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Outline 2

Utilizing low-precision hardware for SpMM

• Use existing hardware (GPUs) to evaluate algorithmic approaches

• Can we use current low-precision hardware for sparse-matrix methods?

Simulations of future hardware for GEMMs

• How do we generalize to different block sizes?

• How can we study different GEMM sizes on different types of accelerators?

• Can we study (using simulations) other hardware for GEMMS?



Motivation

 NVIDIA Volta GPU uses tensor cores to achieve good performance on dense matrix-dense 
matrix product

 Can we use the tensor cores as the example for future spatial accelerators ?

How to utilize tensor cores to efficiently perform sparse-matrix multivector product?
*Source: https://developer.nvidia.com/blog/tensor-core-ai-performance-milestones/

Volta Tensor Core Matrix Multiply and Accumulate*

https://developer.nvidia.com/blog/tensor-core-ai-performance-milestones/


Related Work

Multiprecision / Mixed-precision
◦ This two part mini-symposium and a parallel mini-symposium

Tiled Sparse Matrix times dense vector multiplication
◦ Decades of work in sparse matrix ordering techniques
◦ Decades of work in sparse matrix partitioning

Most recent work on Tiling strategies
◦ Hong et al. Adaptive sparse tiling for sparse matrix multiplication, PPoPP, 2019. (ASpT-

RR)
◦ Jiang et al. A novel data transformation and execution strategy for accelerating sparse 

matrix multiplication on GPUs, PPoPP 2020, (ASpT-NR)
◦ Spatial partitioning approaches for graph algorithms (Yasar, Catalyurek et al.) – For future, not 

considered here



Several Use Cases

Block matrices are becoming more popular (again) with multiphysics 
use cases

◦ Block sizes are dictated by physics, not the clean power of two that the hardware likes
◦ Simple solution is to do padding and work on zeros.

Use Tiled SpMM for general matrices
◦ Use ordering methods to find “small” blocks in reordered matrices
◦ Could lead to variable sized blocks if ordering is not targeted for tiling
◦ Pad the blocks to arrive at uniform set of blocks that can be used with the hardware

Can we utilize the tiling / ordering approaches to find dense blocks for tensor cores?
Can we utilize the natural blocks that occur in Multiphysics use cases ?



Simple SpMM for general and Multiphysics use cases

 General use case
 Phase 1: Perform Reverse Cuthill–McKee (RCM) to re-order a symmetric/unsymmetric 
sparse matrix (after symmetrizing)

 Phase 2: Divide the re-ordered sparse matrix into diagonal block sub-matrices and off-
diagonal elements

 Phase 3
◦ Run dense diagonal block sub-matrices on tensor cores
◦ Run off-diagonal sparse matrix on regular SMs
◦ Accumulate the result matrices computed by tensor cores and regular SMs

 Multiphysics use case
◦ No need for ordering
◦ No need for splitting the matrix
◦ Sparse matrix with each scalar replaced by a dense block (need indirect indexing to get 

the dense blocks)
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SpMM Sparse + Dense: Phase 3

Running on tensor cores – 
multiple block-wise 
GEMM operations

Running on regular SMs – 
SpMM



Phase 3 – Block-wise GEMM operations

thread block 0

thread block 1

thread block 2

thread block 3

Do a thread-block assignments that is “natural”



Performance Evaluation

Machine Details

GPU

Tesla V100-SXM2
(80 SMs, 16GB Global Memory, 640 Tensor Cores, 

128 KB L1 cache, 6 MB L2 cache), 
CUDA version 9.2.88



Dataset

 Real symmetric sparse matrix – ﻿roadNet-CA
◦ # of rows and columns = 1,971,281
◦ Total NNZ = 5,533,214

Original sparse matrix Permuted sparse matrix by RCM

Re-order



Dataset

diagonal blocks + off-diagonal entries 



Synthetic case 1



Synthetic matrices

Keep the number of non-zeros constant, increase the non-zeros within the dense 
blocks

• As expected, the more non-zeros within the dense block better the performance

This is comparing cuSparse with cuSparse + dense blocks on GPUs
We assumed diagonal or tridiagonal blocks are mostly dense (may not happen in 
real problems)
Explicit tiled implementations that do not use tensor cores cannot benefit from these 
use cases
Validates the intuition that using the hardware will be beneficial even for sparse 
problems if dense blocks can be identified. 



