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Beyond Conventional CMOS: Nanoscale Devices2

Need for Robust Platform for Variable  Temperature (4 – 
400K) Studies of Quantum Effects in <10 nm devices (Atomic 

Precision)

Nanosheet -> Confinement
Source: IBM

Tomioka, K. et. al. 
Nature, 488, 189 (2012)

TFET -> Tunneling

4K-400K 
temperature 

studies: >500 nm 
MOSFET (1980-

1990’s)

4K Temperature 
Studies: <10 nm 

nanoscale devices 
(Modern)

4K-400K Temperature 
Studies for <10 nm? 

Missing!



Atomic Precision Advanced Manufacturing (APAM): Ultra 
High Doping
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• Expose to PH3 precursor, which only bind to exposed reactive sites
• Generate dopant concentrations above solubility limit (~1x1020 

atoms/cm3)

Result: Atomic 
Precision Quantum 

Devices
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10 (2020)

S
i

Junction 
Bias

S
i

S
i

S
i

S
i

H

STM Tip

H H
S
i

HH

Atomic precision achieved 
through hydrogen desorption with 
scanning tunneling microscope 
(STM)



APAM + MOS: Need Room Temperature Operation4

N-type MOS compatible
wire junction

source drain

p-

p

n+ n+

p+

• Problem: APAM quantum devices only operate at 4K or lower.
• Leakage currents become major issue at higher T

• Solution! Adapt MOS-like doping schemes

Will the MOS doping scheme minimize leakage?

Depletion regionPhosphorus Aluminum Dielectric

Cryogenic N-type 
wire junction

source drain
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Possible Leakage Paths
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RT APAM Device Leakage Modeling5

Cap should be depleted according to TCAD simulations
Substrate isolated by dielectric and appropriate doping 

scheme

source drain
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Gao, X et. al. SISPAD, 2020 
(IEEE)

TCAD: 
charon.sandia.gov



Overview of Fabrication Process 6
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Pre-Processing: 
Implants, Markers, 

protective oxide growth

APAM: δ-layer & 
capping Si layer growth  

Post-Processing: 
Dielectric, metal contact 

placementWard, et. al. Appl. Phys. Lett, 111, 193107 (2017)



Current Path

Standard APAM Preparation Procedure7
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Silicon (100)

Silicon (100)

Oxide

Joule Heat/Flash

Silicon (100)

clamp clamp

Ward, et. al. Appl. Phys. Lett, 111, 193107 (2017)
Ward, et. al. Elec. Dev. Fail. Anal., 22, 1, 4-10 (2020)

Moved into UHV



Preventing B Diffusion during Joule Heating8

• Joule Heat p-/p++ chip for 60 
minutes at different temperatures

• SIMS (secondary ion mass 
spectroscopy) to determine boron 
concentrations post-Joule heating

Joule Heating Temperature Control is Critical to Maintain 
Doping!

p- B: ~1x1016 atoms/cm3

p++ B: ~8x1018 atoms/cm3

Si (100) chip under test



RT APAM:  Addressing Leakage9
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Possible Leakage Path

Question: Have Leakage Pathways Been 
Eliminated? 

• Contains partially diffused P δ-layer, 
resulting from high temperature Si 

growth

• Well isolated relative to P δ-layer
(9 kΩ for P δ-layer, 6 MΩ to p+ 

handle)
Answer: 
Yes! 

Silicon



First-Ever Temperature Dependent APAM Hall 
Measurements

10

Katzenmeyer, A. M. J. Mat. Res., 35, 16 
(2020)

Mobility & 2D sheet density agree with previous IR-VASE ellipsometry 
measurements at RT

Successful demonstration of new experimental 
platform for elevated temperature studies (2 – 425+ 

K)



350-425K: Should still be el-
phonon but µ(T) suddenly has a 
much steeper slope. 

Highly unexpected!

10-50K: Expected to be 
dominated by el-impur 
interactions, T-independent

75-300K: Expected to be dominated 
by el-phonon interactions, µ(T) ~ T

Matches previous 4-pt data

Different Electron Mobility Regimes11

Ando, et. al. Rev. Mod. Phys, 54, 2, 437 
(1982

Mazzola, F., et. al. Appl. Phys. Lett., 104, 173108 (2014)

Unexpected µ(T) behavior in P δ-layer above 
350K!

Takagi, S., et. al. J. Appl. Phys, 80, 1567 
(1996)



Prospectus12
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Use of MOS compatible counter-doping 
scheme enables RT operation of P δ-
layer

Leakage pathways eliminated, with 
reduction of Si growth temperature 
eliminating P δ-layer diffusion 

Unexpected temperature dependence of 
µ(T) of P δ-layer in Si above 350K

Establishment of new experimental 
platform for studying elevated 
temperature transport in nanoscale 
devices


