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Qutline

Utilizing low-precision hardware for SpMM

» Use existing hardware (GPUs) to evaluate algorithmic approaches

« Can we use current low-precision hardware for sparse-matrix methods?
Simulations of future hardware for GEMMs

 How do we generalize to different block sizes?

 How can we study different GEMM sizes on different types of accelerators?

« Can we study (using simulations) other hardware for GEMMS?



Motivation m

NVIDIA Volta GPU uses tensor cores to achieve good performance on dense matrix-dense
matrix product

D=

FP1&or FFIZ FP1&or FPIZ

Volta Tensor Core Matrix Multiply and Accumulate®

Can we use the tensor cores as the example for future spatial accelerators ?

How to utilize tensor cores to efficiently perform sparse-matrix multivector product?

*Source: https://developer.nvidia.com/blog/tensor-core-ai-performance-milestones/



https://developer.nvidia.com/blog/tensor-core-ai-performance-milestones/

Related Work

Multiprecision / Mixed-precision
o This two part mini-symposium and a parallel mini-symposium

Tiled Sparse Matrix times dense vector multiplication
- Decades of work in sparse matrix ordering techniques
- Decades of work in sparse matrix partitioning

Most recent work on Tiling strategies

- Hong et al. Adaptive sparse tiling for sparse matrix multiplication, PPoPP, 2019. (ASpT-
RR)

o Jiang et al. A novel data transformation and execution strategy for accelerating sparse
matrix multiplication on GPUs, PPoPP 2020, (ASpT-NR)

o Spatial partitioning approaches for graph algorithms (Yasar, Catalyurek et al.) — For future, not
considered here



Several Use Cases m

Block matrices are becoming more popular (again) with multiphysics

use Cases
> Block sizes are dictated by physics, not the clean power of two that the hardware likes
o Simple solution is to do padding and work on zeros.

Use Tiled SpMM for general matrices
> Use ordering methods to find “small” blocks in reordered matrices
> Could lead to variable sized blocks if ordering is not targeted for tiling
> Pad the blocks to arrive at uniform set of blocks that can be used with the hardware

Can we utilize the tiling / ordering approaches to find dense blocks for tensor cores?
Can we utilize the natural blocks that occur in Multiphysics use cases ?



Simple SpMM for general and Multiphysics use cases m

General use case

Phase 1: Perform Reverse Cuthill-McKee (RCM) to re-order a symmetric/unsymmetric
sparse matrix (after symmetrizing)

Phase 2: Divide the re-ordered sparse matrix into diagonal block sub-matrices and off-
diagonal elements

Phase 3

> Run dense diagonal block sub-matrices on tensor cores

> Run off-diagonal sparse matrix on regular SMs

> Accumulate the result matrices computed by tensor cores and regular SMs

Multiphysics use case
> No need for ordering

> No need for splitting the matrix

o Sparse matrix with each scalar replaced by a dense block (need indirect indexing to get
the dense blocks)



SpMM Sparse + Dense: Phase 1

Original sparse matrix Re-ordered sparse matrix
X X X | X
X X | X X X
x | x X X Re-order X
X X X X | X X
X | X ‘ X | X
X | X X | X
X X
X | X X X | X X

permuted row/column index order
e.g.,P=[1,3,2,4,5,6,7,8] X: non-zero element



SpMM Sparse + Dense: Phase 2 m

L] Each diagonal block
x| x size=2Xx2

Re-ordered sparse matrix x|0 .
by RCM x | x Running on
S |[ tensor cores
0 ; X
x|x|O

X Running on

regular SMs
(cuSPARSE)




SpMM Sparse + Dense: Phase 3

Running on regular SMs —

SpMM

Running on tensor cores —

multiple block-wise

GEMM operations




Phase 3 — Block-wise GEMM operations

Do a thread-block assignments that is “natural”

XX |X|X | X|[X|X]|X

thread block O

thread block 1

X
”.
>

thread block 2 =

thread block 3

X [ X [X | X | X |X|[X|[X
X [ X [X | X | X |X|[X|[X




Performance Evaluation

Machine Details

Tesla V100-SXM2
(80 SMs, 16GB Global Memory, 640 Tensor Cores,
128 KB L1 cache, 6 MB L2 cache),
CUDA version 9.2.88

