

SANDIA REPORT

SAND2021-12191

Printed August 2021

Sandia
National
Laboratories

Development of a Ductile Rupture Failure Surface for PH13-8Mo H950 Steel Using the Xue-Wierzbicki Failure Model.

Robert J. Kalan

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: <http://www.osti.gov/scitech>

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: <https://classic.ntis.gov/help/order-methods/>

ABSTRACT

The ability to model ductile rupture in metal parts is critical in highly stressed applications. The initiation of a ductile fracture is a function of the plastic strain, the stress state, and stress history. This paper develops a ductile rupture failure surface for PH13-8Mo H950 steel using the Xue-Wierzbicki failure model. The model is developed using data from five tensile specimen tests conducted at -40°C and 20°C. The specimens are designed to cover a Lode parameter range of 0 and 1 with a stress triaxiality range from zero in pure shear to approximately 1.0 in tension. The failure surface can be implemented directly into the finite element code or used as a post processing check.

CONTENTS

1. Introduction	7
2. Review of Ductile Rupture and the Xue-Wierbicki model.....	8
3. Development of the True Stress-Strain Curve	12
4. Modeling of the Fracture Specimens	13
4.1 Specimens -40 ^o C.....	13
4.2 Specimens 20 ^o C	16
5. Determining the Failure Surface.....	20
6. Conclusion	23
Appendix A. Specimen Drawings	25

LIST OF FIGURES

Figure 1. The test specimens are left to right: standard tensile (R5), flat groove, 9 mm notch, 3 mm notch, and shear specimens.....	7
Figure 2. Plastic strain vs. stress triaxiality from Johnson and Cook [4].....	8
Figure 3. Stress failure locus of Al2024-T351 developed from Bao[5].....	9
Figure 4 Lode parameter in principal stress space.....	10
Figure 5 Schematic showing the upper and lower bound of failure strain dependence on the lode angle parameter	11
Figure 6. Engineering stress-strain data for R5 tensile specimens tested at -40 ^o C	12
Figure 7 Comparison of -40 ^o C R5 test and model data.....	13
Figure 8. Final true stress-strain curve for -40 ^o C along with the point used to in the MATLAB code.....	14
Figure 9. Comparison of the -40 ^o C R9 test specimen and model data.....	15
Figure 10. Comparison of the -40 ^o C R3 specimen tests and model data.....	15
Figure 11. Comparison of the -40 ^o C flat bar specimen test and model data.....	16
Figure 12. Comparison of the -40 ^o C shear specimen tests and model data	16
Figure 13. Stress-Strain curve from 20 ^o C R5 Specimens.....	17
Figure 14. Comparison of 20 ^o C R5 test and model data.	17
Figure 15. Comparison of the 20 ^o C R9 test specimen and model data	18
Figure 16. Comparison of the 20 ^o C R3 specimen tests and model data.....	18
Figure 17 Comparison of the 20 ^o C flat bar specimen test and model data.....	19
Figure 18. Comparison of the -40 ^o C shear specimen tests and model data.....	19
Figure 19. Plot of failure data from Table 1 and Table 2.....	21
Figure 20. 3-D plot of failure surface.....	22

LIST OF TABLES

Table 1 Test and Calculated data from three -40 ^o C tests.....	12
Table 2. Test Specimen failure data calculated using finite element models.....	20
Table 3. Equation parameters calculated from finite element data	20

This page left blank

1. INTRODUCTION

Failure of metal parts by ductile rupture in highly stressed regions during energy limiting events is of concern in many engineering applications. Modeling the initiation of fracture under these conditions is essential to their safe design. This document discusses the development of a ductile rupture failure surface for PH13-8Mo H950 steel using the Xue-Wierzbicki failure model [1]. Five tensile test specimen types were used to generate the fracture data for the development of this model. The specimen types are shown in Figure 1 and drawings for the five types are presented in Appendix A. The specimens are designed to cover a Lode parameter range of 0 and 1 with a stress triaxiality range from zero in pure shear to approximately 1.0 in tension. Details of the specimen testing are discussed in Reference [2].

Figure 1. The test specimens are left to right: standard tensile (R5), flat groove, 9 mm notch, 3 mm notch, and shear specimens

Data for each specimen was obtained at -40°C and 20°C . The standard tensile test specimen meets the requirements of a R5 tensile bars from ASTM specification E8-16 [3] and will be referred to as the R5 specimen. The engineering stress-strain data from the R5 specimen is used to develop the true strain-curve. This curve is incorporated in the hydra plasticity model used in the finite element analyses. Finite element models were developed for each specimen and are used to determine the stress state and plastic strain at failure. Using the calculated stress state, a failure surface based on the Lode angle, the stress triaxiality, and the plastic strain is developed.

2. REVIEW OF DUCTILE RUPTURE AND THE XUE-WIERBICKI MODEL

The fracture process of ductile materials is known to be caused by the nucleation of voids at stress sites where compatibility of deformation is difficult such as inclusions and second-phase particles. This is followed by void growth and void coalescence. Coalescence occurs by elongation of the voids and elongation of the bridges of material between the voids. This leads to the development of a fracture surface.

Bridgman performed the seminal work on the effect of hydrostatic pressure on ductile rupture in the 1940's and 1950's [4]. He conducted over 350 tensile tests on 20 different types of steel of different heat treatments. These experiments show that the strain to fracture is an increasing function of the superposed hydrostatic pressure. This work was further developed by Johnson and Cook [5], who developed fracture models for OFHC copper, Armco iron, and 4340 steel using notched tensile specimens. Their model contained three primary terms; one with a dimensionless strain rate, one for dimensionless temperature and one with a dimensionless pressure-stress ratio $\eta = \frac{\sigma_m}{\bar{\sigma}}$ where σ_m is the average of the three normal stresses and $\bar{\sigma}$ is the von Mises equivalent stress. The pressure-stress ratio is commonly referred to as the stress triaxiality. Figure 2 shows a plot of the data developed by Johnson and Cook and the corresponding curves developed in their failure models.

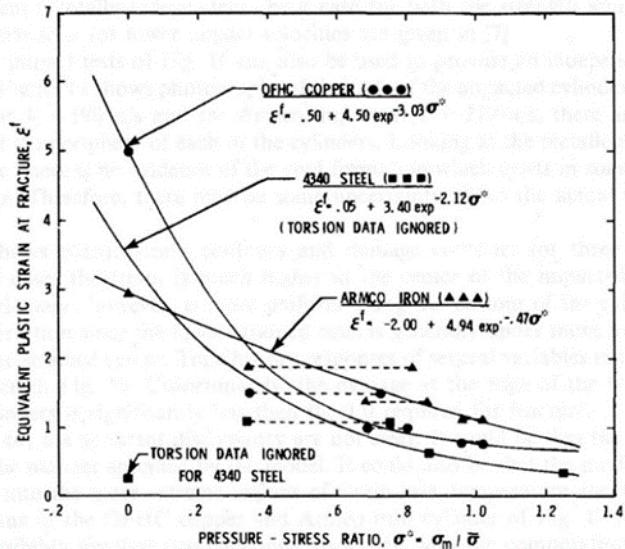
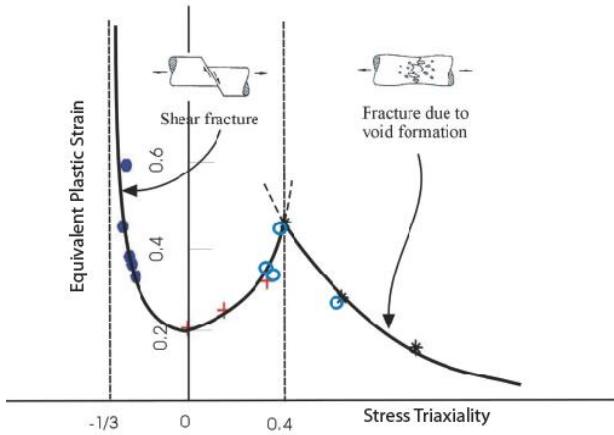



Figure 2. Plastic strain vs. stress triaxiality from Johnson and Cook [4].

Bao [6] developed a new criterion for ductile crack formation. This work is based on extensive testing on 2024-T351 aluminum. He developed a failure locus shown in Figure 3, in stress triaxiality-equivalent strain space, based on the calculating the average stress triaxiality as

$$\left(\frac{\sigma_m}{\bar{\sigma}}\right)_{avg} = \frac{1}{\bar{\varepsilon}_f} \int_0^{\bar{\varepsilon}_f} \frac{\sigma_m(\bar{\varepsilon})}{\bar{\sigma}(\bar{\varepsilon})} d\bar{\varepsilon}. \quad (1)$$

Where $\bar{\varepsilon}$ is the equivalent strain and $\bar{\varepsilon}_f$ is the equivalent strain at fracture.

Figure 3. Stress failure locus of Al2024-T351 developed from Bao[5]

The anomalous torsional data point for 4340 steel in Figure 2 and the dip in the experimental data for aluminum shown in Figure 3, indicates that the failure strain in simple shear can be lower than the dimensionless pressure-stress ratio, η would indicate. This change can be accounted for by considering the Lode angle dependency of the loaded state [8][9].

