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Chemically-assisted fracturing in crystalline materials

Science Question: how and why do chemical complexation reactions at a single 
crack tip change in situ fracture behavior?
Hypothesis: With increasing favorability of the cation-ligand complex, the velocity 
of subcritical crack growth decreases, due to the corresponding increase in 
effective fracture toughness.corrosion.ksc.nasa.gov/stresscor.htm
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Subcritical, or, chemically-assisted, fracture controls deformation and permeability 
of rocks, and degradation of manmade materials. Chemical reactions at individual 
crack tips can lower effective fracture toughness for crystalline phases making up 
sedimentary rocks, concretes, and ceramics. Chemical effects on crack 
propagation have been recognized for several decades, and yet chemical 
mechanisms involved in subcritical fracture are still debated.1-3

Science Question and Hypothesis
This proposed research is based on our earlier unexpected discovery: we found that 
chemical complexation reactions at the crack tip in calcite change effective fracture 
toughness in situ. By changing the chemistry of the liquid in contact with calcite we 
can either promote crack growth by adding weakly-binding ligand or arrest it by 
adding a strongly-binding one.4 This newly discovered chemical mechanism needs 
further validation, in particular we propose to determine whether it applies to 
other crystalline phases, and how it manifests under mechanical loading.
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Density (g/cm3) 3.33 - 3.34

Young’s Modulus (GPa) 226.3 221.2 219.4

Bulk Modulus (GPa) 104.1 101.2 112.0

Shear Modulus (GPa) 91.7 84 80.5

Surface Energy (J/m2) 0.67 0.73 -

ReaxFF Equation for Total Energy (from 14): 

• Nano- and micro-mechanical testing of single crystal CaCO3, CaO, SiO2, and CeO2 
in dry conditions and in aqueous fluids: quantifying effective fracture toughness, 
local hardness and Young’s Modulus in chemical environment.

• Vibrational spectroscopy testing on pre-cracked crystals: characterize strain near 
indent site and around cracks.

• Consolidation testing of poly-crystalline packs in aqueous fluids with varying 
chemistry: quantifying onset of fracturing, fracture density and geometry in 
pressure conditions and chemical environments relevant to subsurface reservoirs. 

Calculating Fracture Properties

Table 1: CaO Properties 
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Planned Experiments and Modeling

Experimental apparatus for consolidation tests
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• We plan to use an existing continuum sintering model in SierraMechanics15 
to simulate compaction experiments.

• Dimensional analysis is used to relate sintering model parameters to crack 
growth laws fit to data from DT and indentation experiments

Continuum modeling of compaction experiments

Macro-scale sintering law Micro-scale crack growth law 

Sintering law informed by crack growth data

• Reactive Molecular Dynamics Simulations of CaO Fracturing: identifying 
chemical mechanisms and elementary reaction steps during crack growth.

• Finite Element Modeling of single cracks with chemistry of fracturing in 
chemically-reactive environments: Continuum finite element models of Double 
Torsion (DT) and indentation experiments are used to compute crack driving 
forces. Crack propagation can be modeled using crack growth laws fit to 
measured crack velocity data.
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