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ABSTRACT

The ability to model ductile rupture in metal parts is critical in highly stressed applications. The
initiation of a ductile fracture is a function of the plastic strain, the stress state, and stress
history. This paper develops a ductile rupture failure surface for PH13-8Mo H950 steel using
the Xue-Wierzbicki failure model. The model is developed using data from five tensile
specimen tests conducted at -40°C and 20°C. The specimens are designed to cover a Lode
parameter range of 0 and 1 with a stress triaxiality range from zero in pure shear to
approximately 1.0 in tension. The failure surface can be implemented directly into the finite
element code or used as a post processing check.
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1. INTRODUCTION

Failure of metal parts by ductile rupture in highly stressed regions during energy limiting events
is of concern in many engineering applications, Modeling the initiation of fracture under these
conditions is essential to their safe design. This document discusses the development of a ductile
rupture failure surface for PH13-8Mo H950 steel using the Xue-Wierzbicki failure model [1].
Five tensile test specimen types were used to generate the fracture data for the development of
this model. The specimen types are shown in Figure 1 and drawings for the five types are
presented in Appendix A. The specimens are designed to cover a Lode parameter range of 0 and
1 with a stress triaxiality range from zero in pure shear to approximately 1.0 in tension. Details
of the specimen testing are discussed in Reference [2].

Figure 1. The test specimens are left to right: standard tensile (R5), flat groove, 9 mm
notch, 3 mm notch, and shear specimens

Data for each specimen was obtained at -40°C and 20°C. The standard tensile test specimen
meets the requirements of a RS tensile bars from ASTM specification E8-16 [3] and will be
referred to as the RS specimen. The engineering stress-strain data from the RS specimen is used
to develop the true strain-curve. This curve is incorporated in the hydra plasticity model used in
the finite element analyses. Finite element models were developed for each specimen and are
used to determine the stress state and plastic strain at failure. Using the calculated stress state, a
failure surface based on the Lode angle, the stress triaxiality, and the plastic strain is developed.



2. REVIEW OF DUCTILE RUPTURE AND THE XUE-WIERBICKI MODEL

The fracture process of ductile materials is known to be caused by the nucleation of voids at
stress sites where compatibility of deformation is difficult such as inclusions and second-phase
particles. This is followed by void growth and void coalescence. Coalescence occurs by
elongation of the voids and elongation of the bridges of material between the voids. This leads to
the development of a fracture surface.

Bridgman performed the seminal work on the effect of hydrostatic pressure on ductile rupture in
the 1940’s and 1950’s [4]. He conducted over 350 tensile tests on 20 different types of steel of
different heat treatments. These experiments show that the strain to fracture is an increasing
function of the superposed hydrostatic pressure. This work was further developed by Johnson
and Cook [5], who developed fracture models for OFHC copper, Armco iron, and 4340 steel
using notched tensile specimens. Their model contained three primary terms; one with a
dimensionless strain rate, one for dimensionless temperature and one with a dimensionless

. 0; . — .
pressure-stress ratio n = 7’" where o, is the average of the three normal stresses and & is the

von Mises equivalent stress. The pressure-stress ratio is commonly referred to as the stress
triaxiality. Figure 2 shows a plot of the data developed by Johnson and Cook and the
corresponding curves developed in their failure models.
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Figure 2. Plastic strain vs. stress triaxiality from Johnson and Cook [4].
Bao [6] developed a new criterion for ductile crack formation. This work is based on extensive

testing on 2024-T351 aluminum. He developed a failure locus shown in Figure 3, in stress
triaxiality-equivalent strain space, based on the calculating the average stress triaxiality as

(G_m) 1 (¥ 0 ()

de. (1)

Where ¢ is the equivalent strain and & is the equivalent strain at fracture.
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Figure 3. Stress failure locus of A12024-T351 developed from Bao|5]

The anomalous torsional data point for 4340 steel in Figure 2 and the dip in the experimental
data for aluminum shown in Figure 3, indicates that the failure strain in simple shear can be
lower than the dimensionless pressure-stress ratio, 7 would indicate. This change can be
accounted for by considering the Lode angle dependency of the loaded state [8][9].

The principal stress coordinates (g, 0, , 03) can be used to characterize stress space. For isotropic
materials the independence of the ordering of the three principal stresses provide a 120°
symmetry about the [1 1 1] (hydrostatic) direction. The Lode cylindrical coordinates offer an
alternative cylindrical system [r, 0, z] for which the z- axis points along the hydrostatic <111>
axis and [r, 0] are polar coordinates on any constant pressure (z) cross-section (Figure 4 ).