The principal stress coordinates $(\sigma_1, \sigma_2, \sigma_3)$ can be used to characterize stress space. For isotropic materials the independence of the ordering of the three principal stresses provide a 120° symmetry about the $[1\ 1\ 1]$ (hydrostatic) direction. The Lode cylindrical coordinates offer an alternative cylindrical system $[r, \theta, z]$ for which the z - axis points along the hydrostatic $<111>$ axis and $[r, \theta]$ are polar coordinates on any constant pressure (z) cross-section (Figure 4).

As shown in Figure 4, the cylindrical Lode coordinates may be determined from the stress invariants I_1 , J_2 , and J_3 . Specifically,

$$r = \sqrt{2J_2}, \quad (2)$$

$$z = \frac{I_1}{\sqrt{3}}, \quad (3)$$

the Lode angle parameter ξ is related to the azimuthal angle θ defined in the octahedral plane by

$$\xi = \cos(3\theta) = \frac{27J_3}{2\bar{\sigma}^2} \quad (4)$$

Where the invariants are a mixture of the Cauchy stress σ , and the stress invariant s , and are given by

$$I_1 = \sigma_1 + \sigma_2 + \sigma_3 \quad (5)$$

$$J_2 = \frac{1}{2} [tr(\sigma^2) - \frac{1}{3} tr(\sigma^2) = \frac{1}{2} tr(s \cdot s)] \quad (6)$$

$$J_3 = \det(s) \quad (7)$$

$$s = \sigma - \frac{1}{3} I_1 \quad (8)$$

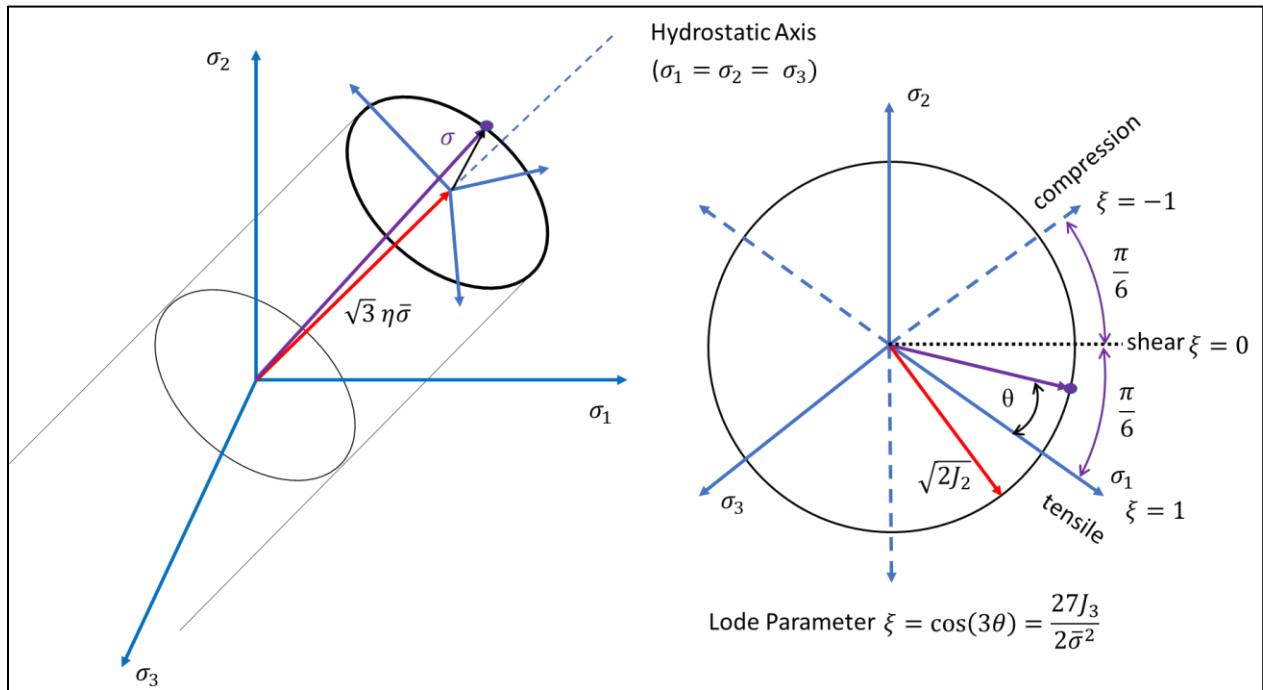
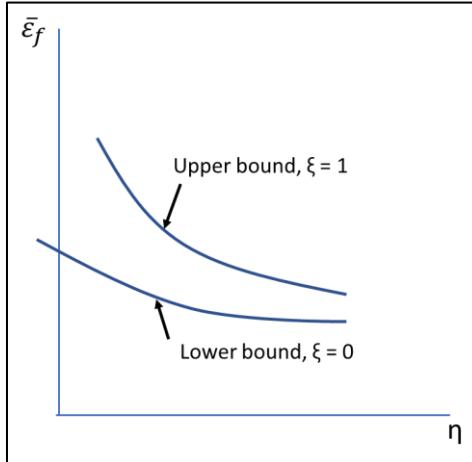


Figure 4 Lode parameter in principal stress space

In the Xue-Wierzbicki ductile failure model [8], the failure strain is defined by average values of the stress triaxiality and the Lode angle parameter as:

$$\bar{\varepsilon}_f = F(\eta_{avg}, \xi_{avg}) \quad (9)$$


$$\eta_{avg} = \frac{1}{\bar{\varepsilon}_f} \int_0^{\bar{\varepsilon}_f} \eta(\varepsilon) d\varepsilon \quad (10)$$

$$\xi_{avg} = \frac{1}{\bar{\varepsilon}_f} \int_0^{\bar{\varepsilon}_f} \xi(\varepsilon) d\varepsilon \quad (11)$$

Where ε is the total current plastic strain, and $\bar{\varepsilon}_f$ is the plastic strain at failure.

In the following discussion, average values of ξ and η will be used and the subscript “avg” will be dropped for the equations.

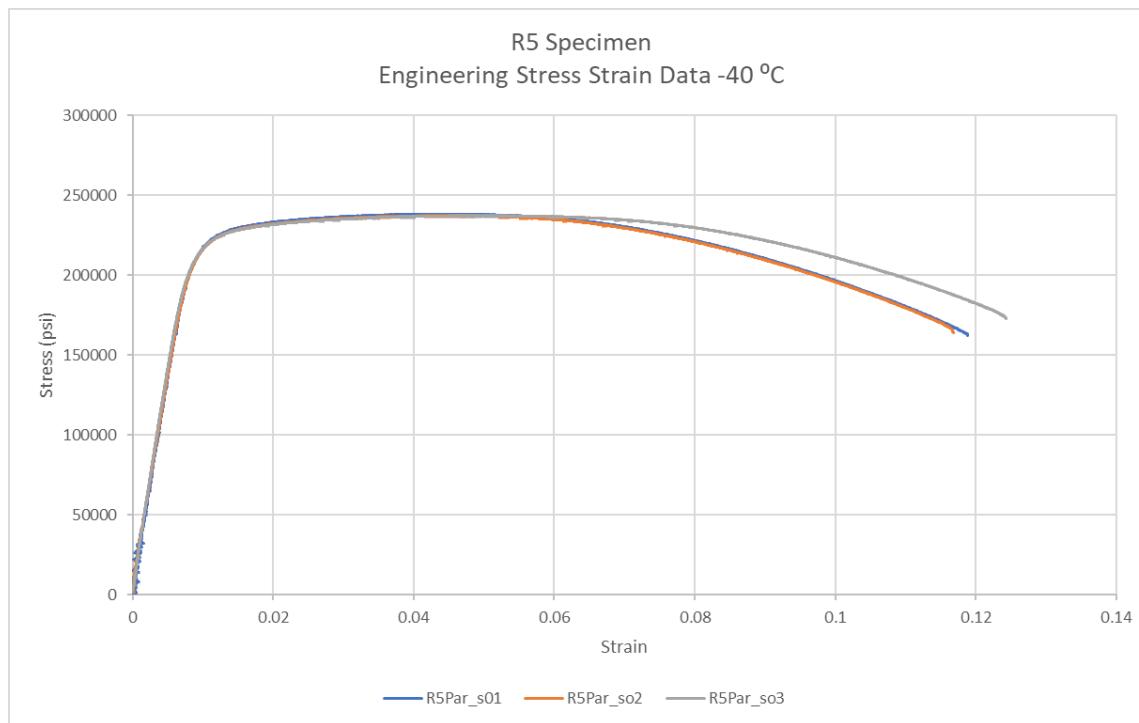
In stress triaxiality space, the fracture strain is bounded by the two curves $\xi = 1$ and $\xi = 0$. Experimental evidence [6] [8] (include this work) has shown that the stress state with $\xi = 1$ represent the condition for the highest ductility, while the stress state with $\xi = 0$ represent the least ductile state. This is shown schematically in Figure 5 which shows the fracture strain as a function of η for the two bounding values of ξ .

