

Sandia
National
Laboratories

Exceptional service in the national interest

Mixed-Precision Schemes for Linear Algebra Kernels on GPUs

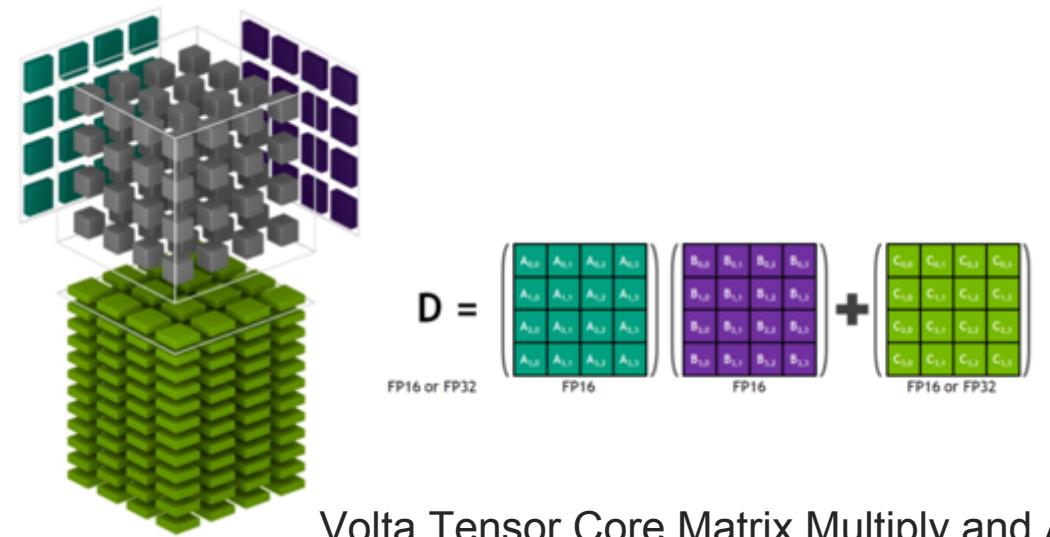
SIAM CSE '21

Siva Rajamanickam, Gordon Moon*

Scalable Algorithms Department, Center for Computing Research

***Currently at Korea Aerospace University**

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.


Utilizing low-precision hardware for SpMM

- Use existing hardware (GPUs) to evaluate algorithmic approaches
- Can we use current low-precision hardware for sparse-matrix methods?

Simulations of future hardware for GEMMs

- How do we generalize to different block sizes?
- How can we study different GEMM sizes on different types of accelerators?
- Can we study (using simulations) other hardware for GEMMS?

NVIDIA Volta GPU uses tensor cores to achieve good performance on dense matrix-dense matrix product

Can we use the tensor cores as the example for future spatial accelerators ?

How to utilize tensor cores to efficiently perform sparse-matrix multivector product?

Multiprecision / Mixed-precision

- This two part mini-symposium **and** a parallel mini-symposium

Tiled Sparse Matrix times dense vector multiplication

- Decades of work in sparse matrix ordering techniques
- Decades of work in sparse matrix partitioning

Most recent work on Tiling strategies

- Hong et al. **Adaptive sparse tiling for sparse matrix multiplication**, PPoPP, 2019. (ASpT-RR)
- Jiang et al. **A novel data transformation and execution strategy for accelerating sparse matrix multiplication on GPUs**, PPoPP 2020, (ASpT-NR)
- Spatial partitioning approaches for graph algorithms (Yasar, Catalyurek et al.) – For future, not considered here

Block matrices are becoming more popular (again) with multiphysics use cases

- Block sizes are dictated by physics, not the clean power of two that the hardware likes
- Simple solution is to do padding and work on zeros.

Use Tiled SpMM for general matrices

- Use ordering methods to find “small” blocks in reordered matrices
- Could lead to variable sized blocks if ordering is not targeted for tiling
- Pad the blocks to arrive at uniform set of blocks that can be used with the hardware

Can we utilize the tiling / ordering approaches to find dense blocks for tensor cores?
Can we utilize the natural blocks that occur in Multiphysics use cases ?

General use case

Phase 1: Perform Reverse Cuthill–McKee (RCM) to re-order a symmetric/unsymmetric sparse matrix (after symmetrizing)

Phase 2: Divide the re-ordered sparse matrix into diagonal block sub-matrices and off-diagonal elements

Phase 3

- Run dense diagonal block sub-matrices on tensor cores
- Run off-diagonal sparse matrix on regular SMs
- Accumulate the result matrices computed by tensor cores and regular SMs

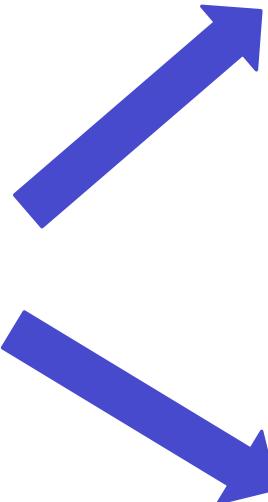
Multiphysics use case

- No need for ordering
- No need for splitting the matrix
- Sparse matrix with each scalar replaced by a dense block (need indirect indexing to get the dense blocks)

Original sparse matrix

x		x					
		x					
x	x		x	x			
	x	x		x			
			x	x			
			x	x			
				x			
			x	x	x		

Re-ordered sparse matrix


x	x						
x	x		x		x		
		x					
		x	x		x		
				x	x		
				x	x		
					x		
				x	x	x	

Re-order**permuted row/column index order**e.g., $P = [1, 3, 2, 4, 5, 6, 7, 8]$

x: non-zero element

Re-ordered sparse matrix by RCM

x	x							
x	x		x	x				
		x	0					
		x	x	x				
			x	x				
			x	x				
				x	0			
			x	x	0	x		

x	x							
x	x							
		x	0					
		x	x					
			x	x				
			x	x				
				x	0			
				0	x			

				x	x			
						x		
							x	
								x
						x	x	

Each diagonal block
size = 2×2

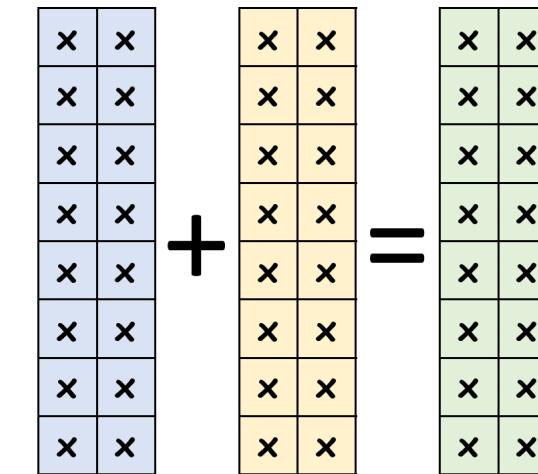
Running on
tensor cores

Running on
regular SMs
(cuSPARSE)

