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Abstract

This report examines the localization of high frequency electromagnetic �elds in general three-
dimensional convex walled cavities along periodic paths between opposing sides of the cavity. The report
examines the three-dimensional case where the mirrors at the end of the orbit have two di¤erent radii of
curvature. The cases where these orbits lead to unstable localized modes are known as scars.
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Figure 1: This �gure, taken from Vaynshteyn, illustrates a bouncing ball mode beetween concave re�ecting
surfaces.

1 INTRODUCTION

Field behavior in high quality factor cavities typically takes on a stochastic character at high frequencies
[1], particularly for geometries not supporting stable periodic ray orbits. Even in these classically unstable
geometries, regions of higher modal intensity along these periodic ray orbits, known as scars [2], can exist.
This report is directed at understanding the high frequency behavior of modal �elds in three-dimensional
cavities and the localization of the eigenfunctions about unstable periodic orbits, known as scarring, is
investigated in convex walled geometry.
The random phase approach used by Antonsen [3], on convex mirror geometries in two dimensions, has

been generalized [4], [5], [6], [7], [8], [9] by introducing the curved ray path formalism, used previously by
Vaynshteyn [10] on stable orbits, see Figure 1. This combined approach was used recently to investigate the
scars in three-dimensional axisymmetric geometry [6], [11], [12], and a previous report and journal articles
detail both scalar and vector problems for convex and concave walls in three-dimensional axisymmetric
geometry [13], [14], [15].
The present report explores bouncing ball modes forming scars in three-dimensional cavities with convex

walls. We compare Fourier projections along the scar with projections of random plane wave representations,
to illustrate how the scars modify the purely random representations.
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Figure 2: This �gure, taken from Moon and Spencer, illustrates the types of coordinate surfaces involved in
ellipsoidal coordinates.

2 CONVEX MIRRORS AND 3D BOWTIE

Vaynshteyn [10] has treatments for stable modes between concave mirrors. Here we wish to consider the
generalization to unstable modes between convex mirrors. Vaynshteyn uses WKB analysis of the Lame
function for the full 3D case. For three dimensions the scalar problem will be treated in ellipsoidal coordinates.
Note that the vector problem is not separable in this system, but for high frequencies we will rely on the
approximate correspondence between scalar and vector problems we observed in the axisymmetric case [13],
[14], [15].
Another issue is stability; in the convex case both mirror axes will be unstable and the foci are located

exterior to the cavity. Note in a follow-on report treating concave mirrors, although we will again be focussed
on the unstable case with interior foci, it is also possible to have stability in one transverse direction and
instability in the other direction (an interesting mixed case, which could relate back to 2D); alternatively,
we could also have a convex mirror in one direction and a concave mirror in the other direction.

2.1 Ellipsoidal Coordinates

The ellipsoid is de�ned by

x2

a2
+
y2

b2
+
z2

c2
= 1 (1)

where a, b, and c are the principal semi-axes of the ellipsoid. We order the dimensions as

a > b > c > 0 (2)

The system of ellipsoidal coordinates (�; �; �) shown in Figure 2 [16]corresponding to the ellipsoid is
de�ned by the relation with Cartesian coordinates [10]

x2 =

�
a2 � �

� �
a2 � �

� �
a2 � �

�
(b2 � a2) (c2 � a2) (3)

y2 =

�
b2 � �

� �
b2 � �

� �
b2 � �

�
(c2 � b2) (a2 � b2) (4)
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z2 =

�
c2 � �

� �
c2 � �

� �
c2 � �

�
(a2 � c2) (b2 � c2) (5)

where

�1 < � < c2 (6)

c2 < � < b2 (7)

b2 < � < a2 (8)

Note that in Moon and Spencer [16] ellipsoidal coordinates (�; �; �) are de�ned as

u1 = � ; c2 < �2 <1 (9)

u2 = � ; b2 < �2 < c2 (10)

u3 = � ; 0 � �2 < b2 (11)

c2 > b2 > 0 (12)

x2 =

�
���

bc

�2
(13)

y2 =

�
�2 � b2

� �
�2 � b2

� �
b2 � �2

�
b2 (c2 � b2) (14)

z2 =

�
�2 � c2

� �
c2 � �2

� �
c2 � �2

�
c2 (c2 � b2) (15)

A comparison of the two systems implies that we do not need one of the three constants a; b; c in Vaynshteyn�s
system, or that we can set one to a �xed constant. We can take c2 = 0, for example.
For �xed � = �0 �

b2 � a2
� �
c2 � a2

�
(a2 � �0)

x2 =
�
a2 � �

� �
a2 � �

�
= a4 � a2 (� + �) + �� (16)