Figure 5 Schematic showing the upper and lower bound of failure strain dependence on the lode angle parameter

An exponential function is used to represent the two bounding curves,

$$\bar{\varepsilon}_f = C_1 e^{-C_2 \eta}, \quad \xi = 1 \quad (12)$$

$$\bar{\varepsilon}_f = C_3 e^{-C_4 \eta}, \quad \xi = 0. \quad (13)$$


Weirzibicki and Xue [1] assume that a family of elliptical functions can be used to describe the drop in fracture strain between the two limiting curves. This results in the following function which describes the failure strain in 3-D space $\{\bar{\varepsilon}_f, \xi, \eta\}$.

$$\bar{\varepsilon}_f = F(\eta, \xi) = C_1 e^{-C_2 \eta} - [(C_1 e^{-C_2 \eta} - C_3 e^{-C_4 \eta})](1 - \xi^m) \quad (14)$$

Where m is the even integer closest to $1/n$ where n is the hardening exponent of the true stress strain curve.

3. DEVELOPMENT OF THE TRUE STRESS-STRAIN CURVE

The data from the R5 tensile specimens were used to develop an engineering stress-strain curve for the PH13-8Mo H950 steel. Six tests were run on each of the test specimens. Three specimens were tested at -40°C and three were tested at room temperature (20°C). The R5 engineering stress-strain data for -40°C is shown in Figure 6.

Figure 6. Engineering stress-strain data for R5 tensile specimens tested at -40°C

A MATLAB script was written to develop the true stress-strain curve from the engineering stress-strain data. The proportional limit was used in place of the yield stress because of the large gradual slope change from the initial linear elastic region of the curve to the ultimate stress peak. Using the proportion limit versus the offset yield stress produces a true stress-strain curve that is more conservative and one that will result in higher plastic strains. Data for the three R5 test specimens derived using the MATLAB script are shown in Table 1.

Table 1 Test and calculated data from three -40°C tests

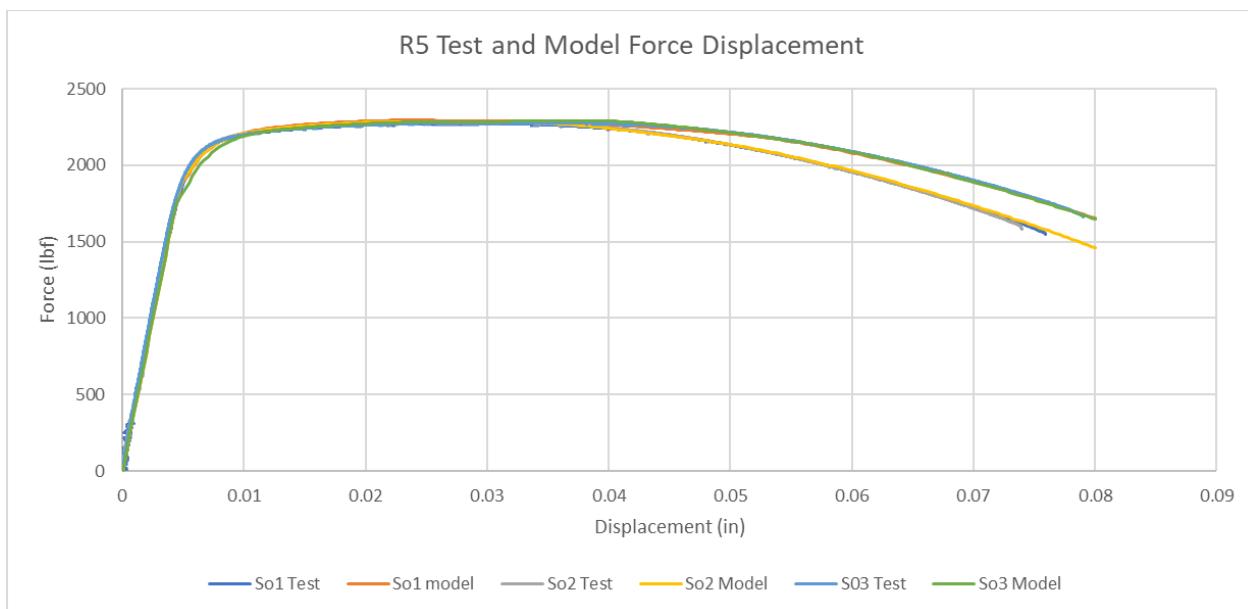
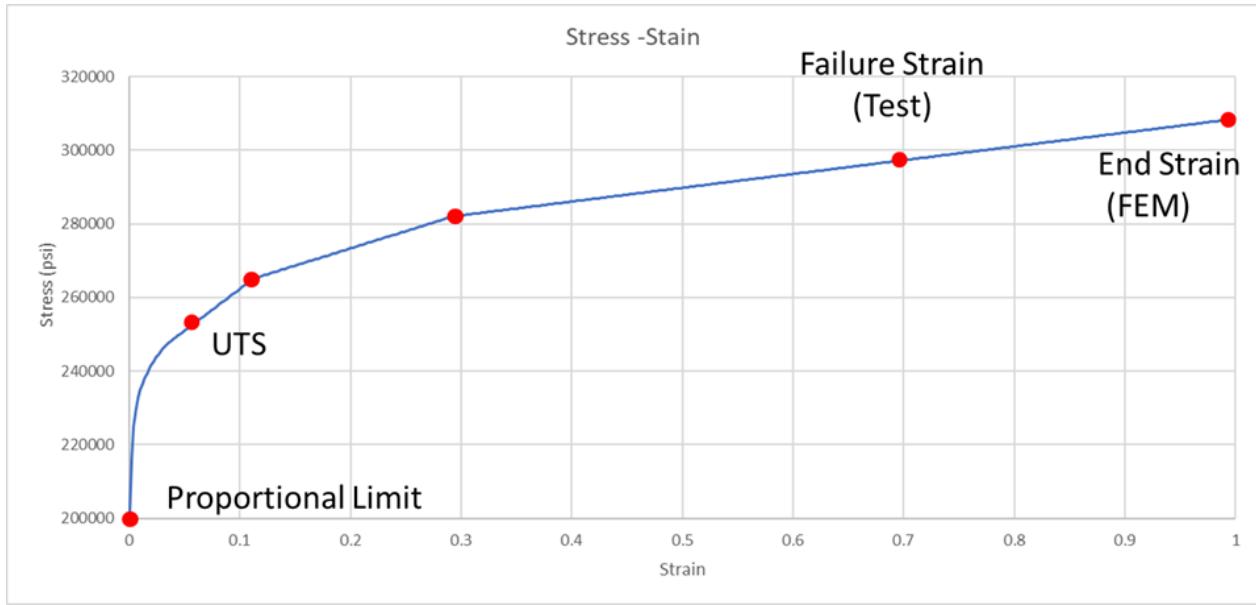
Specimen	Reduction in Area	Final Area (in^2)	Proportional Limit (psi)	Prop Limit strain	Modulus (psi)	UTS (psi)	UTS Strain	Final Plastic Strain
So1	0.601	0.003813	192894	0.007522	26271321	238390	0.044	0.9176
So2	0.516	0.00465	194618	0.007635	25976753	237463	0.0448	0.7263
So3	0.487	0.00493	181094	0.006653	27290268	237449	0.0473	0.6679

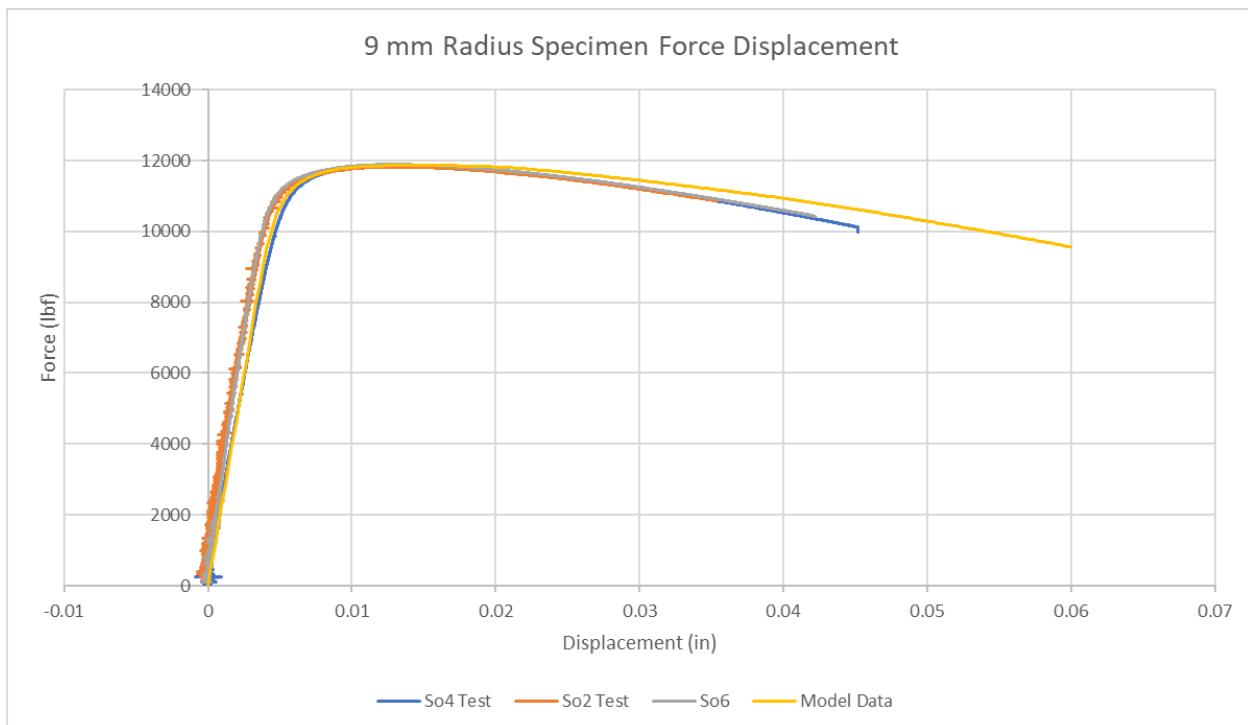
4. MODELING OF THE FRACTURE SPECIMENS

The test specimens were modeled using Sandia National Laboratories' Sierra-Presto/Adagio finite element code [10]. This is a Lagrangian, three-dimensional, implicit finite element code. The finite element model uses the Hydra Plasticity material model. This model uses the Hill yield surface and allows for anisotropic behavior, although isotropic hardening was assumed in the analyses. The model uses a tabular definition of the material's hardening behavior, with dependence on equivalent plastic strain and optional dependence on temperature and/or plastic strain rate. The Lode angle parameter, ξ , and the stress triaxiality η , are determined as part of the Hyper Plasticity model. Integration functions were added to the input file to calculate the average values of the parameters given in Equation (10 and 11 at each time step.