As shown in Figure 4, the cylindrical Lode coordinates may be determined from the stress
invariants I1, J>, and J3. Specifically,

T @)

V3 3)

the Lode angle parameter ¢ is related to the azimuthal angle 6 defined in the octahedral plane by

¢ =cos(30) = % 4)

Where the invariants are a mixture of the Cauchy stress ¢ , and the stress invariant s, and are
given by

I, = 04 +0,+ 03 (5)



I, = %[tr(az) - % tr(o?) = %tr(s ) (6)

J3 = det(s) (7)
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Figure 4 Lode parameter in principal stress space

In the Xue-Wierzbicki ductile failure model [8], the failure strain is defined by average values of
the stress triaxiality and the Lode angle parameter as:

5f = F(navg» favg) )
1 (¥
Navg = g . n(e)de (10)
1 (¥
Eavg = g fo $(e)de (11)
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Where ¢ is the total current plastic strain, and & is the plastic strain at failure.

In the following discussion, average values of § and n will be used and the subscript “avg” will
be dropped for the equations.

In stress triaxiality space, the fracture strain is bounded by the two curves ¢ = 1 and § = 0.
Experimental evidence [6] [8] (include this work) has shown that the stress state with & = 1
represent the condition for the highest ductility, while the stress state with ¢ = 0 represent the
least ductile state. This is shown schematically in Figure 5 which shows the fracture strain as a
function of 1 for the two bounding values of &.

Ef

Upper bound, §=1

Lower bound, £=0

n

Figure 5 Schematic showing the upper and lower bound of failure strain dependence on the
lode angle parameter

An exponential function is used to represent the two bounding curves,

Er= Cre 1, &=1 (12)
Er= C3e” 1, £=0. (13)
Weirzibicki and Xue [1] assume that a family of elliptical functions can be used to describe the

drop in fracture strain between the two limiting curves. This results in the following function
which describes the failure strain in 3-D space {e},f ,77}.

& =F( &) = Cre —[(Ce™" = Cze™“M](1 - §™) (14)

Where m is the even integer closest to //n where n is the hardening exponent of the true stress
strain curve.

11



3. DEVELOPMENT OF THE TRUE STRESS-STRAIN CURVE

The data from the RS tensile specimens were used to develop an engineering stress-strain curve
for the PH13-8Mo H950 steel. Six tests were run on each of the test specimens. Three specimens
were tested at -40°C and three were tested at room temperature (20°C). The RS engineering

stress-strain data for -40°C is shown in Figure 6.

R5 Specimen
Engineering Stress Strain Data -40 °C

300000
250000

200000

150000

Stress (psi)

100000 /

50000 1 f
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0.12

0.14

Figure 6. Engineering stress-strain data for RS tensile specimens tested at -40°C

A MATLAB script was written to develop the true stress-strain curve from the engineering
stresss- strain data. The proportional limit was used in place of the yield stress because of the
large gradual slope change from the initial linear elastic region of the curve to the ultimate stress
peak. Using the proprotion limit versus the offset yield stress produces a true stress-strain curve
that is more conservative and one that will result in higher plastic strains. Data for the three RS

test specimens derived using the MATLAB script are shown in Table 1.

Table 1 Test and calculated data from three -40°C tests

Specimen | Reduction Final Proportional Prop Modulus uTsS uTsS Final
in Area Area (in?) Limit (psi) Limit (psi) (psi) Strain Plastic

strain Strain
Sol 0.601 0.003813 192894 0.007522 | 26271321 | 238390 0.044 0.9176
So2 0.516 0.00465 194618 0.007635 | 25976753 | 237463 | 0.0448 0.7263
S03 0.487 0.00493 181094 0.006653 | 27290268 | 237449 | 0.0473 0.6679

12



4, MODELING OF THE FRACTURE SPECIMENS

The test specimens were modeled using Sandia National Laboratories’ Sierra-Presto/Adagio
finite element code [10]. This is a Lagrangian, three-dimensional, implicit finite element code.
The finite element model uses the Hydra Plasticity material model. This model uses the Hill
yield surface and allows for anisotropic behavior, although isotropic hardening was assumed in
the analyses. The model uses a tabular definition of the material’s hardening behavior, with
dependence on equivalent plastic strain and optional dependence on temperature and/or plastic
strain rate. The Lode angle parameter, ¢, and the stress triaxiality 1, are determined as part of the
Hyper Plasticity model. Integration functions were added to the input file to calculate the average
values of the parameters given in Equation (10 and 11 at each time step.

