errors, [︂
A G
D 0

]︂ [︂
u𝑛+1

𝑝𝑛+1/2

]︂
=

[︂
f
b

]︂
+

[︂
−A𝜏3G𝜑

𝑛+1 +G𝑝𝑛+
1
2

(L1 −D𝜏1G)𝜑𝑛+1

]︂
. (5.16)

The error term in the continuity equation is retained to emphasize that this algorithm can be considered
in the context of an approximate projection method. Assuming that the Laplacian and gradient
operators commute, it is necessary to compute 𝑝𝑛+1/2 = A𝜏3𝜑

𝑛+1 to obtain the second-order pressure
�eld, while the relationship 𝑝𝑛+ 1

2 = 𝜑𝑛+1 will result in a �rst-order pressure �eld with splitting error
(I−A𝜏3)G𝑝

𝑛+ 1
2 ( [148]).

Although the above set of algorithms have been written in terms of a two step scheme, i.e., predict û
and correct û by the appropriately scaled scalar gradient, non-linear iterations can also be taken. In this
case, the 𝜑𝑛+1 and u𝑛+1 state are replaced with the 𝑘 + 1 state, whereas the 𝑛+ 1

2
pressure state is

replaced by the 𝑘 + 1
2

state. For the residual form, the 𝑛𝑡ℎ state is replaced with the current iterate, 𝑘𝑡ℎ

state. At convergence within the time step, 𝜑𝑛+1 = 𝜑𝑘+1, u𝑛+1 = u𝑘+1, and 𝑝𝑛+ 1
2 = 𝑝𝑘+

1
2 .

5.1.1.1. CVFEM operators

SIERRA/Fuego uses the �nite volume technique known as the control volume �nite element method
of [149]. Control volumes (the mesh dual) are constructed about the nodes, as shown in Fig. 5.0-1. Each
element contains a set of subfaces that de�ne control-volume surfaces. The subfaces consist of line
segments (2-D) or surfaces (3-D). The 2-D segments are connected between the element centroid and
the edge centroids. The 3-D surfaces are connected between the element centroid, the element face
centroids, and the edge centroids. Integration points also exist within the subcontrol volume centroids.
Such integration points are used for volume integrals such as source terms, the mass matrix, and, if
chosen, gradients.

De�ning 𝜑𝐾 to be the value of 𝜑 at node𝐾 , then the variation of 𝜑within an element that contains the
point location x is given by

𝜑(x) =
∑︁
𝐾∈𝒩

𝑁𝐾(x)𝜑𝐾 , (5.17)

where𝑁𝐾(x) is the shape function associated with node𝐾 at position x, and 𝒩 is the set of all nodes
that de�nes the element. For the CVFEM, either trilinear (3-D) or bilinear (2-D) shape functions are
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used. Currently, Fuego supports heterogeneous element topologies consisting of hex, tet, pyramid, and
wedges.

The discrete nodal gradient operator for direction 𝑖 can be written as a surface integral on control
volume 𝐿,

G𝜑 = (𝐺𝜑)𝐿𝑖 =

∫︁
Γ𝐿

𝜑(x)𝑑𝑛𝑖 ≈
∑︁
𝛼∈ℬ𝐿

(︃∑︁
𝐾∈𝒩

𝑁𝐾(x𝛼)𝜑𝐾

)︃
𝑛𝑖(x𝛼)Δ𝐴𝛼, (5.18)

where ℬ𝐿 is the set of surface integration points for control volume𝐿. Similarly, the discrete divergence
operator at node 𝐿 acting on vector 𝑢𝑖 is

Du = (𝐷𝑢𝑖)𝐿 =

∫︁
Γ𝐿

𝜌(x)𝑢𝑖(x)𝑑𝑛𝑖 ≈
∑︁
𝛼∈ℬ𝐿

𝜌(x𝛼)

(︃∑︁
𝐾∈𝒩

𝑁𝐾(x𝛼)𝑢𝐾𝑖

)︃
𝑛𝑖(x𝛼)Δ𝐴𝛼, (5.19)

and the Laplacian operator that includes spatially varying timescale, 𝜏 , is

L𝜏𝜑 = (𝐿𝜏𝜑)𝐿 =

∫︁
Γ𝐿

𝜏(x)
𝜕𝜑

𝜕𝑥𝑗
𝑑𝑛𝑗 ≈

∑︁
𝛼∈ℬ𝐿

𝜏(x𝛼)

(︃∑︁
𝐾∈𝒩

𝜕𝑁𝐾(x𝛼)

𝜕𝑥𝑗
𝜑𝐾

)︃
𝑛𝑗(x𝛼)Δ𝐴𝛼. (5.20)

Note that an alternative to the gradient operator given in Equation 5.18, which is provided via the
CVFEM is

G𝜑 = (𝐺𝜑)𝐿𝑖 =

∫︁
Γ𝐿

𝜕𝜑

𝜕𝑥𝑖
𝑑𝑉 ≈

∑︁
𝛼′∈ℬ𝐿

(︃∑︁
𝐾∈𝒩

𝜕𝑁𝐾(x𝛼′)

𝜕𝑥𝑖
𝜑𝐾

)︃
𝑑𝑉𝛼′ , (5.21)

where ℬ𝐿 is now the set of all subcontrol volume integration points for control volume𝐿 (for clarity, 𝛼′

denotes the subcontrol volume integration point location).

The general term D𝜏G𝜑 deserves a special note in the case of variable density �ows. Speci�cally, the
interpolation is currently provided by the following equation:

D𝜏𝑖G𝜑 =
∑︁
𝛼∈ℬ𝐿

𝜌(x𝛼)
𝜏𝑖(x𝛼)

𝜌(x𝛼)

(︃∑︁
𝐾∈𝒩

𝑁𝐾(x𝛼)
𝐺𝐾𝑖

𝑉𝐾

)︃
𝑛𝑖(x𝛼)Δ𝐴𝛼, (5.22)

=
∑︁
𝛼∈ℬ𝐿

𝜏𝑖(x𝛼)

(︃∑︁
𝐾∈𝒩

𝑁𝐾(x𝛼)
𝐺𝐾𝑖

𝑉𝐾

)︃
𝑛𝑖(x𝛼)Δ𝐴𝛼. (5.23)

5.2. SMOOTHING ALGORITHMS DEFINED

Now that the smoothing and splitting errors have been formally de�ned, it is useful to consider three
projection algorithms that have been implemented and veri�ed within SIERRA/Fuego in the context
of the classic two equation 𝑘-𝜖model, with steady method of manufactured solutions (MMS)
(cf. [150]).
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5.2.0.1. Fourth-order smoothing with characteristic or time step scaling

In this algorithm, the projection time scales are de�ned by either

𝜏 = 𝜏1 = 𝜏2 = 𝜏3 = 𝜏𝑐ℎ𝑎𝑟, (5.24)

or

𝜏 = 𝜏1 = 𝜏2 = 𝜏3 = IΔ𝑡. (5.25)

Here, characteristic scaling, 𝜏𝑐ℎ𝑎𝑟, is a diagonal matrix that represents a time scale based on convection
and di�usion contributions, while for time step scaling, the time scale is based on the local time step.
The characteristic scaling very closely follows the standard �nite element method stabilization
parameter.

The smoothing and splitting errors are now given by[︂
A G
D 0

]︂ [︂
u𝑛+1

𝑝𝑛+1/2

]︂
=

[︂
f
b

]︂
+

[︂
(I−A𝜏)G(𝑝𝑛+

1
2 − 𝑝𝑛−

1
2 )

(L𝜏 −D𝜏G)𝑝𝑛+
1
2

]︂
. (5.26)

Of particular interest to this research is the role of the stabilization term, (L𝜏 −D𝜏G)𝑝𝑛+
1
2 , on formal

time accuracy when 𝜏 = IΔ𝑡 (a scheme that has been shown to display more appealing stability
characteristics). Clearly, a scheme that uses explicit pressure stabilization with time step scaling is
�rst-order accurate. Expanding this stabilization term shows the fourth-order pressure derivative scaled
by a length scale cubed. Therefore, by re�ning the time step 𝑎𝑛𝑑mesh, one might be able to show a
second-order accuracy for su�ciently resolved meshes.

In practice, the stabilization terms are carried within the mass �ow rate that forms part of the right-hand
side of the Pressure Poisson Equation solve and the convection term for the transport of any scalar �eld.
The mass �ow rate is de�ned as

𝑚̇𝑘 =

(︃
𝜌û+

𝜏G𝑝𝑛−
1
2

𝑉
− 𝜏∇ℎ𝑝𝑛+

1
2

)︃
𝑑A, (5.27)

where the introduction of the over bar is noted to represent interpolation of a nodal �eld to an
integration point. Note that in the bulk of the collocated unstructured �nite volume literature, the
form of the mass �ow rate de�nes the stabilization (the di�erence between the nodal gradient operator
G and the interior element operator ∇ℎ). Above we note the independent interpolation of the density
and velocity rather than 𝜌û, as is done in Stanford’s ASC Alliance code CDP. It does seem that the full
interpolation of 𝜌û may be more consistent, although the e�ect of this algorithmic detail has not been
explored.

5.2.0.2. Stabilized smoothing

The stabilized projection algorithm is based on the work of [138], that was derived from the monolithic
scheme of [137]. In this algorithm, the projection time scales are de�ned as

𝜏1 = Δ𝑡I+ 𝜏𝑐ℎ𝑎𝑟. (5.28)
𝜏2 = 𝜏𝑐ℎ𝑎𝑟. (5.29)
𝜏3 = 𝜏𝑐ℎ𝑎𝑟. (5.30)
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With the above de�nitions, the smoothing and splitting errors are now de�ned as[︂
A G
D 0

]︂ [︂
u𝑛+1

𝑝𝑛+
1
2

]︂
=

[︂
f
b

]︂
+

[︂
(I−A𝜏𝑐ℎ𝑎𝑟)G(𝑝𝑛+

1
2 − 𝑝𝑛−

1
2 )

(L𝜏char
−D𝜏𝑐ℎ𝑎𝑟G)𝑝𝑛+

1
2 +Δ𝑡L(𝑝𝑛+

1
2 − 𝑝𝑛−

1
2 )

]︂
. (5.31)

The mass �ow rate now includes an additional stabilization factor and is now de�ned as

𝑚̇𝑘 =

(︃
𝜌û+

𝜏G𝑝𝑛−
1
2

𝑉
− 𝜏∇ℎ𝑝𝑛+

1
2 −Δ𝑡LΔ𝑝𝑛+

1
2

)︃
𝑑A. (5.32)

Note that at full convergence, the stabilized scheme reduces to the fourth-order characteristic scaling
algorithm.

5.2.0.3. Second-order smoothing with characteristic or time step scaling

In fact, the scaled nodal gradient need not be included in the mass �ow rate equation, e.g.,

𝑚̇𝑘 =
(︁
𝜌û− 𝜏∇ℎ𝑝𝑛+

1
2

)︁
𝑑A. (5.33)

This is equivalent to neglecting the 𝜏2G𝑝𝑛−
1
2 term in Equation 5.4, or by de�ning ũ = û.

The smoothing for this algorithm is provided by the local Laplacian operator. The smoothing and
splitting errors for this method are now given by[︂

A G
D 0

]︂ [︂
u𝑛+1

𝑝𝑛+1/2

]︂
=

[︂
f
b

]︂
+

[︂
(I−A𝜏)G(𝑝𝑛+

1
2 − 𝑝𝑛−

1
2 )

(L𝜏 −D𝜏G)Δ𝑝𝑛+
1
2 + L𝜏𝑝

𝑛− 1
2

]︂
. (5.34)

5.2.0.4. Zeroth-order smoothing with time step or characteristic scaling

Certainly, the pressure smoothing can be removed, i.e., 𝜏2 = 0, that leads to the following set of
errors,

[︂
A G
D 0

]︂ [︂
u𝑛+1

𝑝𝑛+
1
2

]︂
=

[︂
f
b

]︂
+

[︂
(I−A𝜏)G(𝑝𝑛+

1
2 − 𝑝𝑛−

1
2 )

(L𝜏 −D𝜏G)(𝑝𝑛+
1
2 − 𝑝𝑛−

1
2 )

]︂
. (5.35)

where 𝜏 is either the characteristic scale, 𝜏𝑐ℎ𝑎𝑟, or the simulation time step, IΔ𝑡 (with 𝜏1 = 𝜏3).
Although the converged error is zero, this lack of smoothing can lead to a decoupled pressure �eld in
certain �ows.

Here, the mass �ow rate reduces to a simple interpolation of nodal velocities within the element

𝑚̇𝑘 =
(︁
𝜌û− 𝜏∇ℎΔ𝑝𝑛+

1
2

)︁
𝑑A. (5.36)

The unsmoothed algorithm is very similar to the staggered formulation of SIMPLE, (cf. [128]), with
𝜏 = 𝐴−1

𝑝 (the inverse of the diagonal matrix from operator A). However, by design, the staggered mesh
arrangement holds the property that (L𝜏 −D𝜏G) = 0. In this method, no stabilization is added as
none is required.

221



5.2.0.5. Time integration scheme

At present, three time integration schemes are supported in the code base that include: 1) �rst-order
backward Euler, 2) second-order BDF2 and, 3), the Crank-Nicholson method described in [151].

The general two- and three-state scheme time derivatives are simply written as:

∫︁
𝜕𝜌𝜑

𝜕𝑡
𝑑𝑉 =

∫︁
(𝛾1𝜌

𝑛+1𝜑𝑛+1 + 𝛾2𝜌
𝑛𝜑𝑛 + 𝛾3𝜌

𝑛−1𝜑𝑛−1)

Δ𝑡
𝑑𝑉 (5.37)

where 𝛾𝑖 represent the appropriate factors for either Backward Euler or a three-point BDF2 scheme.
The above time derivative is either nodally lumped or evaluated at the subcontrol volume quadrature
points. For a two-state backward Euler scheme, 𝛾1 is unity while 𝛾2 is negative unity. For a given variable
time step, the BDF2 factors are,

𝜏 = Δ𝑡𝑁/Δ𝑡𝑁−1, (5.38)

𝛾1 =
(1 + 2𝜏)

(1 + 𝜏)
, (5.39)

𝛾2 = (1 + 𝜏), (5.40)

𝛾3 =
𝜏 2

(1 + 𝜏)
. (5.41)

For a �xed time step, the 𝛾-factors reduce to the canocical (3
2
,−2, 1

2
) set.

In the Crank-Nicholson implementation, the generalized method is written as

𝜕𝜑

𝜕𝑡

𝑛+1

= 𝜂
𝜑𝑛+1 − 𝜑𝑛

Δ𝑡
+ (1− 𝜂)

𝜕𝜑

𝜕𝑡

𝑛

, (5.42)

where 𝜂 is a blending coe�cient between 1 and 2. Values of 𝜂 of unity result in �rst-order backward
Euler, while values of 2 result in second order Crank-Nicholson, i.e.,

𝜕𝜑

𝜕𝑡

𝑛+1

= 2
(𝜑𝑛+1 − 𝜑𝑛)

Δ𝑡
− 𝜕𝜑

𝜕𝑡

𝑛

. (5.43)

A linearization is given by
𝜕𝜑

𝜕𝑡

𝑛+1

= 2
(𝜑𝑘 − 𝜑𝑛)

Δ𝑡
− 𝜕𝜑

𝜕𝑡

𝑛

, (5.44)

where the old time derivative is computed based on the old solution of the partial di�erential equation
of interest. The above algorithm is especially useful in that it avoids the need to evaluate complex
right-hand side source terms at the n+1 and n state, e.g., simulations that include the need to compute
turbulence production, reaction rate terms, etc.
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5.2.0.6. Variable density

In the case of variable density, the same set of options exists in the code. Speci�cally, the time derivative
is written as (for backward Euler or BDF2),

∫︁
𝜕𝜌

𝜕𝑡
𝑑𝑉 =

∫︁
(𝛾1𝜌

𝑛+1 + 𝛾2𝜌
𝑛 + 𝛾3𝜌

𝑛−1)

Δ𝑡
𝑑𝑉 (5.45)

For the Crank/Nicolson scheme, the full time term is

𝜕𝜌𝜑

𝜕𝑡

𝑛+1

= 𝜂
𝜌𝑛+1𝜑𝑛+1 − 𝜌𝑛𝜑𝑛

Δ𝑡
+ (1− 𝜂)

𝜕𝜌𝜑

𝜕𝑡

𝑛

, (5.46)

where it is noted that the full time derivative at 𝑛𝑡ℎ state is saved. The linearization is given by

𝜕𝜌𝜑

𝜕𝑡

𝑛+1

= 𝜂
𝜌𝑘𝜑𝑘 − 𝜌𝑛𝜑𝑛

Δ𝑡
+ (1− 𝜂)

𝜕𝜌𝜑

𝜕𝑡

𝑛

. (5.47)

In practice, the usage of the above formula for a second-order density derivative has proven unstable. As
such, 𝜂 is set to unity.

5.3. DISCRETE SYSTEM OF EQUATIONS

The full approximate pressure projection scheme for non-uniform density is now written as

𝜂𝑀𝑘
𝐿Δ𝑢̂𝑖 + 𝐶𝐿(𝑚̇

𝑘)Δ𝑢̂𝑖 − 𝑇𝐿𝑗Δ𝑢̂𝑖 = −𝑟𝑖, (5.48)
−𝐿𝜏1𝐿Δ𝑝𝑛+

1
2 = −𝐷𝐿(𝑢̂𝑖)− 𝐿𝜏1𝑝

𝑘 + (𝐿2 −𝐷𝜏2𝐺)𝐿𝑝
𝑘 + 𝑏, (5.49)

𝑢𝑛+1
𝐿𝑖 = 𝑢̂𝐿𝑖 − 𝜏𝐺𝐿𝑖Δ𝑝

𝑛+ 1
2 . (5.50)

The variable −𝑟𝑖 is the residual that includes body source terms, pressure gradient, the non-symmetric
part of the viscous stress term, 𝑇 𝑛𝑠𝐿𝑖 𝑢𝑘𝑗 , parts of the time term and the left-hand side set of operators
acting on the 𝑢𝑘𝑖 state,

− 𝑟𝑖 = −𝜂𝑀𝑘
𝐿𝑢

𝑘
𝑖 − 𝐶𝐿(𝑚̇

𝑘)𝑢𝑘𝑖 + 𝑇𝐿𝑗Δ𝑢
𝑘
𝑖 + 𝑇 𝑛𝑠𝐿𝑖 𝑢

𝑘
𝑗 + 𝑆𝐿𝑖 − (1− 𝜂)𝑀𝐿( ˙𝜌𝑢𝑛𝑖 )−𝐺𝐿𝑖𝑝

𝑛− 1
2 . (5.51)

The mass matrix,𝑀𝑘
𝐿Δ𝑢̂𝑖, is de�ned by

𝑀𝑘
𝐿Δ𝑢̂𝑖 =

∑︁
𝛼′∈ℬ𝐿

(︃∑︁
𝐾∈𝒩

𝑁𝐾(x𝛼′)
𝜌𝑘𝐾
Δ𝑡

)︃(︃∑︁
𝐾∈𝒩

𝑁𝐾(x𝛼′)Δ𝑢̂𝐾𝑖

)︃
𝑑𝑉𝛼′ . (5.52)

The shape function above,𝑁𝐾(x𝛼′), is frequently evaluated at x𝒩 , the coordinates of the vertex
associated with the transport equation, i.e., the case where a lumped mass matrix is used.
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For simplicity, the central di�erence operator is provided in𝐶𝐿𝑖Δ𝑢̂𝑖 as

𝐶𝐿Δ𝑢̂𝑖 =
∑︁
𝛼∈ℬ𝐿

𝑚𝑘
𝛼

(︃∑︁
𝐾∈𝒩

𝑁𝐾(x𝛼)Δ𝑢̂𝐾𝑖

)︃
. (5.53)

In the preceding equation, the mass �ow rate has been linearized within the iteration step and may or
may not include the explicit stabilization terms. Moreover, the shape function operator,𝑁𝐾(x𝛼), may
be evaluated at the edge midpoints to retain the skew symmetric aspect of the operator𝐶𝐿. By default,
this term is evaluated at the subcontrol surface integration points, which retains the CVFEM canonical
27-point stencil.

The symmetric part of the stress tensor is given by

𝑇𝐿𝑗𝑢̂𝑖 =
∑︁
𝛼∈ℬ𝐿

(︃∑︁
𝐾∈𝒩

𝑁𝐾(x𝛼)𝜇𝐾

)︃(︃∑︁
𝐾∈𝒩

𝑑𝑁𝐾(x𝛼)

𝑑𝑥𝑗
𝑢̂𝐾𝑖

)︃
𝑛𝑗(x𝛼)Δ𝐴𝛼, (5.54)

while the non-symmetric stress tensor is given by

𝑇 𝑛𝑠𝐿𝑖 𝑢
𝑘
𝑗 =

∑︁
𝛼∈ℬ𝐿

(︃∑︁
𝐾∈𝒩

𝑁𝐾(x𝛼)𝜇𝐾

)︃(︃∑︁
𝐾∈𝒩

𝑑𝑁𝐾(x𝛼)

𝑑𝑥𝑖
𝑢𝑘𝐾𝑗

)︃
𝑛𝑗(x𝛼)Δ𝐴𝛼 (5.55)

− 2

3

∑︁
𝛼∈ℬ𝐿

(︃∑︁
𝐾∈𝒩

𝑁𝐾(x𝛼)𝜇𝐾

)︃(︃∑︁
𝐾∈𝒩

𝑑𝑁𝐾(x𝛼)

𝑑𝑥𝑝
𝑢𝑘𝐾𝑝

)︃
𝛿𝑖𝑝𝑛𝑝(x𝛼)Δ𝐴𝛼.

Note that the nodal pressure gradient at node 𝐿 for control volume 𝐿 for direction 𝑖 is de�ned by
Equation 5.18. The operator, 𝑆𝐿𝑖, contains the gravitational term as well as the [potentially] subtracted
out hydrostatic term,

𝑆𝐿𝑖 =
∑︁
𝛼′∈ℬ𝐿

(︃∑︁
𝐾∈𝒩

𝑁𝐾(x𝛼′)(𝜌𝑘𝐾 − 𝜌𝑟𝑒𝑓 )

)︃
𝑔𝑖𝑑𝑉𝛼′ . (5.56)

The old time term contribution,𝑀𝐿( ˙𝜌𝑢𝑖
𝑛), is de�ned by

𝑀𝐿( ˙𝜌𝑢𝑖
𝑛) =

∑︁
𝛼′∈ℬ𝐿

(︃∑︁
𝐾∈𝒩

𝑁𝐾(x𝛼′) ˙𝜌𝐾𝑢𝐾𝑖𝑛

)︃
𝑑𝑉𝛼′ . (5.57)

Again, 𝛼′ ∈ ℬ𝐿 is the set of all subcontrol volume integration points for control volume𝐿, 𝛼′ ∈ ℬ𝐿 is
the set of all subcontrol surface integration points for control volume 𝐿, and𝐾 ∈ 𝒩 is the set of all
nodes within the element.

5.3.0.1. Predictor

In general, there are a number of predictors that are supported. The easiest predictor is a simple
predictor in which the old value is mapped into the current iterate. Predictors that incorporate old time
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derivatives include the forward Euler and Adams-Bashforth methods, e.g.,

𝜑𝑘+1 = 𝜑𝑛, (5.58)
= 𝜑𝑛 +Δ𝑡𝜑̇𝑛, (5.59)

= 𝜑𝑛 +
Δ𝑡𝑛

2
((2 +

Δ𝑡𝑛

Δ𝑡𝑛−1
)𝜑̇𝑛 − Δ𝑡𝑛

Δ𝑡𝑛−1
𝜑̇𝑛−1). (5.60)

5.3.1. Upwind Interpolation for Convection

We currently support several upwind interpolations for convection. The upwind methods are blended
with a centered scheme that becomes dominant below a speci�ed cell-Peclet number.

5.3.1.1. First Order Upwind

The �rst scheme is a simple �rst-order scheme that considers the two nodes adjacent to a control volume
face and extrapolates from the node in the upwind direction.

𝑚̇𝜑𝑢𝑝𝑤 =
1

2
(𝑚̇+ |𝑚̇|)𝜑𝐿 +

1

2
(𝑚̇− |𝑚̇|)𝜑𝑅 (5.61)

The convention is that �ow leaves the control volume to the left (L) and enters the control volume to
the right (R). If the mass �ow rate at the face is negative in value, then the node to the right will be
selected.

5.3.1.2. Blending Function

The user speci�ed upwind factor controls the blending between the pure upwind operator and a
blended user-chosen upwind/central operator.

𝑚̇𝜑 = 𝜂𝑚̇𝜑𝑢𝑝𝑤 + (1− 𝜂)
(︀
𝜒𝑚̇𝜑𝑢𝑝𝑤𝑠𝑝 + (1− 𝜒) 𝑚̇𝜑𝑐𝑒𝑛

)︀
, (5.62)

where 𝜂 is the user speci�ed �rst order upwind factor and 𝜑𝑢𝑝𝑤𝑠𝑝 represents the user speci�ed upwind
operator, e.g., MUSCL, modi�ed skew upwind, and even pure upwind.

The centered average of 𝜑 is computed from the shape functions, so it is based on all nodes in an
element. The shape functions are evaluated at the sub-face centroid. The cell-Peclet number, PeΔ𝑥, is
used in the blending function (see Figure 5.3-1)

𝜒 =
(𝜁PeΔx)

2

5 + (𝜁PeΔx)
2 . (5.63)

The hybrid upwind factor, 𝜁 , allows one to modify the functional blending function; values of unity
result in the normal blending function response in Figure 5.3-1; values of zero yield a pure central
operator, i.e., blending function = 0.0; values>> 1 result in a blending function value of unity, i.e.,
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pure upwind. The constant𝐴 is implemented as above with a value of 5. This value can not be changed
via the input �le.

The cell-Peclet number is computed for each sub-face in the element from the two adjacent left (L) and
right (R) nodes.

PeΔ𝑥 =
1
2
(𝑢𝑅,𝑖 + 𝑢𝐿,𝑖) (𝑥𝑅,𝑖 − 𝑥𝐿,𝑖)

𝜈
(5.64)

A dot-product is implied by repeated indices.
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Figure 5.3-1.. Cell-Peclet number blending function.

5.3.1.3. Modified Linear Profile Skew Upwind

Modi�ed linear pro�le skew upwinding is a simpli�cation to the skew upwinding approach in the
FIELDS scheme [132, 133]. We omit the physical advection correction terms. Integration point values at
control volume subfaces are interpolated from upwind intersection points on the element face. In the
original skew upwind scheme, the intersection point could either be interior subface or element faces.
The interpolation coe�cients were computed by inverting a matrix relation between integration point
values and nodal values. The linear pro�le skew upwinding does not use interior subface intersections –
only element face intersections. The modi�ed scheme throws out nodes on an element face that are
downwind of an interior subface as shown in Figure 5.3-2.

5.3.1.4. MUSCL

The MUSCL approach (see Chap. 21 of Hirsch [152]) for higher order upwinding is adapted to
unstructured meshes. The upwind interpolation is constructed along each edge of an element. The
interpolation makes use of the two end nodes of the edge and the centered gradient constructed at the
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b)

x

x

a)

Figure 5.3-2.. Linear profile skew upwind scheme: a) all nodes
on the intersected element face are upwind of the subface, b)
omit nodes on intersected element face that are downwind of
the subface.

two end nodes. The MUSCL approach constructs an interpolation in one dimension from four (or
more) uniformly distributed nodal values. The two edge nodes are 𝜑𝑖 and 𝜑𝑖+1. The two other nodal
values, 𝜑𝑖−1 and 𝜑𝑖+2, are interpolated from the unstructured mesh using the nodal gradient
information.

The MUSCL scheme constructs left and right interpolants at the subface of the control volume.
Without the limiter functions, the interpolation is

𝜑𝐿𝑖+1/2 = 𝜑𝑖 +
1

4
[(1− 𝜅) (𝜑𝑖 − 𝜑𝑖−1) + (1 + 𝜅) (𝜑𝑖+1 − 𝜑𝑖)] , (5.65)

𝜑𝑅𝑖+1/2 = 𝜑𝑖+1 −
1

4
[(1 + 𝜅) (𝜑𝑖+1 − 𝜑𝑖) + (1− 𝜅) (𝜑𝑖+2 − 𝜑𝑖+1)] , (5.66)

where the (𝑖+ 1/2) location is between node 𝑖 and node 𝑖+ 1. On a uniform mesh, 𝜅 = 1/3 gives a
third-order scheme. A second-order upwind scheme is recovered with 𝜅 = −1 and a centered scheme is
recovered with 𝜅 = 1.

Limiter functions are introduced to prevent numerical oscillations from occurring.

𝜑𝐿𝑖+1/2 = 𝜑𝑖 +
1

4

[︂
(1− 𝜅) Φ

(︂
1

𝑟𝐿

)︂
(𝜑𝑖 − 𝜑𝑖−1) + (1 + 𝜅) Φ (𝑟𝐿) (𝜑𝑖+1 − 𝜑𝑖)

]︂
, (5.67)

𝜑𝑅𝑖+1/2 = 𝜑𝑖+1 −
1

4

[︂
(1 + 𝜅) Φ (𝑟𝑅) (𝜑𝑖+1 − 𝜑𝑖) + (1− 𝜅) Φ

(︂
1

𝑟𝑅

)︂
(𝜑𝑖+2 − 𝜑𝑖+1)

]︂
, (5.68)
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where

𝑟𝐿 =
𝜑𝑖 − 𝜑𝑖−1

𝜑𝑖+1 − 𝜑𝑖
, (5.69)

𝑟𝑅 =
𝜑𝑖+2 − 𝜑𝑖+1

𝜑𝑖+1 − 𝜑𝑖
. (5.70)

The limiters are selected to be symmetric such that

Φ (𝑟) = 𝑟Φ

(︂
1

𝑟

)︂
. (5.71)

The limited interpolation functions are

𝜑𝐿𝑖+1/2 = 𝜑𝑖 +
1

2
Φ
(︀
𝑟𝐿
)︀
(𝜑𝑖+1 − 𝜑𝑖) , (5.72)

𝜑𝑅𝑖+1/2 = 𝜑𝑖+1 −
1

2
Φ
(︀
𝑟𝑅
)︀
(𝜑𝑖+1 − 𝜑𝑖) . (5.73)

The interpolation for the points o� the element edge is

(𝜑𝑖 − 𝜑𝑖−1) = 2∇𝜑𝑖Δ𝑥𝑖+1/2 − (𝜑𝑖+1 − 𝜑𝑖) , (5.74)
(𝜑𝑖+2 − 𝜑𝑖+1) = 2∇𝜑𝑖+1Δ𝑥𝑖+1/2 − (𝜑𝑖+1 − 𝜑𝑖) , (5.75)

where Δ𝑥𝑖+1/2 = 𝑥𝑖+1 − 𝑥𝑖 is the distance vector along the element edge. Symmetric limiter functions
are:

VanLeer : Φ(𝑟) =
𝑟 + |𝑟|
1 + |𝑟|

, (5.76)

VanAlbada : Φ(𝑟) =
𝑟 + 𝑟2

1 + 𝑟2
, (5.77)

superbee : Φ(𝑟) = max(0,min(2𝑟, 1),min(𝑟, 2)). (5.78)

5.3.1.5. Convection at an Inflow and Outflow Boundary

At an open boundary, the �rst-order and LPS upwind schemes only make use of information on the
boundary.

For the MUSCL scheme with the �ow leaving the domain at node 𝑖, the usual �ux limiters are not used.
The slopes are compared between (𝜑𝑖 − 𝜑𝑖−1) and (𝜑𝑖−1 − 𝜑𝑖−2). If the slopes are the same sign, the
unlimited second order upwinding is used. If the slopes are di�erent, then a local interpolation is used.
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Estimate the slope (𝜑𝑖−1 − 𝜑𝑖−2) = 2Δ𝑥∇𝜑2 − (𝜑𝑖 − 𝜑𝑖−1), where Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 is the distance
vector along the element edge. For slopes of the same sign, use a second-order scheme,

𝜑𝐿𝑖 = 𝜑𝑖 +
1

2
(∇𝜑𝑖−1Δ𝑥𝑖 − (𝜑𝑖 − 𝜑𝑖−1)) , , , , (5.79)

else, use a �rst-order scheme,
𝜑𝐿𝑖 = 𝜑𝑖 −

1

2
[(𝜑𝑖 − 𝜑𝑖−1)] . (5.80)

The boundary is the left (L) side. If the �ow enters the domain, then use the local value of 𝜑𝑖.

5.3.1.6. Nonlinear stabilization operator

The “nonlinear stability operator" (NSO) in Fuego is an arti�cal viscosity method where the added
di�usivity is based on a scaled, pointwise evaluated residual. For a dual volume (Ω𝑛), associated with a
node 𝑛, the weak form of the NSO for a scalar variable 𝑞 is

∫︁
𝜕Ω𝑛

𝜈(𝑅) (𝜕𝑥𝑖𝑞) 𝑔
𝑖𝑗 d𝑆𝑗, where 𝑔𝑖𝑗 =

𝜕𝑥𝑖

𝜕𝜉𝑘
𝜕𝑥𝑗

𝜕𝜉𝑘
. (5.81)

where 𝜈 depends on the evalaution of a local residual𝑅 and the gradient of 𝑞 as

𝜈 =

√︃
𝑅2

𝜕𝑞
𝜕𝑥𝑖
𝑔𝑖𝑗 𝜕𝑞

𝜕𝑥𝑗

. (5.82)

The local residual can be taken, similar to Shakib[153] but in an incompressible context, as the full
residual of the PDE. For a conserved scalar,𝑞, with di�usivity Γ,𝑅 would be

𝑅 =
[︁
(Time)𝜌 + (Adv.)𝜌u − (Diff.)𝜌Γ

]︁
𝑞, (5.83)

with discrete operators representing the individual terms of the advection-di�usion equation. For an
equation with a source term, it would also need appear in the local residual calculation. Another
possibility for choosing𝑅 would be based on the error of performing the chain-rule on the advection
operator.

𝑅 = 𝐺̃𝑖

(︀
𝜌𝑢𝑖𝑞

)︀
−
[︁
𝐼
(︀
𝜌𝑢𝑖
)︀
𝐺̃𝑖𝑞 +

(︁
𝐼𝑞
)︁
𝐺𝑖

(︀
𝜌𝑢𝑖
)︀]︁

(5.84)

where 𝐺̃ and 𝐼 represent interpolation and gradients evaluated at an integration point. Both options are
available in Fuego.

The NSO computed from such residuals can add an unnecessarily large amount of dissipation in some
cases. For this reason, we limit the NSO coe�cient to the upwind value as

𝜈 = min

(︂
𝜈(𝑅),

1

10
(𝜌𝑢)𝑖 𝑔𝑖𝑗 (𝜌𝑢)

𝑗

)︂
. (5.85)

where 𝑔𝑖𝑗 = [𝑔𝑖𝑗]
−1. Additionally, as it’s based on the mesh discretization error, the NSO coe�cient

tends to vary strongly on short length scales. For numerical robustness, we average the NSO viscosity
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over control volumes, and then interpolate back to the subcontrol surfaces to evaluate the di�usion
term; that is,

𝜈 ip = 𝐼
𝜈‖𝑔𝑖𝑗‖
‖𝑔𝑖𝑗‖

. (5.86)

This operation e�ectively smooths the NSO viscosity over a patch of elements. The nonlinear
stabilization viscosity is not included at the boundaries.

5.3.2. Variable Density

The discretization of the time derivative requires special attention for variable density �ows. The
density time-derivative in the continuity equation must be predicted in a continuous manner. The
density at the new time level in the convection terms and the transport equation time terms must also
be predicted.

The transport equations are solved in conservative form, so density appears in the time derivative. With
a segregated solution strategy, the density at the new time level is not available until the transport
equations have been solved once. A density predictor is required. A generic time term is written as

𝜕𝜌𝜑

𝜕𝑡
≈ 𝜌𝑛+1𝜑𝑛+1 − 𝜌𝑛𝜑𝑛

Δ𝑡
≈ 𝜌𝑛

𝜑𝑛+1 − 𝜑𝑛

Δ𝑡
+ 𝜑𝑛+1𝜌

* − 𝜌𝑛

Δ𝑡
(5.87)

There are two approaches to estimating the new density. The simplest approach is to use the most
recent value. The other approach is to use a density predictor. The predicted value of density at the new
time level, 𝜌*, is computed from the old density and the current density time derivative. Introduce the
nodal variable ϒ for the discrete density time-derivative such that

ϒ* =
𝜌* − 𝜌𝑛

Δ𝑡
(5.88)

𝜌* = 𝜌𝑛 +Δ𝑡ϒ* (5.89)

The density derivative, ϒ*, is always updated at the bottom of the transport equation loop after a new
set of temperatures and mass fractions is available. The two approaches are di�erent for the �rst
nonlinear sub-iteration within a time step, but yield equivalent values upon subsequent sub-iterations.
The new density is also computed at the bottom of the equation loop. This value is ignored upon
subsequent sub-iterations if using the density predictor. But, this new density value will get copied to
the old time level when the time step is advanced. It is important to note that this new “old” velocity is
not consistent with the density that was used in the old transport equations, but it seems critical to the
success of this approach to do so.

