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* Precision placement of donors has made a lot of progress recently:
* lon implantation: scanning probe ion aperature [1]
« STM lithography: can place donors to within one lattice site [2]

» Metallic gates can be patterned nearby for electrical control.

* Opens many possibilities:
 Single-atom transistors [3]
* Donors as qubits [4]
* Donors for analog quantum simulation [5,6,

(a) (b)

[1] A. M. Jakob et al., arXiv preprint: 2009.02892

[2] S. R. Schofield et al., vol. 91, 136104 (2003)

[3] M. Fuechsle et al., Nature Nano. Vol. 7, p. 242-246
(2012)

[4] J. J. Pla et al., Nature vol. 489, p. 541-545 (2012) L
[5] N. H. Le et al., PRB 96, 245406 (2017)

[6] A. Dusko et al., NPJ Quant. Info., vol. 4, a. 1 (2018) [8]
[7] E. Prati et al., Nature Nano. vol. 7, p. 443—447 (2012)




. . . CQuiC
3 | Introduction: analog quantum simulation P coner o cuantum

® |nformation and Control

system.
» Example: atoms trapped in optical lattices to simulate 2D molecules. [9]

* No generic error correction schemes, so effects of errors need to be studied case-by-

» Using one controllable quantum system to imitate and study a different interesting i
I
case. I

——

Hmol — Hctrl (/D

Controllable system, e.g. atoms in
Interesting system, e.g. molecule an optical lattice

[9] J. Arguello-Luengo, PR Research, vol. 2, 042013(R)
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+ 1 Analog quantum simulation with donors?

* Precision placement allows control of spacing between sites = control of tunnel coupling
* Ability to change voltages on nearby gates — control of on-site energies

* Ability to adjust nearby leads — effective control of chemical potential

* Errors from misplacing donors — donor placement isn’t perfect, can significantly affect coupling
* Le et al. [5] — found that transport in 2D arrays should remain intact
* Dusko et al. [6] — found that charge/spin correlations are relatively unaffected on average

fermions

Can we build a Fermi-Hubbard model with

STM lithography? — lattice <:
sites

[5] N. H. Le et al., PRB 96, 245406 (2017) \/

[6] A. Dusko et al., NPJ Quant. Info., vol. 4, a. 1 (2018) tunnel
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* Yet unconsidered type of disorder: missing donors.

» Experiments and kinetic modeling [*] suggest ~1/3 of donors might not be placed at all in STM
lithography.

* How much will this affect target dynamics? Can this be seen in transpo

donor .
missin
g

[*] J. lvie, talk B55.00004,

electric Placed donor chain Q. Campbell, talk

Intended donor chain :
[8] J. A. Ivie et al., arXiv posting coming soon pOtentlaI E_219-009034, _

= I N N N N PN PN PN
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* Simple example Hamiltonian to target: extended 1-dimensional Fermi-Hubbard chain

R YR PN YoM S
j.o

j.o j.k,0,T

(numbers from effective mass theory [10,11]) t . . — |
* Short chains are easy to analyze. . . ” .
* Standard model has an analytic solution in - — " "
€ U

thermodynamic limit. [12]

* How do long-range interactions and missing sites affect transport?

~ — — — — o ~ — — — — o
D 00000 &G — P 600 &
Intended donor chain Placed donor chain

[10] B. Joecker et al., arXiv preprint: 2012.06293
[11] J. K. Gamble et al., PRB vol. 91, 235318 (2015)
[12] E. H. Lieb and F. Y. Wu, PRL vol. 20, 1445, (1968)
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* Charge/spin measurements of individual * Transport measurements:
sites:  Pros: comparatively easy to do, can
* Pros: lot of information, correlations easy to determine model parameters
See « Cons: correlations not as clear, difficult to
» Cons: very difficult to do differentiate disorder and Mott physics
- Demonstrated by Salfi et al. [13] with STM * Demonstrated by Tan et al. [14], Fuechsle
tip (charge measurements with et al. [3], Prati et al. [7], etc.
ac dl/du across single donor G.
0.10 - 0.05
% 0.04
o 0.05 -
i 5k i ~ . %‘ 0.03
E 0.00 A
S 0.02
— ~— — & —0.05 -
2 0.01
—=0.10 -
[3] M. Fuechsle et al., Nature Nano. Vol. 7, p. 242—246 ~0.125-0.100-0.075-0.050-0.0250.000 0.025
(2012) on-site energy, € [eV]

