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Motivation/goals

= Sparse direct factorization is robust but too expensive in 3D

= Want robust “black-box” approximate factorization
= Use as preconditioner
= Allow trade-off fill versus quality

= Current methods have limitations

= AMG and DD are scalable but often not robust (e.g., indefinite, nonsym.)

= Others (Incomplete factorizations, Sparse approximate inverses etc) are
algebraic (black-box) but not scalable

" Hierarchical matrix methods could fill this gap
= Many different algorithms
= Will focus on a couple | have been involved with




Hierarchical algorithms+architectures

= Modern computers have hierarchical designs
= Shared-memory nodes with slow interconnect
= Each node may have multiple CPU, GPU, other hardware
= Memory access is usually the bottleneck, not flops

= Challenge: Map hierarchical algorithms to hierarchical
architectures
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Context: Direct solvers

" Hierarchical matrix solvers are algebraic versions of FMM
= “short range” (blocks near diagonal) must be accurate
= “long range” (off-diagonal blocks) can be approximated by low-rank
= Many variations: H, H%, HSS, HODLR
" Hierarchical vs BLR (tiled)
= Block (tiled) low-rank is “flat” not hierarchical
= Asymptotically, hierarchical is better but hard to implement
= BLRis simpler and often faster for moderate problem sizes
= Accelerate dense frontal calculations within sparse solvers
= MUMPS: multifrontal with BLR
= Strumpack: multifrontal with HSS, HODLR, HOD-BF

= OQur focus: Other types of sparse solvers
= Simpler, avoid the “extend-add” issue
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LoRaSp is a hierarchical sparse solver (Pouransari et al., SISC'17)
= Approximate block Gaussian elimination

Similar to multilevel domain decomposition

Solve inexactly on subdomains using low-rank approx.

Recurse on remaining global problem

Small subdomains, treated as dense

FAST HIERARCHICAL SPARSE SOLVERS

level 0 root.

level 1

level 2

level 3
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ParH2 (Chen et al., ParCo 2018, JCP 2019):
= Parallel (MPI) version of LoRaSp

= Can solve much larger problems

" Improved/simplified derivation
= Gaussian elimination with sparsification, no more red/black nodes
" |mproved robustness with “deferred compression”

= Block diagonal scaling, aka “scale-and-compress”
= Similar to Xia et al., (2017), also used in eSIF




LABDRATORY DIRECTED RESEARCH & DEVELDPMENT

epsilon. 16 processors (MPI ranks).

Results: ParH2 vs. sparse direct.

Compare hierarchical solver as preconditioner vs. SuperLU-Dist direct solver
on irregular problems from UF/SuiteSparse. Vary compression threshold

1.6}

1.4F

Normalized time
© = Lo
[00] o N

©
o

o
N

0.2

0.0

| SuperLU-Dist

[ ] e=08

torso3

e=0.05

B factorization

[ solve
-+ -+
v wu
Q Q
-] ]
| |
—_ —
()] (]
o o
>3 >3
(¥2] (V2]

[ ]e=0.2
[ ]e=0.1
| | e¢=0.05

atmosmodd

Geo 1438

SuperlLU-Dist

Serena

€=0.05

Sandia
National _
Lahoratories



ParH2 Results:

= |ce sheet simulations of Antarctica

= Modeled as Stokes’ flow
= Albany/Felix (now MALI) code

lul

Tabls B 11 vertienl mesh layers: bierarchical sobver (¢ = 107%) vu. ILLL i?gﬂuu
LU hierarchical solver 1100
h N P |iter # total time | iter # factor solve l‘-]“
16km 1L1IM 4 o) T 18 147 22 0.1
fkm  46M 16 | 183 21 23 186 38
dkm 185M 64 | 468 66 04 213 53
okm 7AM 256 | 10007 — 27 214 65 .
Ikm 206M 1024 | 1000 — 27 243 71 -

h: horizontal mesh resolution/spacing, N number of unknown varables
FP: mumber of processors. Time was measured in seconds.

= [LU didn’t converpe to 10—'2; it took 145 seconds for 1000 iterations '
{residual = 10-9).