�
c2 � b2

� �
a2 � b2

�
(b2 � �0)

y2 =
�
b2 � �

� �
b2 � �

�
= b4 � b2 (� + �) + �� (17)

�
a2 � c2

� �
b2 � c2

�
(c2 � �0)

z2 =
�
c2 � �

� �
c2 � �

�
= c4 � c2 (� + �) + �� (18)

or �
c2 � a2

�
(a2 � �0)

x2 +

�
c2 � b2

�
(b2 � �0)

y2 = �
�
a2 + b2

�
+ � + � (19)
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�
b2 � a2

�
(a2 � �0)

x2 +

�
b2 � c2

�
(c2 � �0)

z2 = �
�
a2 + c2

�
+ � + � (20)

or subtracting these two

x2

(a2 � �0)
+

y2

(b2 � �0)
+

z2

(c2 � �0)
= 1 (21)

de�ning the family of ellipsoids for �1 < �0 < c2. For large negative �0 these become large spheres. Note
that the x direction has the largest semimajor axis (since the denominator is the largest), followed by the y
direction, and �nally the z direction has the smallest. For �0 ! c2 these become elliptic discs with z = 0
and contained within the curve

x2

(a2 � c2) +
y2

(b2 � c2) = 1 (22)

Note that the outer tip of these z = 0 disc regions is at x2 = a2 � c2 the outer focal points.
Alternatively for �xed � = �0�

b2 � a2
� �
c2 � a2

�
(a2 � �0)

x2 =
�
a2 � �

� �
a2 � �

�
= a4 � a2 (� + �) + �� (23)

�
c2 � b2

� �
a2 � b2

�
(b2 � �0)

y2 =
�
b2 � �

� �
b2 � �

�
= b4 � b2 (� + �) + �� (24)

�
a2 � c2

� �
b2 � c2

�
(c2 � �0)

z2 =
�
c2 � �

� �
c2 � �

�
= c4 � c2 (� + �) + �� (25)

or �
c2 � a2

�
(a2 � �0)

x2 +

�
c2 � b2

�
(b2 � �0)

y2 = �
�
a2 + b2

�
+ � + � (26)

�
b2 � a2

�
(a2 � �0)

x2 +

�
b2 � c2

�
(c2 � �0)

z2 = �
�
a2 + c2

�
+ � + � (27)

or subtracting these two

x2

(a2 � �0)
+

y2

(b2 � �0)
� z2

(�0 � c2)
= 1 (28)

de�ning the family of hyperboloids of one sheet for c2 < �0 < b2.
The limit �0 ! c2 de�nes the disc region outside the elliptic discs de�ned by z = 0 and the same elliptic

curve

x2

(a2 � c2) +
y2

(b2 � c2) = 1 (29)

The limit �0 ! b2 de�nes a �at hyperbolic disc region with y = 0 and lying within (in x) the curves satisfying

x2

(a2 � b2) �
z2

(b2 � c2) = 1 (30)
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Alternatively for �xed � = �0�
b2 � a2

� �
c2 � a2

�
(a2 � �0)

x2 =
�
a2 � �

� �
a2 � �

�
= a4 � a2 (� + �) + �� (31)

�
c2 � b2

� �
a2 � b2

�
(b2 � �0)

y2 =
�
b2 � �

� �
b2 � �

�
= b4 � b2 (� + �) + �� (32)

�
a2 � c2

� �
b2 � c2

�
(c2 � �0)

z2 =
�
c2 � �

� �
c2 � �

�
= c4 � c2 (� + �) + �� (33)

or �
c2 � a2

�
(a2 � �0)

x2 +

�
c2 � b2

�
(b2 � �0)

y2 = �
�
a2 + b2

�
+ � + � (34)

�
b2 � a2

�
(a2 � �0)

x2 +

�
b2 � c2

�
(c2 � �0)

z2 = �
�
a2 + c2

�
+ � + � (35)

or subtracting these two

x2

(a2 � �0)
� y2

(�0 � b2)
� z2

(�0 � c2)
= 1 (36)

de�ning a family of hyperboloids of two sheets for b2 < �0 < a2. Note that these elliptic hyperboloids of
two sheets have a larger z dimension than a y dimension due to the fact that �0 � b2 < �0 � c2. The limit
�0 ! b2 de�nes �at disc regions with y = 0 and outside (in x) the same hyperbolas

x2

(a2 � b2) �
z2

(b2 � c2) = 1 (37)