GPU




Pataset

Real symmetric sparse matrix — roadNet-CA
o # of rows and columns = 1,971,281

o Total NNZ = 5,533,214
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Dataset

Synthetic RCM-like sparse matrix
o Size of dimensions M and K = 32,768
° Size of each diagonal block = 16X16
° NNZ of diagonal blocks : NNZ of off-diagonal elements : 1
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Synthetic case 1

Block SpMM workload NNZ Densit
oc {symmetric) Each y Al s AR 5Lk Mixed-Precision approach: (wmma + cuSPARSE) or (wmma + Kokkos) (CUDA 10
Matrix {Nen/DI blogk {CUDA 10) 10)
ag/Tridi i ) : total diaganal Optlon 1 - Option 1 - Speedup Speedup Speedup
ag) M N K siee dll]alg:::l 0"::;?;“' density blacks All entries All entries w?;?:;r;i?;::;rs cuSPARSE - ASpT  Accumulated runtim over over over
{%) density {26} 9 (off-diagonal entries} (wmma + CUSPARSEN cuSPARSE ASpT-MR  ASpT-RR
Non | 32000 16 | 32,000 0.1500 - 0.0739 0.1746 - - - - - -
Dlag | 32,000| 16 | 32000 | 16x 16 461,848 1,073,640 0.1500 90.2047 - - 0.0148 0.0575 0.0723 1.02 N/A 2.4
Svnthetic Sparse Tridiag | 32,000 | 16 | 32000 | 16x16 | 1.382,026 153,452 0.1500 89.9757 - - 0.0531 0.0205 0.0736 1.00 N/A 2.37
y I'-..‘Iatrixp Non | 32,000| 32 | 32,000 - 0.2098 0.1905 0.3441 B N " . - -
(Same NNZ) Diag | 52,000| 32 | 32,000 | 32x32 923,854 2146,298 0.2098 90.2006 - - 0.0247 0.1432 01679 113 2.05
see colurmn | Tridiag | 32,000 | 32 | 32,000 | 32x32 | 2763400 | 306552 0.209g 89.9544 - - - 0.1002 0.0488 0.1490 1.28 2.3
Non | 32,000| 64 | 32,000 0.5992 0.6847 N/A 0.8967 - - = = =
Diag | 32,000 | 64 | 32000 | 64 x64 | 1451,503 | 4,284,304 0.5992 904054 - - 0.0556 0.4881 0.5436 1.26 1.28
Tridiag | 92.000 | 64 | 32000 | 64x64 | 5526,083 | 609,724 05992 89.9428 0.2269 0.1103 0.3373 2.03 2.07
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Synthetic matrices

SpMM workload

. NNZ i 3
Eleehs {symmetric) Each iy Al s AR 5Lk Mixed-Precision approach: (wmma + cuSPARSE) or (wmma + Kakkos) (CUDA 10
Matrix (Nen/DI block (CUDA 10) 10)
ag/Tridi size ] . total diaganal Optlon 1 - Optlon 1 - Speedup Spesdup Spesdup
ag) M N K CIETERED | EfTFITEREET el density blocks All entries All entries wmma-lensorcores | . opapgE - ASpT Accumulated runtim over over over
blocks entries {same) {dlagonal blocks) . .
{%) density {26} (off-diagonal entries} (wmma + CUSPARSEN cuSPARSE ASpT-MR  ASpT-RR
Non | 32000 18 | 32000 - - - 1535488 | 0.1500 - 0.0739 01746 - - - - - -
Dlag | 32,000| 16 | 32000 | 16x 16 461,848 1,073,640| 1535488| 0.1500 90.2047 - - 0.0148 0.0575 0.0723 1.02 N/A 2.4
. Tridiag | 32.000| 16 | 32000 | 16x16 | 1382026 | 153452| 1535488 0.1500 83,5757 . - - 0.0531 0.0205 0.0736 1.00 N/A 237
Synthetic Sparse
Matrix Non | 32,000 32 | 32000 - - - 3060052 02008 - 0.1905 0.1890 0.3441 - - - - - -
(Same NNZ) Diag | 32,000 32 | 32,000 | 32x32 923,854 | 2,146,288 | 3,069852| 0.2098 90.2006 - - = 0.0247 0.1432 0.1679 1.13 1.13 2.05
gee colurmn | Tridiag | 32.000| 32 | 32000 | 32x32 | 2762400 206,552 3,069,952 0.2098 42.9544 - - 0.1002 0.0488 0.1490 1.28 1.27 231
Non | 32,000 64 | 32,000 - - - 5,135,807 0.5992 - 0.6847 N/A 0.6967 - - = - - -
Diag | 32,000| 64 | 32,000 | 64X 64 | 1,451,503 | 4,284,304 | 6135807 | 0.5992 804054 - - 0.0556 0.4881 0.5436 126 NA 1.28
Tridiag | 32,000 | 64 | 32000 | 64 x64 | 5526083 | 609724 | 6,135807 | 05992 89.9428 . - - 0.2269 0.1103 0.3373 2.03 N/A 2.07