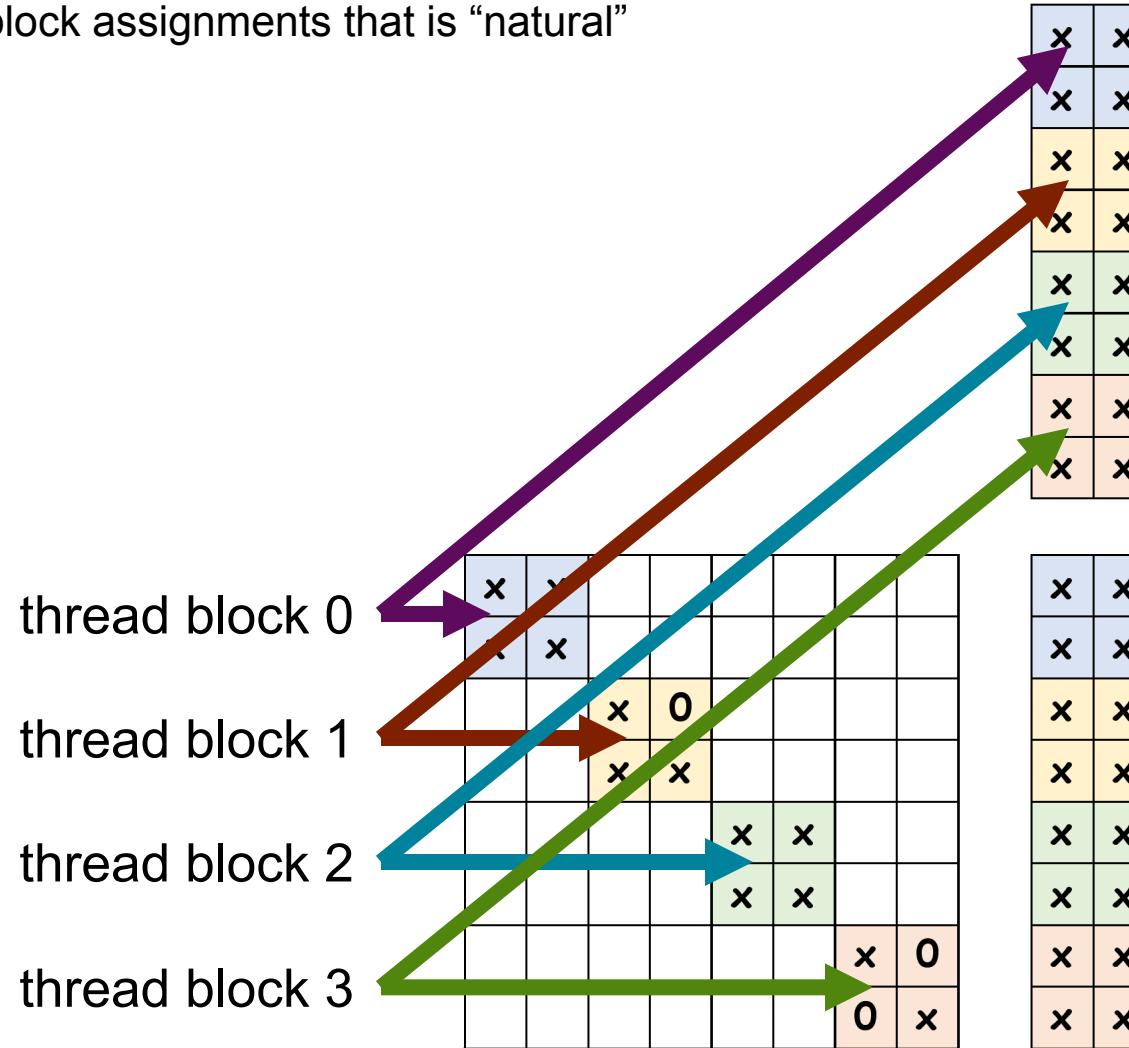
Running on tensor cores –
multiple block-wise
GEMM operations