4.1 Specimens -40°C

Engineering stress-strain curves for each of the three (-40°C) R5 test specimens were run using the R5 FEA model. The force-displacement curves from the three models along with the FEA model results are shown in Figure 7. This shows very good agreement between the finite element models and the test specimen curves. This indicates that the model is capturing the correct necking and plastic deformation (reduction in area) of the tensile specimens.


Figure 7 Comparison of -40°C R5 test and model data

Using these results, the -40°C true stress-strain curve shown in Figure 8 was chosen to model the PH13-8Mo H950 material. The MATLAB algorithm determines the slope of the curve using the six control points shown in Red.

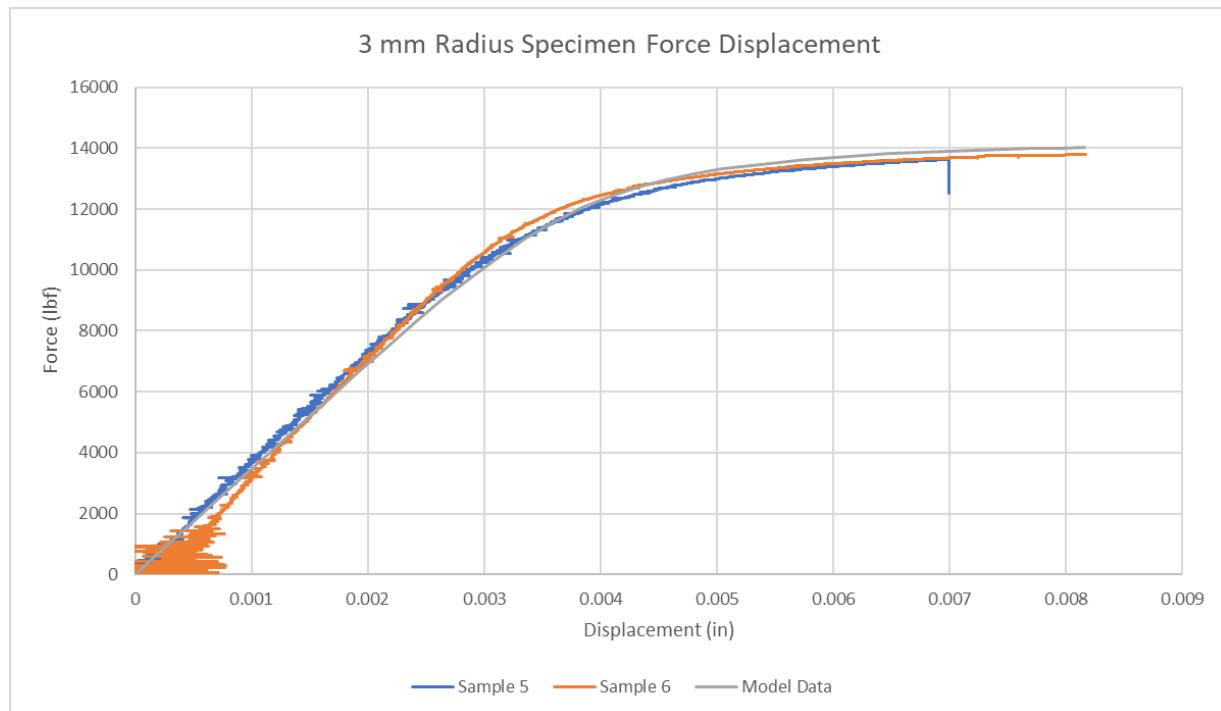
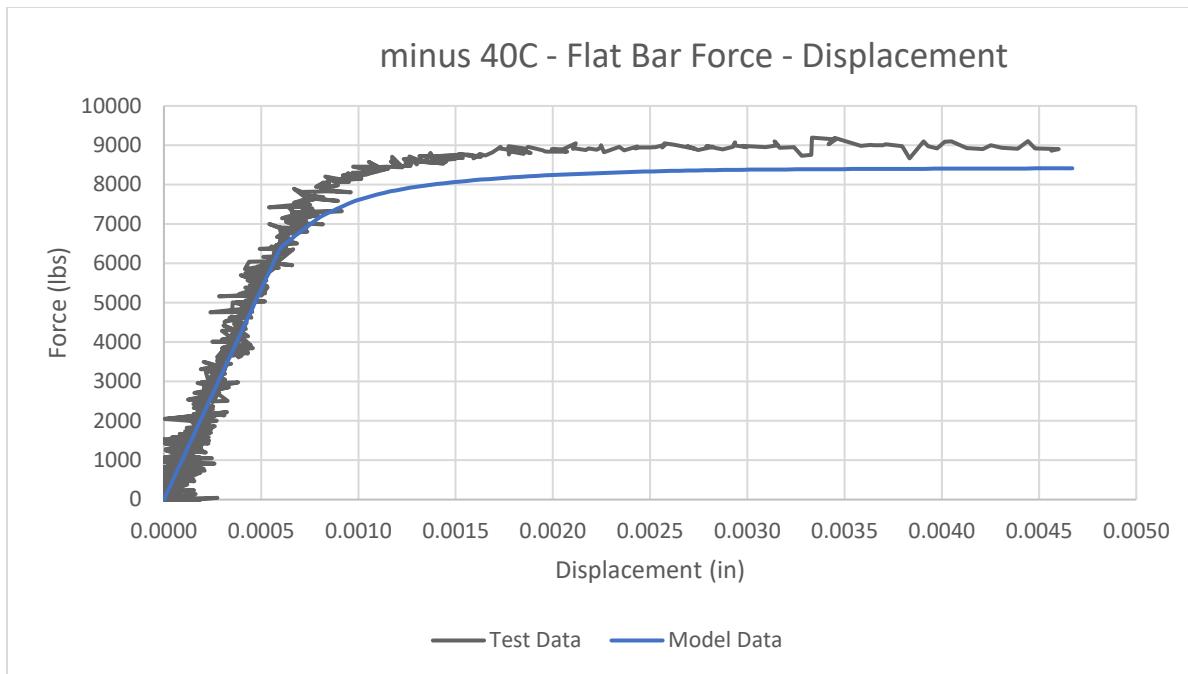


Figure 8. Final true stress-strain curve for -40°C along with the point used to in the MATLAB code.


The stress-strain curve in Figure 8 was incorporated into finite element models for each of the remaining test specimens. The force-displacement curves from each specimen along with the finite element results are shown in Figure 9-12 for the -40°C specimens. These curves show good agreement between the finite element models and the test data, particularly the axisymmetric models ($\xi = 1$). The flat bar and shear specimen show opposite hardening behaviors. The flat bar specimen is slightly harder than the model (high hardening and peak load). While the shear specimen shows a lower peak load and hardening curve. The displacements at fracture for each test specimen will be used to determine the final state of the material using the finite element model.