Keep the number of non-zeros constant, increase the non-zeros within the dense

blocks
* As expected, the more non-zeros within the dense block better the performance

This is comparing cuSparse with cuSparse + dense blocks on GPUs

We assumed diagonal or tridiagonal blocks are mostly dense (may not happen in
real problems)

Explicit tiled implementations that do not use tensor cores cannot benefit from these
use cases

Validates the intuition that using the hardware will be beneficial even for sparse

nraohlarme 1 fF Aaneas Wincrlre ~ran e 1IAAantfifinA



Synthetic Matrices Use Case - 2

Block SPMM workload NNZ Densit SPARSE ASpT-RR (CUDA
[N:;Di (symmetric) Each ¥ T{:::j:UDA 0 pi- 10){ Mixad-Preclslon appraach: (wmma + cUSPARSE) or (wmma + Kokkos) (CUDA 10}
Matrix black
/Tridi . : ] : . ) L
agag'; I M N K siee dlf:&::: I uﬂ::':frig::nal t;::l sl d;zt:ilty d:l'gg:: ! All entries All entries wn;rina-t:r;‘.:;rc:res cuSP?;IEELIASpT Accun?lﬂ:to:;runtime Sp:::rup Sp::::-l g Sp:f::-l i
[~90%}) {~10%;} (different) {%) density (%] LRGN 2 ) (off-diagonal entries) | {wmma + cuSPARSE) | ¢uSFARSE | ASPT-NR | ASET-RR
Non 82,000 [ 16 | 32000 - - 512479 | (0500 - 0.0375 N/A 0.0641 - -
Diag 32,000 |16 | 32,000| 16 x16 461,335 51,144 512479 | L0500 90,1045 = - 0.0145 0.0175
Non 32,000 | 16 | 32,000 - - 1535198  (.1499 - 0.0730 N/A 0.1742 - -
Tridiag 32.000 |16 | 22,000| 16x16 | 1,382,024 153,174 | 1,525,108 | 0.1499 89.9755 - - - 0.0525 0.0198
Synthetic Sparse Nen 32,000 32 32000 - - 1,023.975| 1000 - 0.0762 0.0795 0.1185 - -
Matrix Diag 3200032 | 22,000| 32x 32 921,646 102,320 | 1,023,976 | 0.1000 90.0045 - - - 0.0247 0.0412
(Different NNZ) Non 32,000 32 | 32000 - - 3089458 | (2598 - 0.1891 0.1903 0.3446 - -
see cofumn | Tridiag 32.000 | 32 | 32,000 | 32x32 | 2,763,400 306,058 | 3,069,458 | 0.2998 89,9544 - - - 0.1006 0.0481
Non 32,000 | 64 | 32,000 - 2,047,815 | 0.2000 - 0.2602 N/A 0.234 - -
Diag 3200064 | 32,000 64x64 | 1,843,268 204,548 | 2,047,816 | 0.2000 90.0023 - - - 0.0558 0.0876
Non  32.000 | 64 | 32,000 - 6,138,573 | 0.58a5 - (0.6848 N/A 0.6949 - -
Tridiag 52,000 | 64 | 32,000 | 64 x84 | 5,528,102 612,470 | 6,138,573 | 05895 80.0431 - - 0.2226 0.1097
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The benefits are better for denser problems of same dimension as expected



