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Abstract

We examine coupling into azimuthal slots on an infinite cylinder with a finite length interior cavity
operating both at the fundamental cavity modal frequencies, with small slots and a resonant slot, as well
as higher frequencies. The coupling model considers both radiation on an infinite cylindrical exterior
as well as a half space approximation. Bounding calculations based on maximum slot power reception
and interior power balance are also discussed in detail and compared with the prior calculations. For
higher frequencies limitations on matching are imposed by restricting the loads ability to shift the slot
operation to the nearest slot resonance; this is done in combination with maximizing the power reception
as a function of angle of incidence. Finally, slot power mismatch based on limited cavity load quality
factor is considered below the first slot resonance.
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1 INTRODUCTION

We discuss plane wave coupling to cylindrical cavities through a narrow azimuthal slot aperture as shown
in Figure 1. The interior cavity radius is a and the exterior radius is b, with interior cavity height h.,
with azimuthal slot at height zg from the bottom of the cavity, and a narrow slot aperture with azimuthal
length ¢ = 2h. The exterior is treated rigorously as an infinite cylinder or approximately as a planar half
space. Approximate treatments of such cavities have been done in rectangular geometry [1], [2] as well as
cylindrical geometry [3], [4], including the case where intentional absorbing material is present [5], which
can be treated by means of perturbation theory [6]. In this report the cylindrical coupling model is set up
rigorously, and includes modifications of the slot voltage distribution from the cavity mode resonances. The
usual method to treat azimuthal slots in a cylinder uses both types of Hertz potential [7]. In this report we
use a different approach involving the full electric vector potential and scalar magnetic potential [8]. This
alternative approach leads more directly to the desired integro-differential equations in the slot, which also
facilitates the extraction of the dominant transmission line operator in the narrow slot; this form of the
equation allows us to generalize the slot to have depth as well as wall losses and gaskets [9], [10]. A finite
Fourier basis is used for the slot voltage distribution and the cylindrical exterior is compared to the planar
exterior. Coupling to both cylindrical modes, Transverse Magnetic (TM) and Transverse Electric (TE) with
respect to the cylinder axis, are treated.

Simplified analytic models are examined for the electrically short as well as resonant azimuthal slot
apertures. A power balance bounding approach [11], [1], [3], [12] is then considered and compared with the
rigorous cylindrical model.

11
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Figure 1: Geometry of cylindrical cavity with narrow azimuthal slot. The cavity has interior radius a and
exterior radius b. The interior cavity height is h. and the exterior cylinder is infinitely long. The slot has
length ¢ = 2h and is positioned at height zy from the cavity bottom.
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2 EXTERIOR PLANE WAVE DRIVE AND INFINITE CYLIN-
DER CURRENT DENSITY

We first give the exterior cylindrical drives to the ports of entry.

2.1 Incident Plane Wave Fields

In the case of plane wave excitation we take a plane wave at oblique incidence with

k=k (gm cos p; sinf; + €, sin g, sin 0; + e, cos Hi) = ke,.,

=k (Qpi sin@; + e, cos Qi) = k,,igpi + ke,

where the wavenumber is related to the magnetic permeability of free space p, and electric permittivity of
free space ¢ (with time dependence e~ ** suppressed throughout this report)

2 2
k™ = w poeo

On the cone at colatitude § = 0; and azimuth ¢ = @;, the wavenumber is pointing in the e, direction and

1

we can take one perpendicular to the wavenumber direction to be ¢y, with the other being g@, and thus we
can write

E, = E (Q(h cos, + €, sin cpp>

= Fy [QI (cos 0; cos p; cos p,, — sin g, sin gpp) +e, (Cos 0; sin p; cos p,, + cos @, sin gop) — e, sinf; cos gop]

=FE, (Qpi cos 0; cos @, + €, sinp,, — e, sin 0; cos gop)
with

EO'EZO

where ¢, = 0 corresponds to the incident electric field alignment with e, and ¢, = /2 corresponds to the
incident field alignment with [ The position vector is

r=xe, +y§y + zZ€, = pﬁp + z€,
k-r= kpgpi "€, + kzcosO; = kpsinb; cos (¢ — ¢;) + kz cosb;

The incident plane wave can then be written as

ke, T
€, L

nc __ ikr ) i 7

E" =Eje = FEy (ﬁei cos, + ¢, sin gpp> e

_ . . _ . ) ikpsin @; cos(p—;)+ikz cos;
= F (Qpi cos 0; cos @, + €, Sing, — e, sin 0; cos <pp) e

= FEy (gpi cos f; cos ep ey, sin g, — e, sin 0; cos ‘Pp> etho; poos(p—p;)Fik., z

13



The magnetic field is

iwuoﬂinc — ZE % Einc — 'LE % Eoeikf
with vector amplitude

1 k
Hy=—kxEy=—e, X E,

=r;

Who Wi

= Hype,, X (ﬁei cos p, + €, sin <pp) = H (g% Cos ¢, — g, Sin cpp>

= Hy [gm (— cos 0 cos ; sin p,, — sin p; cos cpp) +e, (— cos 0 sin ; sin p,, + cos @, cos Lpp) + e, sinf; sin gop]

where
% = "o
Eo =noHo
and we can then write
H" = Hype,, x (Qe,; cos, + e, sin gop) et — f, (g% oS ¢, — €p, Sin gop) etk

= Hy (_Qpi cos 0; sin g, + €, oS, te, sin 0; sin gpp) etho; poos(p—p;)+ik., z

2.2 Cylindrical TM-TE Decomposition & Short Circuit Current Density

Let us consider this wave to be made up of a TM part and a TE part with respect to the z axis. Beginning
with the TM part we write

Ei" = —Eqysin; cos gopeikﬂipcos(“"*%)“k%z
We now use [8], [13]
ethopcostome) = N T (kpp) €7D = N " g i™ T (Kpp) cosm (o — ;)
n=-—oo m=0

where the Neumann numbers are defined as

to write

o0
E™¢ = —Fysin6; cos cppeikziz Z emt™" Im (kpip) cosm (o — ;)

m=0

Noting that

14



we find the total field

(1)

‘ s m (kp. b
E, = —Fysinf; cos @pe”ﬂzﬁ Z emt™ | I (kp,p) — MHm (kp.p) | cosm (¢ — ;)

m=0 '5’}) (kpi b)

Then we can find the other field components by the procedure of separating out the axial and transverse
parts

and for the TM field from Maxwell’s equations

Vt X Et =0
B .
€. ) X B+ Ve x (e,E.) = iwpoH,

Vi x H, = —iwepe, B,

0
<€z 9z ) x i, = —iweoE,

Using the fourth equation in the second

(ezi> X (ezi> x H, —iweoVy x (e, E.) = k*H,
or
. ‘ > 2 2 2
—iweg Vi X (e,FE,) =iweg (e, x Vi E,) = 9.2 +k* ) H, = (K> — k) H,
Twe
ﬁt = k2 — ]ng (ﬁz X vtEZ)

From the fourth equation

0 —iweg 0 weoks, )
<€zaz> xH, = W$VtEZ = 5 5 Vil = —weoE,

k2 — k2

ViE. = B,

from which we see that if E. (p = b) = 0 then so does this contribution to E,, (p = b) since it is a tangential
derivative of E, (p = b), where b is the exterior radius of the cylinder.
Next for the TE case

15



HI"™ = Hysing), sin g, e'eip c0slpm o ke,

= Hysin0; sin gopeikziz Z Emi™ Im (kpp) cosm (¢ — ¢;)

m=0
and noting (from the preceding results as well as the relation below for E,) that

OH., (
dp

p=>0)=0
we find the total field

)

H. = Hosinfusin g™ 3 eni™ | I (ko,p) = —i (kp,b)
m Pi

m=0

HY (k,,p) | cosm (p = @;)
Separating the axial and transverse components

H=H,+He,

from Maxwell’s equations

Ve x H,=0

(ez;)Z,) x H, + Vi x (e,H,) = —iweo B,

Vi X By = iwpge, H,

0
(ez az> X Et = 7;("'}IU/OEIE

From the second and fourth equations
0 0 . 82 ) )
QZ% X gz@ x By +iwpoVe x (e.Hz) = _@Et —wpge, X Vi, =k°E,

or

. s
—iwppe, X Vel = (32’2 + k2> E, = (k2 - ki) E,

_ Wy
Ly = m e, X ViH,
Then substituting into the fourth equation

oy O ks
kg 0z e T g g, Vet T ekl

or

16



ﬂt = mvtk’z
Finally, the total azimuthal field (sum of TM and TE parts) is
 iweg O ik, 10
He=m o, T e - op
_ ngokpz ik, z ! _ Im (kpzb) (1) _
= K2 Ejysin; cos p,e mzoe mi™ | I}, (kp.p) 7}]7(&) (. 0) HG (k. p) | cosm (o — ¢;)
ik, 1 k.. 2 Jp, (kp,b) .
Nz k2 ~Hysing; sin e’ mzzoemz |:]m (kp.p) — mﬂg) (kpip)l msinm (¢ — ;)
Taking p =10
weok T
H<P (b7 2 Z) = 52 _ ]gél Eysin 0; cos ‘PpeZkziz mz::o m [ m (k b) m (kpib) (k b) YT:L (kpib)] cosm (QO - 901')
k., oiks 2 > Emi™ .
tiz ) ZHO sin 0; sin @, "= Z — [ (kp,) Yy, (kp,b) — Jb, (Kp,b) Yo (Kp,b) | msinm (¢ — ;)

m=0

HT('%)I (kﬂi b)
Using the Wronskian

T (kp,0) Yy, (Kp,b) — Jp, (Kp,b) Yo (Kp,b) =2/ (k. b)

m

gives
weok,, ) e e 26,,i™
H,(bp,z) =— t-Fysin6; cos e " ——— - cosm (e — ;)
v i 2 it 1)
ks kp, —— 26,i™
+——"Hysin0; sin p_e'*** msinm (¢ — ¢;)
R — k2, ! mZ::O k2 B2 H" (ky,b)

Using
k,, = ksin0;
k., = kcos0;

K — k2, = k2 = kp ksin0;



Eo =noHo
gives

o0

H, (b, 2) = —2Hj cos @, e*=i* _
? : mZ:O ﬂ-kpi bHT('%) (kpi b)

Emt™

cosm (¢ — ;)

oo

+2H cos 0; sin @ et=i*
o T ()

Emt™

msinm (¢ — ¢;)
or the short circuit exterior current density

K§C (907 Z) = H;c (b?§07 Z)

— 2H, k=i i emi™ | cosm (¢ — ;) cosp, N msinm (¢ — @;) cos0;sin g,
1 1)/
kb HD (K,,b) kpinfn) (k)

m=0

We can now apply this field (or current density) to the slot excitation.
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3 INTERIOR MODAL POTENTIALS & FIELDS

Now let us look at the fields and potentials for the various cavity modes. We examine the potentials and
fields for the TM and TE modes in the cylindrical cavity of height h. with 0 < z < h, and radius a with
0<p<a.

3.1 Interior TM Modal Potentials And Fields

The TM modes (driven by a slot at axial location zy of the cylindrical cavity) have axial field

E. = Apmndm (Jmpp/a) cos [m (¢ — ¢g)] cos (nwz/he)

where the roots of the Bessel function j,, ;, satisfy

Im (jm,p) =0
The total electric field is
E=F,+FE.e,
with transverse components
1 0
L, = 2 3 athEZ
kp,m,n - (TL’/T/}LC) z
and magnetic field components
iwéo
ﬂt = (Qz X vtE )
k;zza,m,n - (nﬂ-/hC)2 :
or
-1 jm, . nm .
E, = TR (mr/hc)2Ap7mm ap T} (Gm.pp/a) cos[m (o — ¢y)] T sin (nmz/h)
E,= ! -A Im (Jm,pp/a) msin [m (¢ — @q)] "7 in (nrz/he)
* T K — (/)P p R ”
) 1
Hy= "0 " Ay T (mpp/a) msin [m (¢ — o)) cos (nmz/he)
kp,m,n - (nﬂ'/hf) p
1WEQ jm,p ’ (s
H, = Al mn I (Gm,pp/a) cos [m (o — cos (nmz/h.
R R (Jm.pp/a) cos[m (¢ = ¢g)] cos (nmz/he)

Noting that

+ stk

2 10 18 &
2 Np (£ -9, -7 2) B =
(V24 ) 2 <3p2+p8p+p23902 922 ) =0

= [k = (/) = (n7/)*| B2 =0

where we have used the Bessel equation
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2
;7%)2 + %32,0 - Zlg + (jm,p/a)z] I (Jmpp/a) =0
gives the TM modal wavenumbers
K = (J"”’)2 + (nr/he)’
p,m,n a c

Using the electric vector potential and scalar magnetic potential for the fields

D=gE=-VxA4,

we take modal potentials satisfying the vector Helmholtz equation
(VQ _|_ k2

p,m,n

)Agpvmm) -0

iwAgpvman) — ﬂ(pvmsn)

with p and ¢ components

1
Alpmyn) _ €0 —Ap mndm (Jm a)msin[m (¢ — cos (nmz/h,
ep K2 (/o p ™ (Jm.pp/a) [m (¢ — ¢p)] cos (nz/he)
g = B Ay 2 ), (G ) cos m (o — o)) cos (nz/he)
kg,m,n - (nﬂ-/hc) a

The divergence (because of the construction of the potential from the magnetic field it is the Coulomb gauge)
is

10 10

VAE,”’W”):—— pAc,) + = =—A,

€0 Unp/®) Ly 51 (Gppfa) msin[m (o — go)] cos (nmz/he)

- 2
k}%,m,,n - (nﬂ'/h(.) P
fo m jm,P ! . .
_ —Apmn = (Impp/a)sin|m (o — cos (nmz/h.) =0
k%,m,n—(mr/hc)z p M Ty (Jm,pp/a)sin[m (¢ — ¢q)] (nwz/he)

Note in this case that the axial electric field does not vanish

2

0 1 10 0 1\ [Jm ) m )
—& Ez = a + ) Ae - 77‘46 X < + ) l: L J;n ™m,] a :| - 7Jm m, a
0. = (g5 5) Aes = 5oy (G0 4 5 ) [Z2201 (i) = 25 T o)

dmo\? J m’
— m,p "oz P gl (5 - ]
= (222 S ) + 222, o) = 2 s G gf)

62 1 a m2 . jm,p 2 .
o |:(9p2 + ;Fp o p2:| Jm (Jm,pp/a/) - (a) J’m (.]Tmpp/a)
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Note also that the normal component vanishes on the wall
iwAL™ (p = a) = iwAL™™ (p = a) =0

with p component of the vector Helmholtz equation

2 0 0? 10 1 9?2 0?2 1 2 0
V2o = 42 Alpmn) 2 2 Apmon) — (24 22 4 - Z 2~ 42 (pmmn) = p(p,m.m)
( 02 5+ pmn) ep 2 Do’ e dp> + pOp + p2 02 + 022 p2 + Kpmn ep p2 Dp ¥
€0
= A m,n
kg,m,n - (’I’L7T/hc)2 m

. 2 . .
Jm, 1 . Im, 2 . Im, 1 . 2 .
[(p) L o) = (222) 20, G+ (222) L1 ) + 550 o)

a

2 ) m?  n?r?\ 1 ) 2 Jm . .
I (/) + (%mn—pQ—}ﬂ)J<%wmm+p2Jﬂ&@mwmﬂm&me—wMammmma

€0 9 19 9 m?  n2r? . m .
o (nﬂ/hJQf%xmnl[(5w2-+/)ap-+ s = o = g ) o /)| 5 sinm ()] cos (nmz/ )

-2 2.2
o 2 —”w—””)zﬂ%wmﬁ%mmw—%mmmmma=o
p

A m,n k m,n
kf,mn (nw/ho)* 7" (”’ ’ a2 h2

and ¢ component of the vector Helmholtz equation

0p> " pdp  pROg® 022 p? p? 0

2 0
2 2 ,m,n m,n ,m,n
(v —+kp,mn) Alpmn) 4 = ¥ —Aep 2 n) A = = ABm.m)

€0
= QAp,m,n

n (’I’Lﬂ'/hc)

2
P
0? 10 m2  n’r 1 0 1 2m?

- - - - 5 k2 Jm .m 7Jm bm
[(3/)2 + pdp P2 h2 5+ p,m,n) ap (Jmpp/a) + P (Jm.pp/a) P }

cos [m (¢ — @) cos (nmz/he)

Applying a derivative to the Bessel equation gives

9 102 10 Jun,d m>a 2m? _
(8/03 ;ap 7287 22 ap F% + P3> I (Jmpp/a) =0

or
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# 19 10 m2o , Jp O ) om?
<3p3 + ;67/)2 - ﬁaip - /)28p> Im (Gm.pp/a) = — ) %Jm (Jm.pp/a) — p73=]m (Jm.pp/a)

so that we can verify the ¢ component of the vector Helmholtz equation vanishes

1 2 0
2 2 ,m,n ,m,n
(vp2+k)Ag{; >+?%A§;; )
) 2.2
€0 9 Jm, nm 0 . B
= k‘% . (nﬂ/hc)2AP’m,n l(kp,m,n - a2p - h2 > ap Im (jm,pp/a)‘| cos [m (¢ — ¢g)] cos (nmz/h.) = 0

The axial electric field for this potential mode is

E. = Apmndm (mpp/a) cos [m (¢ — ¢g)] cos (nmz/he)

which follows from

10 10
coF. = =2 A, — =2 (pA,
0 pde " pdp (pdeg)
o my? 10 / Jm,p 2
= Ap.m.n { —) I (w) = =~ {udy, (u)} == ] cos[m(p — pg)] cos (nmz/he)
k]%,m,n - (nﬂ/hc)2 ( u ) u du u=jm.pp/a a
€0 ] 2
= Ay | 222 ) Jm Gm.pp/a)cos|m (o — cos (nmz/he
T g e (255) i Gimpefa) cosm o)l cos om0

= €04pm.nJm (Jmpp/a) cos[m (¢ — ¢g)] cos (nwz/he)

and we have used

1 m? 10 m?
J (u)-l—Ean (u) + (1— u2) I (u) =0 — E%[UJ’IW (u)] + (1— u2> Im (w) =0
10 , B m?
L] == (1= ) g )
j 2
2 m,
kg,m,n - (nﬁ/hf‘) = (ap>
The radial electric field
1 Ji _ nw .
E,=—- Ap i =L T (jm.pp/a) cos [m (¢ — —— sin (n7z/h.
= e S ) o5l (o = ) 3 sin /)
follows from
0 10 €0 jm X nm .
E :714& *77Aez:* A an ! m - 7 hc
0By = g Aee = o er =~ o Apn P2 Ui oslm (o = )] 1 sin (o)
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The azimuthal field

1 1 nm
E, = —Ap mndm (Jm,pp/a) msin [m (o — —sin (nmz/h,
T A (m.pp/a) [m (9 = o)l 5~ sin (n72/he)

we get from

5OE<P = %Aez - 0 =0

1 nm
7146 = -A anm jm i - —— si hc
ey = s AT Ui p/0) msin o (5 = o)) 5 s /)

p,m,n
The radial magnetic field

iw€0 1 . .
H, = —Apmndm (Gmpp/a) msin[m (¢ — cos (nmz/h.
O R n/hoie ™ (Jm.pp/a) [m (¢ — o) cos (nmz/he)

p,m,n

we obtain from the solenoidal result

) 1WEQ 1 . .
H, =1iwA., = 5 5= Ap mmndm (Jmpp/a) msin[m (¢ — @y)] cos (nmz/he)
k2 n — (nw/he)” P
The azimuthal magnetic field
Z‘W{':O jm, .
Hy = — 5 Apmn ==L Jy, (Jm.pp/a) cos [m (¢ — @y)] cos (nrz/he)
kp,m,n - (Tl’/T/hC)
we also find from the solenoidal result
) TWE m, .
Hy = iwheg = ——— o Ay a2 11, (] a) cos [m (p — py)] cos (nz/he)
kp,rn,n - (nﬂ-/hc) a

The solenoidal axial magnetic field is found as

H, =iwA.. =0

Note that modes which have F, odd with respect to the slot locations could be excited if the drive field
had an odd component in z. For a narrow slot aperture with width w much less than the slot length ¢,
w << £, we expect the interior drive to be significantly reduced. Furthermore, if the slot depth d is also
much larger than the slot width d >> w we expect it to be reduced even further. It is worth noting that
radiation damping out of the slot is also reduced for these modes and therefore the cavity quality factor can

be increased.

3.1.1 TM Modes Lorentz Gauge

The TM potential in the Lorentz gauge can be taken as the axial component of the magnetic vector potential

™
A, = —iwpgeg—L"" T (i a)cos|m (¢ — cos (nmz/h,
Hoo 5 — T (Jm.pp/a) cos[m (¢ — )] cos (nmz/he)
The electric field is then
E=iwA—Vo=——[V(V-A)+kA]

WHoE
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V- A =iwpgeod

E. = ATM T (/@) cos [m (o — o)) cos (nmz/hy)

i 1 92 ALY (nm/he)m . .
A, = 2T —Jm (Jmpp/a)sin[m (¢ — ¢g)] sin (n7z/he)

E = — =
Wiigeo p 020 k2 — (nm/he)* p

©

The magnetic field is

po =V x A
1 0 ATM (Jm.p/a)
H,=———A, = iwego—2mn P~ ! (Jm.pp/a)cos[m (¢ — cos (nmz/h.
= %2 — (/b (Jm.pp/a)cos[m (¢ — ¢g)] cos (nmz/he)

3.2 Magnetic Scalar Potential

There is of course a contribution to H, from the magnetic scalar potential —V¢,,

ﬂ = iWAe - v¢m

which in the Coulomb gauge satisfies the Poisson equation

V2™ = —p /g

with boundary condition on the cavity walls (at the aperture location the volume magnetic charge density
Pm, Or surface magnetic charge density o,,, accounts for the normal magnetic field)

o) _

=0
on "
Because this potential satisfies Poisson’s equation it typically diminishes in size away from the aperture.
These magnetic charge sources are later determined from the slot voltage derivative.

3.3 Interior TE Modal Potentials & Fields

The TE modes of interest (driven by a slot at the center of the cylindrical cavity) are odd in z with axial
field

H, = Ay (710 50/ ) c05 [m (1o = po)] sin (nr2/h.)
where the roots of the derivative of the Bessel function j;, , satisfy
T (j;n,p) =0

The arbitrary angle ¢, describes the angle of the modal field distribution in this symmetric cavity geometry
(without the slot). The total magnetic field is

H=H,+H:e,

and the transverse magnetic field components are
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1 0

H, = —V.H,
- kgm,n - (nﬂ/hC)z 0z
with transverse electric field components
— 1wy
Ly = ZQZ X thz
kﬁm,n - (Tl’]T/hC)
or
H,= L A j;n’pJ' (Jm.pp/a) cos [m (¢ — ¢g)] DT cos (nmz/he)
S " he C
-1 m nmw
H, = — Ay mndm (4 a)sin[m (¢ — — cos (nmz/h
® k]?,m’n* (TLTF/hC)2 P p,m,n (]m,pp/ ) [ (90 QOO)] he ( / c)
—iwlig m g . .
E,= —Ap mndm (I a)sin|m (¢ — sin (nmz/h,
p kﬁm,n—(nﬁ/hcf P p,m, (] ,pp/) [m (¢ — ¢o)] ( /he)
—Wwpig j;n;v 1o :
E,= A =g a)cos|m(p — sin (nwz/h
S (Jm,pp/a) cos [m (¢ — gg)] sin (nmz/he)

Noting that

02 10 1 02 02
2 H, =+ K2 H, =
(V?+ &) ap2+pap+p2aw2+azz+k H.=0

- [sz — (3'1’7171)/c1)2 — (mr/hc)Q] H,=0
where we have used the Bessel equation

52 10 m . 2 ;
{8/)2 + ;% - ? + (]m,p/a) ] Im (J;"'vpp/a) =0

gives the TE modal wavenumbers

. 2
Jm,
kﬁm,n = <ap) + (nﬂ'/hc)Q

Using the electric vector potential and scalar magnetic potential for the fields

D=¢gkFE=-VxA,

ﬂ = 'L’UJAE - vd)m

we take modal potentials satisfying the vector Helmholtz equation

(V2 + k2

)Agp,m,n) =0

iwAPmn) _ prpmon)
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with components

m,n A m,n . .
Alpmm) — SR (51 p/a) cos [m (p — po)]sin (nrz/he)

—1/ (iw) m . . nm
Apmn) = —A I (4! a)sin[m (p — — cos (nmz/h
” kﬁm,n - (nﬂ/hc)2 P P (Jm7pp/ ) m e = o)l he ( /he)
1/(iw) Jr . nmw
Alpsmin) g TP g1 (it _ nm he
ep k;?,m,n _ (mr/hc)2 p,m, a m (]mvpp/a) cos [m (Lp 900)] he COS (nﬂ-z/ )

The divergence is

10 10 0
' A(p,mﬂl) =~ Ae 77146 7Aez
vfe p8p<p p)+,06<,0 <P+az

_ 1/ (iw) g\ 1 9 TR .
- k;%m,n—(m/hc)"’A”’m’”( a ) Groola) 8 pja) [/ @) Jin (G pfa)] cosm (o %)1( é

c

> cos (nmz/he)

-1/ (iw) m?

Apmndm M 3 - nr > c
i g At ) cos [ (7 ool (57 ) cos amsn)

+ = (0 he) T (G o/ @) c0s [m (0 = o)) cos (2 he)

B kﬁzzm;l—/((::r)/hcf Apimn [(@))2 B TZ;] T (. pp/@) cos [m (¢ — ¢)] <7ZZ> cos (nmz/h.)

—1/ (iw) m® y nmw
i g At G0/ osim (= o) (37 ) o o)

c

B (1) Ty (1 /) 08 (o — )] cos (nm ) =0

Note in this case that the axial electric field vanishes

B 1) 10 (a 1> [m , } M Jmp v

—& Ez: — + - Ae 77714(3 X | =+ - me m a - — = Jm m a)=0
’ (ap p) " pde " T \ap p) e U ppfa) p a (i pp/a)

and

Note also that

82 10 1 82 82
2 2 ,m,n 2 m,n
0= (v + k;),m,n) Ag}; ) (92 + 779 + 72792 + 7922 + kzla,m,n) A.(eg )

= [~ (/)" = (/R0 221 (5 ) cos m (o — )] cos ()
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with p component

VQ o 2 (p,m,n) _ (p mm) _ [ Y - Y - = 2 4(p,m,n) 4(p,m,n)
< p DM, n) ep 2 a(p eap <8 ) 9 2 92 922 B p,m,n> ep 29 e

—1/ (iw) [( 0? 19 m? , 1 " > ) ‘
e 7—’_77_7_”2}% 7+k m,n 7Jm m a
kP — (o /he)? T 02 T pop ) = ) 5, (dn,pr/ @)

m? , nm .
+2FJm (];n,pp/a)} cos [m (o — ©g)] 5 sin (nwz/he)

—1/ (iw) 2 19 m? 1 )\ 0 y
2 _ (nﬂ/hc)QAp m,n [(8/)2 + pOp 02 5+ a apjm (]m,pp/a)

p,m,n

2

+2%Jm (j;n,pp/a)} cos [m (¢ — ¢p)] h—sm (nmz/he) =0

C

and ¢ component

0

2 2 2
0 10 1 0 0 _ i + k/Q )A(p,’m rL)+ 2 a A p,m,n)

2 0
VQ - k/2 A(p,m n) A(p mmn) _ [ 2 - Y - v -~
( 2 pme T p? 0p 3p2+p<9p+p23<p2+322 p?

1/ (iw)
2 p,m,n
k‘ﬁm n = (n7/he)
2 10 m? nin? P m . 2m 0 y
(o a7 = g+ ) 9 g+ 55 o)

sin [m (¢ — ¢p)] % sin (nmwz/h.)

C

— (n7/he)?

p,m,n

/2
kp m,n

sin [m (¢ — ¢p)] Z—ﬂ sin (nmz/he)
Noting that

9 1 910 1 10 20
97 pJ Umppfa) = 5 [papj (G pp/ @ )} 8p{ — I (Jn P/ )} 5927 Umappla) =5 52 Tm (im P/ )

2 )
+EJm (]:n,pp/a)
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pl I (G pp/a)

p* Op
and
92 10\1 1[92 19 1
— | =Jm (4, == |==Jm (j, S — Im
(3,0 +pap>p (i /) p[3p2 (P /) »0p (G pp/ @) + E (. pp/a)
so that
P ’ P2 0p ¢

A
5 5 Ap,m,n
ké m,n (n; /h’C)

#? 10 1 m? 1 o\ y , nw
; lapQ + - pap + — — ? — ? + <a) Im (jmmp/a) sin [m (¢ — ¢g)] W sin (nmz/he) =0

c

Applying a derivative to the Bessel equation gives

#? 19 19 gr,d mra 2m?

, _
p9p @ P2op P )Jm Umspp/e) =0
or

I J (-/ / _ ];%,pg‘] (./ /) 2m2J (', /
3p3 pap2 p2 8p p2 ap m jnn,pp Cl) = - a2 9 m "7L7Pp al — —5 JIm j’m,pp a)

0= <V2 - + k;27rz n) A(p,m,n) — EEA(p,m,n)
p )

e” p* O
and from the preceding

P>

02 0p =0
The electric field components are

10 0 2
_ E — s — Ae _ p,m,n
05 p Op 0z %

m Apmn

T T (40, o0/ @) sin [m (¢ — cos (nmz/he
k,g,mn (nﬂ/hc)2p ) (j ,;Dp/) [ (90 ‘PO)] ( / )

—iW oo

m
—Apmndm (30, ,p/a) sin [m (o — cos (nmz/he
k;:?,m,n _ (mr/hc)z p Py, (] ,pp/ ) [ (90 900)] ( / )
a (9 kﬁmm Ap m,n ]m D 7/
_EOE(/, = %Aep — FpAez = k,/2 (

m (b a Jr (G pp/ @) cos [m (¢ — @q)] cos (nz/he)
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B —iwligEo ﬂﬂj/
K2 (nr/he)? p.m.,n m

p,m,n
o 1 19

—eoE, = +>Ae -2,

’ (5‘/) p) T pdp”

(. pp/ @) cos [m (¢ — )] cos (nz/he)

= e st { (5 5) [ G| = 5 50 Ginpof) fsinfm (o = ) 7 sim o)

p,m,n

=0
where we used

o [1 . 10 ) 1 .
aip |:me (j;n,pp/a’):| = ;%Jm (j;n,pp/a) - piz‘]’m (j;n,pp/a)

Note that modes which have H, even (and H, odd) with respect to the slot locations could be excited if
the drive field had an odd component in z. For a narrow slot aperture with width w much less than the slot
length ¢, w << £, we expect the interior drive to be significantly reduced. Furthermore, if the slot depth d
is also much larger than the slot width d >> w we expect it to be reduced even further. It is worth noting
that radiation damping out of the slot is also reduced for these modes and therefore the cavity quality factor
can be increased.

3.3.1 TE Modes Lorentz Gauge
The TE potential in the Lorentz gauge can be taken as the axial component of the electric vector potential

—— L T (G pp/ @) cos [m (¢ — )] cos (nmz/he
[ERT (4 pp/@) cos[m (o — )] cos (nmz/he)

A = _inOEO
The magnetic field is then
i

Whoo

H =iwA, ~ V6, = [V(V-4,)+KA,]

V- Ae = Z'w:U‘OEO(bm

HZ = A;,]):gL,n‘]"L (j':n,pp/a) Co8 [m (Qﬁ - 900)] Ccos (mrz/hc)
i 19 ~ Apn (n/he) m
R —(am/h)? "
b ATEL /) (G,)0)
g k2 — (nm/he)? "
The electric field is

H _ - -/ . _ K .
o= om0 5 (/) it [ (9 = )] sin (n72/ )

(Jimpp/@) cos[m (¢ — )] sin (n7z/he)

g0 =-V x A,
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TE

Apvm,n (j;nyp/a) /

—Wkg 52—

5 Im
(nm/he)
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4 PROJECTIONS ON MODES

The coupling problem is carried out by finding the projections on the interior cavity modes. The modal
amplitudes are then determined in terms of integrations of the slot voltage distribution, which later are used
to set up the integro-differential equation for the slot voltage.

4.1 Interior Coupling Formulation
Maxwell’s equations driven by a magnetic current are
VxE=-J,+iwB

V x H=—iwD

with the constitutive relations

B = poH
D =ceoE
Addition of the continuity equation
\Y lm WP,
gives the Gauss law

Taking the electric vector potential to be defined by

D=-VxA,

and the scalar magnetic potential

ﬂ = iwée - v¢m

we find from the first equation

V x (v X Ae) =V (V : Ae) - V2Ae = Z':Olnz + kQAe + iwﬂ06(1v¢m

and from Gauss’s law

WV - Ae - v2¢m = pm/:u’()

where

k% = w?pgeo

If we choose the Lorentz gauge

V- Ae = iw,uos[ﬂbm
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(V*+ k) A, = —eod,,

(V24 k%) 6 = =pin/ 1o
This approach usually proceeds using the axial components of the electric and magnetic vector potentials or
the Hertz potentials [7]. Instead we choose the Coulomb gauge
V-A =0

we find the Helmholtz equation for the electric vector potential

(V?+ k) A, = —e0d,, — iwpgeoVdy,

and the Poisson equation for the magnetic scalar potential

v2¢m = _pm/:u“()

The magnetic scalar potential will be generated by the magnetic charge iwgq,, = 0I,,/Js existing at the slot;
because in the Coulomb gauge it obeys Poisson’s equation generating a magnetic dipole, its effect shrinks
in strength as one moves away from the slot. The local magnetic fields from this scalar potential will also
include the axial component H,; because the slot can be made to resonate in combination with the cavity
loading of the slot, these scalar potential generated local fields will show resonant enhancements due to the
resonant enhancements of the slot magnetic current. If we break up the electric vector potential into modes
(in general, the modal representation will need to include both TM and TE modes) then

Ae _ Z Agp,mgn)

p,m,n

where the modal potentials satisfy

(V242 m

)Aff’m’") =0

Taking these to be orthogonal over the cavity volume (again we need to include both TM and TE modes)
[ a0 a0 Gy [ A s av
v v
We also note that the TM and TE modes are orthogonal over the volume
/ ATE(p,m,n) ~ATM(p’m’n)dV :/ {ATM(p,m,n)ATE(p,m,n) _i_ATJ\I(p,m,n)ATE(p,m,n)} dv
e e ep ep ep ey
v v

go (nm/he) m/ (iw)
{82 = (7 /0e) } g2 = (07 /Re)

a 2m h ./
¢ . . Im, .
L [ Gomota) (A BEE v ) B ATE, o (m)} 7225, (5 o)

I I (Gmpp/a) {ATM  BIE  cos? (my) — BLY  ATE sin® (me)} T, (j;n)pp/a)} cos? (nmz/he) dzdpdp

a p,m,n p,m,n p,m,n p,m,n
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o (nm/he) (the/en) m/ (iw) i
{kIQMm n (nﬂ'/hc)z} {k;?m n— (nm/he) }

TM TE TM
p,manmn BpmnApmn}

/oa []mJ im0/ ) T (G0 ®) + 221, G /@) Ton (G /0) |

_ eo (nm/he) (mhe/en) m/ (iw)
I R s

TM TE TM TE
} { pmanmnprmn p,m,n

| ) o Gy )} o

go (n7/he) (The/en) m/ (iw) ATM pBTE _ pTM ATE
{k2 —(n /h 2} {k’2 W2 p,m,n""p,m,n p,m,n‘ p,m,n
p,m,n ™ C) p,m,n (TL’]T/ C)

{J ]m»P (Jm p) - Jm (jm,po) Jm (]7/11,;70)} =0

where the multiplier by m guarantees this vanishes for the symmetric case, and we used the TM and TE
potentials with cos (m¢y) and sin (mg) dependences in the next subsections. We also note that if we take
either sine or cosine dependences these are also orthogonal over the volume.

Then

(VP4+E) A = > (K =k ,.,) AP™ = —e ), — iwpgeoV e,

p,m,n

and

(K% = kp n.n) / APmn) . Amn) gy — —50/ AP ()t iwpgVé,,) dV
We note that

T+ i1V =

—ms

where J,, . is the solenoidal part of the magnetic current. However, since the vector potential is orthogonal to
the gradient of the scalar potential over the cavity volume with PEC walls, we can find the vector potential
by taking projections of the total magnetic current on the vector potential eigenmodes [14]

(k% - /APmn) Apm”)dV——eo/A(”m" T dV

p7 m,n

4.1.1 Azimuthal Single Slot Coupling

The azimuthal magnetic current in an azimuthal slot, projected on the cavity modes, gives

p,m,n

Y Y
Vv 1%

where the magnetic current on the interior side (plus sign) is (the slot arc length is s = ayp)

T = 515 (56 (2~ 20) 8 (p— @) = Vi ()3 (2~ )8 (p—a) , —h<s<h
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The factor of one half is present in this equation because: 1) in prior work with slot apertures on plane
conductors we defined the magnetic current I}, (s) by imaging the slot magnetic current in the cavity wall
so that I}, (s) = 2V, (s), but, 2) when we expand the electric vector potential in cylindrical cavity modes,
regarding the magnetic current source as interior to the cavity, and hence the source is effectively imaged
in the conductive boundary wall (we are therefore allowing the modal solution to accomplish the image).
Note that the voltage V (s) is taken to be positive on the positive z side of the narrow slot with I, being
o directed. Then with the slot at z = 29

h
(2 = K ) [ A8 A7V ==z [ 4G (a0, 20) Vi (5)ds
We evaluate these integrals for TM and TE modes below.

4.1.2 Azimuthal Slot Array Coupling

The azimuthal magnetic current from an array of slots around the circumference, projected on the cavity
modes, gives

(kQ _ p’m . / A(p,m n) A(p,m n)dV = —¢g / A(p,m n)J dV

27
=0 [ AL (000 Vi ()¢

where the magnetic current is

T = 514 (5)5 (2~ 20) 6 (0 —a) =V, ()5 (2~ )8 (p—a) , —7a<s<ma

m

N—-1

w (8= 8n)0(2—20)0(p—a)= ZV,L/(S—S,L/)(S(z—ZO)(S(p—a)

n’=0

l\.’)\»—t

-Zi

(k% — k:an)/ APmm) AlPmn) gy = g Z / AL (a,0 4 @0, 20) Vr (5) ds

n’=0

where arc length is ap = s and ap,,, = s,/.

4.1.3 TM Modes

For the TM modes the potential components are

1
Alpsman) _ £0 = Apmndm (Gm.pp/a) msin — cos (nmz/he
o K () r " (Jm.pp/a) [m (¢ — ¢g)] cos (nmz/he)
€ 1 .
= G0/ @) 10 [ Ap 51 (00) — By 05 (mip)] cos (nrez )
kpmn (nm/he)® P
Al = # Apmn 222 J1, (/@) cos [m (o — o) cos (2 h,)
kgmn (nﬂ—/hC)
€0 Jmp .
m a m.n COS (M) + By, . sin (me)] cos (nmz/h,
kﬁmn (/i) a ' (Gmpp/a) [Ap,m, (mp) + Bp,m,n sin (mp)] cos (nwz/he)
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Note that we can take mep, = 0 to generate the cos (m¢) behavior in A, or take mep, = 7/2 to generate
sin (my) behavior in A.,. The volume integral, needed in the preceding orthogonality expression for the
modal amplitudes, is

242
50Ap,m,n

_ (nw/hc)2}2

he 27 a
A[Agg7m,n)2 +A((21$m,n)2] dv :A /O' A [Aézf)),m7n)2+Ag1$m,n)2:| pdpdgodz _

2
p,m,n

m Jm,p

a

2 27
) limgoa) [ sint e o) ot
0

Il

2
p,m,n

g2 A

27Thcj3n,p/ (Engm)

2 2
) I3 (Jmpp/a) / cos®m (¢ — wo)dwl pdp
0

m

he
/ cos? (nmz/he) dz =
0

Jm,pU

2
) 2 Gmgtt) + 2 <jm,pu>] wd
k2

p,m,n

~ (nr/ne?} ) K
2 thed2 Ty i) | (Ene)

{k2 - (mr/hc)Q}z
A2

p,m,n
p,m,n

{

eg A

[7Ta4hc/ (Engm)] M

2
= 5‘0 -
Jinp

1

€

m—1 (jm,p)

>J2

2 () s =

2
Ap,m,n

—wa4hc/5m
n

2
= 50 -
Jinp
where we used the identity

1
Il
which is derived below.

It ends up convenient to use the A, ., , cos (my) and By ., sin (mey) form of the solution with the two
unknown coefficients in the projection, even though it consolidated the modal setup and integration to set up
the modes with the phase shifted form cos[m (¢ — ¢,)] or sin[m (¢ — ¢,)]. Because sin (my) and cos (my)
are orthogonal over 27 we can consider we will see that they can be considered separately in the projection.
The calculation of the integral on the left hand side of the projection involves the evaluation of the volume
integral

2

m
(mptt) + 5

2

B o1 (Gmap)

£

_ (nﬂ/hc)z}Q

he 27 a
/ [Agg,m,n)Q +Ag;$m,n)2:| dV :/ / / [Agi,m,n)Z +A£{Jp,m,n)2 pdpdgodz —
v o Jo Jo {k2

p,m,n

a 2 27
m . .
/0 [(p) Pl [ U sin () = By 05 ()

2

. 2
Jm, . .
*(J’) T2 Gmaplo) | {Ap,mmCOS(WP)+Bp,m,nsm(mw)}2d<ﬁ] pdp
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he A2 + B2 2h, ;2 nEm 1 2
/ cos? (nmwz/he) dz = b (Apmn pmn) 27 jm’g/ (Eném) / l( T > I3, (Gmptt) + I3 (mpu) | udu
" {12 = (/1) } 0 [\t

(A;Lzo m,n + B;z27 m n) ﬂ-th?n,pngfl (jm,p) / (EnEm)
2
{82 i — (7 /Re)}

) [7Ta4hc/ (engm)] ']m%(ﬁnp)

— (A2 + BQ
]m,p

p,m,n p,m,n

1 I 1 (Gm.p)
- (Agmn Jng m n) <E7ra4hc/5m> %

n jm,p

where we have used

. 2
kfm n - (]’:Tb,p/a’) + (n’n—/h’c)2

and again

! 2 m? 2 1
/ |:J1/n (Jm.pu) + ) o (jm,pu>] udu = = Jpo, 1 (Gm,p)
0 Ja U 2

m,p

This identity follows

2

1 2 1 2
2 G+ 22 )| = | [{Jmlom,pu)— )| um,pu)] udu

m,p m,p

1 2
. 2m . . 2m .
= / |:J211 (Jmpu) u — j I (Fm,pt) Jm—1 (Gmpu) + 2 JrQn (Jm,p“)} du
0

m,p m,,pu

! . 2m .
= / |:J’3’L—1 (]m,pu) U= — {Jm—l (]m,pu) -
0

Jm.,p

i Gingt) | o i)

Jm pU

1
. 2m . .
= / |:J72n—1 (]m,pu) U — j ']r/rL (Jm,pu) Im (Jm,pu)] du
0

m,p

- ~ m o2 1
= 0 Jm—l (jmupu) udu, — o [‘]m (]m,pu)]o

m,p

! 2 . m .9 . ! 2 .
= J —1 (]m Pu) udu — -9 Jm (]myp) = Jm—l (]m,pu) udu
m,p 0

)

1 a? .
/ ) udis = [b2+am,, (m —ﬂ T2 ()
mp

1
= —12 J2 'm :*JQ 'm >0
%’p [(m = 1% 432, = = D] T2y () = 521 () + 0=
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where

aﬂ]rn—l (jnL,p) + bjm,p‘]f:n—l (jnb,p) = a'JnL—l (jm,p) + bjm,p {_Jm (jnL,p) + —

={a+(m—-1)b} Jm (jmm) = bjmpIm (jm,p) =0—a=—-(m-1)b
and thus

1 2 1
. m . . 1 . 1 .
/ [Jvlvg (Jm.pu) + SN J72n (]m,pu)] udu = / Jg@q (Jmpu) udu = *Jrgn—l (Jm,p) = *Jg (Jm.p)
0 jm,pu 0 2 2

We used the indefinite integral [16]

1 2
/Jf (ku) udu = §u2 [(1 — kZ 2) J2 (ku) + J7? (ku)
u

and the recurrence relation

v
! (ku) = J,_1 (ku) — EJV (ku)
Then for the single slot

-3 hc h
(62 K2,01) Apm = o T RO [ o (10— )V (o)

pomn kg,m,n — (n’ﬂ'/hc)2 7Thca'5J7rL—1 (.j’m,p) —h

We can again use results from the phase shifted form involving cos[m (¢ — ¢,)] or sin [m (¢ — ¢,)] to arrive
at results for the form A, ., ., cos (my) and By, ,, sin (me) by taking mey, = 0 to generate the even behavior
cos (my) = cos (ms/a) or take mep, = 7/2 to generate the odd behavior sin (my) = sin (ms/a), where s = ap
is azimuth arc length. The result is

3 h
g2 cos(nmwzg/he)
K=K ) Apmn = Smen . , / cos (ms'/a) V. (s') ds’
( b ) P l<:1277m)n—(n77/hc)2 Thea® Jm—1 (Jm.p) J_n (ms'/a) V2 ()
.3 h
Jo, . cos (nmwzo/he) .
> — k2, ) Bpmn = Emen e - / sin (ms'/a) V. (s') ds’
( p,m, ) p,m, kf,,m,n* (nﬂ/hc)Q tha5t]m—1 (]m7p) h ( / ) +( )

1
Alpmin) _ €0 —Jm Gm a)m Ay mnsin(mep) — B, m.n cos (mp)] cos (nmz/h,
ep K2~ (nr k)P (Jm.pp/ @) M [Apmnsin (me) — By m,n cos (me)] cos (nrz/he)

O
k}%,m,n - (nﬂ-/hc)

3, Ginop] @) [ A €03 () + By sin (o) cos (nmz /)

For the array
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’ he) 33 N-1 /n
kK —k2, ) Apmn = Emen 008 (n720/ he Ll / cos[m (s'/a+ sp/a— Vo (8') ds'
( pym, ) P,m,n k;%,m,n _ (nﬂ'/hC)Q Thea® 1 (]m,p) nZ::O h [ (s'/ n'/ 900)] e (87)
or
h ) j3 N—-1 .hn
k2_k2mn Ay = 6m€nCOS(n7TZ(]/ c m,p : / cos m (s a+ sy /a)| Vi s ds'
(0 = Ky Ay = S5 e ety O | s ks o) i (4)
he) Js = [
k2_k2mn By = €m€nCOS(n7TZO/ c m,p : / sin [m (s’ a+ sy /a)] Vi s ds'
( p,m, ) p,m, k%ym’n o (nﬂ—/hc)z 7TthL5Jm—1 (jﬂb,p) n/zz:o _h [ ( / / )] ( )

4.1.4 TE Modes

For the TE modes the potential components are

1/ (iw) J . nm
Alpmon) — Ap i =L T (Gh.  p/a) cos[m (o — — cos (nmz/he
f P T (Jm pp/ @) cos fm (¢ = o)] 7= cos (nmz/he)
1/ (Zw) ];np / ./ . nm
= = Jr, (Im a) [Ap,m,n cos (my) — By . n sin (me)] — cos (nmz/h,
i i 0) g €05 019) = By s )] 7 cos o)
Alpmomn) — 1/ () ULy I (Jin pp/a) sin[m (¢ — ¢g)] 27 cos (nmz/he)
M — (am/h)t T " he '
= 1/ (i) Uy} (Jm.pp/a) [A sin (my) + B cos (my)] 27 cos (nrz/he)
K2 (nmfho)? p P e ST By COSTEIN G, ;
Al = Bnma g (1o /a) cos m ()] sin (0= )
> = = Jm (Jmpp/a) cos [m (¢ — @p)] sin (nmz/he
1
— EJm (j;n,pp/a) [Ap m,n €0s (M) + Bp . n sin (me)] sin (nwz/he)
Note that we can take mp, = 0 to generate the sin (m¢) behavior in A, or take my, = —m/2 to generate

cos (my) behavior in A.,. The integral on the left hand side of the projection involves the evaluation of the
volume integral (note here that taking the conjugate of the projection will require a conjugate on the right
side as well, which will change the sign since there is an imaginary unit involved in the modal amplitude)

he 27 a
/ |:A((21;,m,n)2 +A£};m,n)2+A£1;,m7n)2:| dV:/ / / |:A((21;,m,n)2 _’_Ag;,m?n)Z_’_Aé;;,mmﬂ pdpdgpdz
14 0 0 0

A2 hen®n? ) (hiw?)

p,m,n

2 {2 - (mr/hc)z}z
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a ) 2 27 2 2
i, . m ‘ .
/0 [( ap> T (Jinmp/a)/o cos” m (¢ — o) dyp + <p> I (Jin,pp/a)/o sin® m (¢ — @) dep | pdp

h a ' 27
—(1=dn0) 573 zAimn/ T, (Jin,pp/a)/ cos’> m (¢ — @) dppdp
0 0

Af) T he (n7/he)® | (emw?)
{620 — (/e

/Oa [(JIZP)Q I Umppla) + <7Z) 2 S (j;"”’p/a)] pdp—(1 = dno) Ay 1, [The/ (emew?)] /Oa T (G pp/a) pdp

A2 m nTrhcj;rQL, (nﬂ'/hc')2 / (5mw2) ! . m 2 .
__p { P . /0 T2 (jh put) + (j’ u) I (G ) | udu

K — (n/he)’ | mp

a \? !
— > / I3 (G ) udu
jm,p 0

— A127 m ’ﬂﬂ-hc-jgl,p (mr/hc)Z / (EmwQ) + {kffﬂ n (nﬂ-/hc) } AIQ) m nﬂ-hfij;z,p/ (6anz) ( a )2
2 3 -
{kﬁm n (nﬂ/hc)Q} {k;?m n (T”T/hc) } jzn’p

2
(k2 = 70} (1= 600) A2 i The ) (2m)
2 21? (

(k20 = (/) |

1 m?2
—(1- J2 (4! 1—6,
2 ( ﬂr%,p) m (jm,p) ( 0)

A2 h. 212 m 2
= p,m T ]m»P (6 v 2) [(n’fr/hc) k;’?m n (nﬂ—/hc) ] ; (1 - 7
= '

2

) J2 (]m p) (1—6n0)

m,p

= _A127 mon [th/ (ngoﬂ)] {:pzm n (37;1 D /hn;)}z an (];n p) (1 — 5no)

2 k/mnk2 'ﬁ.p_mz
Ay e 2, 020 /W) Uy = )
(k2 = (n/Ro)? }

I () (1= 6n0)

2 2oy o : 2 I3 (G1n,p)
= A (3/m) (Gt = ) athepozo (k) ./ K) g, o)

_ 2 4 2702 / 2 Jvzn (jv/n,p) _
= —pe0Al o (mathe/em) (L —m? /G5 ) (Kb mn/k) = (1=46no)
m,p
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Using

0= J’r/n (j;n,p) =Jm-1 (j;n,p) - j/ﬂ‘]’m (j':n,p)

m,p

this can also be written as

J2 -/
‘/V |:A((51;),m,n)2 + Agg'm,n)Q + Ag;zﬂn,nﬂ] dV = _/J'OEOA;Q;,m,n (ga4hc/5m) (j;?;,,p m2 B 1) (k;)’m’n/k)Q m7.1,2(.7m,;0) (1 _ 5n0)
m,p

where we have used

. 2 2
kf,m,n = (J;n,p/a) + (nﬂ—/hC)

and

! 12 (1 m2 2 -/ ! -/ m -/ : m2 2 -/
/ I (Jm,p“) + 5 02 Iin (Jmmu) udu = / Jm—1 (Jmm“) = Jm (Jmmu) + s Im (Jm,pu) udu
0 Jm,p 0 Jmpt Jrmpt

1
_ /0 [J;_l (j;%pu)u—Q{Jm_l (o) = =", (j;,wu)}jj?ljm (j;w,u)} du

-
]m,Pu m,p

1
= [ [ G = 2 ) T )] s

m,p

1 (m—1)° , . m .
= 5“2 - —5— Tm—1 (J;rupu) + (J;n,pu) - TJTQn (jvlmpu)
]m,pu jm,p

_ 1 _ (m — 1)2 2 . 2 ./ o m ey
= V= | ot (i) + Tt ) ¢ = 5 ()
2 Im,p

12
jm,p

1

0

1 (m - 1)2 2 y ./ m—1 ./ 2 m. .o (4
9 1- 72 -1 (Jm,p) + | =JIm (]m,p) + T‘]m—l (Jm,p) - jTJm (Jm,p)

m,p m,p

1 . . . —1 ) .
= 5 {JS”LI (.77/71,;0) + J72n (.77/71,;0) - 2Jm (];n,p) (’n;, )Jmfl (J;n,p)} - ng JrQn (J;n,p)

m,p m,p

1 . . 1 . . .
= 5 {J72n—1 (j’:n,p) + ‘]'r2n (.]':n,p)} - H |:(m - 1) Jm—l (.];n,p) + j/i‘]m (j;VL7P):| Jm (-7;”717)

m, m,p

1 . ) 1
= s Ul + 2 )} = =

m,p

[T (Gimp) = T (Ginp)] T (G )

1 . . m . .
= 5 {Tm1 Gnp) + T ) } = 5 Tm=1 (Gnp) T (i)

m,p

1
= D) {_J72nfl (j;n,p) + JTQn (j;n,p)} + [Jm—1 (j;n,p) - j/ﬂ‘]m (j;n,p) Jm—1 (j;n.,p)

m,p
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1
D) {_Jrznfl (j;n,p) + ‘]TQn (j;n,p)} + I (j;n,p) Im-1 (j;%p)

= 2 I () = Tt (ing) } I ) + Tt ()}

M| —

{0 ) = T ) = 5700 )} { T ) T )+ 570 i)}
m,p m,p

1 m m
=-(1- 1 J2 (4
2( j;n,p)< +j4n,p) n (n.p)

1 < m® > 2 (.
=5(1-= ‘]'IL .]m,
2 Jf;r%’p L ( I))

as well as
1 2 2
1 m 1 m
2 (- 2 (: 2 (s 2 (;
/ Iin (];mpu) udu = 2 |:<1 ) > I (];n,p) + Jv’n (J;n,p)] = 92 <1 ) ) I (J;%,p)
0 Jm,p Jm,p
which used the indefinite integral [16]
/J2 (ku) udu = Lel(i- v J7 (ku) + J? (ku)
v 2 k2u2 v v
and the recurrence relation
v
J, (ku) = J,—1 (ku) — —J, (k
! (k) = Ty () = T (k)
Then for the single slot
—i 2mmnj’? cos(nwzo/he h
(2 = 100 Apmn = -2 00 T TR [ i (o fa— ) Vi ()
K = (0 he)” wh2a® (kf o /B)” (L =232 ) T (Ghnp) /=1
Note that we can take mp, = 0 to generate the sin (ms/a) behavior in A., or take my, = —m/2 to generate

cos (ms/a) behavior in A.,. The result is

—q 2mmnj’?  cos (nmzo/he h

(k2 - k;:?m n) Apmn = Em/ (i) 3 ]7721,17 nmzo/he) / sin (ms'/a) V. () ds’
" kpimn = (07 /he)” whZa® (k) 0 /K)" (L= m2/52 ) T (3, ) /=1
—q 2mmnj’? cos (nmzo/he h

(K = K210 ) Bpamn = - 2 000) Jonp 08 (020 /) / cos (ms'/a) Vi (s') ds’
Y k}?,m,n - (nﬂ-/hc) wh%a5 (k;;,m,n/k) (1 - m2/j717%,p) Jm (jvl”rz,p) —h

1/ (iw) Jr . . nmw
Apmn) — =L g (G, A ‘ -B — h
ep k;?,m,n — (nﬂ'/hc)2 q Im (Jm,pp/a) [Ap,m.n cos (M) p,m.n S (M)] he cos (nz/he)
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~1/(;
Ag;,m,n) _ / (iw) m (Jm,pp/a) [Ap m.n sin (M) + By m.n cos (me)] Z—ﬂ cos (nmz/he)

—Jm
k2 (nw/he)® P ¢

p,m,n

1 . . .
Alpman) — Ejm (j;n,pp/a) [A} m.n 08 (M) + By m.n sin (me)] sin (nmz/h,)
For the array

em/ (—iwpg) 2mmngy , cos (nwzo/he)
k;)Q,m;n - (nTr/h’C)2 ﬂ-hgaf) (k;),m,n/k’))2 ( m2/] ) (]m,P)

(K = ki n) Apmn =

Z/ sin [m (s'/a+ sp/a — py)] Vo (s') ds’

or

em/ (—iwpg) 2mmnjl; , cos (nmwzo/he)
kﬁmvn - (nﬂ./hc) ﬂ-h2a5 (k"zg,m n/k) (1 - mQ/Jrn p) (Jrn,p)

(k kfm n) Ap,m,n -

Z / sin[m. (s’ Ja + sw /a)] Vi () ds’

em/ (—iwpg) 2mmnyj)? , cos (nmzg/he)
k;?’mm - (nﬂ/hc) 7T]’L2a5 (kl;) m ’n/k)2 ( m2/-77n p) m (]T}'L,p)

(k2 klz ) Bp,m,n =

p,m,n

Z / cos[m (s'/a+ sp/a)] Vo (s') ds’

4.2 Coulomb Gauge Potential Representation
In the Coulomb gauge
VA, =0

with the Helmholtz equation for the electric vector potential

(V?+ k%) A, = —e0 (J,, +iwpgVé,,) = —eo

ms

where J,, . is the solenoidal part of the magnetic current density, and the Poisson equation for the magnetic
scalar potential

2
\% ¢'m = _pm//’LO

where for the slot we take the volume magnetic charge density to be an azimuthal filament, at locations
p = py — a and z = 2o, with magnetic charge per unit length ¢}, (¢) (the plus sign is used to denote the
slot magnetic charge on the cavity side of the slot)

1 1
Pm = 50m () ;5 (p—po) 0 (2 — 20)
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and the volume magnetic current to be an azimuthal filament with current I, () (the plus sign is used to
denote the slot magnetic current on the cavity side of the slot)

1 1
lm —5021;;( )p(s(p_pO)d(Z_ZO)

where the use of these concentrated filament sources then requires the use of an equivalent (nonzero) equiv-
alent radius for field matching to include local reactive slot properties. The factor of one half in these
equations is used for the same reason as discussed above, because we are regarding the sources of magnetic
current and magnetic charge as interior to the cylindrical cavity, later taking p, — a. The fields are found
from the electric vector potential and magnetic scalar potential by means of

=iwA, - Vo,

D=gE= -V x A,
In the cavity we expand in terms of modes
A=) AN
njm
where the modal potentials satisfy
(V2 +k2;,) ATT™ =0

In the Coulomb gauge all three components of the electric vector potential are present from the azimuthal
slot excitation (three components of the electric vector potential are present for the TE modes and two
components of the electric vector potential are present for the TM modes).