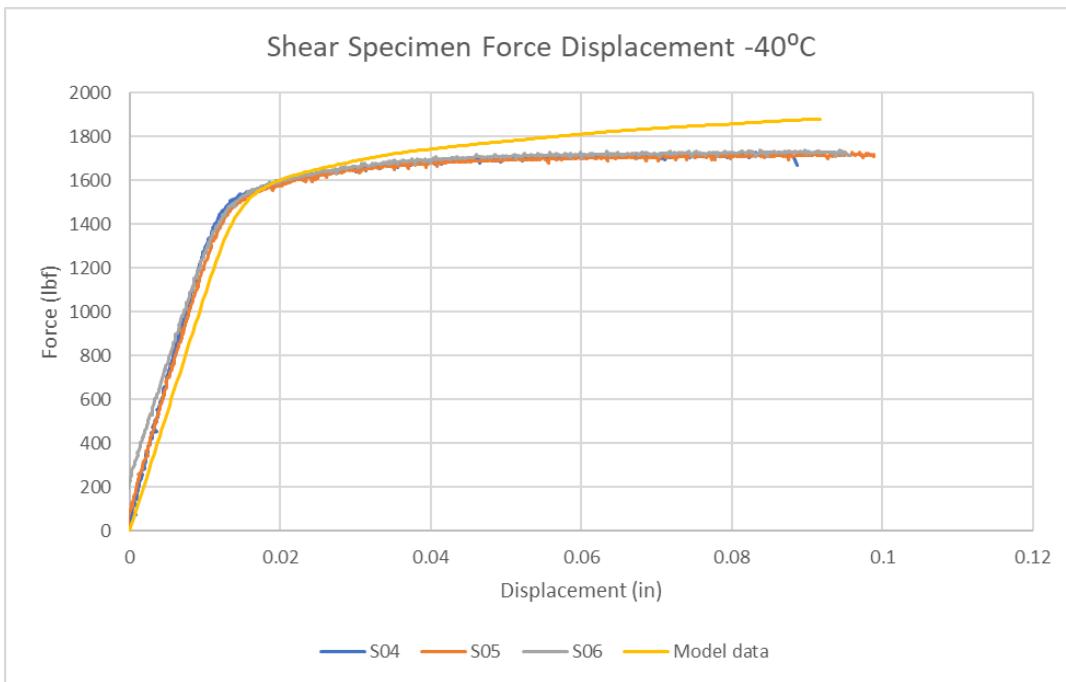

Figure 9. Comparison of the -40°C R9 test specimen and model data

Figure 10. Comparison of the -40°C R3 specimen tests and model data

Figure 11. Comparison of the -40°C flat bar specimen test and model data

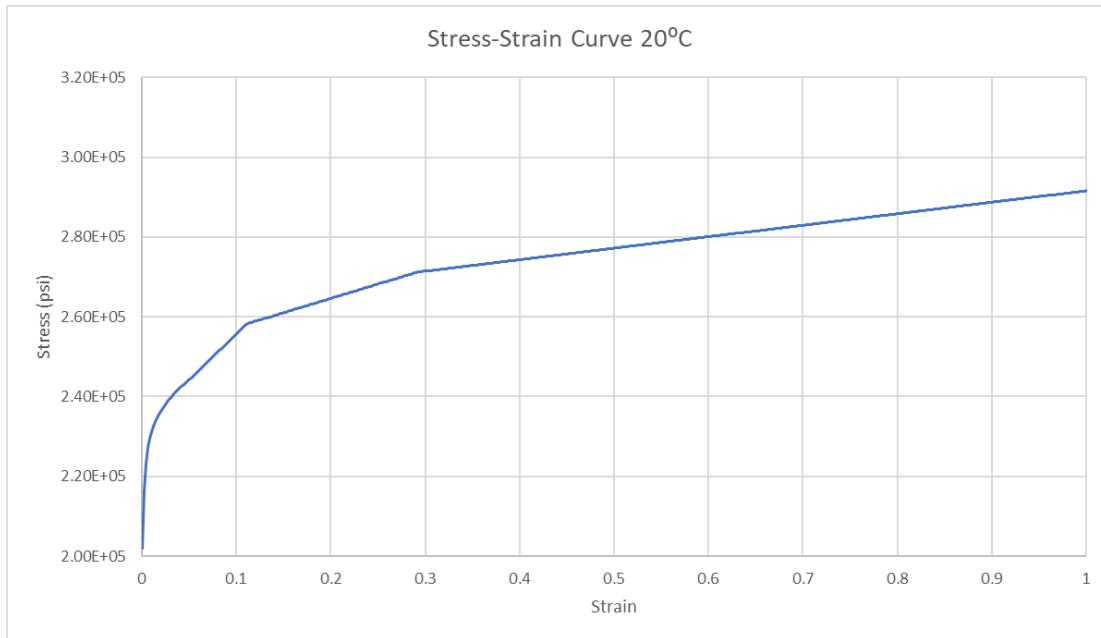
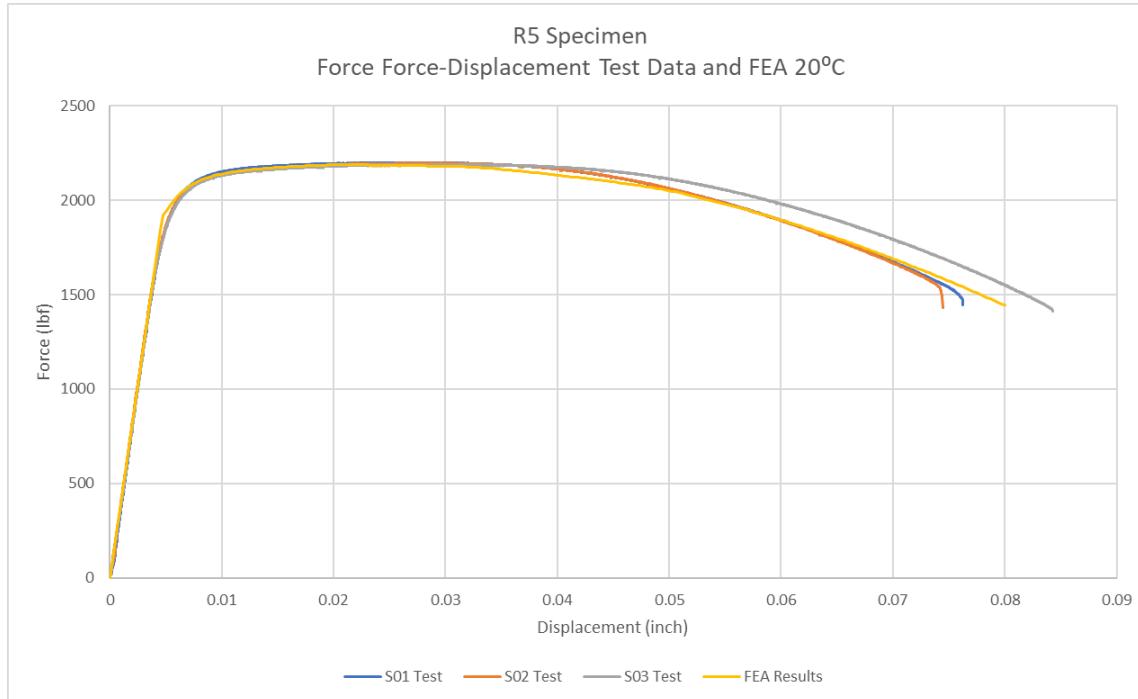
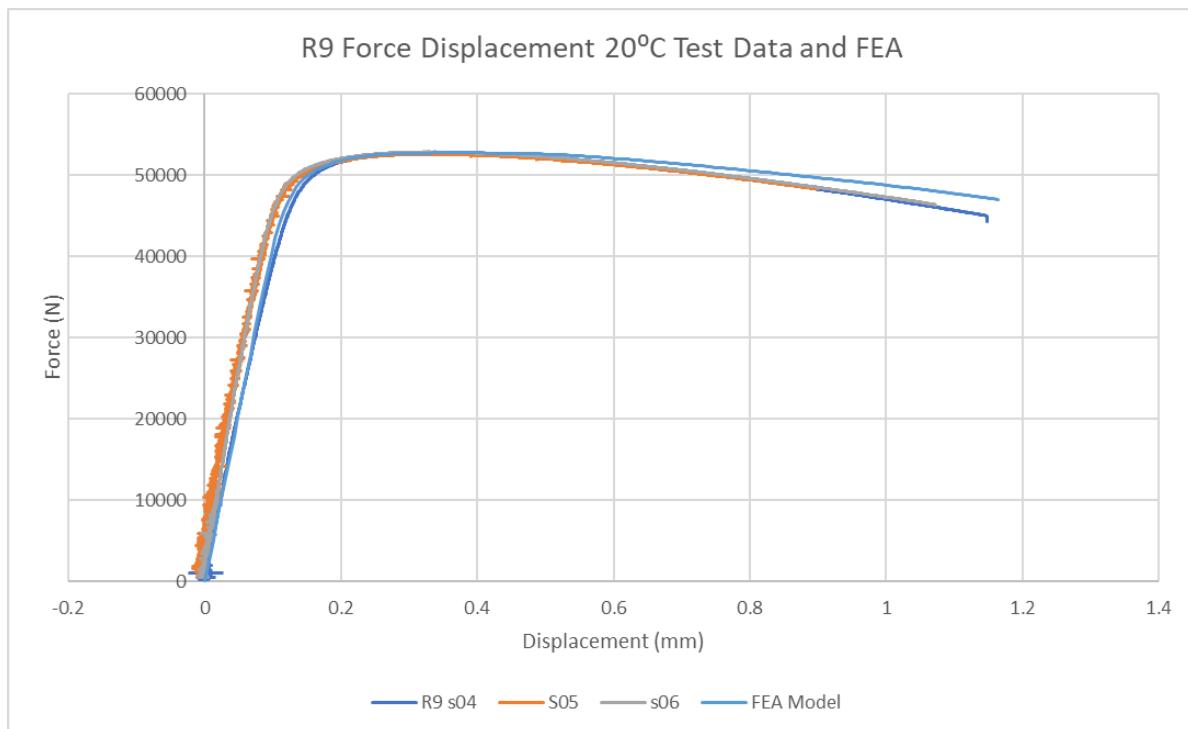
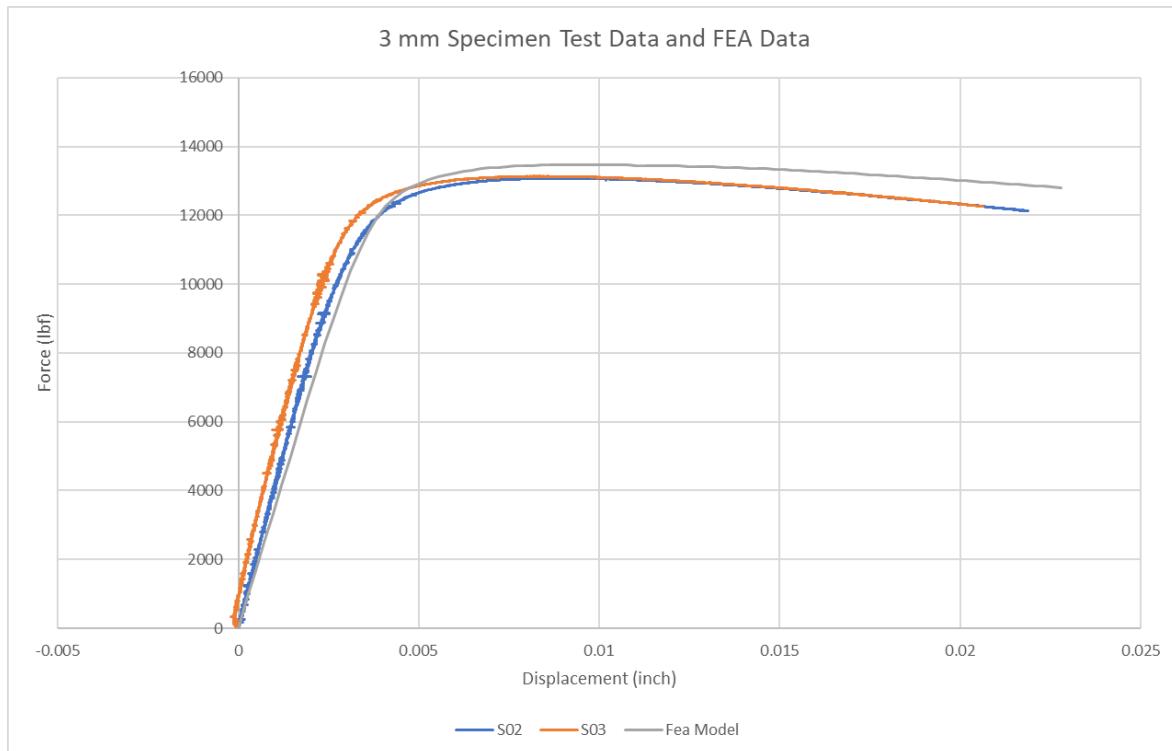


