
Cyber-Power Co-Simulation for End-to-End
Synchrophasor Network Analysis and Applications

Hussain M. Mustafa, Student Member, IEEE, Dexin Wang, Member, IEEE, K. S. Sajan, Member, IEEE,
Eshwar Nag Pilli, Renke Huang, Member, IEEE, Anurag K. Srivastava, Senior Member, IEEE,

Jianming Lian, Senior Member, IEEE, Zhenyu Huang, Fellow, IEEE

Abstract—The resiliency, reliability and security of the next
generation cyber-power smart grid depend upon efficiently
leveraging advanced communication and computing technologies.
Also, developing real-time data-driven applications is critical to
enable wide-area monitoring and control of the cyber-power
grid given high-resolution data from Phasor Measurement Units
(PMUs). North American Synchrophasor Initiative Network
(NASPlnet) provides guidance for PMU data exchanges. With the
advancement in networking and grid operation, it is necessary
to evaluate the performance of different data flow architectures
suggested by NASPInet and analyze the impact on applications.
Therefore, we need a cyber-power co-simulation framework that
supports very large-scale co-simulation capable of running in
parallel, high-performance computing platforms and capturing
real-life network behavior. This work presents an end-to-end
automated and user-driven cyber-power co-simulation using NS3
to model communication networks, GridPACK to model the
power grid, and HELICS as a co-simulation engine. Comparative
analysis of latency in synchrophasor networks and a performance
evaluation of a power system stabilizer application utilizing PMU
data in an IEEE 39 bus test system is presented using this co-
simulation testbed.

Index Terms—Phasor Measurement Units, Wide-area Moni-
toring, Co-Simulation, Cyber-power Systems.

I. INTRODUCTION

POWER system, which is evolving as a smart grid, requires
many real-time applications to be developed and run to

provide better insights about grid dynamics with the help
of better monitoring and fast, automatic control capabilities.
These applications need data inputs at a much higher rate
which are made possible by the increasing use of PMUs
in the transmission grid [1]. PMU can provide synchronized
measurements at the rate of 30-120 samples per second which
is much higher than that of the traditional SCADA systems,
therefore, creating the opportunity to develop many real-time
applications and implement them in the smart grid [2]. Most
of these applications will be effective in real-time scenarios
if they meet their stringent latency requirement of few mil-
liseconds to several seconds [3]. To work with this massive
amount of data exchange and timely data delivery, having a
fast, reliable, and resilient underlying communication network
is one of the vital things to consider while designing network
architecture for synchrophasor data networks [4]. Given the

We are grateful for the inspiration and guidance of Dr. Jeffrey Taft and
James Ogle at Pacific Northwest National Laboratory. This work would
not have been possible without their invaluable knowledge and insights on
synchrophasor networking and related applications.

This work is supported by the United States Department of Energy Pacific
Northwest National Laboratory’s Laboratory Directed Research and Devel-
opment Program through its joint Advanced Grid Institute with Washington
State University. Authors would also like to acknowledge partial support from
the UI-ASSIST project for this work. We would like to thank Anshuman and
Nikhil for their technical support.

importance of the communication network, in 2007 North
American SynchroPhasor Initiative (NASPI) started to develop
a sustainable framework for the design of synchrophasor
data communication networks (NASPInet) [5]. Since then,
the NASPInet framework is treated as the standardized com-
munication network guideline for synchrophasor applications.
NASPInet is generally formed with the integration of PMU’s,
phasor data concentrator (PDC), Phasor Gateways connected
to a data bus, and a centralized phasor data concentrator
called SuperPDC [6]. But since the development of NASPInet,
several things have changed significantly, such as increased
data volume, network technology, protocol advancement, etc.
Although most of the NASPInet design concepts are useful,
there has been a lot of initiative taken in the last several
years revisiting the previous architecture to overcome the
operational, maintenance, and implementation limitations to
help preparing for the NASPInet 2 framework [5]. Previously,
the output of the PMU based applications depended on precise
synchronization and a lower packet loss ratio. However, for
current and future applications, low communication latency
is equally important [5]. Some previous work on the per-
formance evaluation of wide-area synchrophasor networks
using simulation appears in [7]–[9]. All these communication
performance requirements make the synchrophasor network
an essential component, considering the PMU based applica-
tions are crucial for power system operation. Therefore, the
use of PMU in the future for different real-time monitoring
and control applications or some resiliency applications such
as CP-SAM [10] necessitates the re-evaluation of previous
NASPInet architecture to a newer NASPInet 2 with analysis
and comparison of different network performance issues. This
re-evaluation of the synchrophasor network and its impact
on various applications need to be tested and validated in
the simulated platform, which exhibits similar behavior to
real systems before deploying in the real environment. There-
fore, researchers need to have a scalable multi-featured co-
simulation platform, and emphasis should be given in this area
of research.