x	x
x	x
x	x
x	x
x	x
x	x
x	x
x	x

x	x					
x	x					
		x	0			
x	x					
		x	x			
		x	x			
				x	0	
				0	x	


x	x
x	x
x	x
x	x
x	x
x	x
x	x
x	x

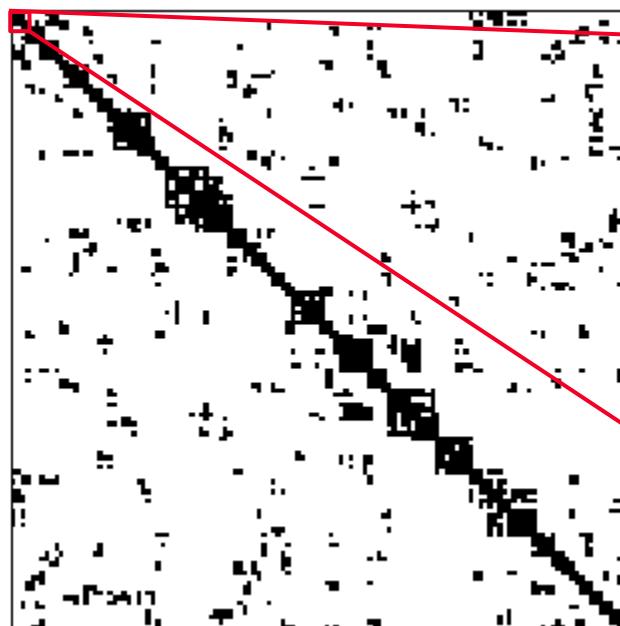
Running on regular SMs –
SpMM

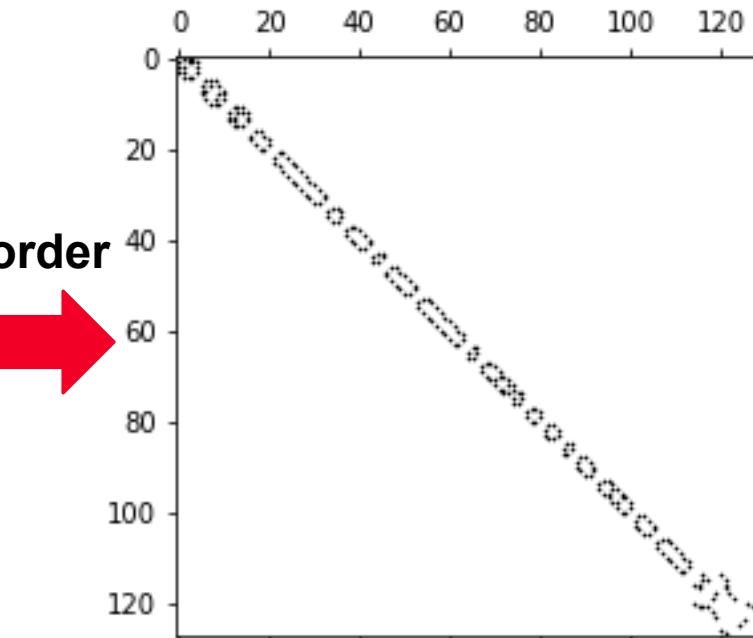
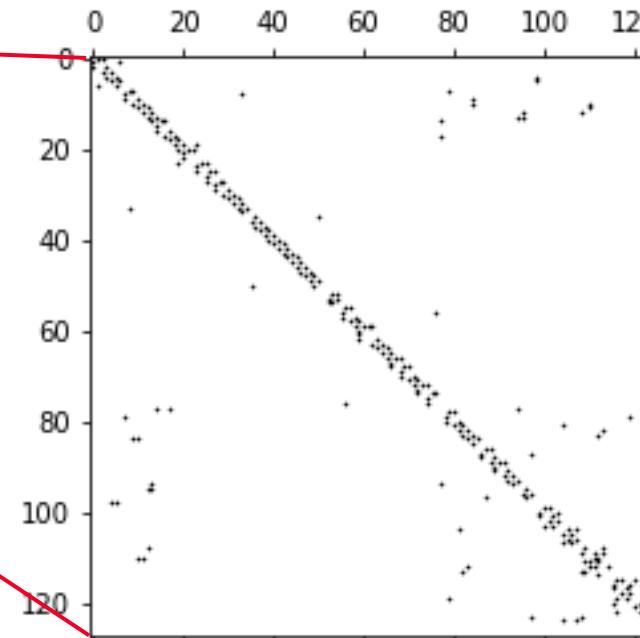

x	x
x	x
x	x
x	x
x	x
x	x
x	x
x	x

		x	x			
				x		
					x	
						x
		x	x			
				x		
					x	
						x

x	x
x	x
x	x
x	x
x	x
x	x
x	x
x	x

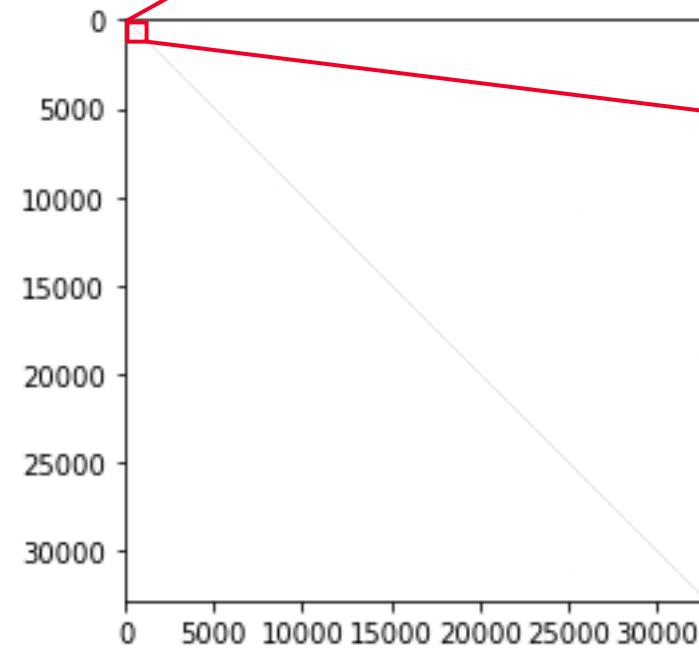
Do a thread-block assignments that is “natural”

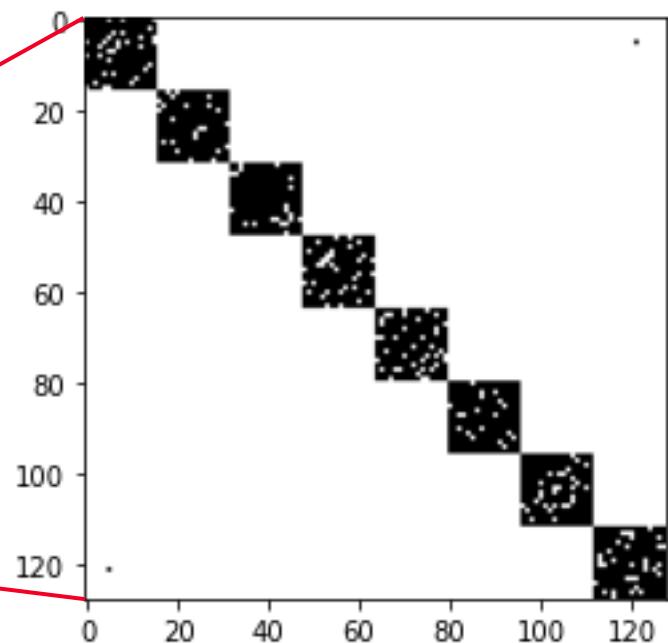




Machine	Details
GPU	Tesla V100-SXM2 (80 SMs, 16GB Global Memory, 640 Tensor Cores, 128 KB L1 cache, 6 MB L2 cache), CUDA version 9.2.88