For the �rst nonlinear iteration within a time step, the e�ect of the density at the new time level is
predicted by carrying forward the best approximation of the density time-derivative from the last time
step. The continuity equation is implemented as∫︁

ϒ*𝑑𝑉 +

∫︁
𝜌*𝑢𝑖

𝑛+1𝑛𝑖𝑑𝑆 = 0, (5.90)
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where the density time-derivative is the most recent value and the density in the convection is estimated
in the same manner as the transport equations. The density time-derivative, ϒ, must be stored as a
persistent nodal variable in order to have a good estimate for the continuity equation from step to
step.

5.3.3. Open Boundary Conditions

Open boundary conditions are used for boundaries where the �ow can go either in or out. The
direction of the �ow is determined by the local force balance. In this documentation, the open
boundary condition is also referred to as the out�ow boundary condition. There are two parts to the
out�ow boundary condition. The �rst part concerns computing a velocity �eld that satis�es continuity.
The second part concerns selecting the proper convected scalar value depending if the �ow is in or out
of the domain. Control volume balances are implemented at open boundaries for continuity,
momentum, and the other transport equations.

ds
XX

Pss Pfc

Figure 5.3-3.. Boundary mass flux integration locations.

A �xed pressure value is speci�ed for the continuity and momentum equations. The nodal values of
pressure on the boundary are allowed to �oat. A mass �ux condition is formulated at the boundary in
order to drive the boundary pressures towards the speci�ed boundary pressure and to provide a
boundary mass �ow rate for the other transport equations. The form of the boundary mass �ux is
similar to the pressure-stabilized interior mass �uxes (see section 5.1). The equation for the mass �ux at a
boundary face, shown in Figure 5.3-3, is

𝑚̇bc = 𝜌𝑢𝑛+1
𝑖 𝑛𝑖d𝑆 (5.91)

231



and the interpolation formula for a single velocity component is

𝑢𝑛+1 =
∑︁
𝑏𝑐

𝑁𝑖𝑈
**
𝑖 + 𝑓

Δ𝑡

𝜌

(︃∑︁
𝑏𝑐

𝑁𝑖

∑︁
𝑗

𝐺𝑖𝑗𝑝
*
𝑗 −

(︂
𝑃𝑓𝑐 − 𝑃 𝑛+1

𝑠𝑠

Δ𝑠

)︂
Δ𝑥

Δ𝑠

)︃
+ 𝑓

(︃
𝑢𝑛 −

∑︁
𝑏𝑐

𝑁𝑖𝑈
𝑛
𝑖

)︃
(5.92)

The upper case velocities, 𝑈𝑖, are nodal velocities, while the lower case velocity, 𝑢, is the boundary
velocity. The average pressure, 𝑃𝑠𝑠, is computed at the opposing subface centroid and evaluated at the
new time level, 𝑛+ 1. The boundary pressure, 𝑃𝑓𝑐, is evaluated at the boundary subface centroid and is
the “speci�ed" pressure. The operator,𝐺𝑖𝑗 , is the discrete gradient operator for node 𝑖. In the case of the
semi-discrete formulation, the last term is dropped in Equation 5.92 and 𝑓 = 1.

The nodal pressure gradient is required for the momentum balance and the boundary mass �ux
formulation. The nodal pressure gradient is constructed by a discrete Gauss divergence relation over the
control volumes. The pressure at most control volume subfaces is interpolated from the nodes of the
parent element, even over in�ow, wall, and symmetry boundaries. For out�ow boundaries, the speci�ed
boundary pressure, 𝑃𝑓𝑐, is used.

Nodal velocities on open boundaries are corrected with the projection.

On pressure-speci�ed open boundaries, the �ow will sometimes exit and reenter the domain through
some sort of entrainment process. The process will look non-physical and is due to the arti�cially
imposed constant pressure. A method of counteracting the reentrance problem is to turn o� the
convection terms in the momentum equations for control-volume subfaces which have reentrant �ow.
This condition is optional and can be set on a side-set basis.

If the �ow is entrained into the domain, then far-�eld values must be speci�ed for the scalar variables.

5.4. SEGREGATED SOLUTION PROCEDURE

The time integration method is a two-level, backward Euler scheme, requiring data at two time states.
The discrete form of the nonlinear equations is

𝜑𝑛+1 − 𝜑𝑛

Δ𝑡
= 𝐹

(︀
𝜑𝑛+1, 𝜑𝑛

)︀
. (5.93)

Sub-iteration is required within the time step to satisfy the nonlinearities. Over one sub-iteration, the
nonlinear equations are solved in a segregated manner. Each segregated equation set is linearized and
solved as a linear problem. During the nonlinear iteration process, a temporary variable may be
introduced to di�erentiate the old guess at the state (n+1) from the new guess at the state (n+1). A
temporary variable (*) is introduced to hold the new estimate of the state (n+1). The temporary variable
is typically only used in describing the algorithm. Functionally, the (*) variables and (n+1) variables are
usually represented by the same array within the code. The only time a temporary variable would be
used in the code is if the momentum equations were segregated or if the species di�usion velocities were
not pre-computed.
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Within the transport equations, the convection terms are linearized by freezing the mass �ux (density *
velocity * area).

The SIERRA framework provides services to manage the state data between the two time levels. The
SIERRA framework services are insu�cient because they only swap pointers. The result of the swap is
that the estimate of the new solution at time (n+1) uses the solution at (n-1) instead of (n), which is too
far away. After the pointer-swap, the SIERRA/Fuego code additionally copies forward the solution at
(n) into the initial guess at (n+1). The array-copy occurs only at the beginning of the sub-iteration
process. The SIERRA/Fuego code also manages the updating between (*) and (n+1) for the delta-form
of the linear system.

The material properties are evaluated at the top of a nonlinear sub-iteration. Density is a STATE
property since it has a time derivative in the continuity equation if properties are variable. Density will
always be treated as a state variable, even if it is constant. All other properties are treated as
TEMPORARY variables. The general workset algorithm that computes properties evaluates them at
the most recent guess of the (n+1) state. There is an additional workset algorithm that evaluates state
properties at both state (n) and (n+1). The state property evaluation is only performed during the
initialization phase. All material properties are evaluated at the nodes. Sub-face and sub-volume values
are averaged using the element shape functions.

A linear solve is performed for each equation set within a nonlinear sub-iteration. There is a solver
object associated with each equation set within the SIERRA framework. The solver object contains the
matrix connectivity and manages the assembly of the matrix components. There will be ten solver
objects for the full turbulent combustion mechanics (the species equations all use the same solver
object). There will also be ten repeated sets of connectivity information.

The ordering of the segregated equations during one nonlinear iteration is given in the following list.
Reduced equation sets for simpli�ed mechanics maintain the same relative ordering.

1. evaluate material properties using the most recent estimate of temperature and composition

2. evaluate turbulent eddy viscosity if turbulent

3. evaluate combustion model species production rates

4. evaluate soot model production rates

5. evaluate gas and soot absorptivity for radiation model

6. solve x-momentum equation, store new predicted x-velocity until all momentum equations have
been evaluated

7. solve y-momentum equation, store new predicted y-velocity until all momentum equations have
been evaluated

8. solve z-momentum equation, store new predicted z-velocity until all momentum equations have
been evaluated

9. update predicted velocities

10. solve continuity equation using predicted velocities, update new pressure
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11. update new mass �uxes at all control volume sub-faces, including boundaries, and use in
subsequent transport equations

12. perform the velocity projection and correct all nodal velocities

13. assemble turbulence friction velocity

14. solve the turbulent kinetic energy equation if turbulent, store turbulent kinetic energy until
turbulence dissipation equation is solved so that the production and dissipation source terms can
be properly linearized

15. solve the turbulence dissipation equation if turbulent, update the turbulent kinetic energy and
turbulence dissipation

16. solve the enthalpy equation

• laminar: solve for temperature

• turbulent: solve for enthalpy

17. solve each species equation, do not update species mass fractions until all species equations have
been solved

18. solve the soot equation, store soot mass fraction until soot nuclei equation is solved

19. solve the soot nuclei equation, update soot mass fraction and soot nuclei mass fraction

20. compute Nth species mass fraction using summation rule

21. update temperature or enthalpy at new time level

• laminar: compute enthalpy

• turbulent: extract temperature

22. extract temperature from enthalpy if laminar

23. compute new density and time derivative of density

This procedure is repeated within a time step until the desired level of nonlinear equation convergence
is achieved.

5.5. DISCRETE TRANSPORT EQUATIONS

The discrete form of the linearized equations are presented in this section. The nonlinear solution
procedure consists of repeated approximate Newton linearizations and linear solves of the discrete
equation,

𝐴𝛿𝜑 = 𝑏. (5.94)
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The matrix𝐴 is based on an approximate linearization of 𝐹 from Equation 5.93 about a predicted value
𝜑*,

𝐴 =
1

Δ𝑡
− 𝜕𝐹

𝜕𝜑

⃒⃒⃒⃒
⃒
*

. (5.95)

The right-hand side, 𝑏, of the linearized equation represents the residual of the nonlinear equation,

𝑏 = 𝐹 (𝜑*, 𝜑𝑛)− 𝜑* − 𝜑𝑛

Δ𝑡
(5.96)

If the nonlinear equation is converged, the right-hand side will be zero. The linear equations are solved
in delta-form. The solution vector consists of the change in the unknown rather than the new value of
the unknown.

There are four solution states in the nonlinear solver algorithm. The time level 𝑛 is the old time level.
The state * represents predicted values at the new time level before the linear solve. The state **
represents the values after the linear solve. The time level (𝑛+ 1) is the new time level. Within the
nonlinear iteration cycle, values at the new time level (𝑛+ 1) are copied to the predicted level * before
the next iteration.

There are three stages to the assembly of the matrix that result from the linearization. The �rst stage is
the assembly of element contributions. The elements contain control-volume sub-faces that are internal
to the mesh. The second state is the assembly of �ux boundary conditions. The �ux boundary
conditions contribute to the control-volume sub-faces on the boundary of the mesh. The �ux
boundary condition contributions are full element contributions because they may involve both
boundary and interior nodes. The third stage is the enforcement of Dirichlet boundary conditions.

The element matrix contributions are processed by �rst evaluating surface integral �uxes at sub-faces
and then evaluating volume integral terms at sub-volumes. The �ux is evaluate at a sub-face and then
added or subtracted from the two adjacent control-volumes. The sub-face area components are
constructed such that the face normal direction points from the left adjacent node to the right adjacent
node. Fluxes are subtracted from the left node (L) and added to the right node (R). The left and right
adjacent nodes for a give sub-face number within an element are given in Tables 5.8-8, 5.8-13,
and 5.8-18.

The linearization of each transport equation can be broken into contributions from the time term,
convection, di�usion, and sources.

𝐴 = 𝐴𝑡 + 𝐴𝑐 + 𝐴𝑑 + 𝐴𝑠 (5.97)
𝑏 = 𝑏𝑡 + 𝑏𝑐 + 𝑏𝑑 + 𝑏𝑠 (5.98)

The linear system is assembled on an element-by-element basis. Each element contributes and𝑁 ×𝑁
element matrix where𝑁 is the number of nodes in the element. The nodal contribution from node 𝐽
for the control volume about node 𝐼 is𝐴𝐼,𝐽 . Nodal variables in the following discussion are symbolized
by capital letters. Linear averages of variables at face 𝑘 are

𝜇𝑘 =
∑︁
𝐽

𝑁𝐽 |𝑘 𝜇𝐽 (5.99)

𝜅𝑘 =
∑︁
𝐽

𝑁𝐽 |𝑘 𝜅𝐽 (5.100)
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The density predictor (see Section 5.3.2) may be used to compute the density at the new time level for
the time derivative term.

The convection operator for a face 𝑖 is𝐶𝑖,𝐽 and is described in Section 5.3.1.

Gradients of variables at face 𝑘 are:

𝑝𝑥 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝑃𝐽 𝑝𝑦 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝑃𝐽 𝑝𝑧 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝑃𝐽 (5.101)

𝑢𝑥 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝑈𝐽 𝑢𝑦 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝑈𝐽 𝑢𝑧 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝑈𝐽 (5.102)

𝑣𝑥 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝑉𝐽 𝑣𝑦 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝑉𝐽 𝑣𝑧 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝑉𝐽 (5.103)

𝑤𝑥 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝑊𝐽 𝑤𝑦 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝑊𝐽 𝑤𝑧 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝑊𝐽 (5.104)

𝑡𝑥 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝑇𝐽 𝑡𝑦 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝑇𝐽 𝑡𝑧 =
∑︁
𝐽

𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝑇𝐽 (5.105)

5.5.1. Positive-Flow Convention and Integration Quadrature

The sign on a �ux integral is de�ned such that �ow into a control volume is positive and �ow out of a
control volume is negative. The equations are assembled into the implicit matrix and right-hand side
such that the time derivative contribution of an unknown is positive. In reference to the model
di�erential equation, Equation 5.93, any implicit terms that contribute to the control volume balance,
𝐹 (𝜑), in a positive sense must be moved to the implicit left-hand side, switching signs.

The control volume balance is assembled on an element-by-element basis. Each element contributes
terms from �uxes over its internal sub-control volume faces and volumetric terms from its internal
sub-control volumes. A �ux is computed for each sub-control volume face. The �ux contribution is
then summed into the two adjacent control volumes, adjusting the sign according to whether the �ux is
in or out of the control volume. The convention is that the sub-face normal direction between two
adjacent control volumes is positive from the lower local sub-volume number to the higher sub-volume
number in a local node numbering sense. The consistent treatment of �uxes is a requirement for
conservation. Each sub-control volume face is numbered the same as the element edge number. The
two adjacent control volumes for each edge number are given in Tables 5.8-8, 5.8-13, and 5.8-18 for
di�erent element types.

The elemental �ux contributions are assembled into a global control volume matrix. Each control
volume balance is written in terms of coe�cients multiplying the surrounding nodal values. In terms of
matrix terminology for two-dimensional elements, the matrix coe�cient for Node 5 of Figure 5.0-1,
associated with the control volume center, is the diagonal term and should be positive. All other nodal
coe�cients for the control volume balance are the o�-diagonal terms and complete one row of a global
�ux-balance matrix.
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The control volume �ux integrals are evaluated using numerical quadrature. The integral term for each
control volume sub-face and sub-volume is evaluated using a single quadrature point. The number of
quadrature points for the surface �uxes in an element is equivalent to the number of sub-faces. For
example, a quadrilateral element will have four sub-face quadratures and four sub-volume quadratures.
A hexahedral element will have twelve sub-face quadratures and eight sub-volume quadratures.

In three-dimensional elements, the control-volume sub-faces may not be planar. Care must be taken to
conserve surface area over a control-volume to prevent non-physical sources and sinks. The sub-faces in
a three-dimensional element are de�ned by bilinear surfaces and the discrete surface area di�erential is
also a bilinear function. Since the quadrature for a bilinear function is exact if evaluated at the
mid-point, the current quadrature strategy will ensure surface area conservation.

The quadrature coe�cients are customarily derived such that the integration ranges from −1 to 1, so a
mapping is required to quadrature space.∫︁ 𝑏

𝑎

𝐹 (𝜉) d𝜉 =
𝑏− 𝑎

2

∫︁ 1

−1

𝑓
(︀
𝜉
)︀
d𝜉 (5.106)

(5.107)

𝜉 =
𝑏+ 𝑎

2
+
𝑏− 𝑎

2
𝜉 (5.108)

The integrand is evaluated at discrete points, called Gauss points, and summed using weighting
functions. ∫︁ 1

−1

𝐹
(︀
𝜉
)︀
d𝜉 = 𝑤𝑖𝐹

(︀
𝜉𝑖
)︀

(5.109)

For a one-point quadrature, 𝜉1 = 0 and𝑤1 = 2.

5.5.2. X-Momentum, 3D Laminar Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.110)

𝑏𝑡𝐼 − = (𝜌*𝐼𝑈
*
𝐼 − 𝜌𝑛𝐼𝑈

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.111)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶*
𝑘,𝐽 (5.112)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶*
𝑘,𝐽 (5.113)
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𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑈

*
𝐽 (5.114)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑈

*
𝐽 (5.115)

The viscous stress term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix. The stress term may or may
not include the molecular viscosity, depending on the user speci�ed model.

𝐹𝑘,𝐽 = −𝜇𝑘
(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.116)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.117)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.118)

𝜏𝑥𝑥 = 𝜇𝑘 (𝑢
*
𝑥 + 𝑢*𝑥) (5.119)

𝜏𝑥𝑦 = 𝜇𝑘
(︀
𝑢*𝑦 + 𝑣*𝑥

)︀
(5.120)

𝜏𝑥𝑧 = 𝜇𝑘 (𝑢
*
𝑧 + 𝑤*

𝑥) (5.121)
𝑓𝑘 = − (𝜏𝑥𝑥𝐴𝑥 + 𝜏𝑥𝑦𝐴𝑦 + 𝜏𝑥𝑧𝐴𝑧) (5.122)
𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (5.123)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (5.124)

The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.

𝑏𝑠𝐼 − =
𝜕𝑃

𝜕𝑥

⃒⃒⃒⃒*
𝐼

Δ𝑉𝐼 (5.125)

5.5.3. Y-Momentum, 3D Laminar Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.126)

𝑏𝑡𝐼 − = (𝜌*𝐼𝑉
*
𝐼 − 𝜌𝑛𝐼𝑉

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.127)
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The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶*
𝑘,𝐽 (5.128)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶*
𝑘,𝐽 (5.129)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑉

*
𝐽 (5.130)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑉

*
𝐽 (5.131)

The viscous stress term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

𝐹𝑘,𝐽 = −𝜇𝑘
(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.132)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.133)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.134)

𝜏𝑦𝑥 = 𝜇𝑘
(︀
𝑣*𝑥 + 𝑢*𝑦

)︀
(5.135)

𝜏𝑦𝑦 = 𝜇𝑘
(︀
𝑣*𝑦 + 𝑣*𝑦

)︀
(5.136)

𝜏𝑦𝑧 = 𝜇𝑘
(︀
𝑣*𝑧 + 𝑤*

𝑦

)︀
(5.137)

𝑓𝑘 = − (𝜏𝑦𝑥𝐴𝑥 + 𝜏𝑦𝑦𝐴𝑦 + 𝜏𝑦𝑧𝐴𝑧) (5.138)
𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (5.139)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (5.140)

The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.

𝑏𝑠𝐼 − =
𝜕𝑃

𝜕𝑦

⃒⃒⃒⃒*
𝐼

Δ𝑉𝐼 (5.141)
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5.5.4. Z-Momentum, 3D Laminar Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.142)

𝑏𝑡𝐼 − = (𝜌*𝐼𝑊
*
𝐼 − 𝜌𝑛𝐼𝑊

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.143)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶*
𝑘,𝐽 (5.144)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶*
𝑘,𝐽 (5.145)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑊

*
𝐽 (5.146)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑊

*
𝐽 (5.147)

The viscous stress term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

𝐹𝑘,𝐽 = −𝜇𝑘
(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.148)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.149)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.150)

𝜏𝑧𝑥 = 𝜇𝑘 (𝑤
*
𝑥 + 𝑢*𝑧) (5.151)

𝜏𝑧𝑦 = 𝜇𝑘
(︀
𝑤*
𝑦 + 𝑣*𝑧

)︀
(5.152)

𝜏𝑧𝑧 = 𝜇𝑘 (𝑤
*
𝑧 + 𝑤*

𝑧) (5.153)
𝑓𝑘 = − (𝜏𝑧𝑥𝐴𝑥 + 𝜏𝑧𝑦𝐴𝑦 + 𝜏𝑧𝑧𝐴𝑧) (5.154)
𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (5.155)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (5.156)

240



The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.

𝑏𝑠𝐼 − =
𝜕𝑃

𝜕𝑧

⃒⃒⃒⃒*
𝐼

Δ𝑉𝐼 (5.157)

5.5.5. Buoyancy, Momentum Transport

The body force imposed by the buoyancy term can be constructed in one of three ways.

5.5.5.1. Boussinesq Form

For the Boussinesq approximation, the body force is evaluated at the sub-volume centroid, 𝑘, for
sub-volume 𝐼 .

𝑏𝑠𝐼− =
𝜌𝑔

𝑇∘

(︃∑︁
𝐽

𝑁𝐽 |𝑘 𝑇𝐽 − 𝑇∘

)︃
Δ𝑉𝐼 (5.158)

5.5.5.2. Differential Form

For the “di�erential" form, the hydrostatic component of pressure has been removed. The body force is
evaluated at the control-volume centroid, for sub-volume 𝐼 .

𝑏𝑠𝐼+ = (𝜌*𝐼 − 𝜌∘) 𝑔Δ𝑉𝐼 (5.159)

5.5.5.3. Full Form

The body force is evaluated at the control-volume centroid, for sub-volume 𝐼 .

𝑏𝑠𝐼+ = 𝜌*𝐼𝑔Δ𝑉𝐼 (5.160)
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5.5.6. Mass Transport – 3D Continuity

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝑏𝑡𝐼 − = (𝜌*𝐼 − 𝜌𝑛𝐼 )
Δ𝑉𝐼
Δ𝑡

(5.161)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes using the Rhie/Chow scheme from Section 5.1.

𝐹𝑘,𝐽 = −𝑓Δ𝑡
(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.162)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.163)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.164)

𝑢*𝑘 =
∑︁
𝐽

𝑁𝐽 |𝑘 𝑈
*
𝐽 + 𝑓

Δ𝑡

𝜌

(︃∑︁
𝐽

𝜕𝑃

𝜕𝑥

⃒⃒⃒⃒*
𝐽

− 𝑝*𝑥

)︃
+ 𝑓

(︃
𝑢𝑛𝑘 −

∑︁
𝐽

𝑁𝐽 |𝐽 𝑈
𝑛
𝐽

)︃
(5.165)

𝑣*𝑘 =
∑︁
𝐽

𝑁𝐽 |𝑘 𝑉
*
𝐽 + 𝑓

Δ𝑡

𝜌

(︃∑︁
𝐽

𝜕𝑃

𝜕𝑦

⃒⃒⃒⃒*
𝐽

− 𝑝*𝑦

)︃
+ 𝑓

(︃
𝑣𝑛𝑘 −

∑︁
𝐽

𝑁𝐽 |𝐽 𝑉
𝑛
𝐽

)︃
(5.166)

𝑤*
𝑘 =

∑︁
𝐽

𝑁𝐽 |𝑘𝑊
*
𝐽 + 𝑓

Δ𝑡

𝜌

(︃∑︁
𝐽

𝜕𝑃

𝜕𝑧

⃒⃒⃒⃒*
𝐽

− 𝑝*𝑧

)︃
+ 𝑓

(︃
𝑤𝑛𝑘 −

∑︁
𝐽

𝑁𝐽 |𝐽𝑊
𝑛
𝐽

)︃
(5.167)

𝑚̇𝑘 = 𝜌 (𝑢*𝑘𝐴𝑥 + 𝑣*𝑘𝐴𝑦 + 𝑤*
𝑘𝐴𝑧) (5.168)

𝑏𝑐𝐼𝐿 − = 𝑚̇𝑘 (5.169)
𝑏𝑐𝐼𝑅 + = 𝑚̇𝑘 (5.170)

Velocity correction and new mass �ow rate.....

5.5.7. Energy, 3D Laminar Transport

The laminar energy equation is linearized with respect to the temperature. The time term is lumped.
The time-term contribution is evaluated for each sub-volume. The density must also be linearized for
stability.

𝐴𝑡𝐼,𝐼 + =

(︂
𝜌*𝐼𝐶

*
𝑝,𝐼 − 𝜌*𝐼

𝐻*
𝐼

𝑇 *
𝐼

)︂
Δ𝑉𝐼
Δ𝑡

(5.171)

𝑏𝑡𝐼 − = (𝜌*𝐼𝐻
*
𝐼 − 𝜌𝑛𝐼𝐻

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.172)
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The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶𝑛+1
𝑘,𝐽 𝐶

*
𝑝,𝐽 (5.173)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶𝑛+1
𝑘,𝐽 𝐶

*
𝑝,𝐽 (5.174)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝐻

*
𝐽 (5.175)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝐻

*
𝐽 (5.176)

The heat conduction term is computed at each face 𝑘 and assembled to the left (IL) and right (IR)
control volumes.

𝐹𝑘,𝐽 = −𝜅𝑘
(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.177)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.178)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.179)

𝑞𝑘 = −𝜅𝑘
(︀
𝑡*𝑥𝐴𝑥 + 𝑡*𝑦𝐴𝑦 + 𝑡*𝑧𝐴𝑧

)︀
(5.180)

𝑏𝑑𝐼𝐿 − = 𝑞𝑘 (5.181)
𝑏𝑑𝐼𝑅 + = 𝑞𝑘 (5.182)

5.5.8. Temperature, 3D Laminar Transport

The laminar temperature equation is linearized with respect to the temperature. The time term is
lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.183)

𝑏𝑡𝐼 − = (𝜌*𝐼𝑇
*
𝐼 − 𝜌𝑛𝐼𝑇

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.184)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.
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𝐴𝑐𝐼𝐿,𝐽 + = 𝐶𝑛+1
𝑘,𝐽 (5.185)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶𝑛+1
𝑘,𝐽 (5.186)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑇

*
𝐽 (5.187)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑇

*
𝐽 (5.188)

The heat conduction term is computed at each face 𝑘 and assembled to the left (IL) and right (IR)
control volumes.

𝐹𝑘,𝐽 = − 𝜅𝑘
𝐶𝑝,𝑘

(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.189)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.190)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.191)

𝑞𝑘 = − 𝜅𝑘
𝐶𝑝,𝑘

(︀
𝑡*𝑥𝐴𝑥 + 𝑡*𝑦𝐴𝑦 + 𝑡*𝑧𝐴𝑧

)︀
(5.192)

𝑏𝑑𝐼𝐿 − = 𝑞𝑘 (5.193)
𝑏𝑑𝐼𝑅 + = 𝑞𝑘 (5.194)

A correction for variable speci�c heat is applied as a volume term. The correction is computed at the
centroid of the sub-volume, 𝑘, for control volume 𝐼 .

𝑏𝑑𝐼+ =
𝜅

𝐶2
𝑝

(𝑡𝑥𝐶𝑝,𝑥 + 𝑡𝑦𝐶𝑝,𝑦 + 𝑡𝑧𝐶𝑝,𝑧)Δ𝑉𝐼 (5.195)

5.5.9. Species, 3D Laminar Transport

There is a species equations for each species. The mass fraction is 𝑌𝑠, where 𝑠 is the species number. The
time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.196)
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𝑏𝑡𝐼 − =
(︀
𝜌*𝐼𝑌

*
𝑠,𝐼 − 𝜌𝑛𝐼𝑌

𝑛
𝑠,𝐼

)︀ Δ𝑉𝐼
Δ𝑡

(5.197)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶𝑛+1
𝑘,𝐽 (5.198)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶𝑛+1
𝑘,𝐽 (5.199)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑌

*
𝑠,𝐽 (5.200)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑌

*
𝑠,𝐽 (5.201)

The mass di�usion term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐹𝑘,𝐽 = −𝜌𝑘𝐷𝑠,𝑘

(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.202)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.203)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.204)

𝑓𝑘 = −𝜌𝑘𝐷𝑠,𝑘

(︀
𝑦𝑠*𝑥𝐴𝑥 + 𝑦𝑠*𝑦𝐴𝑦 + 𝑦𝑠*𝑧𝐴𝑧

)︀
(5.205)

𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (5.206)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (5.207)

5.5.10. X-Momentum, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.208)

𝑏𝑡𝐼 − = (𝜌*𝐼𝑈
*
𝐼 − 𝜌𝑛𝐼𝑈

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.209)
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The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶*
𝑘,𝐽 (5.210)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶*
𝑘,𝐽 (5.211)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑈

*
𝐽 (5.212)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑈

*
𝐽 (5.213)

The viscous stress term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

𝐹𝑘,𝐽 = − (𝜇𝑘 + 𝜇𝑇,𝑘)

(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.214)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.215)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.216)

𝜏𝑥𝑥 = (𝜇𝑘 + 𝜇𝑇,𝑘) (𝑢
*
𝑥 + 𝑢*𝑥) (5.217)

𝜏𝑥𝑦 = (𝜇𝑘 + 𝜇𝑇,𝑘)
(︀
𝑢*𝑦 + 𝑣*𝑥

)︀
(5.218)

𝜏𝑥𝑧 = (𝜇𝑘 + 𝜇𝑇,𝑘) (𝑢
*
𝑧 + 𝑤*

𝑥) (5.219)
𝑓𝑘 = − (𝜏𝑥𝑥𝐴𝑥 + 𝜏𝑥𝑦𝐴𝑦 + 𝜏𝑥𝑧𝐴𝑧) (5.220)
𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (5.221)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (5.222)

The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.

𝑏𝑠𝐼 − =
𝜕𝑃

𝜕𝑥

⃒⃒⃒⃒*
𝐼

Δ𝑉𝐼 (5.223)
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5.5.11. Y-Momentum, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.224)

𝑏𝑡𝐼 − = (𝜌*𝐼𝑉
*
𝐼 − 𝜌𝑛𝐼𝑉

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.225)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶*
𝑘,𝐽 (5.226)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶*
𝑘,𝐽 (5.227)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑉

*
𝐽 (5.228)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑉

*
𝐽 (5.229)

The viscous stress term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

𝐹𝑘,𝐽 = − (𝜇𝑘 + 𝜇𝑇,𝑘)

(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.230)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.231)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.232)

𝜏𝑦𝑥 = (𝜇𝑘 + 𝜇𝑇,𝑘)
(︀
𝑣*𝑥 + 𝑢*𝑦

)︀
(5.233)

𝜏𝑦𝑦 = (𝜇𝑘 + 𝜇𝑇,𝑘)
(︀
𝑣*𝑦 + 𝑣*𝑦

)︀
(5.234)

𝜏𝑦𝑧 = (𝜇𝑘 + 𝜇𝑇,𝑘)
(︀
𝑣*𝑧 + 𝑤*

𝑦

)︀
(5.235)

𝑓𝑘 = − (𝜏𝑦𝑥𝐴𝑥 + 𝜏𝑦𝑦𝐴𝑦 + 𝜏𝑦𝑧𝐴𝑧) (5.236)
𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (5.237)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (5.238)
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The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.

𝑏𝑠𝐼 − =
𝜕𝑃

𝜕𝑦

⃒⃒⃒⃒*
𝐼

Δ𝑉𝐼 (5.239)

5.5.12. Z-Momentum, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.240)

𝑏𝑡𝐼 − = (𝜌*𝐼𝑊
*
𝐼 − 𝜌𝑛𝐼𝑊

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.241)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶*
𝑘,𝐽 (5.242)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶*
𝑘,𝐽 (5.243)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑊

*
𝐽 (5.244)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑊

*
𝐽 (5.245)

The viscous stress term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

𝐹𝑘,𝐽 = − (𝜇𝑘 + 𝜇𝑇,𝑘)

(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.246)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.247)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.248)
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𝜏𝑧𝑥 = (𝜇𝑘 + 𝜇𝑇,𝑘) (𝑤
*
𝑥 + 𝑢*𝑧) (5.249)

𝜏𝑧𝑦 = (𝜇𝑘 + 𝜇𝑇,𝑘)
(︀
𝑤*
𝑦 + 𝑣*𝑧

)︀
(5.250)

𝜏𝑧𝑧 = (𝜇𝑘 + 𝜇𝑇,𝑘) (𝑤
*
𝑧 + 𝑤*

𝑧) (5.251)
𝑓𝑘 = − (𝜏𝑧𝑥𝐴𝑥 + 𝜏𝑧𝑦𝐴𝑦 + 𝜏𝑧𝑧𝐴𝑧) (5.252)
𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (5.253)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (5.254)

The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.

𝑏𝑠𝐼 − =
𝜕𝑃

𝜕𝑧

⃒⃒⃒⃒*
𝐼

Δ𝑉𝐼 (5.255)

5.5.13. Turbulent Kinetic Energy, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.256)

𝑏𝑡𝐼 − = (𝜌*𝐼𝐾
*
𝐼 − 𝜌𝑛𝐼𝐾

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.257)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶𝑛+1
𝑘,𝐽 (5.258)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶𝑛+1
𝑘,𝐽 (5.259)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝐾

*
𝐽 (5.260)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝐾

*
𝐽 (5.261)

The viscous stress term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix.
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𝐹𝑘,𝐽 = −𝜇𝑇,𝑘
𝜎𝑘

(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.262)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.263)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.264)

𝑓𝑘 = −𝜇𝑇,𝑘
𝜎𝑘

(︀
𝑘*𝑥𝐴𝑥 + 𝑘*𝑦𝐴𝑦 + 𝑘*𝑧𝐴𝑧

)︀
(5.265)

𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (5.266)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (5.267)

The turbulence production is assembled in the form of a volume integral. The velocity derivatives are
computed at the sub-volume centroids.

Φ = 2
(︀
𝑢2𝑥 + 𝑣2𝑦 + 𝑤2

𝑧

)︀
− 2

3
(𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧)

2

+ (𝑢𝑦 + 𝑣𝑥)
2 + (𝑣𝑧 + 𝑤𝑦)

2 + (𝑤𝑥 + 𝑢𝑧)
2 (5.268)

𝑏𝑠𝐼 + = 𝜇𝑇ΦΔ𝑉𝐼 (5.269)

The turbulence dissipation is assembled in the form of a volume integral. The terms are evaluated at the
node associated with the control volume.

𝐴𝑠𝐼,𝐼 + = 𝜌𝐼
𝐸*
𝐼

𝐾*
𝐼

Δ𝑉𝐼 (5.270)

𝑏𝑠𝐼 − = 𝜌𝐼𝐸
*
𝐼Δ𝑉𝐼 (5.271)

5.5.14. Turbulence Dissipation, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.272)

𝑏𝑡𝐼 − = (𝜌*𝐼𝐸
*
𝐼 − 𝜌𝑛𝐼𝐸

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.273)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.
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𝐴𝑐𝐼𝐿,𝐽 + = 𝐶𝑛+1
𝑘,𝐽 (5.274)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶𝑛+1
𝑘,𝐽 (5.275)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝐸

*
𝐽 (5.276)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝐸

*
𝐽 (5.277)

The viscous stress term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix. As with the turbulent kinetic
energy transport equation, the molecular viscosity may augment the e�ective di�usivity.

𝐹𝑘,𝐽 = −𝜇𝑇,𝑘
𝜎𝜖

(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.278)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.279)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.280)

𝑓𝑘 = −𝜇𝑇,𝑘
𝜎𝜖

(︀
𝜖*𝑥𝐴𝑥 + 𝜖*𝑦𝐴𝑦 + 𝜖*𝑧𝐴𝑧

)︀
(5.281)

𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (5.282)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (5.283)

The velocity derivatives are computed at the sub-volume centroids using velocities at the new time level
(𝑛+ 1).

Φ = 2
(︀
𝑢2𝑥 + 𝑣2𝑦 + 𝑤2

𝑧

)︀
− 2

3
(𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧)

2

+ (𝑢𝑦 + 𝑣𝑥)
2 + (𝑣𝑧 + 𝑤𝑦)

2 + (𝑤𝑥 + 𝑢𝑧)
2 (5.284)

𝑏𝑠𝐼 + = 𝜇𝑇𝐶𝜖1Φ
𝐸*
𝐼

𝐾*
𝐼

Δ𝑉𝐼 (5.285)

The turbulence dissipation is assembled in the form of a volume integral. The terms are evaluated at the
node associated with the control volume.

𝐴𝑠𝐼,𝐼 + = 𝜌𝐼𝐶𝜖2
𝐸*
𝐼

𝐾*
𝐼

Δ𝑉𝐼 (5.286)

𝑏𝑠𝐼 − = 𝜌𝐼𝐶𝜖2
𝐸*
𝐼

𝐾*
𝐼

𝐸*
𝐼Δ𝑉𝐼 (5.287)
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5.5.15. Energy, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.288)

𝑏𝑡𝐼 − = (𝜌*𝐼𝐻
*
𝐼 − 𝜌𝑛𝐼𝐻

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.289)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶𝑛+1
𝑘,𝐽 (5.290)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶𝑛+1
𝑘,𝐽 (5.291)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝐻

*
𝐽 (5.292)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝐻

*
𝐽 (5.293)

The heat conduction term is computed at each face 𝑘 and assembled to the left (IL) and right (IR)
control volumes.