In the past, there has been some work on developing
co-simulation testbed aimed to research and validate PMU
networks and PMU based applications [11], [12]. For co-
simulation engine, EPOCHS [13], ADEVS [14] has been
used. We focused on the main challenges in developing a
co-simulation framework found from the works of literature,
such as generating a communication network able to emulate
real behavior, adopting industry standards, interfacing between
cyber and power to synchronize time steps, and end to
end synchrophasor data exchange capabilities. To overcome



Fig. 1: Cyber-power co-simulation architecture

these challenges, with the objective of building a Customized
User-driven web-based Cyber-Power Co-Simulation, we have
developed different synchrophasor components in NS3 using
C++ capable of exchanging data following IEEE C37.118
protocol (used for PMU data exchange) [15] to model the
communication network and used GridPACK, a software
framework able to model the power grid and utilize high-
performance computing. We have used HELICS [16], a pow-
erful and scalable co-simulation engine for time-synchronized
power-cyber interfacing. To visualize the results, we have
integrated one web-based user interface built using reactJS.
This testbed can analyze the impact of communication network
performance on various power system control applications and
compare different network performance issues for NASPInet
1 and NASPInet 2. IEEE 39 bus system is used to simulate
and validate our test cases. The contributions of this paper can
be summarized as follows:

• Developed PMU and PDC application following C37.118
frame structure in NS3, which can exchange data similar
to the real PMUs.

• Developed Synchrophasor sink app and Historian app in
NS3 to simulate real-time synchrophasor network and
perform end-to-end synchrophasor simulations with a
provision of storing the logs.

• To validate and demonstrate the testbed usage, power-
ful co-simulation Engine HELICS, a cyber-power co-
simulation testbed, is built where NS3 and GridPACK
communicate via HELICS.

• Developed a controllable graphical user interface (GUI)
from which users can create different synchrophasor
networks and visualize their impact on different syn-
chrophasor applications.

II. CO-SIMULATION PLATFORM ARCHITECTURE

Synchrophasors are time-synchronized electrical measure-
ments consisting of voltage and current phasor, frequency,
and rate of change of frequency. A lot of application based

on this fast timestamp-based measurement has already been
developed, and in future, this trend will go on to provide
a better real-time picture of the grid. For these real-time
applications, latency is a crucial factor that may significantly
affect grid monitoring and control. The two main components
of the synchrophasor network are PMUs and PDCs. PMU is a
device used to estimate an electrical measurement’s magnitude
and phase angles such as voltage or current using a common
time source, generally using GPS for synchronization. PDC
receives data from multiple PMUs, which is combined and
then sent to the applications as synchronized measurements.
This facilitates synchronized real-time wide-area monitoring
of the grid.

The developed cyber-physical co-simulation platform, as
shown in Figure 1 is an architecture to evaluate the per-
formance of synchrophasor networks and their impact on
power system applications. The main components of this co-
simulation platform include,

• NS3: A discreet event communication network simulator.
• HELICS: A scalable and powerful co-simulation engine.
• GridPACK: A software framework for power grid mod-

eling and data generation.
• GUI: An user interface to modify the synchrophasor

network and visualize results.