Real symmetric sparse matrix – roadNet-CA

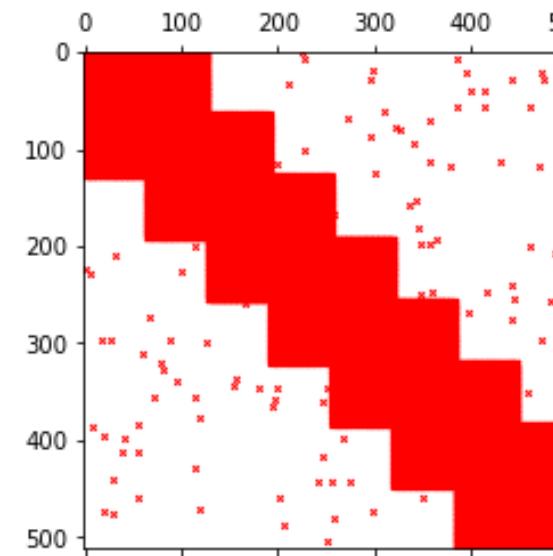
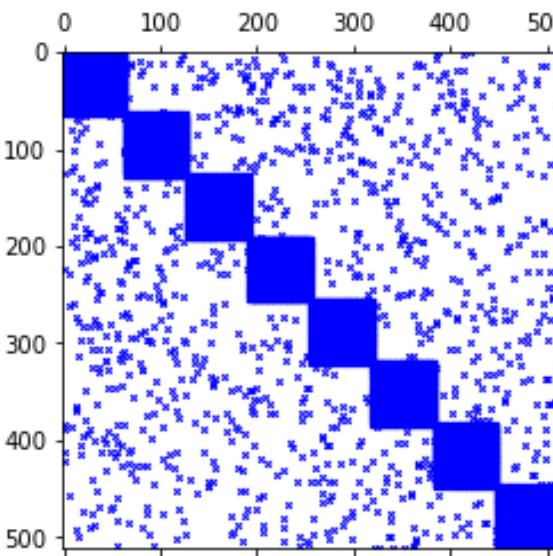
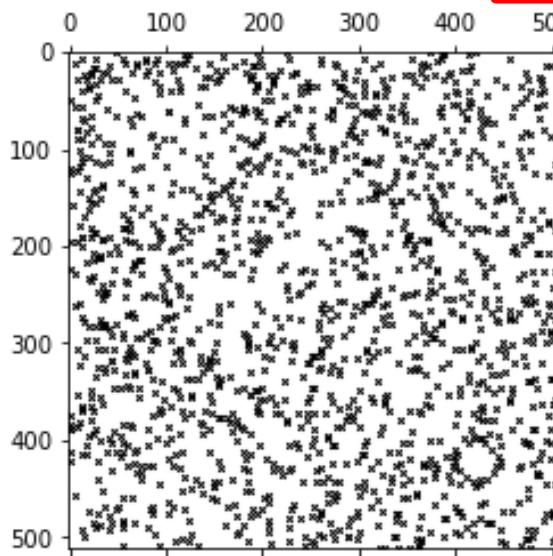
- # of rows and columns = 1,971,281
- Total NNZ = 5,533,214


Original sparse matrix


Permuted sparse matrix by RCM

Synthetic RCM-like sparse matrix

- Size of dimensions M and K = 32,768
- Size of each diagonal block = 16×16
- NNZ of diagonal blocks : NNZ of off-diagonal elements = 9 : 1




diagonal blocks + off-diagonal entries

Synthetic case 1

Matrix	Block (Non/Diag/Tridiag)	SpMM workload (symmetric)			Each block size	NNZ			Density		Mixed-Precision approach: (wmma + cuSPARSE) or (wmma + Kokkos) (CUDA 10)									Speedup over cuSPARSE			Speedup over ASpT-NR			Speedup over ASpT-RR		
		M	N	K		diagonal blocks	off-diagonal entries	total NNZ (same)	total density (%)	diagonal blocks density (%)	cuSPARSE (CUDA 10)		ASpT-NR (CUDA 9)		ASpT-RR (CUDA 10)		wmma - tensor cores (diagonal blocks)			Option 1 - cuSPARSE - ASpT		Option 1 - Accumulated runtime (wmma + cuSPARSE)		Speedup over cuSPARSE	Speedup over ASpT-NR	Speedup over ASpT-RR		
											All entries	All entries	All entries	All entries	wmma - tensor cores (diagonal blocks)	cuSPARSE - ASpT	Accumulated runtime (wmma + cuSPARSE)	Speedup over cuSPARSE	Speedup over ASpT-NR	Speedup over ASpT-RR								
Synthetic Sparse Matrix (Same NNZ) see column I	Non	32,000	16	32,000	-	-	-	1,535,488	0.1500	-	0.0739	N/A	0.1746	-	-	-	-	-	-	-	-	-	-	-	-			
	Dlag	32,000	16	32,000	16 x 16	461,848	1,073,640	1,535,488	0.1500	90.2047	-	-	-	-	0.0148	0.0575	0.0723	1.02	N/A	2.41	-	-	-	-	-			
	Tridiag	32,000	16	32,000	16 x 16	1,382,026	153,462	1,535,488	0.1500	89.9757	-	-	-	-	0.0531	0.0205	0.0736	1.00	N/A	2.37	-	-	-	-	-			
	Non	32,000	32	32,000	-	-	-	3,069,952	0.2998	-	0.1905	0.1899	0.3441	-	-	-	-	-	-	-	-	-	-	-	-			
	Diag	32,000	32	32,000	32 x 32	923,654	2,146,298	3,069,952	0.2998	90.2006	-	-	-	-	0.0247	0.1432	0.1679	1.13	1.13	2.05	-	-	-	-	-			
	Tridiag	32,000	32	32,000	32 x 32	2,762,400	306,552	3,069,952	0.2998	89.9544	-	-	-	-	0.1002	0.0488	0.1490	1.28	1.27	2.31	-	-	-	-	-			
	Non	32,000	64	32,000	-	-	-	6,135,807	0.5992	-	0.6847	N/A	0.6967	-	-	-	-	-	-	-	-	-	-	-	-			
	Diag	32,000	64	32,000	64 x 64	1,851,503	4,284,304	6,135,807	0.5992	90.4054	-	-	-	-	0.0556	0.4881	0.5436	1.26	N/A	1.28	-	-	-	-	-			
	Tridiag	32,000	64	32,000	64 x 64	5,526,083	609,724	6,135,807	0.5992	89.9428	-	-	-	-	0.2269	0.1103	0.3373	2.03	N/A	2.07	-	-	-	-	-			

