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* What? - Machine Learning (ML) Fault
Analysis

— Using ML for power system protection
instead of relays

— Test approach on IEEE 123 Model (Matlab
Simulink)

— Simulate 3 fault types at 19 locations with
varying resistances at different times of year

* Why? - Intelligent Decision Making
— Coordinated switching
— System specific learning that adapts

* Hypothesis

— ML at each breaker can distinguish faults
inside its protective zone/region
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Training/Validation Assessment
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* Features: Sequence Current (l,,1,,1,) .
and Voltages (V,,V,,V,)

* To avoid under- & over-fitting,
performed validation analysis
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Breaker Decisions
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* Optimal batch training samples

equal to 20,000 for three cases
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Machine Learning Breaker Analysis
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* Embedded ML can R -
— Classify faults fa 3 c
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— ldentify fault regions
— Make breaker switch
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* Example: ML at Breaker F
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— Able to separate 6-
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Conclusions/Recommendations

e Conclusion:

[}

.
— SVM accurately understands fault Z =
conditions and makes breaker decisions 3?2 =
. v <
e Difference from Expected: ) 2
N
— Better than expected: | |
* Accurate classification of fault types and " Predicted Label
regions anywhere on feeder
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