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‘ Microstructural features and processing defects

Chemical heterogeneities

Cell walls decorated with oxides
Matrix Cell Boundary Matrix

B fai
B Increased Fe (+ 9%)

10011 Increased Si
== Increased Cr (+ 4%)

Schaller, 2018

Melt pool interfaces

Processing defects
Porosity Surface roughness

x 7/19/2018 - ;-ﬂ._ S
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Axial stress Zn map Cu ap

Hoop stress

-200

Stress, MPa Ke, 2017




What needs understanding for SCC of AM
S t alnl e S S S t e e 1 S BDE 288°C NWC, 2 ppm DO | 288°C HWC, 63 ppb DH RIS
) ) --E ; 1 27-33 MPavm, 20%CW | 27-33 MF'aV_'m, 20%CW 1 E:Q
Differences from wrought materials: EEE § s tony  Jaodo* %
d Melt pOOl boundaries. % ax10'4 g v Wrought 316L, Hoat#4 | g
_ . £ 43.0x10° 5
* Nanoscale non-metallic inclusions. g, ... a 8 _ 3
. . . . x W
*  High dislocation density. £ © o q2om0* 3
. 2.0x107 -
o Not from cold working. 5 | 8 v 3
S5 = 4 1.0x10% 3
o Cellular structure. | Rl : 8 | 3 e
*  Sub-grain boundaries. 00 . . O loo e T
AM Wrought AM Wrought
(Lou et al. 2018) 316L  316L  316L

D= [SiK] o jmmm

7 [Mol]

(Leon et al. 2017)

Work on AM Al alloy (AlSllOMg) showed as-prmted surface roughness leads to initiation of
numerous SCC sites in aerated 0.6 M NaCl.
Polished AM N1 alloy (625) showed minimal difference in SCC behavior in quiescent 0.6 M NaCl.



.| Studies to date AM environmental assisted cracking
Luo, 2017; SLM 316L 1n boiling water reactor conditions:

* Differences in crack propagation depending on build orientation, columnar grains caused more
tortuous path.
* Subgrain deformation structures appear to be driving force for SCC.
* Hot 1sostatic pressing (HIP) and solution anneal (SA) led to similar results to wrought material. |
* Porosity generally increases crack growth rate.

* Oxide inclusions helped propagate cracks along grain boundaries.
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6 ‘ SCC of AM stainless steel in MgCl,

Surface crack density
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Ma Cracks
. == - Observed
As-built 750°C 900°C

¢ Res. Stress =100 -250 MPa 100250 MPa 200 - 25 MPa

erial
printed 1n vertical/horizontal orientations.

P. Dong, et al., Addit. Manuf., 40 (2021).
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;| Study Framework

Questions
1) How does residual stress from PBF 316L specimens impact SCC behavior
compared to conventional wrought material?
* What heat treatments impact this SCC behavior?
2) What 1s the interplay of unique microstructural features with crack
propagation?

Approach
Control residual stress of powder bed fusion specimen with cutting/heat
treatments.
* Boiling MgCl, exposures.
Direct current potential drop (DCPD) SCC measurements.
* (Crack growth rate measurements.
* Frequency dependence.




s | Study Framework
Questions

1) How does residual stress from PBF 316L specimens impact SCC behavior
compared to conventional wrought material?
* What heat treatments impact this SCC behavior?
2) What is the interplay of unique microstructural features with crack
propagation?

Approach
Control residual stress of powder bed fusion specimen with cutting/heat
treatments.
* Boiling MgC(Cl, exposures.
Direct current potential drop (DCPD) SCC measurements.
* (Crack growth rate measurements.
* Frequency dependence.




; ‘ Selective laser melting 316L samples

Laser melting  Laser

Pre-placed powder Beam * Two batches of 25, 1.5 cm, cubes fabricated with

“ different porosity levels.
""'_ * 5 different cut heights to produce specimens with

I
i ' ‘ [ significantly different residual stresses.
” S Vil e Density measurements: “Good batch, ~100%”,

“Porous batch, ~96.4%”

| f‘\\\w 1.