Synthetic matrices

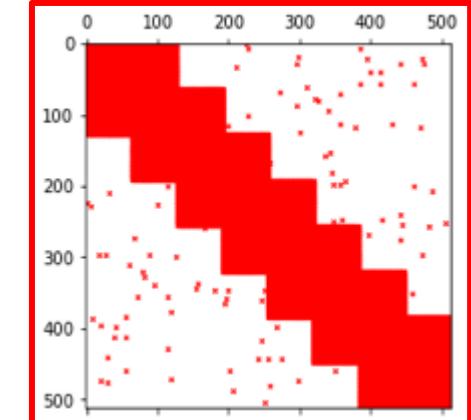
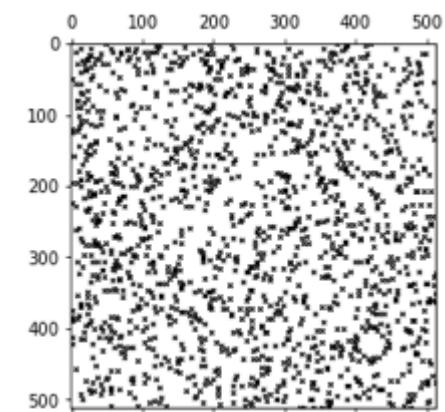
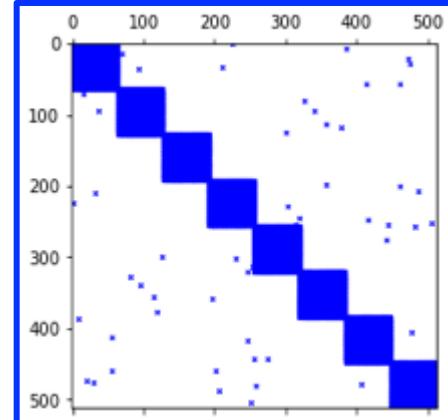
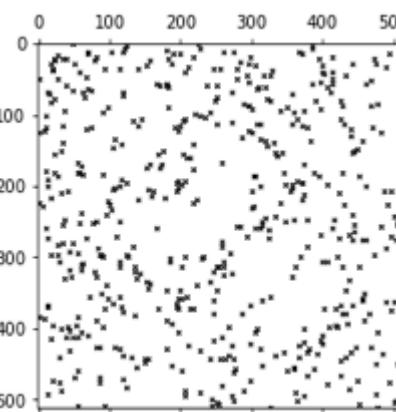
Matrix	Block (Non/Di ag/Tridi ag)	SpMM workload (symmetric)			Each block size	NNZ			Density		Mixed-Precision approach: (mma + cuSPARSE) or (mma + Kokkos) (CUDA 10)									
		M	N	K		diagonal blocks	off-diagonal entries	total NNZ (same)	total density (%)	diagonal blocks density (%)	All entries	All entries	All entries	mma - tensor cores (diagonal blocks)	Option 1 - cuSPARSE - ASpT (off-diagonal entries)	Option 1 - Accumulated runtime (mma + cuSPARSE)	Speedup over cuSPARSE	Speedup over ASpT-NR	Speedup over ASpT-RR	
Synthetic Sparse Matrix (Same NNZ) see column I	Non	32,000	16	32,000	-	-	-	1,535,488	0.1500	-	0.0739	N/A	0.1746	-	-	-	-	-		
	Dlag	32,000	16	32,000	16 x 16	461,848	1,073,640	1,535,488	0.1500	90.2047	-	-	-	0.0148	0.0575	0.0723	1.02	N/A	2.41	
	Tridiag	32,000	16	32,000	16 x 16	1,382,026	153,462	1,535,488	0.1500	89.9757	-	-	-	0.0531	0.0205	0.0736	1.00	N/A	2.37	
	Non	32,000	32	32,000	-	-	-	3,069,952	0.2998	-	0.1905	0.1899	0.3441	-	-	-	-	-	-	
	Diag	32,000	32	32,000	32 x 32	923,654	2,146,298	3,069,952	0.2998	90.2006	-	-	-	0.0247	0.1432	0.1679	1.13	1.13	2.05	
	Tridiag	32,000	32	32,000	32 x 32	2,762,400	306,552	3,069,952	0.2998	89.9544	-	-	-	0.1002	0.0488	0.1490	1.28	1.27	2.31	
	Non	32,000	64	32,000	-	-	-	6,135,807	0.5992	-	0.6847	N/A	0.6967	-	-	-	-	-	-	
	Diag	32,000	64	32,000	64 x 64	1,851,503	4,284,304	6,135,807	0.5992	90.4054	-	-	-	0.0556	0.4881	0.5436	1.26	N/A	1.28	
	Tridiag	32,000	64	32,000	64 x 64	5,526,083	609,724	6,135,807	0.5992	89.9428	-	-	-	0.2269	0.1103	0.3373	2.03	N/A	2.07	

Keep the number of non-zeros constant, increase the non-zeros within the dense blocks

- As expected, the more non-zeros within the dense block better the performance

This is comparing cuSparse with cuSparse + dense blocks on GPUs

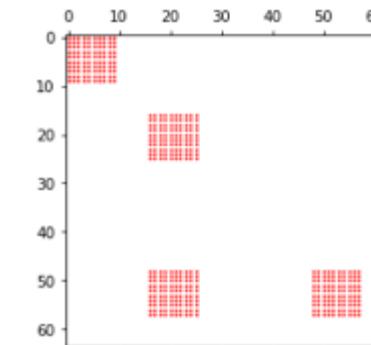
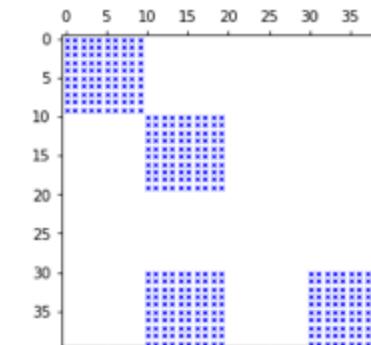
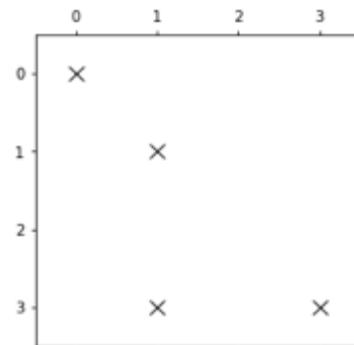
We assumed diagonal or tridiagonal blocks are mostly dense (may not happen in real problems)





Explicit tiled implementations that do not use tensor cores cannot benefit from these use cases

Validates the intuition that using the hardware will be beneficial even for sparse problems if dense blocks can be identified

Synthetic Matrices Use Case - 2

Matrix	Block (Non/Diag/Tridiag)	SpMM workload (symmetric)			Each block size	NNZ		Density		cuSPARSE (CUDA 10)	ASpT-NR (CUDA 9)	ASpT-RR (CUDA 10)	Mixed-Precision approach: (wmma + cuSPARSE) or (wmma + Kokkos) (CUDA 10)								
		M	N	K		diagonal blocks (~90%)	off-diagonal entries (~10%)	total NNZ (different)	total density (%)				All entries	All entries	All entries	wmma - tensor cores (diagonal blocks)	Option 1 - cuSPARSE - ASpT (off-diagonal entries)	Option 1 - Accumulated runtime (wmma + cuSPARSE)	Speedup over cuSPARSE	Speedup over ASpT-NR	Speedup over ASpT-RR
Synthetic Sparse Matrix (Different NNZ) see column 1	Non	32,000	16	32,000	-	-	-	512,479	0.0500	-	0.0375	N/A	0.0641	-	-	-	-	-	-	-	-
	Diag	32,000	16	32,000	16 x 16	461,335	51,144	512,479	0.0500	90.1045	-	-	-	-	0.0145	0.0175	0.0320	1.17	N/A	2.00	
	Non	32,000	16	32,000	-	-	-	1,535,198	0.1499	-	0.0730	N/A	0.1742	-	-	-	-	-	-	-	-
	Tridiag	32,000	16	32,000	16 x 16	1,382,024	153,174	1,535,198	0.1499	89.9755	-	-	-	-	0.0525	0.0198	0.0723	1.01	N/A	2.41	
	Non	32,000	32	32,000	-	-	-	1,023,975	0.1000	-	0.0762	0.0795	0.1185	-	-	-	-	-	-	-	-
	Diag	32,000	32	32,000	32 x 32	921,646	102,330	1,023,976	0.1000	90.0045	-	-	-	-	0.0247	0.0412	0.0659	1.16	1.21	1.80	
	Non	32,000	32	32,000	-	-	-	3,069,458	0.2998	-	0.1891	0.1903	0.3446	-	-	-	-	-	-	-	-
	Tridiag	32,000	32	32,000	32 x 32	2,763,400	306,058	3,069,458	0.2998	89.9544	-	-	-	-	0.1006	0.0481	0.1487	1.27	1.28	2.32	
	Non	32,000	64	32,000	-	-	-	2,047,815	0.2000	-	0.2602	N/A	0.234	-	-	-	-	-	-	-	-
	Diag	32,000	64	32,000	64 x 64	1,843,268	204,548	2,047,816	0.2000	90.0033	-	-	-	-	0.0558	0.0876	0.1434	1.82	N/A	1.63	
	Non	32,000	64	32,000	-	-	-	6,138,573	0.5995	-	0.6848	N/A	0.6949	-	-	-	-	-	-	-	-
	Tridiag	32,000	64	32,000	64 x 64	5,526,103	612,470	6,138,573	0.5995	89.9431	-	-	-	-	0.2226	0.1097	0.3323	2.06	N/A	2.09	