𝐹𝑘,𝐽 = −
(︂
𝜇𝑘
Pr

+
𝜇𝑇,𝑘
Pr𝑇

)︂(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.294)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.295)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.296)

𝑞𝑘 = −
(︂
𝜇𝑘
Pr

+
𝜇𝑇,𝑘
Pr𝑇

)︂(︀
ℎ*𝑥𝐴𝑥 + ℎ*𝑦𝐴𝑦 + ℎ*𝑧𝐴𝑧

)︀
(5.297)

𝑏𝑑𝐼𝐿 − = 𝑞𝑘 (5.298)
𝑏𝑑𝐼𝑅 + = 𝑞𝑘 (5.299)
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5.5.16. Species, 3D Turbulent Transport

There is a species equations for each species. The mass fraction is 𝑌𝑠, where 𝑠 is the species number. The
time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.300)

𝑏𝑡𝐼 − =
(︀
𝜌*𝐼𝑌

*
𝑠,𝐼 − 𝜌𝑛𝐼𝑌

𝑛
𝑠,𝐼

)︀ Δ𝑉𝐼
Δ𝑡

(5.301)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶𝑛+1
𝑘,𝐽 (5.302)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶𝑛+1
𝑘,𝐽 (5.303)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑌

*
𝑠,𝐽 (5.304)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑌

*
𝑠,𝐽 (5.305)

The mass di�usion term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐹𝑘,𝐽 = −
(︂
𝜇𝑘
Sc

+
𝜇𝑇,𝑘
Sc𝑇

)︂(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.306)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.307)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.308)

𝑓𝑘 = −
(︂
𝜇𝑘
Sc

+
𝜇𝑇,𝑘
Sc𝑇

)︂(︀
𝑦𝑠*𝑥𝐴𝑥 + 𝑦𝑠*𝑦𝐴𝑦 + 𝑦𝑠*𝑧𝐴𝑧

)︀
(5.309)

𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (5.310)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (5.311)

The chemical production source terms from the EDC model are applied at the centroid of the control
volume. The production term is constructed from the rate, the �ne structure mass fractions, and the
average mass fractions.
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𝐴𝑠𝐼,𝐼 + = 𝑟̇𝑠,𝐼Δ𝑉𝐼 (5.312)

𝜔̇𝑠,𝐼 = 𝑟̇𝑠,𝐼

(︁
𝑌 𝑓𝑠
𝑠,𝐼 − 𝑌𝑠,𝐼

)︁
(5.313)

𝑏𝑠𝐼 + = 𝜔̇𝑠,𝐼Δ𝑉𝐼 (5.314)

5.5.17. Soot Transport, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.315)

𝑏𝑡𝐼 − = (𝜌*𝐼𝑆
*
𝐼 − 𝜌𝑛𝐼𝑆

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.316)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶𝑛+1
𝑘,𝐽 (5.317)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶𝑛+1
𝑘,𝐽 (5.318)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑆

*
𝐽 (5.319)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑆

*
𝐽 (5.320)

The di�usion term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐹𝑘,𝐽 = −
(︂
𝜇𝑘
Sc

+
𝜇𝑇,𝑘
Sc𝑇

)︂(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.321)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.322)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.323)
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𝑓𝑘 = −
(︂
𝜇𝑘
Sc

+
𝜇𝑇,𝑘
Sc𝑇

)︂(︀
𝑠*𝑥𝐴𝑥 + 𝑠*𝑦𝐴𝑦 + 𝑠*𝑧𝐴𝑧

)︀
(5.324)

𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (5.325)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (5.326)

The soot production source term from the EDC model is applied at the centroid of the control
volume.

𝑏𝑠𝐼 + = 𝜔̇𝑠𝑜𝑜𝑡,𝐼Δ𝑉𝐼 (5.327)

5.5.18. Soot Nuclei Transport, 3D Turbulent Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(5.328)

𝑏𝑡𝐼 − = (𝜌*𝐼𝑁
*
𝐼 − 𝜌𝑛𝐼𝑁

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(5.329)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶𝑛+1
𝑘,𝐽 (5.330)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶𝑛+1
𝑘,𝐽 (5.331)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑁

*
𝐽 (5.332)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑁

*
𝐽 (5.333)

The di�usion term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.
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𝐹𝑘,𝐽 = −
(︂
𝜇𝑘
Sc

+
𝜇𝑇,𝑘
Sc𝑇

)︂(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦 +
𝜕𝑁𝐽

𝜕𝑧

⃒⃒⃒⃒
𝑘

𝐴𝑧

)︂
(5.334)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (5.335)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (5.336)

𝑓𝑘 = −
(︂
𝜇𝑘
Sc

+
𝜇𝑇,𝑘
Sc𝑇

)︂(︀
𝑛*
𝑥𝐴𝑥 + 𝑛*

𝑦𝐴𝑦 + 𝑛*
𝑧𝐴𝑧
)︀

(5.337)

𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (5.338)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (5.339)

The soot nuclei production source term from the EDC model is applied at the centroid of the control
volume.

𝑏𝑠𝐼 + = 𝜔̇𝑛𝑢𝑐𝑙,𝐼Δ𝑉𝐼 (5.340)

5.6. DISCRETE BOUNDARY CONDITIONS

The Dirichlet boundary conditions are applied directly in the linear solver. The �ux boundary
conditions are linearized and then assembled to the linear system. The �ux boundary conditions are
processed on a face-by-face basis. The data available with each face includes all the data on the parent
element.

5.6.1. Symmetry, 3D Momentum

The viscous stresses can only impart a normal force at a symmetry boundary. The only other force
contribution is from the pressure. The pressure is integrated over the boundary using the boundary
nodal values.

The normal viscous force component is assembled to the right hand side only for the laminar
equations.

The viscous stress and sub-face normal are computed at each sub-face on the element face. The
integrated sub-face force is assembled to its adjacent node.

𝐹𝑤𝑖 = 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
𝑛𝑗𝐴𝑤 (5.341)

where 𝑛𝑗 is the unit sub-face normal vector and𝐴𝑤 is the area of the sub-face.
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5.6.2. Outflow, 3D Mass

The mass �ux at a pressure-speci�ed out�ow boundary is given by Equation 5.92. The pressure at the
face in the equation is 𝑃𝑓𝑐 and is the speci�ed value (see Figure 5.3-3). The interior sub-face pressure is
𝑃𝑠𝑠 and is an average of nodal pressures. The fully assembled Poisson equation for pressure will have
positive diagonal coe�cients. Note that the form of Equation 5.92 will contribute a positive diagonal
value. The nodal pressure gradient,𝐺𝑖𝑗𝑝

𝑎𝑠𝑡
𝑗 , contains the in�uence of the speci�ed pressure. The

di�erence of the nodal pressure gradient and the boundary pressure gradient cancels the in�uence of the
speci�ed pressure in the out�ow boundary condition. The speci�ed pressure at the boundary only
directly in�uences the momentum balance.

5.6.3. Outflow, 3D Momentum

The out�ow boundary condition is applied to boundaries with either pressure-speci�ed in�ow or
pressure-speci�ed out�ow. The viscous stresses are integrated over the boundary, but the viscous force
normal to the boundary is neglected.

If the �ow is entering the domain, the convected velocity is a combination of a speci�ed tangential
velocity (co�ow) and a normal velocity. The normal velocity is constructed from the local nodal
values.

If the �ow exits the domain, the convected velocity values are interpolated from nodal velocities in the
element adjacent to the boundary, similar to the interior scheme discussed in Section 5.3.1. The
convected velocities are blended from an upwind interpolation (nearest boundary node) and centered
interpolation. The shape functions for the centered interpolation are taken from the interior sub-face
that is directly opposite the boundary sub-face. The upwind scheme will extrapolate from the nearest
node and the linear pro�le skew upwind scheme will interpolate to the boundary sub-face centroid.

5.6.4. Outflow, 3D Energy and Temperature

The out�ow boundary condition is applied to boundaries with either pressure-speci�ed in�ow or
pressure-speci�ed out�ow. The heat conduction is integrated over the boundary. The transport of
enthalpy by mass di�usion for a multicomponent system is not yet implemented (cdm – 9/26/10).

If the �ow is entering the domain, the convected enthalpy is set to a far-�eld reference value.

The convected enthalpy values are interpolated from nodal enthalpies in the element adjacent to the
boundary, similar to the interior scheme discussed in Section 5.3.1. The convected enthalpies are blended
from an upwind interpolation (nearest boundary node) and centered interpolation. The shape
functions for the centered interpolation are taken from the interior sub-face that is directly opposite the
boundary sub-face. The upwind scheme will extrapolate from the nearest node and the linear pro�le
skew upwind scheme will interpolate to the boundary sub-face centroid.
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5.6.5. Outflow, 3D Species and Soot

The out�ow boundary condition is applied to boundaries with either pressure-speci�ed in�ow or
pressure-speci�ed out�ow. The mass di�usion is integrated over the boundary.

If the �ow is entering the domain, the convected mass fractions are set to far-�eld reference values.

The convected species mass fraction values are interpolated from nodal mass fractions in the element
adjacent to the boundary, similar to the interior scheme discussed in Section 5.3.1. The convected mass
fractions are blended from an upwind interpolation (nearest boundary node) and centered
interpolation. The shape functions for the centered interpolation are taken from the interior sub-face
that is directly opposite the boundary sub-face. The upwind scheme will extrapolate from the nearest
node and the linear pro�le skew upwind scheme will interpolate to the boundary sub-face centroid.

5.6.6. Outflow, 3D Turbulent Kinetic Energy

The out�ow boundary condition is applied to boundaries with either pressure-speci�ed in�ow or
pressure-speci�ed out�ow. If the �ow is entering the domain, the convected turbulent kinetic energy is
set by one of two ways:

∙ user speci�ed value for turbulent kinetic energy, e.g. 0.0.,

∙ calculated entrainment value based on user speci�ed turbulence intensity, 𝑇𝑖𝑛, and the relationship

𝑘𝑖𝑝 =
3

2
(𝑈𝑟𝑒𝑓𝑇𝑖𝑛)

2 . (5.342)

The reference velocity at the integration point, 𝑈𝑟𝑒𝑓 , is determined by the current integration point
mass �ow rate divided by a characteristic area divided by the integration point density.

The convected turbulent kinetic energy is blended from an upwind interpolation (nearest boundary
node) and centered interpolation. The shape functions for the centered interpolation are taken from
the interior sub-face that is directly opposite the boundary sub-face. The upwind scheme will
extrapolate from the nearest node and the linear pro�le skew upwind scheme will interpolate to the
boundary sub-face centroid.

5.6.7. Outflow, 3D Turbulence Dissipation

The out�ow boundary condition is applied to boundaries with either pressure-speci�ed in�ow or
pressure-speci�ed out�ow. If the �ow is entering the domain, the convected turbulence dissipation rate
is set by one of two ways:

∙ user speci�ed value for turbulent dissipation rate, e.g. 0.0.,

∙ calculated entrainment value based on user speci�ed turbulence intensity, characteristic length and
the relationship
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𝜖𝑖𝑝 = 𝐶𝜇
3/4
𝑘
3/2
𝑖𝑝

𝑙
, (5.343)

where 𝑙 = 0.07𝐿;𝐿 represents the user-speci�ed characteristic length of large turbulent structures. The
integration point turbulent kinetic energy is again based on the user speci�ed turbulence intensity in
conjunction with Equation 5.342.

The convected turbulent dissipation rate is blended from an upwind interpolation (nearest boundary
node) and centered interpolation. The shape functions for the centered interpolation are taken from
the interior sub-face that is directly opposite the boundary sub-face. The upwind scheme will
extrapolate from the nearest node and the linear pro�le skew upwind scheme will interpolate to the
boundary sub-face centroid.

5.6.8. Wall, 3D Turbulent Momentum

The e�ect of the wall force imparted by the wall on the �uid, as outlined in Section 2.7.5, is handled by
the standard law of the wall formulation. To explain this procedure, consider a two dimensional
element with two faces that consist of a wall boundary side set, Figure 5.6-1.
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Figure 5.6-1.. Integration locations for a wall boundary.

The resulting discretization of the 𝑖𝑡ℎ-component of velocity, for the boundary face that is a wall can be
expressed as follows,

𝐹𝑤𝑖 = −
∫︁
𝜏𝑖𝑗𝑛𝑗𝑑𝑆 = 𝜆𝑤𝐴𝑤𝑢𝑖‖, (5.344)

where𝐴𝑤 is the area, 𝑛𝑗 is the unit normal to the wall, and 𝜆𝑤 is the wall shear stress factor from law of
the wall,
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𝜆𝑤 =
𝜌𝜅𝑢𝜏

𝑙𝑛 (𝐸𝑦+)
. (5.345)

The parallel velocity component in Equation 5.344 is determined by the projection of the nodal velocity
onto each of the four (hex) or three (tet) subcontrol boundary faces (see Equation 2.182). In many
respects, this procedure is very much like that of a cell-centered scheme in that the nodal velocity is
assumed to act over all boundary faces. The paramount di�erence is the ability of one nodal velocity to
be applied to a multitude of faces of potentially di�erent orientation.

As indicated in Section 2.7.5, the friction velocity at the centroid of the boundary face is determined by
a nonlinear solution procedure that will now be described. The procedure begins by use of
Equation 2.171, rearranged to form the function 𝐹 ,

𝐹 (𝑢𝜏 ) = 𝑢‖ −
𝑢𝜏
𝜅
𝑙𝑛

(︂
𝐸𝜌𝑌𝑝𝑢𝜏

𝜇

)︂
. (5.346)

The objective is to determine the value of the friction velocity such that the function, 𝐹 , is minimized.
A Newton solve is therefore constructed that has the following standard iteration form,

𝑢𝑘+1
𝜏 = 𝑢𝑘𝜏 −

𝐹 𝑘

𝐹 ′𝑘 , (5.347)

where 𝐹 𝑘 is de�ned by Equation 5.346 evaluated at the 𝑘𝑡ℎ iteration level, and 𝐹 ′𝑘 is de�ned by

𝐹 ′𝑘 = −1

𝜅

[︂
1 + 𝑙𝑛

(︂
𝐸𝜌𝑌𝑝𝑢𝜏

𝑘

𝜇

)︂]︂
. (5.348)

The procedure by which the normal distance to the wall is determined is based on the method outlined
by the vertex-centered CFD code TASC�ow [154]. In the procedure, the normal distance to the wall is
linked to the grid by the evaluation of the normal distance from the subcontrol volume center to the
boundary face. Therefore, the normal distance to the wall can be determined by the following steps:

∙ Determination of the coordinates of the subcontrol volume center by a shape function loop over all
nodes. This step in the procedure mandates a SIERRA heterogeneous (face-element) workset
algorithm.

∙ The determination of a vector, 𝑥𝑖, from the subcontrol volume center to the respective nodal
location.

∙ The use of the perpendicular projection operator, 𝑃⊥, which is de�ned by,

𝑃⊥ = −𝑛𝑖𝑛𝑗, (5.349)

and �nally,

∙ The determination of the normal distance by
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𝑌𝑝 =
√︀
𝑥⊥,12 + 𝑥⊥,22 + 𝑥⊥,32. (5.350)

For convenience, the density and viscosity used in all of the above equations are nodal quantities. In
other words, the physical properties are not interpolated to the centroid of the boundary face.

Once the wall shear stress factor is evaluated, it is required that the appropriate component of the
velocity parallel to the boundary face is used appropriately within the respective momentum equations.
As was discussed in the section on non-orthogonal momentum math models, Section 2.7.5, the parallel
velocity can be written in component form (see Equation 2.183).

5.6.8.1. X-Momentum

The x-momentum wall force, 𝐹𝑤1 is expressed as

𝐹𝑤1 = −𝜆𝑤𝐴𝑤𝑢1‖, (5.351)

where 𝑢1‖ is de�ned as

𝑢1‖ =
(︀
1− 𝑛2

1

)︀
𝑢1,𝑛𝑑 − (1− 𝑛1𝑛2)𝑢2,𝑛𝑑 − (1− 𝑛1𝑛2)𝑢3,𝑛𝑑. (5.352)

Note that the form of Equation 5.352 allows for an implicit treatment of the force imparted by the wall
on the �uid by the factor

𝜆𝑤𝐴𝑤
(︀
1− 𝑛2

1

)︀
. (5.353)

5.6.8.2. Y-Momentum

The y-momentum wall force, 𝐹𝑤2 is expressed as

𝐹𝑤2 = −𝜆𝑤𝐴𝑤𝑢2‖, (5.354)

where 𝑢2‖ is de�ned as

𝑢2‖ =
(︀
1− 𝑛2

2

)︀
𝑢2,𝑛𝑑 − (1− 𝑛2𝑛1)𝑢1,𝑛𝑑 − (1− 𝑛2𝑛3)𝑢3,𝑛𝑑. (5.355)

Note that the form of Equation 5.355 allows for an implicit treatment of the force imparted by the wall
on the �uid by the factor

𝜆𝑤𝐴𝑤
(︀
1− 𝑛2

2
)︀
. (5.356)
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5.6.8.3. Z-Momentum

The z-momentum wall force, 𝐹𝑤3 is expressed as

𝐹𝑤3 = −𝜆𝑤𝐴𝑤𝑢3‖, (5.357)

where 𝑢3‖ is de�ned as

𝑢3‖ =
(︀
1− 𝑛2

3

)︀
𝑢3,𝑛𝑑 − (1− 𝑛3𝑛1)𝑢1,𝑛𝑑 − (1− 𝑛3𝑛2)𝑢2,𝑛𝑑. (5.358)

Note that the form of Equation 5.358 allows for an implicit treatment of the force imparted by the wall
on the �uid by the factor

𝜆𝑤𝐴𝑤
(︀
1− 𝑛2

3

)︀
. (5.359)

5.6.9. Wall, 3D Turbulent Kinetic Energy

As described in Section 2.7.6, the wall boundary condition for turbulent kinetic energy can be applied
in a variety of ways. In general, there are two supported methods.

The �rst method is specify the near-wall turbulent kinetic energy as a Dirichlet condition whose value is
determined by the assumption of local equilibrium between production and dissipation of turbulent
kinetic energy.

The second method is to solve a transport equation for the near wall turbulent kinetic energy whose
form utilizes a modi�ed production and dissipation term based on the assumption of local equilibrium
between production and dissipation of turbulent kinetic energy. The use of a full control volume
equation for the near wall turbulent kinetic energy in the presence of non-zero convection and di�usion
coe�cients is a violation of the very tenants of the law of the wall formulation which implicitly assumes
pure shear �ow behavior. Nevertheless, this method is frequently used.

The Dirichlet method consists of the determination of each integration point turbulent kinetic energy
by use of the following equation,

𝑘𝑖𝑝 =
𝑢2𝜏

𝐶
1/2
𝜇

, (5.360)

The value of 𝑢𝜏 is determined by a nonlinear iteration solve of the law of the wall formulation. The
integration point values are area weighted and assembled into the nodal location. The nodal value of the
turbulent kinetic energy is given by the accumulated area weighed integration point turbulent kinetic
energy divided by the total face area.
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5.6.10. Wall, 3D Turbulence Dissipation

Consistent with all of literature, the near-wall value of turbulent dissipation is determined from
iteration-lagged values of friction velocity,

𝜖𝑛+1
𝑖𝑝 =

𝑢𝜏
3

𝜅𝑌𝑝
. (5.361)

As with the implementation of the turbulent kinetic energy, the value computed in Equation 5.361 is
area weighted and assembled to the nodal location. The Dirichlet condition is determined by the
assembled quantity divided by the entire area of the boundary faces that are “owned” by the node.

5.7. CONJUGATE HEAT TRANSFER

5.7.1. General Formulation

A conjugate heat transfer problem is one in which conductive heat transfer in a solid region is coupled
to the convective heat transfer in a neighboring �uid. In its most general form, the coupling at the
boundary is governed by the conservation of energy, such that heat �ux out of the solid is equal to heat
�ux into the �uid:

q𝑠 · n = q𝑓 · n (5.362)

where q𝑠 and q𝑓 are the heat �ux in the solid and �uid, respectively, and n is the surface normal directed
into the solid and out of the �uid.

The exact form in which equation (5.362) is implemented depends on whether the �uid �ow is laminar
or turbulent, since di�erent expressions must be used in these cases for q𝑓 . The heat �ux in the solid is
always due to conduction alone, but there are several possible choices that could be made for the
discretization of this �ux in space and time.

5.7.2. Time Integration

In Fuego, conjugate heat transfer is implemented through loose coupling between the �uid and solid
regions, meaning that at each time step, each region is solved separately by treating information from
the neighboring region as “given”, and no extra iterations are done between regions to ensure
convergence at a single time step. The speci�c algorithm used can be described as a
temperature-forward, �ux-back scheme. At a given time step 𝑛, the �uid equations are solved using the
current solid temperature as a Dirichlet boundary condition; the temperature �eld of the �uid is thus
updated to state 𝑛+ 1 everywhere except on the boundary. Then, the heat �ux in the �uid at step 𝑛+ 1
is computed and transferred to the solid. Finally, the solid region is solved, updating to state 𝑛+ 1 using
the information from the �uid as a �ux boundary condition.
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Rather than applying the �uid heat �ux directly to the solid, we choose to write the solid boundary
condition in the form of a convective heat �ux boundary condition:

q𝑠(x) · n = ℎ(x) (𝑇∞(x)− 𝑇𝑠(x)) (5.363)

where ℎ is a convection coe�cient, 𝑇∞ is the �uid temperature away from the wall, and 𝑇𝑠 is the solid
surface temperature. Both ℎ and 𝑇∞ are computed from the �uid temperature �eld in a way that will be
speci�ed, while 𝑇𝑠 is left free in the solution of the solid region temperature. This formulation can be
shown to be more stable than the alternative of simply transferring the heat �ux in the �uid and
applying it as a pure Neumann boundary condition to the solid.

Using superscripts to denote time step, the loosely coupled integration scheme can thus be written as:

𝑇 𝑛+1
𝑓 = 𝑇 𝑛𝑠 on Γ𝑓𝑠 (5.364a)

q𝑛+1
𝑠 (x) · n = ℎ𝑛+1(x)

(︀
𝑇 𝑛+1
∞ (x)− 𝑇 𝑛+1

𝑠 (x)
)︀

on Γ𝑓𝑠 (5.364b)

where Γ𝑓𝑠 is the �uid-solid interface.

5.7.3. Discretization of Conduction Region Boundary Condition

The quantity that is needed for a �ux boundary condition condition in our CVFEM formulation is the
heat �ux integrated over the interface surface area associated with each node on the surface. Equation
(5.364b) is applied to the conduction region at each surface node by assuming that ℎ, 𝑇𝑠 and 𝑇∞ can be
treated as constants on that node’s sub-control surfaces:

𝑄𝑛+1
𝑠,𝐼 =

∫︁
𝑆𝐶𝑆𝐼

q𝑠 · n𝑑𝐴 = ℎ𝑛+1
𝐼 𝐴𝐼

(︀
𝑇 𝑛+1
∞,𝐼 − 𝑇 𝑛+1

𝑠,𝐼

)︀
(5.365)

where𝐴𝐼 is the surface area associated with node 𝐼 . The nodal data ℎ𝑛+1
𝐼 and 𝑇 𝑛+1

∞,𝐼 are computed from
the �uid solution at time step 𝑛+ 1 (see section 5.7.4), while 𝑇 𝑛+1

𝑠,𝐼 is a degree of freedom solved during
the conduction region solution.

5.7.4. Computation of Convection Temperature and Coefficient

On the �uid side, the total heat transfer associated with a node on the �uid-solid interface is the integral
of the heat �ux over that node’s sub-control surfaces on the interface:

𝑄𝑛+1
𝑓,𝐼 =

∫︁
𝑆𝐶𝑆𝐼

q𝑛+1
𝑓 · n𝑑𝐴. (5.366)

Consider the case in which �uid and solid surfaces meshes conform exactly at the interface. Then, every
�uid node can be associated with a corresponding solid node, and using Equations (5.362) and (5.365)
we have:

𝑄𝑛+1
𝑓,𝐼 = 𝑄𝑛+1

𝑠,𝐼 (5.367a)
= ℎ𝑛+1

𝐼 𝐴𝐼
(︀
𝑇 𝑛+1
∞,𝐼 − 𝑇 𝑛+1

𝑠,𝐼

)︀
(5.367b)

≈ ℎ𝑛+1
𝐼 𝐴𝐼

(︀
𝑇 𝑛+1
∞,𝐼 − 𝑇 𝑛+1

𝑓,𝐼

)︀
(5.367c)
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where the last line (where 𝑇 𝑛+1
𝑓,𝐼 is substituted for 𝑇 𝑛+1

𝑠,𝐼 ) follows approximately from (5.364a); this
approximation is of the same order accuracy as the time integration scheme, and for steady state it is
exact. In cases in which the surface meshes do not conform exactly, the nodal values of ℎ𝐼 and 𝑇∞,𝐼 are
passed through an interpolation transfer, introducing a small amount of error.

The total heat transfer𝑄𝑓,𝐼 must be decomposed into two components: 𝑄𝑊,𝐼 representing the
variables of the �uid at nodes on the surface (“wall”), and𝑄∞,𝐼 representing variables at nodes away
from the surface:

𝑄𝑓,𝐼 = 𝑄𝑊,𝐼 +𝑄∞,𝐼 (5.368)

The way in which this decomposition is done depends on whether the �ow is laminar or turbulent, as
will be discussed. Comparing this decomposition with (5.367c), it is clear that:

𝑄𝑊,𝐼 = −ℎ𝐼𝐴𝐼𝑇𝑓,𝐼 (5.369a)
𝑄∞,𝐼 = ℎ𝐼𝐴𝐼𝑇∞,𝐼 (5.369b)

Rearranging:

ℎ𝐼 = − 𝑄𝑊,𝐼

𝑇𝑓,𝐼𝐴𝐼
(5.370a)

𝑇∞,𝐼 =
𝑄∞,𝐼

ℎ𝐼𝐴𝐼
(5.370b)

Finally, we must de�ne the decomposition of𝑄𝑓,𝐼 for laminar and turbulent �ow. It is possible when
using this approach to end up with negative values for ℎ𝐼 , which appear non-physical to the analyst and
are detrimental to the numerical stability of the conduction solve since they reduce diagonal dominance
of the linear system. Since the choice of these parameters is arbitrary as long as they reproduce the
correct energy �ux, when this occurs we reverse the sign of ℎ𝐼 and re-compute 𝑇∞,𝐼 as

𝑇∞,𝐼 =
𝑄𝑓,𝐼

ℎ𝐼
+ 𝑇𝑓,𝐼 (5.371)

5.7.4.1. Resolution of Boundary Layer

The �uid velocity at the solid surface is zero for laminar �ows and turbulent �ow models in which the
boundary layer is resolved, so all heat transfer in the �uid near walls is due to conduction:

q𝑓 (x) = −𝜅𝑓 (x)∇𝑇 (x) (5.372)

where 𝜅𝑓 is the thermal conductivity of the �uid. Substituting this into (5.366) and using the �nite
element interpolation for 𝑇 (x) gives:

𝑄𝑊,𝐼 = −
∫︁
𝑆𝐶𝑆𝐼

𝜅𝑓
∑︁
𝐽

(n · ∇𝑁𝐽)𝑇𝐽𝑑𝐴 (5.373)

where𝑁𝐽 and 𝑇𝐽 are respectively the FEM shape function and temperature degree of freedom
associated with node 𝐽 .
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The most obvious way of decomposing𝑄𝑓,𝐼 is by breaking the summation into two summations, one
over boundary nodes, one over o�-boundary nodes:

𝑄𝑓,𝐼 = −
∫︁
𝑆𝐶𝑆𝐼

𝜅𝑓
∑︁
𝐽∈𝐵

(n · ∇𝑁𝐽)𝑇𝐽𝑑𝐴 (5.374a)

𝑄∞,𝐼 = −
∫︁
𝑆𝐶𝑆𝐼

𝜅𝑓
∑︁
𝐽 /∈𝐵

(n · ∇𝑁𝐽)𝑇𝐽𝑑𝐴 (5.374b)

where𝐵 is the set of nodes on the wall.

These quantities, when substituted into (5.370), give the computed values of ℎ𝐼 and 𝑇∞,𝐼 .

5.7.4.2. Turbulent flow modeling with wall functions

In turbulent �ow where the boundary layer is not resolved, wall boundary conditions are applied by
assuming that the �rst layer of nodes in the �uid lies not exactly on the solid interface, but slightly away
from the wall in the turbulent boundary layer. Various laws of the wall can then be used to relate
quantities at these nodes to the wall values. The enthalpy wall boundary condition for turbulent �ow
can be written in the form (see section ??):

𝑄𝑓,𝐼 = 𝑐𝐼𝐴𝐼(𝐻𝐼 −𝐻𝑊,𝐼) (5.375)

where𝐻𝐼 is the nodal enthalpy,𝐻𝑊,𝐼 is the corresponding enthalpy exactly at the wall, and 𝑐𝐼 is a
coe�cient that depends on the �ow variables. The most obvious decomposition is to let
𝑄𝑊,𝐼 = −𝑐𝐼𝐴𝐼𝐻𝑊,𝐼 and𝑄∞,𝐼 = 𝑐𝐼𝐴𝐼𝐻𝐼 . However, this most obvious decomposition is incorrect.
The di�culty is that enthalpy is measured on a relative scale, rather than an absolute scale like
temperature. For example, consider the case where𝐻𝐼 = 0. This does not imply that 𝑇𝐼 = 0; in Fuego,
it usually corresponds to something near standard temperature and pressure. However, the obvious
decomposition when substituted into (5.370) gives 𝑇∞,𝐼 = 0, which is clearly the wrong value for the
conduction region boundary condition.

Thus, we should choose a decomposition that has𝑄∞,𝐼 = 0 only if 𝑇∞,𝐼 should be zero. The correct
choice is:

𝑄𝑊,𝐼 = −𝑐𝐼𝑇𝑊,𝐼
(︂
𝐻𝐼 −𝐻𝑊,𝐼

𝑇𝐼 − 𝑇𝑊,𝐼

)︂
(5.376a)

𝑄∞,𝐼 = 𝑐𝐼𝑇𝐼

(︂
𝐻𝐼 −𝐻𝑊,𝐼

𝑇𝐼 − 𝑇𝑊,𝐼

)︂
(5.376b)

where 𝑇𝑊,𝐼 is the wall temperature (which for conjugate heat transfer has been obtained from the solid
at the previous time step), and 𝑇𝐼 is the temperature value at node 𝐼 (slightly away from the wall). These
expressions are unde�ned if 𝑇𝐼 = 𝑇𝑊,𝐼 ; in that case, the fraction Δ𝐻/Δ𝑇 is approximated using the
limiting value given by the speci�c heat 𝑐𝑝.
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5.8. ELEMENT TOPOLOGY AND SHAPE FUNCTIONS

The standard mesh con�guration for cell-centered CVFEM’s is to co-locate all �ow variables at the
nodes, also called grid points. The nodes are the vertices of the �nite-elements, as shown in Figure 5.0-1.
The �nite-volumes, also called control volumes, are centered about the nodes. Each element contains a
set of sub-faces that de�ne control-volumes. The sub-faces consist of the segments or surfaces that bisect
the element faces. For example, each control volume on an orthogonal mesh of rectangular elements is
de�ned by four neighboring elements with contributions from the nine nodal values.

Interpolation functions are formed inside each element. In standard �nite element methods, the
interpolation functions are called shape functions and they are used to evaluate the integral
quadratures. The same bilinear or trilinear shape functions are used in CVFEM to construct �uxes at
the sub-faces. Finite-element basis functions are used as interpolation functions to integrate �uxes over
control volume faces which are internal to an element. The control-volume �ux interpolation functions
are element based; a restriction by choice, motivated by code development considerations. In an
element-based scheme, only information that de�nes an element may be used to assemble �uxes. Nodal
information outside the element cannot be used. As a result, the global spatial accuracy is restricted to
second order.

Isoparametric shape functions are used for quadrilateral and hexahedral elements. The geometry of an
isoparametric element is approximated with the same shape function as the solution variables so that
the bilinear/trilinear variation within remains independent of orientation. Triangular and tetrahedral
elements do not require an isoparametric formulation because they are linear. The triangles and
tetrahedra can be made to look like isoparametric elements in order to create a general element
evaluation algorithm.

5.8.1. Quadrilateral Elements

The quadrilateral element has four nodes and four control volume faces. The element con�guration is
shown in Figure 5.8-1. The parametric variables are 𝜉 and 𝜂, and they are coincident with the faces of the
control volumes. The control volume faces are formed by the straight line segments the connect the
bisection points of opposing element edges. The parametric variables have the range −1 ≤ 𝜉 ≤ 1 and
−1 ≤ 𝜂 ≤ 1.

Geometric information inside the element is interpolated from the nodal coordinates. Derivatives of the
physical coordinates are the most fundamental geometric quantity, contributing to the surface areas and
gradients.

𝑥 = 𝑁𝑘𝑋𝑘 𝑦 = 𝑁𝑘𝑌𝑘 (5.377)

𝜕𝑥

𝜕𝜉
=
𝜕𝑁𝑘

𝜕𝜉
𝑋𝑘

𝜕𝑦

𝜕𝜉
=
𝜕𝑁𝑘

𝜕𝜉
𝑌𝑘 (5.378)

𝜕𝑥

𝜕𝜂
=
𝜕𝑁𝑘

𝜕𝜂
𝑋𝑘

𝜕𝑦

𝜕𝜂
=
𝜕𝑁𝑘

𝜕𝜂
𝑌𝑘 (5.379)
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The subscripts on the shape functions correspond to the element-local node numbering. The
isoparametric shape functions and shape function derivatives for quadrilateral elements are given in
Table 5.8-1.

Face 3

Node 4

Face 1

Face 4 Face 2

η

ξ

Node 1 Node 2

Node 3

Figure 5.8-1.. Quadrilateral element topology and numbering

Table 5.8-1.. Nodal shape functions and derivatives for quadrilateral elements

node 𝑁 𝜕𝑁
𝜕𝜉

𝜕𝑁
𝜕𝜂

1 1
4
(1− 𝜉) (1− 𝜂) −1

4
(1− 𝜂) −1

4
(1− 𝜉)

2 1
4
(1 + 𝜉) (1− 𝜂) 1

4
(1− 𝜂) −1

4
(1 + 𝜉)

3 1
4
(1 + 𝜉) (1 + 𝜂) 1

4
(1 + 𝜂) 1

4
(1 + 𝜉)

4 1
4
(1− 𝜉) (1 + 𝜂) −1

4
(1 + 𝜂) 1

4
(1− 𝜉)

The physical surface di�erentials are related to di�erentials in parametric space. The surface area
di�erentials, 𝑛𝑖dA are derived from their three-dimensional counterpart, Equation 5.383, where 𝑥𝜁 = 0,
𝑦𝜁 = 0, and 𝑧𝜁 = 1. The derivatives used in the mapping from a di�erential in parametric space to a
di�erential in physical space are evaluated using Equations 5.378 and 5.379. The di�erential surfaces of a
control-volume sub-face are surfaces of constant 𝜉 or 𝜂. Along Face 1 and 3, the di�erential d𝜉 = 0.
Along Face 2 and 4, the di�erential d𝜂 = 0. For the purposes of constructing a general-purpose
computational �ux algorithm, integration over both parametric components is retained. On each face,
only one surface area component will be non-zero.

𝑛𝑖d𝑆 =
[︀
−𝑦𝜉 𝑥𝜉

]︀
d𝜉 +

[︀
𝑦𝜂 −𝑥𝜂

]︀
d𝜂 (5.380)

The usefulness of the general approach will become more apparent when triangular elements are
considered.
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The normals to the control-volume surfaces are positive in the direction of positive coordinate axes. The
normal to a 𝜉-constant face is along the positive 𝜉-axis. The normal to a 𝜂-constant face is along the
positive 𝜂-axis. The signs on the di�erentials are selected such that the �uxes have the proper signs
relative to the control volume. The values of the element variables and the surface di�erentials at the
control-volume faces are given in Table 5.8-2. The di�erential d𝜂 is negative for Face 3 because the
direction for out/in �ow from Node 3 to Node 4 is opposite in direction of the surface normal de�ned
by 𝑛𝑖d𝑆.