4.2.1 Magnetic Scalar Potential

The magnetic scalar potential can be expanded in quasistatic modes

G (0,0, 2) = Z [Cpmn €08 (M) + Dy sin (mep)] I (41, ,p/a) cos (nwz/he)

pmn

by _[10 (0,1 &#
Vibm = [pap Pop) T ag2 T 02 Pro

= _ Z _]n% p/a + n27r2/h2) [Cpmn €08 (M) + Dypmyp sin (me)] cos (nmz/he) J, (]m pp/a)

pmn

=— Z kpmn pmn €08 (M) + Dy sin (mep)] I (41, pp/ @) cos (nz/he) =

pmn

Lt %6 (p— o) 8 (2 — 20)

where the Bessel function satisfies

and taking
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we choose the roots to satisfy

I (j;n,p) =0
where
. 2
ké)zmn = ];?L,p/az + (Tlﬂ/hc)
To illustrate the general behavior of the roots, an asymptotic formula for the roots is

_Am’+3
84

Jmp ~ B
where (p >> m)

B =({p+m/2-3/4)n

Multiplying by the trigonometric functions and rho times the Bessel function, followed by integration over
the volume of the cavity, gives

w7 ‘ . cos (m/p)
1;1 Kpmn [ﬂ [Cpmn cos (mp) + Dpmn sin (mep)] { sin (m’/¢) } do

a he
/ Tt (s £/ @) T (G p/ @) pdp/ cos (n'mz/he) cos (nmz/h.) dz
0 0

I cos (m’¢) ¢ . fre
= % h Qj;z (90) { sin (mlw) } d@/o I (]’:n/,p’p/a) 9 (,0 - pO) dp/(; d (Z - ZO) Co8 (TL/TI'Z/hC) dz

Using the orthogonality conditions

he 1 he
/ cos (n'mz/he) cos (nwz/he) dz = 3 / {cos ((n" —n)mz/h.) + cos ((n' +n)7z/he)} dz
0 0

1 {sin (0 —m)mz/he)  sin((0 +n)7z/he) }

T2 (n' —=n)7w/he (n' 4+ n)7/he

2 hc_;;C{sin((n’—n)w)+Sin((n’+n)7r)}_hcénn/

0 (n'—=n)m (n"+n)m En

a 1 2
[ e Gl 01) I Gl 10) 080 = [ Gl y0) e ) s = 3%y (1= 2, e (i)

s

| costmpysin oy = 0= [ sinm)cos (') dio

—T —T

/Tr cos (my) cos (m ) dp = /OTr [cos ((m —m') p) + cos (m +m') p)] dp

-7
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[sin((m—m")g) sin(m+m)p)]"_ 2m
‘{ (m—m) | (m+m) }o‘m‘””’”

[ sintmpysinm'e) do = [ foos (m = m') o) = cos (m-+m') )] dip

—T

_ [sinlm—me) sin(m+mye)]T o

(m — m/) (m + m/) 0 mm’
then gives
hc C mn277/5m CL2
k‘;gmna { prmnﬂ_ } 5 ( 2/] ) (]m)p)
= LJ (Ji.pPo/a) cos (nmzo/h )/h 0 () cgs(msf?) di
2[u0 m \Jm,pF0 c _h m sin (m(p)
and thus

[c ol e S ENe o)

bm (prp,2) = ZZ > 7 “nm Y )J (JinpP0/@) I (G0 pp/ @) cos (nzo/he) cos (nrz/he)

2
Clwp 1 m=0n=0 pmn -m /*7 (Jm,P

" h
i lcos (mep) /_h 4 (@) cos (mg') dy’ + sin (me) /_h " (¢') sin (mg') dgo’]

— Vjav Z Z Z . Engm ERYE )J (Jm. ppo/a) m (Jm., pp/a) cos (nzg/he) cos (nmz/he)

2 U

Veaw = ma>h,

Here we take the magnetic charge to approach the wall with p, — a and set it equal to twice the magnetic
flux per unit length from the slot aperture (the magnetic charge per unit length is defined by imaging it in
the conductive wall consistent with our definition of the slot magnetic current)

(s =ap) =20, (s)
am ¥ +

where again s = ay is azimuth arc length. From the continuity equation V - J,, = iwp,, we can write the
magnetic charge per unit length as

+ _ gt
ai I m = Wl

where consistent with including the image we take

I, (s) = 2V5 (s)
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Then inserting this

oo o0 o0

nEm cos (nmzo/he)
¢m (pv (2R V Z Z Z k/2 616_ T(;LOZS/]Q )0

cavn =0 p=1 m=0 pmn (Jm,,p)

hogrt
Im (j;mpp/a) cos (nwz/h.) ﬂ [h 881377 (m(p—5'/a))ds'

iwpg
and integrating by parts (using I,; (+h) = 0 to eliminate the boundary terms)

oo o0 oo

nEm cos (nmzo/he
T LY e

vn =0 p=1m=0 Pm” m2/J (]m,p)

G (P, 2

/2 m ("

I+ / . ! d/
LT [ )sinm (o= o fa)) ds

Jim (G pp/a) cos (nmz/he)

oo o0 0

Z Z Z - snsm cos (nwzp/he)

CG/U n= Op 1 m=0 p,,nn m2/j ) (jm,P)

) ‘ 1/21 0 / o -
T (G o) cos = he) g2 o |15 (') cos (m (p = o' ) ds

The contribution to the azimuthal magnetic field is then

10 = EnEm €08 (nm2o/he)
_77¢m =
p Op ap 6502 Vcav ZO;; ,;) ;)277171 m2/];721,p) Im (];n»p)
. 2 "o 1)) ds!
T (i pp/a) cos (nwz/h.) — I (s")cos(m (v —s'/a))ds
’ —iwpg J_p
or
10 2 1/2 & EnEm €08 (nT2o/he)
—= ¢, (a,p,2) = cos (nwz/he
a 380 ( ) CL2 8502 V Z()pzl,mzo p’mrL 1 - m2/ rrL,p) / )
iw&‘o h T ’ ’
12 I7 (s') cos(m (¢ — s'/a)) ds
—h
or
¢ (a,0,7) = ZZ Z EnEm cos (nmzo/he) cos (nmz/hy)
a 850 m A% a’2 8902 VC‘“’ n=0 p=1m=0 k;?mn 1 —m? ]7/721,17) ‘
TWE h 4
W; lcos (mep) / L} (s") cos (ms'/a) ds’ + sin (myp) / It (s')sin (ms'/a) ds’
—h —h
or

10 En!:‘m cos (nmzo/he)
_E%Qjm (a,p,2) = a2 3¢2 Vav Z Z Z k2 ) cos (nmz/he)

2
n=0 p= 1m0pmn m/‘j
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7:(4}50

2 lcos (mep) /_h Vi (8') cos (ms'/a) ds' + sin (my) /_h Vi (8') sin (ms’/a) ds’

or

18¢ ( - 1 iiisnsmmbnwzo/h) ( /h)[ (m) m+. + sin (my)
———¢,, (a, 0,2 cos (nmz/h.) |cos (my)m], + sin (my
aa@ " a’2 8S02 2‘/6av n=0 p=1 m=0 pmn m2/ 777. p)
ml, = 2 [ cos (ms'/a) Vi (s')ds'
wiky
ml, = 2 [ sin (ms'/a) V (s') ds’
Who J—h
4.2.2 Electric Vector Potential
The TM mode potentials are
iwAZpM W€0 i Z Z €m€n ” 1M Jm (jm,;';p/a) cos (nmzg/he) cos (nmz/he)
n=0 p=1m= 0 p’m n) (]m,p/a) p Jm—1 (JWLP)

h

[sin (me) [ hh cos (ms'/a) Vs () ds' ~ cos (mp) |

sin (ms'/a) Vy (s') ds']

_ (o) 2 .
iwAeTé” uuso Z Z Z 6m€n Im (jm,;';p/a) cos (nmzg/he) cos (nmz/h.)

Vop= 0 p=1m= O pmn) Jm*l (]m,p)

h

[cos (meyp) /_}; cos (ms'/a) Vi (s) ds’ + sin (mep) /

—h

sin (ms'/a) Vy (s') ds’]

where
Jm (jm,p) =0
with asymptotic form
. 4m? —1
Jm.,p ~ 6 - 85 o

B={p+m/2—-1/4)=
The TE mode potentials are

my]

o) J’ -/ 2
iwAZpE _ Wweo Z Z Z > - 2m/a - in (/@) (mr) cos (nmzg/he) cos (nmwz/h.)

Veaw n=0 p=1m= 0 kg,m n) kznm,n (ﬂw,p/a) (1 - m2/=747217p) Im (jvl’mp) he
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h

[cos (mep) /_h sin (ms'/a) Vy (s') ds’ — sin (myp) / cos (ms'/a) Vy (s') ds’]

) zwao s 2m/a mJ’rn(j;n, P/a) nm\ 2
WATE = LYY S el ) (0

n=0p=1m= O p,m,n/ p,m,n (j';n,p/a‘) (1 _m2/.77/7%,p> P Jm (']mvp)

h

—h

h
cos (nmzg/he) cos (nwz/h.) lsin (me) /41 sin (ms'/a) Vi (s') ds’ + cos (myp) / cos (ms'/a) V. (s) ds']

iwATE — zwso Z Z Z 2m/a I (Jmpp/a) (hj) cos (nwzp/he) sin (nmz/h.)

ca'u n=0p=1m= O kg’m n) k;’%mvn (1 - mz/jﬁ:?) Jm (Jm»P)

h

—h —h

h
[cos (my) / sin (ms'/a) V. (s') ds’ + sin (my) / cos (ms'/a) Vy (s') ds’]

The total azimuthal potential is then the sum of TM and TE parts

Zw{:‘() 00 Jyln (jm,pp/a)
ZCUAec,a = Veuo Z Z Z Em l k2 ) Im—1 (jm,p)

n=0p=1m=0 p,m,n

+

1 om/a m I (jppp/a) (m)j

(2 =K n) Kmn (it /@) (L= m2/2,) 0 T Gnp)  \ e

h

h
cos (nmzg/h.) cos (nmwz/he) [cos (my) /_h cos (ms'/a) V. (s') ds’ + sin (my) / sin (ms’/a) Vi (") ds/]

or

wAe, = v ZZ Z : [ k2 ) anj(j:zi))a

cav = 0 p=1m=0 p,m,n

+

1 2m/a m I (i pp/a) (mr)2
(k kg/)%m n) k;?,m n (jjn,p/a)Q (]. — m2/jﬁ7p) P Jm (];n,p) hC
cos (nmzg/he) cos (nwz/he) [cos (mg) mt, + sin (me) m, ]

and setting p = a

e — k2 ) (K2 —K2, ) k2 (1—m2/jm7p) he

C‘“’n 0 p=1m=0 pym,n p,m,n) Vpm,n

cos (nmzg/he) cos (nmz/he) [cos (mg) mt, + sin (mp) mZ, ]
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4.2.3 Extraction Of Dominant Operator

It is convenient to extract the dominant operator at the slot to improve convergence of the modal summations
(particularly important at higher frequencies where many simultaneous resonant modes are retained); this
identification of the differential operator at the slot in the integro-differential equation for the slot voltage will
also allow generalizations of the slot properties to include depth, wall losses, and possible gasket materials
(as discussed below). Noting that the roots for large p are

Jonp ~ (P+m/2=3/4)m
and thus

k/2 (1 _ m2/j;r21’p) ~ k/2

pmn pmn

We can thus consider the summation over p by means of

1 1 1
kaz (L —m2/j2) H;FHZ

P pmn pmn p (p+m/2—3/4)27r2/a2+n27r2/h§

Then using

1 1
(p+m/2 —3/4)° + n2a2/h2 - (p+m/2—3/4+ina/h.) (p+m/2 —3/4 —ina/h.)

o [ 1 - 1 }
- —i2na/h. | (p+m/2—3/4+ina/h.) (p+m/2 —3/4—ina/h.)

_ 1 [ 1 11 1 }
—i2na/h. |(p+m/2—-3/4+ina/h.) p p (p+m/2—3/4—ina/h.)
_ 1 {_ m/2 —3/4 +ina/h. m/2 —3/4 —ina/h. }

—i2na/h. | p(p+m/2—3/4+ina/h.) pp+m/2—3/4—ina/h.)

we can use the summation (where v (z) is the digamma function or logarithmic derivative of the gamma
function T (2))

oo

z , 1
pzlpi(zﬂ—z) =1 (2) +v T
to find
1
) PR Yy
S 2~ 3/4 — ina/h 92— 3/4 + ina/h ! !
= “i2na/h. [w(m/ —3/4—ina/he) = (m/2 = 3/4 +ina/ C)+m/2—3/4—ina/hc_m/2—3/4+ina/hj
L m/2 — —ina/he) — b (m )2 — ina/h. i2na/h.
= “iona/h, [UJ( /2—3/4 [he) = (m/2 —=3/4+ /h°)+(m/2—3/4)2+(na/hc)2]

Then using the first two terms of the asymptotic form
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1 1 1 1

~1 - — e
V() ~In2) = o = o5t o0 amps T

gives
= 1
p=1 (p+m/2— 3/4)2 +n?a?®/h?
1 , , 1/2 1/2
~—1 2—3/4— he) —1 2—3/4 he - - -
—i2na/he {n(m/ 3/4 = inafhe) —In(m/2 = 3/4 + ina/ )+m/2—3/4—zna/hc m/2 —3/4 +ina/h.

or for large n

- 1 1 cemo12] 1 m—1/2 ™
= (p+m/2- 3/4)° + n2a2/h2  —i2na/h, o —ina/h.|  2na/h, T na/he 2na/he
Then we can write
S e
k;?mn (1 — m2/j{%p) 2n7/he
Using
ig cos (nmzg/h.) cos (nmz/h.) il cos (nm (z — 20) /he) ii cos (nm (z + 20) /he)
" 1 —n

ity } et )

= —% In {sin® (7 (z — 20) / (2he))} — = ln {sin® (7 (z + 20) / (2he)) }
= —In|sin (7w (z — 20) / (2h¢))| — In|sin (7 (z + 20) / (2h.))]

~ —In|(r(z = 20) / (2he))| — In|sin (7z0/he)| , 2z — 20 << he

we can write

27rc/Lhc ; % cos (nmzg/he) cos (nmwz/h.) = #/hc [—In|sin (7 (z — 20) / (2h¢))| — In|sin (7 (z + 20) / (2h))]]

a .
~ g [ 1 (2 = 20) / (2he))] = nsin (20 /)|
and then
19 1 0 1 S Em + . +
_7%@” (a,9,2) = a2 952 Voay 2 5 [cos (my) mT, + sin (me) mf,]
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[Z €n cos (nzp/he) cos (nmz/h.)

n=0

{ZW (e )—Qjﬂjf;,ic)%C;’j:{—1n|<w<z—zO>/<2hc>>|—1n|sin<mo/hc>}

Now we note that

) k2 Em .
iweoVy (s) = %ma 5 [cos (mep) mf, + sin (mg) m, ]
and thus
19 192 1 e
_E%¢7rt (CL, @, Z) = aizaiwzm mz_: % [COS (m(p) m:s + sin (m@) mjsjl
N - 1 1 — o
€n cos (nmzg/he) cos (nmz/he) - —
2 2 i i)l ah)

+iwaok21(12£p271rv+ () {—TIn|(7 (2 — 20) / (2he))| — Insin (w20 /he)[}

Similarly, using
Jmp ~ (p+m/2=1/4)7

1 1
Zkz HZ
p

pmn 5% (p+m/2 - 1/4)" 72 /a® + n2m2/h2

1 1

(p+m/2— 1/42 + n2a2/hz  (p+m/2 —1/4+ina/h.) (p + m/2 — 1/4 — ina/h,)

B 1 { 1 B 1 }
-~ —i2na/h. | (p+m/2 —1/4+ina/h.) (p+m/2—1/4—ina/h,)

_ 1 [ 1 1,1 1 }
—i2na/he. |(p+m/2—1/4+ina/h.) p p (p+m/2—-1/4—ina/h,)
_ 1 {_ m/2 —1/4 +ina/h. m/2 —1/4 —ina/h. }

—i2na/h. | p(p+m/2—1/4+ina/h.) pp+m/2—1/4—ina/h.)

we can use the summation (where v (z) is the digamma function or logarithmic derivative of the gamma
function I' (2)) to find

Z 1

— (p+m/2—1/4)" + n2a/h2
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- —i27;a/hc {7’0 (m/2 = 1/4 = ina/he) =4 (m/2 = 1/4 +ina/he) + 2o 1/i —inafh,  mj2 — 1/i n ina/hj
- m/2 — —ina — Y (m/2 — ma i2na/he
- [w( J2 14— inafhe) = (mf2 = Vfdvina/h) + e /W]

Then using the first two terms of the asymptotic form of the digamma function gives
= 1
= (p+m/2 - 1/4)° +n2a?/h?

1
—i2na/h,

1/2 1/2
m/2 —1/4 —ina/he m/2—1/4+ina/h.

{ln(m/Q —1/4—ina/h.) —In(m/2 —1/4 +ina/h.) +

or for large n

i 1 1 it +1/21 1 o +1/2 T
(p+m/2 —1/4)* + n2a2/h2  —i2na/h. —ina/h.|  2na/h. na/h. 2na/h.

p=1
Then we can write
Z k%’mn 2’,’LT‘-/}L

Then we can write the electric vector potentlal as

Em 1 1 m2/j;r2zp (nﬂ')z} a(l—dno)]
iwAey, (a, @, 2) En + . — + ——
? ‘/Cav z:0 Z |47221 { (k k}% m n) (k k}?m n) k;?m n ( - mz/j;r%,p) he 27’L7T/hc
cos (nmzg/he) cos (nmz/he) [cos (mg) mf, + sin (mep) m_, ]
—l—k—Q 3 Sm [cos (my) mY, + sin (me) i — cos (nmzo/he) cos (nwz/he)
2ma = 27 #)Mes pm —n 0
or

Em > 1 m?/j2 nr\? | a(l—6n0)
iwAeg (a,¢,2) VWZ Z%[Z{ Rk B (- m2/iz) <h> " onahe

m=0 n=0 p=1 p’m n) pmn) p,m,n
cos (nmzg/he) cos (nwz/he) [cos (mg) mt, + sin (mp) m, ]
—|—iw50%V+ (8)[=In|(7 (2 — 2z0) / (2h.))| — In|sin (720 /he)]]
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The total azimuthal field is then

10
HLP (aa ®, Z) = iWAetp ((J,, ®, Z) -

a %(bm (a’7 2 Z)

- iweoi (;2882 + 1) Vi (s) {—In|( (= — 20) / (2he))] — In [sin (w20 /he)]}

k2 X em
— Z % [cos (mp) m7, + sin (me) m, Z €n o8 (nzg/he) cos (nmz/h.)
ca

m=0 n=0
f: 1 4 1 2/]m,p (TLTF)Q + Cl,(l *5n0)
= (k2 = k2,00n) (K2 — k2, ) k2, (L=m2/522 ) \ he 2n7/he
1 0% 1 sm
+— Z [cos (my) m, + sin (me) mY,]
2 9,2 es 0s
a2 092 Viay =

Z €n cos (nmzo/he) cos (nwz/he) {Z e 1 '  1=4no }

n=0 p=1 pmn( m2/];721,p) 2n7r/ (ahc)

Finally setting z — 20 = p,

1 /1 6° he
H, (a, 0,20+ py) = zwso <k282 1> V+(s){ epy — Ce+2In (hﬂ_CSC(WZo/hC))}

k2 > m
a ‘/cav 7;) % [COS (m<p) ’ITL + SlIl os Z En COS TLTK'ZO/h )
i 1 t 1 ™ dmp (””)2 L+ (1= dno)
p=1 (k2 B k;%,m;n) (k kigm n) ké’z,m n ( - m2/j7/721,p) he 2nﬂ'/hc
1 92 1 ¢
m + . n
P Vi 2 3 08 MR sin () )

> > 1 a(l—20,
;sn cos? (nwzo/he) {Z 7 ( - - ( 0) }

pmn mz/]ﬁ,p) 2’[’L7T/hc

where

Qp, =y, +C.

P+

Q,, =2In (2h/p,)
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4.2.4 Approximate Extraction Of Interior Quasistatic Operator

It is sometimes useful to approximately extract the Coulomb gauge scalar potential contribution to the
magnetic field at the slot. Our prior interior representation

18 oo oo o0

10 snsm cos (nmzo/he) I "
o () = D>y o) 5 cos s/ ) [cos (mg) m + s (i)

n=0p=1m=0 pmn

+ 12 h / / /
ml, = cos (ms'/a) Vy (s') ds
Who J—
ml, = i2 [ sin (ms'/a) Vi (s') ds’
” wpy Jop

is approximated by the half space form

p+> = /
ﬂo h47n/p +(s—¢)

where we used the continuity equation

1 a/h Vi (s
Wity Os —h2my/pA + (s — )

Pm

0 v 0
8Im 26*V+*qu

and the vanishing of the voltage V' (+h) = 0. Hence the approximation to the magnetic field at the slot is
0 i

77¢m PysS) = /
(+ w,uoas h27r\/p + (s —¢")

0s

where we choose

2= 20 = P+
Then using
h /
dS Qe
/ Vi (s) 2ds' ~ 27? Vi (s)
—h 2my\/p% 4+ (s — )
1 2 /1.2 / h V+(s/)_v+(3) i
+%{*Ce+1n(178 /h )}V+(S)+/h271'8—8/|d8
er+ = Qp+ + C,
Q,, =2In (2h/py)
gives
0 ) er+ 0?
_agbm (p+7s) - Wit o 882 V+( )
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i 2

|s = ']

{—Ce+1n(1—52/h2)}V+(s')+/_};st’]

Wity 2m ds?
Using this with the electric vector potential part of the representation of the preceding subsection

. 10
Htp (a7§07ZO + P+) ~ ZWAEQO ( a, P, 20 + P+) a ;io (a’awvzo + p+)

Qe (182 he
N iweo— —=—+1|Vi ()Jrzwso V+() —Ce +2In Ecsc(ﬂzo/hc)

i 02 VL (s = Vi (s)
—C., +1In(1- 2 /732 / / + + /
ogdn 957 {-Ce+In(1-5°/p*)} Vi (s) + » 55 ds
k> X em
-7 Z 5 [cos (mep) m, + sin (me) m, Zen cos? (nmzg/he)
€AV m=0 n=0
i 1 N 1 m?/ji2 <m)2 L a(l=0u)
T L2 = k) (B = k) B (L= m2/52 1) \ De 207 /he
where
Qep, =y, +Ce

Q,, =2In (2h/py)

4.3 Lorentz Gauge Potential Representation

From the Coulomb gauge form of the electric vector potential we can construct the Lorentz gauge form by
replacing (where we must determine 1 appropriately)

A = AT +VY
In the Lorentz gauge
10 0 1 0% 9%
V-A =V==-"(p— a5+t 55 =1
A=VY= o (pap ) T g T gar T Wt 00m
where we need the Helmholtz solution for the magnetic vector potential in the Lorentz gauge
1
<v2 + kz) ¢m = _pm/ﬂ’o 2 qm ( )6 (Z - ZO)
Ho

From the preceding subsection we can take the Coulomb gauge form and replace kj»,,, — kiz,, — k?

G (s 0, 2) = ! i i i Snfm I on P/ ) cos (nzg/he) cos (nmwz/h.)
m \Ps ¥ s o gt (k;?mn — k2) (1 — m2/j;)’2L,P) I, (‘];"L,P)
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1 h h
e lcos (mep) / hqiz (¢") cos (m") d’ + sin (mep) / g (") sin (me') dg’
0 —

I e 577,5m. I (G pp/ @)
- 2 cos (nmzg/he) cos (nmz/he
V;);;o o~ R) (L2 [3,) T ) o0/ e cos e/

1/21 0
zwuoaﬁgp

/ It (s") cos (m (o — &' /a)) ds

and

Im (G,
- MIL::;O Z Z Z k2, (K2 N - £ jpp/a) cos (nzp/h.) cos (nwz/h¢)

p=1m=0n=0 pmn pmn k2) (]‘ _mz/]?,”r%,p) Jm (j;n,p)

/210
fwis adyp

/ It (s')cos (m (¢ — s'/a))ds

zw € En€m Im ‘;np a
- MO 0 Z Z Z , U - p/a) cos (nzo/h.) cos (nmz/he)

Veav p=1m=0n= Okz?mn ké)gmn kz) (1_m2/j47217p) I (jén,p)

1 190 h

h
- / / / .
Wity @ 3@ [cos (m@) /_h Vi (s )cos (ms /a) ds’ + sin (m§0)

Vi (8')sin (ms'/a) ds’]

The total azimuthal electric vector potential in the Lorentz gauge is then

, Lo\  —iwep 1 Jr, (Gm.pp/a)
ey =i (45, + 150) - S S e, | ettt

p&p n=0p=1m=0 pym,n

1 1 1 J’H’L (j;n pp/a) 2 <7’L7T>2 -/ 2 62
+ - " m 7 = Um,p/Q) 755
(8 = k) Ktmn (i /)" (1 =2 /32,) 9T (i) o) "l 5

h h
cos (nmzg/hc) cos (nmz/h.) [cos (mep) /_h cos (ms'/a) Vi (s') ds" + sin (me) /

—h

sin (ms’/a) Vy (s') ds’]

k'2 e Em 1 ']7/n (jm,pp/a) 1 1 m2 ']m (.j:n,pp/a)
eSS g | e T G e

p,m,n

cos (nmzo/he) cos (nmz/he) [cos (me) m{, + sin (me) mf,]

where
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. h
n 12

= — s(ms’Ja) Vi (s') ds’
ml, e cos (ms'/a) Vi (s') ds
+ 12 4 ’ / ’
- = i vV d
m, e sin (ms'/a) Vi (s') ds

Setting p = a

. e o 1 1 m? /g
MAW V Z Z Z Emén k2 — k2 ) + (k — 2

€AY =0 p=1m=0 p,m,n p,m, n) (1 - m2/]m71))

1
cos (nmwzg/h.) cos (nmz/h.) 5 [cos (myp) m, + sin (me) m7, |

The contribution to the azimuthal magnetic field from the scalar potential in the Lorentz gauge is

18 0o oo oo Enfm Im (];n p/a)
=P = P cos (nmzg/he) cos (nmz/h.
T D IO M o e B U R G
1 h h
_ cos (m<p)/ Vi (s") cos (ms' /a) ds’ + sin (mgp)/ V. (s") sin (ms'/a) ds'
—iwiig h h

orat p=a

[o olNNe S lNe o}

€7l€7n
a2 3¢2 V;m) Z Z Z k/Q kz) (1 _ P12 )

2
n=0p=1m= 0 pmn m /vap

¢m( 2) =

a (9@
1 .
cos (nmzg/he) cos (nmz/h.) 3 [cos (my) m, + sin (me) mZ, ]

4.3.1 Extraction Of Dominant Operator

For the same reasons discussed in the Coulomb gauge representation is convenient to extract the dominant
differential operator at the slot here in the Lorentz gauge representation. Therefore, extracting the dominant
operator from the Lorentz gauge representation using

Z 1 - a
k2, (L=m2/j2 ) 2nm/he

pmn

o0

Z z cos (nmzo/he) cos (nwz/he) ~ —In|(7w (z — z0) / (2h.))| — Insin (mz0/he)| , 2 — 20 << he

n=1

2

k2

iw50V+ ( )

5ra 2 5 [cos (myp) m7, + sin (me) mig]

gives
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19 1621°Oem

—_——— —n + . +
@ 0y by, (a, 0, 2) = po) 3@2 Vi 2.5 [cos (mp) mZ, + sin (myp) mos]
- a 1 a(1— don)
n hc hc - —
nZ:OE Ccos (mrzo/ )COS (mrz/ ) {Z (k;?’mn _ k;2) (1 _ m2/]§%,p) 2”7T/hc }

. 1 0%1
—stoﬁ@;‘@ (s){—In

(7 (2 = 20) / (2h¢))| — In[sin (w20 /he)[}

Also using

we can write

)

an cos (nmzg/he) cos (nmz/he) Z + 1/2 2/§m’p + a1 = Ono)
ne0 = 2 n) (k =k n) (1 —m?2/j2 p) 2n7/he
. 1 .
+WE0;V+ (8){—=In|(7 (2 — 20) / (2h¢))| — In|sin (720 /h¢)|}
The total azimuthal field is then

H, (a,9,2) = iWAego (a,p,2) — 1 0

a %Qsm (av 2 Z)

= iweot (18 + 1) Vi (s) {—In|( (= — 20) / (2he))] — In [sin (w20 /he)]}

T
kX e

_ Z 5 [cos (m) m¥, + sin (me) mJ, Zen cos (nmzg/he) cos (nmz/h.)

n=0

0
1 1 2/.7m,p a(l _6n0)
{ (kz — k2, ) + (k: e ) (1 — mz/]mm) } + 2n7/he 1

p,m,n

[cos (my) m7, + sin (me) m Z €n cos (nmzg/he) cos (nmz/h.)

m=0 n=0

c 1 a (1= bon)
{Z k2., —k2) (L—m2/j2,)  2nm/he }

p=1 pmn

Finally setting z — 20 = p,,
1 /1 9 he
Hy, (a,¢,20 + py) = Riweos— (13 aa 1 Vi (5)3Qep, —Ce+2In o ose (mz0/he)
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2 (oo}
_ Vlf % [cos (mp) mt, + sin (me) mJ, Z £n cos” (nmzo/he)
cav n=0
[i{ i 1 2/.7m,p } + a(l _6n0)‘|
S\ " T oty |
1 02 1 Xen .
IRV 5 [cos (my) m, + sin (me) m1,]

=0

0o > 1 a (1 - 5n0)
an cos? (nmzg/he) {Z K2 k) (1- m2/j4727,,p) ~ 2nw/he }

n=0 p:1 pmn

where

Qep, =Qp, +Ce
Q,, =2In (2h/p.)

4.3.2 Coulomb Gauge Lorentz Gauge Comparison

The previous Coulomb gauge form is

1 /102 he
H, (a,ga,zo + p+) zwsg <k:2 952 1) Vi (s) {er+ —Cy.+2In (hﬂ' csc (ﬂzo/hc))}

ke
_ é” [cos (my) m¥, + sin (me) m, Z en cos” (n2o/he)
0

cav m= n= O
> 1 1 m2/j;,21,p nm\ 2 a(l—0dn0)
Z k2 _ k2 + k2 — L2 L2 o2 /402 ho + onm /h
p=1 ( p,mm) ( Py, n) D,m,n ( m /jmm) ¢ ¢
1 92 1 S em .
+¥ 87902 v % [cos (mp) mt, + sin (mg) m7, ]
cav m:0
> = 1 a(1—3n0)
nzz:osn cos? (nmzo/he) {Z k’fmn ( m2/j;72w) - 2nm/he }
Partial fractions
k2 1 N 1
or
k2 1 1
(k2 k‘;?m n) k;)%m n (kg?m n k2) k;:72,7n n

then changes the Coulomb form to
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1 /162 he
H, (a, 0,20+ py) = zwso </€2 532 1> Vi (s) { epy, — Ce+2In (hﬂ' csc (WZO/hC))}

k2 > m
- Z % [cos (mep) m, + sin m, Zen cos? (nmzg/he)
€AY =0 n=0
i 1 n 1 2/.7m,p (m)2 + a(l —6710)
—t (2 = k2 ) (K2 = K2, 0) k2, (L—=m2/522 ) \ he 2nm/he
1 92 1 e
— 2 [cos (my) mT, + sin (mep) m,
a2 002 Vogy mZ:o 9 [ (mep) (mep) ]
Z o 0\ i, g ()
L 9? X Em "
+3 BT Z 5 [cos (my) m, + sin (me) m},]
> 1 (1 —6n0)
e cos® (nmzo/he) - -
> {2 o T e )
or
1 /1 6? he
H, (a, w20 + p+) ZOJEO 292 +1)Vy(s) Qep, —Ce+2In T csc (mzo/he)
B XN em
-7 5> [cos (mep) m, + sin m, Z en cos? (nm2g/he)
€AY =0 n=0
i + .7;721 p/a‘2 +7’l27T2/h2 2/Jm,p + a(l _(5710)
p=1 kg,'m n) (k2 kl;)Q,m n) kp%'m n (1 - m2/]7n,p) 2717T/hc
1 02 1 e .
20V Z o> [cos (my) m, + sin (me) m1,]
cav m=0
> > 1 a(1—6n0)
2
en cos” (nmzo/he) - -
> S e
or

1 /1 0 he
H, (a, 0,20+ py) = zwso <k26 2+1> Vi (s){ ep, —Ce+2In (hFCSC(ﬂ'ZO/hc))}

IR

% Z %ﬂ [cos (mep) m7, + sin (my) mg‘s} Z e, cos? (nzo/he)
cav m=0 =

60



p,m,M

> 1 1 m? /i a (1 — dno)
lz { (k2 — k2 T (k2 —k2,,..) (L—=m2/j2 ) } + 2nm /he ]

2 o0
19 1 Z Em [cos (my) m, + sin (me) m1,]

a? 99* Veay = 2
N c- 1 1 a(l—dno)
en cos? (nmz he . —
2ot /i) {Z (e~ ) (1= m2/i2,) ~ 2nw/he }

which is the same as the Lorentz gauge result
1 (1 9 he
H, (a, ©, 20 + p+) zwso <k2 552 1) Vi (s) { epy —C.+2In (hﬂ' csc (wz()/hc)) }

k2 o0 m o0
- Z £ [cos (my) mt, + sin (me) m,] Z e cos® (nmzo/he)

Veav 5= 2 o
i e i)
o k2 BRRCETN (1—m2/Jmp) 2n7/he
1 0% 1

Z Em [cos (my) m, + sin (me) m1,]

> e, cos? 3 1 al—bu0)
gsn cos” (nmzg/he) {; (k’fmn — k2) (1 _ mz/jﬁ’p) 2n7/he

Noting that near the TE resonance the substitution

T2 a? 8902 Veaw

k2/]m N k/zm 71/]m,p (]m p/a’ +n 7Tz/hz) /] - 1/0’2 + TL27T2/ (hg];rzL p) - 1/0'2 y = 0

in the Lorentz form
1 /1 02 he
H, (a, 0,20 4+ py) = zwsg 2 9a2 +1) V4 (8){Qep, —Ce +2In 7 CSC (rz0/he)

1 e
_ Z % [cos (my) mE, + sin (me) m, Zen cos? (nmz2g/he)

‘/cav m=0 n=0
i k2 i ]{2 m2/]£’p I k2a (]. — 571())
S k) (B —kRn) (L=m?/57,) 2nm/he

Z %n cos (mp) m, + sin (me) m, ]

‘/v(/(l/U m:0
> 1 m?/a? a(l—0d,0)
£ cos? (nmzg/he) { - - — (m2/a2) B
nz% ; (k2 — k%) (L=m2/j2 ) 2n /he

shows that the TE resonance terms cancel for n = 0 as was obvious from the beginning in the preceding

Coulomb form.
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Issue With Quality Factor Perturbation The preceding subsection demonstrated the required equiv-
alence of the representation in the two gauges. However, when a perturbation method is used to introduce
cavity wall losses in the representations these are not necessarily equivalent any longer. Again beginning
with the Coulomb gauge form, but with the quality factors introduced

. 1 1 02 he
H, (a, 0,20 + py) R iweog <k:2632+1> Vi (s){ ep, —Ce+2In (lmcsc(ﬂzo/hc))}

k.
_ Z % [cos (mp) mE, + sin (me) m, Z n cos® (nmzo/he)
€AV m=0 n=0

i 1 . 1 m* /iy (mr)2
{k2+kkpmn(1+ )/ pmnikzm,n} {k2+kk;/om71(1+7’)/ pmnikamn}kﬁmn( 7m2/]m,p) hc

p=1
1—94,
IS L))
2nm /he
1 9?2 1 em + g +
AT 5> [cos (mep) mf, + sin (mg) m, ]

m=0

oo

> 2 s 1 _ a(l _6n0)
nzzosncos ( o/hc){z k2, (1 _m2/.7mp) 2nm/he }

pmn

In the preceding subsection, partial fractions were used

k? I S 1
(P = k) Ko M (B = K2 )

p,m,n p,m,m p,m,n

but here with the quality factor there is a change

k2+kk;mn(1+z’)/ e 1 1
{kQ + kk‘;) m,n ( + Z) / D, 'm n k;:?,rn n} kl?,’rn,n k?m n {kQ + kk;:) m,n (1 + 7’) / Iq;,%h” - k;)%’”h”}

or the analog of the perfectly conducting form

k2 1 1
(k2 - kgm,n) k;JQ,m,n (kgm n kQ) k;?m n
can be written as
k2 Kk (141) /Q) N 1 1

{kQ + kk;) m,n (1 + Z) /Qp,m n lem n} k";)Q,m n {k;?m n kk; m,n (1 + Z) /Qp m,n 2} k;?m n
or
k2 1
{kQ +kk;mn(1+i)/ pmn k/Qm n}kl2,7rz,7L {kp m,n kk;:)mn(1+l)/ pm n _kQ}
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1 (k/kpmn) (1 +9) /Qp i
{k2+kk;mn(1+z)/ pmnik/zmn}

k’2

p,m,n

Then the Coulomb form becomes
1 /1 9? he
Hy, (a,¢,20 + py) & zwso 2 9a2 +1) V4 (8){Qep, —Ce +2In T C5C (rz0/he)

]{72 s m oo
- Z % [cos (my) mE, + sin (mp) m7, | Z en cos? (nm2g/he)
n=0

> 1 1 m? /i, (nr)?
> : e
{k2+kkp»mn(1+ )/ pmn_k2m¢n} {k2+kk;/nmn(1+z)/ pmn_k&mn}k;}%mn( _m2/.7m,p) hc

p=1

1-6
21— 0n)
2nm/he
192 1 XNem L, +
a2 W V ? [COS (ng) mes + sin (ng) mOS]
("2} cav o
o 1 k2 4+ kK., o (L+14) /QTE
D encos® (nmzo/he) {Z 1—m2/52 ) {k2 + kk! ! 2'2 k2
n=0 p= ( _m/Jm,p){ + p,mn( +1)/Q3, pmn_ p,m,n S Pp,m,n
1 82 ad Em + . +
+¥% Z 5> [cos (my) m, + sin (me) m1,]
Y m=0

- - 1 (1= o)
n COS> he) _
TLZZU e (nﬂ-ZO/ {Z m2/jm P) {kp,’m n kk;) m,n (1 + Z) /Qp m,n - 2} 271’/T/hc }

p:1

or
1 /1 0 he
H, (a, 0,20+ py) ~ zwso 2 9a2 +1) V4 (8){Qep, —Ce +2In 7 CSC (rz0/he)

Z Em [cos (me) mE, + sin (mp) m7, | Z e cos® (nmzo/he)
0

2
= n=0

i 1 N Jrmp/ @ + 0w /B2 */3
{k2+kkpmn(1+z)/ pmnika,n} {k2+kkémn(1+z)/ pmnik/an}k;?mn(17m2/j7,7%,p)

p=1

a(l —5n0)] 1 92

m + . +
2n/he 22V, n; 5 [cos (my) mT, + sin (me) m7,]

- 2 - (k/ pmn) 1+z)/men
ngosncos (nrzo/he) {Z m2/j ){k2+kk;mn(1+z)/ pmm k/zmn}}

p:1
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T2 002 Vi mX:IO =2 [cos (mip) mf, + sin (me) i,

Z En COS2 (TLTI'Zo/]’L { 1 1 a (1 - 6n0) }

n=0 st —m2/j ) AR — kR (U40) JQTE  — K2} 2n7/he
or
1 (1 h
H, (a,w,zo+p+)%iw50% <I€2682+1> Vi (S){ epy, — Ce+2In (h;CSC(WZO/hC))}
B SN e .
7 Z 5 [COS (mp) mt, + sin (me) mJ, Zen cos? (nwzo/he)

n=0

> ! . 1
p=1 {k2+kkpmn(1+)/men kim,n} {k2+kk’ k2

pmn(1+z)/Qp,mn_ D,MM

1 07 1 e
m + . +
S5 3a o — |[cos (Mmy)m S m
+a2 6(,02 Vca’u — 2 [ ( 90) es + 111( 90) mos]

n=0 p:1 ( mz/]’ln p) {kQ + kk; m,n (1 + Z) / [),TVL n k/2

p,m,n

ZEnCOS2('I’L7TZQ/hC){Z 1 (k/ pmn)(l“‘i)/ pimn }}

1 9? 1 = €m o N
+ <20 5 +k ) v mZ:O? [cos (mp) mZ, + sin (myp) mos]

n=0 p=1 mz/-]m p) {kp,’m n kk;) m,n (1 + Z) / D, m n k2} nﬂ—/hc

Z £ cos® (nmzo/he) {Z ( ! 1 a(l—dno) }

Compared to the Lorentz form

.1 (1 97 he
H, (a, 0,20 4+ py) = weoy <k2652 + 1) Vi (s) {Q€p+ —Ce+2In (lm csc (ﬂzo/hc))}

~7 Z %ﬂ [cos (myp) m;"s + sin (my) mjs} Z £y, COS> (nmzo/he)

m=0
i 1 1 2/jm7p + a (1 — 677,0)
p=1 k2 + kkpmn (1+19) /Qpmin = Kjm kz + Rk (L 419) [ Qpaman — K (1 -m?/jg p) 2n /he
1 02
+

o0
c .
e 3 5 s mel it din o)
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0o o) 1 1 a(l—(sn)
ZgnCOSQ(an/hc){Zk — kkpy o (L) QT — K2 (1 2 2”77/’%0}

2
n=0 p=1"Pm,n p,m,n -m /]m,p

or

1 /1 02 he
H, (a,go,zo + p+) zwao <k282 + 1) Vi (s) {Qeer —C¢+2In (hﬂ' csc (wzo/hc))}

I

n» 2 7m [Cos (mep) m, + sin ( m, Zoen cos? (nmzg/he)
SR 4 Kb (14 1) [Qpanin — R K2+ Wy (U4 0) Qi — K

102 L\ 1 e :

=0

) ) 1 1 _ a(l - 5710)
2_ encos” (nmzo/he) {Z K = W (1L+0) [QFE 0 — K2 (L —m2[32,) — 2n/he

p,m,n p,m,n p,m,n

we see that the Coulomb form contains the extra term

19 1 ZOO €
m + 3 +
+§ 874,02 Vcav 7 [COS (m@) Mes + sin (m(p) mos]

m=0

i5nCOSQ(n7TZO/hc){§: ! - (k/ pm")(lJri)/ ggnn }

n=0 p=1 (1im2/.74727,,p) {k2+kk;)mn(1+z)/meni p,m,n

Hence for very large quality factors this term represents a very small difference O (1 /QF pm n)

4.4 Interior Modal Series Representation And Finite Quality Factor

The interior field will be represented by the electric potential modal series

A ()= AP™ (r)

p,m,n

where for the TM modes

P m,n / - p ) Agp.’myn)dv - _50/ Agpvm,n) : lmdv
1%

and for the TE modes

av

m

k/Q'm n / A pomn) A(E,pﬂn’n)dv = —EO/ Aépym,n) . l
14
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Now to introduce cavity losses we perturb the leading factor multiplying the volume integral [15], which for
the TM modes is

K’ kimn — k? Jrkkp,mm (1 Jri) /vamvn - k;mn
and for the TE modes is

where the cavity quality factors are given by

Wp,m,nto fV ﬁ(p’m’")* . E(P,m,n)dv

Qp,m,n =
R‘(gp’m"n)‘%H(p’m’n)* . H(p,m,n)ds
S
with surface resistance

Rgp,mﬁn) =1/(06pm.n)
and skin depth

Spmn = \) 2/ (Wpmnpio)

4.4.1 TM Modes

For the TM modes the magnetic field components are

TWe 1
H,= ; 0 Ap,m ndm (Jm,pp/a) msin [m (¢ — ¢y)] cos (nmwz/he)
K2 o — (n/he)* P
iwe . '
H,= . 0 5 Apmn m,p I (Gm.pp/a) cos[m (o — @y)] cos (nwz/h.)
]{;p,m,n - (’I’Lﬂ'/hc)

The surface integral in the quality factor is

he T
fﬂ(“m’”’*ﬂ“’"m")ds: / dz / |Hy (p = ) adgp + / / [Hy (2= 0) + |H, (= = 0) pdiodp
5 0 -7 -
a ™ 5 )
+/0 / ['Hﬂ (2= he)|” + [Hy (2 = he)] } pdpdp

he Eis
- [ [ ip=a ad90+2// [H, (2 = 0)* + Hy (= = 0)] pddp

(WEO) |Apmn| J/2 (jm,p)]m,p

— {k2 ot } /0 cos? (nz/he)d /_: cos” [m (¢ — )] dp

2 2 )

weg)” |A 21 /em) ¢ ] m? , m

(o) [Ap.m.nl ( i 2) / {p2J72n (Jm.pp/a) + <Ja7p> J1/r2L (]m,l)p/a)} pdp
{k% m,n (TL’]T/hC) } 0

+2
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— (UJEO)Q ‘Ap>m7n|2 J’r/‘s (jm7p)j72n7p (hC/E ) (27('/8 )
2 n m
{#2 i — (07 /Re)} “

(@e0)” [ Apm,nl” o p

{82 o — (0 /) }

1 2
+2 s /o) [T ) + 2 G b
0

m,p

o 2m (w50)2 9 . 9
= ‘Ap,m,n ; {k2 ( /h )2}2Jm1 (]m,P) ]m,p 1+
— (nm/he

hc/a]

En

where we used

! 2 m* 1o, . 1o .
; I (Gmpu) + ij (Jmpu) | udu = §Jm (Jmp) = 5 m—1 (m,p)

m,p 2

The volume integral in the quality factor is

he a T
/ ﬁ(?,m,n)* .E(p,m,n)dv _ / / / |:|Hp‘2 + |HLP|2:| pdgodpdz
\%4 0 0 -7

(WEO)Q |Ap,m,n|2 (27 /em

) he a2 j 2
= 5 / cos? (nmz/he) dz/ —QJ,Q,L (Jm.pp/a) + <mp> J2 (jm.pp/a)| pdp
{kgfm,n - (nﬂ-/hc)z} 0 0 P “

2 2 1 2
wWe Apmnl” 2 /e, . . m .
_ ( 0) | p,m, | ( / 2) (hc/f‘:n)jfnﬁp/ |:JZ (]m,pu) + ﬁjrzn (]m’pu)] udu
{kg,m,n - (nﬂ-/hcf} 0 e

2
we 3 h. )
( 0) 2j72n,p < J72n—1 (Jm,p)
{k2 = (om/mo)? e e

= |Ap7m7n|2

Hence the TM mode quality factor is

kp,mmna "o
ent/he + 1 2R

Qp,m,n =

where again the TM modal wavenumbers and frequencies are

. 2
2 2 Jm, 2
kpym,n = Wp,m,nHo€0 = ( rzp) + (nﬂ—/hC)
and the surface resistance and skin depth are

Rgp#m”) — ]_/ (U&p,m,n)

Spm.n = )2/ (Wp,m.nh0)
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4.4.2 TE Modes

For the TE modes the magnetic field components are

1 Jn nm
H,= Ap =L I (jr, p/a) cos[m (o — — cos (nmz/he
T (Jm pp/ @) cos [m (= o)] 7= cos (nmz/he)
-1 m nm
H, = —Apmndm (G0, p/a)sin[m (o — — cos (nmz/he
SO R (Jm,pp/ @) sin [m (o = @o)] 5 cos (nmz/he)

H. = Apmndm (i pp/a) cos[m (o — )] sin (nrz/h,)

Note that n = 0 has all components vanishing, so this does not exist. The surface integral in the quality
factor is

he T
fﬂ@”""”*-Ep’m’”)ds :/0 dz/ [1Hy (p =) + |H- (p = 0)]*] adg

+/0a /7r [1H, (= = 0) +|Hy (2 = 0)*] pdiodp + /Oa /7; [1H, (2= h)l* + [Hy (2 = he) | pdodp

—T

9 he o | (w/he)? (m)a)?
= " | Apmn

Em En {2 — (n/Re)}

{,JAJ((/; };)} [ et (2 a2 G (%) )] o

2 + 1- 5710 aJ72n (j’;n,p>

+2

(n/he)? (m/a)®
{2 — (7 /Re)}

i e (€ R R ORI

= | Ap |’ he (7/€m) (1 = 80) 5+ 1| a2 (o)

nw/he % (m/a)? .
Ay he (1 fem) (1 — b,0) | L) 00/ g2 gy

{2 — (7 /Re)}

2|A m,n 2 2w Em 7/7% nmw hC ’ ! i
N [Apmnl” 27 /em) Jm p ( 2/ ) / [J{fb (G p) + ( '/m ) T (G ) | ucu
{K2n = om0

2
Jrn

= ‘Ap,m,n|2 (77/5m) ah, (1 - 5n0) 5 + 1

(nm/he)” (m/a)” 2y /he)” (L m?
{2 = (om/10)?} ’ {K2n — (e} ( )
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= ‘Ap,m,n|2 (m/em) {ahe (1 —dno)

= [Apmnl® (7/em) (1 = b30) {ahc

= [Ap,m.n

- |Ap’m7n|2 (7/em) (1 — 0no) {jﬁ’pahc +92q* (mr/hc)Q <1 _

2 (7/em) (1 = 6no) {jﬁ’pahc + 2a* (n7/h.)

2 2 9472 B 2 2
e |
(]{%71,/&2) (J%p/az) Jm.p
(’mr/hc)Q (ma)2 .12 4 2 m? ng (]7/117 )
TR | 20t ) (1= e ) g T
m,p m,p m,p

The volume integral in the quality factor is

he a T
/ E(pﬂn,n)* . E(I),Tﬂ,n)dv — / / / |:|Hp|2 + |H4p|2 + |HZ|2] pd(pdpdz — |Ap’m’n
\%4 0 0 —7

2 2 J? ( ! )
2 m 2 m m \Um,
Thc/(Qa)+2a4 (nm/h.) <1— 5 )} b
m,p Jm,p Jm,p
() e
Jrmp 2a Jrmp
? (m/em) he

a n/he)? Jr ’ . m\® ; j
| {( ) 2 Grugpla) + (") T2 ) | + (1= 60) 7 (/)| oo
O | {#2un — (om/he)} /
12 h 2 1 2
= |AP7’rn,n ? (7‘(’/5,,”) hc jm,p (nﬂ-/ C) 2 / {Jfb (j;n,pu) + ( 5! ) ']7275 (j’;”vpu) udu
{k;’%m,n - (nﬂ/hc)Z} 0 jm’Pu
2 .1
. a .
0= 8a0) A (/) 12 () [ 72 (G p) s
m,p
2 (T 2| (hp/a)’ (nm/he)’ m2\
= |Ap,m,nl (5/5m) hea : 21 2 +1—0no| (1- ) I (Jm,p)
{k;’%m,n — (nm/he) } mp
h )2 m?
— 1Ayl (Z/em ) hea® (n/he +1 (1—. )ng imp) (1= 0n
el (o) 1 | e i 77, ) I Ua) (1= 0]
2 (T 2 ;)2 m? 2
=|A m,n =/€m ) hea et 1-- Jm 7/71 1_6n
nal? () b L2t (1 ) 72 () (1 0
SRS
2 [T 4 m m \J ,
= [Apmnl (5/5m) a hck;?,m,n <1 - j’i}%’p) T:p (1= dno)

where
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! 12 (1 m? 2 (. 1 m? 2 (. ! 2 (.1
/0 I (Jm,pu) + ij (]mypu) udu = 9 == I (mep) = /0 I (Jm,pu) udu

m,p m,p

Then the TE mode quality factor is

Q — (1 — mQ/ng,p) 3 a Mo
p,m,m T 2 m . p,m,n (p,m,mn)
32 5/0% +2(a/he) (nm/he)? (1= 7= (1= 42)) 2R
(1—m/i2,) P

= k mnai
0ol @+ 2(a/he) (o fhe)” (L=m2 /2 ) + (e /he)* m2 22, 70" 2R

where again the TE modal wavenumbers are

-/

2
J
kﬁm,n = w;?,m,n,“ofo = <n;,p> + (nﬂ—/h‘C)2

and the surface resistance and skin depth are

RP™™ =1/ (08p,m,n)

Op,mn = 2/ (w;,m,nﬂa)

4.4.3 Approximate Quality Factors

The previous “exact” results for the quality factors (found by integrating the square of the perfectly con-
ducting magnetic field distribution) are

TM kp,mna "o

pm,n Ena/hc +1 2Rgp7m7n)

TE _ (1 - mQ/jZ,p) 3 Mo

PTG a2 + (afhe) (nmhe)® (1= m2 /2 ) + (n7/he)> m? /52 kp’m’na2R(p’m’")
m,p c c m,p c m,p s

In the general cavity geometry we can write the quality factor as

o= Y (10 (H?)y + 520(E?)) _ wVpo (H?)y,  wVeavliB (H7),,
- P R,S (H?%)g T R.S(H?)g  RiSean2(H?),
~ §w/’60‘/cav _ §770k‘/cav _ ; chav @
- 4 RSSCG/U B 4 RSSCG/U B 25SC[1’U M

For the cylindrical geometry this becomes

ka Mo
2(a/h.+1) 2R,

3
@~3

Now for the TM field configuration

W Ve (i (2 + 30 (B2),) Vet (B, womahong2 (H),
P RsSecav <H2>S RsSecav <H2>S R, (271_(122 <HJ2>S + 27ah, <HJ2>S>
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~ wra?hepig2 <HJ2>V N noka
~ ~ 9R. (2a/h, + 1
R, (2ra24 (H?),, + 2mah 2 (H?),) (2a/he +1)

the same as the preceding exact result when n # 0. Introducing n = 0 and m = 0 terms

T wwthCuOQ <HJ2>V (2/em) (2/€n) ~ noka
R, [27a24 (112),, (2/em) + 2mah 2 (H2),, (2fen) (2/en)|  2Fe(ena/he+1)

which is the exact TM quality factor.
For the TE configuration

W Vi (oo () + 320 (B2)y) Vot (HP),, Ve (H2),

QTE — ~ ~
P RsSecav (H?) g RsScav (H?) g RySeav2 (H?)

S

N wWVeav o3 <H]2>V _ 3wVeantty _ 3n0kVeaw 3 Veaw o _ 3 noka

" RiSeavd(H?), 4 RScar 4 RSeav  206Saw 1 42R(a/hc+1)

Introducing the m = 0 (the » = 0 modes do not exist for PEC boundary conditions) terms gives the same
result

w (ma’he) po3 (H3),, (2/em) noka  3wVeantty  3MokVear 3 noka

QTE ~

3
R, (2mahc2/e, +2ma2) 4 (H?)  (2/em) 42Rs(2/en+a/he) ~ 4 RiSeaw 4 RiSeaw  42R,(a/hc+1)

which is somewhat different than the preceding exact result.
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5 EXTERIOR MODAL POTENTIALS AND FIELDS

We now turn to the exterior radiation on the cylinder. The incident plane wave and interaction with the
cylinder (with slot shorted) is contained in the short circuit field.

5.1 Coulomb Gauge Electric Vector Potential

The Coulomb gauge potentials can be constructed from the form of the interior modal potentials with a
continuous spectrum in z and a radiation condition in p.