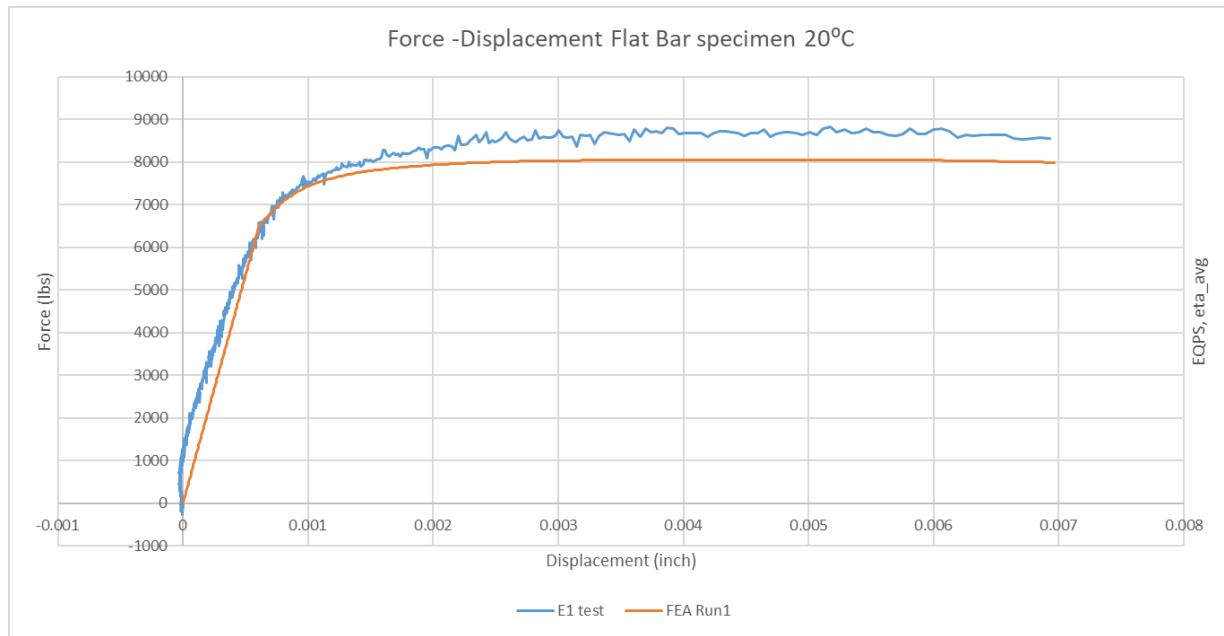
Figure 12. Comparison of the -40°C shear specimen tests and model data


4.2 Specimens 20°C

Using the same MATLAB algorithm and the data from the three 20°C R5 tensile tests, the stress-strain curve shown in Figure 13 was developed. Using this curve, the analyses of the five


specimens tested at 20°C were performed. The results of these analyses are compared to their respective test specimens in Figures 14 –17. As in the lower temperature test, the axisymmetric models show good agreement with the test data. The flat bar and shear specimens show the same behavior as the low temperature specimens with the flat bar specimen having a higher load profile and the shear specimen a lower load profile than their respective finite element models.


Figure 13. Stress-Strain curve from 20°C R5 Specimens


Figure 14. Comparison of 20°C R5 test and model data.