Build plate Un- melred powder

B T 34 [ I 390909 |

Dense
Parameter Value
Laser power 110 W
Laser velocity 1400 mm/sec
Layer thickness 30 pm
Laser focus offset +1 mm Porous
Average powder diameter 12 pm
Cover gas Argon
wtYo C Cr Cu re Mn Mo
316l 0.012 | 16.76 | 0.56 | 68.4 | 1.25 1.91
wrought
S1oL S.LM 0.013 | 16.87 | 0.039 | 65.5 | 1.54 | 2.31
as-built




o 1Control residual stress — maintain microstructure

Large residual stress after cut Small residual stress after cut

on top surface on top surface

4 mm

Specimen ) ~100 % dense

Hole drilling used to measure o,, and 6, Res. Stress (MPa)

oyx MPa 355

Baseplate

ISmm - U MPa 262
oy MPa 260
0mm- - MPpa 158
Gy MPa 190
smm - MPa 115
(o OxMPa 165

Gy MPa 106




| Control residual stress are expected by simulations
15 mm tall 4 mm tall

Gxx (Pa) 0} (Pa)
(:::> A0e+08 :§i§e+ﬂﬂ
. Je+8 or
Build = |
direction [ =
— -le+8B — -le+d
-2e+h e+l
[ji;im [:ifz:m
von Mises von Mises
(Pa) (Pa)
Average VM Stress Fm FM
. . 3.0e+8 3.5e+8
in dark red region = serd
— 2.5e+8 -~ 2.5a+8
—|_430 MPa — 2048 _ 2a+8
— 1.5e+8 — 1.5e+8

le+8 le+8
[ Se+7 [ 5e+7
0.0e+00 0.0e+00




2 ‘Boiling MgCl, experiments

~100 % dense

All sides of sample, except top surface,
were coated with epoxy

Condenser

Thermometer

ASTM G36-94: Standard Practice for Evaluating Stress-Corrosion-Cracking
Resistance of Metals and Alloys in a Boiling Magnesium Chloride Solution

Prepared about 400 mL of the test solution for use in the boiling Vessel

vessel.
* 600 g of reagent grade MgCl,-6H,O

* 15 mL of reagent water Thermocouple

Heating control

Solution held to boil at ~155 °C for at least 24 hours (some Jacket

samples were 1n for longer if no cracking was observed).



§ ‘ Cube sample exposure to boiling MgCl,

15 mm tall - 4 mm tall

S

Boiling MgCl, at
155 °C, imaged
after 24 hours.

von Mises (Pa)
A4.0=+08

von Mises (Pa)

Average VM Stress

4.0e+08

in dark red region = sors
—2.5e+8 — 2.5e+8

‘|‘430 MPa ~ 2048 — 2e+8
— 1.5e+8 — 1.5e+8

le+8 le+8

8e+7 Se+7

0.0e+00

0.0e+00




. ‘Cube sample exposure to boiling MgCl, =

15 mm_ 10 mm

Melt track orientation

General crack location
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‘ Impact of the final layer
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There 1s still a macro-scale change in the stress state.




. ‘ Cube sanlnsple exposure to boiling MgCl,

mm tall

4 mm ta |

Annealed at80° |

Boiling MgCl, at
155 °C, imaged
after 24 hours.
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y ‘ Cube sample exposure to boiling MgCl,

As-printed
not annealed

Annealed at
600°C

3500

Crack depth (um)
- i N (N W
S 8 8 & 8
e o T S 2T

n
S
-

*®

L & 4
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18 +nmn 18 i

Boiling MgCl, at 155 °C, imaged after 24 hours.




i} ‘Impact of porosity?

Porous (~5 vol%







» I Conclusions from Boiling MgCl, experiments

Controlling residual stress with cutting.

* Residual stress was simulated to be a maximum at 430 MPa for thickest sample.

* Samples with lower global residual stress showed crack propagation perpendicular to the
melt track directions.

Annealing study.
* Heat treated samples at 600, 800, and 1200°C for 1 hour.
* 600°C stress relief has minimal impact on crack susceptibility or propagation depth.
* Cracking was non-existence for annealed 800 and 1200°C samples.
* 800°C sample showed the beginnings of recovery and recrystallization which seemed to
be enough to prevent cracking after >300 hrs. immersion.

Porosity might reduce SCC susceptibility.




.+ | Study Framework

Questions
1) How does residual stress from PBF 316L specimens impact SCC
behavior compared to conventional wrought material?
* What heat treatments impact this SCC behavior?
2) What is the interplay of unique microstructural features with crack
propagation?
Approach
Control residual stress of powder bed fusion specimen with cutting/heat
treatments.
* Boiling MgCl, exposures.
Direct current potential drop (DCPD) SCC measurements.
* Crack growth rate measurements.
* Frequency dependence.

Preliminary data



. | Crack growth rate measurements

Environment

* Immersed in saturated MgCl,.

* Temperature kept at 75°C.

Sample (3/4 CT) — coated on all sides except the crack flanks/crack notch.