4.1 Specimens -40°C
Engineering stress-strain curves for each of the three (-40°C) RS test specimens were run using
the R5 FEA model. The force-displacement curves from the three models along with the FEA
model results are shown in Figure 7. This shows very good agreement between the finite

element models and the test specimen curves. This indicates that the model is capturing the
correct necking and plastic deformation (reduction in area) of the tensile specimens.

R5 Test and Model Force Displacement
2500
2000

1500 o

Force (Ibf)

[
(=]
(=]
(=]

500

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Displacement (in)

SolTest Sol model So2 Test So2 Madel S03 Test So3 Model

Figure 7 Comparison of -40°C RS test and model data

Using these results , the -40°C true stress-strain curve shown in Figure 8 was chosen to model

the PH13-8Mo H950 material. The MATLAB algoritm determines the slope of the curve
using the six control points shown in Red.
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Figure 8. Final true stress-strain curve for -40°C along with the point used to in the
MATLAB code.

The stress-strain curve in Figure 8 was incorporated into finite element models for each of the
remaining test specimens. The force-displacement curves from each specimen along with the
finite element results are shown in Figure 9-12 for the -40°C specimens. These curves show good
agreement between the finite element models and the test data, particularly the axisymmetric
models (§ = 1). The flat bar and shear specimen show opposite hardening behaviors. The flat bar
specimen is slightly harder than the model (high hardening and peak load). While the shear
specimen shows a lower peak load and hardening curve. The displacements at fracture for each
test specimen will be used to determine the final state of the material using the finite element

model.
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9 mm Radius Specimen Force Displacement
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Figure 9. Comparison of the -40°C R9 test specimen and model data
3 mm Radius Specimen Force Displacement
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Figure 10. Comparison of the -40°C R3 specimen tests and model data
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minus 40C - Flat Bar Force - Displacement
10000
9000
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Figure 11. Comparison of the -40°C flat bar specimen test and model data

Shear Specimen Force Displacement -40°C
2000

1800

1600 _ 4,,.--— :

-~
1400
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[=]

0 0.02 0.04 0.06 0.08 0.1 0.12
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Figure 12. Comparison of the -40°C shear specimen tests and model data

4.2 Specimens 20°C

Using the same MATLAB algorithm and the data from the three 20°C RS tensile tests, the stress-
strain curve shown in Figure 13 was developed. Using this curve, the analyses of the five
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specimens tested at 20°C were performed. The results of these analyses are compared to their
respective test specimens in Figures 14 —17. As in the lower temperature test, the axisymmetric
models show good agreement with the test data. The flat bar and shear specimens show the same
behavior as the low temperature specimens with the flat bar specimen having a higher load
profile and the shear specimen a lower load profile than their respective finite element models.

Stress-Strain Curve 20°C

3.20E+05
3.00E+05
2.80E+05

2.60E+05

Stress (psi)

2.40E+05
2.20E+05

2.00E+05
0 01 02 03 04 05 0.6 07 0.8 09 1

Strain

Figure 13. Stress-Strain curve from 20°C RS Specimens

R5 Specimen
Force Force-Displacement Test Data and FEA 20°C

2500

e

2000 y ——
1500 f \

1000
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500

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Displacement {inch)

—— 501 Test 502 Test 503 Test FEA Results

Figure 14. Comparison of 20°C RS test and model data.
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R9 Force Displacement 20°C Test Data and FEA
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Figure 15. Comparison of the 20°C R9 test specimen and model data
3 mm Specimen Test Data and FEA Data
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Figure 16. Comparison of the 20°C R3 specimen tests and model data
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Figure 17 Comparison of the 20°C flat bar specimen test and model data

Tensile Shear Specimen 20°C
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Figure 18. Comparison of the -40°C shear specimen tests and model data
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5. DETERMINING THE FAILURE SURFACE

The data from the finite element models were used to determine the stress state in the specimens
at fracture. The peak plastic strain and the corresponding values of the average stress triaxiality
(n) and Lode angle parameter () were determined when the displacement of the finite element
model matched the lowest failure displacement of a corresponding test specimen, Those values
are given in Table 2.

Table 2. Test specimen failure data calculated using finite element models

Specimen Temperature EQPS n &
RS -40°C 0.867283 0.604568 1

R9 -40°C 0.295864 0.75659 1

R3 -40°C 0.01821 0.877645 1

Flat bar -40°C 0.07844 0.555739 0
Shear Specimen -40°C 0.488043 0.003294 0
R5 20°C 0.892369 0.592633 1

R9 20°C 0.520324 0.784654 1

R3 20°C 0.189731 1.09467 1

Flat bar 20°C 0.194358 0.578298 0
Shear Specimen 20°C 0.474617 0.003082 0

Using the values from Table 2, the coefficients for Equation (12) and Equation (12) can be
calculated. The values for these parameters are given in Table 3.