Table 5.8-2.. Element variable values and differentials at control-
volume faces for quadrilateral elements. Face-to-edge number
mapping.

face Edge ( Nodeout →Nodein ) 𝜉 𝜂 d𝜉 d𝜂

1 1 → 2 0 −1
2

0 1

2 2 → 3 1
2

0 1 0

3 3 → 4 0 1
2

0 −1

4 1 → 4 −1
2

0 1 0

Volume integrals require the volume di�erential, d𝑥d𝑦. In terms of the element parameters, the volume
di�erential is

d𝑥d𝑦 = 𝐽d𝜉d𝜂, (5.381)

where
𝐽 = 𝑥𝜉𝑦𝜂 − 𝑥𝜂𝑦𝜉. (5.382)

The quadrature points and di�erential values are shown in Table 5.8-3.
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Table 5.8-3.. Element variable values and differentials at sub-
control volume centers for quadrilateral elements.

sub-volume 𝜉 𝜂 d𝜉d𝜂

1 −1
2

−1
2

1

2 1
2

−1
2

1

3 1
2

1
2

1

4 −1
2

1
2

1

5.8.2. Triangular Elements

The triangular element has three nodes and three control volume faces. The element con�guration is
shown in Figure 5.8-2. The control volume faces run from the centroid of the element to the element
edge bisection points. The parametric coordinate system is de�ned by the triangle natural coordinates,

Face 3

Node 1 Node 2

Node 3

Face 1

Face 2

Figure 5.8-2.. Triangular element topology and numbering

𝐿1, 𝐿2 and 𝐿3, since a Cartesian mapping cannot be de�ned. The natural coordinates are the shape
functions. As an example, the value of𝐿1 at an interpolation point is the shape function associated with
Node 1. The value of 𝐿1 is the fraction of the element triangle area covered by a sub-triangle, formed by
the interpolation point and the edge opposite of Node 1, shown in Figure 5.8-3. For consistency with the
quadrilateral element notation, the (𝜉, 𝜂) parametric variables are de�ned as 𝜉 = 𝐿1 and 𝜂 = 𝐿2, where
𝐿3 is de�ned by the fact that the natural coordinates always sum to one. The linear shape functions and
shape function derivatives for triangular elements are given in Table 5.8-4.
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c)  L3

111 2 2 2

3 3 3

a)  L1 b)  L2

Figure 5.8-3.. Triangular natural coordinate system, shaded area
corresponds to opposite node.

Table 5.8-4.. Nodal shape functions and derivatives for triangular elements.
node 𝑁 𝜕𝑁

𝜕𝜉
𝜕𝑁
𝜕𝜂

1 𝜉 1 0

2 𝜂 0 1

3 1− 𝜉 − 𝜂 −1 −1

The surface integrals are tricky because there is no surface that lays on a line of constant 𝜉 or 𝜂. Along
Face 1, 1/2 > 𝜉 > 1/3 and 1/2 > 𝜂 > 1/3. Along Face 2, 1/3 > 𝜉 > 0 and 1/3 < 𝜂 < 1/2. Along
Face 3, 1/3 < 𝜉 < 1/2 and 1/3 > 𝜂 > 0. The integrations are taken from the centroid to the element
edges. The values of the element variables and the surface di�erentials at the control-volume faces are
given in Table 5.8-5.

The form of the volume di�erentials are the same as with the quadrilateral elements. For volume
integrals, quadrature points and di�erential values are shown in Table 5.8-6.

5.8.3. Hexahedral Elements

For hexahedral elements, there are eight nodes and twelve subfaces de�ning control volumes, shown in
Figure 5.8-4. The shape functions are trilinear functions of the element variables, 𝜉, 𝜂, and 𝜁 . The shape
functions and derivatives at each node are given in Table 5.8-7. The control volume sub-face
numbering, shown in Table 5.8-8, follows the convention that the face has the same number as the
element edge that connects the nodes that de�ne the two adjacent sub-control volumes.

The surface integrals require the vector of di�erential surface area components, (d𝐴𝑥, d𝐴𝑦, d𝐴𝑧),
which is equivalent to the di�erential surface area d𝑆 multiplied by the unit surface normal vector 𝑛𝑖.
Since the control volume surfaces are constructed using four points within an element, it is noted that
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Table 5.8-5.. Element variable values and differentials at control-
volume faces for triangular elements

face Edge ( Nodeout →Nodein ) 𝜉 𝜂 d𝜉 d𝜂

1 1 → 2 5
12

5
12

1
6

−1
6

2 2 → 3 1
6

5
12

−1
3

−1
6

3 3 → 1 5
12

1
6

1
6

1
3

Table 5.8-6.. Element variable values and differentials at sub-
control volume centers for triangular elements.

sub-volume 𝜉 𝜂 d𝜉d𝜂

1 7
12

5
24

1
6

2 5
24

7
12

1
6

3 5
24

5
24

1
6

assuming the surfaces are planar results in an error. Sometimes this error is deemed acceptable, and a
faster algorithm is used to compute the surface area and volume. However, when strict conservation is
required, an exact algorithm using a polyhedral decomposition is employed to compute the exact
volume and surface area. These are detailed below.

5.8.3.1. Volume and Area Calculation Assuming Planar Surfaces

The di�erential surface area, 𝑛𝑖d𝑆, is calculated in parametric space by taking the cross-product of two
di�erential surface-tangent vectors. Let the surface be described by the collection of points 𝑆(𝑥, 𝑦, 𝑧).
For example, a tangent vector in the 𝜉-direction is 𝜕𝑥𝑖/𝜕𝜉. The normal surface area component for all
three possible surface parameterizations is

𝑛𝑘d𝑆 =

[︂
𝜕𝑥𝑖
𝜕𝜂

𝜖𝑖𝑗𝑘
𝜕𝑥𝑗
𝜕𝜁

d𝜂d𝜁

]︂
+

[︂
𝜕𝑥𝑖
𝜕𝜉

𝜖𝑖𝑗𝑘
𝜕𝑥𝑗
𝜕𝜂

d𝜉d𝜂

]︂
+

[︂
𝜕𝑥𝑖
𝜕𝜁

𝜖𝑖𝑗𝑘
𝜕𝑥𝑗
𝜕𝜉

d𝜁d𝜉

]︂
(5.383)

where 𝜖𝑖𝑗𝑘 is the alternating unit tensor and de�nes the cross product.

𝜖𝑖𝑗𝑘 =

⎧⎨⎩
1 if 𝑖𝑗𝑘 equals an even permutation 123, 231, or 312
0 if 𝑖𝑗𝑘 contains a repeated index

−1 if 𝑖𝑗𝑘 equals an odd permutation 132, 213, or 321
(5.384)
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Figure 5.8-4.. Hexahedral element topology and numbering

Using a shortened notation,

𝑛𝑖d𝑆 =
[︁ ⃒⃒⃒

𝜕(𝑦,𝑧)
𝜕(𝜂,𝜁)

⃒⃒⃒ ⃒⃒⃒
𝜕(𝑧,𝑥)
𝜕(𝜂,𝜁)

⃒⃒⃒ ⃒⃒⃒
𝜕(𝑥,𝑦)
𝜕(𝜂,𝜁)

⃒⃒⃒ ]︁
d𝜂d𝜁

+
[︁ ⃒⃒⃒

𝜕(𝑦,𝑧)
𝜕(𝜁,𝜉)

⃒⃒⃒ ⃒⃒⃒
𝜕(𝑧,𝑥)
𝜕(𝜁,𝜉)

⃒⃒⃒ ⃒⃒⃒
𝜕(𝑥,𝑦)
𝜕(𝜁,𝜉)

⃒⃒⃒ ]︁
d𝜁d𝜉

+
[︁ ⃒⃒⃒

𝜕(𝑦,𝑧)
𝜕(𝜉,𝜂)

⃒⃒⃒ ⃒⃒⃒
𝜕(𝑧,𝑥)
𝜕(𝜉,𝜂)

⃒⃒⃒ ⃒⃒⃒
𝜕(𝑥,𝑦)
𝜕(𝜉,𝜂)

⃒⃒⃒ ]︁
d𝜉d𝜂, (5.385)

where the Jacobian notation is de�ned by

𝜕(𝑥, 𝑦)

𝜕(𝜉, 𝜂)
=

[︂
𝑥𝜉 𝑥𝜂
𝑦𝜉 𝑦𝜂

]︂
. (5.386)

The values of the element variables and the surface di�erentials at the control-volume faces are given in
Table 5.8-8.

Volume integrals require the volume di�erential, d𝑥d𝑦d𝑧. In terms of the element parameters, the
volume di�erential is

d𝑥d𝑦d𝑧 = 𝐽d𝜉d𝜂d𝜁, (5.387)

where

𝐽 = 𝑥𝜉𝑦𝜂𝑧𝜁 − 𝑥𝜁𝑦𝜂𝑧𝜉

+ 𝑥𝜂𝑦𝜁𝑧𝜉 − 𝑥𝜉𝑦𝜁𝑧𝜂

+ 𝑥𝜁𝑦𝜉𝑧𝜂 − 𝑥𝜂𝑦𝜉𝑧𝜁 (5.388)

The quadrature points and di�erential values are shown in Table 5.8-9.
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Table 5.8-7.. Nodal shape functions and derivatives for hexahe-
dral elements. Range is (-1,1).

node 𝑁 𝜕𝑁
𝜕𝜉

𝜕𝑁
𝜕𝜂

𝜕𝑁
𝜕𝜁

1 1
8
(1− 𝜉) (1− 𝜂) (1− 𝜁) −1

8
(1− 𝜂) (1− 𝜁) −1

8
(1− 𝜉) (1− 𝜁) −1

8
(1− 𝜉) (1− 𝜂)

2 1
8
(1 + 𝜉) (1− 𝜂) (1− 𝜁) 1

8
(1− 𝜂) (1− 𝜁) −1

8
(1 + 𝜉) (1− 𝜁) −1

8
(1 + 𝜉) (1− 𝜂)

3 1
8
(1 + 𝜉) (1 + 𝜂) (1− 𝜁) 1

8
(1 + 𝜂) (1− 𝜁) 1

8
(1 + 𝜉) (1− 𝜁) −1

8
(1 + 𝜉) (1 + 𝜂)

4 1
8
(1− 𝜉) (1 + 𝜂) (1− 𝜁) −1

8
(1 + 𝜂) (1− 𝜁) 1

8
(1− 𝜉) (1− 𝜁) −1

8
(1− 𝜉) (1 + 𝜂)

5 1
8
(1− 𝜉) (1− 𝜂) (1 + 𝜁) −1

8
(1− 𝜂) (1 + 𝜁) −1

8
(1− 𝜉) (1 + 𝜁) 1

8
(1− 𝜉) (1− 𝜂)

6 1
8
(1 + 𝜉) (1− 𝜂) (1 + 𝜁) 1

8
(1− 𝜂) (1 + 𝜁) −1

8
(1 + 𝜉) (1 + 𝜁) 1

8
(1 + 𝜉) (1− 𝜂)

7 1
8
(1 + 𝜉) (1 + 𝜂) (1 + 𝜁) 1

8
(1 + 𝜂) (1 + 𝜁) 1

8
(1 + 𝜉) (1 + 𝜁) 1

8
(1 + 𝜉) (1 + 𝜂)

8 1
8
(1− 𝜉) (1 + 𝜂) (1 + 𝜁) −1

8
(1 + 𝜂) (1 + 𝜁) 1

8
(1− 𝜉) (1 + 𝜁) 1

8
(1− 𝜉) (1 + 𝜂)

5.8.3.2. Exact Volume and Surface Area Calculation

When the planar surface assumption for the control volumes is insu�cient, the volume and surface
areas can be calculated exactly. To accomplish this, a set of subcontrol points is constructed that de�nes
the subcontrol surfaces. The locations and numbering of these subcontrol points are shown in
Figure 5.8-5. The coordinates of the edge points are the average of the two adjacent vertices, the
coordinates of the facial points are the average of the four vertices de�ning the face, and the coordinates
of the interior point is the average of the eight vertices de�ning the volume.

The 12 subcontrol surfaces for the Hexahedron are the de�ned using points in counterclockwise
ordering as shown in Table 5.8-10. These surfaces are further broken down into four triangles de�ned by
the four points on the surface and a simply averaged midpoint. The four triangles are de�ned by points
{5, 1, 2}, {5, 2, 3}, {5, 3, 4}, and {5, 4, 1}, respectively. The area vectors of each triangle are summed
to calculate the total surface area vector. Noting that the triangles are planar, the area vector of each
triangle is calculated exactly using half the cross product of any two right-hand oriented vectors.

The eight subcontrol volumes are de�ned using the points shown in Table 5.8-11. The formula to
calculate the exact volume is based on the Gauss Divergence formula,

𝑉 =

∫︁
Ω

d𝑉 =

∫︁
Ω

𝜕𝑥𝑘
𝜕𝑥𝑘

d𝑉 =

∮︁
𝜕Ω

𝑥𝑘𝑛𝑘d𝑆. (5.389)

The surfaces for the surface integral are decomposed into triangular facets as in the surface area
calculation. To accomplish the decomposition, the coordinates on each face are averaged to the
midpoints, and thus each hexahedral volume is constructed using 14 coordinates–eight vertices and six
facial midpoints, resulting in 24 total facets. Since the triangular facets are planar, the normal is constant
over the surface. Thus, the surface integral over each triangular facet is equivalent to the scalar product
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Table 5.8-8.. Element variable values and differentials at control-
volume faces for hexahedral elements. Face-to-edge number
mapping.
face Edge ( Nodeout →Nodein ) 𝜉 𝜂 𝜁 d𝜂d𝜁 d𝜁d𝜉 d𝜉d𝜂

1 1 → 2 0 −1
2

−1
2

1 0 0

2 2 → 3 1
2

0 −1
2

0 1 0

3 3 → 4 0 1
2

−1
2

−1 0 0

4 1 → 4 −1
2

0 −1
2

0 1 0

5 5 → 6 0 −1
2

1
2

1 0 0

6 6 → 7 1
2

0 1
2

0 1 0

7 7 → 8 0 1
2

1
2

−1 0 0

8 5 → 8 −1
2

0 1
2

0 1 0

9 1 → 5 −1
2

−1
2

0 0 0 1

10 2 → 6 1
2

−1
2

0 0 0 1

11 3 → 7 1
2

1
2

0 0 0 1

12 4 → 8 −1
2

1
2

0 0 0 1

of the outward facing normal area vector and the centroid coordinates, 𝑥̄. The total surface integral is
the sum of the integrals on each triangular facet,

𝑉 =

∮︁
𝜕Ω

𝑥𝑘𝑛𝑘d𝑆 =
24∑︁
𝑖=1

𝑛𝑘

∫︁
Δ𝑖

𝑥𝑘d𝑆 =
24∑︁
𝑖=1

𝑥̄𝑘𝑛𝑘

∫︁
Δ𝑖

d𝑆, 𝜕Ω =
24⨁︁
𝑖=1

Δ𝑖. (5.390)

The area vectors are calculated as described above. The centroid coordinates are simply the average of
the three vertices constructed the triangular facet.

5.8.4. Tetrahedral Elements

For tetrahedral elements, there are four nodes and six subfaces de�ning control volumes, shown in
Figure 5.8-6. The parametric coordinate system is de�ned by the tetrahedron natural coordinates, 𝐿1,
𝐿2, 𝐿3, and 𝐿4, since a Cartesian mapping cannot be de�ned. The natural coordinates are the shape
functions. As an example, the value of𝐿1 at an interpolation point is the shape function associated with
Node 2. The value of 𝐿1 is the fraction of element tetrahedral volume covered by a sub-tetrahedron,
formed by the interpolation point and the face opposite of Node 2. For consistency with the hexahedral
element notation, the (𝜉, 𝜂, 𝜁) parametric variables are de�ned as 𝜉 = 𝐿1, 𝜂 = 𝐿2, and 𝜁 = 𝐿3, where
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Table 5.8-9.. Element variable values and differentials at sub-
control volume centers for hexahedral elements.

sub-volume 𝜉 𝜂 𝜁 d𝜉d𝜂d𝜁

1 −1
2

−1
2

−1
2

1

2 1
2

−1
2

−1
2

1

3 1
2

1
2

−1
2

1

4 −1
2

1
2

−1
2

1

5 −1
2

−1
2

1
2

1

6 1
2

−1
2

1
2

1

7 1
2

1
2

1
2

1

8 −1
2

1
2

1
2

1

𝐿4 is de�ned by the fact that the natural coordinates always sum to one. The control volume sub-face
numbering, shown in Table 5.8-13, follows the convention that the face has the same number as the
element edge that connects the nodes that de�ne the two adjacent sub-control volumes.

The values of the element variables and the surface di�erentials at the control-volume faces are given in
Table 5.8-13.

Again the control volumes are constructed using surfaces de�ned with four points and two methods are
available to de�ne the surface area and volume.

5.8.4.1. Volume and Area Calculation Assuming Planar Surfaces

The form of the volume di�erentials are the same as with the hexahedral elements. For volume integrals,
quadrature points and di�erential values are shown in Table 5.8-14.

5.8.4.2. Exact Volume and Surface Area Calculation

Following the approach in Section 5.8.3.2, a set of subcontrol coordinates is de�ned to decompose the
tetrahedral element, which are shown in Figure 5.8-7.

Six subcontrol surfaces for the tetrahedron are the de�ned using points in counterclockwise ordering as
shown in Table 5.8-15. Surface area vectors are calculated using the same approach as in Section 5.8.3.2.

Four subcontrol volumes are de�ned using the points shown in Table 5.8-16. Since the subcontrol
volumes are hexahedrons, the same volume calculation is used as above.
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Figure 5.8-5.. Hexahedron subcontrol points numbering

5.8.5. Wedge Elements

For wedge elements, there are six nodes and nine subfaces de�ning control volumes. The parametric
coordinate system is a linear hybrid of triangular natural coordinates. The natural coordinates are the
shape functions. The local coordinates 𝜉 and 𝜂 are in the plane of the triangular surfaces while 𝜁 is in the
normal direction. The control volume sub-face numbering, shown in Table 5.8-18, follows the
convention that the face has the same number as the element edge that connects the nodes that de�ne
the two adjacent sub-control volumes.

5.8.5.1. Volume and Area Calculation Assuming Planar Surfaces

The values of the element variables and the surface di�erentials at the control-volume faces are given in
Table 5.8-18.

For volume integrals, quadrature points and di�erential values are shown in Table 5.8-19.

5.8.5.2. Exact Volume and Surface Area Calculation

Following the approach in Section 5.8.3.2, a set of subcontrol coordinates is de�ned to decompose the
wedge element, which are shown in Figure 5.8-8.

Nine subcontrol surfaces for the tetrahedron are the de�ned using points in counterclockwise ordering
as shown in Table 5.8-20. Surface area vectors are calculated using the same approach as in
Section 5.8.3.2.
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Table 5.8-10.. Subcontrol face definitions for exact surface area
calculation on hexahedral elements.

Face Point Set

1 21 9 13 27
2 25 10 13 27
3 11 13 27 24
4 12 26 27 13
5 14 21 27 18
6 18 15 25 27
7 18 16 24 27
8 17 18 27 26
9 20 21 27 26
10 21 19 25 27
11 23 24 27 25
12 22 26 27 24

Table 5.8-11.. Subcontrol volume definitions for exact volume
calculation on hexahedral elements.

Volume Point Set

1 1 9 13 12 20 21 27 26
2 9 2 10 13 21 19 25 27
3 13 10 3 11 27 25 23 24
4 12 13 11 4 26 27 24 22
5 20 21 27 26 5 14 18 17
6 21 19 25 27 14 6 15 18
7 27 25 23 24 18 15 7 16
8 26 27 24 22 17 18 16 8

Six subcontrol volumes are de�ned using the points shown in Table 5.8-21. Since the subcontrol
volumes are hexahedrons, the same volume calculation is used as above.

5.8.6. Pyramid Elements

For pyramid elements, there are �ve nodes and eight subfaces de�ning control volumes. The local
coordinates 𝜉 and 𝜂 are in the plane of the quadrilateral surfaces while 𝜁 is in the normal direction. The
control volume sub-face numbering, shown in Table 5.8-23, follows the convention that the face has the
same number as the element edge that connects the nodes that de�ne the two adjacent sub-control
volumes.
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Figure 5.8-6.. Tetrahedral element topology and numbering

Table 5.8-12.. Nodal shape functions and derivatives for tetrahe-
dral elements. Range is (0,1).

node 𝑁 𝜕𝑁
𝜕𝜉

𝜕𝑁
𝜕𝜂

𝜕𝑁
𝜕𝜁

1 1− 𝜉 − 𝜂 − 𝜁 −1 −1 −1

2 𝜉 1 0 0

3 𝜂 0 1 0

4 𝜁 0 0 1

5.8.6.1. Volume and Area Calculation Assuming Planar Surfaces

The values of the element variables and the surface di�erentials at the control-volume faces are given in
Table 5.8-23.

For volume integrals, quadrature points and di�erential values are shown in Table 5.8-24.

5.8.6.2. Exact Volume and Surface Area Calculation

It is noted here that for pyramid elements, the planar assumption is not good even on the reference
element. The volume that composes the tip is an octohedron four planar faces and four highly skewed
faces. Computations have shown that the planar assumption results in severe conservation errors.
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Table 5.8-13.. Element variable values and differentials at
control-volume faces for tetrahedral elements. Face-to-edge
number mapping.

face Edge ( Nodeout →Nodein ) 𝜉 𝜂 𝜁 d𝜂d𝜁 d𝜁d𝜉 d𝜉d𝜂

1 1 → 2 17
48

7
48

7
48

2 2 → 3 17
48

17
48

7
48

3 1 → 3 7
48

17
48

7
48

4 1 → 4 7
48

7
48

17
48

5 2 → 4 17
48

7
48

17
48

6 3 → 4 7
48

17
48

17
48

Table 5.8-14.. Element variable values and differentials at sub-
control volume centers for tetrahedral elements.

sub-volume 𝜉 𝜂 𝜁 d𝜉d𝜂d𝜁

1 17
96

17
96

17
96

2 45
96

17
96

17
96

3 17
96

45
96

17
96

4 17
96

17
96

45
96

Following the approach in Section 5.8.3.2, a set of subcontrol coordinates is de�ned to decompose the
pyramid element, which are shown in Figure 5.8-9.

Eight subcontrol surfaces for the tetrahedron are the de�ned using points in counterclockwise ordering
as shown in Table 5.8-25. Surface area vectors are calculated using the same approach as in
Section 5.8.3.2.

Five subcontrol volumes are de�ned using the points shown in Table 5.8-26. The �rst four subcontrol
volumes are hexahedrons, so the same volume calculation is used as above. The tip of the pyramid
composes an octohedron, but the computation of the volume is only slightly di�erent. The Gauss
Divergence Theorem is still used to calculate the volume. However, because the four faces on the
pyramid faces must be planar, these faces are decomposed into two triangles–composed of the face
midpoint and the pyramid tip vertex–instead of four triangles. The four-point faces interior to the
triangle are not planar and are decomposed into four triangles, resulting in 24 triangular facets total.
Equation 5.390 is then applied to compute the volume.
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Figure 5.8-7.. Tetrahedron subcontrol points numbering

Table 5.8-15.. Subcontrol face definitions for exact surface area
calculation on tetrahedral elements.

Face Point Set

1 5 8 15 14
2 8 15 11 6
3 7 13 15 8
4 12 14 15 13
5 14 10 11 15
6 11 9 13 15

Table 5.8-16.. Subcontrol volume definitions for exact volume
calculation on tetrahedral elements.

Volume Point Set

1 1 5 8 7 12 14 15 13
2 2 6 8 5 10 11 15 14
3 3 7 8 6 9 13 15 11
4 4 10 14 12 9 11 15 13
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Table 5.8-17.. Nodal shape functions and derivatives for wedge
elements. Range is (0,1) and (-1,1).

node 𝑁 𝜕𝑁
𝜕𝜉

𝜕𝑁
𝜕𝜂

𝜕𝑁
𝜕𝜁

1 1
2
(1− 𝜉 − 𝜂)(1− 𝜁) −1

2
(1− 𝜁) −1

2
(1− 𝜁) −1

2
(1− 𝜉 − 𝜂)

2 1
2
𝜉(1− 𝜁) 1

2
(1− 𝜁) 0 −1

2
𝜉

3 1
2
𝜂(1− 𝜁) 0 1

2
(1− 𝜁) −1

2
𝜂

4 1
2
(1− 𝜉 − 𝜂)(1 + 𝜁) −1

2
(1 + 𝜁) −1

2
(1 + 𝜁) 1

2
(1− 𝜉 − 𝜂)

5 1
2
𝜉(1 + 𝜁) 1

2
(1 + 𝜁) 0 1

2
𝜉

6 1
2
𝜂(1 + 𝜁) 0 1

2
(1 + 𝜁) 1

2
𝜂

Table 5.8-18.. Element variable values and differentials at
control-volume faces for wedge elements. Face-to-edge num-
ber mapping.

face Edge ( Nodeout →Nodein ) 𝜉 𝜂 𝜁 d𝜂d𝜁 d𝜁d𝜉 d𝜉d𝜂

1 1 → 2 5
12

1
6

−1
2

2 2 → 3 5
12

5
12

−1
2

3 1 → 3 1
6

5
12

−1
2

4 4 → 5 5
12

1
6

1
2

5 5 → 6 5
12

5
12

1
2

6 4 → 6 1
6

5
12

1
2

7 1 → 4 5
24

5
24

0

8 2 → 5 7
12

5
24

0

9 3 → 6 5
24

7
12

0
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Table 5.8-19.. Element variable values and differentials at sub-
control volume centers for wedge elements.

sub-volume 𝜉 𝜂 𝜁 d𝜉d𝜂d𝜁

1 5
24

5
24

−1
2

2 7
12

5
24

−1
2

3 5
24

7
12

−1
2

4 5
24

5
24

1
2

5 7
12

5
24

1
2

6 5
24

7
12

1
2
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Figure 5.8-8.. Wedge subcontrol points numbering
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Table 5.8-20.. Subcontrol face definitions for exact surface area
calculation on wedge elements.

Face Point Set

1 7 10 21 17
2 8 10 21 19
3 10 9 20 21
4 11 17 21 14
5 14 12 19 21
6 13 14 21 20
7 16 17 21 20
8 17 15 19 21
9 20 21 19 18

Table 5.8-21.. Subcontrol volume definitions for exact volume
calculation on wedge elements.

Volume Point Set

1 1 16 17 6 9 20 21 10
2 10 7 2 7 21 17 15 19
3 9 10 8 2 20 21 19 18
4 20 16 17 21 13 4 10 14
5 21 17 15 19 14 11 4 12
6 20 21 19 18 13 14 11 6

Table 5.8-22.. Nodal shape functions and derivatives for pyramid
elements. Range is (-1,1) and (0,1).

node 𝑁 𝜕𝑁
𝜕𝜉

𝜕𝑁
𝜕𝜂

𝜕𝑁
𝜕𝜁

1 1
4
(1− 𝜉)(1− 𝜂)(1− 𝜁) −1

4
(1− 𝜂)(1− 𝜁) −1

4
(1− 𝜉)(1− 𝜁) −1

4
(1− 𝜉)(1− 𝜂)

2 1
4
(1 + 𝜉)(1− 𝜂)(1− 𝜁) 1

4
(1− 𝜂)(1− 𝜁) −1

4
(1 + 𝜉)(1− 𝜁) −1

4
(1 + 𝜉)(1− 𝜂)

3 1
4
(1 + 𝜉)(1 + 𝜂)(1− 𝜁) 1

4
(1 + 𝜂)(1− 𝜁) 1

4
(1 + 𝜉)(1− 𝜁) −1

4
(1 + 𝜉)(1 + 𝜂)

4 1
4
(1− 𝜉)(1 + 𝜂)(1− 𝜁) −1

4
(1 + 𝜂)(1− 𝜁) 1

4
(1− 𝜉)(1− 𝜁) −1

4
(1− 𝜉)(1 + 𝜂)

5 𝜁 0 0 1
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Table 5.8-23.. Element variable values and differentials at
control-volume faces for pyramid elements. Face-to-edge num-
ber mapping.

face Edge ( Nodeout →Nodein ) 𝜉 𝜂 𝜁 d𝜂d𝜁 d𝜁d𝜉 d𝜉d𝜂

1 1 → 2 0 − 45
104

7
52

2 2 → 3 45
104

0 7
52

3 3 → 4 0 45
104

7
52

4 1 → 4 − 45
104

0 7
52

5 1 → 5 − 7
24

− 7
24

41
120

6 2 → 5 7
24

− 7
24

41
120

7 3 → 5 7
24

7
24

41
120

8 4 → 5 − 7
24

7
24

41
120

Table 5.8-24.. Element variable values and differentials at sub-
control volume centers for pyramid elements.

sub-volume 𝜉 𝜂 𝜁 d𝜉d𝜂d𝜁

1 −19
48

−19
48

41
240

2 19
48

−19
48

41
240

3 19
48

19
48

41
240

4 −19
48

19
48

41
240

5 0 0 3
5

Table 5.8-25.. Subcontrol face definitions for exact surface area
calculation on pyramid elements.

Face Point Set

1 6 10 19 13
2 7 10 19 15
3 8 10 19 17
4 9 18 19 10
5 12 13 19 18
6 11 15 19 13
7 14 17 19 15
8 16 18 19 17
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Figure 5.8-9.. Pyramid subcontrol points numbering

Table 5.8-26.. Subcontrol volume definitions for exact volume
calculation on pyramid elements.

Volume Point Set

1 1 6 10 9 12 13 19 18
2 6 2 7 10 13 11 15 19
3 7 3 8 10 15 14 17 19
4 9 10 9 4 18 19 17 16
5 5 19 16 18 12 13 11 15 14 17
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5.9. INTERPOLATION FUNCTIONS AND NEGATIVE
COEFFICIENTS

A su�cient condition for a monotonic di�erencing scheme is that all the o�-diagonal terms in the
stencil be of opposite sign from the diagonal term [155]. Coe�cient sets with mixed signs in the
o�-diagonal entries can potentially admit oscillatory solutions. In this section, the sign convention is
that diagonal elements are negative and o�-diagonal elements should be greater than or equal to zero.
The term “negative coe�cients" refers to one or more negative o�-diagonal coe�cients. Schemes with
positive coe�cients are usually considered important only when designing upwind convection
operators, but they may be just as important for di�usion operators. Monotonic di�usion operators are
most useful for arti�cial viscosity schemes and projection methods in application to the low Mach
number Navier-Stokes equations. Positive coe�cients are particularly important for the Poisson
equation that arises when calculating a velocity correction to the continuity equation. The computed
�eld for the velocity potential should be smooth so that no oscillations are introduced into the pressure
�eld.

Mixed-sign o�-diagonal coe�cients commonly arise in �nite-element-like methods for describing the
di�usion operator. Christie and Hall [156] note that applying the Galerkin �nite-element method
(GFEM) with bilinear quadrilateral elements to harmonic functions sometimes results in negative
coe�cients. It was later discovered that there is a threshold element aspect ratio for positivity, and
negative coe�cients are produced on meshes of rectangular elements above that threshold value. Several
authors note that the threshold aspect ratio for the quadrilateral element is

√
2 with GFEM and the

value is
√
3 with the control volume �nite-element method (CVFEM) [157, 158, 154]. The values for the

aspect ratio limits only strictly apply to orthogonal structured meshes. Notably, the �ve-point di�erence
stencil for the 2D �nite-di�erence method never generates negative coe�cients. By deduction, the
integral formulas that use extra stencil points, introduced by the element-based methods, generate
negative coe�cients.

A word on oscillations is required before continuing. Smooth solutions are possible with negative
coe�cients. Finite-element and �nite-volume analysis codes for di�usion processes, such as conduction
heat transfer, may never experience oscillations. A forcing function is required to induce the
oscillations, like a boundary layer with the convection-di�usion equation [159] or an ill-behaved source
term in the continuity equation. The mass balance for a control volume is the source term in the
projection method. If the mass balance from a time integration step is particularly bad, the projection
scheme must smooth large errors. If there are negative coe�cients for the velocity potential, then
resulting velocity potential �eld may be non-smooth, which causes the pressure �eld to be non-smooth.
The result is oscillations which grow into the solution and make for a non-robust solution process.

Causes of negative-coe�cients are being studied in order to design robust solution algorithms for the
Navier-Stokes equations. The numerical method of primary interest is the CVFEM, though results for
the GFEM are included for comparison. The GFEM community describes negative-coe�cient e�ects as
“hour-glassing". The “hour-glass" oscillations are most common to reduced-integration formulations
for the di�usion equation, and stabilization methods [160, 127] have been developed to damp the
oscillations. In the CVFEM [143, 161], negative coe�cients are prevented by shifting the integration
points for the di�usion �ux formulation out towards the edges of the control volumes and elements.
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The method is termed “integration point shifting" in this section. There is no general way to control the
coe�cient signs when skewed quadrilateral elements are used with arbitrary connectivities. Coe�cient
control is not a panacea for negative coe�cients since integration point shifting generally reduces the
accuracy. Ultimately, the proper mesh will have no negative coe�cients at all.

In this section, the numerics behind negative coe�cients are discussed for the di�usion operator given
by ∫︁

𝜕𝜑

𝜕𝑥𝑖
𝑛𝑖d𝑆, (5.391)

where the surface di�erential is de�ned by Eqns. 5.385. Integration point shift functions are derived for
the CVFEM di�usion operator. Shift functions are presented for both two and three dimensions which
guarantee coe�cient positivity for a particular element aspect ratio. Also, the integration point shifting
for CVFEM is shown to be similar to hour-glass stabilization for GFEM.

5.9.1. Positive Coefficients for Orthogonal Meshes

Negative coe�cients arise in the o�-diagonal coe�cients when the aspect ratio of an element becomes
large. Consider the elemental �ux contributions to the control volume centered about Node 3, shown
in Fig. 5.9-1. The �rst o�-diagonal node to have a negative coe�cient is the side node farthest from the
control volume center, Node 4. The negative coe�cient is associated with the vertical �ux over the long
horizontal face. At the integration point on the long horizontal face, the �ux is approximated by an
average of the di�erence between Nodes 3 and 2 and the di�erence between Nodes 4 and 1. The
weighting between the two di�erences is determined by the location of the integration point. The
negative coe�cient is removed by removing the in�uence from the Node 4–1 di�erence. The integration
point is shifted farther from Nodes 4 and 1, towards Nodes 2 and 3. The integration points are shifted
such that the element-level coe�cients are positive, a su�cient condition for global positivity.

η

1 2

34

x

x

ξ

Figure 5.9-1.. Control volume faces in a single element. Contri-
butions to the the control volume centered about node 3.

Integration point shift functions and the critical aspect ratio are derived for isoparametric quadrilateral
elements with bilinear shape functions, and hexahedral elements with trilinear shape functions. Only
the orthogonal form is considered. Linear triangles are discussed since they can also produce negative
coe�cients. For linear elements, only the element geometry (mesh quality) can be modi�ed to control
negative coe�cients. With isoparametric bilinear and trilinear elements, both the geometry and the
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location of the integration point control negativity. In addition, integration point shifting is compared
to �nite-element hour-glass control. Positive coe�cients are achieved by either shifting the element
integration points or applying the hour-glass stabilization matrix, and in some cases the two are
identical.

5.9.1.1. Aspect Ratio Definition

In this section, the isoparametric coordinates for an element are oriented such that the aspect ratio is
greater than or equal to one. In two dimensions, the aspect ratio for an orthogonal element is the ratio
between edge lengths. In three dimensions, each element has two aspect ratios since there are potentially
three di�erent edge lengths. The aspect ratios are taken relative to the shortest of the edge lengths which
has a reference length of one.

5.9.1.2. Quadrilateral Elements

The coe�cients for the di�usion operator result from the combination of two basic second-order
accurate di�usion operators: the edge operator and the centroid operator, shown in Fig. 5.9-2. The two
operators represent the extremes in evaluating derivatives using the bilinear shape function within the
element. The edge scheme always gives positive coe�cients while the centroid scheme gives rise to
negative coe�cients above a certain aspect ratio. The centroid scheme results from evaluating all the
derivatives for the four control volume sub-faces at the element centroid, equivalent to reduced
integration [160] in GFEM. The edge scheme results from evaluating the derivatives out at the ends of
the sub-faces in CVFEM or out at the nodes in GFEM. The edge scheme returns the standard �ve-point
�nite-di�erence operator. The traditional CVFEM [161] uses an equal weighting of the edge and the
centroid scheme. The GFEM uses one part edge to two parts centroid. The GFEM is more prone to
oscillations with high aspect ratio elements than the CVFEM because it contains a larger weighting of
the centroid scheme. The single-point-integrated GFEM element will be the most unstable since it is a
pure centroid scheme.

a

X

X

XX X

X

X

X X

b c

Figure 5.9-2.. Flux integration points (X) determine nodal (∙) con-
tributions to the coefficient stencil: a) mid-face rule of CVFEM,
b) edge–operator, c) centroid–operator (one-point integration).