*  Wrought samples were prepared 1n as-received condition.

 PBF 316L samples were prepared in as-printed, annealed (650 and 1200 °C)
conditions.

Loading conditions

« K__ =44 MPaVm.

« R=0.5.

* Freq: 0.1Hz to ImHz
* 9000s holds

* 1 day holds
e and transitioned to constant K.



26 ‘ Selective laser melting 316L samples

Laser melting  Laser
Pre-placed powder Beam

S "} iees ;‘.Z-f‘.'_,i

A

Individual
layers

Build plate Un-me]te:! powder \ i

Parameter Value ;L,UJ
Laser power 110 W a=0.35
Laser velocity 1400 mm/sec . . g
Layer thickness 30 pm 1” 0.5
Laser focus offset *+1 mm Laser pattern turns 90 degrees every layer and the starting position
Average powder diameter 12 pm changes every layer. Identical laser scan pattern occurs every 4 layer. |
Cover gas Argo

wtY C Cr Cu ke Mn Mo N Nb Ni O P S Si | PREN

s16L 0.012 | 16.76 | 0.56 | 68.4 1.25 1.91 | 0.056 | 0.021 | 10.14 | 0.003 | 0.029 | 0.002 | 0.22 | 24.0
wrought

316L SLM

as-built 0.013 | 16.87 | 0.039 | 65.5 | 1.54 | 2.31 | 0.078 | 0.001 | 12.74 | 0.055 | 0.015 | 0.006 | 0.71 | 25.7




‘ Materials
Wrought 316L
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s | AM Sample Electrochemical Tests

_01 I B B R P B 1 L.

g | 1316L

- Sat MgCl,

Y -0.29 scan Rate: 0.167mV/s

w ’

8 -0.3-

0 | ]

> 0.4-

>

§ -05 | Wrought
LLl . [ AM12000/2h
AM-As Received

-0.6

10 -9 8 -7 6 -5 -4 -3 -2 -
i (Alem?)

As Received AM sample appears to have a slightly higher E_ . compared to the Wrought/1200C-2h samples.

-250

W

S

S
[

-4001

E (mV vs SCE, RT)

-450 1

0O

O E,(mVvsSCE,RT)
O E, (mVvsSCE,RT)
E.orr (MV vs SCE, RT)

316L
Sat. MgCl,

Scan rate; 0.167mV/s

Wrought AM

As Received

Material ID

AM
650°C/2h



» | Full test sequence for DCPD measurements

(V vs SCE, 75°C)

corr

E

-0.54

-0.51pF

-0.52

-0.53

14.5

-0.5=

0

1

2

3

4
Time (s)

5

Crack length and corrosion potential measurement over the course of entire

experiment on wrought 316L 1n saturated MgCl, at 75°C.



» | Crack Growth Rate — 316L Wrought

‘13,3 I I I I I I I . = = e ——
O Ky = 44MPaim, AK = 22MPavm| |
13.25F @ Aa=7.139e-002 mm J — 316L
3 Aa=5.253e-002 mm 6.9522e-008 mm/s _ O Sat MgCl,
< 3.1018e-007 mm/s £ va=1.024e-002 mm —
13.2} > o 5.4785e-008 mm/s - (& O 75°C
® - Y OCP ~-552 mV vs SCE, RT
1315 S 5 - =
— . = — - "‘:q_,_“"‘.' = )
E - & 3 E 1074
® 13113 9 2 - = 0
£ ] 316L-Wrought - ~—
e 9 gza‘:EMgCIz ﬁ'-c
13,0852 » 76°c - 1 Z
= K = 40ksiyin (44MPaym]) ©
g R=05 ~— D
P OCP ~552 mV vs SCE, RT m
13 -
Aa=1.423e-001 mm © a
€ 1.9798¢-006 mm/s . . . . .
12.9% 50 100 150 200 250 300 350 400 4
Time(h) 10 Tl T T T rrr] T T T rrry T T rrrrryp
. 10 10 107 10
Measurements are performed in saturated MgCl, at 75°C (6.4 M). f (Hz)

AK_. =44 MPavm and a loading ratio, R = 0.5 (AK = 22 MPaVm) were used to
propagate the pre-crack to a constant K condition.

Holds at 9,000 and 86,400 seconds at low frequencies (0.01 and 0.001 Hz) were
used to propagate the crack to constant K.