A. NS3
NS-3 is a discrete-event network simulator used widely by

the scientific community for research and educational use.
One of the promising features of NS3 is that we can develop
and implement protocols within NS3 and install them in NS3
network nodes, which can exhibit the behavior of real-life
communication NS3 [17]. Protocols that support Smart Grid
communication, such as DNP3, C37.118, or Modbus, are not
integrated with NS3, making it difficult for researchers to test
and validate applications based on the data carried by those
protocols. In this work, we have developed and implemented
PMU and PDC functionality in NS3, which can be installed



in NS3 nodes to emulate end-to-end synchrophasor networks
similar to the real system. The network functions developed
include:

• PMU App
• PDC App
• Historian App
• Synchrophasor Sink App
1) PMU app Implementation in NS3: The PMU is im-

plemented as an NS3 application in the C++ environment.
Additionally, a helper file is implemented for easy installation
of the application on the node containers. To be able to behave
like real-world PMU’s we have given the following attributes
to each PMU application: (a) PmuID - An Integer ID given
to the PMU, (b) PacketSize - The size of the data packets, (c)
SamplingRate - A double value sampling rate of the device, (d)
Remote - The IP Address of destination to which PMU sends
the data packet, (e) Protocol - The type of protocol used by
the application, and (f) MaxBytes - The total number of bytes
to send.

The algorithm to explain the working of the PMU applica-
tion is shown in Algorithm 1.
Algorithm 1: PMU Working Mechanism

Input : Sampling rate and remote address
Output: PMU time-stamped data packet

1 Install PMU app in NS3 node
2 Set up protocol and remote address
3 Initiate application
4 Create socket and schedule sending time based on

sampling rate
5 Create packet and send with timestamp

2) PDC app Implementation in NS3: The PDC application
developed in this work has the following attributes: (a) PdcID
- An integer ID given to the PDC node, (b) Remote - Address
of destination to which the packet is to be sent, (c) Protocol
- The type id of the protocol to use for the Rx socket, and
(d) PdcMap - It is a Map type that holds the frames along
with the PMU Id. The PDC application maintains a Map (i.e.,
timeStamp Map) to store the received packets according to
their timestamp. The PDC application opens a port to listen to
receive the packets sent from the PMU application and waits
for a specified time (∆t) before scheduling a packet to be
sent to the SuperPDC. As the packet is received at the PDC
node, the PDC application follows the steps as described in
algorithm 2.

The superPDC node works precisely the same as PDC. The
same PDC application works as a superPDC if no specific
remote address is provided to the application. Therefore,
the superPDC node will only receive the data and create a
timeStamp Vector and will not perform any further analysis.
However, the functionality can be easily extended as per the
requirements.

3) SynchrophasorSink App Implementation in NS3: The
main aim of the SynchrophasorSink Application is to publish
the readings of PMU measurements into the HELICS and the
attributes so that historians and GrisPACK can use them. The
SynchrophasorSink App instance has the following parame-
ters: (a) HELICS publication pointer - It is a Helics publication
object retrieved using the publication key, (b) HELICS Publi-
cation Key - It is a string value that contains the publication

Algorithm 2: PDC Working Mechanism
Input : PMU data stream
Output: Combined time synchronized measurement

1 while PDC App is running do
2 Create a socket if not already.
3 Read time-stamp from packet header.
4 if time-stamp Vector exists then
5 Iterate through the Map of the timeStampVector
6 Compare the TimeStamp of the new packet

with TimeStamp of the old packet.
7 Iterate through the FrameBuffer.
8 if FrameBuffer has all expected PMU’s then
9 Iterate through the time-stamp map element.