# ILU didn't converge to 107" it took 83 seconds for 1000 iterations
(residual = 1073, Images by Mauro Perego
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| SpaND overview

= SpaND is better sparse solver (Cambier et al, SIMAX 2020)
" Motivated by HIF (Ho, Ying 2016)

= Several algorithmic improvements
= Fully algebraic, supports unstructured problems
= Key ideas:

= Use pattern of nested dissection sparse direct solvers
= Compress on the fly, never form large dense frontal matrices

= Both serial and parallel codes available
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LABDRATORY DIRECTED RESEARCH B DEVELPMENT

SpaND Summary

= Sparsify separators (low-rank compression) during elimination
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Different from fast-algebra on dense

= Common approach: Fast algebra (H/HSS/BLR) on dense blocks
= Ex: Strumpack, MUMPS, PasTix, etc.

= |nstead we reduce the size of the separator blocks!




RECTED RESEARCH § DEVELOPME:

Sparsification via Low-rank Approx.

We need low-rank approximation of off-diagonal (rectangular) block.

1. Interpolative decomposition (ID)
=  Computed via RRQR (QRCP)
= A.k.a. skeletonization

2. Orthogonal transform
=  Use RRQR or SVD
=  More stable, but may be more expensive

=  For both methods there is a user parameter €
="  Trade-off accuracy vs cost



Sparsification Step

= Block scaling, low-rank elimination, drop near-zero blocks
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RECTED RESEARCH § DEVELOPME:

(1) We start with
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(3) We end up with

Sparsification: Orthogonal version

(2) We then approximate
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= Ran most SPD
matrices in
SuiteSparse
collection

= OrthS version is
very robust
" Not sensitive to €

Results: Performance Profile
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SpaND Results:

lce-Sheet modeling  x(4) > 101
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SpaND Parallel Results:

spaNI» AMG (Hypre)
oores N | b tapp  teohe  taottehe  00G | Bt tHwhe Do
3G IM | 62 014 D9 7.1 6 15 427
144 4M 3 015 1.2 8.5 6 16 456
576 18M | B9 015 16 105 T 22 527
23 TIM | 98 01 19 117 a 20 627
0216 396M | 132 0321 37 160 12 14 623

Tabla 4.1: lee-sheet results, weak scaling=, from 36 to 9216 cores.

* Parallel version by Cambier & Darve
* Uses TaskTorrent task-parallel system

* Good weak scaling (not perfect)

* Faster than Hypre AMG on this problem

* Default parameters for Hypre
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Work in Progress

" Improved SpaND algorithm

= Second order accurate version (Klockiewicz, upcoming talk)

= Mixed precision
® Low-rank approximations can use lower precision (float32)
= Expect largest savings in the factorization/setup phase

= GPU support
= Dense linear algebra works well on GPU

= |Level-by-level, or task based execution?
= May need batched BLAS/LAPACK




Conclusions

= Hierarchical solvers have shown great promise
= Near-linear scaling on many PDE problems
= Robust, often converges where other methods fail

= Diversity of algorithms, no clear "winner”
= SpaND is very competitive IMHO

= Still mostly academic, why not popular in applications?
" Focus has been on papers, not software
= Software lags multigrid and domain decomposition
= Algorithms are complicated
= Difficult to implement efficiently

= Active research area, algorithms change rapidly
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RECTED RESEARCH § DEVELOPME:

Sparsification 1: 1D

(1) We start with (2) We then approximate
A Asn _ (T
. sm A= () Aen + €
AWW Awn
_Ans Anw Ann_ s=fUc

(3) We end up with
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Results: 2D Laplacians

CQG iterations
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Results: SuiteSparse Collection
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Parallel Approaches

We are exploring two approaches for parallel SpaND:
= Task-based

= Dynamic scheduling of DAG on shared-memory systems
= |evel-based

" Process level-by-level, going up the tree
= Need batched BLAS/LAPACK, many small operations in parallel
= Use Kokkos library to run on both CPU and GPU

= This is work in progress.
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Results: SPE

The SPE problem
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spaND Direct.
n N =n? tp tg ncg Sizeérep memp | tp +tg
(s.) (s.) (10%) | (s.)
128 2097152 | 61 23 12 502 0.63 686
160 4096 000 175 46 13 634 1.21 —
200 8000000 287 158 16 962 2.54 o
252 16003008 | 963 369 16 890 5.19 —
o) (N2j3) f,’f 101[]
5 e = Top separator block
ST : 5 i
IS e = would be 32 GB without
” s the sparsification!
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