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Problem Objective

Chemically-assisted fracturing in crystalline materials Science Question and Hypothesis

Subcritical, or, chemically-assisted, fracture controls deformation and permeability = This proposed research is based on our earlier unexpected discovery: we found that
of rocks, and degradation of manmade materials. Chemical reactions at individual chemical complexation reactions at the crack tip in calcite change effective fracture
crack tips can lower effective fracture toughness for crystalline phases making up  toughness in situ. By changing the chemistry of the liquid in contact with calcite we
sedimentary rocks, concretes, and ceramics. Chemical effects on crack can either promote crack growth by adding weakly-binding ligand or arrest it by
propagation have been recognized for several decades, and yet chemical adding a strongly-binding one.* This newly discovered chemical mechanism needs
mechanisms involved in subcritical fracture are still debated.? further validation, in particular we propose to determine whether it applies to
other crystalline phases, and how it manifests under mechanical loading.

Inter-granular fracturing in rocks Trans granular fracturmg In "OCkS Stress corrosmn crackmg in metals

Science Question: how and why do chemical complexation reactions at a single
crack tip change in situ fracture behavior?

Hypothesis: With increasing favorability of the cation-ligand complex, the velocity
of subcritical crack growth decreases, due to the corresponding increase in
effective fracture toughness.

ligen et. al., 2018 Choens et. aI submitted corrosion.ksc.nasa. gov/stresscor htm

Approach

Experimental apparatus for consolidation tests
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Planned Experiments and Modeling Choens et al, submitted

* Nano- and micro-mechanical testing of single crystal CaCO,, Ca0O, SiO,, and CeO,

in dry conditions and in aqueous fluids: quantifying effective fracture toughness, Continuum modeling of compaction experiments

local hardness and Young’s Modulus in chemical environment. * We plan to use an existing continuum sintering model in SierraMechanics?>
* Vibrational spectroscopy testing on pre-cracked crystals: characterize strain near to simulate compaction experiments.
indent site and around cracks. * Dimensional analysis is used to relate sintering model parameters to crack
* Consolidation testing of poly-crystalline packs in aqueous fluids with varying srowth laws fit to data from DT and indentation experiments
chemistry: quantifying onset of fracturing, fracture density and geometry in
pressure conditions and chemical environments relevant to subsurface reservoirs. Macro-scale sintering law Micro-scale crack growth law
* Reactive Molecular Dynamics Simulations of CaO Fracturing: identifying . D g o\ o= A(K /K, )b
chemical mechanisms and elementary reaction steps during crack growth. ¢ —ao (p—p) ( - P—D) ’
* Finite Element Modeling of single cracks with chemistry of fracturing in \ /
chemically-reactive environments: Continuum finite element models of Double o |
Torsion (DT) and indentation experiments are used to compute crack driving Sintering law informed by crack grOWt: 2atla
forces. Crack propagation can be modeled using crack growth laws fit to sin _ Y2 Anp. K7, (1_ P ) /2t
measured crack velocity data. Eo PD
Results
Molecular Dynamics Simulations of CaO Fracturing Measuring Nanomechanical Properties

Calculating Elastic Properties Calculating Surface Properties Calculating Fracture Properties
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