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Motivation/goals

 Sparse direct factorization is robust but too expensive in 3D
 Want robust “black-box” approximate factorization

 Use as preconditioner
 Allow trade-off fill versus quality

 Current methods have limitations
 AMG and DD are scalable but often not robust (e.g., indefinite, nonsym.)
 Others (Incomplete factorizations, Sparse approximate inverses etc) are 

algebraic (black-box) but not scalable

 Hierarchical matrix methods could fill this gap
 Many different algorithms
 Will focus on a couple I have been involved with
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Hierarchical algorithms+architectures

 Modern computers have hierarchical designs
 Shared-memory nodes with slow interconnect
 Each node may have multiple CPU, GPU, other hardware
 Memory access is usually the bottleneck, not flops

 Challenge: Map hierarchical algorithms to hierarchical 
architectures
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Context: Direct solvers

 Hierarchical matrix solvers are algebraic versions of FMM
 “short range” (blocks near diagonal) must be accurate
 “long range” (off-diagonal blocks) can be approximated by low-rank
 Many variations: H, H2, HSS, HODLR

 Hierarchical vs BLR (tiled)
 Block (tiled) low-rank is “flat” not hierarchical
 Asymptotically, hierarchical is better but hard to implement

 BLR is simpler and often faster for moderate problem sizes

 Accelerate dense frontal calculations within sparse solvers
 MUMPS: multifrontal with BLR
 Strumpack: multifrontal with HSS, HODLR, HOD-BF

 Our focus: Other types of sparse solvers
 Simpler, avoid the “extend-add” issue
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LoRaSp 

LoRaSp is a hierarchical sparse solver (Pouransari et al., SISC’17)
 Approximate block Gaussian elimination

 Similar to multilevel domain decomposition 
 Solve inexactly on subdomains using low-rank approx.
 Recurse on remaining global problem
 Small subdomains, treated as dense
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ParH2 

ParH2 (Chen et al., ParCo 2018, JCP 2019):
 Parallel (MPI) version of LoRaSp 

 Can solve much larger problems

 Improved/simplified derivation 
 Gaussian elimination with sparsification, no more red/black nodes

 Improved robustness with ”deferred compression”
 Block diagonal scaling, aka “scale-and-compress” 
 Similar to Xia et al., (2017), also used in eSIF
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Results: ParH2 vs. sparse direct.

8

Compare hierarchical solver as preconditioner vs. SuperLU-Dist direct solver 
on irregular problems from UF/SuiteSparse. Vary compression threshold 
epsilon. 16 processors (MPI ranks).
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ParH2 Results: 

 Ice sheet simulations of Antarctica
 Modeled as Stokes’ flow
 Albany/Felix (now MALI) code

Images by Mauro Perego
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SpaND overview

 SpaND is better sparse solver (Cambier et al, SIMAX 2020)
 Motivated by HIF (Ho, Ying 2016)

 Several algorithmic improvements
 Fully algebraic, supports unstructured problems

 Key ideas:
 Use pattern of nested dissection sparse direct solvers
 Compress on the fly, never form large dense frontal matrices

 Both serial and parallel codes available
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SpaND Summary
 Sparsify separators (low-rank compression) during elimination
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Different from fast-algebra on dense

 Common approach: Fast algebra (H/HSS/BLR) on dense blocks
 Ex: Strumpack, MUMPS, PasTix, etc.

 Instead we reduce the size of the separator blocks!
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Sparsification via Low-rank Approx.

We need low-rank approximation of off-diagonal (rectangular) block.
1. Interpolative decomposition (ID)

 Computed via RRQR (QRCP)
 A.k.a. skeletonization

2. Orthogonal transform
 Use RRQR or SVD
 More stable, but may be more expensive

 For both methods there is a user parameter ε
 Trade-off accuracy vs cost
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Sparsification Step

 Block scaling, low-rank elimination, drop near-zero blocks

ε ≅ 0,
So we drop it

Block Cholesky 
improves stability

Prefer 
orthogonal Q 
from RRQR
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Sparsification: Orthogonal version
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Results: Performance Profile

 Ran most SPD 
matrices in 
SuiteSparse 
collection 

 OrthS version is 
very robust
 Not sensitive to ε



17

SpaND Results: 
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Profiling
 SpaND cost stays roughly 

constant per level
 Most expensive part is 

sparsification (RRQR)
 Skip sparsification on bottom 

levels 
 No benefit first levels
 Pay the cost first time we 

sparsify
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SpaND Parallel Results: 

• Parallel version by Cambier & Darve
• Uses TaskTorrent task-parallel system

• Good weak scaling (not perfect)
• Faster than Hypre AMG on this problem

• Default parameters for Hypre
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Work in Progress

 Improved SpaND algorithm
 Second order accurate version (Klockiewicz, upcoming talk)

 Mixed precision
 Low-rank approximations can use lower precision (float32)
 Expect largest savings in the factorization/setup phase

 GPU support
 Dense linear algebra works well on GPU
 Level-by-level, or task based execution?
 May need batched BLAS/LAPACK
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Conclusions

 Hierarchical solvers have shown great promise
 Near-linear scaling on many PDE problems
 Robust, often converges where other methods fail
 Diversity of algorithms, no clear ”winner”

 SpaND is very competitive IMHO

 Still mostly academic, why not popular in applications?
 Focus has been on papers, not software

 Software lags multigrid and domain decomposition
 Algorithms are complicated

 Difficult to implement efficiently
 Active research area, algorithms change rapidly
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Backup



24

Sparsification 1: ID
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Results: 2D Laplacians
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Results: SuiteSparse Collection
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Parallel Approaches

We are exploring two approaches for parallel SpaND:
 Task-based

 Dynamic scheduling of DAG on shared-memory systems

 Level-based
 Process level-by-level, going up the tree
 Need batched BLAS/LAPACK, many small operations in parallel
 Use Kokkos library to run on both CPU and GPU

 This is work in progress.
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Results: SPE


