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Abstract—In a power distribution network with energy storage
systems (ESS) and advanced controls, traditional monitoring and
protection schemes are not well suited for detecting anomalies
such as malfunction of controllable devices. In this work, we
propose a data-driven technique for the detection of incidents
relevant to the operation of ESS in distribution grids. This
approach leverages the causal relationship observed among
sensor data streams, and does not require prior knowledge of the
system model or parameters. Our methodology includes a data
augmentation step which allows for the detection of incidents
even when sensing is scarce. The effectiveness of our technique
is illustrated through case studies which consider active power
dispatch and reactive power control of ESS.

Index Terms—Energy storage systems, incident detection,
power distribution systems.

I. INTRODUCTION

Power Distribution Systems (PDS) have been historically
designed to transport power from the bulk transmission system
to end consumers of electricity. However, the recent increase
in the adoption of Distributed Energy Resources (DERs) has
started to shift this paradigm, with consumers and utilities
leveraging these resources at increasing rates. This high
penetration of DERs in PDS will create multiple technical
challenges associated with new operating characteristics such
as bidirectional power flows and voltage fluctuations due to the
volatility of renewable power generation. Specifically, in a dis-
tribution system with Energy Storage Systems (ESS), renew-
able generation and advanced controls, traditional monitoring
and protection schemes are not well suited for detecting faults,
changes in topology, and malfunction of controllable devices.
Furthermore, the methods that rely on accurate measurements
and knowledge of parameters currently used in transmission
systems, such as traditional power system state estimation,
are inadequate for monitoring in PDS. Thus, it is essential to
develop new methodologies to detect abnormities in PDS due
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to critical events (e.g., natural disasters, physical and cyber-
attacks) and to mitigate the consequences of these abnormities.
Classical approaches for incident detection in the transmis-
sion grid rely on some knowledge of the system model. For
example, the integer programming approach in [1], compres-
sive sensing based approach in [2], quickest change detection
method in [3], and the Gauss-Markov graphical model in [4]
all rely on some knowledge of grid parameters and of the
assets connected to the grid. As compared to works that study
the transmission system, the body of literature that considers
incident detection in the distribution grid is not as large.
Despite the differences between both grids, such as the fact
that distribution grid models are little known and sensing is
scarce, studies that aim to detect events in the distribution grid
started by also assuming knowledge of the network topology,
such as in graph-based techniques and methods based on
traveling waves (see [5] for a review of methods for fault
and outage area detection in distribution grids). With the
introduction of PMUs, data-driven techniques started receiving
more attention, as in the case with SVD-based approaches [6].
However, most of the focus has still been on the transmission
grid, where sensing is more abundant and uniform. When it
comes to distribution grids, an increase in the use of micro
PMUs and AMIs has been observed, but the existence of
heterogeneous sources of data has also posed challenges.
Our proposed approach draws on Koopman operator theory,
which accounts for the causal relationship among multiple
sensor data streams without prior knowledge of the dynamic
model. The major feature of the proposed approach lies on the
detection of events which produce sharp changes in the causal
map of the system dynamics, while being robust to small
variations such as measurement noise and load fluctuation.
Koopman operators have been explored in the power systems
literature for the identification of system dynamics, stability
assessment, and other topics [7]-[11]. In this work, we propose
an algorithmic approach that provides evidence of the effec-
tiveness of this operator in incident detection tasks relevant
to distribution systems. We also tackle the issue of sensor
availability by proposing a way to augment the dataset through
a transformation that computes the relationship between data
streams. Our case studies explore the detection of incidents in
ESS operation that relates both to active power dispatch and



reactive power control, while accounting for the presence of
measurement noise and load fluctuations.

The remainder of this paper is organized as follows. We
introduce the Koopman operator theory in Section II, present
the proposed algorithm for incident detection in Section III,
and detail the steps in the methodology for incident detection
in Section IV. Section V presents two representative case
studies which exemplify the use of the proposed algorithm,
and concluding remarks are presented in Section VI.

II. KOOPMAN OPERATOR THEORY PRELIMINARIES

Consider a nonlinear system with states z; € R™ whose
dynamics can be characterized by

Tiy1 = F(zy). (1)

The Koopman operator K is a linear infinite-dimensional
operator that acts on the space of observables g(z) : R™ — R,
i.e. the space of scalar-valued functions of the states of the
system, as follows:

Kg(x) = g(x) o F. @)

The map F' can be described as a linear combination of the
eigenfunctions of the linear infinite-dimensional operator K.
Then, the evolution of the state becomes a linear combination
of independent dynamics along each eigenfunction. Assume
that the dominant eigenfunctions are roughly in the span of
the D dictionary functions

v = (\Illa"'a\IID)T' (3)