The coe�cient signs for a rectangular element are controlled by moving the integration points away
from the centroid of the element. The smallest value of the integration point shift that satis�es

289



coe�cient positivity is found by symbolically integrating the di�usion �ux over a control volume.
Consider the di�usion operator evaluated over a collection of equal-size rectangular elements. Each
element is longer by a factor of 𝒜ℛ in the x-direction than the y-direction, where 𝒜ℛ is the aspect ratio
of the elements. The integration points can be shifted in the 𝜉-direction by 𝑠 and in the 𝜂-direction by 𝑡.
The element coe�cients that contribute to the equation centered at Node 3 in Fig. 5.9-1 are:

𝜑1 :
1 + 𝒜ℛ2 − 2𝑠𝒜ℛ2 − 2𝑡

8𝒜ℛ

𝜑2 :
−1 + 3𝒜ℛ2 + 2𝑠𝒜ℛ2 + 2𝑡

8𝒜ℛ

𝜑3 : −
3 + 3𝒜ℛ2 + 2𝑠𝒜ℛ2 + 2𝑡

8𝒜ℛ
(5.392)

𝜑4 :
3− 𝒜ℛ2 + 2𝑠𝒜ℛ2 + 2𝑡

8𝒜ℛ

The positivity constraint for Node 3 comes from coe�cient 4 in the element matrix, where the
coe�cient becomes negative for large values of aspect ratio. The 𝑠-shift removes the e�ect of aspect
ratio, while the 𝑡-shift has no e�ect on negativity. For CVFEM, the integration points on vertical faces,
in the longer x-direction, should be shifted from the mid-faces out towards the element edges by 𝑠. The
y-direction �ux is the only �ux e�ected by the shift so the y-direction �ux is the �ux associated with
negative coe�cients. The minimal amount of 𝑠-shift required to maintain positivity depends upon the
aspect ratio,

𝑠 >
1

2

𝒜ℛ2 − 3

𝒜ℛ2 , 𝒜ℛ >
√
3. (5.393)

The maximum aspect ratio for which the unshifted CVFEM remains monotone is
√
3. A similar

formula exists for GFEM, where 𝑠 and 𝑡 are shifted from the Gauss points at ±1/
√
3. The element

coe�cients that contribute to the equation centered at Node 3 in Fig. 5.9-1 are:

𝜑1 :
3 + 3𝒜ℛ2 −

(︀
1 +

√
3𝑠
)︀2𝒜ℛ2 −

(︀
1 +

√
3𝑡
)︀2

12𝒜ℛ

𝜑2 :
−3 + 3𝒜ℛ2 +

(︀
1 +

√
3𝑠
)︀2𝒜ℛ2 +

(︀
1 +

√
3𝑡
)︀2

12𝒜ℛ

𝜑3 :
−3− 3𝒜ℛ2 −

(︀
1 +

√
3𝑠
)︀2𝒜ℛ2 −

(︀
1 +

√
3𝑡
)︀2

12𝒜ℛ
(5.394)

𝜑4 :
3− 3𝒜ℛ2 +

(︀
1 +

√
3𝑠
)︀2𝒜ℛ2 +

(︀
1 +

√
3𝑡
)︀2

12𝒜ℛ

Similar to the CVFEM, the 𝑠-shift is the only shift that a�ects the aspect ratio term. The positivity
constraint for Node 3 comes from coe�cient 4 in the element matrix,

𝑠 >

√︃
3𝒜ℛ2 − 4

3𝒜ℛ2 − 1√
3
, 𝒜ℛ >

√
2. (5.395)

The maximum aspect ratio for which the unshifted GFEM remains monotone is
√
2.
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The shift values are very sensitive to the aspect ratio, out to an aspect ratio of about four. The values of
the integration point shift function are plotted as a function of the aspect ratio in Fig. 5.9-3. At that
aspect ratio, the shifted integration points are near the edge of the element. Since the requisite
integration point shift rapidly reaches the element edge for increasing aspect ratio, it can be argued that
the maximum shift should always be taken. It will be shown in the section on accuracy that integration
point shifting leads to a general loss in accuracy on non-orthogonal meshes. Therefore, it may be
desirable to use Equation 5.393 to compute the minimal shift for each element. The accuracy
consideration must be traded against the algorithmic complexity of computing geometry-dependent
shape functions for each element.

0.0 2.0 4.0 6.0 8.0 10.0

Element Aspect Ratio
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CVFEM, min(AR) = sqrt(3)   

GFEM,  min(AR) = sqrt(2)   

Figure 5.9-3.. Integration point locations must be shifted out to-
wards the element-edge with increasing element aspect ratio.

5.9.1.3. Reduced Integration

One-point integration methods for quadrilateral and hexahedral elements are popular because they are
computationally e�cient. Sometimes, oscillations occur and are called hour-glass modes after the
displaced element shapes. Hour-glass stabilization methods prevent the hour-glass oscillations from
occurring. The hour-glass terms are derived by examining the eigenmodes of the �nite-elements and
noting that there are missing mode shapes when the elements are integrated at the center [160]. The
stabilization term adds the e�ects of the missing mode shapes back into the element formulation.

It is shown here that the hour-glass stabilization terms have the same e�ect on the element coe�cients as
shifting the integration points in two-dimensional elements. Both the hour-glass stabilization and the
integration-point shifting modify the discretization to look more like a �ve-point scheme; or, more like
the edge scheme of the previous section. The H-stabilization method is commonly used [127] in the
GFEM with reduced integration. For quadrilateral elements, the element matrix for the hour-glass
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stabilization term is

𝐶hg

⎡⎢⎢⎣
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1
1 −1 1 −1

⎤⎥⎥⎦ , (5.396)

where the constant𝐶hg contains scaling information. The �rst row of the hour-glass stabilization
matrix, Equation 5.396, can also be derived by subtracting the matrix coe�cients for the one-point
integrated GFEM, Equation 5.397,

𝜑1 :
1+𝒜ℛ2

4𝒜ℛ 𝜑3 : −1+𝒜ℛ2

4𝒜ℛ
𝜑2 :

𝒜ℛ2−1
4𝒜ℛ 𝜑4 :

1−𝒜ℛ2

4𝒜ℛ
(5.397)

from the coe�cients for the �ve-point di�erence scheme, Equation 5.398,

𝜑1 : 0 𝜑3 : −1+𝒜ℛ2

2𝒜ℛ
𝜑2 :

𝒜ℛ2

2𝒜ℛ 𝜑4 :
1

2𝒜ℛ
(5.398)

The resulting coe�cient set is identical to the hour-glass stabilization matrix, Equation 5.396, if the
multiplier𝐶hg = (1 +𝒜ℛ2)/4𝒜ℛ. The hour-glass stabilization matrix is added to a di�usion
operator to make it look more like a �ve-point �nite di�erence scheme. Note that the multiplier used by
GFEM practitioners [127] is𝐶hg = 1. The hour-glass stabilization matrix can also be used with other
schemes. The multiplier for standard GFEM is𝐶hg = (1 +𝒜ℛ2)/6𝒜ℛ. The multiplier for standard
CVFEM is𝐶hg = (1+𝒜ℛ2)/8𝒜ℛ, though conservation is only guaranteed on rectangular meshes.

5.9.1.4. Triangular Elements

Linear triangular elements can also produce negative o�-diagonal coe�cients. There are no
shift-functions for triangles since the gradients are constant over the element. Negative coe�cients
result from the geometry of the element.

Nodal coe�cients for a triangular element are computed for the di�usion �ux contributions, shown in
Fig. 5.9-4. The nodal coe�cients for the di�usion �ux contribution to the control volume centered
about Node 1 are

𝜑1 : −1

2

tan𝛼

tan 𝛽

(1 + tan2 𝛽)

(tan𝛼 + tan 𝛽)

𝜑2 :
1

2

(tan𝛼 tan 𝛽 − 1)

(tan𝛼 + tan 𝛽)
(5.399)

𝜑3 :
1

2

1

tan 𝛽

where the base edge length is 𝑟 and the two adjacent vertex angles are 𝛼 and 𝛽. The conditions required
to ensure that all the o�-diagonal terms remain positive are combined from constraints on all three
control volume contributions,

tan𝛼 > 0

tan 𝛽 > 0 (5.400)
tan𝛼 tan 𝛽 > 1.
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The triangular element yields positive o�-diagonal coe�cients if 0 < 𝛼 < 𝜋/2, 0 < 𝛽 < 𝜋/2, and
𝜋/2 < 𝛼+ 𝛽 < 𝜋. The triangle must be acute.

r

1

3

2
α β

Figure 5.9-4.. Triangular element geometry in defined by edge
length and two vertex angles.

In a previous work [162], quadrilateral elements were subdivided into triangular elements using
edge-swapping, along with a Delaunay algorithm, to minimize the e�ect of negative coe�cients. Given
a collection of nodes, a Delaunay triangulation of the nodes will generate triangles where the minimum
angle between vertices is maximized, leading to near-equilateral triangles that satisfy Equation 5.400.

5.9.1.5. Hex Elements

The aspect ratio limit for the CVFEM di�usion operator with orthogonal, hexahedral elements can be
as large as

√
2 if the base is square. The three-dimensional element is more di�cult to control because

there are two aspect ratios. The local element node numbering for a hexahedron is de�ned in Fig. 5.8-4.
Let the edge length between Nodes 1 and 2 be of value𝐴, the edge length between Nodes 1 and 4 be of
value𝐵, and the edge length between Nodes 1 and 5 be of value𝐶 . These are the 𝜉, 𝜂, and 𝜁 directions.
The parametric representation of the nodal coe�cients for the element contribution to the control
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volume centered about Node 1 is

𝜑1 : −9 ( 𝐴2𝐵2 + 𝐵2𝐶2 + 𝐶2𝐴2)

64𝐴𝐵𝐶

𝜑2 :
3 (−𝐴2𝐵2 + 3𝐵2𝐶2 − 𝐶2𝐴2)

64𝐴𝐵𝐶

𝜑3 :
3 (−𝐴2𝐵2 + 3𝐵2𝐶2 + 3𝐶2𝐴2)

64𝐴𝐵𝐶

𝜑4 :
3 (−𝐴2𝐵2 − 𝐵2𝐶2 + 3𝐶2𝐴2)

64𝐴𝐵𝐶

𝜑5 :
(3𝐴2𝐵2 − 𝐵2𝐶2 − 𝐶2𝐴2)

64𝐴𝐵𝐶
(5.401)

𝜑6 :
(3𝐴2𝐵2 + 3𝐵2𝐶2 − 𝐶2𝐴2)

64𝐴𝐵𝐶

𝜑7 :
( 𝐴2𝐵2 + 𝐵2𝐶2 + 𝐶2𝐴2)

64𝐴𝐵𝐶

𝜑8 :
(3𝐴2𝐵2 − 𝐵2𝐶2 + 3𝐶2𝐴2)

64𝐴𝐵𝐶
.

The region for positive coe�cients is plotted in Fig. 5.9-5 which comes from examining coe�cients for
Nodes 2, 4, and 5. The maximum allowable aspect ratios occur for the case of a square base. If the base
edges are longer than the vertical edge, then the maximum aspect ratio is

√
2. If the vertical edge is

longer than a base edge, the maximum aspect ratio is
√︀

3/2.

0.0 0.5 1.0 1.5 2.0 2.5

(C/A)
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Figure 5.9-5.. Limits of Edge-Length Ratio for Positive Coefficients in 3D CVFEM.

The integration points in the CVFEM scheme can be shifted by 𝑠, 𝑡, and 𝑢 in the 𝜉, 𝜂, and 𝜁 directions.
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The conditions for positive coe�cients are
1

𝐴2

1

1− 2𝑠
− 1

𝐵2

1

3 + 2𝑡
>

1

𝐶2

1

3 + 2𝑢
1

𝐵2

1

1− 2𝑡
− 1

𝐶2

1

3 + 2𝑢
>

1

𝐴2

1

3 + 2𝑠
(5.402)

1

𝐶2

1

1− 2𝑢
− 1

𝐴2

1

3 + 2𝑠
>

1

𝐵2

1

3 + 2𝑡

The relations are nonlinear and require iteration to extract the limiting values of 𝑠, 𝑡, and 𝑢.

The coe�cients that are generated by the standard GFEM operator in three dimensions have no
allowable maximum aspect ratio. The only element shape that does not have negative coe�cients is a
cube, and even then the coe�cients of the six nearest nodes are zero. The parametric representation of
the nodal coe�cients for the element contribution to the equation associated with Node 1 are

𝜑1 : −4 ( 𝐴2𝐵2 + 𝐵2𝐶2 + 𝐶2𝐴2)

36𝐴𝐵𝐶

𝜑2 :
2 (−𝐴2𝐵2 + 2𝐵2𝐶2 − 𝐶2𝐴2)

36𝐴𝐵𝐶

𝜑3 :
(−𝐴2𝐵2 + 2𝐵2𝐶2 + 2𝐶2𝐴2)

36𝐴𝐵𝐶

𝜑4 :
2 (−𝐴2𝐵2 − 𝐵2𝐶2 + 2𝐶2𝐴2)

36𝐴𝐵𝐶

𝜑5 :
2 (2𝐴2𝐵2 − 𝐵2𝐶2 − 𝐶2𝐴2)

36𝐴𝐵𝐶
(5.403)

𝜑6 :
(2𝐴2𝐵2 + 2𝐵2𝐶2 − 𝐶2𝐴2)

36𝐴𝐵𝐶

𝜑7 :
( 𝐴2𝐵2 + 𝐵2𝐶2 + 𝐶2𝐴2)

36𝐴𝐵𝐶

𝜑8 :
(2𝐴2𝐵2 − 𝐵2𝐶2 + 2𝐶2𝐴2)

36𝐴𝐵𝐶
.

The contributions from Nodes 2, 4, and 5 are such that there will be negative coe�cients for any
element shape other than a cube.

Single-point integration is also used for the GFEM hexahedral element. Unfortunately, there is not a
clear analogy between the integration point shift and hour-glass stabilization in three dimensions. The
element matrix for the hour-glass stabilization term is

𝐶hg

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 2 0 2 2 0 −2 0
2 −4 2 0 0 2 0 −2
0 2 −4 2 −2 0 2 0
2 0 2 −4 0 −2 0 2
2 0 −2 0 −4 2 0 2
0 2 0 −2 2 −4 2 0

−2 0 2 0 0 2 −4 2
0 −2 0 2 2 0 2 −4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.404)

295



where the constant𝐶hg contains scaling information. The hour-glass stabilization matrix does act to
make the diagonal terms more negative, and the problematic o�-diagonal terms more positive.

5.10. H-ADAPTIVITY MESHING

Note: we currently only allow uniform re�nement with no load balancing (12/01). We have not yet
decided on a scheme for integrating �uxes over h-re�ned meshes. We have not yet decided on a
prolongation approach for the mass �ow rate at faces.

5.10.1. H-Adaptivity and Flux Construction

The equation assembly in our control volume method is based on integrating �uxes over control
volume sub-faces within an element. A typical h-adapted patch of elements is shown in Figure 5.10-1.
The “hanging nodes" do not have control volumes associated with them. Rather, they are constrained
to be a linear combination of the two parent edge nodes. There is no element assembly procedure to
compute �uxes for the “handing sub-faces" associated with the hanging nodes that occur along the
parent-child element boundary.

One possibility is to create a sub-set of element faces that contain hanging-nodes. The �uxes across the
hanging sub-faces can then be processed using local nodal information. This precludes computing
localized gradients across the face.

The SIERRA h-adaptive scheme is driven at the element level. Re�nement occurs within the element
and the topology of re�ned elements is the same as the parent element. If the topology restriction was
relaxed, then the following schemes could be used.

Aftosmis [163] describes a vertex-centered �nite-volume scheme on unstructured Cartesian meshes. A
transitional set of control volumes are formed about the hanging nodes, shown in Figure 5.10-2. on
unstructured meshes. (This would require a series of specialized master elements to deal with the
di�erent transition possibilities in SIERRA and would be a burden on the application teams.)

Kallinderis [164] describes a vertex-centered �nite-volume scheme on unstructured quad meshes.
Hanging nodes are treated with a constraint condition. The �ux construction for a node on a
re�nement boundary is based on the unre�ned parent elements, leading to a non-conservative
scheme.

Kallinderis [165] describes a vertex-centered �nite-volume scheme on unstructured tetrahedral meshes.
Hanging nodes are removed by splitting the elements on the “unre�ned" side of the re�nement
boundary. Mavriplis [166] uses a similar technique, but extends it to a general set of heterogeneous
elements, shown in Figure 5.10-3. (This would require a change to the topology rules in SIERRA as well
as splitting elements along the re�nement boundary, but there would be little impact on the application
codes other than supporting heterogeneous meshes.)
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Use linear
constraints for
nodal condition,

Subfaces have
no fluxes

Figure 5.10-1.. Control volume definition on an h-adapted mesh
with hanging nodes. (Four-patch of parent elements with refine-
ment in bottom-right element.)

5.10.1.1. Prolongation and Restriction

Nodal variables are interpolated between levels of the h-adapted mesh hierarchy using the traditional
prolongation and restriction operators de�ned over an element. The prolongation operation is used to
compute values for new nodes that arise from element sub-division. The parent element shape
functions are used to interpolate values from the parent nodes to the sub-divided nodes.

Prolongation and restriction operators for element variables and face variables are required to maintain
mass �ow rates that satisfy continuity.

5.10.1.2. Mass Continuity

Care must be taken to ensure continuity of mass between control volumes that contain hanging
sub-faces. Especially since control-volume balances at hanging nodes are replaced by constraint
conditions.

We need a list of the hanging faces as well as a means of identifying the hanging nodes on each face.
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Figure 5.10-2.. Control volume definition on an h-adapted mesh
with transition control volumes about the hanging nodes. (Four-
patch of parent elements with refinement in bottom-right ele-
ment.)

5.10.1.3. Nodal Gradients

The nodal gradients are approximated by integrating over the surface of the control volume and
applying the discrete form of the Gauss divergence theorem. There are two possible approaches for
dealing with the hanging sub-faces. In the �rst approach, the hanging sub-faces are processed separately.
In the second approach, the sub-faces are ignored but the unclosed surface integral is corrected by a
reference value, namely the nodal value associated with the control volume centroid,

𝜕𝜑

𝜕𝑥𝑖

⃒⃒⃒⃒
𝑝

d𝑉 =

∫︁
(𝜑− 𝜑𝑝)𝑛𝑖d𝑆 (5.405)

5.10.2. Dynamic Load-Balancing

Dynamic load-balancing is required as the mesh is adaptively re�ned across parallel processors. Some
processors may end up with more re�ned elements, so the work load increases. We will use the Zoltan
dynamics load-balancing package to drive the load-balancing. We need a good measure of the compute
load, most likely a combination of the time to assemble equations and the solve them.
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Figure 5.10-3.. Control volume definition on a heterogeneous h-
adapted mesh with no hanging nodes. (Four-patch of parent
elements with refinement in bottom-right element and splitting
in adjacent parent elements.)
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6. IMPLEMENTATION

This is a software implementation description for the ASC application code Fuego. The Fuego code is
part of the multi-mechanics suite of codes built upon the SIERRA Frameworks. The SIERRA
Frameworks are designed primarily for unstructured, �nite-element mechanics codes. The Fuego code
is based on a �nite-volume method. Finite-volume framework requirements that di�er from traditional
�nite-element frameworks are de�ned throughout the document. The limitation to vertex-centered
�nite volume schemes is particular challenging for the implementation of turbulence model wall
functions and h-adaptive meshing.

The SIERRA Frameworks [167] provide a hierarchy for describing a mechanics code or a
multi-mechanics code. At the top level is the domain which contains all the support infrastructure for
the code. Within the domain is the procedure which manages time integration and the exchange of data
between any multi-mechanics components. Within the procedure can be multiple regions. A region
contains a description of some particular physics. Within a region is a collection of mechanics which can
either be the math models that describe the physics or part of a solution algorithm.

The bulk of the Fuego code exists at the region level and below. The region-level design philosophy for
the Fuego code is based on a core continuity/momentum transport capability with a con�gurable set of
transport math models. The sub-mechanics within the region de�ne the collection of transport
equations that describe the physics. In this sense, Fuego itself is capable of supporting multi-mechanics
within its own context because it can generate multiple regions, each with a di�erent collection of
transport equations.

We use a �nite-volume scheme for the discrete form of the Fuego math models, derived from the
control-volume, �nite-element methods (CVFEM). The most signi�cant di�erence between our
CVFEM implementation in SIERRA and a FEM implementation is in the application of boundary
conditions. Most of the boundary conditions for CVFEM are applied as �uxes. The �uxes over an
element face are constructed from all the information in the parent element. The �uxes are linearized
such that there are both matrix and right-hand-side contributions.

6.1. SIERRA FRAMEWORKS

The Fuego code is built upon the SIERRA Frameworks. The SIERRA Frameworks are written in C++
and make extensive use of standard template library (STL) container classes. A good understanding of
STL is useful in understanding how to use the SIERRA Frameworks and access data within the
Frameworks. Much of the code design documentation is scattered throughout in-source comment-lines
and the product design documents (PDD) that accompany each source code check-in to the version
control repository. A description of SIERRA Frameworks functionality is contained in the SIERRA
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requirements document [168]. The Frameworks theory and design are described in the design
document [167]. The following taxonomy describes some of the key mechanisms of the SIERRA
Frameworks:

procedure The procedure support class contains methods for manipulating the procedure object. The
procedure controls the time integration process and the exchange of information between regions
via a transfer. Multi-mechanics code coupling usually occurs within the procedure between
di�erent regions.

region The region support class contains methods for manipulating the region object. The region
contains the description of the math models and the solution procedures for advancing a time
step. Most of the code that makes an application code unique is contained within the region. The
regions are designed to have no direct dependency on procedure code or code from other regions.
All external data is loaded into local control data or loaded via transfers.

transfer The transfer object is invoked within a procedure in order to move data between regions. Each
region has its own mesh even though they may �ll the same physical space. The transfer object
manages the interpolation of data between the meshes.

mechanics A mechanics is a generic object within the Frameworks and contains methods for operating
on itself or other mechanics objects. It may invoke workset algorithms to e�ciently process data.

instance An instance is a member of a list of a mechanics object. An instance is typically unique in its
association with a mesh object.

context A context is a label that is applied to a collection of objects.

extent An extent is the collection of objects that have the same context.

iterator An iterator is a method of looping through a list of objects.

mesh object A mesh object is part of mesh; i.e., an element block, side-set, or node-set.

workset The Frameworks uses a caching strategy to process �oating-point information. The
Frameworks processes the governing equations associated with the math models on an
element-by-element basis. A workset is a collection of elements that are processed at one time
such that all the local data required for the evaluation will �t in cache. Heterogeneous worksets
are used for boundary condition �ux processing. A heterogeneous workset is de�ned by an iterate
such as a collection of element faces in a side-set, but processes data based on the parent topology
such as the parent elements.

workset algorithm The method for processing a workset is a workset algorithm. Local variables are
registered with the algorithm that have associativity with global data. The Frameworks manages
the transfer of data to and from the workset algorithm via assembles, scatters, and gathers.

solver A solver object is responsible for assembling a linear system, applying boundary conditions and
constraints, and solving the linear system. This object is the interface to the linear solver packages.

library A library is a method of storing lists of data.

control data The control data is a dynamic list of integer, real, and string data that is accessed by string
labels.
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master element A master element de�nes the topology of an elements and provides methods for
specifying integration locations, performing interpolations, and processing geometry (areas,
volumes, and gradients).

parser The parser system is a method for transferring information from a formatted text input �le to
the application code. The SIERRA Frameworks supplies a parsed input system. There are three
parts to the parsing system: 1) a database of commands using XML, 2) call-backs that are
provided by the application code to take action on a line command, and 3) code for linking the
XML commands to the call-backs.

The Frameworks objects that form the foundations of an application code are created during the
parsing phase.

6.2. FUEGO FRAMEWORKS

The SIERRA/Fuego code is a collection of C++ and FORTRAN code. The routines written in C++
contain the frameworks–type operations such as solution algorithms, data management, and variable
registration. The routines written in FORTRAN contain the element and boundary condition
routines that describe the math models. Some of the Fuego frameworks source code �les are listed in
Table 6.2-1 with their functionality. These �les contain one or more subroutines or functions.

The matrix assembly and linear solve procedures are managed by the SIERRA Frameworks solver
objects. The “support" classes listed above for element routines and boundary condition routines
register themselves with the solver in the parsing phase. The solver then calls its registered methods to
assemble the matrix.

The code is assigned a version number consisting of three digit �elds, separated by two periods, X.Y.Z.
The �rst digit �eld (leftmost) is the major number. The major number will be 0 during development
and will increment to 1 upon the o�cial release. The second �eld is the minor number and represents
signi�cant jumps in capability. During development, the minor number will increment with each code
stage. The third digit �eld (rightmost) is the patch level and represents minor modi�cations and
bug-�xes. Changes in input syntax also force a patch level increment. The initial version numbering
schedule is shown below.

0.1.0 - Stage One, PUVW, laminar convection, isothermal, uniform

0.2.0 - Stage Two, PUVWT, laminar convection, thermal, uniform

0.3.0 - Stage Three, PUVWKE, turbulent convection, isothermal, uniform

0.4.0 - Stage Four, PUVWKEHY, turbulent convection, thermal, nonuniform

0.5.0 - Stage Five, PUVWKEHY, add EDC model for turbulent combustion

0.6.0 - Stage Six, PUVWKEHYS, soot and �re
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Version-number matching is enforced for the input �le. The code will abort if the requested version
number does not match the current internal code version number.

The default repository con�guration of Fuego is to have code-coupling turned on. The code-coupling
feature is activated in the repository in order to run the nightly regression tests for
coupled-mechanics.

6.2.1. Framework Control Data

The control data are dynamic lists of integers, reals, and strings, which are used to store data. In Fuego,
the control data is used to store solution parameters and user-de�ned constants. There is control data
that exists at di�erent scopes within the SIERRA Frameworks. There is control data for the procedure,
the region, instances of an element mechanics, and instances of a generic mechanics.

A control datum is referenced by a string label. The string-matching is case-sensitive. The Fuego code
will use all-capital letters for control data labels. The control data is registered dynamically in the source
code, usually during the parsing phase.

The procedure control data contains information about the time integration process, shown in
Table 6.2-2. For the purpose of mechanics code-coupling, it should be as mechanics-generic as
possible.

The Fuego region control data contains information relevant to the solution procedure for the �re
physics math models, shown in Table 6.2-3. The region control data is also a means for passing
information back to the calling procedure.

The boundary condition mechanics instance control data, shown in Table 6.2-5, is used to hold
information for the boundary conditions. The boundary conditions are implemented as generic
mechanics objects. When the boundary condition needs speci�ed values, use either a CONSTANT
value, a FUNCTION, or a user-supplied SUBROUTINE. The “function name" must match an entry
in the FUNCTION library. The “subroutine name" must match a valid subroutine that has been
linked to the code.

6.2.2. Framework Procedure

The procedure code manages the time integration and the exchange of data between regions. The
procedure object is based on the Afgo_Procedure class (see Figure 6.2-1), which is derived from a
Fmwk_Procedure class. The Afgo_Procedure class contains additional timing information. The
procedure supports a �xed time step and a variable time step that is set according to a �xed CFL
number. The time step control information is de�ned in the time-control input block. Within the
time-control block are multiple time-step blocks. The time step block de�nes valid time step control
parameters for a period of time. The time-step blocks must be contiguous in time. The Fuego code does
not use the time-control block TERMINATION time for a stopping criterion. The start and stop
times are de�ned by commands within the procedure.
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Two methods are required for the Afgo_Procedure_Support class – initialize() and execute(). The
initialize() method registers control data, initializes the time and step size, calls the initialize() method
for each region, initializes the transfer objects if there are coupled mechanics, sets up the region
evaluation ordering if there are multiple regions, and initializes all material properties with STATE
association. The SIERRA Frameworks will generate a default region iterator where the ordering is
alphabetical by name. The regions should be called in a speci�c order, so the region type list de�nes the
evaluation ordering. There is a region list that de�nes the processing order of the di�erent regions of the
same type. These lists are stored in the procedure control data.

The execute() method performs the time integration. Fuego only supports a transient solution
procedure. The transient solver performs nonlinear iteration over regions within a time step until that
time step is declared converged, and then advances to the next time step. Within a nonlinear iteration,
each region is processed. For each region, there is �rst an optional pre-nonlinear processing step that
usually involves loading region control data. The region execute() method is then called to solve the
equations. An optional post-nonlinear processing step is taken for the region, usually consisting of a
data transfer. After the nonlinear iteration is �nished, the solution variables are advanced and the time
step process starts over.

The time-advancement method provided by SIERRA rotates the states of the state variables by
swapping pointers. In our solution strategy, the solution in the (N+1) state is always used as an initial
guess in the nonlinear solution procedure. When the states are swapped, the initial solution in the
(N+1) slot is actually the solution from the (N) slot of the previous time step which is now the (N-1)
solution. In order to get the best initial guess, the Fuego code provides additional methods to copy the
solution in the new (N) state forward to the new (N+1) state for all nodal and element state variables.
The state manipulation is actually called out of the region code since this requirement is particular to
the Fuego mechanics. The state copy is only performed for the �rst subiteration within the time step
(remember there is subiteration over regions within a time step and subiteration over equation sets
within a region).

6.2.3. Framework Region

The region code manages the nonlinear solve of the nonlinear equations describing a sub-mechanics
(see Figure 6.2-2). The matrix assembly, linear-solve, and scatter operations are handled entirely by the
Fmwk_LinearSolver class and the �nite element interface (FEI). Each equation set in the �re mechanics
has an associated linear_solver. The linear_solver is told, in the parser registration phase, which workset
algorithm to use to build matrix contributions.

A region object is based on the Afgo_Region class, derived from the Fmwk_Region class. The
Afgo_Region contains the material property_evaluator object Afgo_Material and references to all the
nodal data. The region code requires two methods – initialize() and execute(). The linear solver
processing order is de�ned in initialize(). The linear solvers are labeled according to the equation set
they are solving: “solve_p", “solve_u", “solve_v", “solve_w", “solve_k", “solve_e", “solve_t", “solve_h",
“solve_y", “solve_n", and “solve_s". The initialize() object then calls the initialize object for all the
element mechanics instances. The material property_evaluator objects are then initialized.
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The execute() method manages the nonlinear iterative solve. Just as the procedure code will perform
iterations over the region within a time step, the region code calls for a speci�ed number of iterations
over the equation sets within the region. On the �rst time through the region code, for each time step at
the procedure level, the state management routines are invoked. Material properties are evaluated by the
property_evaluator object at the beginning of each nonlinear iteration within the region. The solver list
is iterated upon to loop through the equation set solves. The nodal pressure gradient contribution to
the momentum equations is added by the setRHS() method. The interior equations and �ux boundary
conditions are assembled using the loadBlock() method of the linear_solver. The nodal boundary
conditions are then applied through a call to loadBC(). The equations are solved and the solution is
scattered back to the global nodal arrays. We use the delta-form of the linear system, so additional state
management routines are required to copy the solution “delta" into the solution variable.

When there are multiple species transport equations, an additional temporary array is used to act as a
solution array with the linear solver. Special data management routines are used to locally gather and
scatter mass fractions from the global “mass_fraction" array to the local “ysolve" array.

When solving the transport equations for turbulent kinetic energy and turbulence dissipation, the
updating of the turbulent kinetic energy is lagged until both equations have been solved. This allows for
a constant value of 𝑘/𝜖 in the source terms of both equations.

There is only one material de�ned for a region. The material may be a multicomponent gas.

6.2.4. Element Mechanics

Element mechanics are a special class of mechanics that know how to loop over elements (see
Figure 6.2-3) by association with element topology through a master element. Elements are processed by
worksets, so the mechanics is described by a workset algorithm. A workset is a collection of elements
that can be processed (assembled) while remaining in cache memory. All element mechanics workset are
currently (12/01) hard-wired for hexahedral elements until the convection operator routines can be
generalized.

The transport equations can be con�gured for a particular collection of physics. The collection of
transport equations is de�ned by the sub-mechanics of the problem. The sub-mechanics labels are
described in Table 6.2-6.

The SIERRA Frameworks code processes the workset algorithm, loading the workset variables from
global variables, scattering workset variables back to global variables, assembling the matrix and
right-hand side, and assembling other global variables from workset variables. The data management
routines for the workset algorithms are all contained in Afgo_ElemMech_Support.C. The names and
descriptions of the workset algorithms are given in Table 6.2-7. The laminar form of the equations are
separate from the turbulent form.
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6.2.5. Boundary Conditions

We primarily use �ux boundary conditions, but also support �xed (Dirichlet) boundary conditions.
Flux boundary conditions make use of the element information adjacent to the boundary face,
generating an element matrix contribution. The �ux boundary conditions are implemented as
heterogeneous workset algorithms. There are four �ux boundary condition classes:
Afgo_In�owBC_Support, Afgo_Out�owBC_Support, Afgo_SymmetryBC_Support, and
Afgo_WallBC_Support. Each class contains all the workset algorithms needed to evaluate �ux
boundary conditions for each of the transport equations. All �ux boundary condition routines are
currently (12/01) hard-wired for quadrilateral faces with hexahedral parent elements.

The �ux boundary condition worksets are not registered until after all the nodal variables have been
created. The �ux boundary condition classes have mechanics algorithms for the registration phase and
workset algorithms for the assembly phase.

The �xed boundary conditions, shown in Table 6.2-8, are derived o� of the nodal_contribution() class
within the Fmwk_LinearSolver class. There is an Afgo_DirichletBC class to encapsulate the
boiler-plate methods.

Each boundary condition mechanics can have several “instances". Each instance shares the same
speci�ed data, but is mapped to a unique collection of side sets and node sets. Each instance has its own
control data.

The data speci�c to a boundary condition is obtained through the boundary condition instance control
data. Speci�ed values, such as velocity or pressure or temperature, can be either constant, a piecewise
linear function of one of the coordinate axes, or derived from a user-supplied subroutine.

6.2.6. Material

Material properties in Fuego are evaluated using a property_evaluator software object. All properties
are computed as nodal variables. Nodal values are interpolated to sub-faces and sub-volumes. The
material properties are evaluated once outside of the equation-set loop in the region code. The
material_evaluator evaluates properties by list. A list of property names is de�ned during the
initialization that de�nes all the properties required to evaluate the equations.

Raw property data is stored in the MATERIAL_PROPERTIES and FUNCTIONS libraries, one
entry for each type of material requested. Currently (11/30/99), only two means of specifying material
properties is supported: speci�ed functions and Chemkin calls. The speci�ed function properties are
de�ned by the user in the input �le. Constant values are de�ned by a constant function. The second
means of de�ning properties is through Chemkin. A modi�ed form of the Chemkin linking �les will be
placed in the material library entry (see table).

The material property_evaluator object is located in an Afgo_Region object. There is only one material
evaluator per region. Material properties for thermal and/or nonuniform �ows must be evaluated using
the Chemkin libraries [169, 170]. A modi�ed version of the Chemkin libraries is installed in the
SIERRA system. The Chemkin FORTRAN routines have been modi�ed such that there are no
common blocks, so the API of some subroutines has changed. Three �les need to be present in order to
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run Fuego – the Chemkin input �le, the ASCII Chemkin linking �le, and the ASCII transport linking
�le.

6.2.7. Master Elements

The master element classes contain the topological information required to de�ne interpolations,
integrations, and geometry processing (areas, volumes, and gradients) within an element. The master
elements speci�c to the element-assembled CVFEM used in the Fuego code are shown in Table 6.2-9.
The �uid �ow sub-mechanics currently (12/01) only make use of the hexahedral elements. The heat
conduction sub-mechanics make use of all CVFEM master elements.

6.2.8. User Subroutines

The FUEGO code allows subroutines to be de�ned and used to set quantities in the code such and
boundary conditions (in�ow pro�les), transport terms, and initial conditions. The only restriction on
the subroutine being called is its signature or parameter list. De�ned signatures are listed in
Table 6.2-10

The subroutine must be dealt with in parsing, initialization, and workset areas of the code. In every
case, the relevant parsing callbacks are in the “register_commands" member function associated with
the input class.