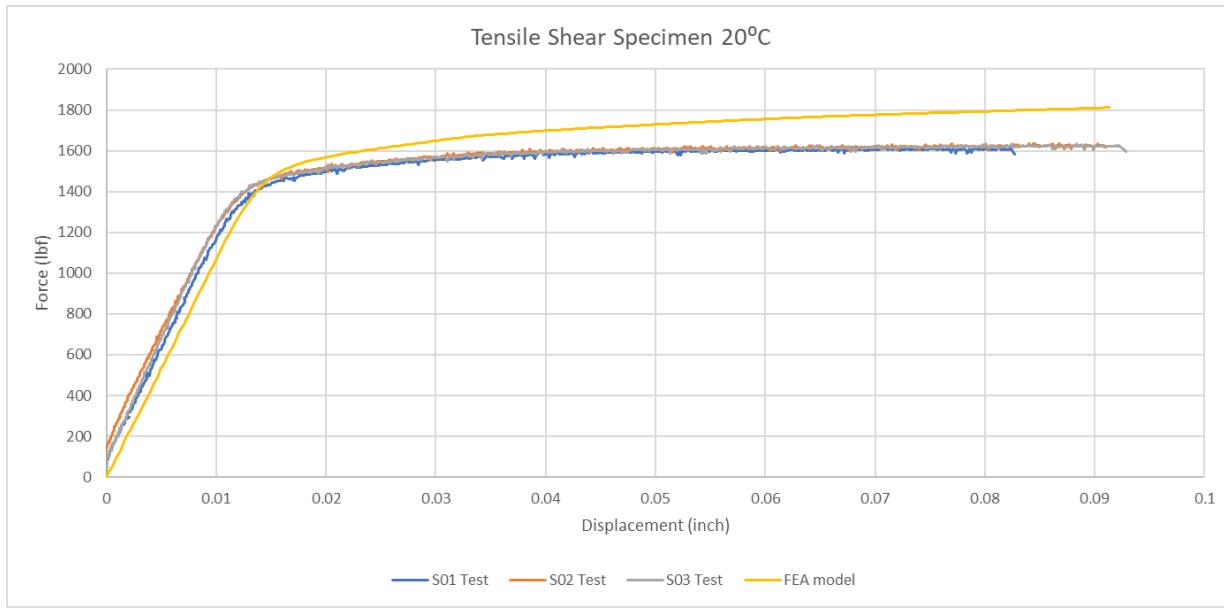

Figure 15. Comparison of the 20°C R9 test specimen and model data

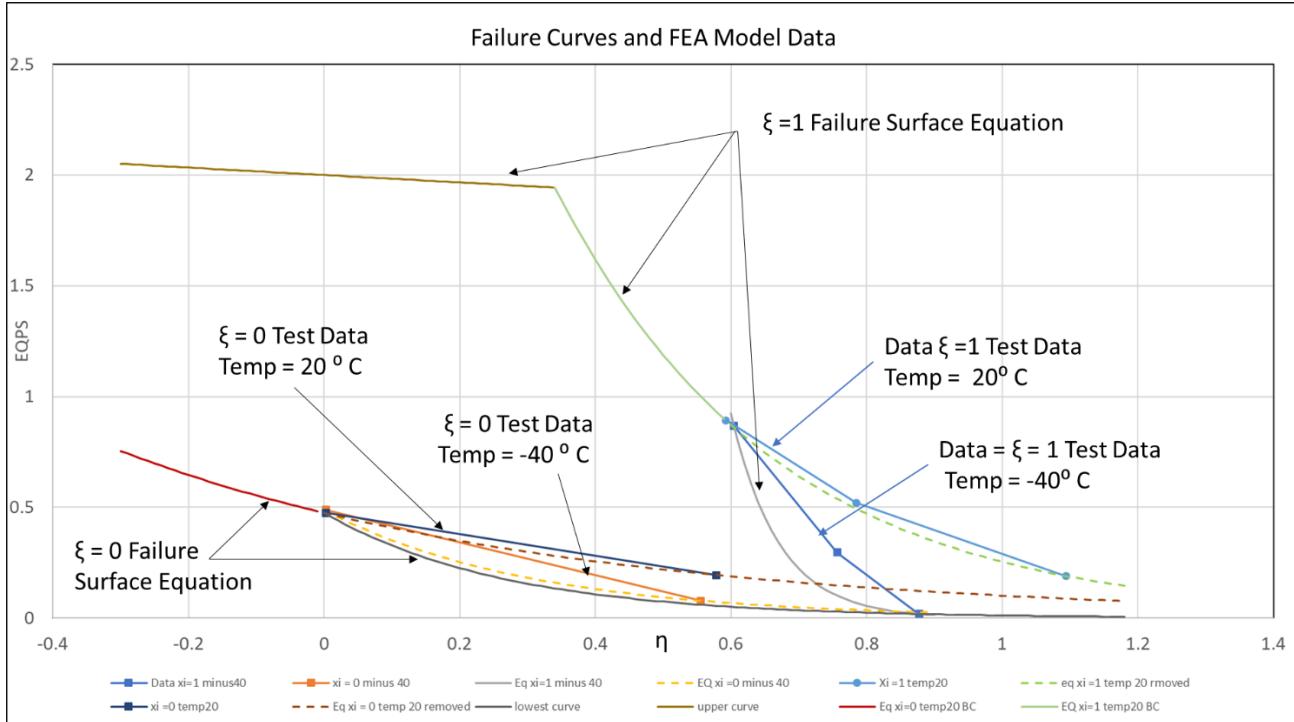
Figure 16. Comparison of the 20°C R3 specimen tests and model data

Figure 17 Comparison of the 20°C flat bar specimen test and model data

Figure 18. Comparison of the -40°C shear specimen tests and model data

5. DETERMINING THE FAILURE SURFACE

The data from the finite element models were used to determine the stress state in the specimens at fracture. The peak plastic strain and the corresponding values of the average stress triaxiality (η) and Lode angle parameter (ξ) were determined when the displacement of the finite element model matched the lowest failure displacement of a corresponding test specimen. Those values are given in Table 2.


Table 2. Test specimen failure data calculated using finite element models

Specimen	Temperature	EQPS	η	ξ
R5	-40°C	0.867283	0.604568	1
R9	-40°C	0.295864	0.75659	1
R3	-40°C	0.01821	0.877645	1
Flat bar	-40°C	0.07844	0.555739	0
Shear Specimen	-40°C	0.488043	0.003294	0
R5	20°C	0.892369	0.592633	1
R9	20°C	0.520324	0.784654	1
R3	20°C	0.189731	1.09467	1
Flat bar	20°C	0.194358	0.578298	0
Shear Specimen	20°C	0.474617	0.003082	0

Using the values from Table 2, the coefficients for Equation (12) and Equation (12) can be calculated. The values for these parameters are given in Table 3.

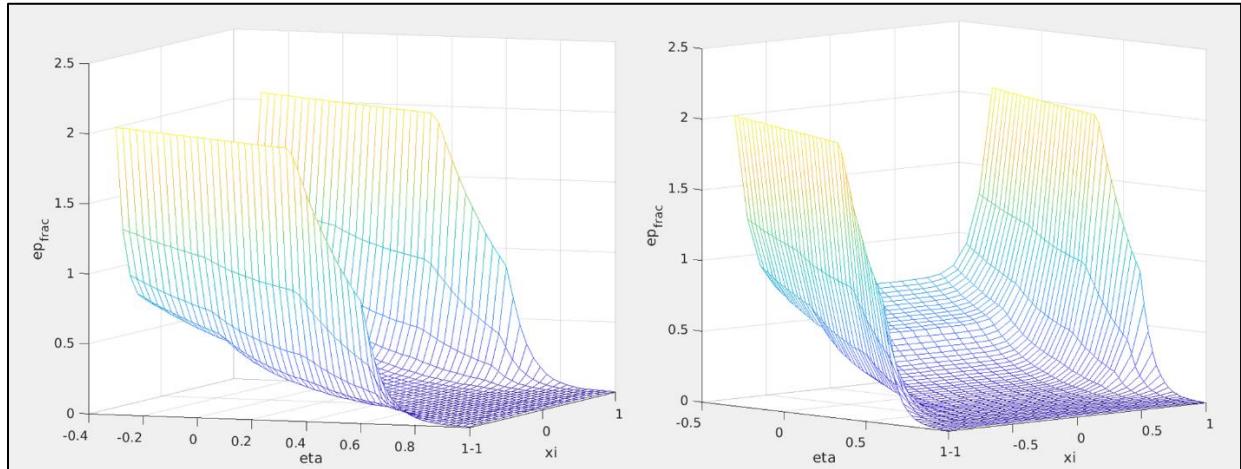
Table 3. Equation parameters calculated from finite element data

Specimen	Temperature	Constant	Value
R5 and R3	-40°C	C2	14.148
R5 and R3	-40°C	C1	4495.605
Flat bar and shear	-40°C	C3	0.488
Flat bar and Shear	-40°C	C4	3.289
R5 and R3	20°C	C2	3.084
R5 and R3	20°C	C1	5.550
Flat bar and shear	20°C	C3	0.475
Flat bar and shear	20°C	C4	1.544

Figure 19. Plot of failure data from Table 1 and Table 2.

Figure 19 is a 2-D plot of Equations 12 and 13 using the constants from Table 3 along with the FEA data from Table 2. The plot shows the upper and lower bounding curve for $\xi = 1$ and $\xi = 0$. The $\xi = 1$ failure surface is defined by the gray, green, and brown curves. The gray curve is defined by the coefficients C_1 and C_2 for the -40°C , R5 and 3mm radius specimens. The dashed green curve is defined using the coefficients C_1 and the C_2 for the R5, and 3mm radius 20°C specimen. The solid green curve is an extension of the green dashed curve.

The -40°C and 20°C R5 specimens failed at very similar values of EQPS and η when $\eta < 0.6$. However, there is a very sharp drop in the failure strain of the -40°C specimen at value of $\eta > 0.6$. Since the exponential equation approximation uses only two coefficients, the equation derived using the data from the -40°C R5 and 3mm specimens has a steep negative slope to the right of the point $\eta = 0.6$ (gray curve). While this curve goes through the R5 and 3mm radius data points, it results in a substantial difference in the failure strain between the -40°C 9mm test data point and the equation approximation. For the 9mm specimen, the equation value is approximately 1/3 of the test specimen failure strain. If an exponential least square fit was used with all three points, the resulting curve would be above the 3 mm data point and not properly capture that failure strain. Therefore, the two endpoints are used (R5, 3mm) and this results in a more conservative approximation of failure for in the range $0.6 < \eta < 0.87$.


The failure strains for the 20°C R5, 9mm radius, and 3mm radius specimens decreases at a lower rate with increased values of the stress triaxiality. This results in a lower slope of the curve and a better approximation of the test data by the exponential function (green dashed curve). For values of $\eta < 0.6$ the lower slope of the 20°C curve results in lower estimates for the failure

strain and therefore is a more conservative approximation for the failure surface. Thus, the solid green curve is taken as the upper limit of failure for $\xi = 1$ for values of $\eta < 0.6$. The brown curve for the $\xi = 1$ failure surface was added to limit the peak values for plotting.

The $\xi = 0$ failure surface is defined by the black, and red curves. The 20°C and -40°C curves have similar failure strains in simple shear ($\eta = 0$). There is a drop in the -40°C curve compared to the 20°C curve for values of $\eta > 0$. To produce the most conservative curve, the lower black curve is derived using the points from the -40°C shear specimen and the -40°C, 3mm radius specimen. Similar to the $\xi = 1$ failure surface, the failure surface for values of $\eta < 0$ follow the lower slope, 20°C curve (red curve).

Using Equation 14, a 3-D plot of the failure surface is shown in Figure 20. The hardening parameter $1/n$ was determined by fitting an exponential curve to the curve in Figure 8. The value of m was set equal to 8. The failure surface shows a very steep increase in failure strain at the limit of $\xi = \pm 1$. There are also very small failure strains at high stress triaxialities independent of the Lode parameter.

The integration of the stress state can be carried out during the analysis and element stress state can be compared to the derived failure surface to determine element failure or the failure surface can be used as a post processing failure check to prove design robustness.

Figure 20. 3-D plot of failure surface.