10 Create a new empty packet.
11 Combine data from all the PMUs.
12 Add PdcID, timeStamp and data to header.
13 Attach the header to the packet and send

the packet to SuperPDC address.
14 else
15 Wait for the scheduled time for all the

expected PMU streams to arrive.
16 end
17 else
18 schedules a new Send with the next timeStamp

in the Map.
19 end
20 end

key, (c) ExpectedStreamId - Stores all the Expected stream
Id’s, and (d) ExpectedPmuId - Stores all the Expected PMU
Id’s. As the packet is received, the SynchrophasorSink App
follows the algorithm 3

Algorithm 3: Synchrophasor Sink App Working
Mechanism
Input : Time stamped data packet from all the PMU’s
Output: Published PMU measurement into HELICS

1 Peeks into the Packet header and reads the TimeStamp.
2 if timeStamp Vector exists then
3 it stores the timestamp value.
4 Iterate through Expected Stream Id’s and Compare

them with the Id’s of present frame.
5 if All PMU Id’s are present then
6 It uses the HELICS publication key and publishes

the measurements into the HELICS.
7 else
8 Creates a key to the PMU Id and them

publishes the measurements using new key.
9 end

10 end

4) Implementation of Historian app in NS3: The main aim
of the Historian Application is to record the readings of PMU
measurements and print them onto the log file for further refer-
ences. The Historian App instance has the following attributes:
(a) Helics publication pointer - It is a Helics publication object
retrieved using the publication key and (b) Helics Publication
Key - It is a string value that contains the publication. As the



packet is recieved, the Historian App works as described in
Algorithm 4,
Algorithm 4: Historian Working Mechanism

Input : Time stamped data packet from all the PMU’s
Output: Log file containing measurements

1 Peeks into the Packet header and reads the TimeStamp.
2 if timeStampVector exists then
3 Stores the timestamp value.
4 Iterate through Expected Stream Id’s and Compare

them with the Id’s of present frame.
5 if All expected Id’s are found then
6 It opens up the Log file.
7 Writes the PMU measurements with timestamp.
8 else
9 Wait for the scheduled time for all the expected

PMU stream to arrive.
10 end
11 end

B. HELICS
HELICS is an open-source large-scale infrastructure co-

simulation Engine. HELICS can support much larger scale
co-simulations comparing to other co-simulation engines. It
integrates an event-driven communication system with a dy-
namic power system based on time-series data. The main
reason behind using this is the feasibility of converging power
system at each time step [18]. It also runs cross-platform,
provides different APIs for interacting with other simulators,
and the networking capabilities to interact with other federates
on different machines and platforms. [16]
C. GridPACK

GridPACK is a software framework that is used for the
development of the programs that model power systems. It
consists of libraries and components to be used for creating
power system topology. One of the main features is that it
runs on parallel and high-performance computing platforms
simplifying parallel gird application development [19]. Appli-
cation developers only need to be concerned with the physics
rather than worrying about distributing data among processors.
We can also use standard input files describing grid networks
directly into GridPACK to generate models. In this work, IEEE
39 bus system is modeled using this software framework.
D. Graphical user Interface

The web application is an interactive interface built using
ReactJS. It connects to the back-end (JAVA) with the help
of a STOMP client, which communicates with the messaging
broker shown in figure 1. End-users can add multiple projects
and visualize the output of the model through simulation. The
network of nodes, i.e., PMUs and PDCs, is visualized on
the NS3 tab. The right sidebar gives the detailed information
of application nodes where the input field like sampling
rate, HelicsPubNamePrefix, HelicsInputKey, and Expected-
StreamIds can be tweaked to run the simulation, extract the
results, and visualize it in the form of a graph.
E. Extraction of data from YAML

We introduce a YAML file that would contain configuration
details for a successful run of the co-simulation. In the YAML
file, we declare the architecture. Next, we define all the

elements in the architecture to be nodes and set up the nodes’
functionalities in the YAML file. We then connect each of the
nodes in the architecture using a point-to-point protocol. We
then use helper classes which in turn would communicate with
the Application classes and start the simulation.

