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2 | Beyond Conventional CMOS: Nanoscale Devices

Figure 5: Process Technology Development Costs
by Node (US$ billions)

(b) Vertical n-type lll-V HTFET
cross-section TEM Micrograph
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3 ‘ Atomic Precision Advanced Manufacturing (APAM): Ultra

High Doping
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+ I APAM + MOS: Need Room Temperature Operation

* Problem: APAM quantum devices only operate at 4K or lower.
* Leakage currents become major issue at higher T
* Solution! Adapt MOS-like doping schemes
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‘ Will the MOS doping scheme minimize leakage?




s | RT APAM Device Leakage Modeling
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Overview of Fabrication Process
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Pre-Processing: APAM: d-layer & Post-Processing:
Implants, Markers, capping Si layer growth Dielectric, metal contact

protective oxide growth  ward, et. al. Appl. Phys. Lett, 111, 193107 (2017)  placement




7 ‘ Standard APAM Preparation Procedure

. ® Oxygen Plasma Clean ex-situ UHV

Water hydrocarbons

Silicon (100)

Moved into UHV

Degas/Hydrogen Clean in-situ UHV clamp Joule Heat/Flash clamp

Current Path

Silicon (100)

Ward, et. al. Appl. Phys. Lett, 111, 193107 (2017)
Ward, et. al. Elec. Dev. Fail. Anal., 22, 1, 4-10 (2020)



s I Preventing B Diffusion during Joule Heating
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» Joule Heat p-/p++ chip for 60

minutes at different temperatures
e SIMS (secondary ion mass

spectroscopy) to determine boron

concentrations post-Joule heating
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Joule Heating Temperature Control is Critical to Maintain
Doninal




o I RT APAM: Addressing Leakage

\Buestion: Have Leakage Pathways Been

v

« Contains partially diffused P &-layer,
resulting from high temperature Si

growth

* Well isolated relative to P &-layer
B Phosphorus = Aminum Possible Leakage Path (9 kQ for P &-layer, 6 MQ to p*

Dielectric B silicon Depletion region handle)
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w0 | First-Ever Temperature Dependent APAM Hall
Measurements

«10'* Hall Sheet (2D) Density vs. T
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1 1 Different Electron Mobility Regimes E
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12 | Prospectus

__Hall Mobility vs. T _
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Use of MOS compatible counter-doping
scheme enables RT operation of P 0-
layer

Leakage pathways eliminated, with
reduction of Si growth temperature
eliminating P d-layer diffusion

Unexpected temperature dependence of
u(T) of P d&-layer in Si above 350K

Establishment of new experimental
platform for studying elevated
temperature transport in nanoscale
devices
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