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Abstract—Severe, wide-area power system emergencies are
rare but highly impactful. Such emergencies are likely to move
the system well outside normal operating conditions. Appropriate
remedial operation plans are unlikely to exist, and visibility into
system stability is limited. Inspired by the literature on Tran-
sient Stability Constrained Optimal Power Flow and Emergency
Control, we propose a stability-incentivized dynamic control
optimization formulation. The formulation is designed to safely
bring the system to an operating state with better operational and
stability margins, reduced transmission line overlimits, and better
power quality. Our use case demonstrates proof of concept that
coordinated wide-area control has the potential to significantly
improve power system state following a severe emergency.

Index Terms—Wide-area emergencies, optimal control, power
system dynamics, power system control, power system stability

I. INTRODUCTION

Dynamic system behavior is important in understanding
power system performance in major contingencies. Power sys-
tem dynamics are modeled by differential algebraic equations
(DAEs), with differential equations describing the generators’
dynamic response to disturbances and algebraic equations
describing power balance. Key optimization problems with
dynamics include transient stability constrained optimal power
flow (TSCOPF) and more recently first-swing-constrained
and transient stability-constrained emergency control (FSCEC
and TSEC). TSCOPF and related formulations [1]–[6] opti-
mize pre-contingency power flow such that transient stability
is guaranteed for some set of contingencies. For a given
contingency, FSCEC [7] and TSEC [8]–[10] optimize post-
contingency emergency control variables to guarantee tran-
sient stability. For a recent survey of the transient stability-
constrained optimization literature see [5], [6].
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Most literature on dynamics-constrained optimization for
power systems addresses stability in single-component contin-
gencies. We are interested in improving system stability and
robustness in wide-area emergency cases involving disruption
of many components across a wide geographical area. While
[11] demonstrated solution of optimal control problems for up
to 3 component failures, they did not consider massive multi-
component emergencies.

The rapidity of individual failures and cascading dynamics
in such an emergency makes successful immediate emergency
intervention unlikely. Thus, we focus on improving robustness
of the grid once the initial cascading dynamics decay to steady
state. This state may be very close to instability boundaries,
exceed the ratings of certain components (e.g., power ratings
for transmission lines), and/or suffer from serious power
quality concerns. We therefore optimize margins against key
limits to provide more safety margin (e.g., during restoration
or in case of follow-on contingencies).

Dynamics-constrained optimization problems are catego-
rized into direct formulations that explicitly incorporate the
time dynamics of the system in the formulation, and indi-
rect formulations that instead take advantage of calculus of
variations. We use the direct approach, which tends to have
better convergence particularly on path-constrained problems
[4], [5], [8], [12] and is prevalent among work demonstrating
significant scalability (for example see [7], [8], [10]).

The direct approach requires temporal discretization of the
DAE. The most common solutions are simultaneous dis-
cretization (the DAE is explicit in the constraints, which
are all discretized and solved simultaneously) or sequential
discretization (dynamics are an implicit function, typically
updated by a simulation). For a discussion of discretization
approaches see [4]. We use sequential discretization, for its
ability to take advantage of non-closed-form function evalua-
tions, event detection and processing, adaptive time-stepping,
and numerical integration error control within the simulation.
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Our work differs from literature in these key ways:
• Enacts control actions at post-contingency steady state

following a severe multi-contingency disturbance
• Optimizes penalties defined over stability, quality and

operational metrics to provide safety margin, rather than
optimizing cost subject to stability or operational con-
straints

• Uses nonlinear penalty functions to incentivize meeting
limits and providing additional safety margin

• Utilizes event thresholds to terminate expensive DAE
integration early in infeasible cases

II. GENERAL FORMULATION

This section presents a general dynamic optimization for-
mulation for DAE models. Its application to power systems
is described in detail in Section III. We pose a class of
penalty minimization nonlinear programs (NLPs) with path
constraints:

min
u

(
ψ(x, u)|tf + 1/(tf−to)

∫ tf

t0

Ψ(x, u) dt

)
(1a)

s.t. Γẋ = f(x, u), x(0) = x0, (1b)
Au ≤ b, Aeu = be, (1c)

c(x, u) ≤ 0, ce(x, u) = 0, (1d)
bl ≤ u ≤ bu (1e)

where ψ and Ψ are scalar penalty functions, x is the system
state vector, u is the vector of inputs, Γ is the mass matrix,
and t0 is chosen such that the system is at (post-contingency)
steady state, i.e., d/dt(x)|t0 = 0.