With respect to initialization, the boundary condition classes are the most involved. Here, each
mechanics instance has its own user subroutine and associated user constants. When the parsing triggers
a subroutine callback, the appropriate �ag is set and the subroutine name is stored. The handler then
stores the subroutine name and any constants associated with it in the instance’s control data. There is
no other initialization to be done for subroutines, although it is important to guard any function (load
curve) calls (or function initialization) with a check on the “type" of condition being set (constant, load
curve, or subroutine).

In the workset portion of the boundary condition codes, the variable in question (associated with a
subroutine) will need to be calculated. At this stage, the variable “type" within the code gets checked; if
it’s a subroutine type, the code takes its name from the instance control data. At that point, the
subroutine pointer itself can be retrieved from the framework registry, its signature checked, and a call
made to load the relevant boundary data.

In the transport equations, things are a bit less complicated: the region control data contains the
appropriate subroutine associations. However, it could have one for each transport variable. Parsing
callbacks are again de�ned in the “register_commands" member function. In this case, the parsing
callback looks at the variable indicated by the parsing (eg. a source term for pressure) and creates an
association within the region control data for that particular variable and the given subroutine name. As
with the boundary condition implementation, there is precious little to do to initialize a user
subroutine. The only task the callback has is to register the subroutine name in the region’s control data
for later use.
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In the workset portion of the code, the source term subroutines are called immediately after the
FORTRAN element routine. If the appropriate �ags are set, the subroutine name is retrieved from the
region’s control data, the subroutine pointer is retrieved from the framework registrar, and the
signature checked. At this stage, the subroutine can be called. The subroutine takes from the user
source terms for the right hand side and the diagonal entries on the left hand side of the discretized
algebraic equations.

Like the source term implementations, initial condition user subroutines are less complicated than the
boundary condition implementations. Again, the parsing callbacks are triggered in the
“register_commands" member function and again, there is little to do in initialization but store the
subroutine name in the instance’s control data. In the “workset" part of the code (or that part that
corresponds to a workset algorithm), the existence of a subroutine association is checked. From there,
the code can retrieve the subroutine pointer from the framework registry, check its signature, and call it.
In the initial condition class, the call is made by overloading the set_nodal_variable member function.
The subroutine pointer is passed in as a parameter and the appropriate nodal variable is set with the
subroutine a single node at a time.

The signatures associated with each use in the FUEGO code are listed in Table 6.2-11.

Calore

RegionRegion

time integration

Region

Fuego

Syrinx

Fuego Procedure

inter−region data transfer

Figure 6.2-1.. Fuego Procedure Class
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Figure 6.2-2.. Fuego Region Class
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Figure 6.2-3.. Fuego Element Mechanics Class
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Table 6.2-1.. Fuego Frameworks Classes

Afgo_Procedure_Support.C Time integration procedures and state data management.
Afgo_Region_Support.C Nonlinear solution procedure within a time-step and linear

solver interactions.
Afgo_Region_Parsing.C Region-speci�c parsing routines.
Afgo_ConstuctElemMech.C Maybe element mechanics support object to an element block.
Afgo_ElemMech_Support.C Workset algorithms for the transport equations.
Afgo_ElemMech_Register.C Workset registration and solver registration for for the transport

equation workset algorithms.
Afgo_Dirichlet_*_Support.C Data management for Dirichlet boundary conditions.
Afgo_Input_*BC_Support.C Input parsing for �ux boundary conditions.
Afgo_In�owBC_Support.C Workset algorithms for the �ux boundary conditions at an in-

�ow.
Afgo_In�owBC_Register.C Workset registration and solver registration for the �ux boundary

conditions at an in�ow.
Afgo_Out�owBC_Support.C Workset algorithms for the �ux boundary conditions at an out-

�ow.
Afgo_Out�owBC_Register.C Workset registration and solver registration for the �ux boundary

conditions at an out�ow.
Afgo_SymmetryBC_Support.C Workset algorithms for the �ux boundary conditions at a sym-

metry plane.
Afgo_SymmetryBC_Register.C Workset registration and solver registration for the �ux boundary

conditions at a symmetry plane.
Afgo_WallBC_Support.C Workset algorithms for the �ux boundary conditions at a wall.
Afgo_WallBC_Register.C Workset registration and solver registration for the �ux boundary

conditions at a wall.
Afgo_Material.C Material property evaluation methods.
Afgo_ConstInitCond_Support.C Methods to set the initial conditions.

Table 6.2-2.. Fuego Procedure Control Data

CODE_VERSION “0.0.0", fuego version number must match code
RESTART_VERSION “0.0.0", restart �le created with a version number must match current
PROCEDURE_CONVERGENCE “TRUE" | “FALSE", have we converged within this time step
PROCEDURE_SUBITERATION 0, number of subiterations taken within time step
MAX_PROCEDURE_SUBITERATION 1, maximum subiterations within time step
DEBUG_LEVEL 0 | 1, enable debug messages
PMR_SKIP 1, step interval for evaluating participating media radiation (PMR)
NUM_TIME_PERIODS 0, the number of time step de�nition blocks
GLOBAL_TIMESTEP_COUNTER 0, the total number of time steps taken
TIMEBLOCK_TIMESTEP_COUNTER 0, the number of time steps taken within the time block
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Table 6.2-3.. Fuego Region Control Data

DEBUG_LEVEL 0 | 1, provide debugging information
COORDINATE_SYSTEM coordinate system
REGION_CONVERGENCE 0 | 1, has this nonlinear iteration sequence converged
REGION_CUTOFF 0, if all equations meet their nonlinear residual tolerance on the �rst

subiteration, then shut down the code
REGION_SUBITERATION 0, number of nonlinear iterations over equation sets
MIN_REGION_SUBITERATIONS 1, minimum number of nonlinear iterations.
MAX_REGION_SUBITERATIONS 1, maximum number of nonlinear iterations.
CONT_NONLIN_TOLERANCE 1.0e-8, tolerance on continuity equation nonlinear residual for stop-

ping sub-iteration process
XMOM_NONLIN_TOLERANCE 1.0e-8, tolerance on x-momentum equation nonlinear residual for stop-

ping sub-iteration process
YMOM_NONLIN_TOLERANCE 1.0e-8, tolerance on y-momentum equation nonlinear residual for stop-

ping sub-iteration process
ZMOM_NONLIN_TOLERANCE 1.0e-8, tolerance on z-momentum equation nonlinear residual for stop-

ping sub-iteration process
TEMP_NONLIN_TOLERANCE 1.0e-8, tolerance on temperature equation nonlinear residual for stop-

ping sub-iteration process
ENTH_NONLIN_TOLERANCE 1.0e-8, tolerance on enthalpy equation nonlinear residual for stopping

sub-iteration process
SPEC_NONLIN_TOLERANCE 1.0e-8, tolerance on species equation nonlinear residual for stopping

sub-iteration process
TRBK_NONLIN_TOLERANCE 1.0e-8, tolerance on turbulent kinetic energy equation nonlinear resid-

ual for stopping sub-iteration process
TRBE_NONLIN_TOLERANCE 1.0e-8, tolerance on turbulence dissipation equation nonlinear residual

for stopping sub-iteration process
CONT_URF 1.0, under-relaxation factor
XMOM_URF 1.0, under-relaxation factor
YMOM_URF 1.0, under-relaxation factor
ZMOM_URF 1.0, under-relaxation factor
TEMP_URF 1.0, under-relaxation factor
ENTH_URF 1.0, under-relaxation factor
SPEC_URF 1.0, under-relaxation factor
TRBK_URF 1.0, under-relaxation factor
TRBE_URF 1.0, under-relaxation factor
TVISC_URF 1.0, under-relaxation factor
L2_NORM_SCALING 1.0, Scale L2 norm by number of nodes
TIME_STEP 0.0, �xed time step, copied from the procedure
TIME_STEP_TYPE 0, for h-adaptive scheme
WRITE_STATUS �ag to write status info
CURRENT_TIME 0.0, the current time at the (N+1) time level
CURRENT_TIME 0.0, the current time at the (N+1) time level
SUB_MECHANICS PUVW | PUVWT | PUVWKE | PUVWY, de�ne math models (equa-

tion sets) to solve.
PERSISTENT_TEMPERATURE de�ne a temperature for code-coupling, only
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STATE_EVALUATION_MODE USE_REFERENCE_STATE |USE_REFERENCE_MASS_FRACTIONS
| USE_REFERENCE_TEMPERATURE |
USE_ACTUAL_STATE, de�nes independent variables for ma-
terial property evaluation within the element block

USE_REFERENCE_TEMPERATURES “TRUE" | “FALSE", use library reference value for property eval.
NUMBER_MATERIALS 1, number of materials in the region
NUM_SV_PROPS 0, number of properties to evaluate.
SV_PROP_NAMES[] list of property names, match material library, string
SV_PROP_VARS[] list of workset variable names for property variables, string
RESIDUAL_FILENAME “", write the nonlinear residual history
BUOYANCY “NONE" | “BUOYANT" | “DIFFERENTIAL" | “BOUSSINESQ",

activate buoyancy body force terms using one of the listed models
GRAVITY[] gravity vector
BUOYANCY_REF_TEMPERATURE 0.0, buoyancy reference temperature
BUOYANCY_REF_MASS_FRACTION_XXX 0.0, buoyancy reference mass fraction of species XXX
BUOYANCY_REF_DENSITY 0.0, buoyancy reference density
BUOYANCY_MASS_REF 0 | 1, use mass fractions
BUOYANCY_MOLE_REF 0 | 1, use mole fractions
NUMBER_OF_SPECIES 0, number of species
MULTICOMPONENT 0 | 1, species transport equations are active
SOLVER_SPECIES_NUMBER 0, the species equation are we currently solving
TURBULENCE_MODEL “laminar" | “k_e" | “v2f" | “kl", turbulence model de�nition.
NEED_YP 0 | 1, compute normal distance from wall
NEED_UTAU 0 | 1, compute friction velocity
BUOYANT_VORTICITY_GEN 0 | 1, add BVG model
ADD_MOLECULAR_VISC 0 | 1, add molecular viscosity to turbulence model di�usion
OMIT_WALL_TKE 0 | 1, wall bc treatment for turb ke
TURBULENCE_MODEL_CMU 0.0, k-e model parameter from global constant library
TURBULENCE_MODEL_SIGMA_K 0.0, k-e model parameter from global constant library
TURBULENCE_MODEL_SIGMA_E 0.0, k-e model parameter from global constant library
TURBULENCE_MODEL_CEPS_1 0.0, k-e model parameter from global constant library
TURBULENCE_MODEL_CEPS_2 0.0, k-e model parameter from global constant library
TURBULENCE_MODEL_CEPS_3 0.0, buoyant vorticity generation constant from global constant library
TURBULENCE_MODEL_CBVG 0.0, buoyant vorticity generation constant from global constant library
TURBULENCE_MODEL_CF_1 0.0, v2-f model parameter from global constant library
TURBULENCE_MODEL_CF_2 0.0, v2-f model parameter from global constant library
TURBULENCE_MODEL_ALPHA 0.0, v2-f model parameter from global constant library
TURBULENCE_MODEL_NSEG 0.0, v2-f model parameter from global constant library
TURBULENCE_MODEL_CL 0.0, v2-f model parameter from global constant library
TURBULENCE_MODEL_CETA 0.0, v2-f model parameter from global constant library

312



MINIMUM_TIME_STEP 0.0, minimum allowable time step
MAXIMUM_TIME_STEP 0.0, maximum allowable time step
TIME_STEP_CHANGE_FACTOR 1.0, rate at which time step is allowed to change for step to step
CFL_LIMIT 0.0, criterion for specifying time step
MAX_CFL 0.0, the maximum CFL number over the mesh
MIN_CFL 0.0, the minimum CFL number over the mesh
MAX_REY 0.0, the maximum cell Reynolds number over the mesh
MIN_REY 0.0, the minimum cell Reynolds number over the mesh
SIZE_SOLVER_LIST 1

number of solvers (equation sets)
SOLVER_LIST[] “solve_puvw"

evaluation ordering for equation sets
UPWIND_FACTOR 0.05, blending factor for pure �rst-order upwind convection
UPWIND_METHOD upwind convection method
UPWIND_LIMITER slope limiter for MUSCL scheme
HYBRID_FACTOR 1.0, multiplier for cell-Peclet number to control hybrid scheme blend-

ing
RHIE_CHOW_SCALING 0 | 1, activate the scaled Rhie/Chow scheme
PRESSURE_SMOOTHING 0 | 1, activate the fourth-order pressure smoothing
OMIT_DENSITY_DERIVATIVE 0 | 1, remove density time derivative from continuity
DENSITY_PREDICTOR 0 | 1, use a density predictor in time
THERMODYNAMIC_PRESSURE_IS_VARIABLE 0 | 1, all thermodynamic pressure to vary
SCALE_ENTHALPY 0 | 1, scale the enthalpy equation
ENTHALPY_FORM 0 | 1, use the enthalpy form of the energy equation
EDC_COMBUSTION 0 | 1, activate the combustion model
EDC_SOOT 0 | 1, activate the soot model
EDC_ABSORPTION 0 | 1, activate the radiation absorption model
EDC_REACTION_TIME_SCALE 0.0, characteristic time scale for a chemical reaction
IGNITION_TIME 0.0, time at which the �ow is ignited
PRODUCT_MIN 0.0, the minimum mass fraction of products required to ignite
FUEL_NAME 0.0, the name of the fuel species
SOOT_TEMPERATURE_MIN 0.0, the lower limit on temperature for producing soot
SINTEF_SOOT_MODEL 0 | 1, use the SINTEF soot model
INDEX_OXY 0, the index number for oxygen in the species list
INDEX_FUEL 0, the index number for fuel in the species list
INDEX_CO 0, the index number for carbon monoxide in the species list
INDEX_CO2 0, the index number for carbon dioxide in the species list
INDEX_H2 0, the index number for hydrogen in the species list
INDEX_H2O 0, the index number for water in the species list
STOICH_O2_FUEL 0, the stoichiometric ratio of oxygen to fuel
STOICH_O2_CO 0, the stoichiometric ratio of oxygen to carbon monoxide
STOICH_O2_H2 0, the stoichiometric ratio of oxygen to hydrogen
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Table 6.2-4.. Fuego Element Mechanics Instance Control Data

formationTime time required to form matrix, for load-balancing
loadMeasure the number of elements processed, for load-balancing
MATERIAL_NAME name from MATERIAL_LIBRARY entry, de�ne material for this el-

ement block

Table 6.2-5.. Fuego BC Mechanics Instance Control Data
VARIABLE_TYPE[] “CONSTANT", “NULL", variable is constant
VARIABLE_TYPE[] “FUNCTION", “X"|“Y"|“Z", variable is a function of X|Y|Z
VARIABLE_TYPE[] “SUBROUTINE", name, variable comes from a subroutine
pressure 0.0 | “function name" |, constant value or function name for subrou-

tine name
x-velocity 0.0 | “function name" |, constant value or function name for subrou-

tine name
y-velocity 0.0 | “function name" |, constant value or function name for subrou-

tine name
z-velocity 0.0 | “function name" |, constant value or function name for subrou-

tine name
temperature 0.0 | “function name" |, constant value or function name for subrou-

tine name
OMIT_DIFFUSION_TERMS turn o� the di�usion terms for an out�ow boundary
FLOW_MUST_EXIT_DOMAIN force �ow to leave domain for an out�ow boundary

Table 6.2-6.. Fuego Sub-Mechanics Definitions

T heat conduction, 1 equation
PUVW isothermal, uniform, laminar �ow, 4 equations
PUVWT thermal, temperature-form, uniform, laminar �ow, 5 equations
PUVWH thermal, enthalpy-form, uniform, laminar �ow, 5 equations
PUVWY isothermal, nonuniform, laminar �ow, (3+NSPEC) equations
PUVWHY thermal, enthalpy-form, nonuniform, laminar �ow,

(4+NSPEC) equations
PUVWKE isothermal, uniform, turbulent �ow, 6 equations
PUVWKEH thermal, uniform, turbulent �ow, 7 equations
PUVWKEY isothermal, nonuniform, turbulent �ow, (5+NSPEC) equations
PUVWKEHY thermal, nonuniform, turbulent �ow, (6+NSPEC) equations
PUVWKEHYSN thermal, nonuniform, soot, turbulent �ow, (8+NSPEC) equa-

tions
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Table 6.2-7.. Fuego Element-Mechanics Workset Definitions

assemble_gradient approximate the gradient of a scalar at nodes by integrating
over control-volume faces, assembling the element-level contri-
butions into the global nodal arrays. This routine is used for the
MUSCL convection scheme.

assemble_pressure_gradient approximate the gradient of the pressure at nodes by integrating
over control-volume faces, assembling the element-level contri-
butions into the global nodal arrays. This routine is used for a
Rhie/Chow formulation for the continuity equation.

compute_c� compute the maximum and minimum c� number over the ele-
ments

compute_ap assemble the diagonal scaling term that is used in the Rhie/Chow
interpolation for mass �ow rate

laminar_p assemble the continuity equation
laminar_p_update reassemble the continuity equation, but only update the mass

�ow rate
laminar_u assemble the laminar x-momentum equation
laminar_v assemble the laminar y-momentum equation
laminar_w assemble the laminar z-momentum equation
laminar_t assemble the laminar temperature equation
laminar_h assemble the laminar enthalpy equation
laminar_y assemble a laminar species equation
turbulent_u assemble the turbulent x-momentum equation
turbulent_v assemble the turbulent y-momentum equation
turbulent_w assemble the turbulent z-momentum equation
turbulent_h assemble the turbulent enthalpy equation
turbulent_y assemble a turbulent species equation
turbulent_s assemble a turbulent soot equation
turbulent_n assemble a turbulent soot transport equation
turbulent_k assemble a turbulent kinetic energy transport equation, k-e

model
turbulent_e assemble a turbulence dissipation transport equation, k-e model
turbulent_k_v2f assemble a turbulent kinetic energy transport equation, v2-f

model
turbulent_e_v2f assemble a turbulence dissipation transport equation, v2-f model
turbulent_v2 assemble a turbulent v2 transport equation, v2-f model
turbulent_f assemble a turbulent Helmholtz equation, v2-f model
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Table 6.2-8.. Fuego Dirichlet Boundary Condition Definitions

Afgo_Dirichlet_U_Support �xed nodal x-velocity component
Afgo_Dirichlet_V_Support �xed nodal y-velocity component
Afgo_Dirichlet_W_Support �xed nodal y-velocity component
Afgo_Dirichlet_P_Support �xed nodal pressure
Afgo_Dirichlet_T_Support �xed nodal temperature
Afgo_Dirichlet_H_Support �xed nodal enthalpy
Afgo_Dirichlet_Y_Support �xed nodal mass fraction
Afgo_Dirichlet_K_Support �xed nodal turbulent kinetic energy
Afgo_Dirichlet_E_Support �xed nodal turbulence dissipation
Afgo_Dirichlet_Wall_K_Support �xed nodal turbulent kinetic energy, wall function implementa-

tion
Afgo_Dirichlet_Wall_E_Support �xed nodal turbulence dissipation, wall function implementa-

tion
Afgo_Dirichlet_V2F_E_Support �xed nodal turbulence dissipation, v2-f model implementation

Table 6.2-9.. Fuego Master Element Definitions

Ehex_H8_scs eight-node hexahedral element for CVFEM, integration loca-
tions at sub-faces and element faces

Ehex_H8_scv eight-node hexahedral element for CVFEM, integration loca-
tions at sub-volume

Etet_Te4_scs four-node tetrahedron element for CVFEM, integration loca-
tions at sub-faces and element faces

Etet_Te4_scv four-node tetrahedron element for CVFEM, integration loca-
tions at sub-volume

Ewed_W6_scs six-node wedge element for CVFEM, integration locations at
sub-faces and element faces

Ewed_W6_scv six-node wedge element for CVFEM, integration locations at
sub-volume

Ehex_3DTr3_scs three-node triangular element for CVFEM, integration locations
at sub-volumes

Ehex_3DQ4_scs four-node quadrilateral element for CVFEM, integration loca-
tions at sub-volumes

Table 6.2-10.. User Subroutine Argument Lists

Apub_ftx3_sub int*, real*, real*, real*, int*, int*, real*, int*
Apub_ftx3spec_sub int*, real*, real*, int*, real*, int*, int*, real*, int*
Afgo_fmmsfgo_sub int*, int*, int*, real*, real*, real*, real*, real*, real*, real*, real*, real*,

real*
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Table 6.2-11.. User Subroutine Signature Type

Heat BC Apub_ftx3_sub
Convection BC Apub_ftx3_sub
Radiation BC Apub_ftx3_sub
Fixed BC Apub_ftx3_sub, Apub_ftx3spec_sub
In�ow BC Apub_ftx3_sub, Apub_ftx3spec_sub
Out�ow BC Apub_ftx3_sub
Wall BC Apub_ftx3_sub, Apub_ftx3spec_sub
Initial Conditions Apub_ftx3spec_sub
Source Terms Afgo_fmmsfgo_sub
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7. TRANSPORT PROCESSES

We provide detailed derivations of the approximate form of the transport equations.

APPENDIX A. MULTICOMPONENT TRANSPORT

Gas-phase mass transport and chemical reactions are modeled with the multicomponent transport
equations. The gas-phase species transport equations are:

𝜕𝜌𝑌𝑔
𝜕𝑡

+
𝜕𝜌𝑢𝑗𝑌𝑔
𝜕𝑥𝑗

= −𝜕𝜌𝑢̂𝑗,𝑔𝑌𝑔
𝜕𝑥𝑗

+ 𝜔̇𝑔, (7.1)

where the summation rule has been suspended for the species index, 𝑔. The mass fractions of the
chemical species are 𝑌𝑔, the chemical source terms are 𝜔̇𝑔, and the di�usion velocities are 𝑢̂𝑖,𝑔. The
di�usion velocities are functions of both mass di�usion and thermal di�usion, and are de�ned by the
multicomponent di�usion equation [171, 13]. Di�usion due to pressure gradients or body forces is
neglected. The di�usion equation can be manipulated into a form that is more readily applied
algorithmically [172]. The mass di�usion �ux is de�ned as j𝑖,𝑔 = −𝜌𝑢̂𝑖,𝑔𝑌𝑔.

j𝑖,𝑔 = −𝜌𝐷𝑔
𝜕𝑌𝑔
𝜕𝑥𝑖

−
(︂
𝜌𝑌𝑔𝐷𝑔

𝑊

𝜕𝑊

𝜕𝑥𝑖
+𝐷𝑇

𝑔

1

𝑇

𝜕𝑇

𝜕𝑥𝑖

− 𝑌𝑔𝐷𝑔𝑊
𝑁𝑆∑︁

𝑛=1;𝑛 ̸=𝑔

[︂
j𝑖,𝑛

𝑊𝑛𝒟𝑛𝑔

+
𝐷𝑛

𝑇

𝑊𝑛𝒟𝑛𝑔

1

𝑇

𝜕𝑇

𝜕𝑥𝑖

]︂)︃
(7.2)

The multicomponent di�usion coe�cients are𝐷𝑔, the binary di�usion coe�cients are 𝒟𝑖𝑗 , the
thermal di�usion coe�cients are𝐷𝑖

𝑇 , and the molecular weight is𝑊 . The multicomponent di�usion
coe�cients are de�ned to be

𝐷𝑖 =

[︃
𝑁𝑆∑︁

𝑗=1;𝑗 ̸=𝑖

𝑥𝑗
𝒟𝑖𝑗

]︃−1

(7.3)

The modi�ed form of the equations helps decouple the equations for a segregated solution approach.
Equation 7.2 must �rst be solved for the mass di�usion �uxes as a closure equation. The equations are
not linearly independent over all the species, so one equation must be replaced with the constraint that∑︀

j𝑖,𝑔 = 0. The chemical properties and rate terms are computed using CHEMKIN [169, 170, 173].

For coupled heat and mass transfer, the heat �ux term in the energy equation is modi�ed:

𝑞𝑖 = −𝑘 𝜕𝑇
𝜕𝑥𝑖

−
∑︁
𝑔

j𝑖,𝑔ℎ𝑔 (7.4)

The term involving the Dufour e�ect from thermal di�usion is neglected.
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APPENDIX B. TIME-AVERAGING AND
FAVRE-AVERAGING

The time-averaged and Favre-averaged transport equations are given in the following section.

B.1. Conservation of Mass

The continuity equation:

(a) time averaged:

∫︁
𝜕𝜌

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑢𝑗𝑛𝑗d𝑆 +

∫︁
𝜌′𝑢′𝑗𝑛𝑗d𝑆 = 0 (7.5)

(b) Favre averaged:

∫︁
𝜕𝜌

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑢̃𝑗𝑛𝑗d𝑆 = 0 (7.6)

B.2. Conservation of Momentum

The momentum transport equations:

(a) time averaged:

∫︁
𝜕𝜌𝑢𝑖
𝜕𝑡

d𝑉 +

∫︁
𝜕𝜌′𝑢′𝑖
𝜕𝑡

d𝑉 +

∫︁
𝜌 𝑢𝑖𝑢𝑗𝑛𝑗d𝑆 +

∫︁
𝜌𝑢′𝑖𝑢

′
𝑗𝑛𝑗d𝑆 +

∫︁
𝑢𝑗𝜌′𝑢′𝑖𝑛𝑗d𝑆

+

∫︁
𝑢𝑖𝜌′𝑢′𝑗𝑛𝑗d𝑆 +

∫︁
𝜌′𝑢′𝑖𝑢

′
𝑗𝑛𝑗d𝑆 +

∫︁
𝑝𝑛𝑖d𝑆

=

∫︁
𝜏 𝑖𝑗𝑛𝑗d𝑆 +

∫︁
𝜌𝑔𝑖d𝑉 (7.7)

(b) Favre averaged:

∫︁
𝜕𝜌𝑢̃𝑖
𝜕𝑡

d𝑉 +

∫︁
𝜌𝑢̃𝑖𝑢̃𝑗𝑛𝑗d𝑆 +

∫︁
𝑝𝑛𝑖d𝑆 =

∫︁
𝜏 𝑖𝑗𝑛𝑗d𝑆 −

∫︁
𝜌𝑢′′𝑖 𝑢

′′
𝑗𝑛𝑗d𝑆 +

∫︁
𝜌𝑔𝑖d𝑉 (7.8)
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B.3. Conservation of Energy

The energy transport equation, assume Lewis number is one (see Section 2.5.3):

(a) time averaged:

(b) Favre averaged:

∫︁
𝜕𝜌ℎ̃

𝜕𝑡
d𝑉 +

∫︁
𝜌ℎ̃𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁
𝜅

𝐶𝑝

𝜕ℎ

𝜕𝑥𝑗
𝑛𝑗d𝑆 −

∫︁
𝜌ℎ′′𝑢′′𝑗𝑛𝑗d𝑆 −

∫︁
𝜕𝑞𝑟𝑖
𝜕𝑥𝑖

d𝑉 (7.9)

B.4. Conservation of Species

The species transport equation:

(a) time averaged:

∫︁
𝜕𝜌𝑌 𝑘

𝜕𝑡
d𝑉 +

∫︁
𝜕𝜌′𝑌 ′

𝑘

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑌 𝑘𝑢𝑗𝑛𝑗d𝑆 +

∫︁
𝜌𝑌 ′

𝑘𝑢
′
𝑗𝑛𝑗d𝑆 +

∫︁
𝑢𝑗𝜌′𝑌 ′

𝑘𝑛𝑗d𝑆

+

∫︁
𝑌𝑘𝜌′𝑢′𝑗𝑛𝑗d𝑆 +

∫︁
𝜌′𝑌 ′

𝑘𝑢
′
𝑗𝑛𝑗d𝑆

=

∫︁
𝜌𝑌𝑘𝑢̂𝑗,𝑘𝑛𝑗d𝑆 +

∫︁
𝜔̇𝑘d𝑉 (7.10)

(b) Favre averaged:

∫︁
𝜕𝜌𝑌𝑘
𝜕𝑡

d𝑉 +

∫︁
𝜌𝑌𝑘𝑢̃𝑗𝑛𝑗d𝑆 = −

∫︁
𝜌𝑌 ′′

𝑘 𝑢
′′
𝑗𝑛𝑗d𝑆 +

∫︁
𝜌𝑌𝑘𝑢̂𝑗,𝑘𝑛𝑗d𝑆 +

∫︁
𝜔̇𝑘d𝑉 (7.11)

APPENDIX C. DISCRETE 2D/AXISYMMETRIC
TRANSPORT EQUATIONS

The transport equations for two-dimensional, axisymmetric �ow are given in section 2.2.5. These
equation descriptions are a work–in–progress; caveat emptor.
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C.1. X-Momentum (axial), 2D Laminar Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(7.12)

𝑏𝑡𝐼 − = (𝜌*𝐼𝑈
*
𝐼 − 𝜌𝑛𝐼𝑈

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(7.13)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶*
𝑘,𝐽 (7.14)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶*
𝑘,𝐽 (7.15)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑈

*
𝐽 (7.16)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑈

*
𝐽 (7.17)

The viscous stress term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix. The stress term may or may
not include the molecular viscosity, depending on the user speci�ed model.

𝐹𝑘,𝐽 = −𝜇𝑘
(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦

)︂
(7.18)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (7.19)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (7.20)

𝜏𝑥𝑥 = 𝜇𝑘 (𝑢
*
𝑥 + 𝑢*𝑥) (7.21)

𝜏𝑥𝑦 = 𝜇𝑘
(︀
𝑢*𝑦 + 𝑣*𝑥

)︀
(7.22)

𝑓𝑘 = − (𝜏𝑥𝑥𝐴𝑥 + 𝜏𝑥𝑦𝐴𝑦) (7.23)
𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (7.24)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (7.25)
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The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.

𝑏𝑠𝐼 − =
𝜕𝑃

𝜕𝑥

⃒⃒⃒⃒*
𝐼

Δ𝑉𝐼 (7.26)

C.2. Y-Momentum (radial), 2D Laminar Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(7.27)

𝑏𝑡𝐼 − = (𝜌*𝐼𝑉
*
𝐼 − 𝜌𝑛𝐼𝑉

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(7.28)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶*
𝑘,𝐽 (7.29)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶*
𝑘,𝐽 (7.30)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑉

*
𝐽 (7.31)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶*
𝑘,𝐽𝑉

*
𝐽 (7.32)

The viscous stress term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

𝐹𝑘,𝐽 = −𝜇𝑘
(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦

)︂
(7.33)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (7.34)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (7.35)

341



𝜏𝑦𝑥 = 𝜇𝑘
(︀
𝑣*𝑥 + 𝑢*𝑦

)︀
(7.36)

𝜏𝑦𝑦 = 𝜇𝑘
(︀
𝑣*𝑦 + 𝑣*𝑦

)︀
(7.37)

𝑓𝑘 = − (𝜏𝑦𝑥𝐴𝑥 + 𝜏𝑦𝑦𝐴𝑦) (7.38)
𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (7.39)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (7.40)

There is a radial force contribution from the azimuthal stresses. These are evaluated for sub-volumes.

𝐹𝑘,𝐽 = 2𝜇𝑘
𝐴𝑐
𝑦

(7.41)

𝐴𝑑𝐼𝐶,𝐽 + = 𝐹𝑘,𝐽 (7.42)
(7.43)

𝜏𝜃𝜃 = 2𝜇𝑘
𝑣

𝑦
(7.44)

𝑓𝑘 = 𝜏𝜃𝜃𝐴𝑐 (7.45)
𝑏𝑑𝐼𝐶 − = 𝑓𝑘 (7.46)

There is an acceleration force from swirl. These are evaluated for sub-volumes.

𝑏𝑠𝐼𝐶+ = 𝜌𝑊 2𝐴𝑐 (7.47)

The pressure is assembled in the form of a volume integral. The pressure gradients have been
pre-computed at nodes use a surface-integral approximation.

𝑏𝑠𝐼 − =
𝜕𝑃

𝜕𝑦

⃒⃒⃒⃒*
𝐼

Δ𝑉𝐼 (7.48)
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C.3. 𝜃-Momentum (swirl), 2D Laminar Transport

The time term is lumped. The time-term contribution is evaluated for each sub-volume. We solve for
the angular velocity, Ω, instead of the azimuthal velocity,𝑤.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(7.49)

𝑏𝑡𝐼 − = (𝜌*𝐼Ω
*
𝐼 − 𝜌𝑛𝐼Ω

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(7.50)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶*
𝑘,𝐽 (7.51)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶*
𝑘,𝐽 (7.52)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶*
𝑘,𝐽Ω

*
𝐽 (7.53)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶*
𝑘,𝐽Ω

*
𝐽 (7.54)

The viscous stress term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes. Only the solenoidal part of the stress term is used for the matrix.

𝐹𝑘,𝐽 = −𝜇𝑘
(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦

)︂
(7.55)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (7.56)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (7.57)

𝜏𝑧𝑥 = 𝜇𝑘 (𝜔
*
𝑥) (7.58)

𝜏𝑧𝑦 = 𝜇𝑘
(︀
𝜔*
𝑦

)︀
(7.59)

𝑓𝑘 = − (𝜏𝑧𝑥𝐴𝑥 + 𝜏𝑧𝑦𝐴𝑦) (7.60)
𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (7.61)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (7.62)
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𝑏𝑑𝐼+ = 2𝜇
1

𝑟

𝜕Ω

𝜕𝑟
Δ𝑉𝐼 (7.63)

There is a Coriolis force from swirl. These are evaluated for sub-volumes.

𝑏𝑠𝐼𝐶− = 2𝜌𝑉𝑊𝐴𝑐 (7.64)

C.4. Mass Transport – 2D Continuity

There is no net �ow through the azimuthal face if an axisymmetric coordinate system is used.

The time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝑏𝑡𝐼 − = (𝜌*𝐼 − 𝜌𝑛𝐼 )
Δ𝑉𝐼
Δ𝑡

(7.65)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes using the Rhie/Chow scheme from Section 5.1.

𝐹𝑘,𝐽 = −𝑓Δ𝑡
(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦

)︂
(7.66)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (7.67)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (7.68)

𝑢*𝑘 =
∑︁
𝐽

𝑁𝐽 |𝑘 𝑈
*
𝐽 + 𝑓

Δ𝑡

𝜌

(︃∑︁
𝐽

𝜕𝑃

𝜕𝑥

⃒⃒⃒⃒*
𝐽

− 𝑝*𝑥

)︃
+ 𝑓

(︃
𝑢𝑛𝑘 −

∑︁
𝐽

𝑁𝐽 |𝐽 𝑈
𝑛
𝐽

)︃
(7.69)

𝑣*𝑘 =
∑︁
𝐽

𝑁𝐽 |𝑘 𝑉
*
𝐽 + 𝑓

Δ𝑡

𝜌

(︃∑︁
𝐽

𝜕𝑃

𝜕𝑦

⃒⃒⃒⃒*
𝐽

− 𝑝*𝑦

)︃
+ 𝑓

(︃
𝑣𝑛𝑘 −

∑︁
𝐽

𝑁𝐽 |𝐽 𝑉
𝑛
𝐽

)︃
(7.70)

𝑚̇𝑘 = 𝜌 (𝑢*𝑘𝐴𝑥 + 𝑣*𝑘𝐴𝑦) (7.71)
𝑏𝑐𝐼𝐿 − = 𝑚̇𝑘 (7.72)
𝑏𝑐𝐼𝑅 + = 𝑚̇𝑘 (7.73)

Velocity correction and new mass �ow rate.....
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C.5. Energy, 2D Laminar Transport

The laminar energy equation is linearized with respect to the temperature. The time term is lumped.
The time-term contribution is evaluated for each sub-volume. The density must also be linearized for
stability.

𝐴𝑡𝐼,𝐼 + =

(︂
𝜌*𝐼𝐶

*
𝑝,𝐼 − 𝜌*𝐼

𝐻*
𝐼

𝑇 *
𝐼

)︂
Δ𝑉𝐼
Δ𝑡

(7.74)

𝑏𝑡𝐼 − = (𝜌*𝐼𝐻
*
𝐼 − 𝜌𝑛𝐼𝐻

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(7.75)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶𝑛+1
𝑘,𝐽 𝐶

*
𝑝,𝐽 (7.76)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶𝑛+1
𝑘,𝐽 𝐶

*
𝑝,𝐽 (7.77)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝐻

*
𝐽 (7.78)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝐻

*
𝐽 (7.79)

The heat conduction term is computed at each face 𝑘 and assembled to the left (IL) and right (IR)
control volumes.

