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Introduction

• The execution of a specific technical activity of interest can be 
distinguished from other activities because it often follows a recipe that 
is constrained by the laws of physics or chemistry.

• This recipe then often defines the nature, magnitude, and timing of 
certain parameters that can be deduced from measurement of that 
activity.



Office of Defense Nuclear Nonproliferation R&D

Defense Nuclear Nonproliferation

 3

 

 

The Challenge Problem: Assessing Reactor 
Power under Variable Weather Conditions

• The High Flux Isotope Reactor 
(HFIR) releases heat to the 
environment via a secondary 
cooling tower.

• Under the MINOS Venture, sensors 
are continuously monitoring signals 
(electromagnetic, seismic, 
infrasound/acoustic, vibrometry) in 
the vicinity of this tower.

• We seek to account for how weather 
variability impacts the way these 
signals relate to reactor power.

Return header

Inlet pipes

HFIR a functional description Vol 1(b)

Seismo-acoustic sensor Seismo-acoustic sensor 

Smartphone sensorSmartphone sensor

Infrasound sensor Infrasound sensor 
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Discussion Topics

Anticipated and Extracted 
Infrasound/Acoustic Features

Developing Physics-Based & 
Interpretable Models

Future Directions Leveraging 
Recent Advancements

From T. Bikmukkametov and J. Jäschke, 
“Combining machine learning and process 
engineering towards enhanced accuracy 
and explainability of data-driven models,” 
Comp. Chem. Eng. 138, 106834 (2020). From S.-M. Udrescu and 

M. Tegmark, “AI Feynman: 
A physics-inspired method 
for symbolic regression,” 

Sci. Adv. 6, eaay2631 
(2020).
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Initial Assessment on Targeted Collect

260 min × 60 sec/min × 600 pts/sec = 9.36M pts260 min × 60 sec/min × 600 pts/sec = 9.36M pts

260 min × 60 sec/min × 1 spectrum / 5.46 sec × 2049 pts/spectrum = 5.85M pts260 min × 60 sec/min × 1 spectrum / 5.46 sec × 2049 pts/spectrum = 5.85M pts

In the next viewgraphs, this will be reduced to a low-dimensional representation of 5 rank-one (spectral × temporal) 
matrices:

(260 min (260 min ×× 60 sec/min  60 sec/min ×× 1 spectrum / 5.46 sec + 2049 pts/spectrum)  1 spectrum / 5.46 sec + 2049 pts/spectrum) ×× 5 = 24.5K elements 5 = 24.5K elements

STFT
Moreover, 4/5 of those rank-one matrices will be physically interpretable.
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Anticipated Infrasound/Acoustic Signals from 
Secondary CoolingTower

(BPF: Blade passing frequency)

https://en.wikibooks.org/wiki/Engineering_Acoustics/Noise_from_cooling_fans

1/f noise (i.e., “pink noise’)
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AABBCCDD
Cooling tower fansCooling tower fans
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NMF of Infrasound Spectrograms

Flow 
on

Flow 
off

Water flow

Lower-speed fan

Higher-speed fan

Fan changing speed

Unattributed feature

Fan 
changing 

sped

1st fan 
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2nd 
fan 
on 1 fan off

2nd fan on
1st fan 
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NMF Interpretation
NMF Interpretation
16:25 – Begin water flow
16:55 – End water flow
18:15 – Begin water flow
18:34 – End water flow
19:08 – Begin water flow
19:26 – End water flow
20:02 – Begin water flow
20:20 – Initial slower fan on
20:47 – Fan changing speed, 2nd slower fan on
21:02 – Fan changing speed, initial faster fan 

on, one slower fan off
21:07 – Fan changing speed, second faster fan 

on
Flow 
on

Flow 
off

Fan 
changing 

sped

1st fan 
on

2nd 
fan 
on 1 fan off

2nd fan on
1st fan 

on
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NMF Interpretation vs. Ground Truth
Ground Truth
16:26 – Plume present
16:54 – Plume absent
18:18 – Plume present
18:35 – Plume absent
19:09 – Plume present
19:28 – Plume absent
20:05 – Plume present
20:21 – Fan C on at half-speed
20:46 – Fan D on at half-speed
21:02 – Fan D increased to full speed