For a power system, states x generally include (at a min-
imum) the rotor angle δ and frequency ω of each generator,
and the voltage V and phase angle θ of each bus. The mass
matrix Γ takes the form [ I 0

0 0 ] such that δ and ω are defined
by differential equations and V and θ must satisfy (algebraic)
power balance.

III. POWER SYSTEM FORMULATION

Common power system dynamic optimization decision vari-
ables include generator power output [3], [5], [7], [8], [10],
[13]–[15], voltage [5], [13], [14] and/or power draw at loads
[7], [8], [10], [14]. As an OPF sets the initial conditions for
the dynamic transient stability assessment sub-problem, most
dynamic grid optimization literature does not use time-varying
control [4]. However, in our problem, as in TSEC, we wish to
assess not only whether a new steady state is possible, but if
dynamic control can get the system there safely. There are two
implications. First, we update decision variables in time via
a linear control profile (similar to [13]). Second, our decision
variables are not power and voltage as in an OPF, but control
surfaces associated with power and voltage: namely, power
and voltage control set-points at each generator, and load factor
at each load. The load factor enables restoration of previously
shed load, or shedding of additional load (discouraged by the
objective function, but allowed if benefit is sufficient).

A. Constraints

First we describe the power balance and generator/load
dynamics comprising the DAE of (1b). Then we describe
the bounds of (1e) and nonlinear stability and operational
constraints of (1d), respectively.

1) Power Balance: Power balance at the buses can be
expressed in matrix-vector form as

0 = V eiθ �
(
Y V eiθ

)∗
+ Sgen − Sload (2)

where Sgenb
and Sloadb are the total complex power injection

from generators and total complex power draw from loads at
bus b ∈ B. This defines the algebraic portion of (1b), i.e., the
portion where the diagonal of the Γ matrix is zero. We use
the nominal-π medium-line assumptions [16] for calculating
the admittance matrix Y from parameters of lines λ ∈ Λ.

2) Generator Dynamics: For generator dynamics we use
the fourth-order flux decay generator model from [17] with
an added equation (turbine with no reheating) to model how
mechanical torque responds to a change in set-point. At each
generator g ∈ G, with index g suppressed except for Vbg :

Pe =
(
E′q + (Xq −X ′d)Id

)
Iq

δ̇ = ω − ωref
ω̇ = 1/M(Tm − Pe −D(ω − ωref ))

Ėfd = 1/TA(KA(Vref − Vbg )− Efd)
Ė′q = 1/T ′

do(Efd − (E′q + (Xd −X ′d)Id)
ṪM = 1/Tch(Pref − TM )

(3)

The stator equations [17] define the power injection from the
generators at each generator bus, i.e., Sgen.

3) Load Dynamics: Load dynamics are important to system
stability and are shown to significantly affect real-world feasi-
bility of transient-stability constrained optimization solutions
[18]. For our study we use the exponential recovery dynamic
load model of [19], modified to allow for load shed by scaling
the nominal load power by a load factor (per [20]). At each
load l ∈ L (index suppressed except for Vbl ):

ẋp = −xp/Tp + P0 ((V/V0)
αs − (V/V0)

αt)

ẋp = −xq/Tq +Q0

(
(V/V0)

βs − (V/V0)
βt

)
PL = kL (xp/Tp + P0 (V/V0)

αt)

QL = kL

(
xq/Tq +Q0 (V/V0)

βt

) (4)

4) Decision Variable Bounds: Upper bounds for Pref are
set based on the generator ratings. Upper and lower bounds
for kL are set to allow for full load recovery or full load shed,
respectively. Vref is allowed to vary by 10% of nominal.

5) Stability and Operational Constraints: Transient stabil-
ity is approximately modeled by the deviation of the rotor
angle from the inertia-weighted average of all generators.

δ̄g =

∣∣∣∣δg − ∑kHkδk∑
kHk

∣∣∣∣ (5)



Although rotor angle deviation limits are system-dependent
and vary across the literature [2], we use the commonly
accepted ±100◦ limit. Our constraint is then:

δ̄g ≤ 100◦ ∀g ∈ G (6)

This constraint is commonly used in the literature [1],
[4], [5], [7]–[11], [21] to model transient stability and “is
consistent with industry practice and has been found by utility
engineers to be acceptable” [1].