Then, the dynamics of F' becomes roughly linear if lifted
to a space in which the functions in ¥ are roughly taken
as coordinates. This linear description is characterized by
K € RP x RP, which is a finite-dimensional approximation
of the Koopman operator. An observable g(z) in the span
of dictionary functions identified by weights b is given by
g(z) = ¥(x)Th. Under the action of the Koopman operator,
this observable can be approximated as

g(F(x)) = ¥ (z)"Kb. )

Techniques such as the Extended Dynamic Mode Decom-
position (EDMD) algorithm proposed in [12] provide a way
to calculate an approximation of the Koopman operator by
minimizing || ¥ (F(z))Tb — ¥ (2)TKb||3 for an arbitrary b.
Let (x1,22), ..., (Tar, pr+1) be a time-series data. The mini-
mization problem of interest is equivalent to

A - GK||%, (5)

min
KeRP xRP

where ||.|| is the Frobenius norm, and A and G are defined as
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(6)

III. ALGORITHM FOR INCIDENT DETECTION

In this work, we leverage a sparsity-promoting variant of
the EDMD algorithm [13] for the detection of incidents in the
distribution grid, given by

i A — GK||% + \||vec(K)||1. 7
il [ + Allvec(K)|1 @)

For our algorithm, we consider the following notation. For

time-series data x and t; < to, define

SL’[tl . tz] = (‘rtlxtl+17 ...,ZCtQ). (8)

At time ¢, let A[t — T : t] and G[t — T : t] be computed
with 7'+ 1 observations and their one-step propagation in the
observed data series z[t — T : t].

Our goal is to maintain a sparse representation of the
dynamic system, and detect incidents by detecting changes
in this sparsity pattern. For that, we build on (7) to define our
algorithm for incident detection as follows:

e Attime t =T + 1, compute ; by solving

i Al TH-G[1 : TH1)K|3 Ki)ll1-
o min (AL TG s T 1)K ol vee(C) -
©))
e From ¢t =T + 2 onward, compute /C; by solving
i Alt =T :t] - Gt — T : t)K4||3
o i, Al =T - GR=Talle

+ a|[vec(Ko)| |1 + BlIKi—1 — Kil|F-

o If the sparsity pattern of K; differs significantly from
that of C;_1, flag the occurrence of an incident that has
altered the causal map between a state and its one-step
propagation.

The sparsity pattern of each I encodes the causal relation-
ship among observables, and the level of sparsity is adjusted
by the choice of the hyper-parameter o. Small values of «
define more complete networks, while large values promote
sparsity. The hyper-parameter (3 is related to the smoothness
of transitions. Thus, larger values of 3 tend to stabilize /C along
a trajectory, making its less prone to change due to smaller
variations which do not lead to major structural changes.

IV. METHODOLOGY FOR INCIDENT DETECTION

Our methodology can be divided into two distinct parts, as
illustrated in Fig. 1. The first part consists of a data collection
step, followed by a data transformation. The transformed data
is then used to compute the K matrices using the sliding
window approach introduced in Section III. The second part is
a post-processing clustering task which performs a clustering
analysis with the goal of grouping the X matrices calculated
into clusters that are uniquely identified by one of the scenarios
simulated in the data collection step. Each part of this approach
is discussed in more detail in the next sections.
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Fig. 1. Two-part methodology developed for the detection of incidents in

distribution grids.

A. Part 1: Koopman Operator

1) Data Collection: We begin by selecting suitable simu-
lation scenarios from which our data will be gathered. Since
our focus is on incidents related to the operation of ESS in
the distribution grid, the following two broad types of events
were considered:

1) Changes in ESS charging/discharging rate: In distribu-
tion systems, ESS can be used for peak-shaving opera-
tions, absorption of excess local renewable production,
and other tasks which involve a coordinated charg-
ing/discharging schedule. We aim to analyze whether
changes in the charging/discharging rates of ESS can
be identified with our proposed framework. Detecting
such changes would allow us to recognize, for example,
when a battery fleet is no longer following the command
issued for their power supply/absorption operation.

2) Changes in ESS controller parameters: Voltage regula-
tion is an important task in power distribution systems,
especially with the increasing adoption of DERs. By
considering a scenario in which batteries offer voltage
regulation services, we model Volt/VAR curves to con-
trol the reactive power output of these devices. The
goal is to detect changes in controller parameters, which
could have been caused by attacks that aim to destabilize
the grid.

We assume the data collected comes from PMUs, and thus
we use voltage magnitude and phase measurements. The data
was collected with a 0.25s sampling time. Because sensor
measurements are typically noisy, Gaussian noise was added to
the voltage magnitude (+0.01%) and voltage angle (£0.01°)
measurements. Further, considering that sensing capability
would be limited in the distribution grid, we assumed that
only nodes with an ESS had PMUs. These scenarios were
simulated using OpenDSS.