𝐹𝑘,𝐽 = −𝜅𝑘
(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦

)︂
(7.80)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (7.81)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (7.82)

𝑞𝑘 = −𝜅𝑘
(︀
𝑡*𝑥𝐴𝑥 + 𝑡*𝑦𝐴𝑦

)︀
(7.83)

𝑏𝑑𝐼𝐿 − = 𝑞𝑘 (7.84)
𝑏𝑑𝐼𝑅 + = 𝑞𝑘 (7.85)

345



C.6. Temperature, 2D Laminar Transport

The laminar temperature equation is linearized with respect to the temperature. The time term is
lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(7.86)

𝑏𝑡𝐼 − = (𝜌*𝐼𝑇
*
𝐼 − 𝜌𝑛𝐼𝑇

𝑛
𝐼 )

Δ𝑉𝐼
Δ𝑡

(7.87)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶𝑛+1
𝑘,𝐽 (7.88)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶𝑛+1
𝑘,𝐽 (7.89)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑇

*
𝐽 (7.90)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑇

*
𝐽 (7.91)

The heat conduction term is computed at each face 𝑘 and assembled to the left (IL) and right (IR)
control volumes.

𝐹𝑘,𝐽 = − 𝜅𝑘
𝐶𝑝,𝑘

(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦

)︂
(7.92)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (7.93)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (7.94)

𝑞𝑘 = − 𝜅𝑘
𝐶𝑝,𝑘

(︀
𝑡*𝑥𝐴𝑥 + 𝑡*𝑦𝐴𝑦

)︀
(7.95)

𝑏𝑑𝐼𝐿 − = 𝑞𝑘 (7.96)
𝑏𝑑𝐼𝑅 + = 𝑞𝑘 (7.97)

A correction for variable speci�c heat is applied as a volume term. The correction is computed at the
centroid of the sub-volume, 𝑘, for control volume 𝐼 .

𝑏𝑑𝐼+ =
𝜅

𝐶2
𝑝

(𝑡𝑥𝐶𝑝,𝑥 + 𝑡𝑦𝐶𝑝,𝑦)Δ𝑉𝐼 (7.98)
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C.7. Species, 2D Laminar Transport

There is a species equations for each species. The mass fraction is 𝑌𝑠, where 𝑠 is the species number. The
time term is lumped. The time-term contribution is evaluated for each sub-volume.

𝐴𝑡𝐼,𝐼 + = 𝜌*𝐼
Δ𝑉𝐼
Δ𝑡

(7.99)

𝑏𝑡𝐼 − =
(︀
𝜌*𝐼𝑌

*
𝑠,𝐼 − 𝜌𝑛𝐼𝑌

𝑛
𝑠,𝐼

)︀ Δ𝑉𝐼
Δ𝑡

(7.100)

The convection term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐴𝑐𝐼𝐿,𝐽 + = 𝐶𝑛+1
𝑘,𝐽 (7.101)

𝐴𝑐𝐼𝑅,𝐽 − = 𝐶𝑛+1
𝑘,𝐽 (7.102)

𝑏𝑐𝐼𝐿 − =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑌

*
𝑠,𝐽 (7.103)

𝑏𝑐𝐼𝑅 + =
∑︁
𝐽

𝐶𝑛+1
𝑘,𝐽 𝑌

*
𝑠,𝐽 (7.104)

The mass di�usion term is computed at each face 𝑘 and assembled to the left (IL) and right (IR) control
volumes.

𝐹𝑘,𝐽 = −𝜌𝑘𝐷𝑠,𝑘

(︂
𝜕𝑁𝐽

𝜕𝑥

⃒⃒⃒⃒
𝑘

𝐴𝑥 +
𝜕𝑁𝐽

𝜕𝑦

⃒⃒⃒⃒
𝑘

𝐴𝑦

)︂
(7.105)

𝐴𝑑𝐼𝐿,𝐽 + = 𝐹𝑘,𝐽 (7.106)
𝐴𝑑𝐼𝑅,𝐽 − = 𝐹𝑘,𝐽 (7.107)

𝑓𝑘 = −𝜌𝑘𝐷𝑠,𝑘

(︀
𝑦𝑠*𝑥𝐴𝑥 + 𝑦𝑠*𝑦𝐴𝑦

)︀
(7.108)

𝑏𝑑𝐼𝐿 − = 𝑓𝑘 (7.109)
𝑏𝑑𝐼𝑅 + = 𝑓𝑘 (7.110)
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8. REVIEW OF CONTROL VOLUME
FINITE ELEMENT METHODS

The earliest reference to control-volume �nite-element methods is the 1980 work by Baliga and
Patankar [174] for the convection-di�usion equation, a re�nement of Baliga’s 1978 dissertation [175].
Baliga and Patankar [176] �rst apply their approach to the Navier-Stokes equations of �uid mechanics
in 1983. At the same time, Schneider and Zedan [177] develop a control-volume �nite-element for heat
conduction. Schneider and Raw [178] then develop a control-volume �nite-element method for �uid
�ow in 1986. The work of Baliga/Patankar and Raw/Schneider are the foundations for two of the main
control-volume �nite-element methods that are used today for �uid mechanics. A third control-volume
�nite-element method is adapted from Galerkin Least Squares (GLS) �nite-element methods by
Swaminathan and Voller [179] in 1992, but there is no evidence of widespread use.

There are three di�cult issues that must be addressed in all numerical methods for the Navier-Stokes
equations: 1) stability at high Reynolds number and Peclet numbers, where pure centered di�erencing
for the convection terms, or the analogs in FEM and FVM, can lead to numerical oscillations, 2)
coupling of the pressure and velocity �eld, where “checker-boarding" can occur when the variables are
co-located and use similar interpolations, and 3) updating of the pressure �eld. There are three main
schools of thought in the CVFEM community for addressing the three issues above. With the
Baliga/Patankar approach, upwinding is achieved with exponential shape functions on linear triangular
and tetrahedral elements. Originally, pressure-velocity coupling was attained using mixed-order
elements. Later, an equal-order scheme was developed that involved pressure terms in the interpolation
functions. Convecting and convected velocities were maintained for pressure-velocity coupling. The
pressure is solved using a projection method similar to the SIMPLER [180] algorithm. The method is
practically limited to triangles and tetrahedra because of the form of the interpolation functions. With
the Raw/Schneider approach, upwinding is achieved using the skewed upwinding or positive in�uence
coe�cient approaches. The pressure and velocity are solved fully coupled using an approximation of the
transport equations as an interpolation function. Two velocity �elds are maintained, a convecting and a
convected �eld. The method is applicable to all element forms and has been successfully implemented
in a commercial computational �uid dynamics code, TASC�ow [154]. With the Swaminathan/Voller
approach, the methods of streamline upwinding and pressure stabilization are adapted from
�nite-element methods. There is only a small amount of literature on this particular CVFEM.

The following historical synopsis of CVFEM’s addresses research for solving the pressure-based
incompressible Navier-Stokes equations and the more elementary convection-di�usion equations.

1966 Winslow [181] presents a control volume formulation for a Poisson equation based on linear
triangular elements. This work is important because it is one of the �rst applications of the �nite
volume method on unstructured meshes.
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1980 Ramadhyani and Patankar [182] compare the accuracy of the Galerkin �nite element method
with a control volume method for the Laplacian operator. They use bilinear shape functions and
rectangular elements, where the control volume method uses the bilinear shape functions as
interpolation functions. The numerical errors of the control volume method are half those of the
�nite element method.

Baliga and Patankar [174] introduce a �ow-oriented upwind interpolation for
convection-di�usion problems on triangular elements, a re�nement of 1978 dissertation
work [175]. The upwinding is introduced through an interpolation function based on a locally
analytic solution to the velocity-aligned transport equation, resulting in exponential shape
functions. They solve both radial heat conduction in a rotating hollow cylinder for Peclet
numbers up to 100, and the transport of a step scalar �eld, all with speci�ed velocity �elds. The
directional upwinding provides better solutions than uniform �rst-order upwinding.

1983 Baliga and Patankar [176] develop a mixed-interpolation scheme for solving the Navier-Stokes
equations with heat transfer on triangular elements. The mixed interpolation keeps the pressure
from decoupling from velocity. The pressure is solved by applying the continuity equation over
macro-triangles. The interpolation function for the convecting velocity contains the pressure
gradient. Each macro-triangle is subdivided into four sub-triangles for the momentum and
energy equations. The �ow-oriented upwind scheme is used to interpolate velocity and
temperature for their respective transport equations. The velocity is assumed to vary linearly over
the element for computing mass �ow rates. The equations are solved in a segregated manner
using an approach similar to the SIMPLER method [180]. This work is the �rst application of
the CVFEM for the Navier-Stokes equations.

Baliga, Pham, and Patankar [183] apply the mixed-interpolation scheme [176] to �uid �ow and
heat transfer. They solve �ow between rotating cylinders for Reynolds numbers up to 1000, fully
developed �ow in a square duct with a laterally imposed velocity for Reynolds numbers up to
100, natural convection in rectangular enclosures for Rayleigh numbers up to 105, and natural
convection in a trapezoidal enclosure for Rayleigh numbers up to 106.

1985 Prakash and Patankar [184] solve the Navier-Stokes equations with an equal-order interpolation
for velocity and pressure on triangular elements. The mass �ow velocity, used for continuity, is
di�erent from that derived from momentum, thus avoiding staggering or mixed-interpolation.
The �ow-oriented upwind scheme is used to interpolate the convected velocity for the
momentum equation while the pressure gradient is treated as an element-constant source term.
The coe�cient matrices for momentum are used to de�ne the velocities for the continuity
equation which include the now-unknown pressure gradient across control volume faces. They
use a pressure correction approach similar to the SIMPLER algorithm to update velocity and
accelerate convergence. The continuity and momentum equations are segregated in the solution
process. They solve �ow between rotating cylinders for Reynolds numbers up to 1000, and
natural convection in a closed cavity with a Boussinesq-type buoyancy term for Grashof numbers
up to 105. The solutions are more accurate than with the mixed interpolation scheme of
Baliga [176]. They note problems with negative coe�cients during the �rst iterations of a
solution.
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Ramadhyani and Patankar [185] extend the �ow-oriented upwind interpolation scheme from
linear triangles to bilinear quadrilateral elements for convection-di�usion problems. Three-point
quadratures (Simpsons Rule) are used to evaluate �ux integrals, as in all the previously
mentioned work. They argue that one-point quadratures are less accurate because of the
nonlinear nature of the interpolation functions, but only at intermediate values of cell-Reynolds
number. They present solutions for �ve di�erent test cases, including the convection of scalar
pro�les and di�usion in rotating systems. After this article, there are no further publications for
quadrilateral or hexahedral elements using methods developed by Baliga, Patankar, and Prakash.

1986 Schneider and Raw [178] develop a positive in�uence-coe�cient extension to skewed upwind
interpolation [186] for convection terms, based on 1985 dissertation work [187]. They apply the
scheme to the convection-di�usion equation on quadrilateral elements. Di�usion terms are
calculated by integrating the gradients of the isoparametric, bilinear interpolation functions.
They solve several convected-scalar cases and claim smooth solutions where the methods of Baliga
and Patankar exhibit oscillations. The skewed upwind method has less dependence on the
element orientation than �ow-oriented streamline upwinding.

LeDain-Muir and Baliga [188] extend the �ow-oriented upwind interpolation scheme to linear
tetrahedral elements in three dimensions for the convection-di�usion problem. Each tetrahedron
contains six control volume faces. A single unit normal is calculated for each control volume face.
For integration, each face is subdivided into two triangles. A three-point quadrature is used on
each triangular subface where the sample points are taken along the midpoints of the triangle
edges. They solve radial heat conduction in a rotating hollow sphere, scalar transport of a step
pro�le, and transport with radial convection between concentric spheres.

Prakash [189] modi�es the �ow-oriented upwind interpolation to include source terms from the
transport equations on triangular elements, with applications to the incompressible
Navier-Stokes equations. The pressure gradient in the momentum equations is treated as a
source term in the interpolation function for velocity, directly coupling the pressure to the
velocity. The source term has a streamwise-linear in�uence on the interpolation function. The
mass �ux is calculated using the new interpolation function instead of assuming a linear
variation. The pressure is then calculated through the continuity equation by directly applying
the new velocity interpolation function, replacing the SIMPLER scheme but keeping the
segregated approach. A pressure correction step is included to make sure the velocity
interpolation function satis�es continuity. He solves �ow between rotating cylinders up to a
Reynolds number of 1000, the lid-driven cavity for Reynolds numbers up to 400, and natural
convection in a square cavity for Grashof numbers up to 105. The solutions are more accurate
than with the original collocated scheme of Praskash and Patankar [184].

1987 Schneider and Raw [132, 133] extend the positive-coe�cient, skewed upwind interpolation [178]
to the incompressible Navier-Stokes equations on quadrilateral elements. They use a
element-local discretization of the transport equations to derive interpolation functions at
control volume faces that couple the velocity and pressure. The convection terms are constructed
with the positive-coe�cient, skewed upwinding. The skewed upwinding couples all the control
volume face values together within an element, so an internal matrix inversion must be applied to
calculate individual face values. The momentum and continuity equations are solved all at once
as a coupled system. They solve convection of a scalar �eld with a step pro�le, the lid-driven
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cavity for Reynolds numbers up to 1000, the inviscid forward-facing step to test the conservation
of total pressure, and �ow between rotating cylinders. Grid convergence studies suggest spatial
accuracy near second order. They call their method Finite Element Di�erence Scheme (FIELDS).

Schneider [149] extends their algorithm [132] to cylindrical, axisymmetric coordinates and
presents solutions for the cylindrical driven cavity.

Prakash [190] examines a donor-cell method for replacing �ow-oriented upwind interpolation
on triangular elements. The donor cell method provides positive coe�cients, where the
�ow-oriented upwinding can yield negative coe�cients, leading to oscillations. The donor-cell
scheme is applied to several of the previous convected scalar problems and the thermally driven
cavity. The scheme exhibits excessive di�usion and is not generally recommended.

1988 Hookey, Baliga, and Prakash [191] modify the treatment of the source term in the �ow-oriented
upwind interpolation for triangular elements relative to the previous source term modi�cations
of Prakash [189]. A cross�ow-quadratic multiplier is added for the source term in the the
interpolation function. They apply the scheme to the convection-di�usion equation for radial
heat conduction between rotating cylinders and radial heat conduction in radial �ow between
cylinders. The new source treatment proves better than the previous scheme of Prakash only
when the �ow has multidimensional features.

1988 Hookey and Baliga [192] apply the �ow-oriented upwind interpolation with the modi�ed source
treatment [191] to the incompressible Navier-Stokes equations on triangles. Instead of calculating
pressure by applying the interpolation functions directly to the continuity equation as was done
by Prakash [189], a method similar to SIMPLEC [193] is used. The previous approach converged
poorly at higher Reynolds numbers. A pressure correction approach is still employed to force the
interpolation function for velocity to satisfy continuity, but with the penalty of an enlarged
stencil for the pressure-correction equation. The continuity and momentum equations are
solved simultaneously. They solve a polar lid-driven cavity for Reynolds numbers up to 380 and
the natural convection for Rayleigh numbers up 106. Solutions are compared against results
from the older methods of Prakash [189] and Baliga [176], and prove to be more accurate.

Reviews of control volume �nite element methods for �uid �ow and heat transfer are given in
the Handbook of Numerical Heat Transfer by both Baliga [143] and Schneider [161]. They
provide implementation details for many of the methods published to date.

1992 Swaminathan and Voller [179, 194] extend of the ideas of the Streamline-Upwind
Petrov-Galerkin (SUPG) method [195] to solving the convection-di�usion equation with
quadrilateral elements. They solve several convected-scalar problems and compare the results to a
FEM implementation of the SUPG scheme. The CVFEM analog of SUPG performs just as well,
except for time accurate solutions where the phase error is larger. The SUPG method provides
better solutions than the skew upwinding or �ow-oriented upwinding for heat conduction
between rotating cylinders, but worse for the scalar transport of a step pro�le.

Baliga and Saabas [196] provide a critical review of control volume �nite element methods. They
criticize the schemes of Hookey [192] and Raw [132] for being too expensive, computationally.
They introduce the mass advection weighted scheme of Saabas where he adapts the concept of
positive in�uence-coe�cients from Schneider and Raw to the formulation of Baliga and Prakash.
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They call the original �ow-oriented upwind scheme of Baliga and Patankar FLO, the source-term
modi�ed scheme of Prakash FLOS, and the mass advection-weighted scheme of Saabas MAW.
The FLO(S) schemes result in mixed-sign o�-diagonal coe�cients if the triangular elements are
obtuse, potentially admitting oscillations. Additionally, many of the schemes developed to date,
for CVFEM, over-specify the pressure boundary conditions, leading to poor convergence.

Naterer and Schneider [197] extend the approach of Schneider and Raw [132] to compressible
�ow. An explicit predictor-corrector time integration is used for transient solutions. The
in�uence-coe�cient matrices are used to interpolate density, velocity, and internal energy at
control volume faces at an intermediate time level. These values are then used to correct the state
variables using a forward Euler integration. They solve a transient shock tube problem for an
initial pressure ratio of 10, �ow through a converging-diverging nozzle with an area ratio of 2, and
Mach 3 supersonic �ow over a forward-facing step.

1993 Swaminathan, Voller, and Patankar [198] extend the streamline-upwind Petrov-Galerkin method
and the pressure-stabilized Petrov-Galerkin [195] method to a conservative form for the control
volume �nite element method. The streamline-upwind control-volume, pressure-stabilized
control-volume (SUCV/PSCV) method is applied to the incompressible Navier-Stokes equations
with quadrilateral elements. They evaluate the integrals using mid-point quadrature and solve
the segregated equations using a SIMPLER approach. They solve the lid-driven cavity at a
Reynolds number of 400, natural convection in a square enclosure for a Rayleigh number of 105,
and natural convection in a cylindrical annulus at a Rayleigh number of 104.

1994 Saabas and Baliga [199, 200] adapt the positive in�uence-coe�cient scheme of Schneider and
Raw [132] to triangular and tetrahedral elements and call the method mass advection weighting
(MAW). They introduce a new control volume construction for tetrahedral elements. Their
tetrahedral element contains one four-point planar face and two three-point planar faces, whereas
the control volume construction of LeDain-Muir [188] contained six four-point surfaces. The
reduced number of control volume faces makes the MAW scheme less expensive to apply, but the
element shape functions become dependent on the shape of each element. They solve for
pressure using the original approach of Prakash [184] with a SIMPLER method. The solution
technique is segregated. For solving practical problems, they recommend using the FLO scheme
for the convection terms and switching to the MAW scheme only if there are problems with
negative coe�cients. They advise against using the FLOS schemes of Prakash [189] and
Hookey [192] because they typically do not provide enough improvement in accuracy to justify
their slower convergence properties. Additionally, they claim that carrying pressure gradient
terms in the velocity interpolation function requires the boundary conditions for pressure to be
over-speci�ed for in�ow/out�ow problems. They solve the 2D lid-driven cavity for Reynolds
numbers up to 1000, 2D turbulent �ow over a backward-facing step using a 𝑘 − 𝜖 turbulence
model for a Reynolds number of about 106, 3D natural convection in a cavity for Rayleigh
numbers up to 106, and a turbulent jet injection into cross�ow for jet Reynolds numbers up to
53600. The MAW scheme is required for the jet problem because of negative coe�cient
problems with the FLO scheme.

Masson, Saabas, and Baliga [201] extend the MAW scheme of Saabas [199] to axisymmetric �ows
with triangular elements. They solve developing pipe �ow for a Reynolds number of 40, pipe
�ow with a step constriction up to a Reynolds number of 1000, natural convection in a
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cylindrical enclosure for a Grashof number of 2 and Prandtl number of 2500, and �ow through
and arterial section for Reynolds numbers up to 350.

Masson and Baliga [202] apply the MAW scheme of Saabas [199] to dilute-particle �ows with
triangular elements. They solve equations for the gas phase and the dispersed phase. They solve
for �ow through a constricted channel for a Reynolds number of 100 and Stokes numbers
between 10−3 and 10−1, and for �ow in a split inertial separator for a Reynolds number of 200.

Karimian and Schneider [203] improve the velocity-pressure coupling of the original
Schneider-Raw scheme [132]. The original scheme, referred to as FIELDS, has poor performance
for inviscid �ow. They improve the coupling by adding a discrete continuity relation to the
interpolation functions for the convecting velocity. The additional terms help smooth
oscillations that occur for a mass sink test problem. They verify the new interpolation function
on the lid-driven cavity for Reynolds numbers up to 3200, and the backward-facing step for
Reynolds numbers up to 230.

Karimian and Schneider [204] extend the method of Schneider and Raw [132] to both
compressible and incompressible �ow for the quasi-one-dimensional Euler equations. They solve
for �ow through a converging-diverging nozzle with an area ratio of 2.035 with and without a
shock.

Deng et al. [205] present a new �ux reconstruction scheme to replace the FIELDS scheme of
Schneider and Raw [133]. They note that the FIELDS scheme is similar to the original work of
Rhie and Chow [131] who where some of the �rst researchers to solve incompressible �ow on
collocated grids. Deng takes features of both schemes to create a compact reconstruction that
does not require matrix inversions to calculate the integration point values in terms of nodal
values. Since they question the consistency of the FIELDS scheme, they call their new scheme
consistent physical interpolation (CPI). They apply the scheme to two and three-dimensional
Navier-Stokes calculations on structured Cartesian meshes. They solve the lid-driven cavity for
Reynolds numbers up to 1000, a 3D lid-driven cavity for Reynolds numbers up to 1000, and
turbulent vortex shedding over a square cylinder for a Reynolds number of 22000.

1995 Costa et al. [206] apply the MAW scheme of Saabas [199] to three-dimensional turbulent �ows
with tetrahedral elements. They solve a turbulent jet injected into a cross�ow for jet Reynolds
number up to 53600, and �ow through a T-junction in ducts at Reynolds numbers near 90000.

Karimian and Schneider [207] apply control-volume �nite-element methods to a shock-tube
problem.

Karimian and Schneider [208] extend the FIELDS scheme and the convecting velocity
corrections to compressible �ow. They solve the lid-driven cavity for Reynolds numbers up to
3200, �ow over a shallow bump in a channel with Mach numbers from 0.5 to 1.65, and �ow
through a ramped inlet for a Mach number of 2.5.

Padra and Larreteguy [209] develop an error estimator with mesh re�nement for the
convection-di�usion equation. They use the formulation of Baliga and Patankar [174] with
triangles. Larreteguy [210] then extends the scheme to �uid �ow with triangles.

353



1996 Harms et al. [211] introduce a simpli�ed interpolation function for the control volume �nite
element method. They develop a method for applying analytic shape functions on
nonorthogonal meshes. They apply the scheme to �ow between rotating cylinders for Reynolds
numbers up to 1000 and the scalar transport of a step pro�le.

Comini et al. [212] compare CVFEM and GFEM formulations for the convection-di�usion
equations.

Neises and Steinbach [213] develop a control volume �nite element method based on a mixed
interpolation approach to facilitate pressure-velocity coupling and arti�cial dissipation for
convective stability. They begin with a Galerkin �nite element method and then manipulate
o�-diagonal terms to force conservation. They solve a laminar, 3D obstructed channel �ow for
Reynolds number from 0.1 to 50000.

Völker, Burton, and Vanka [214] apply a multigrid solution technique to a control volume �nite
element method on triangular elements. Linear interpolation is used throughout the triangles
with a three-point quadrature to integrate �uxes. The pressure is solved using the SIMPLE
method. They solve natural convection problems in square, triangular, and semicircular cavities
for Rayleigh numbers up to 106.

Botta and Hempel [215] describe a �nite-volume projection method for unstructured, triangular
meshes with element-centered variables.

1997 Darbandi and Schneider [216] develop a scheme for both compressible and incompressible �ow
using a momentum variable formulation of the Schneider/Raw scheme [132, 133]. The
interpolation formula for the convecting velocities is derived from an approximation of the
momentum equation with an additional velocity-weighted continuity equation term. Solutions
are demonstrated for velocities up to Mach 0.9.

Baliga [217] gives an overview of the control volume �nite element method as applied to �uid
�ow.

1998 O’Rourke and Sahota [218] develop an edge-based scheme in 3D for the convection operator.
The convection operator is constructed from a multidimensional upwind scheme. Within each
element, the quadrature points are associated with edge mid-points instead of sub-face
mid-points, so the amount of work is reduced over the traditional CVFEM.

Gresho and Sani [219] compare CVFEM methods to GFEM methods.

Venditti and Baliga [220] describe an error estimation strategy for incompressible �ow with
CVFEM.

2001 Reyes, Rincon, and Damia [221] present a CVFEM approach for turbulent �ow with wall
functions.

Campos Silva and de Moura [222] present a method for 9-noded quad elements with the mass
advection weighted scheme.

2002 Zhao, Tai and Ahmed [223] implement a 2D CVFEM on triangles for micro �ows. They use an
upwind scheme where nodal gradient are used to reconstruct the high-order �uxes at the control
volume faces.

354



With respect to �uid �ow, the CVFEM methods have been developed primarily for triangular and
tetrahedral elements [174, 176, 184, 188, 189, 191, 192, 199, 201]. Development focused on triangular and
tetrahedral elements because the shape functions are linear and gradient terms become constant over the
element. Constant �rst derivatives simplify the formulation of many of the schemes. Fewer articles have
been published on the use of quadrilateral elements [185, 178, 132, 179, 198] in two dimensions and no
articles have been published for CVFEM with hexahedral elements in three dimensions. In addition,
there have been CVFEM formulations for the streamline-vorticity
equations [224, 225, 226, 227, 37, 228], for the heat equation [177, 229, 230, 231, 232, 233, 234, 235, 236],
for �ow in porous media [162, 237, 238, 239, 240, 241, 242], for overland �ows [243, 244], and for linear
elasticity [245, 246].
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9. TURBULENCE MODELING WITH
V2-F TRANSPORT EQUATIONS

The level 1 turbulence model in FUEGO is the standard 𝑘 − 𝜖 turbulence model with constants and
wall functions established for forced convection �ows. The v2-f turbulence model is a modi�ed 𝑘 − 𝜖
turbulence model [21] that has been implemented and evaluated recently for several �ows without [247]
and with [248] heat transfer in the Sandia research code CURRENT [249]. The v2-f model has been
implemented in FUEGO recently as an unsupported feature. As an initial test of the FUEGO
implementation, model results for a fully developed, isothermal, turbulent �ow in a channel are
compared with results from a 1D code [250]. Using 60 non-uniformly spaced grid points across the
half-height of the channel, good agreement is obtained for a channel �ow at Reℎ = 𝑢clℎ/𝜈 = 13, 800
where ℎ is the half-height of the channel and 𝑢cl is the centerline velocity. This grid results in
𝑦+ = 𝑦𝑢𝜏/𝜈 ≈ 0.5 at the center of the subcontrol volume that is adjacent to the channel wall.

The next steps will be to compare the model for heat transfer with other model results and experiments
in �ow regimes of forced and mixed convection for several �ow geometries (channel or tube �ow,
stagnation �ow and separated �ow). While the forced �ow results can be compared with other
numerical and experimental work, there is much less information available for the mixed convection
regime.

APPENDIX A. INTRODUCTION

Although radiation is the dominant heat transfer mechanism in a pool �re, convection can be
signi�cant for some conditions. The convective heat transfer regime most likely to exist in a pool �re is
turbulent mixed convection where both buoyancy and forced �ow e�ects (due to external wind or air
�ow induced by the large density changes associated with the �re) can be important. The �ow regimes
and geometries encountered range from �ow over a �at surface (e.g., the ground) to impinging and
separated �ow (e.g., objects lying on the ground either in or adjacent to the �re). Turbulent transport
processes are typically modeled using the Boussinesq hypothesis to relate the turbulent transport terms
(stresses or �uxes that result from averaging the dependent variables in the conservation equations) to
the mean rate of strain. For example, the Reynolds stresses are often modeled as:

− 𝜌𝑢′𝑖𝑢
′
𝑗 = 𝜇𝑡

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
− 2

3
𝜌𝛿𝑖𝑗𝑘 (9.1)
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where 𝑘 is the kinetic energy of turbulence, 1
2
𝑢′𝑖𝑢

′
𝑖, and 𝜇𝑡 is the turbulent viscosity, which in the widely

used 𝑘 − 𝜖model of turbulence is given by:

𝜇𝑡 = 𝐶𝜇
𝜌𝑘2

𝜖
; (9.2)

𝜖 is the mean viscous dissipation, de�ned by:

𝜖 = 𝜈

(︂
𝜕𝑢′𝑖
𝜕𝑥𝑗

+
𝜕𝑢′𝑗
𝜕𝑥𝑖

)︂
𝜕𝑢′𝑖
𝜕𝑥𝑗

(9.3)

In the standard form of the 𝑘 − 𝜖model (Launder and Spalding [38]), which we are using in the level 1
�re code modeling, the transport equations for 𝑘 and 𝜖 are given by:

𝜕𝜌𝑘

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝑘

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[︂(︂
𝜇+

𝜇𝑡
𝜎𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗

]︂
+ 2𝜇𝑡𝑆

2 − 𝜌𝜖 (9.4)

𝜕𝜌𝜖

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝜖

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[︂(︂
𝜇+

𝜇𝑡
𝜎𝜖

)︂
𝜕𝜖

𝜕𝑥𝑗

]︂
+ 2𝐶𝜖1𝜇𝑡𝑆

2 𝜖

𝑘
− 𝐶𝜖2𝜌

𝜖2

𝑘
(9.5)

where
𝑆2 = 𝑆𝑖𝑗𝑆𝑖𝑗 =

1

4

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
, (9.6)

and𝐶𝜇 = 0.09,𝐶𝜖1 = 1.45,𝐶𝜖2 = 1.92, 𝜎𝑘 = 1.0, 𝜎𝜖 = 1.3.

The above constants have been determined through extensive numerical studies on primarily
isothermal, high Reynolds number, turbulent shear �ows. The boundary conditions for the transport
equations in turbulent �ow have traditionally involved the use of wall functions to avoid the
computational cost of resolving the very steep gradients of the variables near the wall. These wall
functions assume knowledge of the pro�les of the variables (e.g., velocity and temperature) near the
wall, and in the case of the turbulence parameters assumptions are made about the transport processes
in the wall region (e.g., production and dissipation of turbulent kinetic energy are in balance).

Alternatively, if computational costs are not a concern, the wall function approach is abandoned;
instead, a �ne grid is used near the wall and boundary conditions are applied directly at the wall (e.g.,
zero values of the velocity components, speci�ed temperature, 𝑘 = 0 and 𝜖 = ∞). In this case (referred
to as the low Reynolds number modi�cation to the standard 𝑘 − 𝜖model of turbulence, Jones and
Launder [34]), however, the coe�cients in the above equations are no longer constant but become
dependent on the distance from the wall (modeled using damping functions). A review of the low
Reynolds number turbulence models is given in Patel et al. [251]. Both wall functions and damping
functions require empirical information or assumptions about the gradients of the variables near a wall;
neither case is desirable, since a primary reason for solving transport equations is to predict the spatial
variation of the dependent variables. Recently, Durbin [21] has presented the v2-f modi�cation of the
𝑘 − 𝜖 turbulence model that avoids both wall functions and damping functions by solving two
additional transport equations. The model has been tested for several forced convection �ows,
with [252] and without [253] heat transfer; more recently it has been applied successfully to convective
heat transfer problems in stagnation �ow with (Parneix et al. [254]) and without (Behnia et al. [255])
separated �ow regions.
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APPENDIX B. THE V2-F MODEL

Durbin [21] introduced a method for handling the wall region without using either wall functions or
damping functions. In his method a �ne grid is required near the wall (e.g., the �rst grid point is
typically within one dimensionless unit of distance from the wall where the coordinate normal to the
wall is nondimensionalized with the inner scale for a turbulent boundary layer, 𝑦+ = 𝑦𝑢𝜏/𝜈 < 1 at the
�rst grid point, where 𝑢𝜏 is the friction velocity,

√︀
𝜏𝑤/𝜌). The model employs two transport equations

in addition to slightly modi�ed 𝑘 − 𝜖 equations to account for the nonhomogeneous region near the
wall. The eddy viscosity is formulated using the component of turbulent kinetic energy normal to the
wall for velocity scaling (instead of using

√
𝑘 as done in the standard 𝑘 − 𝜖model):

𝜇𝑡 = 𝐶𝜇𝜌𝑣2𝑇. (9.7)

The time scale, 𝑇 , is the usual time scale, 𝑘/𝜖, away from the wall region; however, near the wall, if 𝑘/𝜖
becomes smaller than the Kolmogorov time scale,

√︀
𝜈/𝜖, then the latter is used for 𝑇 . The model

includes a transport equation for 𝑣2:

𝜕𝜌𝑣2

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝑣2

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[︃
(𝜇+ 𝜇𝑡)

𝜕𝑣2

𝜕𝑥𝑗

]︃
+ 𝜌𝑘𝑓 − 𝜌𝑁𝑣2

𝑇1
. (9.8)

An elliptic relaxation model equation is formulated to solve for the variable 𝑓 in the above equation.
The purpose of the elliptic relaxation model is to account for nonlocal e�ects such as wall blocking; the
equation is given by:

𝑓 − 𝐿2 𝜕

𝜕𝑥𝑗

(︂
𝜕𝑓

𝜕𝑥𝑗

)︂
= 𝐶1

(︁
2/3− 𝑣2/𝑘

)︁
𝑇1

+ 𝐶22𝜈𝑡
𝑆2

𝑘
+ (𝑁 − 1)

𝑣2/𝑘

𝑇1
. (9.9)

The turbulent kinetic energy equation 9.4 remains the same in the v2-f model; however, the dissipation
equation 9.5 is modi�ed as follows:

𝜕𝜌𝜖

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝜖

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[︂(︂
𝜇+

𝜇𝑡
𝜎𝜖

)︂
𝜕𝜖

𝜕𝑥𝑗

]︂
+ 2𝐶 ′

𝜖1
𝜇𝑡
𝑆2

𝑇
− 𝐶𝜖2𝜌

𝜖

𝑇
. (9.10)

The time and length scales in the above equations are given by:

𝑇 = min

[︃
𝑇1,

𝛼

2
√
3

𝑘

𝑣2𝐶𝜇
√
𝑆2

]︃
(9.11)

𝑇1 = max

[︂
𝑘

𝜖
, 6

√︂
𝜈

𝜖

]︂
(9.12)
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𝐿 = 𝐶𝐿max

[︃
𝐿′, 𝐶𝜂

(︂
𝜈3

𝜖

)︂ 1
4

]︃
(9.13)

𝐿′ = min

[︃
𝑘

3
2

𝜖
,
1√
3

𝑘
3
2

𝑣2𝐶𝜇
√
𝑆2

]︃
(9.14)

and the constants are given by: 𝐶 ′
𝜖1
= 𝐶𝜖1

(︂
1 + 0.045

√︁
𝑘/𝑣2

)︂
,𝐶𝜖1 = 1.4,𝐶𝜖2 = 1.9,𝐶𝜇 = 0.22,

𝐶1 = 0.4,𝐶2 = 0.3, 𝛼 = 0.6,𝑁 = 6,𝐶𝐿 = 0.23,𝐶𝜂 = 70, 𝜎𝜖 = 1.0.

Boundary conditions at a no-slip, solid wall are given by:

𝑘 = 𝑣2 = 𝑓 = 0 (9.15)
𝜖 = 2𝜈𝑘(1)/𝑦(1)2 (9.16)

where 𝑘(1) and 𝑦(1) are the turbulent kinetic energy and the normal distance from the wall at the
center of the subcontrol volume that is adjacent to the wall. The 𝜖 condition at the wall node is
determined by weighting the above expression for each subcontrol volume associated with the wall node
by the subcontrol volume wall surface area, accumulating the values for all the subcontrol volumes that
make up the boundary control volume associated with the wall node, and dividing by the total wall
surface area for the boundary control volume.