The benefits are better for denser problems of same dimension as expected

Multiphysics use case

Matrix	matrix dimension		total NNZ	data structure format	block size	block density (%)	SpMM workload			total # of blocks (=NNZ)	Elapsed time (ms)				APIAA	
	M	K					M	K	N		cuSPARSE	ASpT-NR	ASpT-RR	wmma	speedup over cuSPARSE	speedup over ASpT-RR
bcsstm36	23052	23052	320606	CSR	11x11	100%	23052x11	23052x11	16	320606	1.5329	N/A	2.287	-	-	-
	23052	23052	320606	BCSR	16x16	(11x11) / (16x16)	23052x16	23052x16	16	320606	-	-	-	1.754444	0.873751	1.303547
	23052	23052	320606	CSR	15x15	100%	23052x15	23052x15	16	320606	2.5032	N/A	4.008	-	-	-
	23052	23052	320606	BCSR	16x16	(15x15) / (16x16)	23052x16	23052x16	16	320606	-	-	-	1.755092	1.42625	2.283641
	23052	23052	320606	CSR	16x16	100%	23052x16	23052x16	16	320606	2.7535	N/A	4.383	-	-	-
	23052	23052	320606	BCSR	16x16	(16x16) / (16x16)	23052x16	23052x16	16	320606	-	-	-	1.754944	1.56901	2.497516
	23052	23052	320606	CSR	11x11	100%	23052x11	23052x11	32	320606	1.9321	1.589152	2.291	-	-	-
	23052	23052	320606	BCSR	16x16	(11x11) / (16x16)	23052x16	23052x16	32	320606	-	-	-	3.081832	0.62694	0.743389
	23052	23052	320606	CSR	15x15	100%	23052x15	23052x15	32	320606	3.289272	2.833056	4.057	-	-	-
	23052	23052	320606	BCSR	16x16	(15x15) / (16x16)	23052x16	23052x16	32	320606	-	-	-	3.082808	1.066973	1.316008
	23052	23052	320606	CSR	16x16	100%	23052x16	23052x16	32	320606	3.7097	3.159616	4.417	-	-	-
	23052	23052	320606	BCSR	16x16	(16x16) / (16x16)	23052x16	23052x16	32	320606	-	-	-	3.080812	1.204116	1.433713
	23052	23052	320606	CSR	31x31	100%	23052x31	23052x31	32	320606	11.6454	9.770112	16.34	-	-	-
	23052	23052	320606	BCSR	32x32	(31x31) / (32x32)	23052x32	23052x32	32	320606	-	-	-	6.968927	1.671047	2.344694

Multiphysics case

Matrix	matrix dimension		total NNZ	data structure format	block size	block density (%)	SpMM workload			total # of blocks (=NNZ)	Elapsed time (ms)					
	<i>M</i>	<i>K</i>					<i>M</i>	<i>K</i>	<i>N</i>		cuSPARSE	ASpT-NR	ASpT-RR	wmma	ARIAA	
															speedup over cuSPARSE	speedup over ASpT-RR
bcsstm36	23052	23052	320606	CSR	11x11	100%	23052x11	23052x11	16	320606	1.5329	N/A	2.287	-	-	-
	23052	23052	320606	BCSR	16x16	(11x11) / (16x16)	23052x16	23052x16	16	320606	-	-	-	1.754444	0.873751	1.303547
	23052	23052	320606	CSR	16x15	100%	23052x15	23052x15	16	320606	2.5032	N/A	4.008	-	-	-
	23052	23052	320606	BCSR	16x16	(15x15) / (16x16)	23052x16	23052x16	16	320606	-	-	-	1.755092	1.42625	2.283641
	23052	23052	320606	CSR	16x16	100%	23052x16	23052x16	16	320606	2.7535	N/A	4.383	-	-	-
	23052	23052	320606	BCSR	16x16	(16x16) / (16x16)	23052x16	23052x16	16	320606	-	-	-	1.754944	1.56901	2.497516
	23052	23052	320606	CSR	11x11	100%	23052x11	23052x11	32	320606	1.9321	1.589152	2.291	-	-	-
	23052	23052	320606	BCSR	16x16	(11x11) / (16x16)	23052x16	23052x16	32	320606	-	-	-	3.081832	0.62694	0.743389
	23052	23052	320606	CSR	15x15	100%	23052x15	23052x15	32	320606	3.289272	2.833056	4.057	-	-	-
	23052	23052	320606	BCSR	16x16	(15x15) / (16x16)	23052x16	23052x16	32	320606	-	-	-	3.082808	1.066973	1.316008
	23052	23052	320606	CSR	16x16	100%	23052x16	23052x16	32	320606	3.7097	3.159616	4.417	-	-	-
	23052	23052	320606	BCSR	16x16	(16x16) / (16x16)	23052x16	23052x16	32	320606	-	-	-	3.080812	1.204116	1.433713
	23052	23052	320606	CSR	31x31	100%	23052x31	23052x31	32	320606	11.6454	9.770112	16.34	-	-	-
	23052	23052	320606	BCSR	32x32	(31x31) / (32x32)	23052x32	23052x32	32	320606	-	-	-	6.968927	1.671047	2.344694

Synthetic Multiphysics matrices but with block sizes typically expected from physics codes

- 11x11, 15x15, 31x31

Pad the block sizes to match the hardware expectations and add more flops and memory