III. END-TO-END SIMULATION FOR SYNCHROPHASOR
SYSTEM USING CYBER-POWER CO-SIMULATION

Figure 2 shows the end-to-end simulation of the data flow in
the cyber-power co-simulation platform. In this framework, the
phasor data is directly generated using the IEEE 39 bus system
modeled in GridPACK software. Once the data is generated, it
enters the NS3 communication network using the HELICS co-
simulation engine by synchronizing the time step. The PMU
app functionality developed in NS3 receives the packet and
creates a C37.118 packet structure to exchange data between
PMU and PDC. Once the data packet ready, each PMU app in
the NS3 network starts reporting the phasor data to the PDC
app. The PDC app collects all the streaming data from multiple
PMUs, which are configured to PDC. Once the data is received
from all the configured PMUs, the PDC app creates a new
data packet to send to SuperPDC. Finally, when SuperPDC
processes the data in NS3, data is forwarded to synchrophasor
sink app is developed in NS3 and it publishes the data using
HELICS publication key and pointer to the power system
stabilizer(PSS) application developed in GridPACK to perform
analysis again synchronizing the time step, completing end-
to-end data exchange through co-simulation. The Historian
application in NS3 stores all the data values in the log
file using the timestamp during the process. The whole co-
simulation is made user-friendly and avoids the complexity of
back-end programming by developing a user interface that has
the options in the drop-down menu to select the co-simulation
parameters and network topology and start the co-simulation
to visualize results for a different combination of variables.

Fig. 2: End-to-End phasor data flow in cyber-power
co-simulation platform

IV. CASE STUDY

To validate and test the usability of our co-simulation
testbed, we created different NASPInet topology to analysis
the network performance in terms of latency and implemented
power system stabilizer application to analysis its impact on
communication delay.

A. Latency analysis on NASPInet 1 and NASPInet 2
In case study 1, we have created a network topology

for both NASPinet 1 and NASPInet 2, shown in fig. 3.
NASPInet1.0 consists of PMU, phasor gateway/data bus,
PDC’s, and SuperPDC. In NASPInet 1 superPDC receives
all the data and combines it according to the measurements’
time-stamp, then forwards it to the synchrophasor applications.



TABLE I: Performance analysis on NASPInet 1 and NASPInet 2
Sampling Rate/s Avg. Throughput From PMUs Avg Latency in NASPInet 1 Avg Latency in NASPInet 2
30 25.10 Kbps 7.51 ms 5.92 ms
60 50.91 Kbps 7.67 ms 5.97 ms
90 70.34 Kbps 7.74 ms 6.16 ms
120 106.19 Kbps 7.96 ms 6.35 ms

However, the concept of NASPInet 2 is to forward data
directly to synchrophasor applications via generic network
nodes and use PDC as a function, not a node. This modified
concept of using NASPINet 2 reduces latency for end-to-
end data exchanges, which is validated and tested in our
testbed. Fig. 3 represents a NASPInet 1 network with 8 PMUs
where 4 PMU’s are connected to one PDC, and the other
4 PMUs are connected to another PDC. Then these PDC’s
are connected with SuperPDC, which further forwards data to
synchrophasor applications. PDC collects all the time-stamped
data from PMU’s and waits for a specific time, ∆t until it
receives all the expected data streams from all the PMU’s.
After that, it adds all the time-stamped data into a PDC data
packet and forwards that to the next PDC/SuperPDC node to
be fed into synchrophasor applications. This proposed PDC
stacking architecture in NASPInet 1 needs to be re-evaluated
for present-day low latency required applications. Due to PDC
stacking and PDC working mechanism, it adds some extra
latency in every PDC point.

In NASPInet 2, there has been significant research to
form the network architecture without introducing PDC into
the network as a node and forwarding data directly from
PMUs to synchrophasor applications. In this case study, the
same number of PMU’s and similar network configurations
(i.e., delay, bandwidth, and topology) are used for both the
network topology. We have used the NS3 PointToPoint helper
to create nodes. We assume the links to be Band-b(G.652)
optical fiber with 1310nm wavelength with 2000Mbps data
rate of 1.2ms delay when they are 25km distance apart. In
NASPInet 2 network, we have used network nodes such as
a router instead of PDCs to forward data packets directly
to synchrophasor applications(omitting the SuperPDC node).
To see the problems related to PDC stacking, we have used
different delays in some of the links marked in color shown
in 3. As PDC waits for all the PMU data to be received
and then proceed for processing, a delay in one PMU link
causes an overall delay for the PDC to process the data for all
PMUs. As routers don’t wait for all the PMU data to arrive
while forwarding it to synchrophasor applications, NASPInet
2 doesn’t go through this extra wait time delay. In our case,
we have calculated end-to-end delay for both networks for
different PMU sampling rates and reported average delay for
both networks under mentioned attributes above. It is seen
from the results of table I replacing PDC node by network
router in synchrophasor network has a significant impact on
latency even in this simple and straightforward topology. From
this simple base network and single PDC stacking, we can see
almost 2 ms of reduced delay for each sampling rate of PMU.
This happens as PDC waits for some time until it receives
all the PMU packets and then combines them to create new
packets before sending wheres the router only reads the packet