5.1.1 TM Potentials

Based on the interior TM potentials

1
Alpman) — £0 —Apmndm (Jm a) msin — cos (nmz/h.
&0 o (e fh” (Jm.pp/a) [m (¢ — )] cos (nrz/he)
(pm.n) _ <o Jmp 71 , _ .
A&P - k?hm’” _ (nﬂ'/hc)z Ap,m n Jm (]m,pp/a) Cos [m (@ 900)] cos (mrz/hc)

we take the exterior TM representation to be

Acp = Z / EomATM o) H (kwp) sin [m (o — @f@M)]{C?S(M) }da

sin (z)

rar W ™ cos (az)
ew*Z/ “DATM (@) HEY' (kyp) cos [m (o — oL )]{ sin (az) [ %@
where
kj? = k2 — 0[2

5.1.2 TE Potentials

Similarly, based on the interior TE potentials

m.n A m,n . .
A = Apmi g (1 fa) cos m (o — o) sin (nz )
Ay o UMy (G pp/e) sinm (o — 90)] 2 cos (nmz/he)
k;?mn — (nw/he)” P ’ he
1/ (iw) Jn , nw
(p,m,n) Jm,p g/ _ ren .
Aep k'gm - (mr/hc)Q Ap,m n a ‘] (Jm pp/a) Cos [ (QO 900)} hc COS (nﬂ-z/hC)

we take the exterior TE representation to be

A, = %:/0 A%E () anl) (ke p) cos [m (go _ (pZIE)] { 78?(1)5(;;1) }da
R A S LR e
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cos (az
Aep = Z/ —ATE ) HY' (kyp) cos [m (¢ — @lF)] a{ sin ((az)) }da
We should be able to use these representations along with orthogonality on the p = b surface in z and ¢
to expand the field. Matching the tangential electric field on the surface (along with the normal magnetic

field) can be used to find the coefficients ALM (a) and ALF (). We rewrite the TM potentials as (where we
take mplM = 0,7/2) for the even parity about z = zg as

Aep = Z/ ]ig TZ (kep) [ATM (@) sin (mep) — BEM (a) cos (mep)] cosa (z — 20) dax

Ay = Z/ H(1 (kep) [ATM (@) cos (me) + BEM (a) sin (me)] cos a (z — 20) dax

and the TE potentials as (where we take mpLF = —7/2,0) for the even parity of A.,, about z = 2

Ae. = Z/OOO HE (kep) [—A%E (@) sin (me) + BTE () cos (me)] sina (z — z9) da
Acp = Z/o 7*H (kep) [ALF () cos (mep) + BEF (@) sin (me)] acos o (z — 29) dav

Aep = Z/ *H(l kip) [—ALF (@) sin (me) + BLE (@) cos (mep)] accos a (2 — 29) da

We check the vanishing of divergences of these potentials in the Coulomb gauge. For the TM modes

10 10
—_—— Ae —714.6 =

Z/ %%H (kep) [ALM (@) sin (mep) — BEM (o) cos (me)] cos a (2 — zp) dav

_Z/ €0 mH(1 (kup) [A TM () sin (my) — BTM () cos (mep)] cos ar (z — zg) dov = 0

For the TE modes

0 10 0
77 (pAep) + ;%Aap + aAez

*119 0 _.a :
Z/ 2 00p { o HD (ktp)} [—ALF () sin (my) + BiLEF (a) cos (me)] accos o (= — 20) dex

+ ;/0 ???H&l) (kep) [—ALF () sin (mep) + BLF (a) cos (m)] accos a (2 — 2g) dex

+ Z /000 HY (kp) [—ATF («) sin (my) + BLF (@) cos (me)] acosa (z — 2) da =
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£ el (4-2) o)

[—AﬁE (o) sin (my) + BELE (a) cos (mgo)] acosa(z—zg)da =0

5.1.3 Matching Of Surface Electric Fields

For the narrow slot the azimuthal electric field on the surface is taken to be near zero for all ¢ and z on the
cylinder surface p = b

0 0
oy, = _EAEP + 87,014627 ~0, p=0b
S [ BT () [T (csin (mg) ~ B (@) cos mee)] asine (2 = z0) do

+ Z/ —H"p' (keb) [—ALF (@) sin (me) + BLE () cos (mep)] e sina (2 — 2) dov

+ Z /000 HY (k,b) [—ATF (o) sin (my) + BLF (@) cos (me)] sina (2 — 2) kydaw — 0

or

Z/ = mH(l) (kb) [ATM (o) sin (mep) — BEM (a) cos (me)] asina (2 — zo) da

0 1.2
+ Z/ %Hf,%)’ (kb) [~ALF (@) sin (me) + BLF () cos (myp)] sina (2 — 29) da — 0
m Y0 t

which means that we can take

?a%H,(,p (keb) ATM () = /f?H,(nl)l (keb) ATF ()
t
60 m

o Hy) (ked) By (a) = K2HG (keb) B.” (a)

t

For a ¢ directed magnetic current (and consistency of this sign with previous slot analysis on a plane) with
I, = —2V_ (because later we use the continuity equation dI,,/ds = iwg,, with s = by, where the minus
superscript denotes the incident side of the slot) the electric field around the magnetic current is consistent
with the axial field being —z directed for a positive voltage (with positive reference on the plus z side of the
slot). Hence we must introduce a minus sign in front of the delta function in z (the delta function is used

for the very narrow slot limit)

10 10
E,=———(pA. —— A, = —ggV_ —
€0 »9p (pAep) + P P goV- (s)6 (2 — 20)

oo 2
Z/o €0 (1 k2b2) HWY (kyb) [ATM () cos (my) + BEM () sin (mep)] cos o (2 — z9) dav

m
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+ Z/ H(l)’ (kb) [ALF () cos (myp) + BiLE () sin (me)] accos o (2 — 20) dex

+ Z/ %%H keb) [ALM (@) cos (my) + BEM () sin (mep) ] cos ar (2 — z0) dav

- Z/ H(l)’ (kb) [ALF (a) cos (myp) + BLF (@) sin (me)] accos o (2 — 20) dov & —eo Vo (8) 6 (2 — 20)
Z /000 eoHY (k) [ADM (@) cos (myp) + BIM () sin (m)] cosa (z — z0) da & —eqV_ (8) & (2 — 20)
where we used

> 14 1d d
- 422 — MN=0= == [— —m?2 gm
<d22 +Zd2 +1 m / )H’m ( ) 0 |: (Zdz) +1 m /Z:| m ( )

1 0 m2
= kepHY (kip)) = — (1 2 ) HD (&
o (ke (p) ( p) O (kup)

The odd parity representation about z = 2y can be written as

Aep = Z/ @@H (kep) [AFMO (o) sin (my) — BEM? (a) cos (my)] sina (2 — 2) dev

Aep = Z/ DHD (kyp) [ATMe () cos (mep) + BEMe () sin (mep) ] sina (2 — 20) dav

Ae. = / HWY (K AZLEO (@) sin (me) — BTE° (a) cos (me)] cosa (z — z9) da
A, = Z/ ——H(l) (kep) [ALFC () cos (my) + BLE® () sin (me)] asina (2 — 20) dex

Aep = Z/ kltanl)/ (kep) [—ALFC (@) sin (me) + BLP (@) cos (my)] asina (z — z) da

and for all ¢ and z

0 0
= _714'6 7Aez ~U, =b
0z ot 0.0

€0E<p 8,0

_ Z/ <o mH(1 keeb) [ATM () sin (mg) — BEM® (a) cos (myp)] arcos a (2 — 20) dex
£ [7 A () [ATF (@) (mp) ~ BEE® @) cos (m)] cosa (= — 20) do
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+ Z/ ke HD' (kyb) [ALE () sin (me) — BLF? (a) cos (me)] cosa (2 — z0) daw — 0
—Jo

or

2 Z/ S TLHD () [ATM (@) sin (mip) — BEM? () cos (mp)] da
0 t

=% / HY (kyb) [ATE () sin (mig) — BLE® (a) cos (mg)] da

We can thus take

o m

cor- SLHLY (kab) ATMC () = KHY (lub) ALP* (a)
t

k b (1) (k‘ b) BTMo( ) kQH(l (k’ b) BTEo( )

Also, in the narrow slot limit this odd slot voltage (in the width direction) is driven to zero

10 10
= =T (pAup) + = Ay~ —2gVO -
ek, 2 Op (p ga) + 0 9p p eoV2(s)d(z —20) =0
and thus
Z/o €0 (1 - l<:2b2) HWY (k,b) [ATMe (@) cos (mep) + BEMO () sin (m)] sina (2 — 20) dov

+ Z/ H(l)’ (kb) [ALEO (@) cos (me) + BLE® () sin (my)] asina (z — 2) da

+ Z/ lig 7;12 HY (kD) [AZQM" (@) cos (me) + BTMe (q) sin (me)] sina (z — 20) da
_ Z/ H(l)’ (keb) [ATEO (@) cos (mep) + BLE® () sin (my)] asina (z — zp) da — —gV2 ()5 (2 — 20) — 0
or
Z/ eoHY b) [ATMe (a) cos (mep) + BEM (o) sin (me)] sina (2 — z9) da — —£V° (s) 6 (2 — 29) — 0

We can therefore take

ABME (2) =0 = BIM® ()

and thus

AL (a) =0 =B (a)
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The Fourier representation for the delta function

/OOOA(a)cosa(z—zo)dazé(z—zo)

can be inverted by noting that

oo 1 R
/ cos (a'u) cos (au) du = 3 Rlim / [cos (v — ) u + cos (a + o) u] du

— 00

. _ / » /
— lim [sm(a oz)R_Fsm(oz—&—oz)R]:ﬂ_

(a—a) (ot a) lim R/m

R/m—o0

[sin (e —a)wR/m  sin(a+ o )7R/7
(o —a/)TR/m (o +o/)TR/m
=7m[d(a—a)+d(a+a)

and hence

/00014(04)/0O cosa'(z—zo)cosa(z—zo)d(z—zo)da:/OOOA(Q)W[(S(Q—a’)+5(a+a')]da:1

and therefore
A)=1/r
Another check on this representation is
1 R sin R (z — zp)

— lim cosa(z —zp)da = lim ——— = = lim sin (m (2 = 20) R/m)
T R—oo J R—oo T (Z — Zo) R/m— 00 ™ (Z — Z())

=06(z—2p)

Thus, because the unknowns are not really functions of a (by virtue of the preceding delta function repre-
sentation), the preceding equation

Z/ eoHW (kyb) [ATM (@) cos (my) + BLM (@) sin (me)] cosa (2 — 20) do & —eoV- (8) § (2 — 20)
e Jo
can be reduced to

ZH},}) (keb) [ALM cos (mep) + BEM sin (mep)] ~ —%V, (s)

Then using the integrals

i 2
/ cos (m/ ) cos (myp) dp = Elémm/

—TT m

/ sin (m’ ) cos (my) dp = 0

/ sin (m/ ) sin (mep) dp = T8 mm

—T
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the Fourier series can be inverted to give

E’"L
1Y () A5 ~ =22 [V () cos ) dp
1 [ )
HWY (kb) BIM & 3 V_ (s) sin (me) de

—T

Therefore the coefficients are found as

%Lm / V. (s) cos (my) dp = %a%H,(r}) (keb) ATM () = K2HWY (k,b) ATE (a)
t

1 s
—60%%f/ V_ (s) sin (mep) dp = %G%Hﬁi) (keb) By () = K2H)" (keb) BLP ()

The azimuthal potential is

A, = Z/ 2HWM (kyp) [ALM (@) cos (my) + BEM (o) sin (me)] cos a (2 — z0) da

Acp = Z/) 7*H (kep) [ALF (o) cos (me) + BEF (@) sin (me)] acos o (z — 29) dov

and radial potential is

. Z/ €0 mH(l) (kep) [ATM (a) sin (me) — BIM () cos (mgp)] cos a (z — z) da

1 .
Ay = Z/O k—tHT(,})’ (kep) [~ALFE (@) sin (my) + BLF (a) cos (me)] accos e (2 — 20) dex

The total is then

Aoy =—-2% < HR (kp)  mPe?/k* HY (kup)
e (1) k2 pb (1)
0 ktH (ktb) tP kth (]ftb)

[cos (myp) %n /Tr V_ (s") cos (m¢') d¢' + sin (mep) ! V_ (") sin (m¢") dgo'} cosa (z — zp) da

—T —T

and
Z / HY (kip)  o® HY (kip)
K2 | pHD (keb) %20 HEY (kyb)

™

[Sin (mep) %’” / v (s") cos (my') dip” — cos (myp) /

—T —T

V_ (") sin (m¢") dcp’] cosa(z — zp) da

Evaluation at p = b and near the line source z = 2o + A (with A a small quantity) and exterior arc length
s = by, the azimuthal component is
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HY' (keb)  m* (K2 —k2)  HS (ki)
kb HSY (kyb) kK20 kbl Y (kyb)

iWAGLP (ba ®, 20 + A) = 0 Z‘/

h h
[cos (me) % [h V_ (s') cos (ms'/b) ds’ + sin (mp) /w V_ (s')sin (ms'/b) ds’] cos (@A) da

. zwso
twAe, (b, p, 20 + A) / ( >
o (b, 0 2b2 Z 0 k2 2

h

h
[sin (mep) %n /41 V_ (s") cos (ms' /b) ds’ — cos (me) /

V_ (s") sin (ms'/b) ds’] cos (aA) da

or
(1)/ m2 (k2 2 (1)
_ w? uoeo Hpy" (kib) (k* —k})  Hp (k:b)
iwAey, (b, p, 20 +A) = E /
? ’ KOHD (kb)) BP0 kb HD (kb

{cos(mgo) ) —m_, +sin (mp) m s] cos (@A) da

and the radial component is

2 e’}
iwAep (b, 20 +A) = W Hoco m [sin (m) %nm;, — cos (myp) mo_s} / cos (@A) da
po 0

2m2k2p?
1 9 Em | . [T
= T3 ap ; {cos (mep) — Mes + sin (mep) mos} /0 cos (@A) da
where
m,, = —i2 ' cos (ms'/b) V_ (s') ds’
< wp o B
— —12 " : / ’ /
mo, = — sin (ms'/b) V_ (s') ds
Who J—h
and we note
R . .
5 A 5 A
Rhil(l)o ; cos (@A) da = ngnoo % =7 R/lirgoo (R/7) w = R/ligoo (R/m)sinc (AR/7) = 70 (A)
so that
) 1 _
iwAe, (b, @, 20+ A) = o2 8 [cos m<p) 5 — M, + sin (myp) mos] J(A)
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5.1.4 Quasi-static Limit

The quasi-static limit of the azimuthal vector potential is

k =ivVa?2 —k? =i

2 S 1)y ;. 2 a ;.
oo s ) = S [ | P car® e
2n iabHY (iab) kY% iabHY' (iab)

cos (mep) E—mm;s + sin (mep) m(;} cos (@A) da

2

5.1.5 Local Quasi-Static Planar Contribution

To avoid convergence issues near the line source it is important to remove the local contribution to the
potential. One approach is to remove the local planar quasi-static contribution, which can be written as

h / h /
d 1

iwAS, (p_,s) = iwsg/ I (s i = finOQ—/ V_ (s ds
—h ™

dmy /(s — )2 + p2 —h (s— )+ p2

= —zwso

/h/&ﬂ [ (=P + 62
v ) \ﬁ;j“* [
ol %;;7 [

(h+s)/p V. Vo(s),, ["Vo(s)-V_(s),,
V_ (S)/_(h_s)/p \/T / ds +/S Tds

SV V<MﬂﬂV<”—V“M4

h s = !

ZL«JEO

’L(JJSQ

1
2

~ —iwz’:‘o

~ —iwso—
2T s’ —s

_ (s) {Arcsinh ((h+s) /p_) + Arcsinh ((h — s) /p_ )}Jr/

'fzfiws()% {V_(s)ln{(h+s)/p_+ (h+s)2/p2_+1}+v_(s)ln{(hs)/p_+ (h3)2/p2_+1}

R e Vw—vwd]

—h S /

~ _mo%v_ (s) [2In (2h/p_) + I {(h + ) /h} + I {(h — s) /h}]
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—’LMEO ;
s — S

/ Vo) =Vels) gy / V() — V- <s>ds,]
~ —iweoiv_ (s) [Qp_ +In{(h* - s*) /hQ}}

/S Vo) = Vos) g +/’LV<s/>—V<s>ds,]

—inO ;
—h s — s’ —s

27
where p_ is a small displacement from the line source and the fatness parameter is

Q, =2In(2h/p_)

By expanding this approximate quasi-static half space form of the vector potential static axial magnetic field
in the Fourier series

iwAS, (p_, s) = —iweg Z [A;, cos (my) + By, sin (m)]

m

we can then remove this from the preceding cylindrical expansion.

5.1.6 Local Transmission Line Operator

Because we intend to use the transmission line approximation for the dominant operator, it is simpler to
remove only the leading Hallen or transmission line term (rather than the complete half space form)

Qe
Py (s)
7r

s .
iwAS, (p_, s) ~ —iweg
where

Qep. =0, +C.

(Note that we could also take different constants for the even and odd parts C¢ and C? of the voltage.)
Breaking the voltage into even and odd parts

Vo (s) =V () + V5 (s)

we extract the coefficients in the Fourier series

s D) Qe h/b
Am/ cos? (mgp) dip = == Ay, ~ pf/ Ve (s) cos (mep) dip

o Em 27

—h/b
o hV‘ b)d ke Sep
~ T2 /—h e (s)cos(ms/b)ds = —iweg 4mb

T Qe h/b
B, sin? (me) dp = 7By, ~ —o= / V.~ (s) sin (my) dp

2 S ©

—T

epf/ V.~ (s)sin (ms/b)ds = B S
27h —iweg 4mh
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—i2 [t

m,, = —— cos (ms'/b) V_ (s') ds’
2 [ costms 1 )
—i2 "
my, = — sin (ms'/b) V_ (s') ds’
Wy J—h

gives the Fourier series representation

er7 k2
2n V- (s) = 2m2b

iwAZ, (p_,s) = —iweg

Em  _ | . _
Z [cos (my) ?mmes + sin (mep) mos] Qep_ /2

We can also operate on this to obtain

iw i6724—1 As ( s)*k—2 i6724—1 Z{cos(m )@m*+sin(m )m’}Q /2
k2 0s? es \P—> - 27m2b \ k2 0s2 v 2 ¢ #)Mos | Seep_

m

m2

k2 Em  _ . _
=55 Z {cos (myp) Tmmes + sin (me) mos} (1 — k2b2) Qep_ /2

Then we can write

w [Aega (b, 0, 2) — Az (0_75)] ~

k? Em  _ . -
52 Z [cos (mey) 5 Mes +sin (me) mos}

oo (1) (1)
/ %—m%l—kf/lﬁ)# COSOz(z—zO)—a
0 Hm (ktb) (ktb) Hm (ktb) kt
k2 Em ' -
S font i 2

Considering the convergence properties in a: near o — 0 there is no issue since k; — k, for « — oo we have

k = iva? — k2 ~ ia and therefore
Y (kb)) K7, (ab)
HYY (keb) 1w (ad)

HY (kb)) 5 o0y HY (Keb) e
[b—m(l kt/k)m z{l m/(kb)}

~ 1

where we used

K (ab) HY (iab)

aky, (ab)  jaHY (iad)
and the integrand behaves as O (1/«). We used

ki = VE2 —a? =iv/a2 — k2

with the original branch cut topology 0 < arg (k:2 — 042) < 2w, where the cut from the branch point at o = k
proceeds from the branch point to the origin and up the positive imaginary axis, the cut from the branch
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point at @« = —k proceeds from the branch point to the origin and down the negative imaginary axis. The
integration contour from o = 0 to o = oo is along the bottom of the cut on the positive real « axis (up
to a = k). Then arg (a+ k) = 0 on the contour, arg (k —«) = 0 for 0 < a < k, and arg (k — a) = m with
arg (o — k) = 0 on the remainder of the contour k£ < @ < co. Then the integral is

o0 do k do °° do
cos (aA cos (@A) —— + cos () ————
| eomtam) = [Ceoston) sk [ eon(an) A

! da
:/0 cos(ozkA)\/; / cos (akA) e

= 5o (k) +i5 Y0 (kA) = ZHEY (kA)
Note also that the asymptotic form is
gHgU (kA) ~ g +i{ln(kA/2)+7'} , kA << 1

We can then write

z/ cos (aA) ‘]i —Q, /2=Ko(—ikA)—Q, /2= igHél) (kA) —Q, /2
0 t

~iz = {In(kA/2) +7'} = In (2h/p_) = T — {In (khA/p_) +7'}

and

iw [Acy (b, 0,20 + A) — A, (p_, )] = 27r2b Z [cos (me) %m + sin (me) m;s}

CfHG (k) 5 oo HY (kb) do
VO {Hv(ﬁ)(ktb) T ) G O (g S Ty e 2

27r2b [cos mcp) M, + sin (my) m;s]

Y0 ey HO ) da
[/0 {Hf,?(ktb) imm kt/k)(ktb)gHﬁ)’(ktb) (aA)k igHy (h8) =20y /2

R — 7r2b Z [cos (mep) —m L+ sin (meyp) m,

* [H (kd) ) (kib)
Bt o) i oo - )

Setting the displacement from the line source in the modal sum A to the same value as the displacement
from the line source in the extracted transmission line term p_ or A = p_, we see that p_ cancels out in
the logarithm of this potential difference (at this point we cannot drop the cos («¢A) = cos (ap_) factor due
to the slow decay of the final term of the integrand at infinity).
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If we use the form of the local potential with the operator applied

: 1 9? s _
iw {Aw (b, 20 +p_) — (1@2852 + 1) As (p_, s)] ~— W% Z [cos mgp) —mg_, + sin (my) mos}

') (1) (1)
Hy, Hp,
/ —0 (kib) _ m? (1 — k7 /k*) — ((ﬁt/b) cos (ap_) da

o | Hy' (kib) (keb)? Hy' (kD) et

_ m?
27T2b Z [cos (myp) 7m + sin (mep) mos} (1 - k2b2> Qep_ /2
~— 27r2b Z [cos (mep) 7771 . + sin (myp) mos]
o (7Y (kb) m? HY (kyb) dov
/ —0 . <1 — k2b2> —m? (1 -k} /k*) — ) (o8 (ap_) T
o | BY (k) (k)2 HY (kyb) :

m?\ . (1) m’ m?
o (1= g ) 15 (o) — (1= g ) 2 /24 (1 ) 9|

b ) (1)
Hmuftw_z'(l-?z —m?(l—k?/W)Hz—Efﬁw
120 (k:b) (k:b)

HY (kyb) m? m? Yo Hﬁ,%) (D)
= —— ) 1 —_— — 1 _— S ——
{ z( k2b2) syl k202 ( k[ ki ) )/ (kyb)

~ {z’—i(l = ;;1;2) kaZ (1— K> /K2) i } — 0 (1/k) = 0 (1/a”)

Thus with this form we remove the slow convergence at infinity. Hence with this we can write the electric
vector potential part as

k? m . .
iwAey (b0, 20 + p_) = 53 ;—W [cos (my) m_, + sin (me) m,,]

oo (771 2 &
Hy"" (kib) ( m ) 9 9,9 Hpy,’ (kid) da
MY (1 ) —m2 (1= k2 k) —— % cos (ap ) —
Vo {HﬁrP (keb) k252 (- )(ktb)“‘Hf,%”(ktb) )%,
m2\ & ) m2 m?
*@‘mw)bﬁ)“””‘G‘wm)m””+0‘kW>mp]

(1 02 s
+iw <k2832 + 1> As, (p_,s)

where
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Qep_
Y (s)

iwAS, (p_, s) ~ —iweg

Because the integrand converges sufficiently rapidly at infinity we could set cos (apf) — 1. If we expand for
p——0

iz Hy (kp_) ~ i — {In (kp_/2) + 7'}
then

iwAep (b, 20 +p_) & 57 ;: [cos (mg) m_, + sin (me) m,,]

< (HY (kb)) m? HY (kb) dov
/ m -t (1 k;2b2> —m? (1 k}/k?) 2 () L
o | HY (ked) (k) HY (kyd) | For

Using the identity from the preceding

, k? Em _ . _
—iwegV_ (s) = oy [COS (meyp) 5 Mes + sin (mep) mos}

we can write the total radial potential as

, 1 0 Em  _ . -

iwAep (b, 20 + A) = b Ds ; [cos (mep) 5 Mes + sin (mep) mos} 0 (A)
N —’L'LUSQQ o 1 g
— TSV ()0() = SV (93(4)

Because this is the radial magnetic field contribution from the electric vector potential we can write the
magnetic charge contribution from this as

e L . 10
P (s) = 5 dme = poiwAey (b, @, 20 + A) /6 (A) = a%V, (s)
5.1.7 Inner Integration

Breaking up the inner integral into two ranges

/°° { HY (k) i m2 (K2—k2) HY (kb)  m? HY (iab) } o
0

keHY (kb) ke K202 K2 gl D (ko) R0 iaHY (iab)

/” HR(kb) i m? (K k) Hy (kb)) m® Hy (ab) |
0 ktH’r(rp (ktb) ky k2p2 kt2 ktH”(?%)/ (ktb) k2p2 ZCVH%)/ (zab)
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V2kse b (\/W b)

]

/°° HY (iub) 1
+ - ~
k446

H(” 2kt b)

m>2 (k2 + u2) H,(,}) (1ub)

, H (VaRse)
" Ve (\/Wb)}

m2 H,(,P (iaeb)

}da

J

k
ke,

uHY (tub) k2% w? (iub) k20 iaHY (iab)
where
=vaZz—k2, k=vVk%-a?
wn~ V2 | ky ~ V2kS

Changing variables

/°° HY (k) 0 om® (W) HY (kb)) m® HY (iab) o

o | kHY (k) ke k202K g mHY (k) k0% iaHY (iab)

B /k HY (k) 0 om® (B k) HY (kb)) m® HY (iab)
vars | keHY (ko) ke K202k gm0 (k) K20 iaHY (iab)
V2k3ebH Y (\/2/{:66’ b) j7isy (\/2kéei0b)

]
[d

iuHY (tub)

HY (iub) 1

H(” 2kt b)

m? (K +u?) HLY

(tub)

2
—m
V2ksePbH Y (\/Qkéei‘)b

m2 Hf,}) (iabd)

R iaHY (iad)

[]

\/Qkéeiobﬂﬁj)’ (\/2k6@i9b>

k20 u? iuHSY (tub)
HY (kb))  m? (K= k) HY (kb)) m? ky Ko (ab)
HY (k) K20k g (k) K2? o K, (ab)

ay (Wb)

+

L/”
2kb J,

(\/W b)

m? (k? +u?) K, (ub)

2
V2koePbH (\/2kéez b

L
2k6

where we used

For m =0

1+

[

k202 w2 K/ (ub) k202 a K/, (ab)
Ky (ab) () (iab)
K7, (ab) zHﬁnl,) (iab)

HY (kb) i o
keH (eb)

ke
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} gdu
«

} —dk;
>}d9

> u K 1
m* u K, (ab) 1.
a



() "
[l e LR -

HO
T df

1
kb Jo 14+:(2/m)In (e“f’\/kéew/Qb)

Near the lower limits

M du
Lo -} i a1}

K _ U
_1/ { : i2/ (wkyb) : }dkt l { 1}du
k Jars L14+i(2/m)In (ke /2) k Jsrs | (ub)In ubeV /2)
K U
1 / L bk, — i bdu
kb (k¢b) In (kbe e_”/2/2 kb m (ub) In ube'V /2
Kb Ub
— i ,1 - +1 1 { } d¢
kb J/arsy | (In (Ce’Y 6*1”/2/2 kb \/mb (In C v /2)
Kb 1 ,
it v e—im/2 il ¥
- kb {m (ln (Ce /2)> + ZC} V2k8b kb {ln (ln (Ce /2>) * C}\/%b

L {m <ln (KbeW'e*iW /2)) I (1n (\/%w’e*”/? /2)) Kb — z\/%b}
- {m (n (U’ /2) ) = (n (V2Rdbe?'/2) ) + Ub — V2kdb |

kb
1 In (Kbe"*/e_i”m/?) In (mbevle””mﬂ) . .
- {m ( W (057 2) ) —1In ( - (%bev’m) — (U —iK)b+ (1 —i) V2kéb

In (Ube™' /2) In (\/%be’v’ﬂ)
) In (Kbeﬂ’ /2) —in/2 _
- {ln ( I (Ube"'/2) ) — (U - zK)b}

Ky (ub) 1} du

/""‘ 1Y (kp) |\ dke +/°° {
vars | HY (kub) E2— k2 Jyars | Ko (ub) VuZ + k2

- = {m (m (KMI/2> m/Q) —In (m (mbdﬂ) M/Q) —(U—iK)b+ (1 —1) \/%b}

so that




In (Ube"' /2) )
FEWD () dk > (K (ub) du
7/K {Hél) (ktb)JrZ} l<:2—kt2+ U {Ko(ub)l} N
In (Kbe? /2) —im/2
{1( (10072 /)wm}

~ b
B /’c HY (kyb) H (Fyb) L dk [ {Kl (ub) 1} du
: Y (ktb)\2 VE =K Ju [ Eo(ub) ) Va4 R

) In (Kbe"’l /2) —in)2 '
mkb{ln( I (Ube'/2) ) —(U—zK)b}

3 /k { {Jo (ktb) Jy (ki) + Yo (ked) Y (keb)} + i {Jo (ked) Y1 (keb) — Jy (ki) Yo (ki) } N z} dk;
X T2 (ki) + Y (ki) oy

N /°° Ki(wb) |\ du 1], In (K be” / 2) —im/2 U —iK)b
o\ Ko (ub) NoeEu =Rl In (Ube' /2) !
B / ~stp {8 (i) VG (k0)} —i2/ (o) Y by /oo {K1 (uh) 1} du
K J§ (keb) + Y (Ked) VEE=EK  Ju | Ko(ub) Vu? + k?
where 0 < K,U << 1/b. Because of the very slow convergence at the branch point (k; — 0 and u — 0) it is

useful to choose the parameters K and U away from zero.
Now for the m > 1 terms

1 {m (m (Kbe"Y//Q) —in/2

In (Ube"' /2)

/°° HY (k) i om® (W =) HY (kb))  m® HY (iab) o
o | kHYD (k) ke K22 K g HY (k) k0% iaHY (iab)

B /k HY (kyb) _omE (P k) HY (kb)) m® Ky Km( k2—k?b) dk;
vars | HSY (kyb) R0k Y (k) RV R2 =R K ( /2 k2 k,%b) N

_|_

2kb -

i [ V2RoCbY;, (V2ROETH) Y, (V2RéeTD)
/ m do
0 { Y,n (V2k0e7) V2ROCTbY, (V2koe) }

89



(ub) m? (k? +u?) K, (ub)

+/oo K;n 1 N 2 U K’m (\/mb) du
a5 | K (ub) R0 w Kj, (ub) K26 1 B2 K, (va? + k%)

1/uQ _|_]€2

2Y) (2) N mI (m) (2/2)""™" /7 _
Yor(2) T (m) (22"

The branch point integral can thus be dropped and near the lower limits

/’f HY (keb) m (K —k) Hy (k) m?>  k
vars | HYY (kqb) B0k H (k) RV K2 =R Ko

K (V=R g

+/°° K, (ub) " m? (K +u?) K, (ub)  m? u K (Vu? + k2b) du
NoTT K, (ub) k2b2 u? K7, (ub)  k?0* Va2 + k2 K, (Vu2 + k2b) | Vu? + k2
1 /K ,;1 Cm mY (kb)) m? kg Ko (kD) gk
Tk vais [ Ym kb kY (k) k202 k K/ (kb) K
1 v ub) m mK,, (ub)  m? u K, (kb)
T -1+ / T R2p2 L K
k ) o5 ub) ububK!, (ub) k262 k K/ (kb)

—mYm (kt b)
leybY.! ()

Thus for m > 1 we can also drop the branch point contribution and write
/ HY (k) i om® (W k) HY (kb)) m? H“) (zab) o
o | kHYD (k) ke k202K g HY (k) k0% iaHY (iab)

~1

2 _ .2
- / kH (kub) iky — m (k2 — £2) HYy (kb)) m? kf Ko (\/ﬁb) dky/ky
o | Hi (ub) s Uk HD (kib) R -k K, (\/Wb) VR =k}

2

+/oo _uK;n(ub)_u_‘_ (K +?) K., B
0 K, (ub) k2b2 u K7, (ub)  k?0% /u? + k2 K|, (Vu® + k2b)

wh) m?  u? K (\/u2+k2b)} du/u

\/u2 + k2

5.2 Scalar Potential Contribution

The magnetic scalar potential

= _V(Z)m
from Gauss’s law
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V-B=V-(uH)=p,

satisfies the Poisson equation

v2¢m:_pm/:u“0
Then
29 10 (0 1, , 9 ® 10 L, m

where

Z/ aK’ m (@) cos (my) + By, (o) sin (mep)] cos (a (z — 20)) da
Applying the boundary condition

0¢,, 1

o=, (0) = 0m = (8)0(2=20) = 50 (5)0 (= = 20)

and multiplying by the trigonometric and Bessel functions, followed by integration over the volume of the
cavity, gives

Z/ ) cos (mp) + By, (@) sin (mg)] /_OO cos (o (z — zp)) cos (a (z — 29)) dad (2 — zo)
= 2/1140qm / 8 (2 —29)cosa’ (z — z0)d (2 — 29)
Using
00 R
/_ cos (a'u) cos (au) du = 3 ngnoo . [cos (¢ — ) u + cos (o + o) u] du

sin(a—ao')7R/m  sin(a+ o )7TR/m
(o —a/)TR/m (e +a/)TR/m

. [sin((;y_—;’)) R sm((j i;)) R] .

lim (R/) [

R/m—00

=7[f(a—a)+d(a+a)

gives

Z [Ap, (@) cos (mp) + By, (@) sin (me)] = —mq; (s)

m

Then using

T

/Tr cos (m’ ) cos (myp) dp = % / [cos (m —m') ¢ + cos (m +m') p] dp

—T —T

_sin(m—-m/)7r  sin(m+m')T 27r5
 (m—m) (m+m/)  em
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/7r sin (m/ ) sin (myp) dp = % /7T [cos (m —m) ¢ — cos (m +m') ] dp

—T —T

sin(m—m/)7  sin(m+m)w 5
= - = TOmm/
(m —m/) (m+m’)

/ sin (m/p) cos (myp) dp = % / [sin (m' —m) @ + sin (m' +m) p]dp =0

gives
T @) = g [ reostme)de = 5 [ (9 cos om )
- Am ) = s | q, (s mp) dp = St a, (s ms s
Bute) =g [ ) snimedo = 5 [ g () (msa
7B (@) = — q,, (8)sin (mep) dp = — q,, () sin (ms s
27y J 2mbpy J_p,
Then we have
= Z = K lap) cos (my) /h q,,, (8") cos (ms’/b) ds’ + sin (m) /h q,, (') sin (ms’/b) ds’
m 27Tb,uO m 0 OéK/ ( b) —h " —h "
cos (a(z — 29)) da
The total magnetic charge can be found from the continuity equation as
o _ 0 Lo _ . 0
%Im _2$V (S) =w [Qm (S) + qme] = wWq,, (8) + 2%‘/* (S)
so that
= Z = K (ap). cos (my) /h iV (s') cos (ms’/b) ds’ + sin (m) /h iV (s')sin (ms'/b) ds’
Om zwﬂb,uo o aK! (ab) _p 08" _p 08

cos (a(z — z0)) da

Integration by parts gives

_ = K (ap) | " 9 o5 . " 9 4
Dy = umrbuo Z m [cos (mgp)/ V_(s) 55 SO (ms/b) ds + sin (mep) /41 V_(s) 55 50 (ms/b) ds]

—h

cos (a(z — zp)) da

Then

9, _ K (ap)
dp ™ fumrbuo ; o aK! (ab)
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h
(’9890 lcos (mep) V_ (s % cos (ms'/b) ds’ + sin (mep) /_h V_(s") % sin (ms’/b) ds’] cos (a(z — 29)) da

2 2 h

S o m h
= _1 Zgﬂ Km(p)lesm( Qp)/ V_ (s') sin (ms'/b) ds’ erTcos( <p)/

oy 2T 0 OzK{ﬂ (Oéb) _h _h

V_ (") cos (ms’/b) ds’]
cos (a(z — z0)) da

h

—#a—? m (% K (ap) sin (m ' s') sin (ms’ s’ + cos (m
_ >z [ (mg) [ V- () sin (s’ /9 s +cos (me) [

. / / b d/
iwptgmh? Op? — o aK! (ab) 7hV (s") cos (ms’/b) s]

cos (a(z — zp)) da

Taking p = b
10 1 9% —~em [ Kp(ab)
- b = o I (AB)
b 830 ¢m ( y P Z) —’L.UJ/.LOﬂ'b Os2 ; 2 0 OéK;n (Otb)

h

h
[sin (me) [h V_ (s') sin (ms’/b) ds’ + cos (my) /

V_ (s") cos (ms'/b) ds’] cos (o (z — 29)) da

Then near the slot

K (ab)

; m [sin (my) m_, + cos (mep) m_,] cos (aA) da

10
_g%@n( P70+ A) = 27Tb3822

1 0% ~em [ HY (iab)
_ m m . — . - o A
b B2 A 2 J, 71_0[}[7%)/ (o) [sin (ms/b) m_, + cos (ms/b) m_,] cos (/) dox

where
I *7’2 / V / d /
mes—w—'uo cos (ms'/a) V_ (s") ds
—i2 "
my, = ™ sin (ms'/a) V_ (s")ds’

22 zm7r/2H(1) ( ) =K,, (Z)

m

Replacing A = p_

1 62 Em K, (ab) da

) . _ [T Em
75%¢m (b,%zo + p—) - 72771_17@ . % [SIH (mgo) Mg + cos (mcp) mes] /O K;n (ab) COs (Otp_) E
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1 9 —em -
=50 832 o [sin (me) m,, + cos
1 9 —em -
=50 832 [sm (mep) m,, + cos (
1 0 Em T . _
=59 2—; [sin (ms/b) m_, + cos (

Using

we can write

/DO Ko (ab) cos
o K, (ab)

K, (ab)  HS) (iab)

_ < Kn (ub/p ) du
() mz] / B ]

m

(u
K/

oo pr(1) (-
_ Hy,’ (iab) da
ms/b) m, / ———cos (ap_) —
foyme) o HY (iab) o) %

cos (up_ /b) du

K, (b)) HY (iab)

K’ COS ( )

Ci(z):—/:ocos(t)dt -

~—=1,ab>>1

(%a + /Aoo {gm (azg + 1} cos (ap_) c%a + Ci (4p_)

’Y+ln Z

Next assuming that Ap_ << 1 we can approximate as

A o)
(ap_)@% Ko (ab)d£+/ {Km (ab) —|—1}do?+’yl+ln(AP—)

° K, (ab)
o K, (ab)
If we set A=1/b

COS

* Ko (ab)
/o 1 () < (0-)

! o K! (ab) «

u

a LK, (ab)

el maee [{RG e n

4m?* — 1) / (8u)

UKm(U)dj n - _1+(
K;n(u)u_H (U)+/U { 1I—(
T du ) (e
0 m(u)u
UKW’L(U)
- o K(uu

10
_g%d)m (by‘PaZO + p—)

du ,
4m? +2) / (8u) + 1} u + 4 1n (p_/b)

—|—1/8) /Uooclig—i—'y’—l—ln(p_/b)

X m@) - (m*+1/8) JU ++' +1n (p_/b)

~ C +9' +1n (p_/b)

1 92
" oo & o [sin (m

p) m, + cos (mp) mg, | /OO g, cos (up_/b) %u

0
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1 82 m . _
T 2nb0s? %[Sln(m‘P)moerCOS(mw o] {Cm+7 +1n(p_/b)}

m+ 0.4
O~ Coyey +1In | —2 722
1+n(m—1+o.4>

Cn
—1.0331453
—0.31851065
0.19293576
0.53504092
0.79063387
0.99441230
1.1637820
1.3086626
1.4352316
1.5475940

@OO\]@OT%COL\DHOS

5.2.1 Local Quasi-Static Planar Contribution

Because the scalar potential satisfies Poisson’s equation in the Coulomb gauge, it decreases away from the
aperture. We might alternatively approximate the magnetic scalar potential when the aperture is small by
means of a half space approximation

_ 1 P (') )
d)m (z) - 47_‘_/1‘0 |,r._,r.l‘dv

=1/ = {pcos (9) — of cos (¢)}* + {psin () — p'sin (¢)} + (= — =)’

With ¢ and ¢’ small we can expand as

=t 2y (0= 0P+ (o~ P + (= ) = (o= ) + (5= )P+ (= =)
s=pp, s =pp
and therefore

/

2
Prns / L= (=0 (z—20)"  s=pp, 8 =bp
~ A, \/Hi o

where here we have included the image in the definition of the magnetic charge per unit length

/

G (

P = G0 (p— )6 (2 — 2)

G, (s) = 20 (s)
Using
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1 h 9 1
b (py 0, 2) & 7/ I () —e—eeds’ , R =(p =)+ (2 —20)* , s=pp, & =by

dmiwpg os' ™

and integrating by parts

Prm

(P, 2) & 4mwuoé’s/ %Jr - "=

The contribution to the azimuthal field is then

—ligb ( 2) ~ 1 10 8/
D 8(,0 m \P> P» ~ A ( ZWNO p 64,0 Os /78 ~ S pO
or near p =b

_ iwey 07

10
—_ b
E G, (b, 0,2
with
I () = 2V5 (s)
and

71&(;5 iweg 02
bop ™™

5.3 Lorentz Gauge Electric Vector Potential

b)2 +(z— 20)2

—b)’

A12 2/
47rk Os / +S—s

Vi () /
(byp,2) = 5—5 2/ —2 ds
2mk? Os /p%+(s—s’)2

, S=pp, s =byp

+(z - 20)2

!/ /

,s=pp, s =by

From the Coulomb gauge form of the electric vector potential we should be able to construct the Lorentz

gauge form by replacing

A, = AT +Vy

In the Lorentz gauge

g2y L0 (0, 1O
Ved=Vig = papw +p28@2+8z2

pOp

= iwﬂ0€0 ¢m

We must use the Helmholtz solution for the scalar potential (with outer radiation condition)
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ki = VE2 —a? =iv/a2 — k2
10 ( 0 2 1 92 o2 ”# 18 ., m?
i pa(a n) Kot Grmon+ aon = (g + g+ 1 = ) o

(1 )
/ Hn_(kip) [Ar, (@) cos (mg) + By, (a) sin (myp)] cos (o (z — 20)) da

K HSY' (kyb)
i T (8) = 77 = - (5) 3z = 50) = 50 ()6 = 20)

and multiplying by the trigonometric and Bessel functions, followed by integration over the volume of
the cavity, gives

Z/ ) cos (my) + By, (@) sin (me)] /Z cos (o' (z — zg)) cos (a (2 — 29)) dad (2 — 2g)
:—Q;)q;(s)/_o:oé(z—zo)cosa’(z—zo)d(z—zo)
h ! du = L li " ! "Nuld
/_oocos(ozu)cos(ozu) u=5 lim R[cos(a—a)u—i—cos(a—l—a)u] u
— lim sin(a—a)R  sin(a+a)R — o lim - sin (@ —o)7R/m  sin(a+o')TR/7
_Rl—»oo[ (a— o) * (a+ o) ] R/lﬂ—voo(R/ )[ (o —a/)TR/7 (e +o)TR/7

=7n[0(a—a)+d(a+a)

1
27 g

Y [Am () cos (me) + By (@) sin (mg)] = —5——q;, (s)

m

/Tr cos (m/p) cos (myp) dp = 1/7r [cos (m —m/) @ + cos (m +m) ] dp

- 2)-r

_sin(m—m/)7r  sin(m+m')T 27r5
 (m—m) (m+m/)  em

/ sin (') sin () dp = / [cos (m —m') o — cos (m +m') ] dip

_sin(m—m/)7  sin(m+m')7

= 57n7n’
(m —m’) (m+m') T

us 1 s
/ sin (m/ ) cos (myp) dp = 3 / [sin (m’ —m) ¢ 4 sin (m' +m) ¢]dp =0

Tt (@) = =5 [ (5)cos omp) dp = -

Em 2m g

1
2mbuy

h
/ q,, () cos (ms/b) ds
—h
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I 1 4
B, (a) = — — (g si _ — (s)si
7B () = ~ga [ () sin(me) do = e [ g (5)sin (ms/0) ds
Then we have
[ (1) h h
1 Em Hp (kip) — / r — (Y / ’
Oy = — — ——————— |cos m<p/ G, (87) cos (ms'/b) ds’ + sin mg@/ Gy, (8")sin (ms'/b) ds
i 2 )y e g | ) [ ) cos s 1 (me) [ a5 (<)ysim (ms' 1)
cos (a(z — 29)) da
where we take the magnetic charge to be equal to twice the magnetic flux
G (5) = 20 (s)
Then
V2 = iwpigeod,
S (1) h h
ZW,UQEO/]{: Hp, (ktp) — / ’ . — I\ o ’ ’
P = —m, | cos(mp Q, (57) cos (ms'/b) ds’ + sin (me G, (8")sin (ms'/b) ds
e DE W el CCON ICACLICRD (me) [ (") s ms' 1)
cos (a(z — 29)) da
and
; k2 0? 1 0 m?
V21/1 _ ZwMOEO/ / ( - B ) Hr(i) k
27y k:tH( (ko) \Op*  pOp p? (Fep)
h h
leos (mgo)/ q,, (8") cos (ms’/b) ds’ + sin (m<p)/ q,,, (8')sin (ms’/b) ds’] cos (a(z — 29)) da
_h _
0? 10 m?
— k2 — HDY (k) =0
(3p?+p@p+ p? ) m (kep)
0 19 o m? 1 2 2 1 277(1
<3p2 + ;% - = p2) an) (kep) = — (kt t+a )H7(n) (kip) = —k H7(n) (kep)
[e’s) (1) (]{; ) h h
V) = _ iWHoSo fm Hm” (kip) cos (me / q,, (8') cos (ms'/b) ds’ + sin (mep / q,, (§')sin (ms’/b) ds’
e 25 g | m0) [ () cos(ms ) (me) [ (") s (ms' 1)

cos (a(z — 20)) da

Now the magnetic field is

= —Vo,, +iwA, =~V (¢, — ¥) + iwAS
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1-1/(iw) o g (kip)
—p=— b Z e
O 0 kth (ktb)

h

lcos (mp) /_]:L 4, () cos (ms'/b) ds’ + sin (me) /

—h
AC - 50
ep — 2
T

[cos (me) /7r I, (s") cos (my') dy’ + sin (m(p)/ I, (s") sin (my' )dgp} cos (o (z — 29)) da

—T —T

q,,, (§')sin (ms'/b) ds’] cos (a(z — 29)) dav

Jer Hpn ) k?ﬂb ke Y (Kyb)

Hy (k 202/k? HY (kip) ]

and

AC / "(kep)  o® HE (kup)
= k? pH(” (kb) 20 D (kyb)

™

[sin (me) /ﬂ I, (s") cos (my") dy’ — cos (m<p)/

—T —T

I, (s")sin (my") dgp'} cos (a (z — 29)) da

I =2V
0
55 lm = W,
Z < HY (kep)
27rbw 1o 4= 0 ke HS (Kyb)

h h
lcos (me) [h %I;b (s") cos (ms’ /b) ds’ + sin (myp) /4¢ %I;L (s")sin (ms’ /b) ds’ | cos (a (2 — 2g)) dv

/ "0 () cos (ms' by ds = / 162 cos (ms' b ds’
_p 08 ™ _p os’
' iI_ (s')sin (ms'/b) ds’ = — /h I (s 9 sin (ms'/b) ds’
—h os' ™ _h m s’

- Z h 4H(1) (kip)
27rbw 1o 4= 0 ke HS (lyb)

h

h
lcos (me) /41 I (s % cos (ms’ /b) ds’ + sin (mep) /41 I (s % sin (ms’/b) ds| cos (o (2 — 29)) do
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1 Em > Hﬁ)(ktp) h — N e / / . h — /
Z— 7)771 cos (mep) /41 I (s")sin(ms’'/b)ds" — sin (mgo)/ I (s")cos(ms'/b)ds

2mbPwlg o= 21 o Ry HSY (kyb —h

cos (a(z — zp)) da

__ 1 9 Z em [* M sin (m) /h I, (§") sin (ms’/b) ds’ + cos (my) /h I, (s") cos (ms'/b)ds
2mb?w? g Op 0 kHS (k+b) " "

cos (a(z — 20)) da

The total p component is

h

(1) h
Z—iﬁ = 27rb / Z,(é % [Sin (mep) /_h I, (s") cos (ms'/b) ds — cos (my) /_h I, (s')sin (ms’/b) ds’]

cos (a(z — 20)) da

and then the Lorentz gauge electric vector potential is
A AC Z / H( ) ktp) o H(l)l (k )
ap ~ 2mb B2 pHSD (ki) K20 HY (kib)

h
[sin (me) /41 I (s") cos (my') ds’ — cos (myp) /41 I (s")sin (my") ds/] cos (o (z — 29)) dav

ST TN )/hﬂ’) s —con )/hl(/) .
m 2 0 Hr(rp/ (ktb) k20 ’ i —h m 5 ) COS{ms o cos(me a m\S)S ms S

cos (a(z — zp)) da
e / HY (k) Hy (kp)
27Tb B2 pHD (ki) bHSY (keb)

h h
[sin (mep) /41 I (s") cos (my') ds’ — cos (myp) /4¢ I (s")sin (my") ds’] cos (o (z — 29)) dav

which we see vanishes at p = b. The scalar potential p derivative is

D, dweo N~em (% Hu (hup)
p ™ 2mbk? = 21 HY (kyb)
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h

h
[cos (mey) [h iwg,, (") cos (ms'/b) ds" + sin (myp) / iwg,, (s")sin (ms’/b) ds’] cos (a (z — 20)) da

. (1) h h
_ W&o * Hin™ (kep) [cos (me) iI‘ (s") cos (ms'/b) ds’ + sin (mgo) 0 =1 (87) sin (ms'/b) dS/]

2mbk? o HW (FuD) _p 08 pOs ™

cos (a(z — zp)) da

h

. o) (1)1 h
tweo Em Hy' (kep) / _ ., .0 , ;. / o0 , ,
= - —_— I — b)ds + m I — b d
5 bk? 2 o ), 7(71)/ (k) cos (mep) T (s") 59 cos (ms'/b) ds" + sin (mep) I (s 59 sin (ms’/b) ds

cos (a(z — z0)) da

— iweo Em M OOM 7cos(m )/h I (S/)Sin(mS//b)dS/+Sin(m )/h I, (Sl) Cos(msl/b) ds’
 2mbk?2 — 2r b Jo Hr(rpl (kD) v - " v "

cos (a(z — 20)) da

and the total p component of the magnetic field is then

0
Hp = —a—p(bm + iwAep

. Jeeesy
_ Z‘*"50 Em ktp) o 12712 (ktp)
=% Jﬁ [ (1 — ki) L _Uhep)

pHY (kyb) bHY (kyb)
h h
[Sin (mey) / I, (s") cos (my') ds’ — cos (mep) / I, (s")sin (my") ds’] cos (a (z — 20)) da
—h —h
_ lweg H( ) (kep) (1 — k2/K2 Hr(rp/ (kep)
B 2ba k PHD (keb) (1= ki/K%)
m w 2 pHD (kb) B (keb)
h h
[cos (m) / I (s") cos (my') ds’ + sin (mp) / I (s")sin (my") ds/] cos (o (z — 29)) dav
—h —h
At p=>
H, (b z)z—ﬂgzﬂ cos (m )/h I, (s") cos (my') ds’ + sin (m )/h I, (s")sin (my')ds’'
14 ,QO, 27T]f2b2 880 - 2’]T <)0 _n m <)O SO —n m (p

/000 cos (a(z — z9)) da
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‘ h h
= 7%% ; 82—7; [cos (me) [h I (s") cos (my') ds’ + sin (myp) /41 I, (8') sin (my’) ds’] §(z— 20)

iwep O = Em h / . Noo
= s 2 o ds' as'| 6 (2 -
1202 9 o |f:08 (my) » V_ (') cos (my') ds’ + sin (mep) V_ (') sin (my") s} (z — 20)
10 iweg O 1 0

= Z Em [cos (mp) m_, + sin (mp) m_,| § (z — ) = ?%V_ (s)0(z—20) = —V_(s)d(z— 20)

20 0s

= T 60— 20) = 50 ()32 = 20) = @ (53 (=~

where we used

m,, = -2 cos (ms'/b) V_ (s') ds’
W

_ —i2 . / N

m,, = — sin (ms'/b) V_ (s") ds
Wity

and the Fourier series result
fzwsol (s) [cos (mep) m_, + sin (mp) m_,]
27rb

The ¢ component is then

10y e / ktﬂ
p Oy T 2mbk? &p k pr(l)’ (k4b)
h h
[sin (mep) / I, (s")sin (ms'/b) ds’ + cos (myp) / I, (s") cos (ms'/b) ds] cos (a(z — 29)) dex
—h —h
_ Em ktp) . g — (I o I / 3 4 — (! . I
= sin (myp) I (s')sin(ms’/b) ds’ + cos (my) I (") cos (ms'/b) ds
27Tbk2 ktpr(l)’ (D) —h h
cos (a(z — zp)) da
and the Lorentz gauge electric vector potential
c 10y e / H(l)' (kip) m? (o? + k7) /k? HY (kip)
“ T pdp 2w Ty HSY (Kyb) k pb T HSY' (Kyb)
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™

[ (mg) [ 1 () con ey ! s ) [

—T —T

" / Y (kp) — m® HY (k)
” ke HD (kib) K200 by HED ()

cos(me) [ 1 () cos ) !+ sinm) [ 1 (s () ] cosa (o — ) d

I (s")sin (my") dgo'} cos (a (z — 29)) da

19, 1//)&2@ * _Hi (kip)
pOp "™ 2mbug Op — 21 Jo ke HY (K4b)

h

h
lcos (mp) /_h q,, (8') cos (ms'/b) ds’ + sin (mp) / q,,, (§') sin (ms’/b) ds’] cos (a(z — 29)) da

_ 1/P Z / Hm ktp
2mbiwp, Op H(l

h h
lcos (myp) / %Inj (s') cos (ms’ /b) ds’ + sin (m) / %Irz (s') sin (ms'/b) ds’] cos (a (z — 29)) d
—h —h
1/p a / " ( ktp
 2mbiwp, &p k, H,(,}
h 0 g 0
cos (mep) / I (s 5 <08 (ms'/b) ds" + sin (myp) / I (s o sin (ms’/b) ds’| cos (a (2 — 2p)) dav
—h —h

___Up 0 mem % min (ki)
2mb2iwpy Op — 21 Jo ktH}r%)l (Kk¢b)

l— cos (mep) /_h I, (s")sin (ms'/b) ds’ + sin (mep) /_h I, (s") cos (ms'/b) ds'] cos (a(z — 29)) da

__Up 9 e [ ) (i)
2mbiwpg 0p? 4= 2m ktHﬁ,%)/(k‘tb)

h h
[Sin (me) [h I, (s")sin (ms’/b) ds’ + cos (myp) [h I (s")cos (ms’/b) ds'] cos (o (z — 29)) da

The total magnetic field ¢ component is then
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19
H, = (;5 +iwAe,
p
_ iweg 82 / 1 HY (k)
~27b 8<p2 k2pb o, Y (k)

h h
[cos (me) [h I, (s") cos (ms'/b) ds’ + sin (mp) [h I, (s")sin (ms'/b) ds’] cos (a (z — z0)) da

zwao / m ktp) m? frx)(ktp)
27rb ke HOY (kib) K200 ko, HOD' (keb)

h h
[cos (my) [h I (s") cos (ms'/b) ds’ + sin (mp) /4¢ I, (s")sin (ms’/b) ds'] cos (a(z — 29)) da

or
19
H, = p 5 Oy T iwA,
_dweg 0 / ktp)
b 8@ k2pb k, H“ (k:b)
h h
lcos (me) V_ (s") cos (ms' /b) ds’ + sin (myp) V_ (s") sin (ms'/b) ds’] cos (a (z — 29)) da
—h —h
zwsg / H(l)/ (kip) m?  H{ (kip)
ke HD (kb)) k200 ko HED (kob)
h h
lcos (me) V_ (s') cos (ms’/b) ds’ + sin (mp) / V_ (') sin (ms'/b) ds’] cos (a(z — 29)) da
- —h
or
k2 (k . _
H, = “57 agp / p h 1), (tkpl) [cos (mp) m_, + sin (myp) mos] cos (a(z — zp)) da

o 2 g
Hpy'" (kep) m (ktp) - _

E cos (mp) m, + sin (mp) m_,| cos (a (z — 29)) da
27rb 27r/ [kHl) 0 k?pbktH“ (Keb) [cos (meo) (mip) moy] cos (e (2 = 20))

Now taking p =10
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do

k'2 82 _ . Hr(i k:t
H, (b, z) = ~90 3<p2 Z cos (mep) m_, + sin (mp) m OS kaQ 1), (k) cos (a (z — 20)) T

K g em L [ HR () m? HR () do
—i-% a o [cos (mp) m g, + sin (meyp) mos]/o ng) (kab) k2b2 O (kob) cos (a(z — 29)) — T

where
=VEk-a?2=ivat-kE=iu~ia, a>>1

HSY (iub) Ko (ub
(1),@“ ) =— (ub) ~—1,ub>>1
iHy (iub) K (ub)

Using the integral

e do k do e do
cos (aA cos (aA 7—&—/ cos (@A) —————
| eomtam) = [eoston) e [ eon(at) A
! do > do
= cos (kA) — — 1 cos (akA) ——
| eontara) 2 i [ cos o) S
= gJO (kA) + igYo (kA) = gHgD (kA)
to extract the large a behavior of the integrand we rewrite this as
]i}2 2 m
Hy (b,,2) = 2 LS 20 ooy () mi, + sin (mgg) ]

2
27h O — 2m

k,zbzl/o { H(l(ktb)—z}COS(a(z—zo)) B +i HO (k (2 — 20))

+k—2 5—m[cos(m ) m_, + sin (me) m_, |
2ﬂ-b — 27{_ <p €es SD oS

[ ) H(l (ktb) da .7
VO { AT ) R (g | ) Ty Hig Y (e )

Because we now have absolute convergence at infinity for k (z — zp) = kA << 1

iSHE (kD) ~ i —{In (kA/2) +7'} |
and

kK2 02 _ ) _
Hy (b, 20+ A) ~ 28 8@2 % [cos (mp) m_, + sin (myp) mos]
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1 o ( HY (kyb) dov
[/0 {_fm } i —H——{ln(k;A/Q)—f—'y}

k2 Em _ ) _

—&—% > o [cos (mp)m_, + sin (mep) mos]
< [ HS (kb 2 HY (kyb) | d

B i e B S8 % — (k672 + )
o | Hy (keb) kib2 HS (kb)) | For
Breaking up the integrals into two ranges
B P em .
Hy (b9, 2) = 55— > 2™ [cos (mig) me, + sin (mg) my

2mh 02 — 27

1 FLOHY (k) \da [P K (ub) dov
ka {‘M"}m*/k (R 1) 5 a2 )

k2 Em _ ) _
—&—% > o [cos (mp) m_, + sin (me) m_,|
/k HY (kd) i m? H) (k:b) | dov i /Oo {_K;n (ub) 14 m? K, (ub) } da +i I —{In(kA/2) ++'}
0 Hy(r}) (k/’tb) thb2 Hy(yp/ (ktb) kt k K, (Ub) u?b? Kﬁn (Ub) 7
Noting that
/k cos (aA) ——— da / cos (akA) _ o fJ (kA) ~ EA << 1

0 ViZ — a2 VI-a? 0 2 ’

we can drop the subtraction in the initial range, and also using the result
—iwe lV (s) = k—g cm [cos (my) m_, + sin (me) m_,]
071_ — - 27h — o0 2 es P o0s

we can sum the new terms outside the integrals, to find

H, (b +A)—k—28—2 E—m[ (me) m, + sin (mep) m,,|
» \0, ¥, 20 - 27h awz - 20 COS (MY ) Mg S my) s
k (1) 00
1 / _ Hm (kfb) dﬁ _|_/ _Km, (Ub) -1 dﬁ 4 CO
k262 | Jo HY (keb) | Ki k K7, (ub) u
k2 Em

+— b [cos (me) m, + sin (mep) m,,|

LS (kb))  m® HY (kb) | da [ K}, (ub) m? K, (ub)) da
2p2 (1) ot - -1+ —+Co
o | HY (ko) B2 HY (keb) [ B i T u




2

1 10
—l—zwaog {In (kA/2) ++" + Co} <l<:25'82 + 1) V_ (s)

where we are free to choose the value of Cy. Changing variables

dk
do = /R
du
o aju
gives
k? 02 Em - _
HSO (ba ©, 20 + A) = 277('1)87902 g [COS (mcp) Mes + sin (mw) mos]
1 /k HY (k) / uwb) du__
k202 |/, 1)/ k‘ b /7k2 ub) i + k2 0
k2 Em _ _
o > o [cos (my) m_, + sin (me) m_,|
/k HY (k) m? HY (k, b) / wb) |, m? Koy (ub) LI
o | B (ko) K202 B (k \/ k2 ub) u?? K, (ub) [ V2 + k2 °

o1 1 02
—HwE(); {In (kA/2) ++" + Co} (k;? a2 + 1) V_ (s)

Convergence near ki, u — 0 in the second sum (for m > 1)

V[ ememamem-n(Z)"T e —ammen ()"
=% / 5 )" T k2 it (R
0 —(1/m) (m = 1)! (%) = (1/2) (=m) (1) (m = 1) ()
FCEm) m-DHE)™T L m?  Sm - DH(E)"
+/o{ %(mfﬂ'(%)bm o u (o) (m—l)'éﬁ)m+l}dul
015 * )
o={G-1u)

and for m =0

=1 [/’“{—ZE?E’;Q}M/w{ﬁEZZi ‘1}6“‘]
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l%f{‘1+zﬁ_ﬂﬁﬂ/%w)+v@}d“*iéé{ﬂnZ;g?+w}‘1}d4

1
Tk  (2/7) {In (kb/2)
1 i(2/7) 1 du
kb l /0 { 1+i(2/7r){ln(ub/2)—l—’y’}+{ln(ub/2)+7’}} u b ()du]
[ 1 1 } du
k:b —im/2 + {In (ub/2) + v } {In (ub/2) +~'}
1 O _{In(ub/2) +~'} + [~ im/2 4 {In (ub/2) ++'}] du
kb Jo  [—im/2+ {In(ub/2) + '} {In (ub/2) ++'} w

_in/2 / 1 du
kb Jo [—im/2+ {In(ub/2) +~'} {In (ub/2) + '} u

1 dj B Z7T/2 /51)6’\// /2 1 dj
0 [—im/2 4+ In(w)]In (u) u

/2 / _
kb Jo [—im/2+ In(ube¥ /2)]In (ube' /2) u kb

B i/w in/2 dv
kb —In(8ber’ /2) it/24+v v

1 [ 1 1 1 it/2+v
= — - — = dv=— |In
In(sber’ /2) \V iT/2+ v kb v — In(8ber’ /2)

kb
1 fmeem(ee'2)] 1 g
“ [ " In (dbe /2) } ™ kb —In (8be” /2)
“In(u) = v — dv = —du/u
/2 11 1

it/24vv v ir/24
Thus the combination of the two integrals is convergent for m = 0 (barely). Then rationalizing the first

integrals
/’f i3 (k b) / HY (kb) H (kyb) dk,
o | =Y ( \/ k2 CHDY (k) HE (keb) | /K2 — K2
:/ {_ {Jm (kib) + iV (eb)} {7, (Rib) — iV, (ktb)}] dky
0 Ji (ki) + Y2 (eb) VK — k2
_ /k { I (keb) Ty, (Keb) + Yo (ki) Y, (ktb)} dk Jr‘/k { I (kib) Yoy (ki) — Jim (ki) Yy, (keb) dk;
“Jo T2 (ki) + Y2 (ki) ok o T2 (ki) + Y2 (kib) R
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/k HY (k) m® Hy (ki) dk, /’“ HY (keb) HY (keb) — m® HS (kib) HY (kib) dk,
o | HY (k) KV HD (k) | VE2 =k Jo | HSY (keb) HSD (lb)  KEV: HSY (kob) HED (kyb) | /K2 — &

_/ {{J’( t0) +iVy, (keb)} {Jm (keb) — ¥ (keD)}  m® {Jin (keb) + 1Yoy (Keb)} {7, (ke )—z‘Y,;(ktb)}} dk;
0 I3, (keb) + Y2 (i) R J73 (keb) + Y72 (D) kZ — k2

B /k T (keb) Ty (b) + Yo (keb) Yoo (ki) m® i (Keb) Jhy (ki) + Yin (keb) Yo, (keb)]  dky
o I3, (keb) + Y72 (i) kb J13 (Keb) + Y2 (FeD) o—

m

Ny /’f T (kD) Yy (kid) = Ty (kid) Yo (ki) m2 T}, (kid) Vi (id) = Jon (kD) Y, (kb)) | dky
0 72, (ked) + Y2 (kD) R0 T2 (keb) + Y2 (kib) g

Using the Wronskian

2
T (keb) Y, (i) = Ty (keb) Y (ki) = Jvr (eb) Yo (kib) = Jon (keb) Yo (kib) = ——
t

/’“ HY (keb) dk

o | HY (k) | VEE— K7

_/k{_Jm (ki) J! (kb)) + Y, (Kib) m(ktb)} dk; H_g ’“{ 1 } dk;
Jo J72 (keb) + Y2 (keb) VE2—kZ  wb Sy U2 (k) + Y2 (ki) ) ke /K2 — K2

/k HY (keb)  m2 HEY (ked) dk,
o | HY (k) k20 HY (kb | V/E2 — k7

k 1 m2 1 dk,
= - m Y, —F
L vz i v | e ) T 0 Yo (), ) =
—H'i ' 1 m2 1 dky
mb Jo  UJG (k) + Y57 (Keb) k252 I3 (ki) + Y2 (kib) ) Ky /B2 — &7
Then we can write this letting A = p_
Hy (b, 20 +p_) = 1 92 ﬂ [cos (my) m_, + sin (me) m_,]
T 27h 352 2m es os
/’“ { T (ke) Ty, (Kib) + Yo (eb) Y7, (krb) } { } dky
0 I (kib) + Y2 (kiD) VK2 k:2 ﬂb Y’2 (ked) J kyn/k2 — k7

R —1}%%}
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+k—2 E—m[cos(m ) m_, + sin (me) m_, |
2ﬂ-b — 27{_ <p €es SD oS

k 2
1 m 1 dk;
— m (kb)) J. (kb)) + Yy, (kb)Y (kb)) ———
V {Jmtb)ﬂ%(ktb) ksbw;%(ktb>+y,;$<ktb>}” (Reb) Jon U)o+ ¥om (ReB) Yoo, (D)} 72—

2 [k 1 dk;
“%/0 {J,?n (keb) + Y2 (Fkeb) k2b2 J'2( )+Y'2 (kb )} ko /K2 — 2
o e i | v o)

1 2
—|—zw50— {In (kp_/2) ++ + Co} —2— ) V_(s)

This final term can be written as

) 1 1 02
iweo— {In(kp_/2) ++ + Co} (k2882 + 1) V_ (s)

= —iw&‘o% {—In(kh) +In(2n/p_) — " — Co} (1328852 + 1) V_ (s)

.1 1 02
= 72&)5‘0; {71H(kh) +Qp7/27"}/ — Oo} <I{,’2682 + 1> V_ (S)

= —jw 1 In (kh) + Q 2-C./2—+ =C, i—({)Q +1)V
e {_ n (kh) +Qep_/ /2= O} k2 9s2 - (s)
and with p_ = a

1 . 1 o
—iweo {—2In(kh) + Q) — C. — 29/ —2Cy } <k2832 + 1) V_(s)

Obviously we can choose

2Cy = —C. — 27 — 2In (kh)

to reduce this to the transmission line term Q0 only, but we should note that this is a free parameter. As an
additional check for m > 1 the second bracketed term is

[~

k 1 m2 1
— Im J/ kb Y, (kb)Y (kb)) ———
LA o v~ T v} e ) T )+ Y 00, () e

2 /k 1 Lo 1 dk;
wb Js L JZ (keb) + V2 (keb) k202 T2 (keb) + Y2 (ki) | koo /K2 — k7
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+/:’{_K{w(ub) e Km(ub)} du

K, (ub) w?b? K., (ub) | vuZ + k2
Ry
b2m 1
tomm 71Tk( |2/ {1+ 13 k7™ dky

+]1/05{ZZ—1—ZZ}du+CO

[~

or

m m

b 1 m? 1 ) )
/6 {J,,,a (beb) £ Y2 (kab) K202 T2 (ki) £ Y2 (ktb)}{Jm( 0) T (ki) Yo (keb) Yo (kb)) =g

4i 2 /k 1 n m? 1 dky
P2
wb Js U3 (keb) + Y3 (keb) k702 T3 (keb) + Y2 (Beb) | ke /B2 — &7

e T (ub) m? K, (ub) du
+/5 { Ko T wR k) | vore kG

As an additional check for m = 0 the second bracketed term is

F 1 / !
1= [ ey vz Vo G o )+ 0 () i )

+i

2 [F 1 du
Ea gl dw
Wb/é {Jo 5 (keb) + Y (Keb } kt\/k2 k2 {Ko ub) } N

dk
e 2 2 t
/ dkt ln {JO (ktb) + YO (ktb)} 7@

2 [ 1 du
—I—z%/o {Jg (keb) + Y (keb } \/W / { b du n (Ko (ub)) — }FQ — +Co
k 1 , ; dky

+i

2/’f{ 1 } dky {1 _} du
wb Js \J3 (k) + YZ (ked) | ko /K2 — k7 Js | Ko (ub) ViZ - k2

/ d7kt In \/1 + (2/7{')2 (ln (ktb/Q) + 7,)2dk‘t
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2 ' 1 dk; 1 [ d )
I ) {1+ (2/m)* (In (ktb/2)+fy’)2} ), ae i (eb/2) = b du—d/k+ Co
k . / dky
N/5 {Jg (keb) + Y2 (k:tb)}{‘]o (keb) Jg (keb) + Yo (keb) Yy (kib)} —
2 fF 1 .
—H%/ {Jo(kt)+Y2 kb }ktm { 1}\/W

kb/ T {ln\/1+ 2/7r) In? (ube”' /2) — ln{ In ube” /2 du

2 1 dky

4
N — —0/k+ C
"rkb 0 { 1+ (2/7)° In? (kbe?' /2) } Ky / 0
/k{ ! }{J (keb) T4 (eb) + Yo (kab) Y2 (b)) —m it
s UJZ (keb) + Y2 (kyb) J 1707 700 0 15eD) To 1Pt gy
+i£ /k { 1 } dky n { } du
b Js LG (kb)) + Y5 (ki) | by /K2 — K2 Js | Ko (ub) Vu? + k2
, §
R Y
k: {1H\/1+ (2/7)° In? (ube? /2) — ln{ In (ube /2)}}0
o0 dv
i —_ _/k+C
kb —(2/m) In(be’ /2) 1+ v? / 0
—(2/m)In (ktbﬁ/ /2) s dv = —dk, [k,
or
n—/k{ ! }{J (kb) T4 (keb) + Yo (keb) Y (eb)} —mot
TS5 LJZ (heb) + Y@ (eb) 20 0T RORRET0 MR e g2

1} du
Vu? + k?