Synthetic Matrices Use Case - 2

The benefits are better for denser problems of same dimension as expected 



Multiphysics use case



Multiphysics case

Synthetic Multiphysics matrices but with block sizes typically expected from physics 
codes

• 11x11, 15x15, 31x31

Pad the block sizes to match the hardware expectations and add more flops and 
memory
The approach helps when the padding is small enough
Validates the intuition that this is a good approach for multiphysics codes
Note that the right hand side we have chosen are also based on h/w expectations



General case

Form blocks based on a minimum density for blocks (50% shown)
The performance improves as the number of blocks that meet the minimum criteria 
increases
Still this is only on par with a standard SpMM
Currently two separate phases in calls ? Can we overlap the sparse portion with the 
dense portion ?
Can we use variable size blocks ? Can we use the tiling strategies with the tensor 
cores ?
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Utilizing low-precision hardware for SpMV

• Use existing hardware (GPUs) to evaluate algorithmic approaches

• Can we use current low-precision hardware for sparse-matrix methods?

Simulations of future hardware for GEMMs

• How do we generalize to different block sizes?

• How can we study different GEMM sizes on different types of accelerators?

• Can we study (using simulations) other hardware for GEMMS?



ML / GEMM Accelerators 21

ML Accelerators

• Several ML accelerators are available or proposed (TPUs, MAERI, Eyeriss, 

ShiDiaNano) 

• Many of them support more general matrix and vector sizes

• They use different variations for GEMM (input / output / weight stationary)

• Can we evaluate how the accelerators for different workload

• Our Solution: Use an analytical model (MAESTRO-BLAS) to evaluate the 

accelerators while choosing the best mapping for each of the accelerator 

using a mapping tool (FLASH)

• Evaluating Spatial Accelerator Architectures with Tiled Matrix-Matrix 

Multiplication, Gordon E. Moon, Hyoukjun Kwon, Geonhwa Jeong, Prasanth 

Chatarasi, Sivasankaran Rajamanickam, and Tushar Krishna, 2021, 

submitted.



22Mapping Space Exploration of BLAS Kernels on Dataflow Accelerators

 We developed a detailed analytical model, MAESTRO-BLAS, to evaluate several dataflows inspired by popular 
ML dataflow accelerators such as TPU (Google), NVDLA (NVIDIA), Eyeriss (MIT), MAERI (Georgia Tech) and 
ShiDianNao (China)
 MAESTRO-BLAS allows us to co-design GEMM architectures and algorithms understand how current ML 

accelerators can work for Computational Science and Engineering use cases
 We developed a mapping explorer for BLAS called FLASH to evaluate mappings and tile-sizes that are efficient 

for BLAS kernels on dataflow accelerators 



23Mapping Space Exploration of BLAS Kernels on Dataflow Accelerators

 We can study several different mappings of GEMM variants
 Tensor Core mapping is one option here

 Completed comparison of different GEMM algorithms and dataflows to demonstrate differences 
in runtime, energy and throughput for an edge accelerators and a cloud/HPC accelerator for 
different GEMM workloads



24Mapping Space Exploration of BLAS Kernels on Dataflow Accelerators

MAESTRO-BLAS Cost Model

Takeaway: FLASH + MAESTRO-BLAS demonstrate that the algorithm of choice (loop order), 
tile size, and cluster size vary widely for ML accelerators. 



Summary 25

Utilizing low-precision hardware for SpMM
• Use of tensor cores are beneficial for Multiphysics use cases when block sizes are close to 

hardware expected sizes

• Better reordering/tiling strategies to find dense problems could assist in improving 

performance for general sparse use case

• Overlapping sparse and dense compute, hybrid approaches with tiling and tensor cores could 

help as well.

Simulations of future hardware for GEMMs
• Several hardware choices are becoming available for low precision GEMMs and even 

SpMMs

• Based on simulations there is potential to use at least some of these hardware for sparse 

computations
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Thanks! Questions?