Like much of the literature, we limit voltage and frequency:

57 ≤ ωg/2π ≤ 62 ∀g ∈ G (7)

0.7 ≤ Vb ≤ 1.2 ∀b ∈ B (8)

These constraints not only ensure basic power quality, but
guard against values that could cause under/over- voltage or
frequency tripping. Such values are undesirable both from a
modeling perspective, as the model is incapable of tripping
and would become invalid, and from a power system operation
standpoint, as such tripping could initiate another cascade.

B. Objective Function

We define several metrics below that express the deviation
of various quantities from their target values. Each of these
metrics, defined per relevant component i ∈ ∪{B,G,L,Λ}, is
then used as an input z(t) into a nonlinear penalty function
φ, parameterized by a deviation limit ζ:

φ(zi(t), ζ) =

∣∣∣∣zi(t)ζ
∣∣∣∣3 (9)

Our polynomial penalty function is similar to that of [3] in
which path constraint penalties are exponentiated to ensure
smoothness. Our usage of denominator ζ and of a cubic
function are designed to provide the following benefits:

1) strongly incentivizes getting the deviation below |ζ|
2) weakly incentivizes providing margin within ±ζ
3) de-emphasizes improvement near the target value.
To illustrate, Figure 1 shows a penalty function φ to

incentivize voltage within 1± 0.05 p.u.
Because of the polynomial penalty growth, metrics farthest

outside their limits have highest priority in the minimization.
Therefore, relative importance of individual deviation metrics
is largely dependent on choice of parameter ζ.

With per-component deviation penalties defined, we then
define a global penalty Φ as the norm over all relevant
components i ∈ ∪{B,G,L,Λ} at a given time.

Φ(z(t), ζ) =

(∑
i

φ (zi(t), ζ)
2

)1/2

(10)

Our penalties Ψ and ψ are:

Ψ(t) = wδΦ(δ̄, 100◦) + wV Φ(V̄ , 0.075 p.u.)
+ wωΦ(ω̄i, 1 Hz.)

ψ(t) = wp
(
Ψ + wSΦ(S̄, R) + wLΦ(L̄, 1)

) (11)
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Fig. 1: Voltage penalty φ(V, ζ = 0.05) vs. per-unit voltage

In (1a) we minimize the integral of Ψ; this incentivizes
quickly reducing its constituent penalty terms (and getting
deviations below |ζ|). Terms in ψ are incentivized to reach
target values by the end of the time interval. Deviation metrics
δ̄, V̄ , ω̄, S̄, and L̄ are defined below, subscripted w terms are
nonnegative weights, and R gives the short-term line ratings.

1) Transient Stability: Here we reuse δ̄g from (5) to
measure deviation from center of inertia at each generator
g. Penalizing this metric as it approaches 100◦ incentivizes
stability margin so that subsequent dynamics are less likely to
cause loss of transient stability.

2) Voltage: It is desirable for voltage to be close to nominal,
for power quality reasons and to provide margin against
undervoltage and overvoltage tripping (and possibly voltage
instability). ∀b ∈ B:

V̄b = |Vb − 1| (12)

3) Line Power Limits: Current flow through lines should
be below thermal limits [1], [2], [14], [22]. We represent this
via comparison of the power injection into each line against
its short-term power rating. For each line λ ∈ Λ connecting a
pair of buses j, k ∈ B:

S̄λ = max (|Sjk| , |Skj |) (13)

where Sjk and Skj are the power at the j and k ends of line
λ, respectively. Exceeding rating Rλ is disincentivized in (11).

4) Frequency: Similar to voltage, we incentivize near-
nominal frequency both for power quality reasons and to
provide margin against tripping.

ω̄g = |ωg − ωref | (14)

5) Load Shed & Restoration: We wish to disincentivize
deviation from nominal loading. ∀l ∈ L:

L̄l =
|PLl + jQLl|

Snoml

− 1 (15)

Since any load shed (including load previously shed in cas-
cading dynamics) will result in a penalty contribution, this
provides an opportunistic incentive to restore load as well as
a penalty for deliberately shedding load.
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Fig. 2: RTS-96 test system (showing contingency scenario).