. | 316L — frequency dependency (corrosion fatigue data)

O Ky = 44MPavm, AK = 22MPavm| [ 104 o 316L Wrought L
' : O 75°C/IOCP~-552mV vs SCE,RT | F
— 316L | — 3 316L AM As Recieved F
] °C/OCP~-375mV vs SCE,
% Sat MgCIZ % S%LTP?M 1200PC/2?175 Y =R
o 75°C/OCP ~-473mV vs SCE, RT
S = 75°C > 1 072 - A 75°C/OCP ~-522mV vs SCE, RT| |
1) OCP ~-552 mV vs SCE, RT O O 316L AM 650C/2h :
~ ~— | \J 75CIOCP ~-408mV vs SCE, RT
£ 103+ . =
£ o £ 103{ A N |
N’ — m é Q
% % N A Al
D & /A = M
£ 5 10% o
T = T e
Wrought | SatMgCl, o
1 K...x = 44MPavm, AK = 22MPaVm
T e 107> T rrrr—r—rrrre}
10° 10 107 1072 10°  10* 102 102 107

f (Hz) f (Hz)
This frequency dependence on crack growth could be caused by an increase in crack tip
anodic dissolution:
(1) increase local cathodic production of embrittling hydrogen; and
(2) lead to further crack tip acidification through hydrolysis of dissolved metal 10ns.

D.J. Schrock, et al. CORROSION, (2019).



» 1316L-AM As-printed — crack growth rate (CGR)

Time (h)

Aa=4.669e-003 mm
- 2 Aa=7.598e-003 mm 4.1437e-009 mm/s -
g 7.451e-008 mm/s
N
" = -
o
w o
-3 ® Aa=3.526e-002 mm -
2 ¢ 5.2697e-007 mm/s
. = -
- C
o O
| ® _
(7]
o
_ O -
=
4252-CT-01 (AM As Recieved)
Sat MgCl, _
75°C
EOHSEEBE =ﬁh?%agémv SCE, 75°C
e m o mv vs . -
Aa=9.827e-002 mm {-;.orrtr]mv to -395mV SCE, RT)
1.1552e-006 mm/s
[ | | ] | |
950 1000 1050 1100 1150 1200



5 1316L-AM 1200C/2h — CGR

13.1

13.051 51440-007 mm/s

Aa=5.335e-002 mm = x2=1.216€-002 mm
Aa=4.129e-002 mm 5.9599e-008 mm/s 1.1646e-008 mmis __ 4 oo,

4
13 o -
" =
- ¥ R
12.95 23 S
i £ B}
» < @
S o L
T 129 S = s i
E — @ L
- -
o 12.85 5 7
Aa=8.883e-002 mm -
{_
1ogll 1-2319e-006 mmis |
gﬁ?ﬁgﬂé 1200°C/2h - Sample 2
2 -
12.75 7500
Aa=1.960e-001 mm E:apfmkswin (44MPaym)
12.719.6905e-006 mm/s R=05 i
] ] 1 1 | 1
12.6% 100 200 300 200 500 600

Time (h)

700



CGR (mm/s)

Constant K

—
<
(0))

—
<
~

—
—
oo

—
<
(<o)

O Wrought
[0 AM - As Received
AM - 1200°C/2h

] O AM-650°C/2h

E,

/|:|\
\|:|’

EOCP

Sat MgCl,

3omv (/9°C

] E,-Eoce 150mV ‘H

OCP

Constant K = 44MPavm | [

Eocp ~35mV
E,-Eocp ~30mV
Wrought AM _ AM
As Received 650°C/2h

Material ID

Constant K behavior established
for difterent 316L conditions:

°316L — AM As received sample
exhibits the highest values of CGR.

> Seems to be associated with high OCP values —
still flushing this out.

> CGR is low ~10-*mm/s when
Eocp<E,, 1n all cases.

> CGR is in the range of 10”7 mm/s
when Eqp~E  and is about 10
mm/s when EOCP>E



s | CGR potential relationship with E

O Wrought
-6 || OO0 AM - As Received /l L
10 ; AM-1;oo§g72he % 5
1| O AM-650°C/2h fu i
g 1 [sat MgCl, 7% Evop
] [Constant K = 44MPav %
i) 7 onstan avm %
E 107" - Ii/il Eapp _
- ] Erp at 75°C—=—
' | 0 m
O . s i
o 197 : =
1 O
O
107 oS

550 -500 -450 -400 -350 -300 -250

E.on/Eqpp (MV vs SCE, RT)



| Conclusions/open questions on AM SCC:

* Evidence of environmental effects at 75°C. This frequency dependence on crack growth could
be caused by an increase in crack tip anodic dissolution.
* CGR of annealed AM and wrought material were consistently between 10-® and 107 mm/sec.
« As-printed material showed more fluctuations (10-% to 10-°* mm/sec).
* Appeared to be a correlation between E,p relative to Egp and CGR.