2) Data Transformation: We hypothesize that the relation-
ship between different time-series data carries more informa-
tion than individual data streams. In [14], this dependence
among observations is explored in a data-driven spectral
analysis using the Koopman operator with the objective of

understanding complex biological network dynamics. For this
purpose, using a ballgame as an example, the authors trans-
formed the data using the Gaussian kernel

|z — 213
20 ’

where each z; is a stream of raw data, ||.||2 is the Euclidean
norm, and o is an adjustment parameter.

We apply (11) to the distribution grid data to be used in
our analysis. This nonlinear transformation lifts the data into
a higher dimensional space by giving a measure of similarity
between states, thus augmenting our dataset. The transformed
data is then used to compute a sequence of C matrices through
a sliding window.

3) Approximate Koopman Operator: In this step, the finite-
dimensional approximation of the Koopman operator for the
transformed data was performed numerically following the
steps detailed in Section III. Significant changes in K indicates
altered causality in states (i.e., occurrence of incidents). Radial
basis functions of the form

g(x;, ;) = exp (— (11

Ui(z) = ||z — cil|*log, (||= — cil]),

where c; are unique center points, have shown to be effective
for our application. We face the following trade-off when
choosing the amount of dictionary functions to be used:
too few dictionary functions ¥;(x) may lead to poorer dis-
tinguishability of the sparsity pattern of K’s from different
incidents; increasing the amount of functions, however, also
increases computational time.

12)

B. Part 2: Offline Clustering

The previous step was aimed at generating data for different
case studies, transform the data collected, and compute the
approximate Koopman operator for multiple time windows.
The offline clustering task performs a clustering analysis in
the /C matrices calculated. Since the sparsity pattern of these
matrices is expected to be similar if the system dynamics re-
mains the same, this analysis is expected to cluster together the
K’s coming from the same simulated scenario. For example,
the matrices calculated from a scenario in which a battery fleet
is discharging at 25% rate should be clustered together, while
KC’s from a scenario where these batteries are discharging at
100% should be together but in a different cluster.

We used the k-means clustering algorithm for this analysis.
The idea behind k-means is that observations within a cluster
are close to each other, while observations in different clusters
are far apart. This method takes as inputs a distance measure,
the number of clusters, the data to be clustered, and a random
seed that is used to initialize the algorithm. For our application,
the correlation distance was shown to perform better than other
metrics. Further, prior to the clustering analysis, the /C matrices
were transformed into binary matrices, i.e. values below a
certain threshold were set to zero and all others were set to
one. The purpose behind this transformation is that we are
only concerned with the sparsity pattern of these matrices,
and not with the actual values of their elements. This step



also avoids numerical issues that may arise when working
with small numbers. Since the approximate Koopman operator
is a representation of our original data in a high-dimensional
space, it is common to see elements of IC which have a really
small order of magnitude. The effectiveness of our results is
evaluated based on the misclassification rate achieved in this
clustering analysis.

V. CASE STUDIES

We considered the IEEE 8500-node test feeder with 7 bat-
tery energy storage systems (BESS) added, implemented using
OpenDSS. This feeder is an unbalanced radial network, which
are typical characteristics of distribution grids. These BESS
can take real power dispatch commands and perform Volt/VAR
control. The data was collected with a 0.25s sampling time,
and Gaussian noise was added to the voltage magnitude
(£0.01%) and voltage angle (£0.01°) measurements. Besides
noise, fluctuations in real and reactive load were considered
in the feeder model. Our aim is to evaluate the robustness of
our algorithm when these variations are accounted for.

As previously discussed, changes in the sparsity pattern of
the K matrices indicated the occurrence of an incident. To
confirm the /C matrices had unique sparsity patterns for each
scenario in which the causality of the model was maintained,
an offline analysis was performed using k-means clustering
to cluster these matrices. For both case studies, the centers
for the radial basis functions ¢; in (12) were chosen in the
computation of the first K matrix, and then kept constant
throughout the experiment. The center points were selected
using a randomly generated perturbation, so that they were of
the same order of magnitude as the data itself. Further, we used
D = 400 dictionary functions, a time window of 7" = 100s,
and a new K was estimated every 25s. We also assumed
voltage magnitude and phase measurements from PMUs were
available at the nodes of 3 of these BESS.

A. Detecting changes in discharging rates

We first consider a scenario in which the battery fleet is
initially idle. After 5Smin, all the batteries start discharging
at 50% of their discharging rate, maintaining this rate for
Smin. Fig. 2 shows the results for this case. For the Koopman
operator approximation step, we let « = 0.1 and 5 = 0.4.

