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As conventional systems saturate in power efficiency, innovations in both architectures and algorithms are required
to meet the computing needs of the future. With the slowing of Moore’s law and the recent popularity of deep neural
networks there has been renewed focus on emerging technologies, such as neuromorphic computing. Inspired by the brain,
neuromorphic architectures leverage properties such as massive parallelism, sparse activity, and event-driven computing.
Neuromorphic computing has the potential to be impactful for machine learning, scientific computing, modeling cognitive
tasks as well as applications at the edge. Codesign tools are critical for the adoption of such novel technologies. If
designed into a heterogeneous system with other accelerators and conventional computing platforms, this technology has
the potential to augment the capabilities of High Performance Computing (HPC) platforms (1). This paper highlights the
need for new heterogeneous tools and architectures through the lens of neuromorphic computing.
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Figure 1: Developing Heterogeneous Architectures will require codesign tools that span algorithms and hardware. The future of computing
will likely be extremely heterogeneous with different accelerator types. Image reproduced from (1)

Incorporating different classes of processors on single HPC node has been key to moving towards exascale computing.
The scientific computing ecosystem is also changing with data collection outpacing theory in many fields like neuroscience,
medicine, and, climatology. There has been explosion of different accelerator approaches in industry like TPUs, Cerebras
(wafer-scale), Mythic (analog ), each with a unique approach to overcoming performance bottlenecks. It is evident that
future HPC approaches will be highly heterogeneous, where HPC system could include both conventional (CPUs, GPUs),
and non-conventional approaches (neuromorphic hardware, Processing-In-Memory). Digital neuromorphic chips like Intel’s
Loihi have shown 100x efficiency gains compared to GPUs and CPUs and can be scaled to build larger systems (2).
Analog neuromorphic architectures promise even further savings in energy efficiency, area, and latency than their digital
counterparts (3; 4).

Current Challenges While a lot of progress has been made in codesign methodologies and their adoption, a major gap
exists in the integration of novel computing paradigms like neuromorphic computing in heterogeneous computing. This is
in part due to the lack of a cohesive codesign tool and also due the diverse nature of neuromorphic backends which range
from digital, analog, mixed-signal to beyond-CMOS approaches.

Challenge#1: Codesign tools that support novel architectures. A lot of work is being currently done to
incorporate GPUs, FPGAs to build heterogeneous systems. This is in part due the API and prototyping tools that are
made available, as well as the ease of access to these devices for testing and validation. Such a framework is missing for
neuromorphic processors— which are still evolving and have diverse approaches to the architecture and devices used.

Challenge#2: Developing applications for neuromorphic from HPC to the edge. Challenge 1 plays into
challenge 2 in that, lack of codesign tools and ease of usability limits the different applications users can develop for these
novel architectures. Thus, the barrier of entry is high, which hinders adoption.

Challenge#3: Exploration of next-generation heterogeneous neuromorphic architectures. We need to
explore complex neurons and connectivity mechanisms that would make neuromorphic systems even more capable and apply
to diverse set of problems. This will also include exploring novel devices, new integration techniques (3D architectures,
photonics) and novel algorithms that exploit their characteristics.
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Opportunity: The identified challenges present many opportunities through new tools and techniques, new technologies,
and groups collaborating through open-source tools in the codesign process.

Codesign tools for Heterogeneous Neuromorphic Architectures: Accelerator tools have democratized the
ability to test and validate different dataflow architectures. The neuromorphic field needs such open-access codesign tools
available to the larger community that supports varied backends. This could entail analytical tools, cycle-accurate tools,
as well as tools that enable exploring integration of neuromorphic accelerators with conventional processors. We can
leverage deep learning accelerator modeling tools like Timeloop(5), MAESTRO (6), and NVDLA to explore heterogeneous
architectures by extending them with different analog and digital neuromorphic kernels. Analytical tools work through
computing energy related operations (number of memory read/write, number of MAC, NOC communications) given a
certain technology node. These tools are beneficial for rapid testing and architecture prototyping. Such tools can feed into
cycle-accurate explorations, e.g. Sandia’s Structural Simulation Toolkit (SST) that can yield cycle-accurate simulations.
Other tools that account for the performance of emerging device technologies are CrossSim and PUMA (3; 7). High level
tools like Sandia’s Fugu, are also needed to enable designing spiking neural networks while being hardware agnostic. A
modular approach to codesign tools is also important, especially tools that enable integration of new architectures and
device characteristics. This requires not just looking at non-Von Neumann architectures but also novel non-CMOS devices.
While the software space is constantly evolving, building tools that can be re-usable, open, adaptable will be crucial to
adoption.

Impact diverse set of applications: Many applications have been demonstrated for neuromorphic systems. Ex-
amples include solving PDEs using random walks on a neuromorphic platform (8), and a spiking implementation of
Locally-competitive algorithms (LCA) (9) that implicitly solves the LASSO optimization problem with improved energy
costs compared to conventional solvers (10). Our hypothesis is that multi-precision networks using neuromorphic proces-
sors will perform better than conventional computing approaches for scientific computing and machine learning algorithms.
Recent programs like DARPA FENCE, focus on neuromorphic event sensor and processors that will bring low SWaP ad-
vantages to the edge. Thus, diverse applications will facilitate the development of new architectures that support a diverse
set of algorithms and create an eco-system where users inform neuromorphic hardware developers. There is a tradeoff
in codesigning applications and hardware, but applications are no longer immune to the hardware they run on, to gain
performance benefits. This requires a strategic investment in codesign tools and approaches. Perhaps, the development
of useful mini-apps for such heterogeneous architectures will be a good first step in this direction. Collaboration between
industry, academia, and research laboratories is also important. Efforts like Intel’s Neuromorphic Research Community
and outreach by IBM (TrueNorth) for academic and research partners are good examples of this.

Next-generation extremely heterogeneous architectures: While we need novel neuromorphic devices to acceler-
ate computation, we also need novel algorithms and architectures. A lot of current neuromorphic hardware uses simplified
neuron models that can be scaled to billions of neurons. However, we hypothesize that designing complex neurons will
augment the capabilities these systems currently offer. For example, introducing dendritic processing will introduce non-
linear summation, spatio-temporal processing, and increased connectivity. Techniques to do brain-inspired local learning
is another area of active research that could impact the use of neuromorphic processors as not just inference but training
engines. Next-generation neuromorphic circuits and systems based upon nonlinear dendritic processing and local learning
will balance the trade-off between scalability and the biological complexity. Novel approaches in fabrication like three-
dimensional architectures and wafer-scale technology as well as in-memory computing devices could further alleviate current
communication and connectivity bottlenecks. This would require synergistic collaboration across devices, architectures,
software, and algorithms.

Timeliness or Maturity Neuromorphic architectures have the potential to have an impact in the next 5-10 years
as implementations in silicon exist today (Loihi, TrueNorth, SpiNNaker, offerings from BrainChip, GrAI Matter Labs).
Non-CMOS approaches are promising and industry trends (Imec/Global Foundries) show that these architectures will be
available for mass production soon. Neuromorphic accelerators can impact the efficiency of machine learning, scientific
computing, and edge applications with two-three orders of magnitude improvement in energy and speed. Codesign tools will
enable algorithm and hardware designers to account for novel accelerators in their design flows better. Hence, developing
open-source codesign tools that include a wide variety of novel backends like neuromorphic processors is imperative to
achieve extreme heterogeneity in the future.
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