Impact of microstructure on crack path still needs to be addressed:
* What path will SCC take?
o Sub-grain boundaries?
o Melt pool boundaries? — Boiling MgCl, suggests these have minimal impact.
o High angle grain boundaries?
* Residual stress effects?
o Making these measurements now.
* Non-metallic inclusion effects?
* Same as in water reactor studies?
* Heat treatments might have an impact on this as well, oxide inclusion coarsening.
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Inherent Strain Method for Rapid Stress Prediction

Large LPBF part size is challenging for full thermomechanical solution due to small, fast moving
laser
Tlaser

« Minimum simulation timestep is typically — , where r is the laser radius and d is the

Viaser

laser diameter. For typical ProX 200 settings, this is a timestep of roughly 3.5e-5 s for
builds that may take hours or days.
Inherent strain method originally developed for weld stress prediction
* (Ueda, Fukuda, Tanigawa 1979; Ueda, Kim, Yuan 1980, Hill and Nelson 1995)
* Recently extended to AM (Chen at al. 2019, Liang et al. 2019 & 2020)
Strain tensor 1s applied in layers over time in a purely mechanical simulation
*  Quick approximation for distortion and stress

&1 O 0
ET = U 522 0
0 0 &35

Does not capture local variations due to different thermal gradients
Fast due to layer-based approach and only mechanical solve
Employed in Sandia’s Sierra/SolidMechanics FEA code

I I Em B
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As-printed microstructure — STEM/EDS

Bright field

Dark field

Map data
HAADF MAG: 80.0kx HV: F00KY

bap data
HAADF MAG: 80.0kx HV: 00y

Mn

Map dats
HAADF MAG: 40.0kx

Map daks
HAADF MAG: a0.0kx HV: Fodk

300 rem

Wap dats
HAADF MAG: 40,0k HY: 200kY

5i

Map daka
HAADF MAG: 40.0kx HV:

Wap data 3 E
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» | Electrochemical Tests — Sat. MgCl,

316L —35°C | o =

O E,(mVvs SCE,RT)
O E, (mVvsSCE, RT)
Ecorr (MV vs SCE, RT)

-390 - -

r_" 0.0- Sat MgCl, —igg i O
1’ 1/Scan Rate: 0.167mV/s|_geoc -250 - o _
L 316L

O Sat. MgCl,

ﬁ Scan rate: 0.167mV/s
>

>

—’

E (mV vs SCE, RT)

4004 O O ot

1110 -9 8 7 6 -5 -4 3 2 -1 0 40 60 80 100
i (A/cm?) Temperature (°C)

-0.5

No significant effect on E, or E, | with temperature

E . at 95°C is close to E | and is a significant increase above E, |



" ‘ Constant K — 9000s Holds

CGR (mm/s)

—
<
®»
al

—
Q
~
1

—
<
(00)
1

E.,-Eocp ~-30mV

O Wrought

O AM - As Received
AM - 1200°C/2h

O AM-650°C/2h

7N

I \
\D/

—

Sat MgCl,
Constant K = 44MPaVm

75°C

R=0.5

9000s holds

Wrought

As Recelived

AM

AM
650°C/2h

Material ID

Constant K — 9000s holds behavior for different
316L conditions

> 316L — AM As received sample exhibits the highest
values of CGR primarily associated with high OCP
values.

° CGR is low ~3-6x10*mm/s when Ep<E,; in all
cases

> CGR is in the range of about 10-¢ mm/s when
Eocp™Ey,



+ | Constant K — 1 day Holds

1 0_6 = g le\rflo-ug\ztReceived ,,D\\ Sat MgCI2 3
E AM - 1200°C/2h \ ; Constant K = 44MPa\/m : . .
1 O Am-es0°cr2h - R=0.5 . Constant K — 1 day holds behavior for different
—_ ErpEocp ~-30mV 11 day holds [ 316L conditions
75°C
2 1077 - E,,-Eocp ~150mV - © 316L — AM As received sample exhibits the highest
- ] ; values of CGR primarily associated with high OCP
= values.
E 10°8- | CGRis low ~10mm/s when Ep<E_ in all cases
> CGR is in the range of about 10- mm/s when
Q) E,;-Eoce ~35mV . E_SE
0 i OoCP p
107 3
E-Eocp ~30mV |
Wrought AM AM
As Received 650°C/2h

Material ID