2k 1 dky {
+i— +
b /5 { g (k) + Y (eb) } kK2 =k Js L Ko (ub)

+% In { \/1_+(;i;7;)1n1(r:52bg’b;;l)/2) } +i klb {1 - % arctan ( (2/m)1n (51)6“’//2))} —0/k+Cy
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6 MAGNETIC FIELD REPRESENTATION SUMMARY & INTEGRO-
DIFFERENTIAL EQUATION

We now summarize the preceding exterior and interior azimuthal magnetic field representations (in forms
we derived from both gauges). We then enforce continuity of the interior azimuthal magnetic field (exterior
representation plus short circuit field) and interior azimuthal magnetic field (interior representation) across
the slot to set up the integro-differential equation for the slot voltage.

6.1 Exterior Coulomb Gauge Representation
The magnetic scalar potential contribution is

1 92 Em

19 o . - [T
_E%d)m (b,gﬁ,Zo+ae) = T 9rb 05 . o [Sln(m¢)mos+cos(m¢)mes]/(3

K’ITL (U) (¢0)] 'U,a,o dj
K, ) (0

1 02 _— _ _
N =5 D o [sin (mi) my, + cos (m) mg,] {Con + +In (al/0)}

The azimuthal electric vector potential contribution is

‘ k> Em . _
iwAep (b, 20 +al) & 5525 [cos (my) m_, + sin (mep) m_,]|

m

oo (771 2 )
Hp' (kb)) . ( m ) 9 9,19 Hy' (kid) da
= A0 i(1- S ) —m? (1 - k2R ——m ) L2
Uo { HY (kyb) k2b? (1= ke/) (k) HY (kyb) | e
m2 LT , 0
+ <1 - k2b2) {25 “In(kh) -~ +Q}}

‘ 1 92 Q0
—iweg (k'2882 + 1> %V, (s)

Qg = Qag + C,
Qg0 =2In (2h/a?)

6.2 Exterior Lorentz Gauge Representation

The exterior representation using the Lorentz gauge is

H, (b,p, 20 +d°) = —i XL )y (s)—iweo {—21n (kh) — C. — 29/ — 2C,} Lo )1y (s)
o (b, 0,20 +ag) = zwso2ﬂ_ 2 92 _ (s)—tweg n e v 0} | 72 52 5= V- s

1 02 Em

+%@ 2 o [cos (mp) m_, + sin (mep) m;s}
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/’“ { Jon (1) ,,L<kb)+m(kbm(ktb>} ke 2 { L } dki
0 T2 (ab) + Y72 (Red) NCEr RN W S CORR I OO WAV

{1} it el
B Em [cos (mg) m, + sin (mg) m;, ]

T omb 2 or

k 1 m? 1 dk,
- o (kb) ! Yo (kb)Y (kyb)} ——t
l/o T VI T T | U 0 () Yo () Y () e

k 2
0 S (kib) + Y% (ki) K702 T3 (keb) + V2 (Bed) | kg /K2 — K7

/OO g m? K, (ub) du L
) PR K () | Ve

where C is arbitrary and

Qg = Qag + C.,

Qqo0 =2In (2h/a?)

a2
e
. cos (ms'/b) V_ (') ds’
m,, = — ms _(s)ds
Who
i ' sin (ms’/b) V_ (s') ds’
” wpg -
Q0 /1092 Qe (1 02 0?
72(&)50 <k32 952 + 1) V_ (S) 77,&)50 <k2 952 + 1> V_ (S) <AYL82 — AYC) ( )
For m = 0 the second bracketed term is broken up as (where §b << 1)
H/k : [ (heb) T4 (keb) + Yo (eb) Y5 (kb)) ——m
“ s VIR (kb) + Y (Red) [ 100 oo k2 — k2
H_z/’f{ 1 } dke { 1 (u } du
b Js \Jg (ki) + Y3 (ked) | by /B2 — K2 Js LK VaZ + ;2

21,2 (5be’
+% In { \/1_"‘(;3:;)11112%??/2)/2) } + z% {1 - % arctan (— (2/7)1n <5be”//2))} —0/k+Cy
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6.3 Half Space Exterior Approximation

The exterior half space representation to the magnetic field along the slot is [18], [1], [9] (an accurate
approximation the slot length is small compared to the cylinder half perimeter ¢ << ma)

— + I (s") ds'
0s? —h dmyfa2, + (s — s')?

i (82 k2> /h piky/aZ,+(s=s)7

V_ (s ds'

—h 27n/a2q—|—(s—s’)2
Ij:

(s) = £2Vy (s)

where

with equivalent slot radius [9]

2
Qeg ~ W—q:e_"d/@“’) , d>w/3

or if we do not include the slot interior

2w
0
aeqwﬁ, d>’l,U/3

6.3.1 Transmission Line Approximation

If we use a first order Hallen-type approximate form for the local integrals

h ik\/aqur(sfs’)2 Q
/ Ih(s) — ds' ~ —°I% (s)

~ m
_h A7 /agq+ (8—8/)2 47

h
+i {-Cce+In(1- 52/h2)}1f,i (s) +/ m
47 —h

where

Qe =21In(2h/aeq) + Ce

and if we choose to preserve the low frequency dipole moment of the slot we take

C.=2(In2—7/3)

If we leave out the slot interior

Q) =21n (2h/al,) + Ce

Therefore the half space transmission line approximation becomes

_ 1 1 02 ) 1 _
H; (aeq,é‘) ~ 5 <—Z(A}La$2 +ch) §I7n (8)
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+ Z (8822 —|—]€ > [41 {—Ce+1n (1_82/h2)}]—771 (S)+/h Ir; (3/) eik‘87s ‘ —I,;l (s)dS/]
S us —h
2
% <—ztuL682 +MC) V-(s)

AN TN I SRR g [Preeett v
(352%)[%{ Ce+n (1 /h)}Vf()+/_h d

Wi 2 |s — &
where
L = pgm/Q.
C= E()Qe/ﬂ'
If we leave out the slot interior
L’ = MOW/QS
CY = Q%7

6.4 Short Circuit Current Drive

The short circuit magnetic field drive on the exterior is

K2 (p,20) = HE" (b, ¢, 20)

" o~ Emi™ | cosm (o —@;)cosp, msinm (p — @;)cosb;sing,

m=0 ko, B HT(TP (kmb) kp bH(l (k b)
k,, = ksin0;
k., = kcos0;

6.5 Interior Coulomb Gauge Representation

In the Coulomb gauge

10 N - €n€m cos (nmzo/he) I (G pp/ @)
i — h, ,
P a(pgbm (P»% Z) ap 8@2 chav HZO;WLZO pmn m2/] ) COs (TLTI'Z/ ) T (J;mp)

1
3 [cos (mep) mt, + sin (me) m, ]

where
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h

+ 12 / ’ ’
ml, = cos (ms'/a) Vi (s') ds
Whko
ml, = 2 [ sin (ms’/a) Vy (s') ds’
o wpg o

K20 = (i p/a)” + (n/he)?

kzz)mn - (jmyp/a)2 + (’I’L’Tf‘/hc)2
and

oo o0 oo

il =3 Y e I Um 20/

(,ow n=0p=1m=0 {k2 + kkpmn (1 + Z)/ p,m n k2 m,n} J7n—1 (J'm,p)

1
3 [cos (m) mt, + sin (me) mJ, ] cos (nmzo/he) cos (nmz/he)

oo 0 X

Emén m2/j2 . (nm/he)® a Jm (. pp/a)
VWJZZZ {k2+k‘k/ : N -

n=0 p=1 m=0 pmn(l—’_l)/men kﬁm,n}( _mQ/Jm,p) kgmn P Jm (];n,p)

1
5 [cos (mep) mt, + sin (mg) mt,]| cos (nmzg/he) cos (nz/he)
We note that

Q
iwAZ, (py,s) ~ iweg 2p+ Vi (s)
T

s k2 m .
TwAS, (p+, s) =5 Z 62771- [cos (mep) m7, + sin (me) mjg] Qep, /2

and thus

2

1 02 s k2 Em n m
292 +1) A (py,s) = %Z 5 [cos (my) m, + sin (me)m] (1 - a2 Qep, /2

The total interior field representation is then

1 (1 62 he
H, (a, 0,20 +al) ~ zweo <k2 932 1) Vi (s) {Qg —Cc+2In <h77 cse (Wzo/hc)) }

k2 o0 m o0
7 Z % [cos (mp) m7, + sin (me) mjs} Z en cos® (nmzo/he)
C

m=0 n=0

i N L m?/j (m)z L a(1=dw)
= kg mn) (K - k2, n) k2 (1—m2/52 p) he 2nm/he
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+=55 : [cos (mp) mt, + sin (my) mj's]
1

gy

2y
o) o a (]. - 677,0)
Z £ cos® (nmzo/he) {Z 21— m2/j§72z,p) ~ 2nw/he }

n=0 pmn

where

Q0 = Q0 + C.

(&

Q0 = 2In (2h/a))

Q0 /1 o2 Q. /1 02 02
ZOJ&O <k2 952 + 1) V+( ) — ’Lw€0 (]{)2 952 + 1) V+( ) (AYLa AYC) ( )

6.6 Interior Lorentz Gauge Representation
In the Lorentz gauge

10

7;%¢m (pa ®, ZO)

oo oo o0

_ EnEm €OS (NT2o/he) M
_WWW%ZZZMMW o S (P A A A E

n=0p=1m=0 p,m,n

1
3 [cos (my) mE, + sin (me) m7, |
where
ml, = 2 ' cos (ms'/a) Vy (s')ds'
es Wit +
w12 ' sin (ms'/a) Vi (s') ds’
” wpy o

and we used

Jm,p/a = kp m,n (nﬂ—/hC)Q

Jm p/a - k;?m n (nﬂ-/hc)2

Therefore going to the Lorentz gauge changes the TE mode factor

10
WA, = iw | AS + ——
twAe, = tw < co T p&pw)
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[o olNNNe o} oo
J,

. EmEn T (jm,pp/a)
a ‘/;av Z Z Z {k2 + kkpvmm (1 + 7’) / M — k}%,m,n} Jm*1 (jm,p)

n=0p=1m=0 p,Mm,n

1
3 [cos (my) mE, + sin (mp) mZ, ] cos (nzo/he) cos (nwz/he)

* 2= Emén mz/j;r%,p a Jm (];rz,pp/a)
‘/cav Z Z Z {k2 + kk;),m, ( ) /Qp m,n kg,m,n} (1 - m2/j';7%,p) P Jm (jin,p)

n=0p=1m=0

1
3 [cos (my) m¥, + sin (me) m

The total field representation is then

o5 cos (nmzg /he) cos (nmz/he)

1 (102 he
H, (a,¢,20 + a) ~ zwso <k2 a2 1) Vi (s) {Qg —Ce+2In (lmr csc (Wzo/hc)>}

9
7Vk Z %n [cos (mep) m, + sin m, Z e cos® (nmzo/he)
€AY m=0 n—0
i + 1 2/.7777,717 + a/(l _677,0)
p=1 k12)777l ’L) (k k;)%rn n) ( m2/]m p) 27171'/]10
LA 0?
a2 a2,

oo
Z 7’” cos (mp) m, + sin (me) m%,]
m=0
oo

1 a (1 — 5710)
£y, cos® (nmzo/he) - -
> % et

Q(e) = Qag +C.

Qq0 = 21In (2h/al)

Q01 6? Q.1 87 1 02
ZWSO*TF <3 —+ 1> V+ (S) — Zw&'f()% (2 + ].> V+ (5) -+ 5 <AYL832 — AYC) V+ (S)

Noting that

k2 Os
-1
247) }

1 N 1 m?/in, 1 N 1 1
(B = kpmn) (B = k) (L=m2/ig ) (R =k n) (B = R ) | (- m?/5

we can rewrite the field as

1 (1 62 he
H, (a,¢,20 +al) ~ N iweo - <k2 57 T 1> V, (s) {QS —C.+2In (hw csc (ﬂZo/hc)> }
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V Z%ﬂ cos (mp) m, + sin (my) m

m=0 n=0

] isn cos? (nrzo/he) Z{ - 1/2 )}

p=1

p’m n) P,m,n

1 92 1 - m
+ < * kQ) b [cos (myp) mT, + sin (my) mf,]
a? dp

€
2 92
a ‘/C(J,'U m=0
o0
E £, cos? (nmzg/he) E (i
n=0 — pmn

where for finite quality factors we replace

K2 = k2 = K+ bk (1+1) /QE 0 — k2

k> — k2 — K+ kK

p,m,m

6.6.1 Check Returning To Coulomb Form

Taking the k? term from the second summation term back

1 1 02
Hy (a,¢,20 + al) ~ zweo 292 +1)Vy(s)

B a (1 — 5110)
2. 2nw /b

p,m,n

. 12
pmn(1+z)/ pmn_kp,mn

he
QY —~C.+2In (}m csc (WZ(]/hc)> }

k2 = Em L O ) - 1 1
7 mzzzo 5 [cos (my) m, + sin (me) m1,] EZ: €, COS (mrzo/hc);::1 i) - k2

1 02 1 &
n <8 + kz2) Em [cos (my) mY, + sin (me) m7,]

2 92

Z £y, cos® (nmzg/he) {Z (k2

n=0

gives

1 /102 0
H¢(a,g0,zo+ae) zweo k28s2 +1)Vi(s)Q, —

[cos (myp) m, + sin (m

pmn k2) (1 - m2/]7/72z

. a (1 — 6n0)
») 2n7/he

he
C.+2In (h77 csc (TFZO/hC)> }

mf,] Z e cos® (nmzo/he)

p,m,n

= [cos (mp) mf, + sin (
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2

a(l—-24d,
E }+ ;mr/hO)]
m,p Cc

i 1 N 1 m?/jom.
(k2 = kZsnn) (K = k) L= m?/g

Z &, cos? (nmzo/he)

n=0



- 1 a(l—6dno)
{Z( — k22 )(1—m2/j;%,p) + 2nm/he }

p=1 pmn
Now using
k> 1 1
(B2 = ki) Kfim,n (k;}m W= k) R
gives

1 /1 0 he
H, (a,¢,20 +al) ~ zweo <k2 a2 1) Vi (s) {Qg —C.+2In (h7T csce (ﬂzo/hc)> }

%ﬂ cos (mep) mf, + sin (my) mJ, Z £ cos® (nmzo/he)

Y m=0 n=0

> 1 N 1 m2 /2, N a(1—dn0)
— (k2 = k2,0 0) (k2 — k2, n) 1—m2/522 2n7/he

102 1 & Em
-9 Z 5> [cos (me) m7, + sin (me) m, an cos? (nmzo/he)

m=0 n=0

i 1 k2 1 +a(l—éno)
= = 2/32) | O = k) W R | 20/

p=1
or combining this term with the first sum and using k2, ,, — jr= /a* = n*n?/h?

1 (102 he
H, (a,¢,20 + a) ~ zwso <k2 a2 1) Vi (s) {Qg —Ce+2In (lmr cse (Wzo/hc)> }

k2 = Em
7 % [cos (mep) m, + sin (me) m1, | Z n cos? (n2g/he)
€AY =0 n=0
Z N (nm/he)? m iy | (1= dm)
p=1 k?) m, n) k;)%rn n (k2 kgm rL) 1- m2/]m,p 2717T/hc
1 82 1 Em + . + - 2
Z 97 Vs Z [cos (my) m, + sin (me) m1,] Z en cos” (nmzo/he)
cav n=0
= 1 ~a(l=dn)
= kfm n (1 — m2/];,%’p) 2n7/he
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6.7 Integro-Differential Equation

Now, in summary we note that we have exterior azimuthal magnetic field representations, for a ¢ directed
exterior magnetic current I, = —2V_ (with continuity equation dI,,/ds = iwg,, and exterior arc length
s = by, the electric field around the magnetic current is consistent with the axial field being —z directed for
a positive exterior voltage V_ on the positive z side of the slot), generated by the exterior surface electric
field matching

ek, = _/1)38p (pAcy) + lloaacpAEP ~ —goV_ (8)d (2 — z0) , exterior
and interior azimuthal magnetic field representations (with interior voltage V. (s) taken to be positive on
the positive z side of the narrow slot with I}, = 2V being ¢ directed), generated by the interior magnetic
current source (where the factor of one half is present because the image in the conductive wall is accomplished

through the boundary value problem solution)

1
I = §I$(s)6(z—z0)5(p—a) =Vi(s)d(z—20)0(p—a), —h<s<h, interior
in addition to a short circuit exterior azimuthal magnetic field representation. In the Thick slot case the two
voltages Vi (s) are taken to be approximately the same, and then the matching of the interior and exterior

azimuthal magnetic fields results in the required integro-differential equation.

6.7.1 Integro-Differential Equation Using Interior Lorentz Gauge

The matching of the magnetic field results in the equation (here b is the exterior radius and a is the interior
radius, and we choose the previously arbitrary constant Cy = 0, which defines the first-order term in the
transmission line operator)

0
e

1 0?
H, (b, 20 +al) — Hy (a,,20 +al) = —iwz—:oﬂ (k:2832 + 1) {V_(s)+ Vi (s)}

v (L Y v s d e 2m (B2 ese (o fhe) ) Ymiweo {—2mn (o) — 0 — 23 (L5 1) v (s
weog— | 13502 " (s . n {5 csc(mzo/he weo n =2 mae 5 V- (s

1 02 Em

+%@ 2 o [cos (mp) m, + sin (mep) m;s}

} dky 2 ’“{ 1 } dk
il

V2 — k2 mb Jo LJR (kb)) + Y2 (keb) | kp /B2 — 7

Kmu

/k { Im (kib) Jp, (keb) + Yo, (ki) Y, (KiD)
0 (Kk¢b)

RS R
.

Em [ o -
+% — % [COb (m<p) Mes =+ sin (m(p) mos]
/k ! o ! (o (i) T, (eb) + Y (ki) Y., (b)) — 2Pt
o UJ2 (keb) + V2 (ki) k702 72 (keb) + Y2 (Reb) f 17 7 7m A Tm A k2 — k2
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2 /’“ 1 N m? 1 dk
7 Jo T2 (keb) + Y2 (ki) | K202 T2 (ked) + Y2 (kid) | b/ B2 — 2

o[l Kt} ]

e £ 5 ot i o) St om) £ g i)
m=0 n=0 p=1 p,m, p,m,

2 oo
B (182 + k2) = 3 2 [cos () s + sin (mo) m ]

S 2 1 _a(l=dn)
ancos (nmzo/he) {Z k2., — k2) (1—m2/j2 ) 2nm/he

n=0 p:l pmn

= _Hfoc (bv ®s ZO) =

o Hyek i Emi™ _cosm(go — ;) cosp, N msinm (¢ — ;) cos0; sin p,
mkp, b Hy (kb ko, bHS (Kb
m=0"""Pi m (Kp,b) p.0Hm" (Fp,0)

Now ignoring the difference between the two voltages for the Thick case with

Q1P 0? 1 82

1/Z2 =AY, + ———
/ Lt —iwpgT /e

Y = AYe — iwegQe /7
gives
Q1 o2 Qe (1 0? 1 0?
—7,(4)5[)% < 7 + 1) V_ (S) —ZLUE() (k’282 + 1> V_ ( ) 5 <AYL832 - AYC) V_ (S)
Note that the dominant operator contributions to the exterior and interior magnetic fields are
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o 0 , he 1 02
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and for convenience we set Cy = 0, so we have

1 62
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where for finite quality factors we replace

k2= k2, = K kky o (14) JQETM 2

p,m,m p,m,n p,m,M

k2 o k/2 _ k2 +kk/

p,m,n p,m,n

(1+’L)/ TE —k/2

p,m,n p,m,n

Note that we can take the limit

) k? k? —m?/a?
lim — —
[ ( )]

skl k2 — kﬁ,m,n) (k;?mn —k?) (1 - m2/j2
| B R m) + R, - m
= lim =y - 12 2/
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I I 0t O e M N e /e WYL B )
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k;?,m,n - n27r2/h3 = .7.7/1%,;)/0‘2

This shows that the singularity at k — kp ., is absent for n = 0 (as clear in the Coulomb representation).

We can also redefine
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6.7.2 Integro-Differential Equation Using Interior Coulomb Gauge

The matching of the magnetic field results in the equation

Q102
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€AV m=0 n=0

i 4 1 2/.77n,p (M)Q n a (1 — 5n0)
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or using
1 9% < 1 92
) 1 /1 62 , he
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v
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o0

— _92H i Z Emi™ | cosm (¢ — ;) cosp, N msinm (¢ — @;) cos 0 sin g,

F R () o

where for finite quality factors we replace

k2 — k2, — K+ ko, (L4+1) /QEY

MM pmn

K2 —K? k24 kK

p,M,M
6.7.3 Integro-Differential Equation With Half Space Exterior
The matching of the magnetic field results in the equation
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where for finite quality factors we replace
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6.7.4 Integro-Differential Equation With Half Space Exterior & Approximate Quasi-static
Planar Interior Component

The matching of the magnetic field results in the equation

1 2
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6.8 Even-Odd Equations

We can also break up the integro-differential equation into an even equation
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and an odd equation
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i2 (" i2 ("
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—i2 " —i2 "
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In order to implement this efficiently, we need to tabulate the double series interior terms and integral
exterior terms, independent of the Galerkin moments (with indices m’,m’), since these multipliers are
common). These series multipliers will be dependent on m and will vary with & (so we only tabulate them
for m at each frequency k).

6.8.1 Even-Odd Equations With Half Space Exterior

The even equation with half space exterior is
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6.8.2 Even-Odd Equations With Half Space Exterior & Approximate Quasi-static Interior
Component

The even equation is
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7 FOURIER GALERKIN IMPLEMENTATION HIGHER FRE-
QUENCIES

We now set up the linear systems for the Fourier coefficients from the integro-differential equations. Our
purpose in this section is to calculate the slot voltage and interior fields to fairly high frequencies where
modal overlap is expected (overmoded region) and compare with some bounding results. In this section
we also compare the rigorous broadband solutions for the exterior cylinder with the exterior half space
approximation, using the preceding rigorous formulation of the interior and exterior field representations and
resulting integro-differential equations (with the dominant transmission line operator rigorously extracted).

7.1 Fourier Basis And Projections

The Fourier projections of interest here are now discussed. These Fourier representations for the voltage
distribution enable the distribution to be general and responsive to interior cavity loading as well as slot
wall loss or gasket effects. In the even case we take the solution to be expanded in the basis
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m/’,odd

and apply the operator

h
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In the odd case we take the solution to be expanded in the basis
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_ 14 / "
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For the Galerkin implementation we also need to evaluate and store the interior moments
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sin (m" ' w/¢ —m/a)h) N sin ((m"7/¢ +m/a)h)
(m"w/ —m/a) (m!'/t+ m/a)

= 2(m"n/0) (=1)™" D72 cos (mha) — (m'7/0)? {

h h
=— /_h % cos (m ws/l) % cos (ms/a)ds = — (m" 7 /) (m/a) /_h sin (m"'7s /{) sin (ms/a) ds

h
=—(m"n/0) (m/a)/0 [cos ((m" 7/t —m/a)s) — cos ((m"n/l +m/a)s)|ds

— (" /0) (ma) {sin (m"m/t—m/a)h) sin((m"7/l+m/a) h)]

(m"w/t —m/a) (m"m/+ m/a)
= (=)™ (m" 7 /0) (m/a 1 1 in (mh/a
= 0" ) () | e sin (i)
— (m/a)? sin (m"w/0 —m/a)h) sin((m”"x/l+m/a)h)
=~ e | i

__m///2ma2 1 _ 1 sin (mh/a
=(-1) (m/a) [(muﬁ/gm/a) (m//w/éer/a)} (mh/a)

and with m/" even

2

h b 9 h h b 9
. 1 . — . 12 . . _ . . 11 . .
/_h sin (m"'7s/¢) 5e2 S0 (ms/a)ds {sm (m"ms/l) 55 St (ms/a)] . /_h 55 S0 (m"ms/l) 55 S0 (ms/a)ds

h h
=- /_h % sin (m/ s/ 0) % sin (ms/a)ds = — (m" 7 /¢) (m/a) /_h cos (m" ws/l) cos (ms/a)ds

h
=—(m'"xn/0) (m/a)/ [cos ((m" 7/t —m/a)s) + cos ((m"7/l+m/a)s)|ds

0

=~ (n"n/0) (ma) |

sin (m"w/¢ —m/a)h)  sin((m"7/l+ m/a) h)]

(m'"m/l —m/a) (m''m/l+m/a)
= (—1)™"/2 (" /) (m/a) { ! - ! ] sin (mh/a)
(m'n/l —mja) (m'n/l+m/a)

w2 (m"w/)2(m/a)’

(m"w/0)* = (m/a)
— (m/a)? sin ((m"n/¢ —m/a)h)  sin((m"7/¢+m/a)h)
== i

= (-1)

5 sin (mh/a)

__m///2ma2 1 1 sin (mh/a
_( 1) ( /) |:(m//7r/£m/a)+(m//7r/£+m/a):| ( h/)
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mya (m"w/0) 2 (m/a)’
(m"w/6)* — (m/a)?

We also need to evaluate and store the exterior moments

~(-1)

sin (mh/a)

h 1 h
/ cos (m'ms/l) cos (ms/b) ds = 5/ [cos ((m/m /€ —m/b) s) + cos ((m'w /L +m/b) s)|ds
—h —h

sin ((m/m /€ — m/b) h) n sin ((m/m/€+ m/b) h)
(m'w/¢ —m/b) (m/mw /¢ + m/b)

h 1 [t
/ sin (m/ws/¢) sin (ms/b) ds = 3 / [cos ((m/7/€ — m/b) s) — cos ((m'm /€ +m/b) s)] ds
—h —h

sin (m'w/€ —m/b)h) sin((m'w/¢+m/b)h)

(m!7/¢ —m/b) (m!7/¢ 4+ m/b)
Then the dipole-like terms are
- @2 h cos (ms’ §)ds' = —i2 sin ((m'w/€ —m/b)h)  sin((m'w/l+ m/b)h)
e = gy oy R OOV - wHo mz { (mr/i—m/b) | (mx/l+m/b) }
a2 h sin (ms’ Nds' = —i2 sin ((m'm/¢ —m/b)h)  sin((m'7/l+m/b)h)
= g L Ve = 28 5 o (SRS i

m/ JEVEN

h 32
/ cos (m'"'ws/l) — 52 08 (ms/b)ds
—h

B ) sin (m"7/¢ —m/b)h)  sin((m”7/l+ m/b)h)
=-m ”/é)(m/b){ (m'w/l—m/b)  (m'n/C+m]b) }

= (=)™ (m"x /€) (m/b) [ Tt 1 R €1+ — /b)] sin (mh/b)

— (m/b)? sin (m"7/¢ —m/b)h)  sin((m"w/€+ m/b)h)
== (m/) [ (7] L= m/b) (7 )L+ mb) ]

_(_ 2 (10 /B)? 1 — 1 sin (m
= (=1 (m /) [(m”ﬂ/ﬁm/b) (m”7r/€+m/b)} (mh/b)

2

4 . " 0
[h51n(m ws/l) — 93 sin (ms/b) ds

B ,, sin (m" " 7/¢ —m/b)h)  sin((m”m/l+ m/b)h)
L e

= () 50 (0]0) |t G s ()
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mrje (m7/0)2 (m/b)?

= (-1 sin (mh/b

I G = o ™
— (m/b)? sin ((m"n/¢ —m/b)h)  sin((m"7/l+m/b)h)
== | cerEroe

¢ 1 1 .
=(-1) (m/b)2 [(m”ﬂ/ﬂ -y + I m/b)} sin (mh/b)

_ (e /D2
O g0 — G Y

7.2 Even System

The even system is

- Z / cos (m”s/t) l6—2—1~/ cos (m'ms/f) ds
em/’ 682

m/’,odd
B2 e h 0?
+%m:0 %m; » cos (m"7s/l) — k2 52 08 (ms/b) ds

/’f{_Jm (ki) J!, (keb) + Yy, (Kib) (ktb)} dky 2 k{ 1 } dk,
0 Ji (keb) + Y2 (D) VEE=E  wbJo U7 (keb) + Y2 (keb) | ky /B2 — 7

WA Rk

AR~

h
L / cos (m"'ws/l) cos (ms/b) ds
~h

27b 2 °
m=0

dky

k 1 m? 1 , ,
U T VRO R T ) U 0 T () Yo G i ) 7

i 2 /k 1 N m?2 1 dk,
wb Jo \JZ, (k) + V2 (keb) * k26? J72 (keb) + Y2 (ki) | koo /B2 — K2

b [Tl K ll) ]

7Tk200€m+ h

—m
es
Veaw m—0 2w —h

S 1
cos (m" ws/l) cos (ms/a) dsnzoancos (nwzo/he) ;{ k2 ] — e

p,m,n p,m,n

Th? o~ em 4 [ " 1 02
5 1
v mz::O 5 e » cos (m''ms /L) <k2 532 + >COb (ms/a)ds
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= 2 - 1 a (1 —0n )
Zancos (mrzo/hc){z K2 — k%) (1—m2/52 ) B QmT/hCO }

n=0 p:l pmn

cos (m''ws/l) cos (ms/b) ds

(o) . . . h
P Z £i™ [ cos (mp;) cos,  msin (mgp;) cos ; sin <pp‘| /

=0 ﬂ-kplb Hg) (kfh b) kPL bHﬁ)/ (kﬂz b) —h
(1)
L2 "t : y
o= — cos (ms'/a) V, (s") Z gy / cos (m'ns’ /€) cos (ms' /a) ds
W m’ odd
2 ["
mo, = —— cos (ms'/b) V. (s') ds’ Z e / cos (m'ms’ /€) cos (ms'/b) ds
w#’() —h ILLU m’,odd

K2 = k2 = K+ kkp o (1+14) /QE 0 — k2

D, m,n p,m,n
/2 2 / _ 2
k kpmn_)k: +kkpmn<1+7’)/men kpmn

7.3 0Odd System
The odd system

Z Vom/ sin (m” s/l) (%g;—?) sin (m/ws/f) ds

m/’even -

27rb Z os/ sin (m// s/ 0) k—a— in (ms/b) ds

l /’f {_ I (k) J!, (kb)) + Y (kib) Y., (ib) dk;
0

Ji (keb) + Y2 (D) } Vk? l<:2 7rb { b) + Y’2 (ktb)} kK2 — k2

R e
Qﬁb i 05/ sin (m”ws/f) sin (ms/b) ds

g 1 m? 1 , dk;
- . Yo (keb) Y}, (keb)} 0t
l/o T VI T T | U 0 () Yo ()Y ) e

i /’“ 1 N m2 1 dk,
P2
wb Jo LJZ (keb) + V2 (keb) k202 J2 (kib) + Y2 (ki) | koo /K2 — k7
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b [Tl e ) ]

2 > h S 0o
+V];U E,l md, /_h sin (m"7s/f) sin (ms/a) ds Zosn cos? (nmzo/he) Z { (k2 ;2 ) - (k2 — 1,2 ) }
m= n= p=1 p,m,n p,m,n
k? — Em 4 4 " 1 02
- - 1
5 ot [ oo (o 1) o
S - 1 a (1= 6,0)
2
E €n cos” (nmzy/he) E : -
n=0 ’ {P— kgﬂn - k2) (1 - m2/]4727,,p) 277;7'('/]’),0

. L eni™ | sin(mep;)cos,  mcos (mp;) cosb; sin ¢ ho )
= —2Hyet=i%0 E n — : Py - L / sin (m"7s/¢) sin (ms/b) ds
’ = W’fpib[ HY (k,,b) ky bHS (K, D) _ inmms/E)sin (ms/b)
(2)

. h . h
+ 12 . / / r_ 12 / . /7 . / /
mp, = — sin (ms' /a)V, (s')ds = — Vom! sin (m'ws' /0) sin (ms' /a) ds
g L POV = 0 5 Vo [ s ') '
=2 [ Ve () = S S Vo [ st 1) o )
m,, = —— sin (ms (") ds' = — o sin (m'ms sin (ms s
Who J—n Who —h

m/’,even

K2 = k2 = K+ ki (L40) JQE 0 =k

p,m,n

k‘ k',2 - k2 + kk;,’n n (1 + Z) /QP m,n kf’m n

p,m,m

7.4 m th Integrals

First we explore the convergence for m # 0. The first bracketed term is

= [ -k e 2 (e e

+/°°{ K, (u) 1} du

0 K, (u) Vu? + k22

Convergence for © — 0 is not an issue in any of the three integrals for m # 0. For u >> 1 we expand the
expression in braces of the integrand of the final term

-1

(LBt L1/ o)) {2
K7, (u) 1+ (4m2 +3) / (8u) + (4m? — 1) (4m?2 + 15) / {2 (gu)2}
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~ =1/ (2u)+(4m2 — 1)% / (8u)*+ (4m? + 3)% / (Su)*+ (4m? — 1) (4m> — 9) / {2 (8u)2}7(4m2 — 1) (4m? + 15) / {2 (8u)2}

~ =1/ (2u)+ {(47712 —1) (4m* = 1) + (4m? + 3) (4m* + 3) + % (4m® — 1) (4m* —9) — % (4m® — 1) (4m® + 15)} / (8u)?

~ 1/ (2u) + [2 (4m?)? 4+ (4m2) (—2+ 6 —5—7)+ 1+ 9+9/2 + 15/2} / (8u)?

~ =1/ (2u) +2 [(4m2)2 — 4 (4m?) + 11] /(8u)? = —1/ (2u) + O (m*/u?)

and thus the final term converges at infinity

Jo i mm aar oo () v emso ()0 ()

The second bracketed term is

kb 1 m? 1 , , du
U= / {J% @1 Y2 (@) w2 T2 () 1 Y2 () } {m () I () + Yo () Yo (W)} oz

_H'2/kb 1 +m2 1 du
mJo L3 (W) +Ya () w? IR (u) + Y7 (u) ] uvEk2b? — u?

+/°°{_K;n< )y, E >} du
0 Ko (u) u? K, (u) ] vu? + k202
Near v — 0 leading terms in the first set of braces of the first integral cancel and lead to convergence,

the second integral converges, and the leading terms in the braces of the third integral cancel leading to
convergence. Expanding the braces in the integrand of the final term for v >> 1

{_K{n (w) m2 K (u)} L (4m® +3) / (8u) + (4m? —1) (4m® + 15) / {2(8w°} »
1

Kn(w) — u? K, (u) + (dm2 — 1)/ (8u) + (4m? — 1) (4m2 — 9) / {2 (8u)*}

m

2 L+ (4m? 1) / (8u) + (4m* — 1) (4m* ~9) / {2(8w°}
U 14 (4m? +3) / (Su) + (4m2 — 1) (4m? + 15) / {2 (8u)2}

~ 1/ (2u) + O (m* /u?)

JoAR )
~ /: [2; +O(m4/u3)] {1+0 (kzb2>}du— 1/(2R) + O <k222) +0 (g)
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7.5 Zero Integrals

Now we explore the convergence for m = 0. The first bracketed term for m = 0 is

Ty () ) + Yo () Yy (1) i du
1=/ {‘ EImESTIme }Wu /{%2 w()}um

+/o {giéug_l}mcfw

All integrals converge at u — 0. For large u in the final integral

Jo ik vt [ el o () e vem o ()

The second bracketed term for m = 0 requires cancellation of divergent terms in the several integrals near
u — 0, and is therefore written as

kb 1 / du
[]*/% {W}{Jo( ) Jo (u) + Yo (u )YO(U)}W

+iZ

w/5:b{J§<u>i%2<u>}u\/£i—w+/5b {K()(Z) }mi%

Jri In { \/1 +(2/7)% In? (5{)67//2) } n ;L {1 _ %arctan (7 (2/7) In (51,67'/2))} —5/k

kb —(2/7)In (6be /2)

where the final integral for u >> 1 gives

[ i [ oo (S0 so(5)

7.6 Half Space Systems

The Fourier basis half space systems are now given.

7.6.1 Even System

The even system with half-space exterior is

- Z / cos (m”s/l) Lo Y | cos (m'ms/l)ds
em/’ Z 8 2

m/’,odd

Z em/ cos (m" s/f) <k1282+1) cos (m'ms/l) ds

m/’,odd

—iweg {—C’e/2 +1In (Zc csc (mz0/he ) }
s

e m”m'
+ § : rad em’

m/’ odd
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k> = em h — 1
+ Z ml cos (m”"s/€) cos (ms/a) dsZencos (nmzo/he) Z{ k2 ) - (=2 )}

es
chav 2 —h

m=0 n=0 p=1 p,m,n p,m,n
1 e h 9?
v mZ:O 77712_5 . cos (m''ws/l) (82 + k2> cos (ms/a)ds
> 1 a(l—8n0)
2 n
€n cos” (nmzo/he) -
7;) {Z k;?mn — (1 —m?2/ji2 ) 2n7/he

) e ;™ | cos (M, ) cos msin (mep;) cos 8; sin h
= 2Hpe'=:%0 Z erIZZ ; l ((1;02) L4 ( %(3), (pp] / cos (m"7s/l) cos (ms/b)ds (3)
=0 Pi Hy, (kpi b) kpi bHp, (kﬁi b) —h

where

. h . h
mt = 2 cos (ms'/a) V, (s')ds' = 2 Z Vem// cos (m'ms’ /€) cos (ms’ Ja) ds’

WHo J—h “Ho m/,odd —h
i2 ("
m,, = ——0 cos (ms' /b) V., (s") ds’ o / cos (m'ws’ /€) cos (ms' /b) ds
WHo J—h Wﬂo Z:dd /

and we define

"1 h 2
Y:a(;” m') - 1 / cos (m""s/f) (882 + k’2>

—iwpm J_p

m' //f) eik|s—s’| ~ cos (mls/g)d /] J
S S

|s = &'l

[cos m's/0) {—C¢ +1n (1 —s*/h%)} + / cos {
The constant for the even case is taken as C¢ = C, = 2(In2 — 7/3). The analytical calculation of these
radiation integrals is carried out in [2].
7.6.2 0Odd System
The odd system with the half-space exterior is

2
Z Vom’/ sin (m"s /() (;(‘3852 - Y> sin (m/ws/l) ds

m’even -

2
sin (m" s /() (;2582 + 1) sin (m/ms/f) ds

_iwgo{_ce/2+1n (;Z:Tcsc(ﬂ'zo/h )} > Vom/

m/’,even -

o
+ 2 : 'r‘ad om

m’ even
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k2 x h

Em > B 1
—|-Vaw Z 5 Mo 7hsln(m '7s/€) sin (ms/b) dSZ&‘,LCOb (nwzo/he) ;{ k2 R )}

m=1 n=0 p,m,n p,m,n

2 7 Os/hsm (m s /0) (82 +k >sm (ms/a)ds

3 S 1 a (1 - 577,0)
£ cos® (nmzy/he) : _

nZ:o pgl (kfmn - ]432) (1 - 7712/]4,2,71,) 2nm/he

, L emi™ | sin (mep;) cos @ m cos (mep;) cos 6; sin @ ho ]
= —2HyeF=i%0 - L P / sin (m” ws /) sin (ms/b) ds
Z_:ﬂkpib[ HY (k,,b) ky bHS (K, D) i mime/O)sin (me/b)
(4)

where

9 h
ml, = il sin (ms'/a) V, (s')ds' = Z Vomr / sin (m/ws’ /€) sin (ms'/a) ds’

w w
Ko J—n No m’ even

2 (" j2
m,, = = sin (ms’ /b) V, (s') ds’ = 2 Z Vom / sin (m/ms’ /€) sin (ms'/b) ds’

w w
Ho J—n Fo cven

and we define
o(m"m') 1 b 0?
Yoo = onr | sm(m”s/ﬁ) ﬁJer

m's’/¢) ethls=+] — sin (m/s/{)
|s — &'l

lsin (m's/0) {—C?+1n(1—s°/h*)} + / sin (

The constant for the odd case C?¢ can be taken as the same as the even case or redefined (see below for a
linear drive odd radiation admittance). The analytical calculation of these radiation integrals is carried out
in [2].

ds’] ds

7.7 Voltage Results

The results presented are computed using the preceding even (1) and odd (2) Galerkin systems; the half
space systems (3) and (4) are used to implement the solution using the approximate radiation for an exterior
half space. Figure 2 shows an example of the center slot voltage at normal incidence for a cylindrical cavity
near the first slot resonance using both a cylindrical exterior geometry (red curve) and an exterior half space
approximation (blue curve). Figure 3 shows an example of the center slot voltage at normal incidence for
a cylindrical cavity covering the first three slot resonances (even case at normal incidence) using both a
cylindrical exterior geometry (red curve) and an exterior half space approximation (blue curve). The half
space approximation is reasonably accurate here even though the ratio of slot length to half circumference
is not extremely small ¢/ (wb) ~ 0.412.

Figure 4 shows an example of the slot voltage one quarter of the distance from the end at oblique incidence
for a cylindrical cavity near the first slot resonance using both a cylindrical exterior geometry (red curve)
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Normal Incidence

Slot Centered Slot Resonance
100.9 7
9 zy=hJ2 TMO010
5 TE112 T™M012
4 E - z polarized
3 0= TE114
2 Normal Incidence TMO014
< 6=1m2 ¢ =T
< 1007 '
S 7 ,
o 5 Oy = 2x 10" S/m
= g h, = 24 inches
S5 > b = 4.25 inches
>. a =4 inches
1.0 ,
7 Oy = 2.6 x10" S/m
2 ¢ =2h=55inches
3 d =0.5inches
2 w = 0.013 inches —— planar exterior
cylinder exteriof Lorentz interiop
01 T T T T
0.5 0.7 0.9 1.1 1.3 1.5

f (GHz)

Figure 2: Example of center slot voltage (normalized by the incident magnetic field) at normal incidence,
for a cylindrical cavity near the first resonance, using both the exterior cylindrical geometry (red curve) and
the exterior half space approximation (blue curve). Cavity mode identies are denoted.
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Normal Incidence

Slot Centered cylinder exterior Lorentz interior
2 —— planar exterior
100.9 z,=h /2 5

9 0=hd

5 Normal Incidence

3 g=m2 ¢=T

2 h, =24 inches
g 10.0 a =4 inches
= g 0y =26 x 107 S/m
L 4 £ =2h =55 inches
o 3 d = 0.5 inches
>I 2 w = 0.013 inches

1.0

; Rt

5

4

3

2

01 T T T T T
1 2 3 4 5
f (GHz)

Figure 3: Example of center slot voltage normalized by incident magnetic field at normal incidence, for a
cylindrical cavity covering the first three slot resonances (for the even case at normal incidence), using both
the exterior cylindrical geometry (red curve) and the exterior half space approximation (blue curve).
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Oblique Incidence

Slot Centered Slot Resonance| —— planar exterior

cylinder exterior Lorentz interior
Zy = hy/2 \
TMO010

B Polarized TE112 T™M012
p
Oblique Incidence TE114

6=m2 =516

-
o
o

N W RO N

TMO014

0., =2x10" S/m

cav

h, =24 inches

b =4.25 inches
a =4 inches

V(h/2)H, (VIA)
N WA ~NO

Oy =2.6 x 107 S/m
¢ =2h=55inches

d =0.5inches

w =0.013 inches

T T T T

0.5 0.7 0.9 1.1 1.3 1.5
f (GHz)

N whot~ O

o
N

Figure 4: Example of slot voltage one quarter of the length from the end normalized by the incident magnetic
field at oblique incidence, for a cylindrical cavity near the first resonance, using both the exterior cylindrical
geometry (red curve) and the exterior half space approximation (blue curve). Cavity mode identies are
denoted.

and an exterior half space approximation (blue curve). Figure 5 shows an example of the slot voltage one
quarter of the distance from the end at oblique incidence covering the first five slot resonances using both
a cylindrical exterior geometry (red curve) and an exterior half space approximation (blue curve). The half
space approximation is reasonably accurate here as well. (The interior/exterior Lorentz gauge forms were
used in these calculations.)

7.8 Electric Field
The TM potentials are

3 h
] men j3. . cos (nmwzg/he)
E* 4 kkpon (144) /QEM 2 4 ATM - Eme 2 : / cos (ms'/a) Vi (s')ds’
{ p,m, ( )/ p,m, p,m, p,m, k%l’m)n . (n’ﬂ—/hc)z thast_l (j'rnqp) _h ( / ) + ( )
B — W lGEmER j,3n7p cos (nmzo/he) -
k%,m,n - (nﬂ-/hc)2 27Thca’5‘]m—1 (jmﬁl’) es
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Oblique Incidence

Slot Centered —— cylinder exterior Lorentz interior
100.0 1 Zo=h/2 —— planar exterior

; Oblique Incidence

3 0, =mw2 ¢;=516

3
2 2 h, =24 inches
S 10.0 a=4inches
© ! 0, = 2.6 x 107 S/m
= 4 ¢ =2h=5.5inches
Q 3 d = 0.5 inches
= 2 h w =0.013 inches
>I .

1.0

7

5

4

3

2

01 T T T
1 2 3 4 5
f (GHz)

Figure 5: Example of slot voltage one quarter of the length from the end at normal incidence, for a cylindrical
cavity covering the first five slot resonances, using both the exterior cylindrical geometry (red curve) and
the exterior half space approximation (blue curve).
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ml, = sin (ms'/a) Vi (s') ds
Who J—n

Apmn) _ €0 -
ep
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The TE potentials are
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- ,;m/( wito) . T ‘7“;7” (nm ?/ ) . / cos (ms'/a) Vy (s') ds'
kpumn — (n/he)” wh2a® (k;,m,n/k) (1 - mQ/J;%,p) Im (J;n,p) h
EmEn manjy , cos (nmwzo/he) N
= 2 2 ; B m
k2 — (0 /he)” 2mh2ad (Kb o /K) (L= m2/52.) I ()
Alemn) 1/ (iw) Jmp g (j’ p/a) [ATE cos (mp) — BLE sin (mgo)] DT cos (nrz/he)
ep k);)%m’n _ (’I’Lﬂ'/hC)Q a m \Jm,p p,m,M p,m,n hc
Agl;gmv”) = —1/ (iw) 5 TJm (j;n p,o/a) [A;]f; n Sin (me) + Bgfn 1, COS (mgo)] nr cos (nmz/h.)
k2 — (nm/he)” P k o o he
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1
Alpmin) — g (jinpp/a) [ALT . cos (me) + BLED | sin (m)] sin (nmz/he)
iw ’

p,m,n p,m,m

The electric field is found as

0 10
€0Ep %AESO ;%AEZ
—co (n/he)  Gmp o, ™ ™ _: .
= Ir Gmpp/ @) [ ».m.n COS (mp) + By, . sin (m@)] sin (nmz/he)
k;z%,m,n - (nﬂ-/hc> a o

1/ (iw)

2
mJ (jmpp/a) [Agfnnsm(mgo) B;Elncos(mgo)] (m) sin (nwz/h.)

kgm n— (nmw/h. ) he
1
L (o) AT, sin () = BE con )] i /)
"% (n7/he) _Jmp I} (Gm.pp/a) [A;";% » COS (mp) + BPT%n sin (m@)] sin (nmz/h.)
k;z%,m,n - (nﬂ-/hc> a

1/ (iw)

m (Jrpp/ @) {kzﬁm DAL sin (me) — {kﬁm n—2(nm/h) } 1 COS (mcp)} sin (nmz/h.)

K — (n7/he)” P
0 0
coEy = %Aez - &Aep
= SR Gimppfa) m [ATAL, sin () ~ BEM , cos (m)] s (=)
R — (/)P o
1 1 Jr nr\?
m,p 1/ . ATE BTE _ 1
kﬁm)n _ (nﬂ_/hc) iv a (]m pp/a‘) [ p,m,n COS (mW) p,m,n sin (mgp)] < hc ) S (’I"L'TTZ/]’LC)
1 Jm, . . .

