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* The execution of a specific technical activity of interest can be
distinguished from other activities because it often follows a recipe that
is constrained by the laws of physics or chemistry.

* This recipe then often defines the nature, magnitude, and timing of
certain parameters that can be deduced from measurement of that
activity.
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* The High Flux Isotope Reactor
(HFIR) releases heat to the
environment via a secondary
cooling tower.

 Under the MINOS Venture, sensors
are continuously monitoring signals
(electromagnetic, seismic,
infrasound/acoustic, vibrometry) in
the vicinity of this tower.
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 We seek to account for how weather
variability impacts the way these
signals relate to reactor power.
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Discussion Topics

Developing Physics-Based &
Interpretable Models
Air
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Latent heat
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Future Directions Leveraging
Recent Advancements
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(b] Test phase of Method 2

From T. Bikmukkametov and J. Jaschke, o
“Combining machine learning and process
engineering towards enhanced accuracy
and explainability of data-driven models,”
Comp. Chem. Eng. 138, 106834 (2020).

A

From S.-M. Udrescu and
M.

Tegmark, “Al Feynman:
physics-inspired method

for symbolic regression,”

Sci. Adv. 6, eaay2631
(2020).
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In the next viewgraphs, this will be reduced to a low-dimensional representation of 5 rank-one (spectral x temporal)
matrices:

(260 min x 60 sec/min x 1 spectrum / 5.46 sec + 2049 pts/spectrum) x § = 24.5K elements
Moreover, 4/5 of those rank-one matrices will be physically interpretable.
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Secondary CoolingTower
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NMF Interpretation Temporal factors
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NMF Interpretation

16:25 — Begin water flow

16:55 — End water flow

18:15 — Begin water flow

18:34 — End water flow

19:08 — Begin water flow

19:26 — End water flow

20:02 — Begin water flow

20:20 — Initial slower fan on

20:47 — Fan changing speed, 2"? slower fan on

21:02 — Fan changing speed, initial faster fan
on, one slower fan off

21:07 — Fan changing speed, second faster fan
on
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NMF Interpretation vs. Ground Truth
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Ground Truth

16:26 — Plume present
16:54 — Plume absent

18:18 — Plume present
18:35 — Plume absent

19:09 — Plume present
19:28 — Plume absent

20:05 — Plume present
20:21 — Fan C on at half-speed

20:46 — Fan D on at half-speed

21:02 — Fan D increased to full speed

21:07 — Fan A on at half speed
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Issue: Fan speed does not correlate ~ Approach: Fan speed changes to maintain  Result 1: The model-calculated fan speed

well with Reactor power, e.g. graph  constant cold water return when wet- shows reasonable fit to observation
below bulb T changes. This causes the 100+
* Reactor held at full power, but fan discrepancies. A physics model can s _ Coledlated
speed is not at maximum predict these changes and be used to =
e Substantial variations in speed correct sensor-modality signals for use in &
while reactor is constant data fusion. 5 ol
. An effect is missin TN S
100 5 G’ fTL-ﬂutHs — Hg ® 20-
- o) = L
<—Cycle 487 HFIR power 5 G TLin __AT
— 100 <. Trout H~ — H-' 0 =TT
g 50 - C<D ! G G 571720 555720 579720 5A13/20 517720 5721720
Z a0 ‘ Time at HFIR
g 604 y 1007 Result 2: Model-calibrated f f d
- ) esult 2: Model-calibrated power from fan spee
2 Leo T S Predicted fan speed at 10—
40 o = 804 full reactor power
g oo & Scaled observed speed
L] [ ¥s] o~ [}
S 20- Observed fan speed* —> o c 2 caled observed spee
- C20 3 < = w0 to predicted speed at
0 g 5 £ wet bulb T
MR b L n A n o Ead it nan o e o SR -8 504 5 40
L2V Cegegeq £ g * Assumed full power =
S588888533588338838 AR [ [ 85 MW
H 0 4 8 12 16 20 24 —— From corrected fan speed
Tlme at HFIR Ambient Wet Bulb Temperature (C) o] —— Assuming power proportional to fanspeed
*Derived from observations by Will Ray
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* Acoustic emanations at the BPF harmonics are highly
nonlinear with fan speed.

— “Fan sound law” predicts exponent =5
— Buckingham-I1 predicts exponent = 5.67

— Acoustic dipole model predicts exponent =6

* Guided us toward implementing an interpretable
decision-tree model

Journal of Sound and Vibration (1975) 43(1), 61-75

PERSPECTIVE ?i};g;éhlne 111'[(3111 ence APPLICATION OF SIMILARITY LAWS TO THE BLADE PASSAGE
https://doi.org,/10.1038/542256-019-0048-x g SOUND OF CENTRIFUGAL FANS

W, NEISE

Deutsche Forschungs- und Versuchsanstalt fir Luft- und Raumfakri e V.,
Institut fiir Turbulenzforschung, Berlin, Germany

(Received 3 March 1975, and in revised form 17 Aprif 1975)

Stop explaining black box machine learning
models for high stakes decisions and use I
interpretable models instead g 0 o 2 e T il

present experimental results verify Weidemann's [2] formulation of similarity laws, which
. . describes the radiated sound pressure as a product of non-dimensional terms, The experi-
Cynthia Rudin ments also prove that it is possible 1o extrapolate data from a modet fan to other geo-
metrically similar fans of different size.
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Extracting the BPF from the Acoustic Signal
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Prediction Results:
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Model predicts fan identity and

BPFs and higher harmonics are

correlated with fan rotation. speed with > 96% accuracy.
Office of Defense Nuclear Nonproliferation R&D 13
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Dimensional
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1. Combine/augment physical model with

machine learning
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2. Demonstrate machine-learning of physical "<\“ - >
model(s) via symbolic regression —

e Try new data with| Equate
N A, ] =t
tewer variables variables
-
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SCIENCE ADVANCES | RESEARCH ARTICLE
COMPUTER SCIENCE 4 I'ry transformed | Transform
G - data i x&y
Al Feynman: A physics-inspired method for
A H : hi=1
symbolic regression 1 olved] »
Silviu-Marian Udrescu’ and Max Tegmark'-> 1.09 N
A core challenge for both physics and artificial intelligence (Al) is symbaolic regression: finding a symbolic expression @
that matches data fvam an unknown Function, Although this problem is likely to be NP-hard in principle, functions
of practical interest often exhibit symmetries, separability, compositionality, and other simplifying properties, In E e
this spirit, we develop a recursive multidimensianal symbolic regressian algorithm that combines neural netwark Hu aton
fitting with a suite of physics-inspired technigues. We apply it to 100 equations from the Feynman Leciures on Physics, i
and it discovers all of them, while previous publicly available software cracks anly 71; for a more difficult physics- {
based test set, we improve the state-of-the-art success rate from 15 to 90%. o w262 .—'\-— 1
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