header to forward to the next destination based on the IP
address. This extra latency can impact applications with really
stringent latency requirements for data to receive. Our testbed
can be used for further complex network models and see the
latency differences in NASPInet 1 and NASPInet 2.

Fig. 3: Different NASPInet topology.

B. communication delay on wide-area-measurement-based
PSS controls of a 39-bus system

Damping controllers have been used over the years to
mitigate power system oscillations. Power system stabilizers
(PSSs) are damping controllers used as a supplementary feed-
back control loop to the automatic voltage regulators in order
to improve damping in power systems. While local PSSs are
effective in damping the local-area oscillation modes, however,
they lack global observation and are not effective against
inter-area modes. It has been proved that an inter-area mode
may be controllable from one area and be observable from
another area. Therefore, wide-area PSS offers great potential
in complementing the limitation of conventional local PSS
by exploiting wide-area PMU measurements. The wide-area
PSS takes PMU measurements, such as the bus frequencies,
at different locations as inputs. Its output is used as additional
feedback to the excitation system of the generator the wide-
area PSS is associated with.

Since the wide-area PSS rely on measurements from a
different location, it’s performance can be affected by commu-
nication imperfections, such as latency, packet loss, congestion
etc. In this case study, we investigate the impact of communi-



Fig. 4: PSS on IEEE39 bus

cation delay caused by the PDCs on the performance of wide-
area PSS. A modified IEEE 39-bus system is developed with
a wide-area PSS located at Bus 34, and the PMUs at Buses
30 and 34, as shown in Fig. 4. We assume a fault occurs at
t = 1s on the line connecting Buses 16 and 17 and evaluate
the performance of the wide-area PSS over NASPInet 1 and
2, respectively. The speed of the generator at Bus 34 is shown
in figure 5. Due to communication latency in NASPInet 1
architecture, the generator speed oscillation is poorly damped
and become unstable, whereas with NASPInet 2 architecture
the same is well damped to its nominal value after the fault.

Fig. 5: Generator speed with wide-area PSS under NASPInet
1 and NASPInet 2

V. CONCLUSIONS

This paper presents a customized user-driven web-based
cyber-power co-simulation based on NS3, HELICS, Grid-
PACK, and a tailored user interface, specifically to research
synchrophasor networks and shows how adopting different
network technologies and architectures impacts the real-time
PMU based applications. The integration of synchrophasor
functionality in NS3 and using HELICS helps overcome
the challenges related to network simulation with industry-
standard adoption and cyber-power interfacing with time syn-
chronization. An integrated user interface makes it easier for
other researchers to play with the network topology to see the
implications and visualize the results. The developed PMU
and PDC functionality in NS3 makes it possible to model
more complex and extensive networks in NS3 while capturing

real-time grid behavior in synchrophasor networks. A com-
parative performance analysis based on latency in NASPInet
1.0 and NASPInet 2.0 architecture has been done and used to
demonstrate the functionality and validity of the developed
cyber-power co-simulation platform. Applications like PSS
have been implemented to visualize the impacts generated
from synchrophasor networks’ choices.
In the future, we will integrate the DNP3 protocol in NS3
to capture the transactive market model and Micro-PMUs in
NS3 with the distribution network model in this testbed, with
continuing efforts to automate the setup and configuration of
these complex simulation tasks. We will open-source the codes
and docker images to be used by the community.