+zw apJ’ (Jrmpp/a) [A pi » €OS (M) + Bpr%n sin (my)| sin (nmz/he)
go (n/he)

m .
= —Jim (jmpp/a) [A,, % , Sin (me) — BpT%’n cos (my)] sin (nwz/he)
k2 o — (/o) P

1 1 Jm,p ro(s 2 TE 2 2\ pTE :
kﬁm,n - (nﬂ'/hc) = a J; (]m pp/a) {k:p’m nAp m.n COS (mp) + {kp’m n—2(nm/he) } By, . sin (mgo)] sin (nmz/he)
10 10
eoE, = —— pA,
Y P pap( )
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2

- J7/n 'm a —mit]m .m a
g U0 = G U]

- ?mmf(%fftm@wm@+

p,m,n

[AT cos (me) + BIM

p,m,n p,m,n

sin (my)] cos (nrz/he)

) 2
2 Jm,; .
= — 0 . ( p) Im (Gm.pp/a) [AZ;% » COS (M) + Bg,l‘,/{n sin (mgo)] cos (nmz/he)
k2 n — (n7/he) a
Then
E,= ;z;i’io zjosm [mf, cos (my) + mJ, sin (me) nz:osn (nm/he) cos (nmzo/he) sin (nwz/he)
i -1 Jin (Gm,pp/a)
=R A+ Ky (U0 JQEM = K} T (Gp)
N 1 a_(nw/he)*m?/ji T (jpp/a)
{kz + kkz/n m,n (1 + Z) /Qp m,n k’2m n} P kP m,n (1 - m2/j4'%4’) Jm (J;n’P)
iwpy 1 9% & . = .
QV(;aOu ap 3 Z Em [md, cos (mep) — mf, sin (my)] nz:%en (nm/he) cos (nmzg/he) sin (nmz/he)
Z 1 1 Jm (j;’n,pp/a)
{k2+kkl/7mn(1+z) /men k/2m n} kzlJan (1—77’),2/]4,21717) Jm (j;mp)
or

oo o0 oo

B EE S e (D i

n=0p=1m=0

/ (k";gm n ) Jm (j;mpp/a)
{kQ + kk; m,n (1 + Z) / p,m n k/Qm n} (1 - mQ/Jm p) ‘]"L (j;n,p)

(G =) mismimers (S0 2 mcotns)

. 1 I} (Jmpp/ @)
{k2 + kkpmn (1+9) /QTM  — K2, Y T (Gmp)

Noting that

{m, cos (my) + m{, sin (mcp)}]

9 rh 2 ("o
mt = 2 ™ cos (ms'/a)Vy (s')ds' = Sl — sin (ms’/a) Vy (s') ds’
Who J—p @ witg J—p 0’
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i2 (" o 1 [

=—— sin (ms'/a) —Vy (s')ds' = sin (ms'/a) g}, (s) ds’
o [ sin s fa) Ve ()i = [ sin (s fa) g3, )
Dot = 2 ' msin(ms’/a)V (s")ds' = _2 ' icos(ms'/a)V (s')ds'
a " wpgJ_p a + Wit J_p 08’ +
i2 (" L0 1"
— 7V / d I / —+ / d /
one ) cos (ms'/a) 59+ (s")ds o cos (ms'/a)q;, (s') ds
1 o i Em [mZ, cos (mp) — m7, sin (mep)] = 19 i Em { mg, sin (me) + —mJ, cos (my)
ap 0p? - pOp = °
= Z %@n {—m; cos (my) — —m], sin (mgo)}
m=0
0

Taking the even case as

Ve (s) = Z Ve cos (m'ms /0)
m/,odd
2 h
mt, = 2

cos (ms'/a) Vi (s')ds Z Ve / cos (ms' /a) cos (m'ws’ [€) ds’

w Cw

1

h
= Z Vem// [cos ((m/a —m'm/C)s") + cos ((m/a+m'n/l)s")]ds’

WHo m/’,odd —h
12 sin ((m/a —m/m/€)h)  sin((m/a+ m'n/l)h)
= Vem: / + ’
oo 2, (mfa— i /1) (mfa+ /0
iV (s)y=— Z m—lwv sin (m'7s’/¢)
os’ ’ - m/,odd ¢ -
In the odd case we take
V,(s) = Z Vo sin (m'ws/0)
mi, = 2 [ sin (ms'/a) V. (s') ds’ 1% / sin (ms'/a) sin (m'7ws’ /€) ds'
 wpy J_p wMo -

m/’even

Wﬂo Z Vom/ [cos ((m/a —m'm/l)s") + cos ((m/a+m'm/l)s")] ds'

m/’ ZEVEM

_ 2y Vom/[

Q2 sin ((m/a —m'w/€)h)  sin((m/a+m'n/C)h)
Who

(m/a—m'm/L) (m/a+m'm/L)

m/,even
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0 , m'm ,
@Vo (s") = Z TVOW cos (m/'ms’ /0)

m/,even

Then the axial field is

—iwtg

E, =
2Veaw

Z Em [m, cos (mep) + m7, sin (mep) Z €n cos (nmzg/he) cos (nmz/he)
n=0

Z 1 (]m,p) Jm (Jm,pp/@)
{k2+kkpmn(1+l) /Qp,mn pmn} a Jrln (jm7p)
and the radial field is

- —iwpg

E =
o (p YA

Z Em [m, cos (me) + m, sin (mep) Z en (n7/he) cos (nmzg/he) sin (nz/he)
n=0

3 - 1 (n/he)* m? /7,
1 {k2+kkpmn(l+z)/ pmn_ka,n} {k2+kkpmn(1+ )/ pmn kgmn}kpmn(l_m?/]m,p)

p=

;‘;ﬂo : 8@2 Z Em [md, cos (mp) —m, sin (my)] an (nm/he) cos (nmzo /he) sin (nmz/he)
cav n=0

1 1
Z{k2+kk;mn 1+ )/ pmn_klzmn}kgmn(1_m2/];7%,p)

The results presented are again computed using the preceding even (1) and odd (2) Galerkin systems;
the half space systems (3) and (4) are again used to implement the solution using the approximate radiation
for an exterior half space. Figure 6 shows an example of the interior radial field at the cylindrical wall
between the bottom end cap and the slot at the center for oblique incidence. The slot geometry and material
properties are the same as in the preceding voltage example. The results with a cylindrical exterior are
shown in red and the results using an exterior half space approximation are shown in blue. Figure 7 shows
the corresponding axial field at the lower end of the cavity halfway between the center and the cylindrical
wall. We see from these that the exterior half-space approximation is reasonable even for ¢/ (7b) ~ 0.412.
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Figure 6: Radial electric field scaled by incident electric field (free space impedance times incident magnetic
field) at cylindrical wall in a cylindrical cavity with an azimuthal slot at its center. A plane wave drives the
slot impinging from an oblique angle. The red curve uses a cylindrical exterior and the blue curve uses an
exterior half-space approximation.
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Figure 7: Axial electric field scaled by incident electric field (free space impedance times incident magnetic
field) at bottom wall halfway between the center and cylindrical wall in a cylindrical cavity with an azimuthal
slot at its center. A plane wave drives the slot impinging from an oblique angle. The red curve uses a
cylindrical exterior and the blue curve uses an exterior half-space approximation.
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8 POWER BALANCE APPROACH

This section discusses the conservation of net power flow in the steady state and how we can estimate
shielding effectiveness of a cavity with apertures by using this conservation law. We initially discuss the high
frequency region with overlapping cavity modes, where the slot aperture radiation properties to the interior
are nearly the same as in free space. The input power to the cavity interior, or slot transmitted power, is set
equal to (balanced between) cavity wall losses and slot aperture losses, including absorption and radiation
(this approach assumes an incoherent power summation when the same slot is responsible for the drive and
losses). We also discuss slot aperture received power cross sections with uniformly distributed matched loads,
providing bounding net power cross sections (net power delivered into cavity), which can be applied over
the entire frequency band when set equal to interior cavity wall losses. The uniformly distributed matched
load is taken to have arbitrary values to maintain slot operation with a half sine voltage distribution for
the maximum power received. The case is also examined when the uniformly distributed load properties
are limited so the slot operates with the voltage distribution at the nearest resonance, where the oblique
incidence angle is used to maximize power reception. We limit analysis to the uniformly distributed load
not only for simplicity, but also because the slot walls are lossy and we expect any increases associated
with nonuniform distributions to be very limited (this is similar to the problems which occur with supergain
antenna current distributions).

We again focus on a cylindrical cavity having the absolute coordinate system with z axis along the
cylinder axis having an azimuthal narrow slot, and the incident wave is in general taken to have an oblique
angle with respect to the slot length for comparisons (the angles of incidence in the global coordinate system
are the same as described in the initial sections on the incident wave). However, in this section the slot
power reception in the power balance is set up with the simpler problem of a slot on a half space and uses a
local slot coordinate system with z along the slot, with the voltage measured across the slot, with x being
the direction of short circuit current from the positive voltage side to the reference side of the slot width.
Some equations are numbered here to summarize what is illustrated in the figures.

8.1 Oblique Incidence Slot Cross Sections For Half Space

When the wave impinges on the slot at oblique incidence

K3¢ = —H: = —2H™ = —2Hye'™* sin 0,

where 6 is the angle between the slot length (z direction) and the incident wavevector k with

qo = kcos by

and here we are taking the incident magnetic field in the plane of incidence (plane containing k and the
normal n), where the k vector is also taken to be in the plane containing e, and n. The transmission line
solution for the voltage, satisfying V (+h) = 0, is then [1]

V(2) = cos (I'z) sin (Fz)}

Z2Hg sin 6y . ..
_ﬁ [cos (goz) — cos (qoh) cos (Th) + isin (goz) — isin (goh) s (Th)
Note that the radiated power into both half spaces at the resonances T'h =~ I'"h = nx/2, with I'h << 1,
where I' = T 4 4I'” is the propagation constant along the slot transmission line,

h
Praa = Graa | |V ()| dz = hGhraa {

Vo, n odd }
—h

|V00|2 , m even
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where V. is the coefficient of the even term cos (I'z) & cos (I''z) in the voltage and Vj, is the coefficient of the
odd term sin (I'z) = sin (I'Vz) in the voltage with radiation conductance [1] (which was derived integrating
the scalar product of magnetic current and radiated magnetic field [1])

nm/4
kh

TNohGrad = (5: + > {Cin (n7 + 2kh) — Cin (nm — 2kh)}

4
+ (zh _ n}:}i > nm {Si (nm + 2kh) — Si (n7 — 2kh)} — 2sin® (n7/2 + kh)
™

with asymptotic forms

2 (4kh\’
T™MohGrad ~ 3 (mr) , kh <<1, nodd
2 (2kh)*
TMohGrad ~ 5 ( )2 , kh <<1, n even
nm
2
110hGraa ~ Tkh {1 - (2%) }  kh>>1

The reactive part of the radiation admittance Y;.q4 = Graq — i Braa is [10]

. kh nT\2| .. .
ToghBred = — cos (nm) sin (2kh) + — {1 + <%) } [Si(nm 4+ 2kh) + Si(nm — 2kh)]

nm

2
+kh {1 - (%> } [-Ce 4+ 21In2 — Cin (nm 4 2kh) — Cin (nm — 2kh)]

with asymptotic forms

™ohBrad ~ —kh + <2kh + mr) Si(nm) +nm (2:: - mr) [—C./2+In2 —Cin(nm)] , kh << 1

nw  2kh 2kh
nmw\2 , 9
0ohBraq ~ 2kh |1 — (%) [—C./2 +1n2 —~ —In (2kh)] + (n7)? / (4kh) , kh >> 1

At the resonances, the transmitted power can be written as [1]
8hGraa |H™| sin? 09/ (n7/2)°
2
{1= /T 05200} [Graa + Rint {wC + Braa} / (WL + Xout))

Ptrans ~

{ cos? (khcosfg) , n odd }

sin? (khcosfg) , n even

If a gasket were present with k& < IV the denominator factor in braces would not vanish for any 6g; in such
a case (particularly for k/T" << 1) the maximum occurs in the n odd case at normal incidence 6y = 7/2
[1], which decreases rapidly for high frequency I'"h = n7/2 >> 1. In the case being studied here where no
gasket is present IV — k, and we have
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8hGraa |H™®|? / (n7/2)? cos? (kh cos ) , n odd
Ptrans = rad/2 ~

sin O [Grad + Rint {wC + Braa} / (WL + Xin)? | sin® (khcoso) , n even

where now

m™MohGred = Cin (4kh) = Cin (2n7) , kh = nw/2

mohGreq = Cin (4kh) = Cin (2n7) ~+' +1n (4kh) , kh >> 1, kh =nm/2

Note that extending this form to low frequencies

10ohGrag = Cin (4kh) ~ 4 (kh)? | kh << 1

results in nearly a factor of four overestimate. Also
mNghBrad = Si(4kh) = Si(2n7) , kh = nx/2
TghBrad = Si(4kh) ~ /2, kh >> 1, kh = nn/2
We can write this as [1]

; 2 ; 2
_ mncl|® __ inc a2
Pt'rans = Otranstlo ‘ﬂ | = OtransTlo |Hz ’ /Sln 00

where the transmission cross section is

2 2
. o2l { cos? (khcosfy) , n odd }/sin2 6,

~ At
Otrans ~ (t

.2
" /2)? Cin (2n7) | sin® (khcosfo) , n even
but with mismatch factor
tl _ G?ad ~ G?"ad
qtrans -

2~ 2
[Grad + Rint {WC + Brad} / (WL + Xlnt)] |:Grad + Rlnt/ (UOW/Q€)2:|

where the final approximation ignores the corrections to the leading terms wC and wL. If the wall loss term
becomes small as for PEC walls R;,; — 0 and ¢f.,,, — 1. We can maximize the cross section as a function
of 0y resulting in the equation

cot (khcosfy) , m odd / (kh) = sin® 6
—tan (khcosfy) , n even " cosb

or

tan (khu) 2 —wu
khu — 1—u’

cosbp=1—u, kh=nn/2
or with 2, = khu ~ kh6}/2

2 —x,/ (kh)
1—x,/(kh)
For large kh (or n) we can take the right hand side to be 2 and we find the first root

tan (z,) [z, = ~ 2
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T, ~ 1.1656

and

cos? (khcosfy) , n odd Jsin? 0 = sin? (khu) , n odd 1/(2u) sin? (1) kh/ (2x,)
sin? (khcosfy) , n even 07 sin® (kh —khu) , neven [ 1—u/2 R xr/ (2kh)
. 2
N lkhsm T,
2 Ty
Then we obtain the maximum transmission cross section
o i ml? sin®z, A 4z,
trans ™ trans (1py Cin (2k0)  z, 19" Cin 470/ ) 422 + 1
PV

tl
138 [y + In (47t /x)] Terams

where v/ ~ 0.5772 is Euler’s constant and the angle of the maximum is

20z,
7l

Recalling that the cross section of the linear array (given in the next subsection) is Al/m we see that the
matched case (small wall loss) ¢, . — 1 of this oblique result is less than the linear array beyond the
first resonance ¢/ > 1/2 (actually in the formula for £/\ > 3/8, although the asymptotic form requires
¢/)\ > 0.435), because the denominator of the oblique cross section is slightly greater than 7 due to the
slow logarithmic growth; nevertheless, the linear array is a reasonably tight bound on this oblique cross
section. Figure 8 shows the normalized power transmission through the PEC slot between half spaces at
oblique incidence angles computed by use of a Galerkin solution [9]. The dashed black curve represents the
oblique transmission bound with the logarithmic denominator, and the dark gray curve is the linear array
result. The light gray curve shows the A? behavior (adjusted to match the first transmission resonance peak).
Also shown are curves for a lossy gasket filling the slot (the gasket is lossy enough to eliminate the length
resonances and thus has a maximum penetration at normal incidence) [1].
From the preceding radiated power we can write the absorbed power in the slot walls as

NQO

h
Paps = {Rint {wC + Braa} | (WL + Xine)} V (2)| dz

—h

168 {Rint {wC + Braa} / (WL + Xint)} |HinC|2 / (nw)2)? { cos? (khcosfy) , n odd }
Sil’l2 9() [Grad + Rint {OJC + Brad} / (UJL + Xint)]2 Sin2 (kh cos 00) » T even

We can write this as
P _ Hinc 2 _ Hinc 2 2 9
abs = OabsT]g |i ’ = OabsT)y ’ z ’ /Sln 0
where the absorption cross section is

ot
Oabs ~ ubs

2702 { cos? (khcosfg) , n odd

e »
(kh)? Cin (4kh) sin? (khcosfy) , n even } / sin” 6o
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Figure 8: Power transmission through the PEC slot at oblique incidence angles from the Galerkin solution.
The dashed black curve represents the oblique bound. The dark gray line is the linear array cross section.
The light gray line shows A? behavior with constant multiplier adjusted to match the first transmission peak.
The case where a lossy gasket fills the slot is also shown illustrating the maximum penetration moving to
normal incidence.
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and

qtl o 2G(rad {Rlnt {wc + Brad} / (WL + int)} ~ 26:7“0,dRint/ZO2
abs — ~
[Grad + Rint {WC + Brad} / (UJL + Xint)]2 [Grad + Rint/Z§]2

Z(): \/L/CNT]OTF/QQ

I \2
Zint = Rint — 1 Xint = (W) Zin"
Zint" = Ripy" —iXint" = 2Z,/d
L = pugm/Qe
L — pow/d

Q, = 2In (2h/ac) +2(In2 — 7/3)

Qo ~ 27we—7rd/(2w) , d> 0.3w

Zy=(1—i)R,
Rs; =1/ (06)
0 =+/2/ (wpo)

8.1.1 Linear Array

The electrically longer slot becomes similar in behavior to a linear array of antenna elements (the array
length is aligned with the slot length). Note that the broadside linear array cross section behavior is [1]

Otrans = Qtran54 G tmz1’Ls)‘£/7r - Qtran52£/k

GEA =40/ \ = 2kt /=

8.1.2 Low Frequency Slot

We expect at low frequencies this gain to transition to the gain of a low frequency slot which is twice the
low frequency dipole antenna gain of 3/2

GY~2(3/2) =3

tl )‘73_ w37

0 _
Otrans = qtrans 7G trans An Qtrans ﬁ
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8.1.3 Large Losses

For large wall or gasket losses the voltage tracks the short circuit current [1]

174 (Z) ~ VoequZ ~ K;c/ (Y + Yrad)
Y=G—-iwC

Y;“ad = Grad - Z‘Bmd
Radiated power is then

2
PT'ad = 2hG7'ad |Vb| = 2Pt7‘ans
Because in this lossy case the maximum transmission occurs for normal incidence gy = kcosfy = 0, we
restrict attention to this situation where the radiation conductance is [1]
sin (2kh)

m116hGlrad = 2K1 i (2kh) + = =

+ cos (2kh) — 2

At higher frequencies

hnoGraa ~ kh , kh >> 1

and
kh 2 4kh/n? ine|2 ;
Ptrans ~ — K;C Y + 1/razd = —— 3N H"" = Otrans’] H™e
o VO 4+ Yo = 20 o[
If wC >> G, Y,4q this can be written as
20/k M/

(C/Eo)2 (0/50)2

This result has the frequency behavior of the broadside linear array, but for narrow slots, and particularly
when the depth is large compared to the slot width d >> w, it has a much smaller level. Alternatively, if
G >> w(C,Y,4q this result becomes

Otrans ™~

dkh/my M (b/n)® MG,
T & T 7

which is again small for a conductive gasket. It is interesting that if G,.q is dominant we obtain the linear
array cross section oipans = 4kh/ (770Gmd)2 ~ M/ and hence this case can be included as

Otrans ™~ G2 =

XN G?

rad

T (G + Grag)?

Otrans ™~
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8.1.4 Fit For First Resonances & Low Frequency

The preceding asymptotic form of the transmission cross section underestimates the initial resonances. Using
the solutions of

2— 5177"/ (kh)

tan (z,.) [z, = T2,/ (kh)

at the first resonances

x.=w/2, kh=m/2
z, = 1.201254 , kh =1
x, = 1.24163 , kh = 371/2
x, = 1.220204 |, kh =27

z, ~ 1.165561 , kh >>1
gives

~ At
Otrans ~ qtrans

2 2 2 1
ol { cos? (khcosfo) , n odd }/sin2 0y , kh = nr/2

(kh)? Cin (4kh) sin? (khcos o) , n even
202 . kh/ (2z,
R Qhrans TN v AN sin® () %
(kh)? Cin (4kh) zr/ (2kh)
X
tl
~ — __ kh=nx/2
irans (7Y O (4R * "=/
X
~ At —
N Gtrans T 1704250m (@kR) * T
1
~ ¢! = 2
Gerans T 30385Cin (4kh) * 0= 5/
I
~ ¢! =2
Girans T 3490615Cm (kh) T~ 27
AL , kh>>1

tl
ftrans 1 38005014Cn (4kh)
A fit can thus be taken as

l A o A
rans £ 7(kh) Cin (4kh)  @rens £ (kh) [y + In (47 0/N)]

L kh>m/2, A< )2

t
Otrans ~ Qt

2
fo (kh) ~ 1.38 + (/4 — 1.38) % L kh>7/2, A< )2
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The error in this fit is f, (7) = 1.110425 ~ 1.0827 (2.5%), f, (37/2) = 1.20385 ~ 1.1818 (1.8%), f, (27)

1.2490615 ~ 1.23135 (1.4%).
Noting that at the first resonance kh = w/2 we can write the cross section as

A2 22 o

tl At /k tl tl
Qtrans . = qtrans .
2fs (kh) Cin (4kh) 47 (7/4) Cin (27)

Otrans =~ Qirans fo (kh) Cin (4k3h)

A2 8 22

tl tl

= — = e
Qirans 4 Cl (2 ) qtran54 d

where

G4 = 8/Cin (27) ~ 2 (1.64092237)

is the directivity gain of the slot at the first resonance (twice the gain of a dipole antenna). We expect at

low frequencies this gain to transition to the gain of a low frequency slot

GY~2(3/2)=3

Thus we can take

A
tl
ns R ————— , koh < kh 2
Otrans Qtrans (7T/4) Cin (27T) , kKoh < < 7T'/
where
4¢? Aol o T
tl tl 0 tl 0 tl
ans e = Qirans T~ = Qirans —9 = Qirans 759
Qtrans kohCln (27T) Qtrans (7_(_/4) CIH (2’]T) Qtrans A7 Qtrans k%
or
T3 . us
koh = 5 £ Cin (27) ~ 0.914120026 5 ~ 143589638
and take

AQ
Otrans = qff«ansEGg , kh < koh

8.2 Average Loss & Absorption Cross Sections

We sometimes run into the situation where a random field excites the slot, for example from within an
overmoded cavity, where we have an interest in the cross section of a slot averaged over all incident and
polarization angles [11], [1]. The preceding cross section for kh = nm/2 when averaged over all incident

angles (27 solid angle for a half space and at high frequencies for a cavity) [1]

1 T s
a_ / d@ / Otrans SN 00d90 =
2 0 0

T 2l ! 2 d
/ soranesin Boddy = gll 27r / { cos’ (nmu/2) , n odd } u i
0 (nw/2)? Cin (2n7) Jo | sin” (n7u/2) , neven [ 1—u

N | =

2 1
= qﬁans ;TE / []. =+ cos (mru)] du 3
(nm/2)” Cin (2nm) Jo 1—u
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2 1
= qfvlﬂans T;E /2 / []' + cos (TL’]TU)] ( ! + = ) du
(nmw/2)” Cin (2nm) Jo l—u 14w

2 2 2 2 2

tl e / tl ml7/2 n /2 w2 tl A
= Qtrans 1 — cos (nmx = Qtrans = Qtrans = Qtrans =4q ransQi
A (e 12)2 Cin (2n7) Jo { (nma)} 2 = (nm/2)2 TS (gp)?  remegz T ttrens Ty

If we also average over the polarization angles we also introduce another factor of one half

<Utrans> = qtrans27ﬂ_7

and at the resonances where the reactive parts cancel, the mismatch ratio for transmission is [1] (this is the
mismatch between radiation into the exterior half space G,.q/2 and the combination of radiation into the
incident half space G,.q4/2 in combination with slot wall losses R;,;/Z2)
2
tl ~ Grad

Qirans ~
! (Grad + Rznt/Zg)Q

Similarly the average absorption cross section for losses in the slot walls

A1
= q(tfbs?E§

and at the resonances where the reactive parts cancel, the mismatch ratio for absorption is [1]

<O'abs>

qtl " 2GradRint/Zg
abs ™
(Grad + Rznt/Zg)Q

The total loss cross section (losses for the interior cavity modes) for the slot is then the sum of these

<Uloss> = <Utrans> + <Uabs>

and Pj,ss = (010ss) S, where S is given, for example, by

Pin = JtransSO = (<Jtrans> + <Uabs> + Uwall) S = Pout (5)
where [1]

4
Twall = gScavRs/no

s =mo (|HI*) = 3n, (|HiI") 6
no () = 3my () ©
inc|?
So = 770 ’H ’
The quality factor is
oo W _ Ve (G0l + i HF), Ve (o), £ Vo /7
B Pz N (<0trans> + <Uabs> + CTu)all) S B (<Utrans> + <0abs> + Uwall) S B q#ans + q};lbs + %kQScavRs/no
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8.3 Slot Cavity Received Power

A uniformly distributed matched load G4 along the slot is used to mimic a worst case backing cavity [1] and
the net input power P,... We first set up the case where the cavity load may or may not match the reactive
slot terms. We start with the oblique incidence slot voltage distribution [1]

cos (82) sin (8z) ]

Z2H™ sin 6, . si
g 20 {cos (qoz) — cos (qoh) cos (Bh) +isin (goz) — isin (qoh) sin (Bh)

@ — B
Z2H™¢ sin 0
@ -5

) Voecos(Bz) , neven | [ Voecos(nmz/l) , n even
Voosin (Bz) , nodd [~ | Voesin(nmz/¢) , n odd

Vi(z)=

[cos (qoz) + isin (goz)] + Voe cos (Bz) + Vi, sin (82)

where
Vo Z2H'™sin 0 cos (qoh)  Z2H" sin 0, cos (kh cos 0p)
0 ™ (2 — 8% cos(Bh)  (k2cos2 8y — B?) cos (Bh)
Z2H™¢sin g sin (goh) . Z2H™ sin 6 sin (kh cos 0p)

Voo =1 (@ — B%)sin(Bh) Z (K2 cos? 0 — %) sin (Bh)

and [1]

Prec ~ hGld

4 |ZHi"C‘2 sin® 0y [ cos? (khcosfy) /|cos (BR)]> , n odd
’52 _ k2 cos2 90|2 sin? (khcos ) / |sin (Bh)|° , n even

~ hGiq

4| ZH"<|? sin® 0, cos? (khcos o) / [cos (BR)[® , m odd
(ﬁ/z — B — k2 cos? 90)2 + (25/5//)2 sin? (kh cos ) / |sin (BR)|* , n even

~ hGyq

4 |ZHmc|2 sin” 0 cos? (khcosy) / |cos (BR)]> , n odd
(B” — k2 cos? 90)2 + 8"+ 26767 + 2" k2 cos? b sin® (kh.cos 0g) / [sin (Bh)|* , n even

=5 +ip’

Then assuming 3" << 8 and 8"h << 1
cos (Bh) = cos (B'h) cosh (8”h) — isin (8'h) sinh (8"h)
~ cos (8'h) — isin (8'h) (8"h)
lcos (Bh)|* ~ cos? (B'h) +sin® (8'h) (8"h)* ~ cos? (B'h) + {1 — cos® (8'h) } (8"h)*
~ cos® (8'h) + (8"h)?

sin (Bh) = sin (ﬁ/h) cosh (B"h) + i cos (ﬁ/h) sinh (B"h)
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~ sin (B’h) + i cos (B'h) (,B"h)

Isin (Bh)|* ~ sin® (B'h) + cos® (B'h) (5”}1)2 ~sin® (8'h) + {1 —sin® (8'h) } (5”h)2
~ sin? (B/h) + (B"h)Q
4 ‘ZHinc|2 sin? 6, cos? (khcosby) / |cos? (B'h) + (B”h)ﬂ , n odd

Prec ~ hGld

(B” — k2 cos? 00)2 +26" (8" 4 k2 cos? ) | sin® (khcosfy)/ |sin® (B'h) + (B”h)z} ., m even
where

6/2 ~ (LL)L + Xlnt) [w (C + Acintr) + Bra,d + Bld]

gas

Qﬁ/ﬁ” ~ R {w (C + AC;ZZT) + Braad + Bld} + (wL + th) (G;Zir + Gra.d/Q + Gld)

Now for resonance we need 3'h — nn/2, but for gain approaching the linear array level we also need
B'h — khcosfy, which would require that khcosfp — mm/2; this combination pushes us toward grazing
incidence 6y — 0 when 8’ ~ k (although sinf, — 0). If 3’ is not near k, because we were forced to choose
Byg to be substantial in order to make 5'h — nnm/2, then we will not achieve the linear array gain near, but
below the normal slot resonance, when By > 0 and 8’ > k

4 ‘ZHinc’2 sin20, | cos?(khcosby)/ |cos® (B'h) + (B”h)2] , n odd

Prec ~ hGld D) 2
(ﬂl2 — k2 cos? 0,) sin? (kh cos fp) / |sin? (B'h) + (8"h) } , meven

and we might expect a maximum near normal 6y — 7/2 incidence.
Alternatively, suppose Bjq < 0 because we are above the normal slot resonant frequency; in this case we
can adjust the angle of incidence to make 8" /k? = cos? 6

R 4 ’ZH”LC’Q (1- 6'2/k2) cos? (B'h) / |cos® (B'h) + (ﬁ”h)z] , n odd
ree = 4B " sin? (B'h) / sin? (ﬁ'h) + (B"h)ﬂ , N even
or
o~ AhGq [Hime|* (1 — B /k2)
" [Rint {w (C + ACI) + Braa + Bia} | (WL + Xint) + (Gintr + Graa/2 + Gia) |
cos? (B'h)/ cos? (ﬂ/h) + (ﬂ/'h)Q] , nodd
sin? (5’h) / |sin? (5’h) + (B"h)ﬂ , M even
N 4G [H™|* (1 - 872 /k2) cos? (#'h) / [cos? (8') + (8)°] , n odd
[Rmt (n7/2)* [ {(@L + Xont) B} + (Gils + Graa/2 + sz)} * | sin® (8'h) / [sin® (8'R) + (5/%)2} ; T even
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where the factor in braces is less than unity. The presence of a gasket with AC;Z? > 0 ordinarily increases

A’ relative to k, but in this case with the requirement that we choose Bjq < 0 to make 3'h = nm/2, we need
to make Bjq more negative to simultaneously achieve khcosfy — 'h = n1/2; in a sense our choice of By

compensates for the presence of AC2L". If there is no gasket AC{M" = 0 = Gl we can write

B” m (WL + Xint) (WC + Braa + Bia)

2/615// ~ Rint (UJC + Braq + Bld) + (WL + Xint) (Grad/2 + Gld)

and

4hGy |Hi”0|2 (1- 5'2/192) cos® (B'h) / |cos? (B'h) + (,B//h)z} , n odd
[Rint (WC + Brga + Bia) | (WL + Xine) + (Graa/2 + Gia)]® | sin? (B'h) / |sin® (B'h) + (ﬁ”h)Q} , m even

Precz

The admittance mismatch exhibited in these equations for received power can be exploited to examine
situations where the cavity does not match the slot [1]. The dual of antenna impedance is slot admittance.
The statistical fluctuations of antenna impedance at high frequencies when attached to a cavity [14], can
be interpreted through duality as the slot admittance fluctuations from the backing cavity. Limits on these
fluctuations might be used in these power mismatch factors to limit the power reception in certain frequency
bands similar to the antenna case [15].

8.3.1 Normal Incidence
If we look at the normal incidence result

18" cos (BR)?

’2 4 |ZHinc

g [cos2 (5'h) + (5”h)2}

| 2

~

Prec ~ hG ld , n odd

and at resonance

16| ZH™"e
(Q/BI/BI

‘ 2

P,-ec ~ hGld n odd

/(B'R)° 16hCaa [H"|" / (8'h)"
’)2 [Rint (WC + Braa + Bia) | (WL + Xing) + (Graa/2 + Gia)]”

kh nrm/4
7Tn()h(;’rad - <’I7/7T + k’]'/b

> {Cin (n7 + 2kh) — Cin (nm — 2kh)}

kh 4

(KR mTIA i (4 2k — Si (i — 2Kk} — 2sin? (n7/2 + kh)
nmw kh

Now maximizing with respect to Gy

Gld == Rint (WO + Brad + Bld) / (WL + Xint) + G"rad/2

gives

ah|H™e|? / (8'h)

Pree = ,
ree Rint (UJC + Brad + Bld) / (UJL + Xint) + Grad/2

n odd
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Now we can follow two paths. First we can use the approximation

(WC + BT'ad + Bld) / (WL + Xint) ~ 1/Z02
to find

_ An|me ) (8'h)°
e Rint/Zg + Grud/Q

, nodd

If we replace 8'h — kh

o AR|H™? ) (kh)? 4|H™| ] (Kh)

B 2 4/ (k*h)
- Rznt/Zg + Grad/2 B R'Lnt/Zg + G'rad/2 = "o

, n odd
770Rint/Zo2 +19Grad/2 "

Prec = 0rechy |Hmc|

| inc |

and

S 4/K? B A2 h1oGrad/2
ree hT}()Rint/Zg + hnoGrad/Z 7T2h7]0Grad/2 hT]oRznt/Zg + h"?oGrad/2

, n odd

where we would typically use the n = 1 form (in this case, when k& >> /', the replacement 3'h — kh as
well as the use of (WC + Byaa + Bia) / (WL + Xni) & 1/Z2 are questionable because Bjy must be taken as
increasingly large and negative)

ohGraa = —2sin® (/2 + kh) + (’;h + 47];1) [Cin (2kh + 7) — Cin (1 — 2kh))]
2
+kh [1 - (ﬁ) } [Si (2kh + 7) — Si (1 — 2kh))]

Alternatively, we can take

(WC' + Brag + Bia) (WL + Xine) h? m (n7/2)% = (ﬁ/h)2

which gives

ah|H"e? | (nm/2)? _ 2h |Hme|* 8/ (nrr)?
Ryt (n/2)* / {(wL + Xint)? h2} + Grag/2  Rint (07)* /{(WL + Xine) 20} + Graa/2

n odd

PT'EC ~

If we take n = 1 here (and we can also ignore X;,,;) we arrive at our prior matched result [1]
2h |Hime|* 8 /72
Rintﬂ-2/ {((UL + int) Qh}2 + Grad/2
2h (8/72) /no B Grad/2 e (8/m%) 4 (/7
Rintﬂ'2/ (wL2h)2 + Grad/2 Rintﬂ'Q/ (wL2h)2 + Grad/2 nthrad Irec FUOhGrad
and we can define the mismatch due to the wall losses as

qtl _ Grad/ 2
" Rinem?/ (wL2h)? + Graa/2

P’I‘EC%

; 2
inc
= Oreclly ‘H ‘

O-TEC -
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where we use the n = 1 form

ohGraa = —2sin® (/2 + kh) + (’;h + 47];1) [Cin (2kh + 7) — Cin (1 — 2kh))]

+kh [1 - (22})2} [Si (2kh + ) — Si (1 — 2kh)]

and the asymptotic limits are

2/4 \?
ﬂ—nOhG’l’ad ~ g (ﬂkh) s kh << 1

2
110hGlraa ~ Tkh {1 - (ﬁ) } L kh>>1
In the limit kh << 1
wL2h/m)?
Cree ~ (%R/t)e (8/7%) = 2 (no/Ry) (€w?/d) (kh/)? (8/7°)
or
g 3T g A

Orec ™~ qrec k2 %ﬂecﬂ

where because of the slot wall losses in the slot, the cross section behaves as O (w3/ 2), but in the case with
perfectly conducting walls ¢/., = 1 and the behavior is then O (w_Q). In the limit kh >> 1

u (/) g €A 2

O-TEC qTCC 7_[_770 hGTad ’I‘EC ( / )

which is near the linear array level /\/7 with 8/7% ~ 0.81.

— (8/7%)

8.3.2 Linear Array

Note that the linear array cross section is useful as a comparison

Otrans = qtrans G trans)‘g/ﬂ— - Qtrans2€/k

GEA =40/ \ = 2kt /=

where we can take gL, to be given by the same result we are comparing this result with.

8.3.3 Low Frequency Slot

We expect at low frequencies this gain to transition to the gain of a low frequency slot which is twice the
low frequency dipole antenna gain of 3/2, which again we can compare with another model

2 A’ 3
tl 0 l l
Orec = qT‘P(’4 G q7t"e('4 = qvéecp

GY~2(3/2) =3

where we can take gL, to be given by the same result we are comparing this result with.
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8.3.4 Large Losses

In the case of large losses normal incidence gives the maximum because it maximizes the projection of the
incident magnetic field on the slot length (there is no cancellation in the denominator possible for these large
losses). The slot voltage distribution in this case becomes

V(z)~Vo~ K3/ (Y + Yeaa/2+ Yia)

where

Y=G—-iwC
Y;“ad = Grad - Z‘Brad

Yig = Giqg —iBiq

sin (2kh)

T16hGlrad = 2KR i (2Kh) + = =

+ cos (2kh) — 2
1
Mo Grad ~ 5 (2kh)? [1 — (2kh)? /60} L kh<<1

TMohGrad ~ 7kh — 2, kh >>1

(and if we include the reactive field in the transmitted half space we would replace B;.qq/2 — Braq). Received
power is then

Gy |K5)* 8hGa | Hme|”
|Y + Yrad/2 + Yld|2 (G + Grad/2 + Gld)2 + (wc + Brad/2 + Bld)2

inc|?
Pree = 2hGiq |VO‘2 = = Orecllo |H |

Orec = Qrec 770Grad

" 4G4 (Graa/2)

qrec -
(G + Graa/2 + Gia)? + (WC + Braa/2 + Bia)*

In the high frequency limit this becomes the linear array result with mismatch

A
Orec ™~ qﬁlec? , kh>>1
and in the low frequency limit this becomes the low frequency slot limit with a gain of Gy = 3 with mismatch

3 A2
Orec = qilecﬁ = qﬁgcﬂi’) s kh <<1

In the matched case where the reactive terms cancel wC + Byqq/2 + Big = 0 and we take G + Grq4/2 = Gia,
we find

tl Gmd/ 2

qrec - G + Grad/2
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8.3.5 Oblique Incidence

Next we look further at the case of a fixed oblique incidence near the slot resonances 3'h = nm/2

4|2 sin 0, cos? (kh cos 0) / [cos® (8') + (8R)°] , n odd
(6’2 — k2 cos? 90)2 + 26" (5/2 + k2 cos? b sin? (kh cos ) / |sin® (B'h) + (5"h)2] , M even

Prec ~ hGld

and at resonance (cos? (ﬁ/h) — 0 or sin® (B/h) — 0, dropping the "% term in the first denominator factor
outside the braces)

P’rec ~ hGld

16 |ZH | sin® 6, cos? (khcosfp) , n odd
(8'h)* [1 = (k2/8") cos 00]” (265”7 L sin” (Bhcosfo) , m even

or

16hGyq |H™|* sin®
17\ 2 2 12 2 2 2
(ﬂ h) [1 — (/{1 /ﬂ ) Ccos 90} [Rint (wC + Brad + Bld) / (wL + Xmﬁ) + (Gmd/z + Gld)]

PT&C%

cos? (khcosfy) , n odd
sin? (khcosfy) , n even

Then choosing

Gid = Rint (WC + Braa + Bia) / (WL + Xint) + Graa/2

to maximize this factor

~
~

rec

4h |H""C‘2sin2 0o { cos? (khcosfy) , n odd }
. 9
(ﬁ/h)z [1 _ (kQ/B/Q) cos2 90]2 [Rint (wC 4 Bygg + Bld) / (wL + Xint) + Grad/Q] sin (k;hCOS 00) , noeven

Then the first of our two approaches with
(OJO + Braa + Bld) / (wL + Xint) =~ 1/Zg
gives

P~ 4h ‘Hmc|zsin2 6o { cos? (khcosfp) , n odd }
rec ~ 12
(ﬁ/h)z - (k2/6'2) cos? 90]2 (Rint/Z2 + Graq/2) \ 50 (khcosfy) , n even

If we replace 3'h — kh (assuming we are near each of the slot resonances)

~ 4h |H™me
(kh)* (Rint/Z3 + Graa/2)

N Grad/2 mc|2 47 /K2 cos? (khcosfy) , n odd
~ Rint/Z2 + Graa/ 7hnoGrad/2 sin? (khcosfy) , n even

}2

Tec

cos? (khcosfy) , n odd
sin? (khcos ) , n even

} /sin2 00

2770’H }/sin2 0o

or
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tl 277[2

~
Orec = Qrec

20\

~ gt
"¢ (kh) Cin (2nm)

or the asymptotic result

oron % gl A sin? (z,)
T Cin (2n) @y

with

tl _
Qrec =

cos? (khcosfy) , n odd
(kh)? Cin (2n7) sin? (khcosfy) , n even
4 2m(?

~ dree 1) Cin (2nm)

} /sin? 0
kh/ (2z,)
1 —x,./(2kh)

kh/ (2z,)
1— ./ (2kh)

sin? (x,.)

sin? ()

12

~ gt
"€€1.38 [ + In (4kh)]

, T, ~ 1.1656 , kh >>1

Grad/2

Rint/Zg + G7'ad/2

The preceding transmission fit used to accommodate the tilt of the maximum to normal incidence at the
first resonance (which also occurs here), can also be used for this receiving case

)\E o

A

~
Orec ~

7, (kh) Cin (4kh) ™

l
> o B+ I ()] e

kh>m/2, A< /2

Even though this result was derived near the resonances kh = nw/2 we plan to use it continuously as a

function of kh to interpolate between resonances.

8.3.6 Investigation Of Oblique Incidence

The alternative approach (used in the preceding normal case) gives

(WC + Braa + Bia) (WL + Xint) h? ~ (n7/2)* ~ (ﬁ/h)2

and

ah|H™e|? sin? 0o/ (nr /2)*

Precz

Returning to the expression

[1 — {(kh) / (n/2)}? cos? eo} ’ [R,»nt (n7/2)? [ {(wL + Xing) h}> + Grad /z}

cos? (khcosfy) , n odd
sin? (khcosfy) , n even

ah* | ZHme|? sin? 0,

Prec ~ hGld

{(8'R)° = (k) cos? 90}2 +2(8"R)" { (8')" + (kh)? cos? 6y }

cos? (khcosby) / |cos? (B'h) + (ﬁ"hy] , n odd
sin® (khcos ) / [sin® (8'h) + (B"h)ﬂ , N even

we originally have variables Bjq, Giq, kh, and g, or in this expression 8'h, 3”h, kh cos 8y, sin? 6. Assuming

that 8”h << 1 let us take 8'h = nm/2
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4 inc|? g2 2
Pree ~ hGiq Ah* [ ZH™| sin® 0y { cos? (khcosto) / (B"h)” , n odd }

{nm/2)? = (k1) cos2 00} + 2 (8"R)* {(nm/2)° + (k) cos2 0} L 50 (Khcosto) / (8"h)° , n even

we still have variables 3”h, kh cos 0y, sin® 0. If we drop the (B”h)2 term in the denominator (note that this

term eventually plays a role for large n)
4h4 ’ZHVM,’2
Prec ~ hGld

sin? 0y { cos? (khcosfy) , n odd }
7782 2 12
(5 ’h) {(mr/?)Q 7 (kh)g cos? 00} sin” (khcosfy) , n even

Let us take

kh = ’I”L7T/2 + Aq
khcosby = (nmw/2 4+ Ay) cos by
sin?6y = 1 — cos? 6,

cosbtp=1—u

where u = O (1)
4Ah4 ’ZHinc|2
Pree = hGld

1 — cos? 6, { cos22 ((nm/2 + A1) cosbp) , n odd }
(8" {(nr/2 = (nmj2-+ AP o2} LS (/2 A)eosbo) , meven
4h4|ZHmC|2 (1 —cosby) (1 + cosby)

(ﬁ”h)2 {(nw/2) — (nw/2+ Ay) cos 00}2 {(n7/2) + (nw/2 + Ay) cos 90}2

cos? ((nm/2+ Ay)cosBy) , n odd
sin? ((nm/2 4+ Ay) cosfy) , n even

~ hGyq

4h4|ZHmC u(27u)
(8"h)*  {=A1+ (nm/2+ A u}? {2 (n7/2) + Ay — (n7/2+ Ay) u}?

{ cos? ((nm/2 4+ A1) (1 —u)) , nodd }

’ 2

~ hG\q

sin? ((nm/2 4 A1) (1 —u)) , n even

Now if u does not go to zero we are left with O (|Z|2 / (n7r/2)4> =0 (1/ (mr/2)2> behavior, noting that

1Z]*> =0 (w?) (and we are investigating the case here where Ay = O (1), in other words shifts in resonance
in an interval between slot resonances). However, if u — 0 this can be increased.

4n* | ZH™e (n7?) u (2 — u)
(28'h)* (8"h)? {—A1 + (n7/2+ A1) u}’ {2 (n/2) + Ay — (n/2 + Ay) u}®

‘ 2

Prec ~ hGld
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{ cos? (nm/2 4+ A1) (1 —u)) , n odd }
sin? ((nm/2 4 A1) (1 —u)) , n even

.y 4h4}ZHi"C’2 2u { cos? ((nm/2 4+ A1) (1 —w)) , n odd }

i (26'h)2 (5"h) {(nm/2) u — AL} sin? ((nm/24+ A1) (1 —u)) , n even
Then

{ cos? ((nm/2 4+ A1) (1 —u)) , nodd }%{ cos? (nm/2) (1 —u) + Ay) , nodd }

sin? (n7/2 + A1) (1 —u)) , n even sin? (n7/2) (1 —u) + A1) , n even
z{ sin? (— (n7/2)u+ A;) , n odd }
sin? (— (n7/2)u + A1) , n even

and

ARt | ZH™* 2usin? (— (n/2) u+ Ar)

Prec ~ hG
“ean)’ (3'h)? /2 u— A

Finding the maximum

_d lQusin2 (= (nm/2)u+ Aq)
0=— 2
du | {(nn/2)u— Ay}

2{(nw/2)u— A1} —2(nm)u

0= sin? (— (n7/2) u+ Al)_2u (nm)sin (— (n7/2)u+ Aq) cos (— (nm/2) u + Ay)

{(n7/2)u— AL}° {(nm/2)u — A}

tan (— (nw/2) u + Aq) _ 2u (nm)
{(nm/2)u— A1} 2{=(nm/2)u — Ay}
tan ((nm/2)u — Ay)  2(na/2)u  2(nw/2)u — 241 + 24,
{(nm/2)u—Ar}  (na/2)u+Ay  (nm/2)u— Ay + 24,

tan (z) 2z + 244
x oz +2A

, ¢ = (nm/2)u— Aq

tan (ur/2 — Aq) um
= = 2-—A
um/2 — Ay ur/2+ Ay’ z =ur/ !

tan (umw/2 — w/2) um

ur/2 —m/2  un/2+7/2
I (LLLS T P (S U S B
¢c—0 ¢ u—1 \ur/2+ /2
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tan (umw/2 — w/4) um

ur/2 —7w/4  ur/2+7/4

tan (w/4) 4 T 4

/4 @’ 37r/4:3

u=1/2—>60y=7/3

AhGah* |ZH™|* u (2 — )

[ (/2 + A1) — AP [(2 = w) (n7r/2 4+ Ar) — Ag]? + 2 (87h)° [(m/2)2 F{nm/2+ Ay —u(nm/2 + Al)}ﬂ

sin? {u (n7/2 + A1) — Ay}
&y

AhGah* | ZH™e|? (2 — 1/2) /2
(/2 +7/4) /2 = 7 /4 (2 = 1/2) (=/2 + 7/4) = 7 /4 + 2 (8"R)? [(7/2)° + {m/2 + m/4 = (x/2 + 7/4) /2]

~
~

sin? {(7/2 + w/4) /2 — 7 /4}
(8"h)*
N 4hGiah* | ZH™"e|? 3 /72 sin? (7/8)
(/40 17/8° +2.(5m)” 1+ 3/4)°] - (8")°

2 3sin? (7/8)
(7/8)°
23[1 —cos (m/4)]
2(7/8)°
23(1-1/v2)

2(7/8)°

~ AG | ZH ™| (ﬁ” (7r/2)2>
~ 4Guh® |ZH /(5 (/2))
~ AGh® | ZH ™| (5” (77/2)2)

. 2
~ AGh® | ZH ™| (ﬁ” (71'/2)2) 0.5738
If we use normal incidence 6y = 7/2 forn =1

AhGiy | ZHM” ) (88" : i
~ (l;’|h)2 n 2| (;/,(f)f L~ oGz (5" /2°)

Tec

which is a larger result.
We see that for A; = 0 we return to our prior solution for z = z,

2, = 1.165561 = (n7/2) u
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1.165561

bhp=1—u=1-
cos bty U /2

At | ZH™? 2usin? (— (nr/2)u+ Ay) G ah* | ZH™e® 2(1.165561) sin? (—1.165561)

Prec ~ hGld

@)% (8"h)°  Am/2u—-Ay (@) (8'h)° (nm/2){1.165561)
g, At |ZH"| 14492227 AR | ZHe" 1.4492227 o | ZHme[* 1.4492227)0
ld (26,h)2 (B//h)Q (TL7T/2) ld (2B,h)2 (6”}1,)2 kh ld (25/h)2 (B,/h)Q T
2h2|ZH™|? M
~ hGq

(25%)2 (5”h)2 1.380057
We can write this as

4hGhq | ZH™<|? 1.4492227
[Rint (WC + Braa + Big) + (WL + Xint) (Grag/2 + Gia)]>  (nm/2)

PT@C%

AhGiq |Hime|? 1.4492227
[Rint (UJC + Brad + Bld) / (UJL + int) + (Grad/2 + Gld)]2 (7’L7T/2)

For the matched case

~
~

b~ h|Hme|® 1.4492227
" [Rint (WC + Braa + Bia) | (WL + Xing) + Graa/2] (nm/2)
Then either
h 1.4492227 el
Pree = /M ) Mo |H ’

[Rmt (n7r/2)2 J{(wL + Xint) h}2 + Gmd/g] (nm/2

or

h/ng 1.4492227 ne|2
PTGC ~ H’an
(Rint/Z3 4 Graa/2) (nm/2) o | |
ThnoGrea = Cin (2n)
or
h/n 1.4492227 inel2
Pree = /" Mo |H |

(Rint/Z3 + Graa/2)  kh
ThngGraa = Cin (4kh)
Now if Ay =x/4

tan(z) 2z+7/2  1+x/(7/4)
r  z+7/2  1+z/(7/2)
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1.350646 = 1.35379 , = = 0.86
1.354146 = 1.35459 , = = 0.863"
1.36244 = 1.35644 , = = 0.87

1.354146 = 1.35459 , « = 0.863" = (n7w/2)u — /4

_ m/440.863
nw /2
4 . 1.6484
cos@ozl—uzl—ﬂ-/ +0863: — 648
nm/2 nw/2

sin?fy =1 — (1 —u)2

A | ZH™ ) 2usin® (— (nr/2) u+ Ay) Lo, Ant |ZH™e* 2 (/4 + 0.863) sin? (0.863)

Prec ~ hGld 2 ) 3 1d 5 5 5
(268'h)" (8"h)"  {(nm/2)u—Ar} (28'n)* (8"h) {0.863} /2

‘ 2

an'|zHne|® 25554 At |ZHTC] 25554 W2 |ZH™e? 255540
ld ~ ~

(o) (8" me/2 " ) (3 )" R = g ) ()t
2n2 | ZHm|* e
“28n)? (8" n)? 07826367

Note that the solution

tan (v) 224244
x x4 2M
must have £ > A;. If A; =0 we have x = 1.165561. If A; — —/\4

, r=(nm/2)u— Ay

tan () 2z — 244
= = 2
- Y , = (nm/2)u+ Ay

we can change the sign of z

tan (z) 224244

r oz +2A; ] o= (/2 ut A

which gives the same equation we had previously; however, this now yields u < 0 which implies cosfy > 1.
Suppose we take the range

0 < Al < 7T/2
At the top of the range
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2
tan(@) _ 2T /2w — )2
x xr -+

1.169545 = 1.1714319 , x = 0.65
1.17334658 = 1.172741 , = = 0.656"
1.17398637 = 1.17295879 , = = 0.657

1.1759165 = 1.1736114 , = = 0.66

x = 0.656" = (n7/2)u — /2
_ 0.656 + 7/2

nm/2

_0.656 + /2

Op=1—-u=1
cos By U /2

| 2

At | ZH™|® 2usin? (= (nr/2) u+ Ay) hC ARt |ZH™|" 2(0.656 + 7/2) sin” (0.656)

P RO g e ) u— A Tt (@) {0656} 2

| 2

an'|zHne|* 38503 . 4h*|ZH™]" 38503 W2 |ZH™|” 3.8503M
Tam) (@) 2 ) () R w2 o) ()
2n2 | ZH[* e
(Qﬂ/h)Q (6,,}1)2 0.5194407

~

=~ hGld

4hGyq | Z Hime|? 3.8503

PT'EA ~
‘ [Rznt (WC + Brad + Bld) + (WL + Xint) (Grad/2 + Gld)]2 nﬂ-/2

4hGya |H e[ 3.8503
[Rint (OJC + Brad + Bld) / (WL + Xint) + (GT{ld/2 + Gld)]2 717T/2

For the matched load

~
~

h|Hine|? 3.8503

Prec =
[Rint (wc + Brad + Bld) / (WL + Xlnt) + Grad/Q] 77‘77/2

Then either

h/ng 3.850377
[Rine (n7/2)? [ {@L + Xint) BY + Graa/2] "7/ 0

i 2
~ inc
Prec ~ ’ |
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h/1o 3.8503
(Rint /23 + Grag)2) nimj2

2
Prec%

| inc|

T™ohGraq = Cin (2nm + 27) = Cin (2 (n + 1) 7)

Note that 3.8503/1.4492227 ~ 2.6568.
We might fit the three values here as

A
for, (A1) & 1.4492227 + (3.8503 — 1.4492227) —=

/2
oo (1/4) ~ 2.649761 (3.7%) = 2.5554
Then
h o (kh —nm/2 imel2
Prec% 5 /77() 5 ( 5 / )770|H |
Rie (n7/2)° [ {(@L + Xine) 1Y + Graa/?] ™7/
h/no fo,, (kh —nm/2) ime|2
Prec ~ m Hln/c
Fof 22+ ConalD)——nmz 0™
where
kh  nm/4 . .
TMohGrad = <n7r + oh > {Cin (n7 + 2kh) — Cin (nm — 2kh)}

n kh  nm/4
nm kh

Note that if we increment by kh by 7/2 and n by 1

> nm {Si (nm + 2kh) — Si (nm — 2kh)} — 2sin? (n7/2 + kh)

1 <2kh—|—7r nw/2+ w/2

hGraq = =
o ¢ nmw 4+ kh+ m/2

5 > {Cin (n7 + 2kh + 27) — Cin (nm — 2kh)}

1 /2kh+7m nn/2+7/2 . ) o
- - 2 2m) — -2 -2 2
5 <n7r+7r Rh ot /2 )mr{Sl (nm 4 2kh + 27) — Si (nm — 2kh)} — 2sin® (n7/2 + kh + )

Then if we set kh = nw/2 we obtain

T™ohGreqa = Cin (2nm +27) = Cin (2 (n + 1) m)
which is the same as the smoothed value Cin(4kh).
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Summary Of Approximations Because there are several approximations involved in the preceding, it
is useful to briefly review them and check their validity. More generally taking

B'h=nr/2+ 6
cos? (ﬁ'h) = sin? 7 = sin? (B’h)

kh =nm/2 + Ay

khcosfy = (nm/2 + Ay)cosp = (nm/2 + A1) (1 —u) =nw/2+ A1y —u(nw/2 + Aq)
cos? (khcosfp) = sin? {A; —u (nm/2 + Aq)} = sin? (khcos )
(8'h)° + (kh)? cos® B = (/2 + 61) + {n7/2 + Ay — u(nm/2 + Ay)}
(B'h)° = (kh)? cos® By = [u (n/2 4+ A1) — Ay + 61 [nm — uw (n7/2 + Ay) + Ay + 61]
sinfp=1—cos?0p=1—(1-u)?=u(2—u)

cosbp=1—u
gives
ah* | ZHime|? sin? 0,
2
{(8')" = (kh)*cos200 )~ +2(8"0)* { (3'h)" + (kh)” cos? 6o |

cos? (khcosby) / |cos® (B'h) + (B/Ih)Q] , nodd
sin® (khcos ) / [sin® (8'h) + (ﬁ”h)2] , N even

Prec ~ hGld

AhGiah* | ZH ™ 1 (2 — u)

~
~

[ (nm/2 4 Ay) — Ay + 612 [(2 — w) (nm/2 + Ay) — Ay +61)2 + 2 (8"R)° [(m/Q £ 4+ (/2 4+ Ay —u(nm/2 + Al)}2]

sin? {u (nm/2 + A1) — A}
sin? 61 + (8"h)°

If 61 = 0 so that B'h = nm/2

AhGrah* |ZH™|* u (2 — u)
[ (n /2 + Ar) — AP [(2 = u) (nr/2 + Ay) — Ay +2(87R)° [(m/z)2 {2+ Ay —u(nm/2+ Al)}?]

Prec%
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sin? {u (n7/2 + A1) — Ay}
(5"1)°

If we drop the (ﬁ”h)2 term in the denominator
4h4|ZHmc|2 w(2 —u)sin® {u (nm/2 4+ A1) — Ay}

Prec ~ hGld P} 2 2
(5”h) [u(nm/24+ A1) — A1]7[(2 —w) (n7/2 + Ay) — Aq]

If we approximate the final factor (and the second factor in the numerator) of the denominator for v — 0
8h4|ZHi”C|2 usin® {u (n7/2 + A1) — A1}

Prec ~ hGld b) 5
(B"h)" 2 (nm/2 + Aq) — A Ju(nm/2+ Ay) = A4

Now if we maximize the final factor with respect to u

iusiHQ {u(nm/2+ A1) — Ay} sin{u(nm/2+ Ay) — Ay}cos{u(nm/2 + A1) — Ay} (o
du fu(nm/2+A) - A [u(nm/2 4+ Ay) — Ay {unm/24 A0) £ A}

_tan{u(nm/24+ Ay) — A} 2u(nm/2 4+ Aq)

wnr 2+ ) — Ay T2+ AN+ Ay =0

Taking
r=u(nr/2+ A1) — Ay
this becomes

tan ()  2(xz+ Ap)

x x4 2/

cosbtlp=1—u

For Ay =0
x =1.165561 = (n7/2)u
For A; =7/4
x=0.863 = (nm/2)u—w/4
For Ay =7/2

z = 0.656 = (nw/2)u — 7/2

Now checking the dropping of the (ﬁ”h)2 term in the denominator

[ (n /2 + Ar) — AP [(2 = u) (nr/2 + Ay) — A2 >> 2 (87h)° [(m/m? {2+ Ay — u(nm/2 + Al)}Q]

or in terms of x
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222 (nm/2) — 22 >> 2 (8"h)° [<m/2)2 + {nr/2 - xﬂ
or
2 (nr — )% >> (6"h)2 [xQ (nm —z)° + mﬂ
1>> (B"h)2 [1 +1/(nw— z)z}

This is clearly true for 8”h << 1 even for n = 1.
The other approximation which was to replace

r=u(nr/2+ A1) — Ay

(2—w) _2—(@+A)/(mr/2+A)) 2 - 2ok
(2 —u) (nm/2 4+ A1) — Ay (nm — ) (nm + Aq)? (1 ISV )2
nT+A1
+A
~ 2 - nfr+2A1
2 Aq
(nﬂ' + Al) 1-— QTL;CWiAl
by
2 B 2
[2(n7/24+ A1) — A2 (nm+ Ay)?
x 1.165561
(1 a4 )2 (1 . 1.165561)2 0.4945 '
nr+Aq 57 /4
L-arbk Vo 06502
(1 N )2 - (1 - 1_648)2 ~0.336677
nT+A1 57 /4
= v 7O 212 (U
(1 adA )2 (1 _ 2.2268)2 0.18745 )
nmw+Aq 57 /4
— A 1- L8880 (8516
5~ 5 A ~ 1.2211
(1 _mtA ) (1 _ 1.165561) 0.6974
nT+Aq 97 /4
L-ark o Momp 0012
(1 a4A, )2 (1 B 1,648>2 0.58798
nm+Aq 97t /4
Lok LRy omedns
(1 _ me (1 _ 2‘2268)2 0.46919 :
nw+Aq 97 /4
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If we use normal incidence 6y = 7/2 for n =1

W ZEP G0
(ﬁlh)2+2(ﬂ”h)2 /{ (ﬁ h)+(ﬂ h) }

Taking 3'h = 7/2

anGy|zEe (857 NG| ZH | (87 (w/2>2)2
T 28 142(8")% ) (n)2)
ARG\ zH™]? 160Gy |ZHe|
S @t 88 @/

P’I"EC

’ 2

where
28'B" & Rint {w (C + AC{2") 4 Braa + Bia} + (WL + Xint) (Giad 4 Graa/2 + Gia)
Thus
b 16hGa |H™|? / (7/2)?
" [Rint {w (C + ACI) 4 Brog + Bia} | (WL + Xing) + (Gt 4+ Graa/2 + Gra)]”
N 16hGq |H™ | / (7/2)?
~ 2
[Rine (7/2)° | WL + Xint)® + (GIpt + Graa/2 + Gua)|
Above
Pro ~ AnGra |Hm " Jrm (A1)

[Rint {w (C + ACint) + Brag + Bia} / (WL + Xint) + (Gintr 4+ Graa/2 + Gm)]2 (m/2)

16hGya |H™<|? / (r/2)°
[Rint {w (C + ACIY 4 Byog + Bia} [ (WL + Xint) + (GInr + Graa/2 + Gia)]?