The approach helps when the padding is small enough

Validates the intuition that this is a good approach for multiphysics codes

General case

Matrix	SpMM workload (symmetric matrix)			Total NNZ	Block size	Reorder type	Block type	Minimum density for each block	# of blocks (only non- zero blocks)	# of dense blocks	Elapsed time (ms)						
	M	N	K								cuSPARSE (CUDA 10)	ASpT-NR (CUDA 9)	ASpT-RR (CUDA 10)	ARIAA (CUDA 10)			
												wmma	cuSPARSE	Total			
coPapersCiteseer	434,102	32	434,102	32,073,440	-	-	-	-	-	-	1.8977	1.5954	2.1720	-	-	-	
	434,112	32	434,112	32,073,440	32x32	NR	All	0%	886437	-	-	-	-	20.6410	-	20.6410	
	434,112	32	434,112	32,073,440	32x32	NR	All	50%		18301	-	-	-	0.4882	1.3007	1.7889	
	434,112	32	434,112	32,073,440	32x32	NR	Diag	0%	13565	-	-	-	-	0.4704	1.6596	2.1300	
	434,112	32	434,112	32,073,440	32x32	NR	Diag	50%		4949	-	-	-	0.1856	1.7531	1.9387	
	434,112	32	434,112	32,073,440	32x32	NR	TriDiag	0%	38033	-	-	-	-	1.0181	1.3958	2.4140	
	434,112	32	434,112	32,073,440	32x32	NR	TriDiag	50%		10109	-	-	-	0.3046	1.5761	1.8807	
	434,112	32	434,112	32,073,440	32x32	RCM	All	0%	446273	-	-	-	-	10.8442	-	10.8442	
	434,112	32	434,112	32,073,440	32x32	RCM	All	50%		16791	-	-	-	0.4562	1.2440	1.7002	
	434,112	32	434,112	32,073,440	32x32	RCM	Diag	0%	13565	-	-	-	-	0.4696	1.5850	2.0547	
	434,112	32	434,112	32,073,440	32x32	RCM	Diag	50%		4815	-	-	-	0.1814	1.6703	1.8516	
	434,112	32	434,112	32,073,440	32x32	RCM	TriDiag	0%	37695	-	-	-	-	1.0108	1.3416	2.3524	
	434,112	32	434,112	32,073,440	32x32	RCM	TriDiag	50%		9203	-	-	-	0.2826	1.5309	1.8135	

Form blocks based on a minimum density for blocks (50% shown)

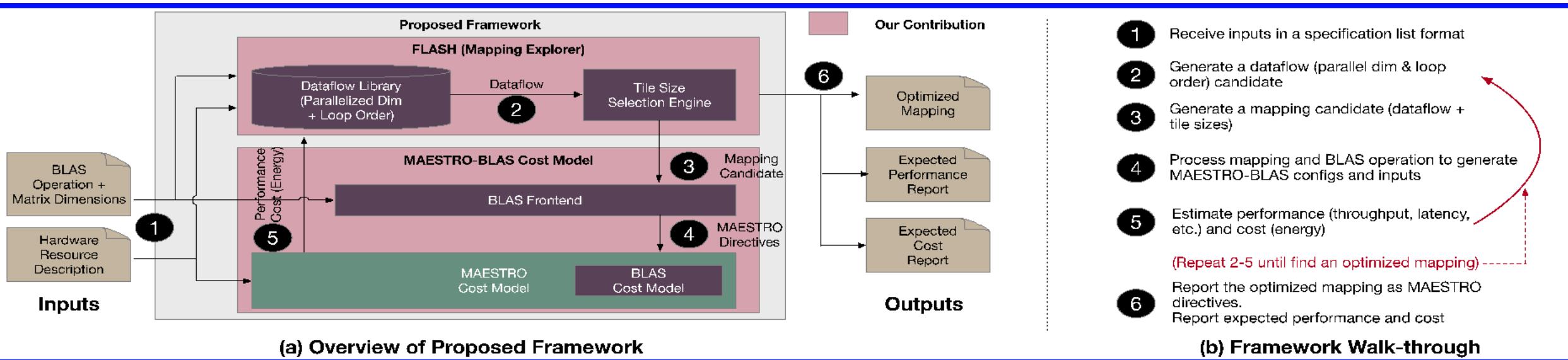
The performance improves as the number of blocks that meet the minimum criteria increases

Still this is only on par with a standard SpMM

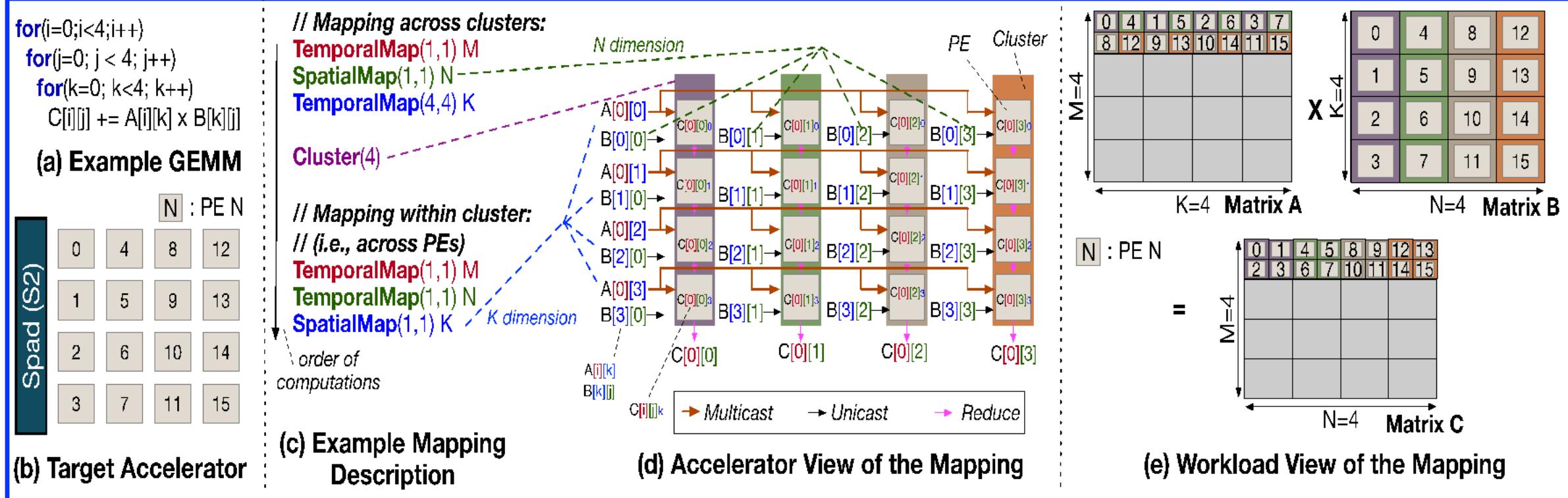
Currently two separate phases in calls ? Can we overlap the sparse portion with the dense portion ?