[7] E. Prati et al., Nature Nano. vol. 7, p. 443—-447 (2012)
[13] J. Salfi et al., Nature Comm. vol. 7, a. 11342 (2016)
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* Simulation of currents done using Green’s function 500 1 Center for Quantum
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*Single-particle Green’s function: o0 ]

o @) =Y <wolc,alwa (ValeiolPo) | Wal&olPoXWoléislWal)
jka 4 — (E, — Ey) w + (Eq = Ep) - —1000 1

+ Can be calculated exactly for small chains isolated ~1500 1 —— real part

from leads ~2000 A ——— jmaginary part
* Effects of leads can then be approximated -0.04  -0.02 U[ﬂ?,] 0. 0.04

wle

* Current from lead L, dl/du across single donor G.

bias across chain, u [eV]

d 0.05
I, = —(n 0.10 - .
L =7z (fL)
. . 0.04
can be transformed w/ Green’s functions into [15] 0.05 -
I, = f dw Tr{S£GA + SRES — $56 — $RGF) ~ 0.03
0.00 -
0.02
—0.05
: 0.01
—0.10 -

-[}.125—[].1(]{]—(}.0?5—[}.[}50—[}.(}25 [}.U{l[} [].l]25
[15] Y. Meir, N. S. Wingreen, PRL vol. 68, 2512 (1992) on-site energy, & [eV]
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* 2D bias spectrum calculated
* On-site energies varied (e.g. by top gate)

* Bias across chain varied dl/du across two donors G.

0.014
* Features: _ 0
" 2 0.10- 0.012
* Conductance peaks = charge transitions S
: : : 0.010
: 0.05 -
* Coulomb diamonds — charge states 3
5 000+ 0.008
3]
* Here we have as many diamonds as possible S -0.05 - . _ 0.006
m
charge states. 2 -0.101 0.004
o
: . . ~0.15 - 0.002
* How does this feature persist in longer chains
with missing donors? What else can transport - e 03 50 51
tell us? on-site energy, £ [eV]

AN — A~ N
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* Long-range interactions are critical in Si:P analog simulation. [6]
* How does transport change when we turn off these interactions?

Example of 5 donor chain, 10 lattice sites apart:

AN o~ o~ —~— L e~ 7 N
P Tt W W

25%

G.
0.06 - | / / 0.0030
_ j
> 0.04- ' / | 0.0025
=1 ! | |
e 0027 AN / ’ 0.0020
m ] . ] !
L ]
o 0007 LA A \ 0.0015
: \/V\/! |
S —0.02 - Al ~,
© 1 \ 0.0010
= —0.04 . '
. . \ 0.0005
—0.06 - ' | \
T T T T = T I 1 L] U.ﬂﬂﬂﬂ
~0.3 0.1 -0.3 -0.2 0.1 0.0 0.1 -0.3 -0.2 . 0.1

on-site energy, € [eV]



1 1 Missing donors weaken transport signatures...

bias across chain, u [eV]

» Chains with donors 10 lattice sites apart: differential conductance peaks diminished

* For this spacing, the bulk limit has a spin-density wave: very sensitive to this disorder.

0.04 4

0.02 -

0.00 -

—0.02 -

—0.04 -

di/du across five donors

-

i

/

\

TN N N S~ ~
Fos® T e Te®

on-site energy, £ [eV]
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bias across chain, u [eV]
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dl/du across five donors,
one donor missing
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» Chains with donors 5 lattice sites apart: differential conductance peaks grow.

* For this spacing, the bulk limit has a charge density wave: less sensitive to this disorder.

dl/du across five donors dl/du across five donors,

G.
\ \rv one donor missing
0.075 A \ \ -' 0-025 I\ 0.035
3 0.050 - 00751 \ / '
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: [ : AV b 0.000 —L I : — . 0.000
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* Precision placement of donors raises possibility of analog
quantum simulation.

dl/du across two donors G.

* Experimental imperfections require theoretical attention: . \ y o
. . . . . . 2 Y /

* Variance in donor location: leaves average physics qualitatively 010 \ / 0.012

similar = 0051 / 0.010

* Incorporation statistics: unknown, explored here for 1D chain 0.001 zzz:

* Focus on transport measurements: § ~0101 / / \\ 0004

bias across chain, u [eV]

—0.05
=0.10
. —0.15 0.002
* Most accessible measurement. , ,
. A . =03 =02 =01 0.0 0.1
- Can give model parameters but be difficult to generally interpret. on-site energy, € [eV]

* For 1D chain, qualitative effects depend on spacing of donor ay W S
chain. - .h. -

* Future work: what about 2D chains? Self-consistent
electrostatics? Scattering states?
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