~
~

(7/8) fo,, (A1)

Ay

/2

Note that the actual value at A; = 7/4 is 2.55547/8 &~ 1.00350. The value at A; = 0 is 0.5691084 and at
Ay =m7/2is 1.51201.

(/8) fo,, (A1) ~ 0.5691084 + (1.51201 — 0.5691084)

8.4 Summary Of Cross Sections & Cavity Electric Field Estimates

We now summarize the preceding results, explicitly listing the radiation conductance, and discuss the esti-
mates of the interior electric fields. Fixed quantities needed below are

L \2
Rint = (W) 2R, /d
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L = pgm/Qe
Lintr _ Mow/d
Qe =2In(2h/a.)+2(In2—7/3)

2
Qe ~ W o —md/(2w) , d>0.3w

Rs =1/ (09)
0 =+/2/ (wpo)
Zo = mnom/Qe

Sinc =1 ‘Hinc‘Q

The matched oblique slot cross section (with perfectly conducting walls) is fit by the formulas

i A
M ~ > <
Toba ¥ T (oh) Cin (4kR) ~ J, (Rh) [ + I (dnd/n)] * K12 /20 AS 2

w/4—1.38
(kh)
M bV
°ba " (7 /4) Cin (27)

r (kh) ~ 1.38 + 72, kh>m/2, A< )2

, koh <kh <m/2

A’ 3
0oty = -3+ kh < hoh = ggcm (2r) ~ 0.914120026g ~ 1.43589638
Cin (27) ~ 2.4376534
¥ ~ 05772156649

There is negligible error if we let kgh — /2.
Using cavity dimensions a = 4 in, h. = 24 in, the surface area and volume are

Seqn = 2wa® + 2wah, ~ 0.45401 m?

Veao = Ta2he 2 0.01976888 m?
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8.4.1 Matched Received Power At Normal Incidence

The matched power is taken as the uniformly loaded slot with maximum power transfer [1]

Prec = O—recsznC

o 2h (8/72) /nq _ 0% (8/72) )
" Riyum?) (wWL2h)* + Graa/2 1 10hGrad
qtl _ Grad/2
" Riyum?/ (wL2h)? + Graa/2
ohGraa = —2sin® (/2 + kh) + (kﬂh + 471;1) [Cin (2kh + 7) — Cin (1 — 2kh))]

+kh [1 - (th)z} [Si (2kh + ) — Si (1 — 2kh))]

Normal Alternative Form The alternative form of the normal matched cross section using the slot
characteristic impedance is (this approximation is of questionable validity as noted in the preceding subsection
where this is first discussed)

Prec = O—rec‘s’“w

o ) g P/ «
e Rzm‘/Zg + Grad/2 ree nOhGT‘(L[Z
tl Gmd/2

q =
ree Rz’nt/Zg + Grad/2
Matched Linear Array Received Power The linear array cross section is

Prec = O—recsznc

Orec = qﬁlec/\ﬁ/ﬂ' =g 20/k

Tec

tl Grad/ 2

Iree = Grad/2 + Rint/Zg

For comparison to the preceding results we can take the radiation conductance the same as in the preceding.
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Large Slot Loss Received Power The large loss received power is (and if we include the reactive field
in the transmitted half space we would replace Brq4/2 — Brad)

Prec = O'recS”w

8hGld/’l70 é

tl
Orec = =brec A~ 7o
(G + Graa/2 + Gia)* + (WC + Braa/2 + Bia)® N0Grad/2
3] 2

mohGraa = 2kh Si (2kh) + % + cos (2kh) — 2

gl = 4Gia (Graa/2)

" (G + Grea/2+ Gia)® + (WO + Braa/2 + Bia)®
For the matched case wC 4 Bj.qq/2 + Bjg =0

Gia =G+ Grad/2
qtl _ Gmd/2
rec G + Grad/2
8.4.2 Matched Oblique Received Power
The oblique angle matched received power is
Prec = Jrecsinc
Then
h/n fo,, (kh —nm/2
Pree _Mm ) (99)
[Rm (n7/2)? | {(wL + Xing) h}2 + Grad /2] m
A
Fon (A1) = 1.4492227 + (3.8503 — 1.4492227) ﬂ—/;
kh nrm/4 . .
TohGrad = (mr + k'f/z > {Cin (n7 + 2kh) — Cin (nm — 2kh)}
+ Eh _ nm/4 nm {Si (nm 4 2kh) — Si (nm — 2kh)} — 2sin? (n7/2 + kh)
nmw kh
The first resonance uses normal incidence
- 4h/ng
Trec 7 2 2 2
[Rint (7/2)* / {@L + Xowt) B} + Graa/2] (7/2)
nr/2 <kh<(n+1)n/2
16h Gld n /2 2 inc|2
P, ~ (Gia/no) / (m/2) 2770{H !

[Rint {w (C + ACEL) + Braa + Bia} | (WL + Xine) + (G2l + Graa/2 + Gia) |
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. 16k (Gia/no) / (7/2)°
[Rine (7/2)? | (WL + Xint)® + (Gipt + Graa/2 + Gua)|

2770‘Hmc|2

Gld = Rint {w (C + AC;Z?) + Brad + Bld} / (WL + Xint) + (G;Ztsr + Grad/2)
4 (h/no) / (x/2)°
[Rint {w (C + ACIP) + Broa + Bia} | (WL + Xint) + (G + Graa/2)]

4 (h/ng) / (x/2)*
[Rmt (7/2)2 ) (WL + Xint)? + (GItr + Grad /2)]

~
Orec ~

~
~

Oblique Alternate Smooth Form The maximum oblique angle received power is
Prec = JrecSinc

Orec ~ U%qqf‘lec (10)

0o 4G14Grad/2
[Gld + Grad/2 + Rint (WC + Brad + Bld) / (WL + Xint)]2

qrec -
Gld = Grad/2 + Rint (WC + Brad + Bld) / (WL + Xint) ~ Grad/2 + Rznt/Zg

tl Gmd/ 2

Tree = Grad/2 + Rznt/Zg

TghGraq = Cin (4kh) , kh = nw/2

where we intend to use this for general kh, interpreting the result as an interpolation between resonances.

8.4.3 Electric Field Estimates

Balancing the bound on the net power received through the slot aperture into the cavity with the cavity wall
loss can now be used to estimate the cavity field [1]. The net power received can be written as

nc
Prec = UrecS = LTwall

In a general cavity the power absorbed in the cavity walls can be written as [11], [1]

Pwall = Uwallscavfld = RS <|E‘2>S = Rsscav2 <|H]|2>S

where the subscript S of the angular brackets indicates an average over the cavity metallic surface, and each
of the two components of the magnetic field on the wall are denoted by H;. The cavity field power density
Seavfld js [11]

Geavfld — <|E|2>V /Mo = Mo <‘E|2>V = 3no <|Hj|2>v
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where the subscript V' indicates average over the cavity volume and in the general cavity each of the three
volume components is denoted by H;. In the general cavity the component averages at the cavity wall versus

in the cavity volume are related by [1]
H; 2> =2 < it 2>
(1H,%) =2(1H,*)

The wall cross section is [1]

4
Owall = gScavRs/no

From these we can write the mean shielding effectiveness

(SE) = geavsldjgine — <]E/Emc|2>v =3 <|Ej/Ei"c|2>V = <yg/Hi"c\2>V =3 <}Hj/Hmc‘2>V = Orec/Twall
(11)

Extreme values for a component will be estimated as a three-dimensional standing wave (with a factor of
two for the peak to average in each of the three directions)

, ; ; : 8
|Ej/Eznc|r2nax =8 <|EJ/E1nc|2>V _ |Hj/H2nc|12nax =8 <|Hj/Hznc’2>V — go'rec/o-wa” (12)
We can then write the mean wall value of a component as
, X 2
<|En/Elnc|2>S = <|Hj/Hlnc|2>S = garec/awall (13)

The plots below show electric fields on the wall and include a 3 dB increase from the volume field. There
is a question whether we should also include the 3 dB wall enhancement on top of this extreme value in
the volume, even though the wall value is being averaged in two-dimensions. However, there are additional
factor of two increases in expected extreme levels in special cases, as discussed in the next subsection, and
therefore we will include this factor of two in the comparisons below. In addition, we also note that in the
region (generally higher frequencies with more complex cavities in the undermoded region as well as the
overmoded region) where cavity statistics apply, we expect the three standard deviation level to be a factor
of nine above the mean squared component level; furthermore, on the wall we expect another factor of 2 [19].

8.4.4 Cavity Modes

Here we review special choices of indices. If we choose indices such that there is only a single component of
the electric field, then

senttd = (IEF) = (1BP) /no = (IE;F), /mo

2

max

|Ej/Einc| :8<|Ej/EinC|2>v :80rec/0u;all

Rectangular Cavity TE Modes The eigenmode electric field is
0B = (jm/b) ATE cos (nma/a) sin (jry/b) sin (mmz/c)

njm

soEl(/”’j’m) = —(n7/a) AZJEm sin (nmz/a) cos (jmy/b) sin (mmz/c)
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EoEgnjm) =0

and the eigenmode magnetic field is

H{mim) — ;ZAZJ-Em (nm/a) (mz/c)sin (nwx/a) cos (jmy/b) cos (mmz/c)
WnjimHo€O
Hé"’j’m) = ;ZAZJEm (jm/b) (mm/c) cos (nmwa/a) sin (jry/b) cos (mmz/c)
WnjimMHoEO
H{mim) — ;AZJE‘TH (kfmm —m?n?/c?) cos (nwz/a) cos (jmy/b) sin (mrz/c)

WnjimMo€O

If we set n = 0 we only have E,, H, and H,. If we set j = 0 we only have F,, H,, H,. Note that each
component distribution can be written as

|E:|*
<|Ex|2>v

Cylindrical Cavity TM Modes The TM modes in the cylindrical cavity are

= g, cos? (nmx/a) g; sin? (jmy/b) &y, sin® (mmz/c)

E,gp’mm) = Apmandm (jm’pp/a) cos [m (¢ — )] cos (nmz/he)

where the roots of the Bessel function j,, , satisfy

Jm (jm,p) =0

-1 J . nw
E@mn) _ Apmn LT (Gmpp/a) cos [m (o — — sin (nmz/he
9 < sz A P g 00 (7 = ) i /)
e 1 1 . : nmw .
B = s v o) msin o)l 3 s 072/ )
j 1
g pmn) _ tll —A Im (Jm.pp/a) msin [m (¢ — ¢y)] cos (nwz/h¢)
p 2 ~Apmondm Um,p 0 c
k§7m7n — (nm/h)" P
S TWE Jm, .
) = TR (G pfa) cos (5 — )] cos (umz )
p,m,n (’I’L7T/ C)
Hz(p,mm) =0

Note that for n = 0 there is only an E, electric field component with H,, H, components. If m = 0 there
is only the H, component, along with F,, E, components. If both n = 0 = m we only have E, and H,
components. Note that we can write the axial field distribution as

|EZ‘2 _ ng (Jm,pp/a)
<|EZ|2> J2, (jm,p)
1%

where the extreme values of the leading radial factor are discussed later in this report.
The preceding wall cross section for these TM modes with only two magnetic field components is

Em €082 (M) &, cos? (nmz/he)
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R R R
Cwall = — <|ﬂ|2> /<|ﬂ|2> == (6,L27ra2 + 27Tahc) = — (ena/h. + 1) 27ah.
Mo S v Mo Mo
The quality factor is

2

~_—

w:u’O‘/Ca'U <|ﬂ| v k‘/cav _ kpymana’ "o

™ _ _ —
pomn RyS.an <|H|2> Owall ena/he +12R;
T S

The special case n = 0 with E,, H,, and H,,
R

Owall = — Scav
Mo

and

st = (1) /mo

, P P R, 4 4 R,
(SE) = Scavfld/smc _ <’E/Emc|2> _ <|EZ/Emc|2> = Orec/Owall = Orec/ <Scav> = —Orec/ (S’cav>
v v o 3 37,
In the special case where n = 0 we loose one factor of two since the variation in the z direction is then
constant, so the extreme level would be expected to be

inc 2 o inc 2 _ _ & _ § é&
{EZ/E |max =4 <|EZ/E | >V - 4Urec/0wall - 4UT€C/ (770 Scav) =2 |:3U'r‘ec/ <3 o Scav):|

Writing it as the final expression, we see that overall there is a factor of 2 = 3 dB increase over the general
case. Hence we see that these special cases lead to further enhancement of the field extreme.

Cylindrical Cavity TE Modes The TE modes of interest (driven by a slot at the center of the cylindrical
cavity) are odd in z with axial field

HP™ ™ = Ay (i pp/ @) cos [m (¢ = @g)] sin (nz/he)
where the roots of the derivative of the Bessel function j;mp satisfy

T (Gnp) =0

H/gp,m,n) = Kpom,n —1(n7r/hc)2Apvmmj;Z’p J%, (G pp/a) cos [m (v — ¢q)] 2—7: cos (nmwz/he)
HY = (1m Tt 2 Ay (T a) in m (p = @0)] T cos (nr/he)
Elpmn %%m’n_“;gjr L = Ay (T pp/0) sin m (p — )] sin (02 )
Fgmn) _ kgm’n—_ijzjr/hcf A 227, (1 /0) 03 m (o = )]s (/)

We cannot have n = 0 because the field vanishes. If m = 0 we have a symmetric field with H,, H,, and E,,.
If m =0 and p = 1, where jj ; = 0 we have a symmetric field with [, only.
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8.4.5 Oblique Power Sum

Now we summarize results for the case where we estimate the net power into the cavity by using the
combination of the transmitted power through the slot, in addition to the power radiated out of the cavity
and absorbed in the slot walls (the same slot) when driven by an average of plane waves at all angles. This
approach, which is an incoherent power summation and has been used in the past [11], [1], underestimates
the interior field at the lower frequencies. We write

Ptrans = Ploss + Pwall

where the power transmitted through the slot from the exterior is

_ inc
Ptrans - UtransS

with
Otrans ~ J%qqgfﬂans (14)
where the transmission mismatch factor is taken as
2
tl _ 4 (Gmd/z) ~ G%ad

Qirans =

[Graa/2 + Grad/2 + Rint (WO + Braa) / (WL + Xint)”  (Grad + Rint/22)°
The power lost to the slot is

-Ploss = <Uloss> Scavfld

where the cavity power density is

senttd = o (1P ) = 3o (1H, )

The slot loss cross section (slot driven by the interior cavity field, approximated by cross section for average
of plane waves) is taken to be averaged over all angles and polarization

<Jloss> = <Utrans> + <Uabs> (15)

where the average slot transmission cross section is

A1
l
<Jtrans> = q;"ans2ﬂi
and the average slot absorption cross section is
A1
l
(Cabs) = q(tleQEi

with mismatch factor taken as

t 4 (Grad/2) {Rint ((UC + Brad) / (WL + Xint)} — 2GradRint/Zg
abs ~
[Grad + Rint (WC + Brad) / (WL + Xint)]2 (Grad + Rznt/Zg)z

Power balance is then used as

Py, = O'tTansSinc = (<O'loss> + O"wall) Scavfld = Pioss + Puail
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again with cavity wall absorption cross section

4
Owall = gScavRs/no

Then we find the ratio of the interior average field to incident field

<SE> _ Scavfld/sinc _ <{E/Hinc|2>v —3 <|Hj/Hinc|2>V — Utrans/ (<Utrans> + <Uabs> -+ Uwall) (16)

The extreme level is found in the same manner as in the preceding subsection.

8.5 Comparisons Of Power Balance Results And Rigorous Cylindrical Cavity
Solution

Here we compare the various bounding curves with the cylindrical cavity electric field calculations; we note
again that Figure 9 shows five curves illustrating the cylindrical cavity (with cylindrical exterior) versus
normal and oblique bounding curves for the interior wall electric field using (11), (12), and (13). The solid
black curve shows the field when using the normal matched resonant received cross section (7). The dashed
black curve shows the field when using the normal matched received cross section (8). These two results
are similar to one another and appear to bound the cavity field results except for a resonance just above 1
GHz, which is a couple of dB higher (this could be a result of a higher projections on the slot of the short
circuit current drive of the cylinder exterior as mentioned at the end of this subsection). The light blue
curve uses the received oblique cross section (9a); note that approximations used in the derivation of the
light blue curve may not be accurate at the lower frequencies (smaller values of n = 1,2) This is in a sense
the generalization of the normal black curve, but the mode number n < kh changes value in the blue curve
with frequency, whereas it remains fixed at n = 1 in the black curve. The dark blue curve uses received cross
section (10) and is a smoother version of the oblique result.

Figure 10 shows the preceding bounding curves using the normal matched resonant received cross section
(7) (black curve), using the alternate normal matched received cross section (8) (dashed black curve), using
the received oblique cross section (10) (blue curve); the blue curve is near but somewhat below the F, field
peaks but seems to bound the E, peaks (this may have to do with the TM nature of the cavity modes for E.,
versus the general cavity assumption in the power balance). The bounding green curve uses the transmission
cross section (14) along with the average loss cross section (15) in the balance (16) (green curve); notice that
this result fails to bound the cavity results, particularly at the lower frequencies near the first slot resonances.
This is not too surprising since the incoherent sum is not rigorously justified. Figure 11 shows the same
comparison for the cylindrical cavity E, field.

It is important to note that the Thick slot model was used here to generate the cylindrical cavity
results (purple curves) which assumes the slot depth is less than one half wavelength even though the
frequency is taken higher than is valid for the depth dimension; hence it must be assumed that the results at
frequencies above about 10 GHz actually describe a case where depth and width (and slot wall conductivity)
are decreased, maintaining similar reactive (and slot wall loss) terms. If the more general Deep slot model
were used in the setup we would expect more slot resonances at the higher frequencies due to the depth
modes.

The cylindrical cavity model has been setup to handle arbitrary angles of incidence. We should examine
other azimuth angles ¢, of oblique incidence, including normal incidence at the higher frequencies (because
we are on a cylinder there are phase variations of the drive current along the slot even at normal incidence,
which might modify the cross section). We should also examine other co-latitude angles of incidence 6;,
including near grazing along the cylinder, which should lead to larger current drives of the slot even at
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Figure 9: Comparison of interior cylindrical cavity and infinite cylinder exterior to various bounding results.
The curves are the result of matching the slot with a uniformly distributed load for power reception. The
black curve uses the normally incident plane wave matched to maintain a half wave voltage distribution;
the dashed black curve is similar but approximates the ratio of distributed slot impedance to slot plus load
distrbuted admittances by the slot characteristic impedance. The light blue jagged curve uses the preceding
discontinuous form of the oblique incidence bounding result (is in a sense the oblique form of the black
curve normal result); the dark blue curve approximates the ratio of distributed slot impedance to slot plus
load distrbuted admittances by the slot characteristic impedance. The purple curve is the cylindrical cavity
response for F,.
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Figure 10: Comparison of interior cylindrical cavity and infinite cylinder exterior to various bounding results.
The top three curves are the result of matching the slot with a uniformly distributed load for power reception.
The black curve uses the normally incident plane wave matched to maintain a half wave voltage distribution;
the dashed black curve is similar but approximates the ratio of distributed slot impedance to slot plus load
distrbuted admittances by the slot characteristic impedance. The green curve uses an incoherent power sum
of half space cross sections. The purple curve is the cylindrical cavity response for E,.
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Figure 11: Comparison of interior cylindrical cavity and infinite cylinder exterior to various bounding results.
The top three curves are the result of matching the slot with a uniformly distributed load for power reception.
The black curve uses the normally incident plane wave matched to maintain a half wave voltage distribution;
the dashed black curve is similar but approximates the ratio of distributed slot impedance to slot plus load
distrbuted admittances by the slot characteristic impedance. The green curve uses an incoherent power sum
of half space cross sections. The purple curve is the cylindrical cavity response for E,.
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the slot resonance frequencies (which we have referred to as connected to exterior object gain). We can
also include exterior short circuit current drives from the cylinder in the power balance estimates (in the
preceding analysis we used the planar short circuit current drive as an approximation).
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9 SLOT RADIATION ON CYLINDER

Here we examine the slot radiation on the cylinder exterior and compare to the half space assumption. Our
goal here is to use the simple transmission line voltage solution for constant current drive and determine the
radiated power on the cylinder and for the half space. The actual voltage beyond the first resonance will
deviate somewhat from this value due to the variation of the drive current along the slot length. The idea in
this section is to develop corroborating insight into the previous cylindrical versus half space exterior results.

9.1 Exterior Coupling Formulation

Based on the interior TM potentials

1
A@mon) — £0 —Ap mndm (Jm a)msin[m (¢ — cos (nmz/h.
& o (e fh (Jm.pp/a) [m (¢ — ¢p)] cos (nz/he)
Alpmn) — £0 mnjm’p ! (Gm.pp/a)cos m (o — cos (nmz/he
o o , (Jm,pp/a) cos[m (¢ — pg)] cos (nmz/he)

the exterior TM representation is taken to be

Aep = Z/ €0 mATM o) HY (kyp) sin [m (¢ — oTM)] { cos (auz) }da

sin («z)

cos (az
Aep = 32 [ AT (@) B g cosm G~ 5] { o)}
where
k} =k* — o?
Similarly, based on the interior TE potentials

A m,n . .
Afren) = SRR T (G, pp/a) cos [m (9 — o)) sin (nz/he)

w
—1/ (iw) m . . nm
Al = —Apmndm (G ,p/a) sin[m (¢ — — cos (nmz/he
¥ k;%mﬂl o (TL?T/hC)2 p p,m, (] ,pp/ ) [ (90 SDO)} hc ( / )
1/ (iw) Jr . nmw
Alpmn) A m.p g1 (.1 _ nm
ep k;?mm _ (mr/hc)Q pm.n = I (jmmp/a) cos[m (¢ — ¢p)] W cos (nwz/h)

the exterior TE representation is taken to be
_ X TE (1) _ TE sin (az)
@—;AAm@iﬂmeW>%ﬂ{ﬁMM da
. cos (az)
Acp = Z/ ?%;ATE () HY (kip) sin [m (o — ofhF)] { sin (a2) }da

A, = Z/ —ATE ) HY (kyp) cos [m (o — o2 F)] a{ in ((Zj)) }do‘
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These representations along with orthogonality on the p = b exterior cylinder surface in z and ¢ can be used
to expand the field. Matching the tangential electric field on the surface (along with the normal magnetic
field) can be used to find the coefficients AZM (o) and ALF (a). The azimuthal field on the surface for a
narrow slot is taken to be near zero

0 0
0B = —5 Ao+ o

0z
=3 [ AR ) g Gayeos o o= 20 { NG o

=2 /0 2 20ARY (@) HED (k) sin [m (o = 7)) { safes) } -

or setting moLf = meIM 4+ /2

Aezzo

FZATE () BOY (kyb) = % ™20 ATM () HD) (kyb)

kt m m th b m m
The axial electric field is
10
pOp

=2 / T LI AT (0) B () sin [ (0 — 97F)] { cos (z) } do

10
eoE, = ——— (pAecy) + A,
0 pap( ‘P) P

ke p sin (az)
2 / 2 An (a (kZ—p) HLY (Fkup) cos [m (w—wﬁM)}{ e }da
X[ R e G s o= 2 { T e

+Z/o B “Am'" (@) Hy (kup) cos [m (9 = o)) { e }da

sin (az)

-y /O“aoA;Mm)ny(ktmcos[ (o) { Sled) o

sin (az)

Now for a specified slot voltage distribution we take the axial field to be (the slot here is taken to be at
z = 0 since for the infinite length exterior there is nothing to be gained by shifting its position)

E,(byp,z)=—0(2)V (s) = / ATM (o) HD (kyb) cos [m (¢ — EM)] cos (az) da

Noting that the unknown function AZM (a) is not really function of a because of the result

5 () = 1/()oocos(ozz)do¢— lim 1/0Rcos(az)da_313noo{m(zm}_ lim {Swmm}_l%lgnm{z%smc(m)}

R—oo T Tz R—o0 4
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sine (z) = sin ()

J(t) = Xlgnoo [Xsinc (Xt)]

we can then reduce this electric field condition to

1
——V(s) = Y ARMHL) (kib) cos [m (¢ — ¢1,M)]

m

Now if we take the trigonometric slot distribution (for constant drive current density)

V (s) = Vo {cos (ks) — cos (kh)}
then with pZM =0

731/0 {cos (ks) — cos (kh)} = Z ATM WM (kD) cos (myp) , 0< o < h/b
71'

m=0

0= Z ATM WM (kb cos (mep) , h/b< ¢ <

m=0

Then using the integral

sin(m +m')¢]"

T 1 [™ 1 i —m/
/0 cos (m) cos (m’¢) dp = 3 /0 [cos (m —m/) ¢ + cos (m +m') | dp = 5 sm(E;n_ WTZ)) L
=
Em

to invert the Fourier series

1
T

or

1 h/b
lAZ;MHfé) (ktd) = —fVo/ cos (myp) {cos (kby) — cos (kh)} dy
T 0

Em
11 sin ((kb —m)h/b)  sin((kb+m)h/b) 2 .
- _5;\/}) { (kb —m) + bt m) — —sin (mh/b) cos (k:h)}
11 sin (kh — mh/b)  sin(kh +mh/b) 2 .
=5 0{ (b~ m) + Frm) Esm(mh/b)cos (kh)}

(m + ml) 0

h/b h
—fVO/ cos (m) {cos (ks) — cos (kh)} dp = —%/ cos (my) {cos (ks) — cos (kh)} ds = ELAZ:LMHf,P (k+b)
0 0

m

2w

_ —}lVo { sin (kh) cos (mh/b) — cos (kh) sin (mh/b) n sin (kh) cos (mh/b) + cos (kh) sin (mh/b)

(kb —m) (kb+ m)
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kb m

— —%Vo {sin(kzh) cos (mh/b) <k21>2m2) — cos (kh) sin (mh/b) (M) - %Sin (mh/b) cos (kh)}

= —%Vo {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} (k%zkfm?>

ATM (o) HY (k4b) = —%Vg {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} (kazkfm?>
and
ATE (o) HV (k) = k2ak Tl':gm goVo {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} (kaQkEmQ)

The azimuthal magnetic field is then

H, =iwAe, — ——
where the total potential is

_ ATM TE
AELP - Aeap + Aetp

with
™ 3 ~ €0 g™ (1)r
Acp g_:()/() s A M (a) Hy' (kep) cos (mp) cos (az) da
€0V0 . kb
= Z em {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} Tl (myp)
m=0
o (1)1
I{T'l)i(ktp) cos (az) da
0 Hm (ktb) kt
and
ATE Z / 7*ATE () 7(5) (ktp) cos (mep) cos (az) da
_ &V i em {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} __ kb m? cos (my)
w2 (k2bp) " k2b2 — m?2 1

#005 (az)o%ﬂ
o Hy' (kb) ki ke
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We note that for a > k

ke = i (—iky)

Hy' (kip) _ _iK/ (—ikip)
W (k) Ko (—iked)
H (kp) _ Ko (—ikep)
H (kb)  —iK], (—iksb)
and therefore the integrand becomes real and the contribution to the azimuthal magnetic field becomes pure

imaginary (taking Vj to be real). Thus the real contribution to the azimuthal magnetic field, which is the
part required to evaluate the average radiated power, is from the integrand region « < k. Then

Z €m {sin (kh) cos (mh/b) — (kb/m)sin (mh/b) cos (kh)} (&) cos (my)

m=0
B HY (kyb) dov
/0 Im {IM} cos (az) T
Vo~ ) kb )
7r2[;€2(l))2 Z Em {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} (M) m* cos (me)

k (1) 2
Hpy,
/Im # Cos(az)%dﬁ
0 HS (keb) ki ke

Vi
m [ATM (p = p)] = -2

m [ALF (p=1b)] =

or

eoVo

[ATM (p="b)]=- Z €m {sin (kh) cos (mh/b) — (kb/m)sin (mh/b) cos (kh)} % cos (mep)
k20 —m

m=0

/ i [ ) ) U 50— 0 )
0 J2, (kib) + Y2 (kyb) Ly

m

m [Agf (p=10)] = ;(;;2/%2 Z Em {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} (k%zkbmz> m? cos (my)
m=0

/ [{J (keb) 4 1Yo, (ki) } {7, (ked) —iYy, (ktb)}] cos (az)oﬁdﬁ
0 JJ2 (kib) + Y2 (ki) k7 Ky

or

Im [AZ;W (p=10)] = €0V0 Z Em {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} (k‘2b2kfm2> cos (my)

m=0
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/’“ T (kD) Yy, (Keb) — J0, (keb) Yoy (KiD) da
0 JZ (kb) + Y2 (kD) ky

E()Vo = . . kb
m [AZf (p="0)] = RPSIETE ,;ng {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} <l€2b2—mQ> m? cos (m)
k 71 _ / 2
/ Jm (ktb) Ym (ktb) Jm (k‘tb) Ym (ktb) cos (az) %dﬁ
0 Jii (keb) + Y2 (keb) ki ke

or

kb

250% Z €m {sin (kh) cos (mh/b) — (kb/m)sin (mh/b) cos (kh)} <k2bQ—mQ> cos (myp)

m [ATM (p=1b,0,2=0)] =

| s
o i (k) + Y3 (ki) k7

260V
m [AZQDE (pi b:‘PaZ*O 71_3]221;)3 Z sm

{sin (kh) cos (mh/b) (kzbfme) — cos (kh) sin (mh/b) (M) nllsm (mh/b) cos(kh)}m cos (my)

[
o 2 (kib) + Y2 (ki) k7 K7

where we used the Wronskian

2
Wktb

T (kib) Yoy (kb) — Ty (keb) Yom (Kib) =
The transverse wavenumber
k2 =K% — o?
has derivative

dby _ o _ VKK
do kt o kt

and therefore

1 da k 1 ( dOf) dk, j/ 1/\/k2 K dk
J2

T2, (kab) + Y2 (keb) k7 - o J2 (kb) + Y2 (keb) \ dke) k7 )+ Y2 (keb) ke

b/klh%W@W(Mb {ﬁﬂ/lﬁﬂ%fm
0 0

T2 (k) + Y2 (keb) kb k J2 (u)+ Y2 (u) u
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1 o do 1 a? dkt / Vi -k dky
T2 (kb)) + Y2 (k) K2 k2 Sy T2 (k) + Y2 (eb) K2 dkt J72 (Feb) +Y’2 (keb) k3

N/‘E‘i““ﬁ‘i kb /1 —u? kb
_b/ k207 — k2b dktb_ka/ \ / (k0" du
77L

+ Y/2 (kt k3b3 J/Q _|_ Y/Q ( )

and therefore

wIm [AZ (p = b, 9,2 = 0)]

_ 2Vy/ (mn . kb
= _fbo m}:o em {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} (kaZ_mz> cos (my)
/kb L)1 —u?/ (kb)° qu
o Jh(w)+Y3E (W) w
wIm [AZ:pE (P =bp,z= 0)}
2Vo/ (mn)

= Z Em {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} (kzbzkﬁmz) m? cos (my)

m=0
/kb \/1—u2/ kb)? du

J/2 Jr Y/2 ( )

9.2 EMF Method For Radiated Power

Using the Poynting theorem we can write

- 7( E.H%dS
S

h/b
/0 {cos (ks) — cos (kh)} H, (b, ¢, 0) dgp]

P..q = Re = Re [—/ E. (b,p,2) H (b, ¢, 2) bd<pdz]

= QbVO Re

= 2bV0 Re

h/b
/ {cos (ks) — cos (kh)} (iw)" i* Im {Aey, (p = b, p, 2 = 0)} dcp]

0

Pr‘ad = —2wa0

h/b
/0 {cos (ks) — cos (kh)} Im {Ac,, (p = b, 0,2 =0)} d@]

Because this vector potential was set up in the Coulomb gauge, do we need to consider the scalar potential
contribution? Writing the scalar potential contribution as
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Re {/00 /7T Vo {cos (ks) — cos (kh)} a;gndgodz

where from the continuity equation

%Im = Q%V () = iwqm (s)

The magnetic charge is thus in phase quadrature with the voltage. But the magnetic scalar potential is in
phase with the magnetic charge. Hence the scalar potential part has no net radiated power. The scalar
potential may play a role in the induction zone reactive power.

Then continuing with the calculation we need

/b
Vo/O {cos (ks) — cos (kh)} cos (me) dp =

=V {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} <kzb2kbm2>

where

Praa = {IVol* / (27m0) } % 3 €2, {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)}? (;@J%)

m=0

kb 1/7/1 = u2/ (kb)* gy
/0 T3 (W) + Y2 (u) w

+{|V\2/(2 LS 2 {sin (kh h/b) — (kb in (mh/b k)2 kN
0 7”/0)} ) Zémm {sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} ETE

m=1
/kb \/1—u2/ (kb)? du

J/2 Y/Z ( )

Now for small argument

4
JZ(u) +YE (u) ~ 1+ = In? (ue”/2)
T
where v & 0.5772 is Euler’s constant. Then taking A << 1 and A << kb

/’“’ 11 —u?/(k 1 du /’“b 1/\/1—u?/ (kb)” 4
0

U
72 (u )+Y02 1+ 5P (wer/2) u  Ja B +Yg W u

Ac/2 1 du  [F 11— 2/ (kb)? gy
~ — = -+ —
/0 1+ 4% (u) u /A Jg (u) + Y3 (u) u

/°° dv /kb 1/4/1—u?/ (kb)* gy
P + -
—@/mmaery2) L2 A J5 (W) Y (u) u
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~
~

2 L o du
J A g
arctan{—(2/m) In(Ae7/2)} ) + YO ( ) u

2 x . kb 1)1 — u?/ (kb)” gy
~ o+ g arctan {(2/m) In (Ae?/2)} + /A T3 (u)+YF (u) u

where tan (§) = v = —2In(u) and dv = —2du/u. Finally we can allow A — kb

T
2

Ro1/4/1—u?/ (kb)Q duv 7w 7w y
/0 FIOES IO =7 + 5 arctan {(2/7) In (Ae? /2)}

+/A y1 -/ (k) 1 du+/kb 1/y/1—u?/ (kD) du
o JE (u) + YE (u) 1+ % 1In® (uev/2) | u A S +YF (W) u

2 (u) ~ {(u/2)™ /ml}  m>1, u<<m

In addition

Y2 (u) ~ {—jr(m—l)!(z/u)m}2 ,m>1, u<<m

s~ {32 -} mzt u<em

2
1 ,
Y2 (u) ~ {2m! (2/u)m+1} ,m>1, u<<m
7r

and for A << m > 1 and assuming A << kb
kb 1/4/1— w2/ (kb)? gy x P ey [V )
/o T2 () + Y2 (W) u {2m(m—1>!}/o B “+/A T2 (u) + Y2 (w) u

m [ wAMN\Z R 11— a2/ (kD) gy
“z(zmm!) +/A T2 (@) + Y2 (u) w

m

/kb \/1—u2/ kb duz( T )2/ 2m—14, +/kb \/1_u2/ kb du

JIQ Y/Q( ) Qmml J/Q Y/Q( )

m m m

1 <7rAm> /kb V1 —u?/ (kb)? du

2m \ 2™m/! J2 (u) + Y2 (u) u?

Finally we can allow A — kb

Ro1/A/1—u?/ (kD) qu =2 & N kb | 1/4/1 — w2/ (kb) 1 du
A Jg (u) +Y02 (u) o = Z+§ arctan{(Q/W) In (kbe /2)}4"/0 { Jg (u)+Y02 (u) - 1+ %1112 (ueﬂ{/Q) } u
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S A GO TS €3 Sl VAV A e A e M A S S
|, Harvar s <3 ) {Jm)m%(u) () 2o

/kbmdugl{kb)} _‘_/Okb{?zjjalu2/(kb)2)_<2m(ﬂj_1)!>2u2m}?,m21

J2 Y2 (u) ud 2mm) 2 (u)+ Y2 (u

We not only improve convergence with these subtractions, but we also see for large values of m that the
convergence of the Fourier series are powers of kb times inverse m factorials squared. Putting this together
gives

P_{|V22 LIS in (kh h/b) — (kb in (mh/b kthz
rad = 1 Vol /(Wno)}ﬂgzsm{sm( ) cos (mh/b) — (kb/m)sin (mh/b) cos (kh)}" | tp5—3

m=0
kb 1/4/1—u?/ (K kb \/1— 2/ (kb)? du
/0 S5 (u )+Y3L / T2 () + Y2 (u)

Separating out the m = 0 term

Prog = {|VO| / (2m14) } s {sm(kh) (kb) — cos (kh)];}2

VI . Ro [ 1/4/1— u2/(l<:b)2 1 du
[4 + 5 arctan {(2/7) In (kbe™/2)} +/0 { IO ESZ O s 2 (e /2) } u]

oo

+{Iwf/ (2 5 S 9 {sin (kh ) — (k) s G 8) cos (2 (K0
O/ (2mmo) } 5 S 2 {sin (kh) cos (mh/b) — (kb/m) sin (mh /) cos (k1)) ( g

m=1

2mm| J2()+Y2() u2J’2 )+ Y2 (u) u

lm{w(kb)m}2+/0kb{1/ L=/ (k) 21—/ (kb)? (2m( _1)>2}du]

Note that

In (M)Q —In <2m7rlf‘()>2 2mIn (Qm) +2m — In(27) + In (m) + 21n (r)

~(2m-1)In (2m) +1n (mu/4) + 2m

Note that
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lim [{sin (kh) cos (mh/b) — (kb/m) sin (mh/b) cos (kh)} <k:2bjﬁm2)}

kb—m

— lim {Sin (kh) cos (fkh) — (kb/m) sin (7kh) cos (kh) } (b)

kb—m k2b2 — m?

. . . (m m m m . /m
=3 k};linm {f sin (kh) sin (%kh) th + (1/m) cos (@kh> %kzhcos (kh) — (1/m) sin (%k}h) cos (kh)}

= ﬁ {khcos® (kh) — kh sin? (kh) — sin (kh) cos (kh)} = ﬁ {2kh cos (2kh) — sin (2kh)}

We wish to compare these results with (the one half is introduced to obtain the half space value) [9], [9]

1
Prad = ihGradDU |Vv0|2
Doy =1+ cos (kh) {2 cos (kh) — 3sin (kh) / (kh)}

7h1oGraaDo = Cin (4kh) + 4 Si (2kh) cos (kh) {kh cos (kh) — sin (kh)} — sin? (2kh)

or

Prqa = [Cin (4kh) + 4Si (2kh) cos (kh) {kh cos (kh) — sin (kh)} — sin® (2kh)] [Vo|? / (27n,)

Figures 12, 13, 14 show a comparison of the power radiated on a cylinder versus the half space radiation
for a collection of cylinder radii. We see that in this frequency range the cylinder radiates somewhat more
for a fixed voltage amplitude. As the slot length to cylinder radius shrinks, the result approaches the half
space result (black curve). The discrepancy between the half space (black curve) and the £ = 5.5 inch slot
(green curve) near the first slot resonance kh ~ 7/2 appears to be larger here than the discrepancies in the
previous section slot voltage and field comparisons. However, slot losses in the previous section, which are
the same in both the exterior cylinder and exterior half space approximation, tend to reduce the differences
in the peak heights.

The following sections present approximate results for the slot penetration at low frequencies and then
near the first slot resonance using the exterior half space approximation, in addition to simplifying the
interior by including single resonant modes.
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Figure 12: Comparison of radiated power on a cylinder versus the half space radiation for the smaller range
of frequencies.
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Figure 13: Comparison of radiated power on a cylinder versus the half space radiation.
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Figure 14: Comparison of radiated power on a cylinder versus the half space radiation on a logarithmic scale.
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10 ELECTRICALLY SMALL SLOT LENGTHS

We examine a finite length cylindrical cavity driven by an electrically short narrow azimuthal slot. Because
this slot aperture is operating below its resonant frequency we can approximate the slot voltage solution by
its low frequency inductive form. We take the exterior to be an infinite cylinder in the z direction, although
if desired the exterior drive current density can be replaced by the current on a finite length cylinder. The
approach taken here is similar to that found in [1] for a rectangular cavity.

10.1 Single Slot Source

Consider the modes of a cylindrical cavity driven by a single circumferential slot. The slot is assumed to
operate at low frequency with magnetic currents

IE(s)=I5(0)(1-s*/h?) , —h<s<h

where the arc length is

and center magnetic current

Ii

m

and distribution
IE (s) = I£(0) (1 — s*/h?) = £2V4 (s) = £2V4 (0) (1 — s?/h?) , —h<s<h
where the plus side is the interior cavity side and the minus side is the exterior side
L (0) = I, (0) = —2V_ (0) = 2V (0)

where for w,d << ¢ = 2h the two sides become approximately equal V (s) =~ V_ (s) = V (s). First we
ignore interior loading of the slots and also ignore the wall losses and write [9]

Vi (0) = V_ (0) = V (0) = —iwLy I (0)

where the positive reference for the voltage will be taken on the negative z side of the slot and the slot
inductance in this case is

2
o (h/2) /Lgy = djw + - {In (16h/w) — 7/3}
The short circuit current at the slot center is (where p = b is the exterior radius)

IN (O) = —hK;C (O, Zo) = —hH[;C (b, 0, Zo)

where K3 is the exterior short circuit current density with short circuit field HZ°, and the center magnetic
current is

In (0) = =2V (0) &~ —2V; (0) = i2wLy Iy (0) = —i2wLyhK 5 (0, 20)

where the short circuit current on the infinite cylinder is
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ik . emi™ | cos(np;)cose,  msin (mp;)cosb; sin e
K3°(0,20) = —2Hoe™ =% >~ £ .

= mhob | HYY (k,,b) kp bHS" (K, b)
k,, = ksin0;
The potential is then

oo 0 0

Ap =3 323 [AROm 4 ATEO )

n=0p=1m=0
The projection on the TM modes is then

AZé\/I(p,m,n) = £0 )J,'n (Gm.pp/a) [ATM cos (myp) + + BTM in (mgo)] cos (nmz/h.)

(j'rn7p/a/ L pomm

€ .
o~ ﬁﬂn (Gm.pp/a) Ag% n €os (my) cos (nmz/he)
m.,p

.m hc h
K2+ Wl (1+0) JQEAL — 2 AT = e D2l DO B [ o 1t ) v (') s
’ Vcava—l (]m,p) —h

EmEn (Jm p/ ) 4
~ — 2 _cos(nmzo/h 0 —h
‘/cav‘]’m 1 (.777L,p) ( 0/ ) ( ) 3

. h
(&% + kkp o (L414) /QIM  — k2 ] BN =ce, Unm.p/a) cos (2o, he) / sin (ms'/a) V. (s') ds’
—h

p,m,n p,m,n p,m,n Vcaqufl (jm,p)
kf)mn (nﬂ—/h’C)Q = j’?n,p/a‘2

TM kpmma o

p,m,n T ena/he +1 QRgZLm,n)

The projection on the TE modes is then

-1/ (iw) m nw
TE(p,m,n) __ TE TE 3
Aecp (e ) - k'p2m - (’Rﬂ'/h ) ‘] (Jm pp/a) [ D,M,M sin (m<p) + Bp,m,n Cos (mW)] h7c COs (n?TZ/hC)
-1/ (iw) m 5 nm
R J a n, €OS (mp) — cos (nwz/h
ER——T (Jmpp/a) By (mep) 5~ cos (nmz/he)

(K2 + kK, o (L49) Qo = K] A

2man cos (nwzo/he) €m/ (—iwig) h sin (ms’ /a) Vs (s ds’
e 07 () o ) Ly )

2 . 2 TE
[k +l€]€;)mn(1+’t)/ pmn k;;mn]Bpmn
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2man cos (nmzo/he) €m/ (—iwig) " ms' Ja) Vo (s ds’
(Jmp)/ cos (ms'[a) Vi (')

" Veawhea (ko /) (1=m2/52,) 7 -
N 2man cos (mrzo/h )em/ (—iwpg) 4

~ +
Vcavhca (k;),m,n/k) (]‘ - ’I’)’L2/_] ) (]m p) 3

2
k;rmn (nﬂ—/hc) - Jm,p/a’

TE (1_ 2/3.12 ) 1’3 o

m,n . m,naﬁ
P2 ola? 42 (afhe) (nm/he)? (L= m2 /52 ) + (nrfhe)® m2 g2 P o R

where we can define

2 (" 2 " 2 4
mi, = 22| cos(ms'Ja) Vi (s) ds' ~ — Vi (') ds' ~ —ZhV, (0)
Who J—n Wity J—p, W 3
L2 [h , N oo
ml, = — sin (ms'/a) Vi (s') ds
2 [ s/ v )

The axial component of the electric field is

110 10 M M
Ez = —— Ae *714@ = E AT 5 BT 51 Jm .nL > h’C
€o LP 3P (p LP) 1% 880 p:| [ D, MM COS (m<)0) + p,m,n s (mgp)] ('7 ’pp/a) cos (TL?TZ/ )

p,m,n

Z Ap m,n COS m@) JIm (j’m,pp/a) CcOos (nwz/hc)

p,m,n

but near a resonance we can take a single term

B, ~ AT I (jmpp/a) cos (me) cos (nz/he.)

p,M,M
with
] 4
Ay~ - Emen (Jm.p/0) cos (nmzo/he) Vi (0) =h
P It (Gmp) K2+ kkpmn (1+1) /QTM — k2, ] ¢T3
Veaw = ma>h,
gives
emen/ Veav 4, (Gmp/a) Jm (Gm.pp/a)
E Vi (0) =h-22 : ; h ; h
T Ry (L +0) /QTN . —R2 +(0) 3 Tt G cos (mep) cos (nzo/he) cos (nz/he)

The slot dipole moment is

1 [h 1 (/o h 1"
mi =20l HE = [ st = ( I;)sds. 15+ 1 )= [ 1) ds
Ho J—h iwp J_p, \Os Wk Wity J —p



. h
= It (s)ds = —/ Vi (s)ds
Who Who

where we used the continuity equation

0
+ _ gt
aﬁ I m = Wl

Therefore at low frequencies

9 h 0 h 12 4
mf=—"" | Vi(s)ds~—V, (0)/ (1—s2/h%) ds = —V, (0) =h

Who J—h Wit —h Whtq 3
2 4
= WL hKE (0, 20) = h
Wty 3
h 4 03
at = —leth he plpdy o T o
’ o o 2 3 12Q, ’

which is the polarizability of the slot in a half space [17], [9]; in other words at low frequencies the slot
dipole moment and voltage becomes the same as that of a slot in a half space (the cavity loading for typical
values of cavity quality factor is insufficient to change the slot response). The axial electric field in this low
frequency case is thus

~ inOKSC (O ZO) EméEn ( gn ss/‘/cav) (Jm,p/a) (Jm,pp/
R A kkp (L+1) QM — K2, Jm—1 (Jm.p)

cos (my) cos (nmzg/he) cos (nmz/h.)

10.2 Electrically Small Slot In Rectangular Cavity

It is interesting to compare the axial electric field in the cylindrical cavity with the field in the rectangular
cavity. In the rectangular cavity the interior TE potential, in the Lorentz gauge, with respect to the slot
length direction z is [1]

A, ~ Vizv . k:kn(i 23(61 +/ ));g%)l;jn e cos (nm/2) cos (nwx/a) cos (jwy/b) sin (mm/2) sin (mmz/c)
€0 EnEJEmWJM()O‘m zzKac (0 20)

Vcav k2 4 kknjom (L+14) /QEE . — k2 5 cos (nm/2) cos (nmz/a) cos (jmy/b) sin (mm/2) sin (mwz/c)

€0 EnEjEmiwiyal, zsz (0, z0)

Vcav k2 4 kknjom (1419) /QEE . — K2 5 cos (nm/2) cos (nmz/a) cos (jmy/b) sin (mm/2) sin (mwz/c)

Veaw = abe
field is TE with respect to z with, for example the field in the direction of the slot width, is
10
Ew s I =~ 7.
@0 =~
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_i('d:u’O*Kv;c (07 20) gngjf;‘m (agl,zz/‘/ca’u)
k2 + kkn,jnn (1 + l) /Qz:f,m - krzmgm

(jm/b) cos (nm/2) cos (nmwa/a) sin (jry/b) sin (mn/2) sin (mmz/c)

ngm = \/(n7/)? + (j/6)? + (m /)

2 2 2 2 2 2 2
(m/c)? (n/a)?* + (m/e)” (i/8)* + {(n/a)* + (3 /)" }

e _ 1 <770) Knim S
h 2 \ K (5/b+2/c) (m/e)* (n/a)* + (en/a +2/c) (m/c)* (j/b)* + (en/a + £;/b) {(”/a)2 + (j/b)Q}

N (1+ 2 ) ch,kno
en€j ) 2RsScav
Noting that the wavenumbers normal to the slot are k, = j,,/a in the cylindrical case and —ejk, =

—jm/ (b/e;) in the rectangular case (where b/2 is the half y dimension of the rectangular cavity similar to
radius a of the cylindrical cavity), we see that these fields are essentially the same with sin (j7y/b) replaced

by Jm (jm,pp/a) /J;n (]m,p)
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11 HALF SPACE APPROXIMATION & RESONANT SLOTS

In this section we take the slots to be operating in the range of, or below, their first resonant frequencies but
we take into account exterior radiation. We assume in this section that we can approximate the radiation
characteristics of the slot, as well as other local characteristics, by those of a half space; since this section is
approximate we usually only include the nearest resonant interior cavity mode in the formulation.

11.1 Continuity And Approximate Integro-differential Equation

If the slot length is similar to the depth and/or the depth is similar to the wavelength (the “Deep” case), we
must use the transfer relations of the slot fields [10] in order to set up the integro-differential equations for the
slot-cavity problem. Instead, here we will restrict attention to the “Thick” case where the slot length is much
larger than the slot depth and width ¢ >> d,w, where we can directly enforce continuity of the azimuthal
magnetic field from exterior to interior to set up the integro-differential equation [1] for the magnetic current
or voltage

IE (s) = £2V4 (s) = £2V (s)
where we often use the incident side notation I, (s) = I, (s) = —2V (s) = —2V_ (s). We are not only
assuming the slot length is much larger than the slot depth and width, but also that the slot length is small
compared to the cylinder half perimeter ¢ << mwa. To enforce approximate continuity of the magnetic field

across the slot we write [1]

— 1 o — — sc m,n
HZ (ag,,s) + 3 (AYLWIm - AYCIm> + HE (b =s/b,z0) ~ H (al,,s) + HP™™ (a,¢ = s/a, 2)

where again a is the interior cavity radius and b is the exterior cylinder radius, HZ (ae_q, s) is the exterior
magnetic field generated by the slot magnetic current evaluated near the slot, H° (b, = s/b,z0) is the
exterior short circuit magnetic field evaluated at the slot, HZ (a;“q, s) is the local interior magnetic field near

the slot, and prp’m’") (a,p = s/a, zo) is the magnetic field of the nearest interior resonant mode at the slot.
The approximate total exterior magnetic azimuthal field is on the left side (plus the terms AY;, and AYe
accounting for additional slot properties of interior wall losses and gaskets, if present) and the approximate
total interior azimuthal magnetic field is on the right side.

On the slot exterior we take the magnetic field to be approximately the filament contribution on a half
space (the minus sign superscript on the equivalent radius indicates that it is the exterior field half space
contribution) [9]

ds'

. 2 h ik«/azq+(s—s/)2
)= (8 +k2)/ I (s') -

- (2 -
Wiy \ 05 ~h 47r\/m

with equivalent slot radius [9]

2w
Qeq ~ /v g w/3
e
plus the short circuit azimuthal magnetic field of the cylinder, and short circuit axial current density are

ch (410 = S/ba ZO) =
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H;C(b,ap:s/b,zo):2Hoeikzi20 Z Emr ™ _Cos( m’ (il/)b—gol))cosapp m' sin (m” (S/bl—)l%))COSHiSiﬂtpp
wiro Thpb ) (k. b) ko bH'L) (K, b)

m'’

On the interior cavity in this section we use the Coulomb gauge form of the field along with the local
approximation of the half space. From the continuity equation

applied to the slot
+ .-
a ITVL qu'fﬂ

where ¢ (s) is the magnetic charge per unit length and I (s) is the slot magnetic current. Then from

H= -V, +iwA,

we have the azimuthal component

0 )
%qu + 1wAes

From the free space (or half space) solution of the Poisson equation

H,=—

V26, = =P/ Ho
or
- 1 Pm (f) /
=5 ahe

and we can write

h _ 1 h
¢m (p()’s)_i 2 W 288/ m
Ho *h47n/p+5—s Ho J=h gy [ p2 + (s

/

h
1 Ih (s I 1 1 " Ih (s
= - m () e / I (s’)% ds' = - g/ m () ds’'
WWHo | 4y [ p2 + (s — 8)? N Who Sam\ /R + (s — ') WWHo 95 J=h gy [ 2 4 (s — 8)*

where we have integrated by parts and used I;X (+h) = 0. The distance from the slot line source, we evaluate
at the slot equivalent radius p, — acq. In principle, the magnetic scalar potential expansion in the cavity

oo o0 oo

(p,m,n ]- EnEmCOS nﬂ'Zo/h )
Z Z Z p@mn) = o (‘33 ‘/Lu,v Z Z Z ey cos (nmz/h)

n=0 p=1m=0 n=0p=1m=0 pmn

h

h
[cos (ms/a) /41 V4 (s") cos (ms' /a) ds’ + sin (ms/a) / V. (s") sin (ms'/a) ds'
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should be used to evaluate the scalar potential. However, we can accelerate the convergence of this cavity
modal form ¢,,, by subtracting the modal form of the preceding half space representation ¢Zl(p myn) term-by-
term, and then add back the integral form of the half space representation ¢!, (the integral form ¢” and
the modal expansion of the integral form qu cancel, leaving the cavity potential expansion ¢,,). In this
section, we can obtain the approximate Coulomb gauge scalar potential near the slot ¢,, by simply using the
preceding half space approximation for the magnetic scalar potential (;521, and neglecting the series difference
terms

oo o0 oo

= ¢£Ln + Z Z Z |:¢%1z,m,n) - h(p,'rrL rL):| Qbh

n=0p=1m=0

In the region of separated modes, the modal solution for the electric vector potential usually has a term
near resonance plus the remainder of the modal series. We intend to approximate this remainder as a local
contribution, which we take to be the half space form [1]

h
I+ (s
AZS (p07 S) ~ 80/ o (5 ) 2d3/
A/ pg + (s —§')

Thus similar to the preceding scalar potential approach we expand the half space form in modes
and write the total electric vector potential near the slot as

Ah(p,m ,n)

oo (o) o0
h TM(p,m,n TE(p,m,n h(p,m,n ~ AR TM(p,m,n TE(p,m,n h(p,m,n
Ay = A€S+ZZ Z [Aw (» )+Aew (pomon) _ AP )} ~ Aes+|:Ae<p » )+Ae<p (pym) _ gh(psm.n)

n=0 p=1 m=0

where the final approximation retains the nearest resonant mode term. Adding the half-space scalar potential
contribution ¢ for the interior to this local quasi-static electric vector potential contribution A", gives the
local field

> + . h a h 1 ,)
HY (0 8) iAo, = 5o0m = — 100 —h 4 \/2—
T\ Q

The total interior azimuthal magnetic field at the wall near the slot can then be written as

® 8@

1 m=0

H = ies = by H? (0 8) 0 305" 3[40 4 aTE0m) i)
n=0p=

iwso

with the nearest resonant term

s e [AT ) ATE @) _ b

AeTéVI(p,mm) + AeTf(p,m,n) _ Agép,mm) = — (em&nco/Veav)

1
{k2+kkpmn(1+z)/ p,mn_kzm,n}
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. (nm/he)® m? /2, . 1
k;;z%mn {k2 + kk;:;,m,n (1 =+ Z) /Qggn,n - k;)%m,n} (1 - mQ/J;rzL,p) k;?,m,n (1 - mz/jﬁ,p)

h

cos (nmzg/he) cos (nwz/h.) [cos (ms/a) »

h
V. (s") cos (ms'/a) ds’ + sin (ms/a) / V, (s')sin (ms'/a) ds']
—h
where the TM contributions have

. 2
k;m,n = wi,m,nﬂogo = (]n;,p) + (nﬂ—/hC)2

TM kpmma o

p,m,n Ena/hc 41 2Rgp7m,n)

Voo = hera?

and the TE contributions have

. 2
Im, 2
kﬁm,n = W;Z,mm,uofo = < n;p> + (nﬂ-/hc)

TE (1 - mQ/ijsz,p) 3 Mo

P T+ 2 (afhe) (e (1= m2J2,) + (e iy P 2R
m,p c c m,p c m,p S

The first two terms in brackets of the electric vector potential are the TM and TE modal contributions. The

third term is a local approximation of minus the quasistatic form of the electric vector potential (using the
preceding cavity expansion of the magnetic scalar potential as a guide for A.';E,” man) ), included to approxi-

mately remove the local contribution already included as part of A%, (ajq, s). Note that the bracketed form

in the preceding expression can be written for k, ,, , dominant over k as

1 1 (=g ,/a?) ( 1 ) 1 1
- + ’ 1- | - oy T+ . s kepmon >>k
Kmn  Kpma FpnaKpmnn L=m?/jip ) bgmn U=m2 /32 ,) ki (L=m2/i ) |

from which we see that the convergence is improved by including the final quasistatic term (note that the
first two terms nearly cancel for large mode numbers). In terms of the interior field this can be written

H; (a7 2 ZO) ~ H> (a:q? S) + Hggap’m#n) (CL, Y= S/a7 ZO)

S

with the field taken as the sum of TM and TE contributions
Hép,m,n) — HgM(nm,n) + HgE(p:m’n) —iw {Azy(p,m,n) + AeTf(p,m’n) _ Agép’m’n)} = — (emen/Veaw) k>

1
{k2 + kkpvm’n (1 + 7’) /Q;%,n - k’%,m,n}
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N (n7/he) m? /2, N 1
k;;z%mn {k2 + kk;:;,m,n (1 + Z)/ ggrz,n - k;)%m,n} (1 - mQ/J;rzL,p) k2 (1 - mz/j/Q )

p,m,n m,p

cos? (nmzo/he) % [mf, cos (ms/a) + m}, sin (ms/a)]

and
ml, = 2 [ cos (ms'/a) Vy (s')ds’
Who J—h
ml, = 2 " sin (ms’/a) Vy (s') ds’
wu(] —h

11.2 Transmission Line Approximation

Using a leading order Hallen-type approximate form for the local integrals (half space approximations near
the slot)

~ ds
- i+ (5= o)’ - i+ (s — )’

h / h iky/a2,+(s—s")?
| e = i~ [ ) ’

where

Qe =2In(2h/aey) + Ce

and if we choose to preserve the low frequency dipole moment of the slot we take

C.=2(n2-7/3)

Making use of the leading Hallen approximations we can write the matching equation as

L( + k? %I—(s)+1 AYa—ZI‘—AYI‘ + K¢ (p = s/b, 20)
Wity \ Os? A= ™ 2 Los2'm @im 2 W s

7 0? 2\ Qe 4 (pmm)
:r/io @‘f’k EI"L(S)+H‘P7 ’ (a’(pzs/a’zo)

or with I, = I,,,

1 1 62 N sc m,n
3 | (S + AL s — (iweaf/m + AYE)| 1 (5) = ~K2° (p = s/by ) HE ™ (avip = 5/, 20)

Then we define the transmission line impedance per unit length Z by means of
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=AY+ ——
7 )

where the inductance per unit length is
L = pugm/Q.
and if wall losses are present we include

2Zs/d
iw (pow/d) (2Zs/d — iwpgw/d)

AY, = Y™ = Gint _ jBint & , d>>w

where we can write

. (wL)? Yint ) 2 int
and
. ) 274/d
Gt — (B 7/2 , 2R, << wpgw or P ccw
(wpow/d) Ho

where

Zs=(1—1) R

R; =1/ (09)
6 =+/2/(wpo)

and the admittance per unit length Y by

Y = AYC —wC

where the capacitance per unit length is

C = 5096/’/T
and if no gasket is present the extra term vanishes
AYe =0, no gasket

To include radiation we add the perturbation of the radiation admittance per unit length Y,.,4 to the admit-
tance per unit length

Y =Y +Yraa

where

Y;“ad = Grad - Z‘Brad

This can be evaluated for the full space approximation by means of
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T Wiy J_p 0s?

h . h 2
Veaa [ V)P ds=-2-1 [ v(s) (‘9 T k)
—h

h
V(s){—Ce+ln(1—52/h2)}+/

For a single half space (the slot exterior) we set

Y—-Y+ Y;ﬂad/2
and the one half is inserted because Y,..q4 is defined here to include two half spaces; we can also use

Y — Y + G’r‘ad/2 - iBrad

to include reactive power on both sides of the slot but radiation damping only on the exterior (this is a good
choice here since we are not including terms of the interior representation other than the resonant term).