IV. EXAMPLE IMPLEMENTATION

Scenarios are implemented as a series of component trips
and subsequent cascading in PSLF [23] on the RTS-96 test
system [24], which has 73 buses (51 with loads), 99 machines,
and 120 lines. Each PSLF contingency scenario simulation is
run to steady state, which becomes the initial condition for a
sequential-discretization optimization implemented using the
interior point method [25] in Matlab via the function fmincon.
Initial guesses for generator Vref and Pref set-points and load
factor kL are set to their nominal post-contingency values.
Within the inner simulation loop, controls are updated to their
new values via a fixed-time linear control profile.

The power system DAE is integrated by ode15s, an
adaptive-timestep integrator based on the numerical differen-
tiation formulas [26]. Adaptive time-stepping, error control
and solution refinement ensure an efficiently and accurately
evaluated solution. We use event handling for prompt detection
and termination of practically infeasible dynamics in the
DAE integration, in which case the interior point method is
prompted to backtrack. For event thresholds we use versions
of constraints (6)–(8) with relaxed limits.

The high dimensionality (two variables per generator and
one per load) makes this problem a natural candidate for
variable reduction, both for computational performance and
implementability of control actions. Variable selection meth-
ods have previously been used with good results in dynamic
optimization problems [10], [12]. In this implementation,
variable selection is performed using a scaled gradient method.
While we are focused on proof-of-concept of a new formu-
lation and not scalability per se, we make use of parallel
resources for numerical gradient estimation.

A. Results

In one scenario, a sequence of relay failures led to a cascade
of events in PSLF, resulting in 15 tripped lines, 8 tripped
generators at 2 buses, and 8 tripped loads, with a system-
wide load shed of 965 MVA. This scenario is depicted in
Figure 2. We analyze the remaining operational component
of the network, which has multiple over- and under-voltage
issues and one line exceeding its short term power limit.
Here, 96 variables (of 249) are included in the optimization,
chosen as a compromise between reducing problem size and
demonstrating the efficacy of wide-area coordinated control.
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Fig. 3: Trajectory in the optimal solution of (a) voltage
penalties at each bus, (b) thermal penalties at each line and
(c) load shed penalties at each load.

In Figure 3 we show the trajectories of key penalty measures
– i.e., the φ functions of the voltage, thermal and load
shed deviation metrics of (12), (13) and (15). We can see
in 3a that voltage deviations are significantly improved, in
3b the excess line power is reduced, and in 3c that some
additional loads are shed (increasing penalties) while others
are restored (decreasing penalties). Other penalties (transient
stability, frequency deviation) were kept well below 1.0 in
this example, indicating near-target values. In Figure 4, note
that voltages are quickly brought to more desirable levels
(as implied by Figure 3a) while frequency oscillates within
acceptable margins before approaching the desired 60 Hz.

Results shown here are representative of several scenarios
investigated, which were of similar severity and demonstrated
similar significant improvement in several metrics (with others
kept within acceptable limits). Most improvement generally
occurred within 10 interior point iterations.
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Fig. 4: Trajectory in the optimal solution of (a) voltage at each
bus and (b) frequency at each generator.



V. CONCLUSION

We have described a dynamics-constrained nonlinear pro-
gramming formulation for optimizing stability margins, opera-
tional margins and power quality following a wide-area power
system disturbance, via generator control, load shedding and
load restoration. Solution of this problem provides improved
margin for error during recovery and restoration, as well
as safety margin should any additional contingencies occur,
and poses a significantly improved starting point for recovery
operations.

We have demonstrated such coordinated wide-area control
on severe contingency scenarios on the RTS-96 test system.
Novel aspects of this work include: a focus on severe multi-
contingency disturbances, nonlinear objective penalties de-
vised to incentivize the most important quality and operational
improvements first, and use of event detection to terminate
DAE integration of infeasible cases.

This problem presents several interesting opportunities for
future work. The sequential discretization framework could
allow consideration of other important stability or operational
metrics that cannot be expressed in closed form. Examples
include small signal stability [14] (calculated based on eigen-
values of the linearized differential system), the canonical
Equal Area Criterion (EAC) transient stability calculation [16],
and voltage stability metrics such as the Voltage Collapse
Proximity Index (VCPI) [15]. Additional controls could be
considered, e.g., controllable transformer ratios [13], shunt
reactances [13], and control of energy storage [21]. Topology
switching [22] may be valuable for certain contingencies, and
imposing discrete load shed levels (like [9]) would improve re-
alism; addressing the computational and scalability challenges
posed by addition of such discrete decisions warrants further
research.
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