6. CONCLUSION

A failure surface was developed for PH13-8Mo H950 steel using the Xue-Wierzbicki failure model based on equivalent plastic strain, stress triaxiality, and Lode angle. Five types of tensile specimens were tested with Lode angle parameters of 1 and 0 at -40°C and 20°C. Finite element models of the test specimens were used to determine the plastic strain, average stress triaxiality, and the average value of the Lode parameter at fracture. These parameters were then used to define the failure surface using the Xue-Wierzbicki form of the failure function. The failure surface can be used during the analysis to determine element death or as a post processing check.

REFERENCES

- [1] Wierzbicki, T., et al., Calibration and evaluation of seven fracture models. *International Journal of Mechanical Sciences*, 2005. 47(4-5): p. 719-743
- [2] Noell P.J., Pathare P.R., Casias Z., Huber T., Laing J., and Carroll J.D., Mechanical testing of PH13-8Mo H950 Steel for Xue-Wierzbicki Fracture Criterion Determination at 20° C and -40° C. Tech Rept. SAND2020-5906, Sandia National Laboratories.
- [3] International, A., Standard Test Methods for Tension Testing of Metallic Materials. Standard Designation E8 -16, ASTM International, West Conshohocken, PA, 2016.
- [4] Bridgman, P.W. (1964), “Studies in Large Plastic Flow and Fracture,” Harvard University Press, Cambridge, Massachusetts.
- [5] Johnson, G.R., and Cook, W.H., Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperature and Pressures, *Engineering Fracture Mechanics*, 21, pp.31-48, 1985.
- [6] Bao, Y., Prediction of Ductile Crack Formation in Uncracked Bodies, Report 100, 2003, Impact & Crash Worthiness Laboratory, MIT, Cambridge, MA.
- [7] Bao, Y. and Weirzbicki, T., A new model of metal plasticity and fracture with pressure and Lode dependence, *International Journal of Plasticity*, 24, pp1071-1096, 2008.
- [8] Wierzbicki, T. and Xue, L., On the effect of the third invariant of the stress deviator on ductile fracture, Report 136, 2005, Impact & Crash Worthiness Laboratory, MIT, Cambridge, MA.
- [9] Xue, Liang, Ductile fracture modeling – Theory, experimental investigation and numerical verification, Massachusetts Institute of Technology, 2007
- [10] SIERRA Solid Mechanics, Sierra/SolidMechanics 4.58 User’s Guide, Technical Report, Sandia National Laboratories, Albuquerque, NM 87185-0380, Nov. 2020.

APPENDIX A. SPECIMEN DRAWINGS

NOTES:

- GENERAL REQUIREMENTS PER P990000.
- MATERIAL: PH 13-8 STAINLESS STEEL.
(AS PROVOKED)
- DIA. OF THE PROVOKED SECTION SHALL BE SMALLER
AT THE CENTER THAN THE SURFACE. THE SURFACE SHALL NOT
EXCEED 1/8 IN. IN DIAMETER AT THE CENTER.
- SURFACE FINISH IN SECTION SHALL NOT BE
ROUGHER THAN 32 AA AND SHALL BE FREE FROM SCRATCHES,
CUTS, AND DENTS.
- QTY: 16 TOTAL.
167 MM ALREADY TO LENGTH OF RAW MATERIAL.
(SEE SHEET 2 FOR ORIENTATION)
- TOLERANCE: +/- .005 INCHES UNLESS STATED OTHERWISE
- SAMPLE DESIGNED IN ACCORDANCE WITH SPEC P94000_M1.UNC

4 UNCLASSIFIED 3 2 1

5. 49 TOTAL.
49 MM ALREADY TO LENGTH OF RAW MATERIAL.
(SEE SHEET 2 FOR ORIENTATION)

6. 16 TOTAL.
167 MM ALREADY TO LENGTH OF RAW MATERIAL.
(SEE SHEET 2 FOR ORIENTATION)

7. SAMPLE DESIGNED IN ACCORDANCE WITH SPEC P94000_M1.UNC

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

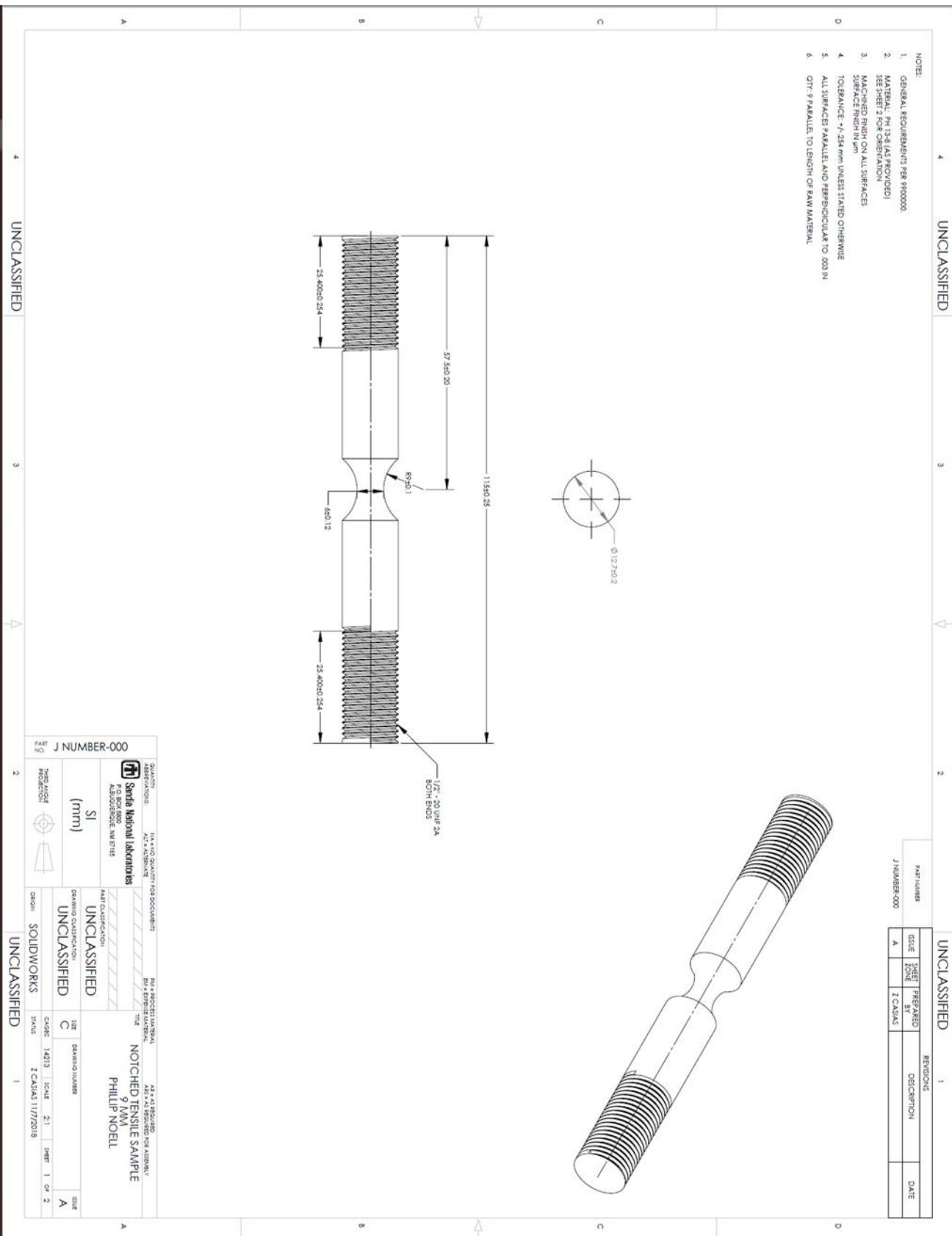
1433

1434

1435

1436

1437


1438

1439

1440

1441

144

4	UNCLASSIFIED	3	2	1
UNCLASSIFIED				
D				
NOTES:				
1. GENERAL REQUIREMENTS PER P000000.				
2. MATERIAL: PH 138 (AS PROVIDED) SEE SHEET 1 FOR ORIENTATION				
3. MACHINED FINISH ON ALL SURFACES SURFACE FINISH IN µm				
4. TOLERANCE: +/- 254 µm UNLESS STATED OTHERWISE				
5. ALL SURFACES PARALLEL AND PERPENDICULAR TO 300 IN (SEE SHEET 2)				
6. QTY: 9 PARALLEL TO LENGTH OF RAW MATERIAL				
SEE SHEET 2				
A				
B				
C				
D				
E				
F				
G				
H				
I				
J				
K				
L				
M				
N				
O				
P				
Q				
R				
S				
T				
U				
V				
W				
X				
Y				
Z				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				
KK				
LL				
MM				
NN				
OO				
PP				
QQ				
RR				
SS				
TT				
UU				
VV				
WW				
XX				
YY				
ZZ				
AA				
BB				
CC				
DD				
EE				
FF				
GG				
HH				
II				
JJ				

DISTRIBUTION

Email—Internal

Name	Org.	Sandia Email Address
D. J. Ammerman	8850	djammer@sandia.gov
G. J. Flores	8854	gjflore@sandia.gov
R. J. Kalan	8854	rjkalan@sandia.gov
S. E. Sanborn	8854	sesanbo@sandia.gov
Technical Library	01977	sanddocs@sandia.gov

This page left blank

This page left blank

**Sandia
National
Laboratories**

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.