The transmission line equation with I, = —2V then becomes
1[1 02 , e (p.mm)
217952 (Y + Graa/2 = iBrad) | Im (s) = —K:“ (¢ = S/b7 %) + H@ Y (G,QP = 3/0720)
or
1 62 . se (i)
A rk (Y + Graa/2 = iBraa) | V (s) = K (p = s/b,20) — H"™"™ (a, = s/a, z)
or

2 2
SV =2+ Graaf2 = iBraa)V (9) = 5 4 T2 )V (6) = 2K (0 = b 20)- ZHE ™ (.0 = s/a )
S S

where

D=T'+il""=\/=Z(Y + Graa/2 — iBraq) ot /=Z (Y + Yy4q/2) or \/=Z (Y + Yyaa) or V—ZY
The homogeneous solutions are
Vi = agcos (T's) + ay sin (T's)
where the resonant modes on the right hand side involve the sum of

Hép,m,n) — HE;M(p’m,n) + HgE(p,m,n) = iw [Ag\/f(p’m,n) + AZ”f(p,m,n) _ AZ;’””’”)]

1
= —iw<€0 (gmgn/‘/cav) B
{kQ + kk%m," (1 + Z) / g%,n - k;%,m,n}
2 .
N (n/he)”m? /52 N 1
Ko (B2 + kR (L4 0) JQE T = B} (L= m2 /32 0) K (L=m/313 )
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h

h
cos® (nmzo/he) [cos (ms/a) /41 V. (s") cos (ms'/a) ds’ + sin (ms/a) / V. (s")sin (ms'/a) ds’]

and the short circuit current density is

K2 (¢ = s/b, 20) = 2Hpe™=:%0 )
m/'=0

eqni™ | cos {m” (s/b — ;) fcos, m"sin{m” (s/b— L,OZ)} cos 0 sin p,,
kb H) (k,,b) kp bH L) (K, b)

m’ ’

The solution will have the form of the homogeneous solutions plus the particular solutions driven by the
right hand side

V(s) = Vi (s) + Vp (s) = ag cos (I's) + aq sin (I's)
bm COos Cm/ cos "
T g sin M9/ Z T im0 (/0= 0}
= ag cos (I's) + ay sin (I's)

1
{k2 + kkp m,n (1 + Z) /me n kp%,m,n}

. ()" |
k;?,mn {k2+kk]/amn(l+z)/ pmn _k/Qm n} (1 _m2/Jm,p) kgmn (1 _m2/]m,p)

weoZ (Emen/Veav)
T2 — m2/q?

cos? (nmzg/he)

h h
cos (ms/a) /41 V (s) cos (ms'/a) ds’ + sin (ms/a) /41 V (') sin (ms'/a) ds’]

27 Hyehi ad Emri™ ~cos{m" (s/b—¢;)}cosp, N m/" sin {m” (s/b— @;)} cos 0; sinp,
oo Tk, b (12 —m2 /) H) (k,,b) kp bHL (K, b)

The homogeneous coefficients are determined to make V' (+£h) = 0. However this voltage must be substituted
into the integrals to determine the normalization of these terms from H(p ) (a, = s/a, zp). This result
is fairly complicated and we are also required to evaluate the radiation admlttance Y, .q- In the subsections
below we simplify this in several ways near the first slot resonance.

If we wanted to go to higher frequencies we could in principle substitute the form

V(s) =V (s)+ Vp(s) =agcos(I's) + aq sin (T's)

oS Cm cos "
SIS e m2/a2 sin (75/0) +ZF27//2/1,2 sin 1M (s/b =)}

m m!’
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to account for the effect of the multiple resonant modes on the distributions of voltage. However, because of
the series form of the short circuit current drive in addition now to the series contributions of the response
to the resonant modes, this is not really any simpler than the previous Fourier basis. In addition at higher
frequencies there may develop some near dependency between terms over the slot interval, possibly resulting
in some conditioning issues. If this approach is pursued the same Galerkin setup as in the previous Fourier
basis would be used for the radiation term.

11.3 Example Below Or Near First Slot Resonance

The preceding form of the solution involves an infinite series resulting from the short circuit current drive.
To simplify the solution in this section we use our shorter slot length h/a << 7/2, and consider expanding
the drives in their first two terms

K (¢ = 5/b << 1,2)

~ 2Hye'*=i%0

X g im [_ {cos (my;) + (ms/b) sin (my;)} cos ¢, N m {(ms/b) cos (mep;) — sin (my;)} cos f; sin @,

m=0 ka’ib HT(nl) (kpi b) km bHr(rpl (km b)

ik N Emi™ | cos (mp;) cosp,  msin(my;)cosb;sinp,
~ —2Hye'"#i*° Z

— Wkplb H?S%) (kmb) k‘pleT("})l (kﬂz b)

Tk, b -

0 gk 20 i nemi™ | sin (mep;) cos,  mcos (mp;) cos d;sin @,
_ oetk=i

m=0
= K+ sKi°

and

1
{k2 + kkp,mm (1 + Z) / Z;Jn\i{,n - k}%,m,n}

Hg”"’") (a,0=s/a << 1,20) = —iweg (EmEn/Vear)

. (nm/he)* m? /2, N 1
k‘;JQ,m,n {kQ + kk‘l;:),m,n (1 + Z) / ;%,n - kgm,n} (1 - m2/j4721,p) k;?,m,n (1 - m2/j;72z,p)

cos? (nmzg/he)

h h
/ Vi (s')ds' + s (m/a)? / Vi (s) s’ds']
h —h

_ Hép,nL,n) +SH£p,7n,n)

We can write these as

k2 1
H(p7m7n) = —— (emen/Veaw 2 he N
=y e Vo) o o e | G O )
. (n/he)* m* /2, N 1
k;?,mn {kZ + kk;,m,n (1 + Z) / ;,%‘1,71 - k;)%m,n} (1 - m2/j4727,,p) kﬁm,n (1 - m2/j;727,,p)
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where the slot magnetic dipole moment is

0 h
ml = = Vi (s')ds’
Who J—h
and as
k2 !

H(p,m,n) = —— (emen/Veaw cos” (n7z he "

{ 7 (Emen/ Vean) cos™ (nmzo/he) Qoo |\ ey O 2,

. (nm/he)’ m? /32, N !
kgm,n {kQ + kk;i),m,n (1 + 7’) / zj;,gz,n - k;)%m,n} (1 - mQ/j;rQL,p) kgmﬂl (1 o mQ/j;’QL’p)

where the slot magnetic quadrupole moment is

1 h 1 h 2 2 h
o= [ atoysss = [ () stas = o (- nen) - 2 [ ) sas

Ho J—n iwpty J_p Wi iwpty J_p
i2 (" i [

= It (s)sds = — V. (s)sds
o[ mesds= o [ v

and we used the continuity equation 9I; /0s = iwg,!, with boundary conditions I, (h) = 0.
In this case the solution of the transmission line equation

82 m,n m,n
<882+F2> V(s) ~ Z (K5 + sK3€) = 2 (B + sHP™™)

with a voltage vanishing at the end points s = +£h, is

V (s) = Vi [cos (T's) — cos (T'h)] + Vi [hsin (T's) — ssin (T'h)]

where

Vo=2 (—Kgc + H(()p’m’")) / [T? cos (Th)]

Vi=2Z (foc + H{P’mm) / [T sin (Th)]

The dipole moment is

L Mh 1 B
ml = e [Fh sin (Th) — cos (Th)
14hZ 1 . (p,m,n)
= | — Th) — T'h K5 [q\PT
w2 cos (T'h) {Fh sin (Th) = cos ( )} ( o +Ho )

and the quadrupole moment is

. h . 3 .
L _Mh / in (T's) — 52 sin (T _ @®Vih? [1 fsin(Th) r 1 r
mas = o | [hssin (I's) — s sin (T'h)] ds oo |Th Th cos (T'h) 3bln( h)
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B i8h3Z 1 [sin(I'h)
~ wpel?sin (Th) [Th Th

If we specialize to the vicinity of a TM mode resonance

— cos (I‘h)} — %sin (I‘h)} (—Kfc + H£p,m,n))

ml = cL%IéZlle()Zs(m {Flh sin (Th) — cos (Fh)}
[—Kgc _ Vca(;‘)OEk(:lf(])c)kj);(nnzrlzi/gc; €Eng_mk%/jn] {cos (mepg) mT + ;n—a sin (mg,) Q;ss}]
s = o.)m);i};:igrlz(l"fz) [I‘lh {Sinl_gh) — cos (Fh)} - %sin (I‘h)}
[Kfc _ S;;iﬂf;:;)_i_(zk/:ilcjs(ij;;gp;;tgikggmmn:f {cos (mpy) mi + % sin (me,) Q;LSS}]

If we specialize to the vicinity of a TE mode resonance

vo W2 LG (Th) — cos (Th
M wpel?cos (Th) [ Th sin (Th) — cos (Th)
m?2 cos (mepy) (m/a) cos (nmz/he) Enem (n/he)? /2 (m
_Ks¢ m . + s +
l ’ (m2 - jﬁyi’) VC“” [k2 + kk;,m,n (1 + Z) / ;lj;,gl,n - k;’%m,n] {2(1 €08 (m<p0) Qm“% s (mng) s }
L i8h3Z i sin (T'h) B rim\ 1 o (Th
mes = o h) |Th | Th ST~ gsin(Th)

2 . ; )2 /2
i — m _ cos (m@ol(m/az Cos (n?rzo/hc) ;’!LEE’HL (n7r//2hc) / {@ cos (my) Q1. — sin (mepy) m;“}
(m - ]m,p) ‘/wa [k + kkp,m,n (1 + 7’) / p,m,n kp,m,n] 2a

Note that for small losses

cos (Th) = cos (I"h) cosh (I'"h) — isin (I"h) sinh (T'"'h) =~ cos (I'h) — iT""hsin (T"h)
sin (T'h) = sin (I"h) cosh (I'""h) + i cos (I'h) sinh (I'"'h) = sin (I"h) + I h cos (' h)
cos (I'h) = cos (kh) cos (I'h — kh) — sin (kh) sin (I"h — kh) & cos (kh) — (I'h — kh) sin (kh)

sin (I'"h) = sin (kh) cos (I'"h — kh) + cos (kh) sin (I"h — kh) ~ sin (kh) + (I'"h — kh) cos (kh)

and without a gasket

[ =Dl = /—Z (Y — iBrag + Graa/2) & /@?LO {1+ wL (B +iG")} {1+ (Brag + iGraa/2) | (@O)}
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~k+\/L/C{(K*B™ + Braq) + i (K*G™ + Graa/2) } /2
k=wVLC
I — k~+/L/C (k*B™ + B,a4) /2
I ~ \/L/C (K*G™ + Gr4a/2) /2
cos (Th) & cos (kh) — (I"h — kh) sin (kh) — il hsin (kh)

sin (Th) ~ sin (kh) + (I'h — kh) cos (kh) + i h cos (kh)

Breaking the voltage into even and odd parts

Vi(s) =Vo(s) + Vi(s)

Vo(=s) =Vu(s) and Vi (—s) = =V; (s)
Using the leading approximate voltage without a gasket
Vo (s) = Vp {cos (ks) — cos (kh)}

Vi (s) = Vi {hsin (ks) — ssin (kh)}

gives the dipole moment

mt i4Voh {sm (kh) cos (kh)}
Wik kh

and the quadrupole moment is

kh

mss ™

. 3 .
F s N 28;2: [ L {Smk(:h) — cos (kh)} - %sin (kh)}

11.4 Radiation Admittance On Half Space

To evaluate the radiation admittance [10], [9]

Y, /hV*(s)V(s)dsli hv*(s) LAt
rad h o mwig Jo, 0s?

V(S) {_Ce +In (1 _ 82/h2)} +/h V(s/) e’ik‘sfsl‘ — V(S)ds,‘| ds

Integration by parts gives
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/]; V* (s) <§; + k2) F(s)ds = {v* (s) %F (s)} hh + /}; [—gsv* (s) % + K2V (s)] F (s)ds

= |V*(s) %F (s) — %V* (s) F(s) ' + ' g—;V* (8) + k2V* (s)| F (s)ds
—h  J=h
where

h Y eikls—s/|_ s
P =V -ormla— g+ [ OV,

Then noting that for the logarithmic (and constant) terms

“(5) 2 _ 9y s s '
VIO EE e -V O F ()]
* 0 2712 o 2/12 0 * "
- [v () 2V (5) (~Ce I (1= 2/12))} — {V () (~C7 +1n (1= 2/k%))} 2oy (@L

_ [V* (5)V () o (n (1= /B) +1n (1 + s/h)}rh = [V* (s)V (s) {‘1 1/:/h ’ 1i/:/h Hhh !

We expect the first term for the integral to vanish but not the second term. Hence we can write

/l; V*(s) <§; + k2) F(s)ds = {—;SV* (s) F (3)} hh + /l; {aa;v* (s) + K*V* (s)] F(s)ds
We then find
Yd/v @V s = [V r e - v <s>F<s>}hh+/};{aZv* (5) + B2V <s>}F<s>ds]

_ _%wiuo [{_SSV* (s)F(s)}hh + /}; {aa;v* (s) + K2V (s)} F(s) ds]

Now substituting the even term Vj (s) plus the odd term V; (s)

h

/_hv*<s>v<s>ds=/ [vo*<8>+v1*<s>1[vo<s>+v1<s>1ds=/_h%*<s>vo<s>ds+/hv1*<s>v1<s>ds

—h —

Evaluation using the leading terms

" 2 (" 2 2 (" 2
/ V*(s)V (s)ds = |V / {cos (ks) — cos (kh)}" ds + | V1] / {hsin (ks) — ssin (kh)}" ds
—h —h —h
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h
~ |Vo|? / {cos® (ks) — 2 cos (kh) cos (ks) + cos® (kh)} ds
—h
h
+ v / {h?sin® (ks) — 2ssin (ks) hsin (kh) + s sin® (kh) } ds
—h
1 h
oF IVol? / {1+ cos (2ks) — 4 cos (kh) cos (ks) + 2 cos® (kh) } ds
—h
+§ Vil {h* — h? cos (2ks) — 4ssin (ks) hsin (kh) + 2s* sin® (kh) } ds
—h

h
1 1 4
~ = [Vo|*{ s + = sin (2ks) — = cos (kh) sin (ks) + 2s cos® (kh)
2 2% k 3

2 4 4 2 "
+§ VA {hzs - Z—k sin (2ks) + 7.5 cos (ks) hsin (kh) — = sin (ks) hsin (kh) + 35 sin (kh)}h

~ Vo> h {1 + 2cos? (kh) — SSmk(:h) cos (kh)}

23 sin (kh) 15,5\ sin? (kh)
Note that

0? 0?
(82 + k2> V*(s) = (652 + k:2> Vi (8) + V7" (s)] = —k?Vy cos (kh) — k*V;* s sin (kh)

Inserting these voltages

i (" 2
md/hWO |d3——;ru0 Vo(s)(az"‘k)

{ C€+1n(1—52/h2)}+/]; Vo( ) ik|3—s|_V0(S)d8,‘| ds

s — &
and

h
ye - -~ 2
o / W o) (g + )

8){—Cg+hl( 2/h2 }_|_/ ‘/1 11€|9 9| Vl (S)ds/] ds

|s — s'|
or

h i h h 2
Vi [ Moo ds =11 [{v O b =g R @)+ [ @ @R <s>ds]

—h
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1 ’L a * " 4 62 * 27 7%

- —;w—uo H—GSVO (s) Fy (8)}h+/_h{382VO (s) + KV, (s)}Fo (s)ds}
e JAVol* h {1 + 2 cos? (kh) — SSink(:h) cos (k:h)}

. h
_ _%wL%vO*ksm (kh) {Fy (h) + Fo (=)} + %iwsovo* cos (kh) Lh Fy (s) ds
h 5 eik|sfs'| _ s
Fy(s) =Vo(s) {~C¢+n(1—s*/n%)} +/_ Yo (&) 5] Vol )ds’
and
h 3 h h 2
fa [ W s =1 [{v Gah e - @Re) [ e eln <s>ds]

1 i 9. " MO, -

--1L H—asvl (5) Fy <s>}h+/h{882v1 9+ BV ()| 7 <s>ds]

0 23 ‘ sin (kh) 1, 5\ sin® (kh)
YoalVil™h {1+3cos(kh) T —4 lfgkh o

I . 1 g
= ———V"{khcos (kh) —sin (kh)} {Fy (h) — F} (—h)} + —iweoV{" sin (kh)/ sFy (s)ds
T Wik 0 —h

/) eik|sfs'| _ Vl (S)

|s = ']

ds'

h s
Fy(s) = Vi (s) {~C° +1n (1 — 2/h?)} +/_h Vi (

These leading-order even and odd cases are carried out in the Appendix and summarized in the next two
subsections. Following these two subsections we continue with some examples focusing on the dipole moment
drive.
11.4.1 Constant Drive Radiation Admittance On Half Space
For a near constant drive (an even case) and voltage distribution

V (s) ~ Vo {cos (ks) — cos (kh)}
the full space radiation admittance parameters [10], [9] are

b Ge . — Cin (4kh) + 4 Si (2kh) cos (kh) {kh cos (kh) — sin (kh)} — sin? (2kh)
M0 rad = 1+ cos (kh) {2 cos (kh) — 3sin (kh) /kh}

10
9

(kh)? | kh << 1
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Figure 15: Behavior of radiation admittance resulting from an even slot voltage from a constant drive current
as a function of kh.

4cos (kh) {khcos (kh) — sin (kh)} {In2 — C¢/2 — Cin (2kh)} + Si (4kh) — 2 cos? (kh) sin (2kh)

T Bl pg =
05 rad 1+ cos (kh) {2 cos (kh) — 3sin (kh) /kh}
7
~ 2 (kh) | kh <<
where

Ce =2[In(2) — 7/3] ~ 2[In (2) — 2.33333] ~ —3.280

€

These quantities are shown in Figure 15. The first slot resonance kh = 7/2 gives

ThnoGreq = Cin (27) = 2.43765

Thiy B, = Si(27) ~ 1.41815
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11.4.2 Linear Drive Radiation Admittance On Half Space
For a linear drive (an odd case) and voltage distribution
Vi (s) = Vi {hsin (ks) — ssin (kh)}

the full space radiation admittance parameters (see Appendix) are

. L
mnohGy {1 + 3cos (kh) sin (k) _ 4 (1 _ 1k2h2> sm(kh)}

rad kh 6 k2h2

= Cin (4kh) + sin (kh) {cos (kh) — (;h - ;kh) sin (kh)} 4Si (2kh)

81 1. 1. .3 4 5
3 %A {QCOS (kh) o, Sin (kh) + 2khsm(kzh)}sm (kh) 3 sin (kh)

. sin (kh) 1 sin? (kh)
TohBLa {1 + 3cos (kh) e 4 <1 — 6k2h2> —an

1 1

— —2sin (kh) {cos (kh) — (kh - 3kh> sin(kh)} {C° —2In(2)}

81 ‘ L Lins i ey — 2L e
S Th {2005 (kh) o, Sin (kh) + 2/<;h sin (kh)} sin” (kh) cos (kh) 3 %5 50 (kh)

+ Si (4kh) — sin (kh) {cos (kh) — (;h _ ;kh> sin (kh)} ACin (2Kkh)

and we take
C? =2[n(2) —43/15] = 2[In (2) — 2.86666] ~ —4.347
This radiation admittance is shown in Figure 16. We see that this contribution is relatively small for small

kh.

11.5 Parabolic Approximation For Voltage Distribution

Note that the low frequency formula of the preceding subsection yields 7hny,Grea ~ 10 (k:h)2 /9 — 2.7416 at
kh = 7 /2, which is not too far above the preceding resonant result 2.43765; the corresponding low frequency
parabolic form of the voltage (expanding the difference of cosines)

V (s) ~ Vok? (h* — 5%) /2, kh << /2

is also a good approximation to the voltage distribution up to near the first slot resonance. The corresponding
radiation terms are

1
ThneGE oy ~ 30 (kh)? | kh << 1

7
whiloBfga ~ 5 (kh) , kh << 1
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Figure 16: Behavior of radiation admittance from odd voltage distribution resulting from linear current
drive.
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For frequencies below the first slot resonance we can approximate the drive short circuit current density and
interior cavity field at the slot by the values at the slot center assuming the slot half length is small compared
to half the cylinder circumference h << wa < wb. The short circuit current density at the slot center is

__ 17sc
— 20

K (p=s/b<<1,2) ~ —2He*=i# Z

™ [COS (m;)cosp,  msin (myp;) cosb; sinp,
m=0

and the nearest resonant mode contribution is

HEP™™ (a,0 = s/a << 1,2) = gipmm

1 1
= —k*= (emen/Veav) cos? (nmzo/he) mT -
2 {k2 + kk%mﬂ (1 + Z) /Q;L,l;,%,n - kp%,m,n}
(nm/he)® m? /2 1

+k1/72,m,n {kQ + kk;,m,n (1 + 7’) /Q£§n7n - ké)z,m;n} (1 - mQ/j;rQL,p) " k;;/)%m,n (1 - m2/j;r21,p)

where the slot magnetic dipole moment is

. h
12
mf = —-2a) H = —"
Wy J—h

Note that the ratio of this parabolic voltage V (s) ~ Vok? (h2 — 52) /2 result for the dipole moment m, to
the approximate result using V (s) ~ Vj {cos (ks) — cos (kh)} is (k*h?/3) / {sin (kh) / (kh) — cos (kh)} — 1
at low frequencies; even at kh = m/2 this ratio is not too much greater than unity (7%/24) ~ 31/24 ~ 1.29.

Applying the operator
h
/ V*(s)ds
—h
32

V(s)=Z (Y + Graa/2 — iBraa) V (s) & (aSQ n Fz) v (s)

4 4
Vi (s")ds" ~ iwsoVoghs =1i(Vo/n0) gkhg

to the differential equation
82
ds?
=ZK(p=s/b<<1,z)— ZHL(PW"”") (a,0=s/a << 1,2)

gives

h * 82 2 g * _ 4 8 * 8 2 g *
/_hv (5) 55V (s)ds +T /_hv (s)V(s)ds-—/_h%V (5) 5V (s)ds + T / V* (s)V (s) ds

—h

h h
=ZK(p=s/b<< 1,20)/ v (s)ds—ZH((Pp’m’") (a, 0 =s/a << 1,,20)/ V*(s)ds
—h —h

where we integrated by parts using V* (+h) =0

-/,

2 h

h
ds + F2/ IV (s)]* ds + ZHg”m’”) (a,0 =s/a << 1,20)/ V*(s)ds
—h —h

0
%V(S)
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h
~ZK (p=s/b<< l,zo)/ V*(s)ds
—h
Inserting the parabolic approximation

2
Vok? (-1 + 5F2h2) + ZHP™™ (0,0 = s/a << 1,20) & ZK: (¢ = s/b << 1,2)

or

2
Vok? {1/2 + (Y + Grad/2 — iBrag) 5h2} — HP™™ (a0, = s/a << 1,20) & —K3° (¢ = 5/b << 1, 2)

or

1 2
Vok? {—zwL + AYy + (—iwC + AYe + Graa/2 — 1Braa) 5h2} - H;p’m’”) (a,p=s/a << 1,2p)

~—K%(p=s/b<<1,z)

where

Y = —iwC + AYe

1
1/7 = —— + AY]
/ —iwL+ L

Now without a gasket AYy = 0 and

Vok? {—iwL + G — iB" 4 (—iwC + Grqa/2 — iBrad) 5h2} - H;p’ ™) (a,p = s/a << 1,2)

~ =KX (p=5/b<<1, 2)
where
AYL — Gint _ ZB’L’rLt

Using the form

_H$p7m,n) (a,p=s/a << 1,2p)

1
2
{k2 + kkp,m,n (1 + Z) /Qg:%n - k]%,m,n}

= eméen cos” (n7z0/he) (), oo/ Vear) k

N (n/he)* m? /52, N 1 Vok?
k;?,m,n {kQ + kké),m,n (1 + Z) / ;ﬁ,n - k;:;%m,n} (1 - mQ/jﬁ,p) k}?,m,n (1 - m2/j'¢r2L,p) —iwl
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where

C ~egQe/m
L~ piom/Se
VL/C ~nor/Qe
WwVILC =k

and the half space dipole moment is

mg - 2a7orz,ssH?C
with low frequency polarizability
0 A
m,Ss 12Q€

gives

2 , ) 9 2
{(1 — 5k2h2) —iwL (G™ —iB"™) — iwL (Grad/2 — iBraa) h2} Vok

5 —iwL
+-Emen cos® (nmzg/he) (ao /ch,) k? !
e {k2 + kkp,m,n (1 + Z) / ;%,n - k’%,m,n}
2 . .
(n7/he)” (m? /502 ,) [ (L—=m?/j.7 ) . 1 Vok?
ké)z,m;n {kQ + kk;),mm (1 + l) /Q;g’b,n - k;;%m,n} kg,mm (1 - m2/j47217p) —iwl

~—K(p=s/b<<1,z)
or replacing the voltage amplitude by the slot dipole moment
2 ; ; 2 +
{(1 - 5k2h2> —iwL (G — iB™) —iwL (Grad/2 — i Brad) 5h2} %

™m,ss

1
{kQ + kkp,m,n (1 + Z) /Qg,%,n - kg,m,n}

+Emen cos® (nmzo/h.) (a?n_’SS/VCM) K2

(n/he)® (m?/52,) | (1 —m2/52.) 1 ] mt
)

: + -
k;)Q,m,n {kQ + kk‘;),'rn,n (1 + Z) / e - k/Q } k2 (1 - m2/j/2 2a(7)n,ss

p,m,n p,m,n p,mM,M m,p

~—K°(p=s/b<<1,z)

or replacing the slot dipole moment by the polarizability

m,ss

2 . , 2
Oy s/ O s B <1 - 5k2h2> —iwL (G"™ —iB"™) —iwL (Grad/2 — iBraq) 5h2
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1
{k? + kkpmn (L+14) /QIM  — k2, .}

D,MM
(n/he)” (m? /5 p) [ (L= m?/ih,) L
k;ﬁ?,m,n {k2 + kké),m,n (1 + 7’) / ;{%"L,n - k;?m,n} k]/oz,m,n (1 - mz/jﬁﬁp)
We can identify the normally small parameter a?mss /Veaw << 1 in the cavity resonance terms. Resonance

occurs when the real part of the right hand side becomes small (or vanishes, when possible).
As the frequency is decreased we let

+emen cos” (nm2g/he) (o, o/ Veav) K

1/Qslt = 1/Qwall + ]-/Qrad ~wlLh (Glnt/h + Gradh/5)
and noting that

k2hnoG™ &~ (R, /ng) td/w? ~ k*hnyB™
taking the definition [1]

I/Q{)”m’n = Emén COSQ (7’L7T'Zo/hc) (agn,ss/‘/aw)

and
2 int | 2,2
Akh’slt =wlL (B + gh Brad)
we can write

2
a?n,ss/aj‘r_hss ~ (1 - gk2h2 - Akhilt) - i/Qslt

1
kz p,m,n
) | T T AT 0 QT 2]
(nm/he)? (m2/52,) | (1 —m?/52 ) 1

: + :
K AR? 4 WK o (L+0) JQEE 0 = Kmn} K (L= m2 /5 )

For the real part of the right side to vanish, we must have

2
0= (1 - g1<:2h2 - Akhilt)

k2 4 kkpmon QM — k2
+ (k2/Qg,m,n) p,m, / p,m,n p,m,n .
|k2 + kk‘pfm’n (]‘ + 7’) / ;%,n - k%,m,n|
2 . .
+ {k2 + kk;,m,n/@grEn,n - kﬁm,n} (nﬂ-/hc) (m2/.77,7%,p) / (1 - mz/jflzb.,p) 1
. 2 .
kzla%mn |k2 + kk;a,m,n (1 + 7’) / ;Z:TEn,n - k;fa%m,n kﬁmsn (1 - m2/];72l»p)

Near the slot resonance kh ~ 7/2 and thus the first term on the right is 1 — 2k?h%/5 ~ 1 — 72/10, which is
approaching zero; hence, even if the other terms remain small this quantity can vanish leading to a resonant
enhancement. However, as the frequency decreases we eventually require
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k? + kkp»m n/ D, m n kp%,m,n

(k? + kkp m TL/ p,m n k}% m n) + (kk%m "/ p,m, n)

1~ (k2/Q8’m’") , TM modes

(nﬂ-/hC)Q kQ + kk;) m n/Qp m,n k;)%m n ( 2/jm,p)

1~ (K2/Qp™"
( / 0 ) ké’zm” (kQJFkk/ mn/Q;D,mn _k}ljz,m n) (k/‘k‘l/ mn/men) (1im2/~77" T’)

, TE modes

or because

T 1
<

2 4+ 23~ 2

this means for resonance

IO 70 i BN 1
" S QI BTG, 0 00
(nﬂ'/hc)Q (k/QP,myn) ( 2/.Y'm,,p) N 1 (nﬂ-/hc) ( Q/Jm’p)

1= TE modes

k;?m n Qk/ ,m, n/ p,m n (1 - m2/jm7p) 2Q87m7n/Qg§n n k:;;%m n (1 - mz/]m,p) 7

The axial electric field is then

6m5n/Vcav 4 (]m p/a) (]m pp/ )
E. ~ V, (0) ch~" : he he
P oy L+ 1) /I +(0) = 3 Tt o) cos (my) cos (nmzg/he) cos (nmz/he)
—iwiom i emen/ (2Veav) (Jm,p/a) Jm (Gm.pp/a)

cos (my) cos (nzg/he) cos (nmz/he)

k2+kkpm"(1+z)/ pmnfkgmn Jm—l (.7m,p)

o wnoEmEn I (0 o/ Vear) (/@) T (/@)
k% + Kk ,m,n (1 + Z) / £%7n - kg,m,n Jm—1 (]m,P)

cos (mep) cos (nmzo/he) cos (nmz/h.)

The magnitude squared is then

|2 ~ E 5 |am SS/VVCU«U|2°J2IU’% |I{<;C (b,072’0)’2
k2 + Ekpnn (1+1) /QTM | — k2

|E.
p,m,n p,ﬂ%n‘

(Jm,p/a) m (m,pp/a)
T (Jm.p)
At the TM cavity resonances

cos? (me) cos? (nmzg/he) cos® (nmz/h,)

2
ag’b,ss/a'r-tz,ss ~ (1 - gk2h2 Akh’slt) - i/Qslt

- (/Q5™)
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1 1 {(mr/h )% (m?/52.) . 1}
)

K2+ Ky (L4 0) QI — K2, — T 2 (1—m2/j22, -

p,m,n p,m p,m,n

or

. 2
|k2 + kkpym,n (1 + Z) / ;%,n - kzz),m,n
‘2

+ 0
|am755/am,ss

2
~ H (1 - 5k2h2 Ak;hslt> — z‘/Qslt} {k* + kkpmn (L4+14) /QIM = k20 0}

2

2 : ™ 1.2 2 27412
L (@) [Hk o+ Fkpmn (1417) /@) kpm,n{(mr/h) (m? /i 7,,)“}

k;?,m n ( - m2/.7’m p) ky — ky?

D,M,N p,M,N
Setting the real part inside the absolute value to zero

2
(1 - gk2h2 Akhslt) (k2 + kkpmn/ pmn kgmn) + kkpmn/ (QSthpmn)

+ (kQ/QIO),m,TL) 1+ =0

W (- m2/J2,) B~ 7

p,m,n p,m,n

or

— (K + kkpmn/Qpomn = Kpmin)

p,m,n p,m,n

kpmm/ (Qsue@LM ) + (K2/Q5™™)
(1= 2k2h2 — Akh2,) + cootnmzo/he)(k2/Qo) {(nﬂ'/h (/i) 1}

. 2 2
B (2 52,) | B

p,m,n p,m,n

Using this in the previous expression

. 2
|k2 + kkp,m,n (1 + Z) / z::%,n - k?),m,n
|2

+ 0
|am735/am,ss

(1= 22 - ama ) = i/

+

(K2/Qb™™) ){(mr/h) (m 2/jm’p) } {k2—|—kk mn (L+14)/ pmn—kayn}

k2 (L=m2/52 k2 k2

p,m,n p,m,n p,mM,M

2

+(K/Q™ "))

or

|/€2 + kkp,m n (1 =+ Z) /Qp m,n k12),m n‘
{2

|am755/am,ss
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‘ {(1 _ Zpp2 Akhglt)
5

(k2/Qg™") {(m/h) (m 2/.7m,p) }

k;)Q,m n (1 - m2/.7m p) k3 -k

p,Mm,M p,m,n

+ [(1 - %thQ Akhslt>

(k,Q/Q;g,m,n) (nm/he ) ( 2/.7m,p) +1
k2, (L—m2/j2 ) Foman = k5

p,m,n p,m,n p,m,n

+ {kz + kkp,m n/ p mmn k;%,m,n}

- TM
Zkk}p,mm/ p,m,n

+

( /QS“) (k2 + kk;nm n/me n kimn) + kkpmn/ (Qp m,n slt) + (kQ/Qg,m,n)’Q

gives

‘k2+kkp,mn<1+@)/men kg,m,n‘Q
|2

|ama55/a7n,ss

: Q™) Gonoef ()
1— Zk%h — Akh : PR
[{ < 5 9lt> k;?m " (1 _ m2/j’;'%’p) k%,m n k;fm n +

2
/Q kkpﬂnxn/( ithzj;,%,n) +k2/(Q1077m,anlt)
pvm n p,m,mn p,m,n
2 (k2/Q5™™) (n/he)?(m2/5;2 ,)
(1 — 2k2h2 — Akh2,) + o (o7 ) T+ 1
Dropping the O (Qg,,,n,,nl@;%m) , O {(QP — i) an] terms
|k2 + kkp’man (1 + /L) /Q;:I;,%,n - ka%;m,n‘2
’OJT_%SS/O[Er)n,ss‘2
m,n 2
~ (1 N ) by QT g T/ (@) + 12/ (@5 Qo)
5 st ) e pmn (1— 2k2h2 — Akh%,)

Then

2 ~ €3n€ ( m es/‘/fﬂv) |am ss/am ss| WQ/L%}HIZC (b30320)|2

|E. | ?
K2 + Kkp .o (1+1) /QEN 0 = K3 .

(mp/a)? T2 (mpp/a)
ngfl (]m,p)

Note that the low frequency result of the prior section on ELECTRICALLY SMALL SLOT LENGTHS
(subsection Single Slot Source), near the cavity TM resonances was

cos? (m) cos? (nmzg/he) cos® (nmz/he)
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2 o B IHE 0.0:20)|" 2% (o Vo) /@) T2 (o)

|E, cos? (me) cos? (nmzg/he) cos® (nmz/h,)
K2 4 kb (1414) /QTM  — k2, | Tr—1 (Jm.p)

This is the same as the result in this subsection except here we have the additional factor

| mse/ mss|

since the slot voltage amplitude and polarizability can be modified by the cavity mode. Using the preceding
result we can write the result near resonance as

2 1

~

E.
nOH:ZC (b7 0, ZO)

m, 1/Qs
(1 30002 - 802 Q™ QB + (g

(mp/@)* T2 (jmpp/a)
k2Jm—1 (]m,p)

We see from this that the field saturates as a function the cavity quality factor for

1/Qslt
1— 2k2h2 — Akh2,)

cos? (me) cos? (nmz/he) / cos® (nmzg/he)

2
(1 - gk2h2 Akhslt) Qgﬂn’n/ ;7)1,]\77/1[,77, << (

or

2
p,m W >> Q0" QY, <1 - nghQ Akhslt)

If we define

2 1/ (@™ " Qsit)
1 T™ _ 1— *thQ Akh TM 0
/Qeff ( 5 slt / p,m,n + (1 - %thQ _ Akhglt)

we can then write this as

E;

2
noH (6,0, 20) €2 (QTM Y, oo/ Vear)

(imp/@)* T2 (jmpp/a)

kz‘]m 1 (]m,p)

cos? (me) cos? (nmz/he) | cos® (nmzg/he)

The radial field is

E,~ —Memgn "7 cos (nm20/he) sin (nmz/he) cos (me) m7
2‘/CCL'U hC

1 Jvln (.jm,pp/a)
{2+ kkpmmn (1+14) /QTM  — k2, Tt (Jm.p)

112/ (k. 0) Jon (/) (nw/hz . 1)]

+{k2 +kk;7mn (1 +Z) /men - k;)%m,n} (1 _m2/j7/721,p) Jm (37/11,;7) ‘7‘4721,1)/0‘2
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or

E, = iwpgemen H* ( o 6&/Vuw) (nm/he) cos (mep) cos (nmzg/he) sin (nwz/he)

1 Jpn (Gm,pp/a)
{k2 + kkp m,n 1 + 'L) /Qp mn kg,m,n} J’m—l (jm,p)

+ ) (b 00) I (Gin.n0/) (n%?/hi _ 1>
{kQ + kk; m,n (1 + 7’) / p,m n kg’m n} ( m2/.7m p) ‘]’"L (j;n,p) j;?l,p/a2

The magnitude squared is then

|Ep|2 ~ wipde? e |H (b,0, )| ot SS/Vc,w‘ (n/he)? cos? (me) cos? (nmzo/he) sin? (nz/he)

1 S (Gm.pp/a)
{kQ + kkpﬂﬂ n (1 + Z) / p,m n ka) m, n} Jm—l (jm,p)

2/ (k2 0) T Uingole) (e 1>’2

*{k2+kk;m<1+z>/@pm—wmn}( T2 G2) Tm (Gy) \ R

Near the TE resonance

EP
T]Och (ba Oa ZO)

2
Im (4]
~ 2 €2 cos? (my) cos? (nzg/he) sin® (nz/he) {W}

m (Jim.p)

‘O‘m Ss/VCM’ (nﬂ-/h 4k2/{(k1/72mn )(1_m2/j1%7p)}2 ( 2 2/h2 — 1)2
|k2+kk;)mn( + )/ pmn_k/2mn|2 J"’P/a2

where
2
{kQ + kk;; m,n (1 + Z) / zj;TEn,n - kfm,n} a'(r)n,ss/a:_n,ss ~ { (1 - nghQ Akjhslt) - i/Qslt}

(nw/he)* (m?/jir ) | (1= m?/jp2 )
k2

p,m,n

{kQ + kk; m,n (1 + 7’) / p m,n kg’m n} + (kQ/QQMl’n)

Setting the real part to zero
2
(1 - gk2h2 Akhslt> {k* + kK, 0 /QE T = K 0}

he 2 2 /12 m2 2
+k‘k’; m n/ (meb anlt) + (k2/Q107,m,n) (77,7'{'/ ) (m /Jk,g )/( /-7 ,P) -0

p,m,n

Then
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2 2 ?
(1 - gkzhz Akh’slt) {kz + kk;) m,n (1 + )/ p m,n k/2m n} am ss/am ss 2 i <1 - gk2h2 Akhslt) kk/ ,m, n/ p m,n

2
—1 <1 - gk2h2 Akh’slt) {kQ + kk/ m, n/ p m,n kf,m,n} /QSlt

, 2 [ /he ) (m?/g2 ) ) (1=m?/j;2 mon
<1 { (1 - gk2h2 Akh’slt) + l/Qslt} kk/ ,m n/Qp,m n ( /2,1)) ( ’P) k2/ (Qg’ ’ QS“)
p,m,M
and
2

EP
770H.§C (ba 07 ZO)

m () Jinpl @

~ cos® (my) {sin® (nrz/he) / cos® (nwzo/he) } (j;n’p/a)2 {Jn} (jm_’pp/a) } (n ™ /he 1) (m/p)?

(- 3K202 — AkRZ,)* (1/QF™") (n/he)® (m /32 ) K2/ { (k2 ) (1= m?/52 )}

2
w/he)?(m2 /572 1—-m?2 /512 m,n
{{(1 - %kzhz Akh%lf) + 1/Qelt} kK mon/ Qpinn + (/) (m /Z,z )/ (1= ’p)kz/(QS’ ' Qslt):|

p,m,n

Dropping 1/Q?,

E, 2

770H§C (ba 0, ZO)

Im (j;n,pp/a) }2 ( n? 2/h2

? 2
T Gt iz jat 1) (m/)

~ cos® (myp) {sin® (nrz/h,) / cos® (n7zo/he) } (j;n,p/a)2 {

(1— 3K2h2 — AkKZ,)" (1/Q5™")? (nm/he)? (m? /32 ) K2/ { (kZm.n) (1= m/322,) }

2
(nm/he)?(m?2/502 1-m?2/512 m.n
(L 3020 = K2, ) QFF, + RV U ) G )

11.6 Power Transmission
The power transmission through the slot is

h h

Ptrans = 7Re/ V(S) H* ( SDaZO) - 7Re/ V* (8) Htp (aa(prO) ds
—h —h

V (s) ~ Vok? (h* — s*) /2, kh << /2
HP™™ (a,0 = s/a << 1,2) = Himm

1

1
= —k>= (emen/Veaw) cos® (nm2g/he) m
( / ) ( 0/ ) {k2 + kkpv’mﬂl (1 + Z) /Q;z,l)—:'Jr\;{,n - k?),m,n}

2
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(n/he)? 2/J"2 1
k;;JQm n {k2 + kk;:) m,n (1 + Z) / D, m n k;?m n} (1 - m2/.7m p) kam n (1 - mz/.]m,p)

h
Prrans ~ — Re / V* (s) HO™ (0,0 = s/a << 1,7) ds
—h

%le(E c /V )COS2 (7’L7T20/h )k2 /h (h2 _52) ds Re Vo*m-‘r
1 mé&n/ Veav c _h {]{:2+kk 77nn(1“"5)/62;)mn_kj]%ﬂ”h"}
Vimd (/o) Vim.

+ ;
k;/02,7n,n {kQ + kk;;) m,n (1 + Z) / P, m n lem n} (1 - m2/]m,p) kgm n (1 - mQ/J;r%,p)

mi = ;SSH;C:WM(J/ Vi (s')ds' NzwsoVogh —z(VO/no) A

4
Qo sngc ~ (VO/%) kh’g

Pmn/men
’kQ + kkp m,n (1 +Z) /men kg,m,n

1 9 k(A 2406
Ptrans ~ — (Smsn/‘/cav) COS (TL’]TZ()/hC) - o |V0| k h 2
4 Mo \3

(n/he)* (1 i ) Ky omn/ Qi
k;)%m,n |]€2 + kk;? m,n (1 + Z) /Qp m,n kz/oZm n| (1 - m2/]m p)

0

O‘m,ss/am,ss

2 : ; 2
~ <1 - 5k2h2> —iwL (G — iB"™) —iwL (Grad/2 — iBraa) 5}12
1
{k2 +kkpmn (1 +Z) /men - kg,m,n}

(nm/he)? (m?/522.) /(1 — 2/Jm,p) N 1
k;?rn n {k2 + kkp,m n (1 + Z) / p,m n k;)Q,m n} k;;,rn n (1 - m2/jln,p)

We may want to split up the results for near TM resonances and then near TE resonances.

+emen cos” (nmzg/he) (o, oo/ Veav) K

11.6.1 TM Resonances

For the TM resonances

Pians 1 4\° ? kkp,m,n/Qp mn
7t 3 ~ — (Emf‘:n/‘/cav) COS2 (n’]TZ()/hc) k <> 2|‘/0| 3 k4h6 b / P
Mo |H§c| 4 3 o |Hssc| |k2 + kkp,m,n (1 + Z) / g:%,n - k%,m,n

|0[+ ‘2,\, |VO| 4k2h6
3| Hee P9
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}%rans

2
Mo |H§C|

%Kl_

Letting

2
+ 0
|am ss/am ss|

}kQ + kk ,m,n (1 + l) /prm n k12’7m7"

~ O[(V)V%SS (6m5"a(7)n,ss/vcav) cos® (mrzo/hc)

{kQ + kkp’m n (1 + 7’) /Qp mmn kg,m,n} O‘?n,ss/a;:z,ss

2 , .
5k2h2) —iwL (G™ —iB"™) — iwL (Grad/2 — iBraa) h2 {K* + kkpmn (1414) /QIM

+Emen cos? (nwzo/he) (oz?n)SS/Vc,w) k2

1/Q0™" = emen cos? (nmzg/he) a?mss/va
Akh?, = wL (B“” + h2Bmd>

1/Qslt =wlL <Glnt + §h2Grad/2>

Ptrans ~ ( k4k1”7mn/ (Qp,m,n ]’IJ:JT\V{,H)

2
7]0 |H§C| |k2+kkpmn(1+z)/ pmn_kzm,n| |a21,ss/a7t1755

| 2

{kQ +kkpym7l (1 +Z)/ pmn k2 m,n}agn,ss/a'rtt,ss

2
~ {(1 - nghQ Akhslt> z/Qs”] {k* + kkpmn (14+14) /QIM  — K2+ K2 /Q5™"

Setting the real part of the right hand side to zero

(1

or

2 m,n
- nghQ Akh’slt) {kQ + kkp’m n/Qp m,n p,m n} + kkiﬂ’m n/ (QSthp,m n) + kQ/Qg7 =0

2
(1 - gk2h2 Akhslt) {kz + kkp m,n (1 + 7’) /Qp m,n ki,m,n} a?n,ss/a:z,ss

|2/{men/ pmn

= Fpmn}

2
2 , 2
~ (1 - §k2h2 Akhslt> ikkp mon/QF pm w1t (1 — 5k2h2 Akhslt> {k® + kkpm.n/Q) p mon kf,,m,n} / Qs

2 2 mn
~ <1 - gk2h2 Akh’slt) ik Pmn/men+Z{kk ,m, n/ (Qsthpmn) +k2/Q8’ ’ }/Qslt
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. 2 2 m,n
~1 { (1 - gk‘2h2 Akhslt) + 1/Qslt} kkp,m Tb/ p m,n + Zkz/ (ng7 ’ Qslt)

Then
Pirans (1— 2k2n% — Akhflt) b, ookpmn/ (QF™"QIM )
‘HSC‘Q ~ m,n 2
Mo [T [{(1 - 2k2n2 — ARR2,) +1/Q2, b ey /B) QBN +1/ (@5 Q)]

If we drop the 1/Q?, term in the denominator (assuming we are de-tuned off of the slot resonance) we can

write this as

Ptrans TM
- - k s
o Hef? 3 s
where we denote the mismatch factor by
2 m,n
M 4(1 = 2k°0° — AkRZ,)” (kpmn k) [ (QsuQ0™ " Qo )
p,m,n
(1= 20202 — AR2,)” Uy /4) QTS 41/ (@™ Qur)]|

™ _ _kpmmna o
p,m,n €na/hc 41 2Rgp,m,n)

EZ 2 ~ TM k‘Q ) 1,17—:%»71 (]m,P/a) (jmﬁﬂp/ ) 2 ( ) 2 ( /h )
n0H§6/2 ( p,m,n m ss slt kp,m,n‘/vcav 12 J,2n,1 (jmm) EmEn COS™ (M) COoS™ (NTTz /N
Note that
1 /hc 2 T ¢ J2 (mpp/a)
cos® (nmwz/he) dz/ cos® (myp) dgp/ B L pdp
Veav Jo -7 0 J72n 1(]m,p)
1 2ra2h. 1 ! 1 2mahe J2 (jm 1 2h, 1
= - 2 : / J72n (jm,pu> udu = A 2 Y p) = = =
Veav €men Ja_1 (Gmp) Jo Veav €men Jh_1(Gmp)  Veaw EmEn Emén

The enhancement above the mean square is thus

o
|E: | = £, cos® (M) &, cos (mrz/h ) I Gm.pP/@) i (Jm P/ @)

(IE-1), T2 )

Noting for m = 0 that the final ratio at p =0 is

B (op0) 1 1 1 1 1
J2(Gop)  J2(jop)  0.51014749732° 0.3402648065% 0.27145220992 " 0.23245983142" "~

~ 3.7104, 8.63706, 13.71034, 18.506, ...

J§ (db2) _ 0.40276% 0.402762 0.40276° 0.40276°
JZ(jop)  0.51915270.3402627 0.271452° 0232462~
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~ 0.60188, 1.4011, 2.2015, 3.0019, ...

we see that there are large enhancements at the center. Furthermore, for other values of m

d . ) ) ) .
%Jm (Jmpp/a) = (Gmp/a) T (Gmpp/a) =0 —= pla =4, o /jmp
with maxima

T (i) T Gir)

Too1 Ump) T2 (Gmp)

J?’YQL (jm,p) - 2A1 (ap) Ai (ap)

B U)o/ (@) 2 () RO B <c’>r _ o { Ai (a)) } 2 (¢)
% (—=0)¥% = \/22 — 1 — arccos (1/2)
Ai(ap) = 0= Al (ay)
a1 ~ —2.33810741
a’1 ~ —1.01879297
Ai(a}) =~ 0.53565666
Ai (a1) &~ 0.70121082
¢ = ap/m*?

C/ _ a;/m2/3

(_al/m2/3)3/2 _ \/(z —1)(z — 1+ 2) — arccos (z—i—kl)

[SCI )

[SSI )

arccos (z) = g — arcsin (z)
, ™
arcsin (1 — x) = 5= 21+ /124 ..]
arccos (1 —z) = % —arcsin(l1—z)=+/2(1—2z)[1+(1—=x)/12+..]
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1
arccos | ———— | ~
<z— 1—|—1>

For m =1 at p = aj ;/j1,p ~ 0.4805a, 0.26244a,0.18098a, 0.13819a, ... the final factor is

Ji (711) _ 0.58187% 0.58187% 0.58187% 0.58187>
JZ(j1p)  0.40276270.300122° 0.2497027 0.218362"

~ 2.08718, 3.75891, 5.4302, 7.100775, ...

Ji (712) _ 0.34613% 0.34613% 0.34613% 0.34613
T2 (jrp)  0.4027627 0.300122° 0.249702° 0.218362

~ 0.73856,1.33011,1.9215,2.51265, ...
Form=2at p= ajéyl/jzp ~ 0.59472a,0.362855a, 0.262847a, 0.206424a, ... the final factor is

J3 (75,1) _ 0.48650% 0.48650° 0.48650% 0.486502
JP (jo,p)  0.339672° 0.2713827 0232442 0.206542 "

~ 2.00514, 3.21373, 4.38070, 5.54827, ...

J3 (75,2) _ 0.313532 0.31353% 0.31353% 0.31353
J2 (jop)  0.3396727 0.2713827 0.232442° 0.206542"

~ 0.85201, 1.33476, 1.81943, 2.3044, ...

again indicating large enhancements near the center for higher-order modes. However, cavity losses, inducing
modal overlap at higher frequencies, tend to mitigate this enhancement at the higher orders because the power
is distributed among many modes, most having null behaviors near the center. This type of increase near
the cylinder center is consistent with general interior enhancements in axisymmetric geometry.

11.6.2 TE Resonances

For the TE resonances

Prrans 4\ %
__trans (amenagmss/vwv) cos? (nmzg/he) K () J&RQW

no | Hzel? 9) n3|Hs|?
2
(nﬂ'/h ) kk/ ,m n/Qp,m n ( Q/Jm,p)
ké)zm;n ‘kQ + kk;i) m,n (1 + /L) /Qp m,n klgm;n‘ a’romss (1 o m2/‘7m' p)
where
2 |V0|2 4 5
j;b ss| N ————k h6
’ g |Hze? 9
and

{K? 4 KK} (14+9) /Qp = K } Qoo / Qs
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2 , , may (n7/he)® (m? /i )
~ {(1 - gk%? Akhglt> - Z/Qslt} {K* + k), o (L44) /QLE = K JH(R2/QE™™) W (- m2in )

Setting the real part of the right hand side to zero

2 mony (N7 /he 2 (m?/42
(1 - nghQ Akhslt) {kz + kk‘;) m, n/ p,nL n kgm n} (kQ/Qg’ ' ) ( k/Q/ ) ( (7 2/ 7:1) )+kk; m, n/ (Qp m anlt) =0

p,m,n

then

2
<1 - gk,th Akh‘slt) {kz + kk;) m,n (1 + Z) /Qp m,n lem n} am ss/am ss

Q

2 2
i { (1 - §k2h2 Akh’slt) 1/Qslt} kk/ ,m, n/ p,m n { (7;7:-2/}7/ ) ( /jmJ’) } kQ/ (Qg,meslt)

p,m,n ( mz/]m p)
Then
Pt7‘ans
mo [Hz|?
a?n,ss (1 - %kjhg - Ak‘lh‘ilt)2 (nﬂ-/hc) ( / D,M n) / ( Z;,g’b n P,m 7L> ( 2/.jm,p)

2 2 2
{0 20— A1) 4 17080} (/) @ + { G322 <f’”m?/;¢§1>}/ @] U

~
~

If we drop the 1/Q?, term in the denominator (assuming we are de-tuned off of the slot resonance) we can
write this as

Ptrans ~ mss (1 - 2k2h2 Akjh?lt) (’I’L?T/hc)Q ( /k;;%m n) /( ;in 0 n) ( 2/.jm,p)
2~ 2 2
n |Hssc| nw/he m2/j:2 ,m,n ( -m /]m7 )
0 (1= 3020 = A2 (/1) JQE 5o+ { G2 2L A Q™ Q)| ,,
or
Ptra,ns TE
PR ok, , k
IETRR

where the TE mismatch factor is

12
pomn (1=m2/i2

2 /.12
(3 AR () { G (1 L 5 Q)

dp,m.n 2
2 7”2 412 m.n
(1= 3020 = A1) (/1) /QE 5+ { G2 (2L A Q™ Q)|

(1-m2/35:2
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TE ( 2/Jm,p) 3 Mo

p,m,n 2 2 2 kp,m,na (p,m,n)
’m p/a’ + 2 (a‘/h‘ ) (Tlﬂ'/hc) ( —m /.]’m p) (nﬂ-/h‘c) m /]7n N2 2RS T

kgm n ( 2/]m,p) K a Mo
kﬁ?m o+ (20/he = 1) (nm/he)® (1—m2/j2 ) """ 2P
1 Q _ 1 (2a/hc - 1) (nﬂ-/hc)2 k/ 770 -
/@pmin = 1 —m2/j2) + L2 pomn )
.77n N9 p,m,n 2R5
The field is
E, [ Bimn
%Higc/Q ~ (qg‘ﬁl n m sstSlt) msmgn COS2 (mgO) Sin2 (nﬂ'Z/hC)
. 2
T (Jm pP/ @) (n2n?/h2 — j2 /a2)2 m?
(jm Pp/a> (]m P) ‘ o kzk‘;?mn ( - mz/j';r%,p)
or
E ° TE o 2 2
P ~ k p,m,n . B h
nngc/Q (qp,m n m e QS”) k; . nvcav EméEn COS (mgo) SH1 (’I’L7TZ/ C)
. 2
I (j;”,pp/a) (k/2 _9j2 /a ) m?
(Jm pp/a’) (]m p) P P k2k1,72m n ( - m2/]';)’2L,p)
Note that

he ™ a Im (7! a ?
Viw/O sin? (nmz/h,) dz[ cos? (mep) d<p/0 {(] p/(ianpp/(]) )} pdp

2
_ wathe/2 /1{ I (G ptt) } du  ma*h./2 1
0

R _ , 2 -/
Vean G Tm () |0 Veaw 2mj2 T2 (it ) P E:EM ) L”“““l

m,pYm m/ =

where we used [16]

[@@f—m[ Z2W +ﬂ<ﬂ

or
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12 CONCLUSIONS

The interior electric field is determined inside a resonant finite length cylindrical cavity with finitely conduct-
ing walls driven by a narrow azimuthal slot. The exterior is treated rigorously as an infinite cylinder or as a
planar half space (the short circuit current density driving the slot is from the infinite cylinder in both cases).
The model is set up rigorously, by extracting the slot transmission line operator from the integro-differential
equation, allowing slot depth, metal losses, and gaskets to be included. The model includes modifications
of the slot voltage distribution from the cavity mode resonances. A finite Fourier basis is used for the slot
voltage distribution. The results with the cylinder exterior versus the planar exterior are not significantly
different.

Simplified analytic models are examined for the electrically short azimuthal slot aperture, where the
inductive slot voltage is not significantly modified . Coupling to both cylindrical modes, TM and TE with
respect to the cylinder axis, are treated. The exterior drive is again taken as the current density on an
infinite cylinder.

The case where the slot is near the first resonance is also considered. The exterior radiation is first
approximated as that of a slot on a half space. Later, the half space radiation is compared to the radiation
on an infinite cylinder and shown to somewhat underestimate the cylinder radiation, and this comparison is
shown to be consistent with the previous field comparison.

Finally, a power balance bounding approach is considered. We set up bounding receiving cross sections for
the slot aperture, based on uniformly distributed matched loads and balance the net power in with the cavity
wall absorption to estimate the cavity fields. Both a normal incidence bound [1] and oblique incidence bound
are constructed. We also consider an incoherent form of the power balance, where the power transmitted
into the cavity is balanced with the power absorbed by the cavity walls plus the power lost due to the slot.
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13 APPENDIX - HALF SPACE RADIATION

This appendix carries out integrals for the Y, .4 estimates for the even voltage distribution resulting from a
constant current drive and for the odd voltage distribution resulting from a linear current drive.

