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Outline3

o  Application Driver: Energy Exascale Earth System Model (E3SM) – Land Component
o  Motivation for surrogate model construction

o  Low-rank Functional Tensor Network Models
o  Background
o  Efficient function and gradient evaluations

o Results: global sensitivity analysis 



Energy Exascale Earth System Model (E3SM) – Land Component4

• The Land Model (ELM) Component of the Energy Exascale Earth System Model (E3SM) is increasingly 
complex with many processes

• Large ensembles are needed for uncertainty quantification… but computationally infeasible 

• Focus on surrogate models based on small ensembles to increase the efficiency of sensitivity 
analysis and model calibration studies



Quantity of Interest: Gross Primary Production (GPP) [gC m-2 day-
1]5

GPP (gC m-2 day-1)



UQ Challenges in E3SM6

o What processes drive uncertainty ?

o What accounts for differences among models ?

o Can we improve predictive capabilities though calibration using available 
observations ?

E3SM Land Model (ELM) Produces Time Series given Input Parameters and 
Forcing Drivers 

o O(10)-O(100) uncertain inputs
o Daily forcings/drivers
o Min/max temperatures
o Solar radiation
o Water availability



Cheaper Surrogates are Necessary to Replace Expensive 
Computational Models for UQ Assessments7

o functional approximations 

o non-parametric models,  e.g. Gaussian processes

o neural networks and other supervised learning techniques

Requirements:

o expressivity with a limited number of parameters

o cheap – analyses often requiring O(106) evaluations with limited computational resources



Functional Approximations8

Tensor-product basis approximations:

o use orthogonal polynomials, radial basis functions, …

o the curse of dimensionality O(Nd) typically limits the polynomial order/no. of functions

o  this places limits on the surrogate model capacity to adapt to non-linear behavior



Functional Tensor-Train Models9

o  Analogous to tensor-train models [Oseledets, 2013]: approximate multivariate functions instead of 
multidimensional arrays 

o Model evaluation/gradient computation consists of a sequence of matrix-vector multiplications

[Gorodetsky & Jakeman, 2020] 



Functional Representations – Univariate Functions10

o  Linear Representations

(e.g. Polynomial Chaos Expansions)

o  Non-Linear Representations

(Radial Basis Functions)



Functional Tensor Network Models11

Schematic of a Functional Tensor Network
In Hierarchical Tucker Format

Schematic of a Functional 
Tensor-Train Model

o Black connectors represent contractions between adjacent tensors

o Red vectors represent coefficients for the corresponding univariate functions 



Functional Tensor Network Models – Recursive Contractions12

1. Evaluate all open nodes for the set of 
training parameters

2. Depth first search (DFS) starting from 
one of the nodes to recursively contract 
tensors along graph edges

3. Store intermediate results, to be re-used 
for gradient evaluations

(red arrows represent search paths)



Functional Tensor Network Models – Gradient Evaluations13

o A similar DFS process starting from each node

o  Store partial contractions and re-use paths that were 
evaluated already.
oExploits model structure to reduce the 

computational expense

(red arrows represent search paths)



ELM Results – Simulations Corresponding to Select 
Observation sites (fluxnet.org)14

o 200 runs corresponding to uniformly randomly sampled parameters 

over a 10D parameter space

o  160 training runs/40 validations runs

o  8-fold cross validation over 160 training runs

Harvard Forest EMS Tower U. of Michigan Biological Station Walker Branch Watershed

Kennedy Space Center



Functional Tensor Network Models – Training15

o Data split into 160 training runs / 40 validations runs

o Non-linear least squares with 8-fold cross validation over the training runs

o Univariate functions represented as polynomial expansions based on Legendre polynomials

o Cross-validation to pick optimum regularization parameter, tensor rank, and polynomial 

order

o Quality of fit assessed via mean-squared error (MSE)



ELM Fit Results – FTN Models (in Hierarchical Tucker Format)16

Validation data centered and normalized by the 
monthly standard deviation

Site US-Ha1/June: Validation MSE 

Tensor rank
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Parity plots collect data for all months (with 
different colors) in the same frame



ELM Results –Variance-based GSA17

o fnlr (fraction of N in RuBisCO – CO2 conversion process)

o mbbopt (stomatal conductance slope – net CO2 flux)

o vcmaxse (entropy for photosynthetic parameters)

o dayl_scaling (day length scaling parameter)

Parameter
March June September October

flnr 0.70 0.72 0.80 0.83 0.84 0.86 0.76 0.77

mbbopt 0.01 0.02 0.09 0.13 0.04 0.06 0.02 0.02

vcmaxse 0.13 0.15 0.02 0.02 0 0 0.02 0.02

dayl_scaling 0.06 0.07 0 0 0.04 0.05 0.14 0.14

Main Effect Sobol Index Total Effect Sobol Index



Summary18

o Extended functional tensor train models to accommodate generic tensor network configurations

oExpanded flexibility in capturing the structure of the original model 

oEfficient gradient computations through tensor network contractions

o Functional tensor network models constructed via ridge regression are in good agreement with validation 

data for the driver application

oGlobal Sensitivity Analysis results match subject matter expertise given the training runs available for this 

study

[Gorodetsky, Safta, Jakeman, 
submitted, 2021] 