Can we use variable size blocks ? Can we use the tiling strategies with the tensor

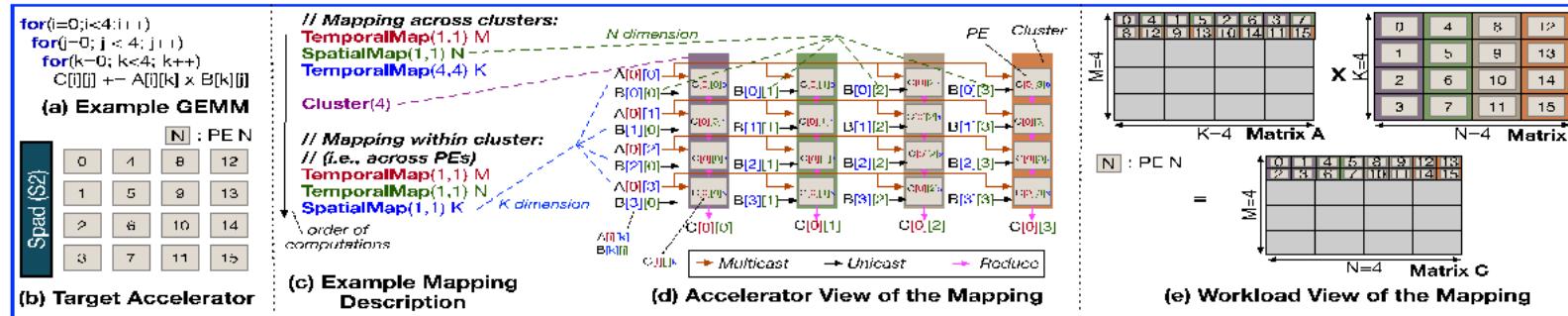
Utilizing low-precision hardware for SpMV


- Use existing hardware (GPUs) to evaluate algorithmic approaches
- Can we use current low-precision hardware for sparse-matrix methods?

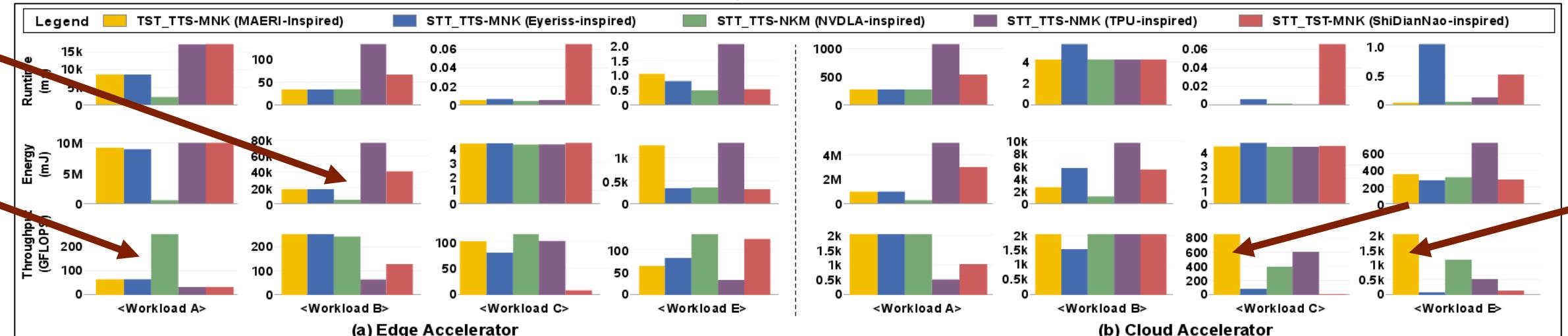
Simulations of future hardware for GEMMs


- How do we generalize to different block sizes?
- How can we study different GEMM sizes on different types of accelerators?
- Can we study (using simulations) other hardware for GEMMS?

ML Accelerators


- Several ML accelerators are available or proposed (TPUs, MAERI, Eyeriss, ShiDiaNano)
- Many of them support more general matrix and vector sizes
- They use different variations for GEMM (input / output / weight stationary)
- Can we evaluate how the accelerators for different workload
- Our Solution: Use an analytical model (MAESTRO-BLAS) to evaluate the accelerators while choosing the best mapping for each of the accelerator using a mapping tool (FLASH)
- *Evaluating Spatial Accelerator Architectures with Tiled Matrix-Matrix Multiplication, Gordon E. Moon, Hyoukjun Kwon, Geonhwa Jeong, Prasanth*

- We developed a detailed analytical model, **MAESTRO-BLAS**, to evaluate several dataflows inspired by popular ML dataflow accelerators such as **TPU (Google)**, **NVDLA (NVIDIA)**, **Eyeriss (MIT)**, **MAERI (Georgia Tech)** and **ShiDianNao (China)**
 - **MAESTRO-BLAS** allows us to **co-design GEMM architectures and algorithms** understand how current ML accelerators can work for Computational Science and Engineering use cases
- We developed a mapping explorer for BLAS called **FLASH** to evaluate mappings and tile-sizes that are efficient for BLAS kernels on dataflow accelerators



- We can study several different mappings of GEMM variants
 - Tensor Core mapping is one option here
- Completed comparison of different GEMM algorithms and dataflows to demonstrate differences in runtime, energy and throughput for an edge accelerators and a cloud/HPC accelerator for different GEMM workloads

MAESTRO-BLAS Cost Model

Matrix Dimension	Workload ID					
	I	II	III	IV	V	VI
M	8192	1024	8	8	8192	512
N	8192	1024	8	8192	8	256
K	8192	8192	8192	1024	1024	256
GFLOPs	549.8	8.59	0.001	0.067	0.067	0.03

Takeaway: FLASH + MAESTRO-BLAS demonstrate that the algorithm of choice (loop order), tile size, and cluster size vary widely for ML accelerators.

Utilizing low-precision hardware for SpMM

- Use of tensor cores are beneficial for Multiphysics use cases when block sizes are close to hardware expected sizes
- Better reordering/tiling strategies to find dense problems could assist in improving performance for general sparse use case
- Overlapping sparse and dense compute, hybrid approaches with tiling and tensor cores could help as well.

Simulations of future hardware for GEMMs

- Several hardware choices are becoming available for low precision GEMMs and even SpMMs
- Based on simulations there is potential to use at least some of these hardware for sparse computations

Sandia
National
Laboratories

A wide-angle photograph of a solar farm under a bright sun. The sun is positioned in the upper left, creating a lens flare that illuminates the rows of solar panels. The panels are mounted on a dark, curved metal frame. The sky is a clear, vibrant blue with a few wispy white clouds. The overall image has a warm, golden hue.

Thanks! Questions?

Exceptional service in the national
interest