REFERENCES

[1] P. Kansal and A. Bose, “Bandwidth and latency requirements for smart
transmission grid applications,” IEEE Transactions on Smart Grid,
vol. 3, no. 3, pp. 1344–1352, 2012.

[2] F. Ye and A. Bose, “Multiple communication topologies for pmu-based
applications: Introduction, analysis and simulation,” IEEE Transactions
on Smart Grid, vol. 11, no. 6, pp. 5051–5061, 2020.

[3] Assessment of existing synchrophasor networks, april 2018. [Online].
Available: https://www.osti.gov/servlets/purl/1523382

[4] M. Chenine, K. Zhu, and L. Nordstrom, “Survey on priorities and
communication requirements for pmu-based applications in the nordic
region,” in 2009 IEEE Bucharest PowerTech. IEEE, 2009, pp. 1–8.

[5] Naspinet 2.0 architecture guidance, version 1.19. [Online]. Avail-
able: https://gridarchitecture.pnnl.gov/media/NASPInet%202%20v1.19
PNNL.pdf

[6] P. T. Myrda and K. Koellner, “Naspinet - the internet for synchropha-
sors,” in 2010 43rd Hawaii International Conference on System Sciences,
2010, pp. 1–6.

[7] Y. Deng, H. Lin, A. G. Phadke, S. Shukla, J. S. Thorp, and L. Mili,
“Communication network modeling and simulation for wide area mea-
surement applications,” in 2012 IEEE PES Innovative Smart Grid
Technologies (ISGT), 2012, pp. 1–6.

[8] M. Chenine and L. Nordstrom, “Modeling and simulation of wide-
area communication for centralized pmu-based applications,” IEEE
Transactions on Power Delivery, vol. 26, no. 3, pp. 1372–1380, 2011.

[9] M. Chenine and L. Nordström, “Investigation of communication delays
and data incompleteness in multi-pmu wide area monitoring and control
systems,” in 2009 International Conference on Electric Power and
Energy Conversion Systems, (EPECS), 2009, pp. 1–6.

[10] P. S. Sarker, A. S. Saini, K. Sajan, and A. K. Srivastava, “Cp-sam: Cyber-
power security assessment and resiliency analysis tool for distribution
system,” in 2020 Resilience Week (RWS). IEEE, 2020, pp. 188–193.

[11] D. R. Gurusinghe, S. Menike, A. I. Konara, A. D. Rajapakse, P. Yaham-
path, U. D. Annakkage, B. A. Archer, and T. Weekes, “Co-simulation of
Power System and Synchrophasor Communication Network on a Single
Simulation Platform,” Technology and Economics of Smart Grids and
Sustainable Energy, vol. 1, no. 1, p. 6, Mar. 2016.

[12] D. Bhor, K. Angappan, and K. M. Sivalingam, “Network and power-grid
co-simulation framework for smart grid wide-area monitoring networks,”
Journal of Network and Computer Applications, vol. 59, pp. 274–284,
2016.

[13] J. S. Carson, “Proceedings of the 2003 winter simulation conference:
Volume 1,” Winter Simulation Conference Proceedings, vol. 1, no. 1993,
pp. 1656–1662, 2003.

[14] J. Nutaro, P. T. Kuruganti, L. Miller, S. Mullen, and M. Shankar,
“Integrated hybrid-simulation of electric power and communications
systems,” in 2007 IEEE Power Engineering Society General Meeting,
2007, pp. 1–8.

[15] Ieee standard for synchrophasor data transfer for power
systems. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=6111222

[16] Helics. [Online]. Available: https://github.com/GMLC-TDC/HELICS
[17] nsnam. Network simulator 3. [Online]. Available: https://www.nsnam.

org/about/
[18] B. Palmintier, D. Krishnamurthy, P. Top, S. Smith, J. Daily, and J. Fuller,

“Design of the helics high-performance transmission-distribution-
communication-market co-simulation framework,” in 2017 Workshop on
Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES),
2017, pp. 1–6.

[19] Gridpack. [Online]. Available: https://www.gridpack.org/wiki/index.php/
Main Page