The red numbers in Fig. 2 mark the time instants at which
a new K matrix was estimated. The plots on top show a
representative sparsity pattern for each of the two situations
considered, and we can clearly observe that this pattern
changes after the incident happens, allowing us to successfully
detect its occurrence. To corroborate that the two patterns are
indeed distinct, all the 20 C matrices computed were subjected
to a clustering analysis using k-means. For this case study, we
have two different clusters: the first representing our network
dynamics when the batteries are idle, and the second related
to the case in which the battery fleet discharges at 50% of
their rate. As a result, we found that 3 of these matrices
were misclassified, i.e. they were classified to the cluster that
does not correspond to the scenario they actually refer to.
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Fig. 2. Results for case study which aims to detect changes in the rate at
which the battery fleet supplies active power to the grid.

We note that the misclassified matrices, highlighted in Fig. 2,
were computed immediately after the event occurred. Due
to the sliding window approach, their computation used data
from both the first and the second scenarios, which impacts
their sparsity pattern. However, the matrices after those were
correctly classified. Thus, we can state that some time may be
needed after the event for the new sparsity pattern to stabilize.
We remark that the results were robust to measurement noise,
as well as load variations, since these fluctuations did not
lead our algorithm to erroneously identify the occurrence of
nonexistent incidents.

B. Detecting changes in controller parameters

In this case study, we considered the battery fleet provides
voltage regulation services. For this purpose, the hierarchical
Volt/VAR (VV) control strategy proposed in [15] is used to
control the reactive power supply/absorption of these devices
so that the voltage magnitudes are maintained close to their
nominal value. Each battery is assigned a VV curve, which is
designed to adjust the reactive power of the device according
to measured local voltage levels. An example of this curve
is shown in Fig. 3 [15]. The VV curve has a deadband
corresponding to acceptable voltage levels which do not trigger
control action for correction. When voltage levels become
high, the battery absorbs reactive power to lower the voltage
back to acceptable levels. The opposite happens when voltage
levels are low, with the batteries injecting reactive power into
the grid. This control layer is local, as each device does not
have information about the overall system condition, and only
responds to their local condition.

To overcome this limitation and expand the control strategy
to regulate voltage levels throughout the network, a centralized
control layer is added. This layer has full information about
the voltages over the entire feeder, and is able to dispatch
new VV curves to the devices with the goal of regulating the
overall voltage in the system, even when the device’s local
voltage magnitude is within acceptable ranges. Fig. 3 shows
an example of how the initial VV curve assigned to a battery
can be shifted using the proposed centralized strategy. We note
that shifting the curve to the left induces an increase in reactive
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Fig. 3. Example of VV curve and shifting logic [15].

power absorption, which helps decreasing voltage levels more
significantly across the network. The reverse holds for right
shifts in the curve.

Using this hierarchical VV control, we modeled two events
for this case study, leading to a total amount of three dif-
ferent scenarios. For each event, the controller parameters
are changed by adjusting the set-points for the VV curves
assigned to the batteries. The dead band of the controller
changes from 0.95 to 0.98 and then 0.99 pu, with saturation
point shifting right accordingly at ¢ = 200s and ¢ = 400,
respectively. The results for this case study are presented in
Fig. 4, in which we observe three distinct sparsity patterns
for the K matrices in each scenario. These patterns were
achieved by using « = 0.1 and f = 0 in the Koopman
operator approximation. Similarly to the first case study, the
differences in the /C matrices were sufficient for us to identify
the occurrence of the events considered. Further, in the offline
classification task, 3 out of the 32 matrices were misclassified,
all of which were computed in time instants immediately
following an event.
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Fig. 4. Results for the detection of changes in the controller parameters of
batteries providing voltage regulation through Volt/VAR control.

VI. CONCLUSIONS

We proposed a data-driven method that requires no prior
knowledge of the network dynamic model for the detection
of incidents in power distribution systems. Our case studies
considered the occurrence of changes in BESS operations that
refer both to active power dispatch and reactive power con-
trol of these devices. The successful detection of the events
modeled allows for proper mitigation strategies to be set forth,

if needed. Our methodology introduces a data transformation
step which augments the dataset while maintaining meaningful
information of the system states. This strategy is particularly
useful in situations with restricted sensor availability, which
can be common in distribution grids. Further, the algorithm
proposed was shown to be robust to measurement noise and
load fluctuations, and thus such variations do not trigger a false
detection. Future work includes designing a more systematic
way to choose the hyper-parameters for the Koopman operator
approximation, and evaluating our methodology in the pres-
ence of data loss or data streams with different sampling time.
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