matrix Elapsed time (ms)
) ) data SpMM workload total # of
Matrix U (el structure e blocks
NNZ size cuSPARSE ASpT-NR ASpT-RRA speedup
M| K format M K N | (=NNZ) P P wmma over
cuSPARSE
23052 | 23052 | 320806 CSH 11x%11 23052x11 23052x11 16 320606 1.5329 N/A 2.287 - -
23052 | 23052 | 3206086 BCSH 16x16 W {11x11)/{16x18) [ 2305216 23052x16 16 320606 - - - 1.764444 0.873751
23052 | 23052 | 320606 CSR 16%15 100% 23062x15 | 23052x15 16 320606 2.5032 N/A 4.008 - -
23052 | 23052 | 320606 BCSR 16116 B(15x15)F(16x16) W 23062x16 | 23052x16 16 320606 = - - 1.755002 1.42625
23052 | 23052 | 320606 CSR 16x16 100%, 23052x16 | 23052x16 16 320606 27535 N/A 4,383 - -
23052 | 23052 | 320606 BCSR 16x16 W{16x16)/(16x16) W 23052x16 | 23052x16 16 320606 - - - 1.754944 1.56901
besstm36 23052 | 23052 | 320606 CSR 1111 100% 2305211 23082x11 32 320606 1.9321 1.589152 2.291 - -
23052 | 23052 | 320606 BCSR 16x16 B(11x11)/7(16x16) W 23052x16 | 23052x16 32 320606 - - - 3.081832 0.62694
23052 | 23052 | 320606 GCSR 15x15 100% 23052x15 | 23052x15 32 320606 3.289272 2.833056 4,057 - -
23052 | 23052 | 320806 BCSR 16x16 W{15x15)/(16x16) Wl 23052x16 | 23052x16 32 320606 - - - 3.082808 1.066873
23052 | 23052 | 320606 CSH 1616 100% 23052%16 23052x16 32 320606 3.7097 3.159616 4.417 -
23052 | 23052 | 320606 BCSR 16x16 M {16x16)/(16x18) [l 23052x16 £23052x16 32 320606 - - - 3.080812
23052 | 23052 | 320606 C5R 31x31 100% 23052x31 23052x31 32 320606 11.6454 9.770112 16.34 -
23052 | 23052 | 320606 BCSR 32x32 M(31x31)/32x32) W 23052x32 | 23052x32 32 320606 - - - 6.968927
i} 1 2 3 ] 5 m 15 mM X» 30 35 20 30 A4l 50 (7]
¥]
0 X w F
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e
30
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50
3 b »
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Multiphysics case
matrix Elapsed time (ms)
. . SpMM workload
Matrix dimension | total strc:le::t:,lre block| block density " t"-:f:ci:f AR

i o NNZ P size (%) 7 e o (=NN2) cuSPARSE | ASpT-NR  ASpT-RR wmma Sm:?::up f:,'Zf’e‘j;’:l_

cuSPARSE RR

23052 | 23052 | 320806 CsR 11x11 100% 23052x11 23052x11 16 320606 1.5329 N/A 2.287 - - -
23052 | 23052 | 320606 BCSH 16x16 | {(11x11)/{16x18) | 23052x16 | 23052x1§ 16 320606 - - - 1.754444 0.873751 | 1.303547

23052 | 23052 | 320606 CSR 16%15 100% 23062x15 | 23052x15 16 320606 2.5032 NfA 4.008 - - -
23052 | 23082 | 320606 BCSR 1616 | (15x15)/{16x16) | 23082x16 | 23055x16 16 320606 - - - 1.755002 1.42625 | 2.283641

23052 | 23052 | 320606 CSR 16x16 100% 23052x16 | 23052x16 16 320608 2.7535 N/A 4 383 - - -
23052 | 23052 | 320606 BCSR 16x16 | {16x16)/(16x16) | 23052x16 | 23052x16 16 320606 - - - 1.754944 1.56901 | 2.497516

besstm36 23052 | 23082 | 320606 CSR 11x11 100% 23082x11 | 23052x11 32 320606 1.9321 1.589152 2.2H - - -
23052 | 23052 | 320606 BCSR 16x16 | (11x11)/{(16x16) | 23052x16 | 23052x16 32 320606 - - - 3.081832 0.62694 | 0.743389

