




Sandia  
National  
Laboratories

SAND2021-2683PE

# IEC 61400-5: Wind Turbine Blades



*PRESENTED BY*

Josh Paquette, Sandia National Laboratories



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

# Background

Initiated by China in 2009

- Convenor: Jianping Wang (CN)
- Secretary: Derek Berry (US)

11 countries, 67 Members, ~20 active members

OEM's, research labs, blade manufacturers, blade designers, certification agencies

First CD in 2016

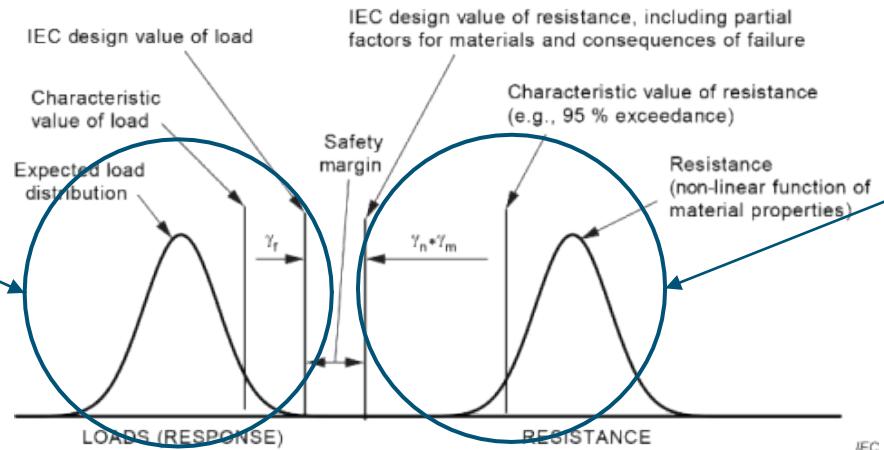
Edition 1 published in June 2020 (!)



# Scope



Aerodynamic and structural design


Material selection, evaluation and testing,

Manufacture (including associated quality management),

Transportation, installation, operation and maintenance of the blades.

**Goal: Incentivize better testing and analysis through opportunity to reduce safety factors**

61400-1



61400-5

$$\gamma_m = \gamma_{m1} * \gamma_{m2} * \gamma_{m3} * \gamma_{m4} * \gamma_{m5}$$

| Factor        | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\gamma_{m1}$ | <b>Factor for environmental degradation (non-reversible effects)</b><br>1,00 – No effect accounted for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\gamma_{m2}$ | <b>Factor for temperature effects (reversible effects)</b><br>1,10 – When using core material modulus values at room temperature<br>1,00 – When using core material modulus values taking into account the highest operating temperature                                                                                                                                                                                                                                                                                                                                                                               |
| $\gamma_{m3}$ | <b>Factor for manufacturing effects</b><br>1,00 – No effect accounted for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\gamma_{m4}$ | <b>Factor for calculation accuracy and validation of method</b><br>$\gamma_{m4a}$ : Factor for analytical method<br>1,40 – For two-dimensional analytical methods (non FEA)<br>1,20 – For linear finite element analysis methods<br>1,00 – For computation using a finite element analysis that models geometric nonlinearities<br>$\gamma_{m4b}$ : Factor for validation<br>1,25 – For no validation<br>1,00 – For methods of which has been validated by intermediate level or full blade testing to non-linear buckling detection or failure<br>$\gamma_{m4}$ is the product of $\gamma_{m4a}$ and $\gamma_{m4b}$ . |
| $\gamma_{m5}$ | <b>Factor for load characterization</b><br>1,20 – Loads in 4 main directions<br>1,00 – Minimum 12 evenly distributed load directions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



## 5 Design Environmental Conditions

### 6 Design

#### 6.1 Structural design process

#### 6.2 Blade characteristics

#### 6.3 Aerodynamic design

#### 6.4 Material requirements

#### 6.5 Design for manufacturing

#### 6.6 Structural design

## 7 Manufacturing Requirements

#### 7.1 Manufacturing process

#### 7.2 Workshop requirements

#### 7.3 Quality management system requirements

#### 7.4 Manufacturing process

requirements

#### 7.5 Manufacture of natural fibre-reinforced rotor blades

#### 7.6 Other manufacturing processes

#### 7.7 Quality control process

#### 7.8 Requirements for manufacturing evaluation

## 8 Blade Installation, Operation and Maintenance

#### 8.1 General

#### 8.2 Transportation, handling and installation

#### 8.3 Maintenance

# Future Plans



Initiate MT5 committee to begin work on Ed. 2 in 2021, publish in 2026

Address lightly covered areas of Ed. 1

- Erosion
- Damage tolerant design

Update safety factors and potentially add additional ones (e.g. repairs)

Revisit manufacturing quality treatment

Look into separation into sub-sections

Add more owner/operator representatives

Edit and strengthen O&M documentation requirements

Re-Examine connections to -23 Structural Testing, -28 Life Extension, and -?? Operations & Maintenance

Stretch goal: Develop a framework whereby safety factors can be further reduced in exchange for defined inspection/repair intervals and methods.