21:07 – Fan A on at half speed

NMF Interpretation
16:25 – Begin water flow
16:55 – End water flow
18:15 – Begin water flow
18:34 – End water flow
19:08 – Begin water flow
19:26 – End water flow
20:02 – Begin water flow
20:20 – Initial slower fan on
20:47 – Fan changing speed, 2nd slower fan on
21:02 – Fan changing speed, initial faster fan 

on, one slower fan off
21:07 – Fan changing speed, second faster fan 

on
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Consider Various Impacts of Weather

The reactor’s heat release 
mechanism is fundamentally 
dependent upon the weather.



Office of Defense Nuclear Nonproliferation R&D

Defense Nuclear Nonproliferation

 11

 

 

The Merkel Model

Issue: Fan speed does not correlate 
well with Reactor power, e.g. graph 
below
• Reactor held at full power, but fan 

speed is not at maximum
• Substantial variations in speed 

while reactor is constant 
∴ An effect is missing

Cycle 487 HFIR power

Observed fan speed*

*Derived from observations by Will Ray

Approach: Fan speed changes to maintain 
constant cold water return when wet-
bulb T changes. This causes the 
discrepancies. A physics model can 
predict these changes and be used to 
correct sensor-modality signals for use in 
data fusion.

Predicted fan speed at 
full reactor power

Result 1: The model-calculated fan speed 
shows reasonable fit to observation

Result 2: Model-calibrated power from fan speed

• Scaled observed speed 
to predicted speed at 
wet bulb T

• Assumed full power = 
85 MW
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The Scaling of the BPF Acoustic Signal

• Acoustic emanations at the BPF harmonics are highly 
nonlinear with fan speed.

– “Fan sound law” predicts exponent = 5

– Buckingham-Π predicts exponent = 5.67

– Acoustic dipole model predicts exponent = 6

• Guided us toward implementing an interpretable 
decision-tree model
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Extracting the BPF from the Acoustic Signal

Blade Passing Frequency (BPF):

Fan Motor 
Speed

Fan Blade 
Speed* BPF

1800 RPM (100%) 162 RPM 21.5 Hz

900 RPM (50%) 81 RPM 10.8 Hz

*11.14:1 gear reducer after motor

BPFs and higher harmonics are 
correlated with fan rotation.

Decision Tree Classifier:

N Condition

1 Product of 21.5 Hz harmonics (2-8) 
features > 2 x 1053

2 Product of 10.75 Hz and 15.0 Hz 
features > 1 x 107

3 21.5 Hz feature < 7 x 108

4 15.0 Hz feature < 4.5 x 107

1

2

3

4

Start

Fan A @ 100%

Fan B @ 100%

Fan A @ 50%

Fan B @ 50%
No Fan

True True

True
True

False
False

False

False

Prediction Results:

Model built primarily on BPF amplitudes. Model predicts fan identity and 
speed with > 96% accuracy. 

?50%

100%

Dec 2019 
Fan Test

June 2020 
Fan Test
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Enabling Generalizability to Another Site (i.e., 
Transferability)

Warm air

Cool 
water

Warm water

Cool air
Fan speed
EM, Infrasound

Water flow
Infrasound

Water T
Thermal

Humidity

Data FusionReactor Power

Physics Model

Reactor Power
Local Meteorology
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Two Potential Directions for Future Work

1. Combine/augment physical model with 
machine learning
– Merkel model accounts for fan-driven heat 

transfer in cooling tower

– Other processes impact heat transfer…

– … so machine learn resulting mismatch.

From T. Bikmukkametov and J. Jäschke, 
“Combining machine learning and process 
engineering towards enhanced accuracy 
and explainability of data-driven models,” 
Comp. Chem. Eng. 138, 106834 (2020).
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Two Potential Directions for Future Work

1. Combine/augment physical model with 
machine learning 
– Merkel model accounts for fan-driven heat 

transfer in cooling tower

– Other processes impact heat transfer…

– … so machine learn resulting mismatch.

2. Demonstrate machine-learning of physical 
model(s) via symbolic regression
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Thanks!...  Questions?