23052 | 23052 | 320606 CSR 15x15 100% 23052x15 | 23052x15 32 320606 3.289272 2.833056 4.057 - - -
23052 | 23052 | 320606 BCSR 16%16 | {15x15)/(16x16) | 23052x16 | 23052x16 32 320606 - - - 3.082808 1.066873| 1.316008

23052 | 23052 | 320606 CSR 16x16 100% 23052x16 | 23052x16 32 320606 3.7097 3.159616 4.417 - - -
23052 | 23052 | 320606 BCSR 16x16 | {(16xX16)/(16x18) | 23052x16 £23052x16 32 320606 - - - 3.080812 1.204116(1.433713

23052 | 23052 | 320606 CSR 31x31 100% 23052x31 | 23052x31 32 320606 11.6454 9.770112 16.34 - - -
23052 | 23052 | 320606 BCSR 32x32 | (31x31)/(32x32) | 23052x32 | 23052x32 32 320606 - - - 6.968927 1.671047| 2.3446%4

Synthetic Multiphysics matrices but with block sizes typically expected from physics
codes
* 11x11, 15x15, 31x31

Pad the block sizes to match the hardware expectations and add more flops and
memory

The approach helps when the padding is small enough

Validates the intuition that this is a good approach for multiphysics codes



General case

SpMM workload # of blocks Elapsed time {ms)
Matrix (symmetric matrix) | Total NNZ | = 0" | Reoraer) Bock fonly non- | F Ot denee I P ARSE [ASpT-NR| ASpT-RR ARIAA (CUDA 10

M |N| K DBE | oro blocks) (CUDA 10) |(CUDA 9)|(CUDA 10)[ wmma |cuSPARSE|| Total
434102 | 32 434,102 32,073,440 - - - - 1.8977 1.5954 2.1720 - - -
434112 |32 434112 32,073,440 32x32 NR All 886437 - 20.6410 - 20.6410
434112 |32 434 112 32,073,440 32x32 NR All 18301 0.4882 1.3007 1.7889
434112 | 32 434112 32,073,440 32%32 MR Diag 13565 - 0.4704 1.6596 2.1300
434 112 |32 434 112 32,073,440| 32x32 NR Diag 4949 0.1856 1.7531 1.9387
434112 | 32 434112 32,073,440 | 32x32 NR TriDiag 38033 - 1.0181 1.3958 2.4140

coPapersCiteseer 434112132 434112 32,073,440 32x32 NR TriDiag 10109 0.3048 1.5761 1.8807

434112 | 32 434112 32,073,440 | 32x32 RCM All 446273 - 10.8442 - 10.8442
434,112 |32 434,112 32,073,440| 32x32 RCM All 16791 0.4562 1.244() 1.7002
434112 |32 4234 112 32,073,440 32x32 RCM Diag 13565 - 0.4696 1.5850 2.0047
434,112 |32 434,112 32,073,440| 32x32 RCM Diag 4815 0.1814 1.6703 1.8516
434 11232 434 112 32,073,440 | 32x32 RCM TriDiag | 37695 - 1.0108 1.3416 2.3524
434112 |32 434112 32,073,440 32x32 RCM TriDiag | 9203 0.2826 1.5309 1.8135

Form blocks based on a minimum density for blocks (50% shown)

The performance improves as the number of blocks that meet the minimum criteria
Increases

Still this is only on par with a standard SpMM

Currently two separate phases in calls ? Can we overlap the sparse portion with the
dense portion ?

Can we use variable size blocks ? Can we use the tiling strategies with the tensor



Qutline

Simulations of future hardware for GEMMs
 How do we generalize to different block sizes?
 How can we study different GEMM sizes on different types of accelerators?

« Can we study (using simulations) other hardware for GEMMS?