13.1 Even Voltage Distribution

For the even voltage distribution we need to evaluate

h 1i (" ?
Yrad[h Vo (8) Vo (s)ds = Trom Vo (s) <852 +k )Fo (s)ds
. 2 "Vo(s) e - Vo (s)
Fo(s):VO(s){—Ce—i-ln(l—s /h )}—i—/ 5] ds
—h -

Integration by parts gives
/hv*() 8—2+k2 Fy (s)ds = V*()QF()}L +/h —QV*()Q—HCQV*() Fy(s)d
0 as2 088_0885087}1 L 0s 0 as R

- [vo* (5) R (5) — Vi (5) Fy <s>} hh + [ [aav (5) + K2V; (sﬂ Fo (s) ds

h h
{v* (s) %Fo (s) — %v* (s) Fy (3)} - {aasv* (s) Fy (5)} - 2V ksin (kh) Fy (h)

so we find

h
Fy(s)ds
h

ve Vol h {1 +2cos? (kh) — 3smk(:h) cos (kh)} = —%ﬁQVJ[ssin (kh) Fy (h)Jr%iwsoVO* cos (kh)[

Carrying out the inner integral

/h VO (S,) eik|5*51| _ VO (5) s’
—h

|s = o'|

s—s'

_ /S Vo {cos (ks") — cos (kh)} [cos (k (s — s")) + isin (k (s — s"))] — Vi {cos (ks) — cos (kh)}ds,
~h

n /h Vo {cos (ks") — cos (kh)} [cos (k (s" — s))s—/l—j's;n (k (s —s))] — Vo {cos (ks) — cos (kh)}ds,

sth feos s—u)) — cos cos (ku isin (ku)| — {cos (ks) — cos
:Vo/o {cos (K (s —u)) (kh)} [cos (k L+ (ku)] — {cos (ks) (kh)}

T /Ohs {cos (k (s + u)) — cos (kh)} [cos (kui;r tsin (ku)] — {cos (ks) — cos (kh)} du
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v /s+h {cos (ks) cos (ku) + sin (ks) sin (ku) —:os (kh)} cos (ku) — cos (ks) + cos (kh) i

0

T /Oh_s {cos (ks) cos (ku) — sin (ks) sin (ku) —;zos (kh)} cos (ku) — cos (ks) + cos (kh) du

ViV /Os+h {cos (ks) cos (ku) + sin (ks)usin (ku) — cos (kh)} sin (ku) du

U

iV /Ohs {cos (ks) cos (ku) — sin (ks)usin (ku) — cos (kh)} sin (ku) i

e /Oerh —cos (ks) {1 — cos? (ku)} + sin (ks) Siz(ku) cos (ku) 4 cos (kh) {1 — cos (ku)} "

U

v /Oh—s —cos (ks) {1 — cos? (ku) } — sin (ks) siz(ku) cos (ku) + cos (kh) {1 — cos (ku)}d

+iVo

/Hh cos (ks) sin (ku) cos (ku) + sin (ks) sin? (ku) — cos (kh) sin (ku) du
0 U

+iVo

/hs cos (ks) sin (ku) cos (ku) — sin (ks) sin? (ku) — cos (kh) sin (ku) du
0 u

_ EVO /S+h —cos (ks) {1 — cos (2ku)} + sin (ks) sin (2ku) + 2 cos (kh) {1 — cos (k‘u)}du
2 0 U

+%Vo /h_s —cos (ks) {1 — cos (2ku)} — sin (ks) sin (2ku) + 2 cos (kh) {1 — cos (ku)}du
0 u

U

n i v /Hh cos (ks) sin (2ku) + sin (ks) {1 — cos (2ku)} — 2 cos (kh) sin (ku) P
5 0 0 u

- h—s ) 3 o _ ; _ 3 H
+%V0 / cos (ks) sin (2ku) — sin (ks) {1 . cos (2ku)} — 2 cos (kh) sin (ku) du
0

— 1V {2 cos (kh) Cin (k (h + 5)) — cos (ks) Cin (2k (h + s)) + sin (ks) Si (2k (h + 5))}

+%V0 {2cos (kh) Cin (k (h — 5)) — cos (ks) Cin (2k (h — 5)) — sin (ks) Si (2k (h — 5))}
+év0 {cos (ks) Si (2k (h + s)) + sin (ks) Cin (2k (h + 5)) — 2 cos (kh) Si (k (b + s))}
+%Vo {cos (ks) Si (2K (h — s)) — sin (ks) Cin (2k (h — s)) — 2cos (kh) Si (k (h — 5))}

Then we have
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FO (S) = Vb (5) {_Cs +1n (1 _ 82/h2)} " /h Vb (8/) eik|875 | . VEJ (s)dS/

|s = s'|

= Vp {cos (ks) — cos (kh)} {—C® — 2In (h) +In (h + ) + In (h — 5)}
+%v0 {2cos (kh) Cin (k (h+ 5)) — cos (ks) Cin (2k (b + 5)) + sin (ks) Si (2k (h + 5))}
%vo {2cos (kh) Cin (k (h — 5)) — cos (ks) Cin (2k (h — 5)) — sin (ks) Si (2k (h — 5))}
+%v0 {cos (ks) Si (2k (h + 5)) + sin (ks) Cin (2k (h + 5)) — 2 cos (kh) Si (k (b + 5))}

—&-%Vo {cos (ks) Si(2k (h — s)) — sin (ks) Cin (2k (h — s)) — 2cos (kh) Si (k (h — 5))}
with boundary values
Fy (£h) = %VO {2 cos (kh) Cin (2kh) — cos (kh) Cin (4kh) + sin (kh) Si (4kh)}

2V {cos (kh) Si (4kh) +sin (kh) Cin (4kh) — 2cos (kh) Si (2kh))

We also note that

%Fg (s) = =Voksin (ks) {—CS —2In(h) + In(h+s) +1In(h — )}
+Vo{cos(ks)—cos(kh)}{h_1'_8 - his}
1 1—cos(k(h+s)) 1—cos(2k(h+s)) . sin (2k (h + s))
+§V0 {2 cos (kh) ) — cos (ks) (hts) + sin (ks) (h—!—s)}

+%Vo {ksin (ks) Cin (2k (h + s)) + kcos (ks) Si(2k (h + $))}

—%VO {2 cos (kh) - Co(sh(ﬁ(:; =9 _ cos (ks) - COS}EQ_kih =) _ sin (ks) sin(2k (h = 5)) (?:EhS; s)) }

+%Vb {ksin (ks) Cin (2k (h — s)) — kcos (ks) Si(2k (h — 9))}

+%v0 {cos (ks) W +sin (ks)

1 —cos (2k (h+ s)) ‘ sin (k (h + s))
Tt s) — 2cos (kh) s }

+%Vo {—ksin (ks) Si(2k (h + s)) + kcos (ks) Cin (2k (h + s))}
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sin (2k (h — s))
(h—s)

f%vo {cos (ks) — sin (ks) - cos@k(h=5) 2 cos (kh) sm(k‘(hs))}

(h—s) (h—s)

+3V0 {—ksin (ks) Si(2k (h — s)) — kcos (ks) Cin (2k (h — 5))}

with boundary behavior

{gFO (s)] = FVoksin(kh){1 - C; —2In(h) +In(h+s)+In(h—s)}

s s—xh

:l:lV 2 cos (k) 1 —cos(2kh) (kh) 1 — cos (4kh) + sin (k) sin (4kh)
5 V0 2cos —p  —Cos gy, tsin ~—an

FWoksin (kh)

%vo {Jesin (kh) Cin (4kh) + k cos (kh) Si (4kh)}

sin (4kh)
2

' 1 — cos (4kh (o
i%VO {COS (kh) + sin (kh) 1 —cos(4kh) _ 2 cos (kh) bm()}

2h 2h

i%VO (—ksin (kh) Si (4kh) + & cos (kh) Cin (4kh)}

Note then that the boundary terms in integration by parts are

RN 9 " 9 " -
{V (s) s Fy(s) — %V (s) Fy (s)} . = {35‘/ (s) Fo () . = 2V ksin (kh) Fy (h)
We now need to evaluate
. . h
Ye Vol h {1 4 2c0s? (kh) — 350 LER) o (kh)} L oy sin (k) Fo (W) + i v cos (ki) [ Fy (s) ds
kh ™ Mo ™ To —h

with
Fo (£h) = %VO {2cos (kh) Cin (2kh) — cos (kh) Cin (4kh) + sin (kh) Si (4kh)}

+%Vo {cos (kh) Si(4kh) + sin (kh) Cin (4kh) — 2 cos (kh) Si (2kh)}

/_};Fo (s) ds

= =2hV {CS +21n (h)} {Iclh sin (kh) — cos (kh)} +W /h {cos (ks) — cos (kh)}{In(h + s) +In(h — s)} ds
—h

Carrying out the second integration
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+%Vo /}; {2cos (kh) Cin (k (h + s)) — cos (ks) Cin (2k (h + s)) + sin (ks) Si (2k (h + 5))} ds
1 h
+§V0 [h {2cos (kh) Cin (k (h — s)) — cos (ks) Cin (2k (h — s)) — sin (ks) Si (2k (h — s))} ds
—|—%VO /h {cos (ks)Si(2k (h+ s)) + sin (ks) Cin (2k (h + s)) — 2cos (kh) Si(k (h + s))} ds
—h
- h
+%Vb /_h {cos (ks) Si(2k (h — s)) — sin (ks) Cin (2k (h — s)) — 2cos (kh) Si (k (h — 5))} ds
= —2hVo {CS +2In ()} {klh sin (kh) — cos (kh)}
2h 2h
+Vo / {cos (k (u— h)) — cos (kh)}1n (u) du + Vp / {cos (k (h — u)) — cos (kh)}1n (u) du
0 0
1 2h
+§V0/0 {2 cos (kh) Cin (ku) — cos (k (u — h)) Cin (2ku) + sin (k (u — h)) Si (2ku)} du
1 2h
+§VO/0 {2cos (kh) Cin (ku) — cos (k (h — u)) Cin (2ku) — sin (k (h — w)) Si(2ku)} du
i 2h
+§V0 /0 {cos (k (u — h)) Si(2ku) + sin (k (v — h)) Cin (2ku) — 2 cos (kh) Si (ku) } du
i 2h
+§V0/0 {cos (k (h — u)) Si (2ku) — sin (k (h — u)) Cin (2ku) — 2 cos (kh) Si (ku) } du
= —2hVo {C¢ +21n ()} {klh sin (kh) — cos (kh)}
2h
+2Vo/ {cos (k (u—h)) — cos (kh)}In (u) du
0
2h
+W /0 {2 cos (kh) Cin (ku) — cos (k (u — h)) Cin (2ku) + sin (k (v — h)) Si (2ku) } du
2h
+iVo /0 {cos (k (u — h)) Si(2ku) + sin (k (u — h)) Cin (2ku) — 2 cos (kh) Si (ku)} du

= —=2hVp {C¢S +21n (h)} {klh sin (kh) — cos (kh)}

Lo H; sin (k (u — h)) — wcos (kh) + %sm (kh)} In (u)] Zh

—ovh /02h {]i sin (k (u — h)) — ucos (kh) + %sin (kh)} C%U
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1 1 2h
+W {2 cos (kh) uCin (ku) — z sin (k (u — h)) Cin (2ku) — 7, o8 (k(u—h))Si (Qku)}o
2h 1. 1—cos(2ku) 1 sin (2ku)
_VO/O {2cos (kh) (1 — cos (ku)) — 7 Sin (k (u—h))f — 3 cos (k(u—h)) }du

u

2h
+iVo { sin (k (u — h)) Si (2ku) — % cos (k (u — h)) Cin (2ku) — 2 cos (kh) u Si (ku)}

0

2h sin (2ku — cos (2ku
fiVO/O {Ilc sin (k (u — h)) (jk ) _ llc cos (k (u — h)) IT(Qk) — 2cos (kh) sin (ku)} du

= —2hVo {C¢ —21n(2)} {k:lh sin (kh) — cos (kh)}

2h [ B
-2V / {Sm (ku) 1 cos (kh) + L= cos(ku) 1 sin (kh) — cos (kh)} du
0 u ok U k

+Vo {4h cos (kh) Cin (2kh) — %sin (kh) Cin (4kh) — - cos (kh) Si (4kh)}

2h 1 . ) |
_Vo/o {2 cos (kh) (1 — cos (ku)) — 7 S0 (k(u—h)) — T Sin (k (u+ h))} du

+iVo {k sin (kh) Si (4kh) — % cos (kh) Cin (4kh) — 4h cos (kh) Si (Qkh)}

‘ 2h 1 .
—iVp /0 {ku cos (k (u+h)) — g €0 (k(u—h)) —2cos (kh)sin (ku)} du

—2hVo {C¢ —21n(2)} {klh sin (kh) — cos (kh)}

-2V {k cos (kh) Si(2kh) — 2hcos (kh) + % sin (kh) Cin (2kh)}

+W {4h cos (kh) Cin (2kh) — % sin (kh) Cin (4kh) — 1 cos (kh) Si (4I<:h)}

2h .
—2Vj cos (kh)/ {1 — cos (ku) — 1Sln(ku)} du
0 ku

+iVh {k sin (kh) Si (4kh) — % cos (kh) Cin (4kh) — 4h cos (kh) Si (Qkh)}

2h :
1
+Z2%/ {ksm (k‘h) S (ku) +COS (kh) Sin (ku)}du
0 u

262



= —2hVp {C¢ —21n(2)} {klh sin (kh) — cos (kh)}
-2V {Ilc cos (kh) Si(2kh) — 2hcos (kh) + % sin (kh) Cin (Qkh)}
. 1. . 1 .
+W {4h cos (kh) Cin (2kh) — 7 sin (kh) Cin (4kh) — 7 cos (kh) Si (4kh)}
“2Vp cos (kh) {Zh ~ 2 sin (2kh) — 7 Si (2kh)}
. 1. . 1 : .
+iVh {k sin (kh) Si (4kh) — 7 cos (kh) Cin (4kh) — 4h cos (kh) Si (Qkh)}
+i2Vy {11 sin (kh) Si (2kh) + % cos (kh) — % cos (kh) cos (2kh)}
= —2hVp {CS —21n (2)} {klh sin (kh) — cos (k‘h)} + VO% cos (kh) sin (2kh)
- 0% sin (Jh) Cin (4kh) — VO% cos (kh) Si (4kR) — Vi {2 sin (Jh) — 4h cos (kh)} Cin (2kh)

LV {isin (kh) Si (4kh) — %cos (kh) Cin (4kh) — 4h cos (Jkh) Si (2k:h)}

1 1 1
+i2Vy {k sin (kh) Si (2kh) + 7 cos (kh) — 7 cos (kh) cos (Zkh)}

Then the integral contribution to the radiation conductance and radiation susceptance are

Geoah {1 + 2cos? (kh) — 35111]{:(}1:}1) cos (kh)} — s cos (kh)

o

[]1 cos (kh) Cin (4kh) — % sin (kh) Si (4kh) + {2h cos (kh) — % sin (kh)} 2Si (2kh) — % cos (kh) sin? (kh)}

BE, b {1 + 2cos? (kh) — 3Sin]€(}]:h) cos (kh)} — L cos (kh) {2/1 {C¢—21n(2)} {klh sin (kh) — cos (kh)}

o

7% cos (kh) sin (2kh) + {Ii sin (kh) — 4h cos (kh)} Cin (2kh) + % sin (kh) Cin (4kh) + % cos (kh) Si (4kh)}

Using

—i2V Fy (2h) = —i [Vo|* {2 cos (kh) Cin (2kh) — cos (kh) Cin (4kh) + sin (kh) Si (4kh)}
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+ |V0|2 {cos (kh) Si (4kh) + sin (kh) Cin (4kh) — 2 cos (kh) Si (2kh)}
the boundary contribution the radiation conductance and radiation susceptance are
sin (kh)

Gioah {1 +2cos? (kh) — 3 oh oS (kh)} — % sin (kh) {cos (kh) Si (4kh) + sin (kh) Cin (4kh) — 2 cos (kh) Si (2kh)}
0

in (kh
B h {1 +2cos? (kh) — 3smk(h )

cos (kh)} — 77%70 sin (kh) {2 cos (kh) Cin (2kh) — cos (kh) Cin (4kh) + sin (kh) Si (4kh)}

Combining these two the total radiation conductance is

sin (kh)

M0 Glgalt {1 + 2cos? (kh) — 3 cos (kh)} =

cos” (kh) Cin (4kh)—sin (kh) cos (kh) Si (4kh)+{2kh cos® (kh) — sin (kh) cos (kh)} 2 Si (2kh)—4 cos® (kh) sin? (kh)

+sin (kh) cos (kh) Si (4kh) + sin? (kh) Cin (4kh) — 2sin (kh) cos (kh) Si (2kh)

= Cin (4kh) + cos (kh) {khcos (kh) — sin (kh)} 4 Si (2kh) — 4 cos? (kh) sin? (kh)

which is our former answer [9]. The total radiation susceptance is

sin (kh)
kh

TNy Brgal {1 + 2cos? (kh) — 3 cos (kh)} = cos (kh) [2{C: — 2In(2)} {sin (kh) — khcos (kh)}

—2cos (kh) sin (2kh) + {sin (kh) — 2kh cos (kh)} 2Cin (2kh) + sin (kh) Cin (4kh) + cos (kh) Si (4kh)]

+sin (kh) {2 cos (kh) Cin (2kh) — cos (kh) Cin (4kh) + sin (kh) Si (4kh) }

=2{C¢ — 2In(2) + 2Cin (2kh)} {sin (kh) — khcos (kh)} cos (kh) + Si (4kh) — 2 cos? (kh) sin (2kh)

=4{In(2) — C¢/2 — Cin (2kh)} {kh cos (kh) — sin (kh)} cos (kh) + Si (4kh) — 2 cos? (kh) sin (2kh)

which is also our former answer [9].
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13.2 0Odd Voltage Distribution

T Wiy

Via [ Wfas= L L [{v () L ()~ Vi (5) <s>}: [ A rvoln <s>ds]

-1l [{—g’svl () Fa (s >}h+/i{§v (54 B2V7 (6) | Fi (5)

or
o 2.3 sin (kh) 1,55\ sin? (kh)
Yo Vil h {1+3cos(kh) o —4 1_6k h 2h?
1 4 1 h
= ———V"{khcos (kh) — sin (kh)} {Fy (h) — F} (—h)} + —iweoV{" sin (kh)/ sFy (s)ds
T Whq ™ _h
Y P zk|s s | Vl (S) ,
Fi(s)=Vi(s){-C+In(1—-s*/h*)} + 5= ds
For the odd voltage distribution we need to evaluate
sin (kh 1 sin? (kh 1o "
Yo IVal* h? {1 + 3 cos (kh) k:(h ) _ 4 <1 - 6k2h2> kQEﬂ)} = ;zwsovl sin (kh) [h sFy (s)ds
where
o 2 2 Vl Zk|378/| —Vi(s) .,
Fi(s)=Vi(s){-C¢+1In(1—s*/h?) | q ds
s—s

Carrying out the inner integral for the V; term

/h Vi (s') eik|s4'| —Vi(s) s
—h

|s = o'|

ds’

_ /s Vi{hsin (ks') — s’ sin (kh)} [cos (k (s — s')) +isin (k (s — s))] — V4 {hsin (ks) — ssin (kh)}
_h s—¢s

ds’

n /h Vi{hsin (ks') — s'sin (kh)} [cos (k (s" — s)) +isin (k (s’ — s))] — Vi {hsin (ks) — ssin (kh)}

!
s s'—s

du

/S+h Vi{hsin (k (s —u)) — (s — u)sin (kh)} [cos (ku) + isin (ku)] — V; {hsin (ks) — ssin (kh)}

0 Uu

du

/h_s Vi{hsin(k (s +w)) — (s +u)sin (kh)} [cos (ku) + isin (ku)] — Vi {hsin (ks) — ssin (kh)}
0 u

+
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v /s+h {hsin (ks) cos (ku) — h cos (ks) sin (ku) — (s — u) sin ikh)} [cos (ku) + i sin (k)] — {hsin (ks) — ssin (kh)}
0

v /Ohs {hsin (ks) cos (ku) + h cos (ks) sin (ku) — (s + u) sin ikh)} [cos (ku) + isin (ku)] — {fsin (ks) — ssin (kh)}

1 / — (h/2) cos (ks) sin (2ku) + usin (kh) cos (ku) — (h/j) sin (ks) {1 — cos (2ku)} + ssin (kh) {1 — cos (ku)}

v /Ohs (h/2) cos (ks) sin (2ku) — wsin (kh) cos (ku) — (h/? sin (ks) {1 — cos (2ku)} + s sin (kh) {1 — cos (ku)}

+iV3

/Hh (h/2)sin (ks) sin (2ku) — (h/2) cos (ks) {1 — cos (2ku)} — (s — u) sin (kh) sin (ku) du

0 u

A%

/h_s (h/2)sin (ks) sin (2ku) + (h/2) cos (ks) {1 — cos (2ku)} — (s + u) sin (kh) sin (ku) du
0 u

_— {— (h)2) cos (ks) Si (2k (s + h)) + sin (kh) % sin (k (s + )
~ (h/2) sin (ks) Cin (2k (s + h)) + ssin (kk) Cin (k (s + )]
T {(h/z) cos (k3) $1 (2 (h — 5)) — sin (kh) 7 sin (k (h — 5))

— (hy2) sin (ks) Cin (2k (h — s)) + ssin (kh) Cin (k (h — 5))]
1AV [(/2) sin (ks) Si (2 (s + k) — (/2) cos (ks) Cin (2k (s + h)
—ssin (kh) Si (k (s + ) + sin (kh) % {1 = cos (k (s + h))}]
iV [(h/2) sin (ks) Si (2k (7 — 5)) + (1/2) cos (ks) Cin (2k (b — s))

—ssin (kh) Si(k (h —s)) —sin (kh) % {1 —cos(k(h— s))}]

Therefore
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Vi(s) el 1y (s)d ,

s — o] §

Fi(s)=Vi(s){— C°+ln(1—sz/h2)}+/
h

= Vi {hsin (ks) — ssin (kh)} {—C¢ +In (1 — s*/h*)}

+W [ (h/2) cos (ks)Si(2k (s + h)) + sin (kh) %sin (k(s+h)) — (h/2)sin (ks) Cin (2k (s + h)) + ssin (kh) Cin (k (s + h))]

+W [(h/?) cos (ks) Si(2k (h — s)) — sin (kh) %sin (k(h—s)) — (h/2)sin (ks) Cin (2k (h — s)) + ssin (kh) Cin (k (h — s))}

iV [(h/2) sin (ks) Si (2K (s + h)) — (h/2) cos (ks) Cin (2k (s + b))
—ssin (kh) Si (k (s + b)) + sin (kh) % {1 cos (k (s + h))}]
iV [(h/2) sin (ks) Si (2k (7 — 5)) + (h/2) cos (ks) Cin (2k (h — s))
—ssin (kh) Si ( (h — 5)) — sin (k) 1 {1 cos (k (h — s))}]

and

+F (£h) =W [ (h/2) cos (kh) Si(4kh) + sin (kh) % sin (2kh) — (h/2) sin (kh) Cin (4kh) + hsin (kh) Cin (Qkh)}

+iV; {(h/m sin (kh) Si (4kh) — (h/2) cos (kh) Cin (4kh) — hsin (kh) Si (2kh) + sin (kh) % {1 — cos (Zkh)}]

We now need to evaluate

_-_° o 2
rad/ |‘/1 |d8— WW/L()/ ‘/1 ( +k>

Vi(s){-Co+1In(1-s°/n*)} + /_h Vi (s) Ml (s) ds’] ds

|s = &'l

o 2,3 sin (kh) 1,55\ sin? (kh)
Yo Vil h {1+3cos(kh) h —4 1—6kh T

h
= givl {khcos (kh) —sin (kh)} Iy (h) + lz'(,ueo‘/'f‘ sin (kh)/ sFy (s)ds
T Wit m n

or
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o sin (kh) 1 sin? (kh)
m™MohY % {1 + 3 cos (kh) T 4 (1 _ 6k2h2) .

i . 1 ko h
= 2% {khcos (kh) — sin (kh)} T%Fl (h) + ZhTVl sin (kh) /_h sFy (s)ds

For the moment ignoring the boundary term

0 2.3 ‘ sin (kh) 1,5\ sin® (kh) 1. .. h
YoualVil™h {1+3COb (kh) h —4(1- ék h [ETE = ;zweon sin (kh) » sk (s)ds

h | s eik|s—s’|_ (s
F1(s)=V1(s){—cg+1n(1_32/h2)}+/_hV( ) |57$/‘ Vils)

Carrying out the integration
h h
/ sFy(s)ds =V, / {hsin (ks) — ssin (kh)} {—C? —2In(h) + In(h+ s) + In(h — s)} sds
—h —h
" 1
+W [h { (h/2) cos (ks) Si(2k (s + h)) + sin (kh) Z sin (k (s + h))
— (h/2)sin (ks) Cin (2k (s + h)) + ssin (kh) Cin (k (s + h))] sds

h
+Vi /41 [(h/?) cos (ks) Si (2k (h — s)) — sin (kh) %sin (k(h—s))

— (h/2)sin (ks) Cin (2k (h — s)) + ssin (kh) Cin (k (h — s))] sds
h
+iVi /4L [(h/2)sin (ks)Si(2k (s+ h)) — (h/2) cos (ks) Cin (2k (s + h))
—ssin (kh) Si(k (s + h)) + sin (kh) % {1 —cos (k(s+ h))}] sds
h
+iVq /41 [(h/2)sin (ks)Si(2k (h — s)) + (h/2) cos (ks) Cin (2k (h — s))

—ssin (kh) Si(k (h — s)) — sin (kh) % {1 —cos(k(h— s))}] sds

h h
=W / {hsin (ks) — ssin (kh)} {—C2 — 21In (h)} sds + 214 / {hsin (ks) — ssin (kh)} In (h + s) sds
—h —h

h 1
+2V / [— (h/2) cos (ks) Si(2k (s + h)) + sin (kh) z sin (k (s + h))
—h

268



— (h/2)sin (ks) Cin (2k (s + h)) + ssin (kh) Cin (k (s + h))] sds
+i2V4 /h [(h/2)sin (ks) Si(2k (s + h)) — (h/2) cos (ks) Cin (2k (s + h))
—h
—ssin (kh) Si(k (s + h)) + sin (kh) % {1 —cos(k(s+ h))}] sds

h
= -1 {C? +2In(h)} {Zscos (ks) + % sin (ks) — és?’ sin(kh)}
—h

2h
o1 /0 {h (w— h)sin (k (u — h)) — (u — h)?sin (kh)} In () du

+2V /0 [— (h/2) cos (k (u — h)) Si(2ku) + sin (kh) % sin (ku)

— (h/2)sin (k (v — h)) Cin (2ku) 4+ (u — h) sin (kh) Cin (ku)] (v — k) du
2h
+i2V4 /0 [(R/2)sin (k (u— h))Si(2ku) — (h/2) cos (k (u — h)) Cin (2ku)
— (u — h)sin (kh) Si (ku) + sin (kh) % {1 —cos (ku)}} (u—h)du

= 213V {C? 4+ 21In (h)} {k:lh cos (kh) + ﬁ sin (kh) — %sin (kh)}

2

+2V; H—Z (u—h)cos(k(u—h)) — % cos (kh) + l?h? sin (k (u — h))

_é (u— h)* sin (kh) (;;; _ /.:12> hsin(kzh)} In (’u):|zh

 h h ho
—2V1/0 {—k(u—h)cos(k;(u—h))—kcos(kh)—Fstm(k(u—h))

_% (u— h)®sin (kh) — (;h2 ~ ;) hsin(kh)} d;u

+2Vi {— (h/2) {]1€ (u—h)sin(k(u—h))+ % cos (k (u — h))} Si (2ku)

2h

—(h/2) {—]1€ (uw—h)cos (k(u—h))+ % sin (k (u — h))} Cin (2ku) + sin (kh) é (u — h)® Cin (ku) )

sin (2ku)
u

2 [ B = 2 {5 (w sin = )+ 08 (0 (0= 1)
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3 1 —cos (ku)

—(h/2){—;(u—h)cos(k(u—h))—l—];sin(k(u—h))}wus(zlm)—l—sin(kh);(u—h) 2 g
+%V1 sin (Ih) /O by sin (k) du
FioV; [(h/Q) {—; (u — h) cos (k (u — h)) + % sin (s (u — h))} Si (2ku)
—(h/2) {; (1= h)sin (k (u — ) + g cos ( (u — h))} Cin (2ku) — 3 (u— b)" sin (k1) Si (k:u)} Zh
2w /0% {(h/Q) {—; (1= ) cos (k (u — ) + 5 sin (k (u ~ h))} Sm(ui%“)
— (h)2) {; (u — h)sin (k (u — h)) + % cos (k (u — h))} 1‘#5(%“) - % (u — h)° sin (k) Sinik“)} du

2h
—|—Z%V1 sin (kh) /0 (w—h) {1l — cos (ku)} du

1 1 1
_ 3 o _ . ot
= =211 {C2+2In(h)} { 75 €08 (kh) + 722 Sin (kh) 3 sin (k:h)}

+2V; h (kh) U (kh) + " (kh) L (kh) Lz _ LY g (kh) ¢ In (2h)
1 % COS % COS k2 S 3 S 3 k2 S n

2h
—2V1/0 {—Zcos(kz (u—h)) — % (u® — 3hu + 3h?) sin(kh)}du

2h 2 2 . .
h 1—cos(ku) h* . sin (ku) h sin(ku) h 1 — cos (ku)
_9 _ cos St Sk AT = cos g il Sk
Vl/o { . oS (kh) " + 3 sin (kh) " + 12 €08 (kh) ” + 12 Sin (kh) ” du

12V, [_ (h/2) {Z sin (kh) + — cos (kh)} Si (4kh) — (h/2) {—Z cos (kh) + % sin (k:h)} Cin (4kh) + sin (kh) %h?’Cin (2kh)}

k2
2h in "
_2V1/0 {— (h/Q){llg(u—h)sin(k‘(u—h))-l-klzcoS(k(u_h))}s (jk )
—(h/2) {;(uh)cos(k (u—h)) + %sin(k (uh))} 1_#5(%“) +sin (kh) é (u—h)? 1—“:(’“&)] du
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2 1 1 2
+EV1 sin (kh) {k: (u — h)cos (ku) + 7z sin (ku)}o

. h 1. : h . 1 . 1 3. :
+i2V; [(h/Q) {_k cos (kh) + 72 Sin (kh)} Si (4kh) — (h/2) {k sin (kh) + 73 Cos (k:h)} Cin (4kh) — ghg sin (kh) Si (2kh)
sin (2ku)

—i2V; /:h {(h/2) {—; (u—h)cos(k(u—h))+ %Siﬂ (k (u— h))}

—(h)2) {; (w— R)sin (k (u — h)) + % cos (k (u — h))} 1‘#8(%“) - é (u— h)*sin (kh) Smgfu)} du

2 1 1 1 2
—l—iEVl sin (kh) {2 (u—h)* - Z (u — h)sin (ku) — 73 o8 (k:u)}(J

1 1 1
— 3 o . .
= =211 {C2+2In(h)} {_kh cos (kh) + 2 Sib (kh) — 3 sin (kh)}

+2V; B cos (kh) — m cos (kh) + 7 i (kh) — L13 sin (kh) — L LY i (kh) ¢ In (2h)
! k k k2 3 3 k2

1 3 2h
<u3 - §hu2 + 3h2u) sin (k;h)}
0

_on, {—hsin(k (w-m)-3 (3

1
k2 3

2 2
-2V {—]; cos (kh) Cin (2kh) + % sin (kh) Si (2kh) + k—hQ cos (kh) Si(2kh) + % sin (kh) Cin (2kh)}

+21 [— (h/2) {Z sin (kh) + % cos (kh)} Si(4kh) — (h/2) {—Z cos (kh) + % sin (kh)} Cin (4kh) + sin (kh) éh?’Cin (Qkh)}

2h
+ZV1/0 {llﬂ(u—h)cos(k(u—i—h)) —%(u—h)cos(kj(?)u—h))—|—%sin(k(u+h))+ k12sin(k:(3u—h))} dzu

2h
+@v1/ {—i(u—h)cos(k(u—h))+;sin(k(u—h))—l—}ﬂ(u—h)cos(k(u+h))

+% (1 — h) cos (k (3u— ) + %sin(k(u+h)) _ %sin(k(?)u— h))} %“

2h
1- k
cos (ku) du

2h
—2V; sin (kh) é / [(u?® = 3hu + 3h*) — (u® — 3hu + 3h?) cos (ku)] du+2V; sin (kh) %}ﬁ /
0 0 u
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2. . h h 1 |
+EV1 sin (kh) {k cos (2kh) — T + 72 5in (Qkh)}

+i2V; [(h/2) {Z cos (kh) + % sin (k:h)} Si (4kh) — (h/2) {Z sin (kh) + kl cos (kh)} Cin (4kh) — éh?’ sin (kh) Si (2kh)}

h 1 du

_i§V1/O {_k (w—h)sin (k(u+h)) — % (u—h)sin (k (3u — h)) + %COS (k(u+h)) — %cos(k (3u — h))} -

2h
+i;lv1/0 {Ii(u—h)sin(k(u—h))—l—];cos(k(u—h))—f—;(u—h)sin(k(u—&—h))
1 . 1 1 du
f%(ufh)sm(k(?)ufh)) - ﬁcos(k(u+h)) - k2cos(k(3uh))} ™
+z'§vl sin (kh) /0 " (u® = 3hu® 4 3h°u — h?) Siniiku)du

2 1 h . 1
+Z%V1 sin (kh) {k2 — . sin (2kh) — 72 €08 (2k'h)}

1 1 1
_ 3 o _ o
= =2V {C2+2In(h)} { 5, €05 (kh) + ETe] sin (kh) 7 5in (kh)}

+2V; H—}: cos (kh) — %2005 (kh) + % sin (kh) — %h‘"* sin (kh) — ( h? — ) hsin (kzh)} In (2h)}

Loy {2 (8 st
2Vy { 2 Sin (kh) 3 (3h 6h° + 6h ) sin (kh)}
h? h? h h
-2V - sin (kh) Si (2kh) — - co8 (kh) Cin (2kh) + 72 008 (kh) Si(2kh) + 72 sin (kh) Cin (2kh)

+2V; [ (h/2) {Z sin (kh) + % cos (kh)} Si (4kh) — (h/2) {Z cos (kh) + % sin (kh)} Cin (4kh) + sin (kh) %h?’cm (2kh)

2h

+T]];V1 {sin (k(u+h)) — %sin (k (3u — h))}0

2h
+ V1 / {—hcos (ku) cos (kh) + h cos (3ku) cos (kh) + hsin (ku) sin (kh) + hsin (3ku) sin (kh)} du
u

! 1 1 1
+ Qhk Wi / {k: sin (ku) cos (kh) + Z sin (3ku) cos (kh) + Z sin (kh) cos (ku) — z sin (kh) cos (3ku)} %
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2h
+£V1 {2 sin (k (u—h)) + = sin (k (u 4+ h)) + L sin (k (3u — h))}

2 k k 3k 0
h 2 1 , 1 , du
—l—%Vl / hcos (ku) cos (kh) — h cos (3ku) cos (kh) — 7, €8 (ku)sin (kh) + 7, €08 (3ku) sin (kh) p —
0 u
hoo [P fa . . . 3 L du
+ﬁV1 / 3hsin (ku) sin (kh) — hsin (3ku) sin (kh) + 7 Sin (ku) cos (kh) — 7 Sin (3ku) cos (kh) w
0

2h

20 1oy 2 eos (k) — 2 3 3 os 324
—|-3V1 sin (kh) {ku sin (ku) + gt cos (ku) 75 Sii (ku) khu sin (ku) k2hCOb (ku) + kh sin (ku)}o

2 8 1
—3Visin (kh) gh3 + 2V sin (kh) ghf“cm (2kh)

2 . h h 1 .
—i—%Vl sin (kh) {_k cos (2kh) — z + 73 sin (2kh)}

L2V [(h/?) {—Z cos (kh) + % sin (k:h)} Si (4kh) — (h)2) {Z sin (kh) + % cos (k;h)} Cin (4kh) — %hB sin (k) Si (2)kh)

2h
_i%% {cos (k(u+h))+ %cos (k (3u — h))}o

2h
#igVi {2 cos I (u = 1) = gy cos (ka4 1) + o con (h3u— 1)}

2 2 [ 352 .
—iﬁVl /Qh {hsin(kz (u+h))+ ﬁsin(k (3u—h)) + icos(k (u+h)) — icos (k (3u — h))} du
20k k ;2 ;2 ”
2h
+i§v1 /0 {—ihsin (k (u— b)) + % cos (k (u — h)) — %hsin (k (u+ h))
h . 1 1 du
—|—E sin (k (3u — h)) — 73 o8 (k(u+h))— 73 €08 (k(3u — h))} .

2h

2 1 2 2
+i§V1 sin (kh) {ku2 cos (ku) + 72l sin (ku) + 73 ¢08 (ku) + %hu cos (ku) — %h sin (ku) — %hQ cos (ku)}

0

2
—i§h3vl sin (kh) Si (2kh)
.2 . 1 h . 1
—H%Vl sin (kh) {kz — 3 sin (2kh) — 73 08 (2kh)}
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1 1 1
3 o . .
=2V {C?+21In(h)} {k‘h cos (kh) + 25,2 sin (kh) — 3 sin (kh)}

vy [ L2 cos ) — T2 cos (om) + % sin () — 20 sin () — (52 = 1) hosin (o) Lin (20)
1 k COS k’ COS kz S1n 3 Sin 3 k2 Sin n

2 2
-2V {IZ sin (kh) Si (2kh) — % cos (kh) Cin (2kh) + k—h; cos (kh) Si (2kh) + % sin (kh) Cin (Qk:h)}

% 1/8 4 4 4\
_2V1{_k25m(kh)_3 <3h — 6h° + 6h° | sin (kh)

+21; [— (h/2) {Z sin (kh) + % cos (kh)} Si (4kh) — (h/2) {—Z cos (kh) + % sin (k‘h)} Cin (4kh) + sin (kh) %thin (2kh)

h . ) 1. 1.
+2—]€2Vl {sm (3kh) — sin (kh) — 3 sin (5kh) — 3 sin (k:h)}

—&-%Vl {hcos (kh) Cin (2kh) — h cos (kh) Cin (6kh) + hsin (kh) Si (2kh) + hsin (kh) Si (6kh)}

1 1 1 1
+%V1 {k cos (kh) Si (2kh) + 7 cos (kh) Si (6kh) — Z sin (kh) Cin (2kh) + Z sin (kh) Cin (Gk‘h)}

h 4 1 . 1 . 1 . 1
+%Vl {_k sin (kh) + 7 sin (3kh) — 7 sin (kh) + 35, Sin (5kh) + 35, Sin (kh)}

+%V1 {—h cos (kh) Cin (2kh) 4+ h cos (kh) Cin (6kh) + % sin (kh) Cin (2kh) — % sin (kh) Cin (Gkh)}

+2%v1 {3hsin (kh) Si (2kh) — hsin (kh) Si (6kh) + %cos (kh) Si(2kh) — %COS (kh) Si (Gkh)}

2 4 4 2
+3Visin (kh) {kiﬂ sin (2kh) + Tzheos (2kh) — = sin (2kh) — %iﬁ sin (2kh) — %hcos (2kh) + %h + %hz sin (2kh)}

2 1
2 Visin (kh) %hS + 2V sin (kh) £ K Cin (2kh)

2 . h h 1 .
—l—%Vl sin (kh) {_k: cos (2kh) — 7 T gasin (2k:h)}
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+i2v; [(h/?) {Z cos (kh) + — sin (kzh)} Si (4kh)

k2
— (h)2) {Z sin (kh) + 7 cos (kh)} Cin (4kh) — %h?’ sin (kh) Si (Qkh)]

. h 1 1
_zﬁVl {cos (3kh) — cos (kh) + 3 cos (5kh) — 3 cos (kh)}

h 1 1 1 1
+Z§V1 {k52 cos (3kh) + 73 €08 (kh) + 353 ©°8 (5kh) — 32 €0 (kh)}
ity / B cos (kh) sin (k) +  sin (3ku) cos (kh) — = sin (ku) sin (kh) — — sin (3ku) sin (kh) | 22
Z2 1 o kCOb Sin U k Sin U ) COS k2 Sin U ) S11 k2 Sin U ) Ssin ”

2h
—igvl / {k cos (ku) sin (kh) — % cos (3ku) sin (kh) + % cos (ku) cos (kh) — % cos (3ku) cos (kh)}
0

= |F

2h

—HEV1 /0 {_k:h sin (ku) cos (kh) + % sin (ku) sin (kh) + % sin (3ku) cos (kh) — % sin (3ku) sin (k:h)} %
N : h : 1 1 ] du

+Z§V1 ; 7, €08 (ku)sin (kh) — 7, €08 (3ku) sin (kh) + 73 ¢08 (ku) cos (kh) — 73 Cos (3ku) cos (kh) "

+Z§V1 sin (kh) {2}12 cos (2kh) + %hsin (2kh) + 33 cos (2kh) — % + %hQ cos (2kh)

3 s 302 cos 352
—thbln (2kh) kh cos (2kh) + kh }

2 : . 2. 1 h . 1
_zgh?’Vl sin (kh) Si (2kh) + ZEV1 sin (kh) {kQ — sin (2kh) — 73 Cos (2kh)}

— _9p3V [0 1 L. Ly
= —2h Vl{CeJr21n(h)}{ khcos(kh)+k2h251n(kh) 3sm(kh)

+2V; e (kh) e (kh) + " (kh) L (kh) LPLIE P (kh) ¢ In (2h)
1 A COS % COS k}2 Sin 3 S1n 3 k2 Sin n

2 2
-2V { sin (kh) Si (2kh) — - o8 (kh) Cin (2kh) + k% cos (kh) Si(2kh) + % sin (kh) Cin (Qkh)}

2k 1(85 63t on?) s
-2V {_k2 sin (kh) 3 (3h 6h° + 6h )sm(kh)}
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+2; { (h/2) {Zsin (kh) + % Ccos (kh)} Si (4kh)
—(h/2) {—Z cos (kh) + kiz sin (k;h)} Cin (4kh) + sin (kh) %h?’Cin (Zkh)}

+%V1 {Sin (3kh) — sin (kh) — %sin (5kh) — %Sin (kh)}

+%v1 {h cos (kh) Cin (2kh) — h cos (kh) Cin (6kh) + hsin (kh) Si (2kh) + hsin (kh) Si (6kh)}

+%v1 {]1{ cos (kh) Si (2kh) + %cos (kh) Si (6kR) — %Sin (kh) Cin (2Kkh) + %sin (kh) Cin (Gkh)}

h 4 . 1. 1. 1 . 1 .
+%Vl {k: sin (kh) + 7 sin (3kh) — 7 sin (kh) + 35 Sin (5kh) + 3 Sin (kh)}

+%V1 {—h cos (kh) Cin (2kh) + hcos (kh) Cin (6kh) + % sin (kh) Cin (2kh) — % sin (kh) Cin (Gkh)}

+%v1 {3hsin (kh) Si (2kh) — hsin (kh) Si (6kh) + %cos (kh) Si (2kh) — %Cos (kh) St (Gkh)}

2 4, 4 2 6 , . 3 3. 3.,
—|—§V1 sin (kh) {kh sin (2kh) + ﬁh cos (2kh) — 73 Sin (2kh) — Eh sin (2kh) — ﬁh cos (2kh) + ﬁh + Eh sin (Qk:h)}
2 8 4 _ 1, .
—§V1 sin (kh) §h + 2V sin (kh) gh Cin (2kh)

2 h h 1 |
+EV1 sin (kh) {_k cos (2kh) — T + 7z sin (Qkh)}

+i2V; [(h/Q) {—Z cos (kh) + % sin (kh)} Si(4kh) — (h/2) {Z sin (kh) + % cos (kh)} Cin (4kh) — %h?’ sin (kh) Si(2kh)

. h 1 1
_z@Vl {cos (3kh) — cos (kh) + 3 cos (5kh) — 3 cos (k:h)}

h 1 1 1 1
+7,§V1 {_k2 cos (3kh) + 73 o (kh) + 32 08 (5kh) — 32 08 (kh)}

—igvl {Z cos (kh) Si (2kh) + %cos (kh) Si (6kh) — % sin (kh) i (2kh) — % sin (kh) Si (6kh)}
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1 1
—ing {—Z sin (kh) Cin (2kh) + % sin (kh) Cin (6kh) — 73 Cos (kh) Cin (2kh) + 72 C08 (kh) Cin (Gk‘h)}

—l—ing {—2h cos (kh) Si (2kh) + % sin (kh) Si (2kh) + % cos (kh) Si (6kh) — % sin (kh) Si (Gkh)}

—|—Z§V1 {—Z sin (kh) Cin (2kh) + % sin (kh) Cin (6kh) — % cos (kh) Cin (2kh) + % cos (kh) Cin (6kh)}

.2 . 4 2 4 . 2 2
+Z§V1 sin (kh) {_kh cos (2kh) + ?h sin (2kh) + 73 Cos (2kh) — =

6 2 3 . 3 2 3 2
+Eh cos (2kh) ﬁhsm (2kh) Eh cos (2kh)+%h }

2 5 . . 2. 1 A 1
_zgh Vi sin (kh) Si(2kh) + ZEV1 sin (kh) {/{2 — 3 sin (2kh) — 72 €0 (2kh)}

Thus we find

h 1 1 1
_ _ 913 o __ o @ T
/h sFy (s)ds = —2h°V; {CY — 21n (2)} { h cos (kh) + 202 sin (kh) 3 sin (kh)}

4 1\ . ho 2
+3—kV1 sin (kh) {(W +h ) sin (kh) cos (kh) — 7 sin (kh) + kh}

+W1 {Z {hsin (kh) + %COS (kh)} Si (4kh) — % {h cos (kh) + %sin (kh)} {Cin (4kh) + 2Cin (2kh)}

4
+§h3 sin (kh) Cin (2kh)}

iV {Z {;sin (kh) — h cos (kh)} {281 (2kh) + Si (4kh)} — % {hsin (kh) + %cos (kh)} Cin (4kh) — %h?’ sin (kh) Si (2kh)
b Vs (kh) < (R + L) sin? (kh) + b (kh) cos (kh) + h?
lgk 1 S1n ]{;2 S1n k; Sin COS
Then

o sin (kh) 1 sin? (kh
™Y, {1 + 3 cos (kh) k(h —4 (1 - 6k2h2) k2h2)}

, h
= = {khcos (kh) — sin (kh)} hiVlFl (h) +1 h2kV1 sin (kh) /_ SFi(s)ds

277



hlVlFl (h) = [— cos (kh) Si(4kh) + sin (kh) % sin (2kh) — sin (kh) Cin (4kh) 4 2sin (kh) Cin (2k‘h)}

+i {Sin (kh) Si(4kh) — cos (kh) Cin (4kh) — 2sin (kh) Si (2kh) + 2 sin (kh) ﬁ {1 — cos (Qkh)}]

sin (kh) 1 sin? (kh
™Y, {1 + 3cos (kh) k(h —4 (1 - 6k2h2) 252 ) }

= —i2sin (kh) {— cos (kh) + % sin (kh) — §kh sin k:h)} {C? —21n(2)}

4, 1 . 1 ., 2
+z§ sin” (kh) { (k:QhQ + 1) sin (kh) cos (kh) — 77 Sin (kh) + k:h}

i {cos (kh) — /?Ih sin (kh)} [— cos (kh) Si (4kh) + sin (kh) % sin (2kh) — sin (kh) Cin (4kR) + 2 sin (kh) Cin (2kh)

tisin (kh) {— {sin (kh) + % cos (kh)} Si (4kh) + {cos (kh) — % sin (kh)} (Cin (4kh) + 2Cin (2kh)}

+§kh sin (kh) Cin (Qkh)}

- {cos (kh) — kilh sin (kh)} {sin (kh) Si(4kh) — cos (kh) Cin (4kh) — 2sin (kh) Si (2kh) + 2sin (kh) % {1 — cos (2kh)}}

— sin (kh) H ﬁ sin (kh) — cos (kh)} {2Si (2kh) + Si (4kh)} — {sin (kh) + % cos (kh)} Cin (4kh) — %kh sin (kh) Si (2kh)}

4, 1 1
—gsin (kh){(l—&—W) sin? (kh)—&—ﬁsm (kh) cos (kh) +1}

or

in (kh
TiohY {1 + 3 cos (kh) Smk(h ) 4 ( _ k2h2) 81111;2112 }

= 42sin (kh) {cos (kh) — % sin (kh) + ékh sin (kh)} {C¢—2In(2)}

81 1 . 1 . 41
+z§% {2005 (kh) — 77, Sin (kh) + §kh sin (kh)} sin? (kh) cos (kh) + i~ 3 %A sin? (kh)
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+i { Si (4kh) + sin (kh) {cos (kh) — (;h - ;kh) sin (kh)} 4Cin(2kh)]

+Cin (4kh) + sin (kh) {cos (kh) — <k1h - ;kh> sin (kh)} 4Si (2kh)

81

51 SRR — a3 (o) _ 2 2
3 %A {2c05 (kh) oh sm(kh)}bm (kh) 3 sin (kh) {sin® (kh) + 1}

Therefore we can write

o sin (kh 1 sin? (kh
mehG2,, {1 + 3 cos (kh) k(h ) _y (1 _ 6k2h2> kfz%z)}

= Cin (4kh) + sin (kh) {cos (kh) — (klh - ;kh) sin (kh)} 4Si (2kh)

1

8 1. 1. .3 4 .,
3%h {2 cos (kh) 77, Sin (kh) + ikhsm (kh)}sm (kh) 3 sin (kh)

0 sin (kh 1 sin? (kh
mohBraq {1 + 3cos (kh) k:(h ) —4 <1 _ 6k2h2> 16222)}
81

= —2sin (kh) {cos(kh) - (klh - ;kh> sin(kh)} {Co—21n(2)}

1 B 1 . 2 . - éi 1.2
3Th {2cos (kh) o, S (kh) + 2kh sin (kh)} sin® (kh) cos (kh) 3 %7 5in (kh)

+ Si (4kh) — sin (kh) {cos (kh) — <k:1h — ;kh) sin (kh)} 4Cin (2kh)

As a check we compared these with numerical integration of the integrals in

o sin (kh 1 sin? (kh
ehG2,, {1 + 3 cos (kh) k(h ) _y (1 _ 6k2h2> kfz%z)}

h
= —ﬁ {kh cos (kh) — sin (kh)} hiVl Im{F (h)} — hziVl sin (kh) Im {/ . sFy (s) ds}

in (kh 1 in2 (kh
T0hByaa {1 + 3 cos (kh) Smk(h )4 (1 - mz) Sn<>}

h2V1 h

If we take the low frequency limit of the right hand side of B?,,, using the expansions

1 , 2 koo "
=1z {khcos (kh) —sin (kh)} W Re{Fi (h)} — ——sin (kh) Re {/ sFy (s) ds}

Si(x)

/ S“;“du ~ / [1—u?/6+u*/120 — u® /5040] du = 2 (1 — 2? /18 + = /600 — 2° /35280)
0 0
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Cin (z) = / %du N / (/2 — u®/24 4 u® /720 — u7 /40320] du = a2 /4—a* /9645 /4320—a3 /322560
0 0

= (2*/4) (1 — 2*/24 + /1080 — 2°/80640)
we find

1 1 1 1 1 1
o~ _ 1— Zp2p2 apd _ (1 2p2p2 414 222 (1 - Zp2p2 °o_9]
2kh{ 2kh +24kh ( 6kh +12Okh>+3kh ( 6kh>}{C’e 2In(2)}

8 1 1 1 1 1 1
_S)o (1 Zp2p2 apa) _ (1 Zp2p2 414 ZE2p2 (1 — ZE2p2
3{( 2/<;h+24kh) ( 6kh+120kh>+2kh< 6kh)}
1 2 1 1
1 — Zk2p2 apa) (1 - Zp2p2 474
kh< 3kh+45kh)< 2kjh+24kh)

4 1 2
_2 1 — Zk2p2 4 ZpApd
3kh< 3l<:h +45kh)

+4kh—yk3h3+%k5h5—kh 171k2h2 17119%2 - 1711@%2 1711{:’4’}12 4 k2h2—1k4h4+lk6h6
9 75 6 2 3 6 6 135
1. 64 2 2 o5 . 64 2 2 5.5
[3{08 21n (2)} + : 949] 15k ho = [{ce 21n(2)}+35 349} 45k h
. 861 2 . s
[{ce 2In(2)} + 15} &kh
The second line was simplified as
_§ _122_L44 _122 244 _122 i44_é _122 244
3kh{1 Skh 120kh 1 Skh+45kh 1 2kh+24kh 3kh1 3kh+45kh
8 1 1 5 91 4 1 2
=——kh{1l—2K*h? — —K*h* Y (1= ZE2R2 + —K*h* ) — Zkh (1 — 2K2R2 + —k*n?
3 { 3 120 6 * 360 3 3 t 1
8 7 47 4 1 2
=——kh{1l— =K*h> + —K*h*} — Zkh (1 — ZK2R® + = K*R4
3 { 6 90 3 3 1
4 8 5.0 49 , 32 5, 449 , .,
= —— _ = — = — 4—— —_——
3k:h{3 3l~ch +45kh kh gkh +345kh
If we take

C?=2In(2) —86/15=2[In (2) — 43/15]
we get O (k7h7) and
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rad

in (kh 1 in? (kh
mohBC {1 + 3cos (kh) Smk(h ) 4 <1 _ 6k2h2> SH;CQELQ)}

— 25in (kh) {cos (kh) — <k1h - ;kh> sin(k:h)} 86/15

8 1 ‘ 1 1. 2 . 4l Lo
S Th {QCOb (kh) o, Sin (kh) + 2kh sin (kh)} sin® (kh) cos (kh) 3 %5 S0 (kh)
1 Si (4h) — sin (kh) {cos (kh) — (klh - ;kh) sin (kh)} ACin (2kh)

If we take the low frequency limit of the right hand side of G¢_,

2 32 16
2:2 (1 “12;2 414 616
4k*h (1 3kh +135kh 315kh>

1 1 1 1 1 1
Bh2 (1 — 2K2h? + —k*h* — —— KRS ) {1 — K2R + —k*h* — —KOhS
+8 < 6 120 5040 2 b 720

1 1 1 1 2 2 4
—(1=2K*R?) (1 - ZK?R® + —K*n* — —— kSRS 1— 2k2R? + —k*h* — ——KOhS
( 3 ) ( 6 * 120 5040 9 t 7 2205

8 1 1 1 1 1 1
——k2h%22 (1 — KPR+ — KRt — — kSRS ) — [ 1 — 2K*h2 + — kRt — ——KShS
3 { ( 2 o1 720 6 120 5040

+1/€2h2 1— 1thQ + ik‘*h‘* — Lkﬁhﬁ 1— lehQ + ikz‘*h‘* - Lkﬁhﬁ ’
2 6 120 5040 6 120 5040

4 1 1 1 N\ 2
——k*h? (1 — ZK%h® + —k*h* — ——KShS
3 6 120 5040

2 32 16 .
~AR2R2 (1 = ZE2p2 414 67,6
k*h ( 3k’h +135kh 315kh

1 1 1 1 1 1 1 23 1
8k2h2 (1 — ZK?h? + —k*h* — —— kS8 ) {1 — K2R+ —k*hY — —KShS — (1 — 2K2h2 4+ ——k*ht — —kSnS
* ( 6 * 190 5040 2 T 720 2 * 360 336
2 2 4
1— Zk2R? + = k*h* — ——kOhS
( 9 7 2205
1 1 1 1 2 1 1 1 1
f§k2h2 1— 2k?h? — —k*%®* 4+ —KShS ) (1 — =k2h%2 + —k*h* — — kSRS ) (1 — Z2k2R% + —K*h* — ——KORS
3 3 120 630 3 45 315 6 120 5040

4 1 2 1
——K?h? (1= Zk%R% + —k*h* — ——KShS
3 ( 3 T 315
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2 2 1
~4K2R% (1 — SK2R2 + 3—k4h4 — —6k6h6
3 135 315

. 1 1 1 . 1 2 2 4 .
fék‘)h" 1— k2R + —k*h* — —— kRS ) {1 — —k2h2 Y (1 — K2R + —k*h* — ——kORS
45 6 120 5040 14 9 75 2205

8 1 1 1 1 13 41
—— k2Rl — KPR — — kRt ——KSKO Y (1 — SRR 4+ — kRt — —— kSRS
3 { 3 20" " T 630 2" 10 3024

—%thQ (1 — %thQ + 3k4h4 — 1k6h6>

45 315
2 32 16 8 29
212 (1 412;2 474 676\ 616 (1 272
4k=h (1 3k h +135k h 315k h) 45k h (1 63kh)

8 1 1 1 1 13 41
—Zk2R21 — ZKPRE — — KR — kSRS Y (1 — kPR 4+ = ktht — ——kOhS
3 { 3 120 * 630 2 +

120 3024
—§k2h2 <1 — %k2h2 + %k“h‘* - 315/@%6)
~ 4k>h? <1 — %thQ + %k‘% - 228(;25/.@%6>
—§k2h2 {1 - ng + %k‘*h‘l - 123()’“6’16}
—%thQ (1 ~ B %k‘*h“ - 3151@%6>
~ 4k2h? <—§k2h2 + %k‘*h‘* - 27.;‘_034_5.71@%6>

2 26 267
4k*h* { SkPh? — ——kht 4+ ——————kOhS
* {3 135 +27~2~3~5-7

However, a numerical check in this limit indicates a smaller value
4-4

450 - 135
Next the coeflicient has the low frequency behavior

in (kh 1 in? (kh
D = {1+3cos (kh) Smk(h )y <1 - 6k2h2> 5’11222)}

TohG2q DS ~ E1Opto

1 1 1 1 1 1
~1+3 (1 - §k2h2 + —k*ht — k6h6) <1 — ZK2h® + —K*nt — k6h6)

24 720 6 120 5040
2
1 1 1 1
—4(1—-2k?R?) (1 - 2K?R®> + —Kk*h* — ——KShS
( 6 ) ( 6 * 120 5040
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1 1 1 1 1 1
~1 1— —k?h? + —k*%* — —kShS ) (1 — Z2k2R% + —Kk*h* — ——kOp0
+3 < 2 Y 720 6 * 120 5040

1 1 1 1 1 1
41— 2k2R2) (1 - ZK%R? — VR =2 —— + — ) KOAS
( 6 ) ( 3 136 " 60 +

5040 = 720

11\ 50 (1 1 1Y\ ,. 1 1 1 1\ 66
1+3(1 (2+6)kh +<12+24+120>kh + + kSh

5040 720+240 144

1 1 2 1
41— 2k?R?) (1— 2K?R®> + —Kk*h* — —KOhS0
( 6 ) ( 3 T 315 )

2 2 4 1 1 2 1 1 1
~143 (1= ZE2R2 4+ Skt — — kSRS ) —4 (1= (= + = ) k?K2 — 4+ )k = — + — | kSRS
+< 3 15 315 576 BAVRET 315 135

2 2 4 1 1 2
~14+3(1-2KR2+ —k*h* — — kSR8 ) —4 (1 — ZK2R? + —k*h* — —kOhS0
+ ( 3 15 315 2 10 189
2 4 2 8 8 4
~4—2k2h% + Skt — — kSRS — [ 4 — 2kPRZ + Sk — — SRS ) = [ — — — ) KOS
*5 105 *5 189 189 105

40 — 36 4
~ kﬁ h6 - kﬁ h6
945 945
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