APPENDIX C. TEST PROBLEM

The equations and boundary conditions for the v2-f model have been implemented in FUEGO. A 1-D
code for solving the equations of fully developed, isothermal, turbulent �ow in a channel was obtained
from Durbin [250] and is used here to verify the model implementation. The Reynolds number chosen
for the veri�cation test is Reℎ = 𝑢clℎ/𝜈 = 13, 800 where ℎ is the half-height of the channel and 𝑢cl is
the centerline velocity. This condition was chosen for veri�cation and validation purposes because it has
been studied thoroughly both experimentally [256] and numerically [257]. From [256],
𝑢𝜏/𝑢cl = 0.0464 at Reℎ = 13, 800, and ℎ = 3.175cm. Properties of nitrogen at 300K, 1atm are used
in the FUEGO calculations: 𝜌 = 1.138x10−3g/cm3 and 𝜇 = 1.813x10−4g/cm− s. This gives a
Reynolds number based on the friction velocity 𝑢𝜏 and the channel height 2ℎ of 1280.6 to use in
Durbin’s 1D channel code. The pro�les of velocity, turbulent kinetic energy 𝑘, turbulent dissipation
rate 𝜖, and 𝑣2 computed from the 1D simulation are used as inlet pro�les for the FUEGO (version 0.5.2)
calculation. The 3D FUEGO simulation included one element in the lateral (𝑧) direction; symmetry
conditions were imposed on the minimum and maximum 𝑧 planes; symmetry was also imposed at the
channel centerline (𝑦 = 0). Out�ow boundary conditions with 𝑝 = 0 were imposed at the out�ow
boundary (𝑥 = 8cm). Three di�erent meshes were used to discretize the half-width of the channel: a
�ne mesh with 26 nodes where the smallest to largest mesh spacing ratio was 0.375; a �ner mesh with 40

359



nodes where the smallest to largest mesh spacing ratio was 0.1; and a �nest mesh with 60 nodes where
the smallest to largest mesh spacing ratio was 0.075. For these meshes the values of 𝑦+(≡ (ℎ− 𝑦)𝑢𝜏/𝜈)
at the center of the subcontrol volume that is adjacent to the channel wall are ≈ 3, 1, and 0.5,
respectively. The �nest mesh FUEGO velocity pro�le at the outlet of the channel (𝑥 = 8cm) is
compared with the 1D pro�le and with the experimental data of Hussain and Reynolds in the near wall
region in Figure C-1. The velocity in Figure C-1 is normalized with the centerline velocity; the distance
from the wall, ℎ− 𝑦, is normalized with the half-height of the channel ℎ.
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Figure C-1.. Near wall profiles of velocity, Re=13,800 (fuego-0.5.2).

Velocity pro�les across the half-width of the channel are shown in dimensional form in Figure C-2.
Included in the Figure is the velocity pro�le from a FUEGO 𝑘 − 𝜖 calculation which solved the 𝑘
transport equation for the control volume adjacent to the wall and used the code option use equilibrium
production model. The 𝑘 − 𝜖 calculation used 10 equally spaced elements across the channel half-height
and is described in detail in the veri�cation chapter of this document dealing with wall functions in
turbulent �ow.

The �nest mesh FUEGO turbulent kinetic energy pro�le at the outlet of the channel (𝑥 = 8cm) is
compared with the 1D pro�le and with a 𝑘 pro�le formed from a combination of the experimental data
of Hussain and Reynolds for 𝑢′2 and the LES calculation of Moin and Kim for 𝑣′2 and𝑤′2 in the near
wall region in Figure C-3. The 𝑘 values are normalized with 𝑢𝜏 2.

The variation of turbulent kinetic energy across the half-height of the channel is compared with
Durbin’s 1D pro�le in Figure C-4. A pro�le of 𝑘 computed using the 𝑘 − 𝜖model is included for
reference.
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Figure C-2.. Profiles of velocity, Re=13,800 (fuego-0.5.2).

The variation of turbulent dissipation across the half-height of the channel is compared with Durbin’s
1D pro�le shown in Figure C-5. A pro�le of 𝜖 computed using the 𝑘 − 𝜖model is included for
reference.

Pro�les of 𝜖 normalized with ℎ/𝑢𝜏 3 in the near wall region are shown in Figure C-6 as a function of 𝑦+
for the three meshes and compared with Durbin’s 1D pro�le. Good agreement is obtained for the �nest
mesh.

Pro�les of 𝑣2 across the half-height of the channel at the channel exit (𝑥 = 8 cm) for the three meshes
are compared in Figure C-7 with the 1D pro�le of Durbin. Good agreement with the 1D pro�le is
obtained for the �nest mesh FUEGO calculation; note that for the �nest mesh 𝑦+ at the center of the
subcontrol volume that is adjacent to the channel wall is ≈ 0.5.

APPENDIX D. NUMERICAL IMPLEMENTATION ISSUES
AND DETAILS

In the course of veri�cation and validation of the v2-f model in Fuego, several convergence related issues
have emerged. Poor and/or lack of convergence that did not respond to modi�cations in the CFL
criterion or the underrelaxation factors or the projection scheme became severe issues for the turbulent
mixed convection �at plate validation study. As a result, some rather drastic steps were taken to obtain
convergence.
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Figure C-3.. Near wall profiles of turbulent kinetic energy, Re=13,800 (fuego-0.5.2).

First, the order of solution and update of the turbulence variables was modi�ed. The resulting order of
solution and update became the following: (1) solve the f equation and update f; (2) solve the k
equation, then the epsilon equation, and �nally the v2 equation; (3) update k, epsilon, and v2.

Second, as noted in the model formulation above, the time scale used in the f and v2 equations di�ers
from the time scale used in the epsilon equation and the turbulent viscosity formula; 𝑇1 (no realizability
constraint) is used in the f and v2 equations, whereas T (including the realizability constraint) is used in
the epsilon equation and turbulent viscosity. Also, Durbin’s original model has epsilon/k in the sink
term in the v2 equation; this has been replaced by 1/𝑇1 as noted in the above model formulation. This
modi�cation was determined by Svengingsson to have a large stabilizing e�ect on the v2-f model in
solutions of gas turbine �ows. Usage of the realizability constraint in the time scale in some of the
turbulence equations and not others has appeared on and o� in publications of the v2-f model over the
years.

Third, apply limiters to the time and length scales and to the source terms in the turbulence equations
and the coe�cient of the production term in the epsilon equation. These limiters have been hardwired
in the code (must be changed in source code and then the code is recompiled); they serve to allow the
v2-f model to adjust to the initial condition. Once the adjustment is made, then the limiters can be
removed and the simulation remains stable. Without the use of limiters, the model can be unstable.
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Figure C-4.. Profiles of turbulent kinetic energy, Re=13,800 (fuego-0.5.2).

APPENDIX E. PLAN

The goal is to have a model for turbulent mixed convection heat transfer in FUEGO that provides a
more accurate prediction of the convective heat transfer to surfaces in or near �res than the standard
𝑘 − 𝜖model provides without increasing the cost dramatically. The v2-f model seems to be a good
starting point for such a model. The next steps will involve applying the model to solve for the
convection heat transfer in �ow regimes of forced and mixed convection for channel �ow, boundary
layer �ow, and separated �ow. Comparisons will be made with published numerical solutions and
experimental data. While the forced �ow results can be compared with other numerical and
experimental work, there is much less information available for the turbulent mixed convection
regime.
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10. BUOYANT VORTICITY
GENERATION MODEL

The turbulence models most commonly employed in commercial �re CFD tools (or production codes,
i.e., codes that are not research codes) are based upon the 𝑘 − 𝜖model of turbulence [38, 34]. Such
models have well-known strengths and weaknesses, and are used primarily because they are robust, i.e.,
they yield reasonable results for many di�erent scenarios of interest. The use of the 𝑘 − 𝜖 turbulence
model for �re simulation is somewhat surprising, as the model was derived for �ows with primarily
shear-generated turbulence, whereas �res are �ows with primarily buoyancy-generated turbulence.
Most CFD �re simulation tools employ a standard 𝑘 − 𝜖 turbulence model (some with low Reynolds
number modi�cations). When �res in enclosures are simulated, a correction term is often included to
account for thermal strati�cation e�ects that tend to dampen turbulent kinetic energy in the hot gas
layer near the ceiling of the enclosure (𝑐𝑓 , [258]). This correction was �rst suggested by Rodi [32], and
is referred to herein as ’Rodi’s term.’ In some of the results that follow, reference is made to the
’standard 𝑘 − 𝜖model.’ This is assumed to include Rodi’s term for buoyant turbulence, as his model is
’standard’ for most of the literature regarding conventional CFD �re simulations.

.1. The Present Work

The goal of the present work is to develop a model of buoyancy-induced turbulence for pool �res using
a buoyant vorticity-based generation mechanism. The models developed previously (𝑐𝑓 , [31], while
promising, had several shortcomings that needed to be overcome. First, the authors believed that the
model needed to be put on a more solid theoretical foundation. Chomiak and Nisbet [259] had relied
upon similarities to �ows involving bubble dynamics in developing key parts of their formulation.
Second, the previous model relied upon an upper limit on the buoyant production term. This limit was
felt to be a severe hindrance in applying the model over a broad range of �re environments, and
therefore a signi�cant shortcoming. Third, previous models yielded a build up of eddy viscosity not
only in the plume, but also in regions far removed from it. In view of these shortcomings, it was deemed
necessary to develop another model of buoyancy-generated turbulence for pool �res.

.2. Model Development

The standard equations relevant to momentum transport and turbulence are presented �rst to establish
a background. This is followed by a derivation of the buoyancy-generated turbulence modi�cations for
the modeling of pool �res.
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The momentum equation (written in integral form) can be written as:

∫︁
𝜕𝜌𝑢̃𝑖
𝜕𝑡

d𝑉 +

∫︁
𝜌𝑢̃𝑖𝑢̃𝑗𝑛𝑗d𝑆+

∫︁
𝑝𝑛𝑖d𝑆 =

∫︁
𝜏 𝑖𝑗𝑛𝑗d𝑆−

∫︁
𝜌𝑢′′𝑖 𝑢

′′
𝑗𝑛𝑗d𝑆+

∫︁
(𝜌− 𝜌∘) 𝑔𝑖d𝑉 (10.1)

where variables with an overbar are Reynolds averaged, variables with a tilde are Favre-averaged (density
weighted), and the double prime (") indicates a �uctuation. The second to the last term on the right
hand side (RHS) involving the velocity �uctuations is commonly referred to as the Reynolds stress
term. It is this term that requires modeling in order to close the set of equations (which also includes
conservation of mass, species, and energy (or enthalpy)).

Invoking the Boussinesq eddy viscosity assumption, the Reynolds stress term can be written as:

−𝜌𝑢′′𝑖 𝑢′′𝑗 = 𝜇𝑡

(︂
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗
𝜕𝑥𝑖

)︂
− 2

3

(︂
𝜌𝑘 + 𝜇𝑡

𝜕𝑢̃𝑘
𝜕𝑥𝑘

)︂
𝛿𝑖𝑗

= 𝜏 𝑡𝑖𝑗 −
2

3
𝜌𝑘𝛿𝑖𝑗, (10.2)

where𝑚𝑢𝑡 is the turbulent eddy viscosity, snd is given by the Prandtl-Kolmogorov relationship,

𝜇𝑡 = C𝜇𝜌
𝑘2

𝜖
. (10.3)

:

When expressions for k and /𝑒𝑝𝑠𝑖𝑙𝑜𝑛 are put forth, then the Reynolds stress term can be evaluated, a
closed set of equations is obtained, and a solution to the suite of momentum, mass, species, and
enthalpy equations can (in theory) be obtained.

The standard form of the 𝑘 − 𝜖 equations for buoyant �ow is modi�ed as follows. The equation for
turbulent kinetic energy (see Equation 2.102 for the original form) can be written as

∫︁
𝜕𝜌𝑘

𝜕𝑡
d𝑉 +

∫︁
𝜌𝑘𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁
𝜇𝑡
𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗
𝑛𝑗d𝑆 +

∫︁
(𝑃𝑘 − 𝜌𝜖+𝐺𝐵) d𝑉. (10.4)

The term𝐺𝐵 represents a source term due to buoyancy, and needs to be modeled (the term 𝑃𝑘 is the
standard source term due to shear). The equation for the dissipation of turbulent kinetic energy (see
Equation 2.103 for the original form) can be written as

∫︁
𝜕𝜌𝜖

𝜕𝑡
d𝑉 +

∫︁
𝜌𝜖𝑢̃𝑗𝑛𝑗d𝑆 =

∫︁
𝜇𝑡
𝜎𝜖

𝜕𝜖

𝜕𝑥𝑗
𝑛𝑗d𝑆 +

∫︁
𝜖

𝑘
(𝐶𝜖1𝑃𝑘 − 𝐶𝜖2𝜌𝜖+ 𝐶𝜖3𝐺𝐵) d𝑉. (10.5)

The term𝐺𝐵 appears in this equation also.
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.3. A new model for buoyancy generated turbulence

In view of the limitations and weaknesses of previous models, the development of a new model was
undertaken. From Equation 2.102 we note that:

∫︁
𝜕𝜌𝑘

𝜕𝑡
d𝑉 =

∫︁
𝐺𝐵d𝑉 . (10.6)

Since we are using a 𝑘 − 𝜖 based turbulence model, shear-generated turbulence in�uences the
momentum equations through a turbulent eddy viscosity (or di�usivity). Therefore, we want the
in�uence of buoyancy-generated turbulence to manifest itself also as an eddy viscosity. From
Equation 2.106, we can see that, for the shear-generated turbulence case:

𝜇𝑡 = C𝜇𝜌
𝑘2

𝜖
= C𝜇𝜌

𝑘

𝜖
𝑘 𝑘𝜏. (10.7)

Since we want the same e�ect (i.e., the same eddy viscosity) when the turbulence is buoyancy-generated,
we can write

𝜇𝑡 = 𝜇𝐵 (10.8)

(8) From Equation 10.7 and Equation 10.8, we can derive a relationship between the
buoyancy-generated turbulence quantities and the shear-generated turbulence quantities that will
ensure proper representation of the eddy viscosity for the buoyancy-generated turbulence case,

𝑘𝜏𝑠 = 𝑘𝐵𝜏𝐵 (10.9)

where the subscript 𝑠 indicates a shear-related quantity, and the subscript𝐵 represents a
buoyancy-related quantity. Note that we could also write as 𝑘 = 𝑘𝑠, but have chosen to not include the
subscript 𝑠 on k (and below on 𝑒𝑝𝑠𝑖𝑙𝑜𝑛) in order to be consistent with the previous equations and
naming convention. Rearranging equation Equation 10.9,

𝑘𝐵 = 𝑘
𝜏𝑠
𝜏𝐵

(10.10)

The appropriate time scale for shear-generated turbulence is given by:

𝜏𝑠 = 𝑘

𝜖
(10.11)

With proper representation of both 𝑘𝐵 and 𝜏𝐵 for buoyancy-generated turbulence in Equation 10.10,
then the proper impact of buoyancy-generated turbulence on the momentum equations (via
Equation 2.106) will be obtained.
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An appropriate time scale for buoyancy-generated turbulence can be deduced by noting that the
turbulence in pool �res is generated primarily as a result of buoyant vorticity generation (for a more
detailed discussion, see [47] ). From the vorticity equation, we note that

𝜕𝜔

𝜕𝑡

1

𝜏 2
1

𝜏 2
𝐺𝑟𝑎𝑑𝑅𝑥𝐺𝑟𝑎𝑑𝑃 (10.12)

where the double vertical bars indicate that a magnitude must be taken (since the resultant of the cross
product is itself a vector). This time scale is based on the mechanism for buoyant vorticity generation
(BVG), and is inversely proportional to the square root of the cross product of the local density gradient
and the pressure gradient. Making use of equations and 10.12 and 10.11 we can re-write Equation 10.10
as:

Or, making use of equation (3):

(14)

Examining equation (6), and noting that GB can also be related to the rate of change with time of the
buoyancy-generated turbulent kinetic energy, , we can re-write (6) as:

(15)

Adding in a constant of proportionality, CBVG , the source term to the k-equation due to
buoyancy-generated turbulence becomes:

(16)

Note that CBVG is not the only constant that must be determined for the model. The equation for the
dissipation of turbulent kinetic energy, equation (5), also contains a constant (C??) that must be
determined. The determination of these two constants is done by comparing the results of the model to
experimental data. Calibration of these constants is presently underway.

.4. Implementation Issues

If the present model is implemented into a code which uses an essentially incompressible scheme, it has
been observed that there can be problems with the model during the �rst several time steps. The large
pressure pulse that occurs upon startup results in very high values of the pressure gradient. Although
this pressure pulse generally only lasts for the �rst several time steps, it can wreak havoc with the
solution by generating signi�cant values of𝐺𝑏 in regions far removed from the plume itself.

.5. Summary

This new model is hereafter referred to as the BVG model (for Buoyant Vorticity Generation model),
and has also been implemented into the Sandia VULCAN �re simulation. The model appears to work
for non-reacting as well as reacting buoyant �ows. Work is underway to calibrate the constants against
experimental data.
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11. PROPOSED RESTART FIX FOR DT
SCALING ALGORITHM

A solution to the fuego restart problem, within the context of the “dt” scaling algorithm, is provided
herein. The development of the algorithm, which centers about the construction of the appropriate
mass conserving integration point mass �ow rates, provides a method for calculation of the appropriate
mass conserving integration point �ow rates that is strictly a function of the previous projected pressure
and velocity �eld. Moreover, the interpolation provides for a more satisfying method for cases of
variable density. Therefore, this method requires no framework necessity of integration point data
structure saving. The equivalence of this new interpolation formula with the slightly corrected current
formulation will be demonstrated.

It is important to note that the traditional Rhie-Chow scaling, which requires the “old” mass �ow rates
at integration points still requires the framework capability of data structure restart support at
integration points.

The derivation begins with the development of the “dt” scaling algorithm adopted by Jones. For
completeness, the following derivation is again repeated.

The form of the convecting velocity as derived from a semi-discrete form of the momentum equations is
similar, except that the pressure gradient scaling term is the limiting value for small time step. With this
form, the transient correction term is not required.

The derivation begins with the semi-discrete formulation of the momentum equations,

𝜌𝑖
𝑛+1𝑈𝑖

𝑛+1 = 𝜌𝑖
𝑛𝑈𝑖

𝑛 +Δ𝑡
(︀
𝐹𝑖
𝑛+1 + 𝑏𝑖

)︀
−Δ𝑡∇𝑝*𝑖 (11.1)

where 𝐹 𝑛+1
𝑖 represents the convection and di�usion terms and 𝑏𝑖 contains the non-solenoidal stress and

any potential buoyancy terms. An analogous form of a semi-discrete integration point velocity can be
written as,

𝜌𝑛+1
𝑖𝑝 𝑢𝑛+1

𝑖𝑝 = 𝜌𝑛𝑖𝑝𝑢
𝑛
𝑖𝑝 +Δ𝑡

(︀
𝐹 𝑛+1
𝑖𝑝 + 𝑏𝑖𝑝

)︀
−Δ𝑡∇𝑝𝑛+1

𝑖𝑝 (11.2)

Equation 11.1 is rearranged to provide the following term in Equation 11.2,

𝜌𝑛𝑖𝑝𝑢
𝑛
𝑖𝑝 +Δ𝑡

(︀
𝐹 𝑛+1
𝑖𝑝 + 𝑏𝑖𝑝

)︀
= 𝜌𝑖𝑛𝑈𝑖

𝑛 +Δ𝑡
(︀
𝐹𝑖
𝑛+1 + 𝑏𝑖

)︀
= 𝜌𝑖𝑛+1𝑈𝑖

𝑛+1 +Δ𝑡∇𝑝*𝑖 (11.3)
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The results from Equation 11.3 are substituted within Equation 11.2 to yield the �nal form of the face
mass �ow rate,

𝜌*𝑖𝑝𝑢
𝑛+1
𝑖𝑝 =

∑︁
𝑖

𝑁𝑖𝜌
*
𝑖𝑈

*
𝑖 +Δ𝑡

[︃∑︁
𝑖

𝑁𝑖

∑︁
𝑗

𝐺𝑖𝑗𝑝
*
𝑗 −∇𝑝𝑛+1

𝑖𝑝

]︃
(11.4)

The above equation is approximated and implemented within Fuego as,

𝜌*𝑖𝑝𝑢
𝑛+1
𝑖𝑝 = 𝜌*𝑖𝑝

∑︁
𝑖

𝑁𝑖𝑈
*
𝑖 +Δ𝑡

[︃∑︁
𝑖

𝑁𝑖

∑︁
𝑗

𝐺𝑖𝑗𝑝
*
𝑗 −∇𝑝𝑛+1

𝑖𝑝

]︃
(11.5)

where the * represents the provisional scalar value; the most current density is discussed in
Section 5.3.2.

In the proposed method, however, let us not make the assumption of somewhat constant density
thereby retaining Equation 11.4 as the form of the convecting velocity.

It is now important to note that the use of the convecting velocity formula based on interpolated values
from the momentum �eld includes a error term that is due to the fact that the discrete momentum
equation was solved to a user speci�ed tolerance. In reality, this is not such a great issue when compared
to the staggered grid community as the convecting velocities used for the continuity equation are the
velocities that result from the momentum solve.

Equation 11.4 is substituted within the discrete continuity equation to form the pressure equation.
Once the continuity equation is solved, the new pressure �eld is �rst applied within Equation 11.4, to
obtain the conserved mass �ow rates and then within the nodal velocity correction to obtain the
appropriate nodal velocity �eld, Equation 11.6

𝜌*𝑖𝑈
𝑛+1
𝑖 = 𝜌*𝑖𝑈

*
𝑖 −Δ𝑡

∑︁
𝑗

𝐺𝑖𝑗

(︀
𝑝𝑛+1
𝑗 − 𝑝*𝑗

)︀
(11.6)

It is now proposed that the equivalent form of Equation 11.4 can be written as,

𝜌*𝑖𝑝𝑢
𝑛+1
𝑖𝑝 =

∑︁
𝑖

𝑁𝑖𝜌
*
𝑖𝑈

𝑛+1
𝑖 +Δ𝑡

[︃∑︁
𝑖

𝑁𝑖

∑︁
𝑗

𝐺𝑖𝑗𝑝
𝑛+1
𝑗 −∇𝑝𝑛+1

𝑖𝑝

]︃
(11.7)

where it is noted that provisional values are substituted by the projected variables.

Upon adoption of the above equation, the mass conserving �ow rates can be determined by the latest
projected velocity and pressure �eld. Therefore, without approximation, the appropriate mass �ow
rates can be computed upon restart. This statement, the equivalence of Equation 11.7 and Equation 11.4,
is easily veri�ed by substitution of the rearranged nodal correction equation, Equation 11.6, within
Equation 11.7,
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𝜌*𝑖𝑝𝑢
𝑛+1
𝑖𝑝 =

∑︁
𝑖

𝑁𝑖𝜌
*
𝑖𝑈

*
𝑖 −Δ𝑡

∑︁
𝑖

𝑁𝑖

∑︁
𝑗

𝐺𝑖𝑗𝑝
𝑛+1
𝑗 +Δ𝑡

∑︁
𝑖

𝑁𝑖

∑︁
𝑗

𝐺𝑖𝑗𝑝
*
𝑗+Δ𝑡

∑︁
𝑖

𝑁𝑖

∑︁
𝑗

𝐺𝑖𝑗𝑝
𝑛+1
𝑗 −Δ𝑡∇𝑝𝑛+1

(11.8)

=
∑︁
𝑖

𝑁𝑖𝜌
*
𝑖𝑈

*
𝑖 +Δ𝑡

[︃∑︁
𝑖

𝑁𝑖

∑︁
𝑗

𝐺𝑖𝑗𝑝
*
𝑗 −∇𝑝𝑛+1

𝑖𝑝

]︃
(11.9)

Therefore, having shown the equivalence of these two equations it seems that the ability to use restart
for the dt scaling algorithm is complete.

Note that use of Equation 11.7 would require a di�erent placing of the nodal pressure gradient
evaluation and a slightly di�erent weighting of the nodal mass �ow rate within the velocity
interpolation routine.

At this point, I do not recommend that we change the form of the integration point velocity formula
other than to include the proper presumption that density is not constant, Equation 11.4. In fact, due to
inconsistencies between the presumption of constant density, e.g., Equation 11.5, the equivalence
between Equation 11.5 and Equation 11.7 can not be demonstrated. However, the justi�cation for this
shortcut approach has never been justi�ed by a sensitivity of this interpolation in variable density
�ows.

Therefore, Equation 11.7 will only be used upon restart.
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12. VIRTUAL THERMOCOUPLE MODEL

The purpose of the virtual thermocouple model as implemented in Fuego is to approximate the
temperature that would be obtained from a thermocouple, given the results of a CFD simulation.

APPENDIX A. THEORETICAL DESCRIPTION OF THE
MODEL

Neglecting conduction through the thermocouple, the governing equations describing heat transfer to
the thermocouple are written as

𝜌𝑐𝑝𝑉𝑡𝑐
𝜕𝑇

𝜕𝑡
= ∇ · q𝑟 − ℎ𝐴𝑡𝑐 (𝑇 − 𝑇∞) , (12.1)

or alternatively, ∫︁
𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
𝑑𝑉 =

∮︁
q𝑟 · n 𝑑𝐴−

∮︁
ℎ (𝑇 − 𝑇∞) 𝑑𝐴, (12.2)

where q𝑟 is the radiative heat �ux vector, ℎ is the turbulent heat transfer coe�cient, and 𝑇∞ is the
surrounding gas temperature. In equation (12.2), the integrals are evaluated over the surface of the
thermocouple.

A.1. Convective Heat Flux

The heat transfer coe�cient is given in terms of the Nusselt number, the gas phase thermal
conductivity, and the pertinent thermocouple length scale, ℓ, as

𝑁𝑢 =
ℎℓ

𝜆
(12.3)

Correlations for Nusselt Number

The Nusselt number is given as a function of the Reynolds and Prandtl numbers by the following
correlation, obtained from Incropera & Dewitt (1996) for a cylinder in cross-�ow:

𝑁𝑢 = 0.3 +
0.62𝑅𝑒1/2𝑃𝑟1/3

[1 + (0.4/𝑃𝑟)2/3]
1/4

[︃
1 +

(︂
𝑅𝑒

282, 000

)︂5/8
]︃4/5

, (12.4)
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with the Reynolds number and Prandtl number given by

𝑅𝑒 =
𝑢𝑔ℓ𝜌𝑔
𝜇𝑔

, 𝑃 𝑟 =
𝑐𝑝𝑔𝜇𝑔

𝜆𝑔
. (12.5)

The subscript 𝑔 emphasizes that these properties are evaluated in the gas phase. The length scale, ℓ, is
the thermocouple diameter. The velocity, 𝑢𝑔, is the component of the gas velocity perpendicular to the
thermocouple.

A.2. Radiative Heat Flux

Given the incident spectral radiation intensity �eld, 𝐼 =
∫︀∞
0
𝐼𝜆 𝑑𝜆, the total radiative heat �ux in

direction s may be obtained as

q𝑟 =

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝐼(𝜃, 𝜑) s cos 𝜃 sin 𝜃 𝑑𝜃 𝑑𝜑, (12.6)

where s is the directional vector,

s = sin 𝜃 sin𝜑i+ cos 𝜃j+ sin 𝜃 cos𝜑k, (12.7)

as depicted in �gure A-1. However, we are interested in only the heat �ux incident on the faces of the

Figure A-1.. Coordinate system, showing the vector s

control volume which contain the thermocouple. The incident heat �ux on any surface, 𝑞𝐼𝑟 , may be
obtained as

𝑞𝐼𝑟 =

∫︁ 2𝜋

0

∫︁ 𝜋

0

𝐼(𝜃, 𝜑)𝐹 (𝜃, 𝜑) cos 𝜃 sin 𝜃 𝑑𝜃 𝑑𝜑, (12.8)

where
𝐹 (𝜃, 𝜑) ≡ max (0,−n · s) , (12.9)
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and n is the outward-pointing unit-vector normal for the given surface.

Assuming that the thermocouple emits radiation according to the Plank distribution, the net radiative
heat �ux at any point on the thermocouple may be written as

𝑞𝑟 = 𝛼𝑐 𝑞
𝐼
𝑟 − 𝜀𝑐𝜎𝑇

4, (12.10)

where 𝛼𝑐 and 𝜀𝑐 are, respectively, the absorptivity and emissivity of the thermocouple, and 𝑞𝐼𝑟 is given by
(12.8).

A.3. Working Assumptions

There are several working assumptions:

1. The thermocouple does not a�ect the �ow �eld in any way (i.e. one-way coupling to the model).
This implies the next assumption:

2. The thermocouple exists entirely within a single computational cell. Ideally, the thermocouple
dimensions should be small relative to the computational mesh. Otherwise, the assumption that
the thermocouple does not a�ect the �ow �eld is invalid.

3. Negligible attenuation of the irradiation between the edge of the computational cell and the
thermocouple surface,

4. Negligible conduction along the thermocouple.

5. Spectral emission from the thermocouple is assumed to follow the Plank distribution, i.e. the
total emissive power is proportional to 𝜎𝑇 4.

6. All thermocouple properties are homogeneous and constant (do not vary with space, or time).

7. The emissivity and absorptivity of the thermocouple are equal, 𝜀𝑐 = 𝛼𝑐.

8. The heat transfer coe�cient and convective temperature, 𝑇∞ are homogeneous over the
thermocouple.

9. The thermal conductivity of the thermocouple is su�ciently large that conduction through the
thermocouple is fast relative to the convective and radiative time scales. This implies that the
thermocouple is at a single, uniform temperature.

Several of these assumptions stem from the assumption that the thermocouple exists within a single
computational cell. For a more detailed treatment, details of the thermocouple geometry must be
speci�ed to a level where meshing the thermocouple itself may be required.

APPENDIX B. MODEL IMPLEMENTATION

This section describes the implementation of the model, including the user interface, numerical
discretization, and solution strategy.
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B.1. User Interface

The following quantities must be supplied by the user:

• Orientation. The three components of the thermocouple orientation vector must be speci�ed.
The orientation vector need not be a unit-normal; it will be normalized internally.

• Diameter and length of the thermocouple.

• Heat capacity, density, and emissivity of the thermocouple.

• Initial temperature of the thermocouple.

• Optionally, the user may request that the steady solution for the thermocouple temperature be
found, rather than the transient solution. In this case, the initial temperature of the
thermocouple is not required.

B.2. Discrete Equations

Fully Discretized Governing Equation

Given the assumptions listed in §A.3, the fully discrete equation for the thermocouple temperature may
be obtained using a backward-Euler di�erence in time as

𝜌𝑐𝑝𝑉𝑡𝑐
𝑇 𝑛+1 − 𝑇 𝑛

Δ𝑡
=
∑︁
𝑖

𝐴𝑝𝑡𝑐,𝑖
(︀
𝛼𝑐 𝑞

𝐼
𝑟,𝑖 − 𝜀𝑐𝜎(𝑇

𝑛+1)4
)︀
− ℎ𝐴𝑡𝑐

(︀
𝑇 𝑛+1 − 𝑇∞

)︀
, (12.11)

where 𝑉𝑡𝑐 = 𝜋𝐷2𝐿/4 is the thermocouple volume and𝐴𝑡𝑐 = 𝜋𝐷(𝐷/2 + 𝐿) is the thermocouple
surface area.

Equation (12.11) may be rewritten as a fourth-order polynomial in 𝑇 𝑛+1:

𝑎(𝑇 𝑛+1)4 + 𝑏𝑇 𝑛+1 + 𝑐 = 0, (12.12)

with coe�cients given by

𝑎 = 𝜀𝑐𝜎
∑︁
𝑖

𝐴𝑝𝑡𝑐,𝑖, (12.13)

𝑏 =
𝜌𝑐𝑝𝑉𝑡𝑐
Δ𝑡

+ ℎ𝐴𝑡𝑐, (12.14)

𝑐 = −𝜌𝑐𝑝𝑉𝑡𝑐
Δ𝑡

𝑇 𝑛 − ℎ𝐴𝑡𝑐𝑇∞ −
∑︁
𝑖

𝐴𝑝𝑡𝑐,𝑖𝛼𝑐 𝑞
𝐼
𝑟,𝑖. (12.15)

If requested, the model will compute the steady-state solution to (12.11) by replacing (12.14) and (12.15)
with

𝑏 = ℎ𝐴𝑡𝑐, (12.16)
𝑐 = −ℎ𝐴𝑡𝑐𝑇∞ −

∑︁
𝑖

𝐴𝑝𝑡𝑐,𝑖𝛼𝑐 𝑞
𝐼
𝑟,𝑖. (12.17)
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B.3. Solution Procedure

The solution procedure may be outlined as follows

1. Obtain 𝑡𝑒𝑛𝑑 - the time increment over which we wish to update the thermocouple temperature.
This is nominally the timestep determined from the procedure.

2. Select Δ𝑡. This should be chosen such that the time-integration of the thermocouple
temperature is su�ciently accurate. Details are discussed in §B.5.

3. Compute 𝑎 from (12.13).

4. Compute the projected thermocouple area,𝐴𝑝𝑡𝑐,𝑖. This is discussed in greater detail in §B.4.

5. Compute the convective heat transfer coe�cient, ℎ.

6. Compute the contribution to 𝑐 from the incident radiative �ux:
∑︀

𝑖𝐴
𝑝
𝑡𝑐,𝑖𝛼𝑐 𝑞

𝐼
𝑟,𝑖.

7. Compute 𝑏 from (12.14).

8. Set 𝑡 = 0. Set 𝑇 0 via the supplied initial condition or using the value from the previous solution.

9. while 𝑡 < 𝑡𝑒𝑛𝑑

• Compute 𝑐 from (12.15).

• Solve (12.12) for 𝑇 𝑛+1. This is obtained using Newton’s method.

• Advance time: 𝑡 = 𝑡+Δ𝑡; 𝑇 𝑛 = 𝑇 𝑛+1.

B.4. Determining the Projected Thermocouple Area

We must compute the area of the thermocouple projected on each CV face for use in equation (12.15).
The total thermocouple area must be projected to each CV face to determine𝐴𝑝𝑡𝑐,𝑖.

Given the surface unit normal, n𝑖 and the thermocouple orientation unit-vector p, we may write the
projected thermocouple area on face 𝑖 as

𝐴𝑝𝑡𝑐,𝑖 = [𝐴𝑒𝑛𝑑(p · n𝑖)] + [𝐴𝑠𝑖𝑑𝑒(m𝑖 · n𝑖)] (12.18)

where

𝐴𝑒𝑛𝑑 =
𝜋

4
𝐷2, (12.19)

𝐴𝑠𝑖𝑑𝑒 = 𝐷𝐿, (12.20)

m𝑖 is a unit-vector perpendicular to p (i.e. m𝑖 · p = 0), 𝐿 is the thermocouple length, and𝐷 is the
diameter, as given by the user. The vector m𝑖 represents the area unit-vector for the side of the
thermocouple and is given as

m𝑖 =
n𝑖 − (p · n𝑖) p
|n𝑖 − (p · n𝑖) p|

. (12.21)
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The projected area,𝐴𝑝𝑡𝑐,𝑖, is constrained by

0 <
𝐴𝑝𝑡𝑐,𝑖
𝑎𝑖

≤ 1, (12.22)

where 𝑎𝑖 is the full area of CV face 𝑖. This implies constraints on both the thermocouple length and
diameter. Speci�cally, the thermocouple must �t within a CV. The length and diameter may be no
greater than what will �t in the CV given the thermocouple orientation.

The constraint mentioned above must be enforced within each CV. Note that for the model
assumptions listed in §A.3 to be valid, we really require that𝐴𝑝𝑡𝑐,𝑖/𝑎𝑖 ≪ 1. This is not currently
enforced. The only constraint currently imposed is that𝐴𝑝𝑡𝑐,𝑖/𝑎𝑖 ≤ 1. Currently, the code will issue
warnings if𝐴𝑝𝑡𝑐,𝑖/𝑎𝑖 > 0.1.

B.5. Selection of Timestep

The timestep is selected based on the minimum of three criteria:

Δ𝑡 = min(𝜏𝑐, 𝜏𝑟, 𝜏𝑡) (12.23)

where 𝜏𝑐 is the convection timescale, 𝜏𝑟 is the radiation timescale, and 𝜏𝑡 = 𝑡𝑒𝑛𝑑/𝑛𝑚𝑖𝑛. In other words,
𝜏𝑡 is a timescale that is de�ned by the minimum number of timesteps that should be taken over time
interval [0, 𝑡𝑒𝑛𝑑].

The convective timescale is obtained from the analytic solution of the pure convective problem

𝑇 (𝑡) = 𝑇∞ + [𝑇 (0)− 𝑇∞] exp

(︂
ℎ𝐴𝑡𝑐
𝜌𝑐𝑝𝑉𝑡𝑐

𝑡

)︂
, (12.24)

implying that

𝜏𝑐 =
𝜌𝑐𝑝𝑉𝑡𝑐
ℎ𝐴𝑡𝑐

. (12.25)

The radiative timescale is currently determined in a very heuristic manner as

𝜏𝑟 =

(︂
𝜌𝑐𝑝𝑉𝑡𝑐
𝜎𝐴𝑡𝑐

)︂1/4

. (12.26)
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