ML / GEMM Accelerators m

ML Accelerators

Several ML accelerators are available or proposed (TPUs, MAERI, Eyeriss,
ShiDiaNano)

Many of them support more general matrix and vector sizes

They use different variations for GEMM (input / output / weight stationary)
Can we evaluate how the accelerators for different workload

Our Solution: Use an analytical model (MAESTRO-BLAS) to evaluate the
accelerators while choosing the best mapping for each of the accelerator
using a mapping tool (FLASH)

Evaluating Spatial Accelerator Architectures with Tiled Matrix-Matrix

Muiltiplication, Gordon E. Moon, Hyoukjun Kwon, Geonhwa Jeong, Prasanth



Mapping Space Exploration of BLAS Kernels on Datatiow

P d F k Our Gontributi : Lo . - . .
roposed Framewor \—‘ ur Lontribution : o Receive inputs in a specification list format

FLASH [Mapping Explorer]

o Generate a dataflow {parallel dim & loop
Dataflow Likbrary Dataflow Tile Size - ; order) candidate
{Parallelized Dim * Selection Engine " Ophml;ed e t i didate {datafl
+ Loop Order) Mapping tilgr‘ns?zrae; a mapping candidate (dataflow +
& .
2] I . : . .
T = § MAESTRO-BLAS Gost Model Mapping Expacted ; Process mapping and BLAS operation to generate
BLAS E & ¥ Candidate Performance : MAESTRO-BLAS configs and inputs
Operation + Ew Report ;
Matrix Dimensicns E 44 R BLAS Frontend ; j
a & : G Estimate performance (throughput, latency, |
T o MAESTRO Expected - 5 etc.) and cost (anargy) i
Hardware 5 Directives - Cost : !
Resource ; e I . |
Sl Report : Repeat 2-5 until find an optimized mapping) ------t
Description MAESTRO BLAS : (Rep P pping)
Cost Model Cost Model ; Report the aptimized mapping as MAESTRC
Inputs Outputs : e directives.
; Report expected performance and cost

(a) Overview of Proposed Framework (b} Framework Walk-through

» We developed a detailed analytical model, MAESTRO-BLAS, to evaluate several dataflows inspired by popular
ML dataflow accelerators such as TPU (Google), NVDLA (NVIDIA), Eyeriss (MIT), MAERI (Georgia Tech) and

ShiDianNao (China)
» MAESTRO-BLAS allows us to co-design GEMM architectures and algorithms understand how current ML

accelerators can work for Computational Science and Engineering use cases
» We developed a mapping explorer for BLAS called FLASH to evaluate mappings and tile-sizes that are efficient

for BLAS kernels on dataflow accelerators



Mapping Space Exploration of BLAS Kernels on Dataflow Am
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» We can study several different mappings of GEMM variants
» Tensor Core mapping is one option here
» Completed comparison of different GEMM algorithms and dataflows to demonstrate differences
in runtime, energy and throughput for an edge accelerators and a cloud/HPC accelerator for
different GEMM workloads
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RO-BLAS Cost Model

¥

Matrix Workload ID
Dimension I 1I 111 v A% VI
M 8192 | 1024 8 8 8192 | 512
N 8192 | 1024 8 8192 8 256
K 8192 | 8192 | 8192 | 1024 | 1024 | 256

[ GFLOPs | 549.8 | 859 | 0.001 [ 0.067 | 0.067 | 0.03 |
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Bl STT_TTS-NMK (TPU-inspired)

I STT_TST-MNK (ShiDianNao-inspired) |
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(b) Cloud Accelerator

Takeaway: FLASH + MAESTRO-BLAS demonstrate that the algorithm of choice (loop order),
tile size, and cluster size vary widely for ML accelerators.




Summary m

Utilizing low-precision hardware for SpMM
« Use of tensor cores are beneficial for Multiphysics use cases when block sizes are close to
hardware expected sizes
« Better reordering/tiling strategies to find dense problems could assist in improving
performance for general sparse use case
« Overlapping sparse and dense compute, hybrid approaches with tiling and tensor cores could

help as well.

Simulations of future hardware for GEMMs
« Several hardware choices are becoming available for low precision GEMMs and even
SpMMs
« Based on simulations there is potential to use at least some of these hardware for sparse

computations
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