Table 3. Equation parameters calculated from finite element data

Specimen Temperature Constant Value
R5 and R3 -40°C C2 14.148
R5 and R3 -40°C C1 4495.605
Flat bar and shear -40°C C3 0.488
Flat bar and Shear -40°C C4 3.289
R5 and R3 20°C C2 3.084
R5 and R3 20°C Cl 5.550
Flat bar and shear 20°C C3 0.475
Flat bar and shear 20°C C4 1.544

20



Failure Curves and FEA Model Data
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Figure 19. Plot of failure data from Table 1 and Table 2.

Figure 19 is a 2-D plot of Equations 12 and 13 using the constants from Table 3 along with the
FEA data from Table 2. The plot shows the upper and lower bounding curve for § = 1 and ¢ =
0. The ¢ = 1 failure surface is defined by the gray, green, and brown curves. The gray curve is
defined by the coefficients C; and C; for the -40°C, R5 and 3mm radius specimens. The dashed
green curve is defined using the coefficients C; and the C: for the R5, and 3mm radius 20°C
specimen. The solid green curve is an extension of the green dashed curve.

The -40°C and 20°C R5 specimens failed at very similar values of EQPS and n when n < 0.6.
However, there is a very sharp drop in the failure strain of the -40°C specimen at value of n >
0.6. Since the exponential equation approximation uses only two coefficients, the equation
derived using the data from the -40°C R5 and 3mm specimens has a steep negative slope to the
right of the point 7 = 0.6 (gray curve). While this curve goes through the R5 and 3mm radius
data points, it results in a substantial difference in the failure strain between the -40°C 9mm test
data point and the equation approximation. For the 9mm specimen, the equation value is
approximately 1/3 of the test specimen failure strain. If an exponential least square fit was used
with all three points, the resulting curve would be above the 3 mm data point and not properly
capture that failure strain. Therefore, the two endpoints are used (RS, 3mm) and this results in a
more conservation approximation of failure for in the range 0.6 < 7n < 0.87.

The failure strains for the 20°C R5, 9mm radius, and 3mm radius specimens decreases at a lower
rate with increased values of the stress triaxiality This results in a lower slope of the curve and a
better approximation of the test data by the exponential function (green dashed curve). For
values of n < 0.6 the lower slope of the 20°C curve results in lower estimates for the failure
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strain and therefore is a more conservative approximation for the failure surface. Thus, the solid
green curve is taken as the upper limit of failure for £ = 1 for values of n < 0.6. The brown
curve for the £ = 1 failure surface was added to limit the peak values for plotting.

The & = 0 failure surface is defined by the black, and red curves. The 20°C and -40°C curves
have similar failure strains in simple shear (n = 0). There is a drop in the -40°C curve compared
to the 20°C curve for values of n > 0. To produce the most conservative curve, the lower black
curve is derived using the points from the -40°C shear specimen and the -40°C, 3mm radius
specimen. Similar to the £ = 1 failure surface, the failure surface for values of n < 0 follow the
lower slope, 20°C curve (red curve).

Using Equation 14, a 3-D plot of the failure surface is shown in Figure 20. The hardening
parameter //n was determined by fitting an exponential curve to the curve in Figure 8. The value
of m was set equal to 8. The failure surface shows a very steep increase in failure strain at the
limit of § = +1. There are also very small failure strains at high stress triaxialities independent
of the Lode parameter.

The integration of the stress state can be carried out during the analysis and element stress state
can be compared to the derived failure surface to determine element failure or the failure surface
can be used as a post processing failure check to prove design robustness.

2.5
2.5~

15+

Prrac

0.5~
0.5 -

0~

-0.4 -0.2 0 0.2 04 0.6 0.8
eta

Figure 20. 3-D plot of failure surface.
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6. CONCLUSION

A failure surface was developed for PH13-8Mo H950 steel using the Xue-Wierzbicki failure
model based on equivalent plastic strain, stress triaxiality, and Lode angle. Five types of tensile
specimens were tested with Lode angle parameters of 1 and 0 at -40°C and 20°C. Finite element
models of the test specimens were used to determine the plastic strain, average stress triaxiality,
and the average value of the Lode parameter at fracture. These parameters were then used to
define the failure surface using the Xue-Wierzbicki form of the failure function. The failure
surface can be used during the analysis to determine element death or as a post processing check.
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