Note that the inner tip of these y = 0 disc regions is at x2 = a2�b2 the inner focal points. The limit �0 ! a2

de�nes planar regions with x = 0.
Vaynshteyn�s description of the ellipsoidal system discusses the one-to-one mapping of the preceding

transformations for a single octant of the space; to index the other octants we would have to use analytic
continuation about the transformation branch points, for example

z =

s
(c2 � �) (� � c2) (� � c2)
(a2 � c2) (b2 � c2) = ei�=2

se� (� � c2) (� � c2)
(a2 � c2) (b2 � c2) ! c2 � � = e�ei� (38)

or

y =

s
(b2 � �) (b2 � �) (� � b2)
(b2 � c2) (a2 � b2) = ei'

0=2

s
(b2 � �)e� (� � b2)
(b2 � c2) (a2 � b2) ! b2 � � = e�ei'0 (39)

z =

s
(c2 � �) (� � c2) (� � c2)
(a2 � c2) (b2 � c2) = ei'=2

s e�e� (� � c2)
(a2 � c2) (b2 � c2) ! � � c2 = e�ei' (40)
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2.1.1 Unit Vectors in Ellipsoidal Coordinates

The ellipsoidal coordinate transformations [10]

x2 =

�
a2 � �

� �
a2 � �

� �
a2 � �

�
(a2 � b2) (a2 � c2) (41)

y2 =

�
b2 � �

� �
b2 � �

� �
� � b2

�
(b2 � c2) (a2 � b2) (42)

z2 =

�
c2 � �

� �
� � c2

� �
� � c2

�
(a2 � c2) (b2 � c2) (43)

have metric coe¢ cients [10]

h� =
1

2

s
(� � �) (� � �)

(a2 � �) (b2 � �) (c2 � �) (44)

h� =
1

2

s
(� � �) (� � �)

(a2 � �) (b2 � �) (� � c2) (45)

h� =
1

2

s
(� � �) (� � �)

(a2 � �) (� � b2) (� � c2) (46)

The position vector in Cartesian coordinates is

r = xex + yey + zez (47)

and the derivatives can be used to de�ne the unit vectors and metric coe¢ cients [17]

h�e� =
@r

@�
=
@x

@�
ex +

@y

@�
ey +

@z

@�
ez (48)

h�e� =
@r

@�
=
@x

@�
ex +

@y

@�
ey +

@z

@�
ez (49)

h�e� =
@r

@�
=
@x

@�
ex +

@y

@�
ey +

@z

@�
ez (50)

The unit vectors can be found by di¤erentiation [17]����@r@�
���� e� = @r

@�
=
@x

@�
ex +

@y

@�
ey +

@z

@�
ez = h�e�

= �1
2

s
(a2 � �) (a2 � �)

(a2 � �) (a2 � b2) (a2 � c2)ex+
1

2

s
(b2 � �) (b2 � �)

(a2 � b2) (� � b2) (b2 � c2)ey+
1

2

s
(c2 � �) (� � c2)

(a2 � c2) (� � c2) (b2 � c2)ez
(51)����@r@�

���� e� = @r

@�
=
@x

@�
ex +

@y

@�
ey +

@z

@�
ez = h�e�
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= �1
2

s
(a2 � �) (a2 � �)

(a2 � b2) (a2 � �) (a2 � c2)ex�
1

2

s
(b2 � �) (� � b2)

(a2 � b2) (b2 � �) (b2 � c2)ey+
1

2

s
(c2 � �) (� � c2)

(a2 � c2) (b2 � c2) (� � c2)ez
(52)����@r@�

���� e� = @r

@�
=
@x

@�
ex +

@y

@�
ey +

@z

@�
ez = h�e�

= �1
2

s
(a2 � �) (a2 � �)

(a2 � �) (a2 � b2) (a2 � c2)ex�
1

2

s
(b2 � �) (� � b2)

(b2 � �) (b2 � c2) (a2 � b2)ey �
1

2

s
(� � c2) (� � c2)

(c2 � �) (a2 � c2) (b2 � c2)ez
(53)

Of course in this orthonormal system (�; �; �)

e� � e� = e� � e� = e� � e� = 1 (54)

e� � e� = e� � e� = e� � e� = 0 (55)

e� � e� = e� (56)

e� � e� = e� (57)

e� � e� = e� (58)

2.2 Convex Mirrors With Orbit Along � (At Mirror)

In this present case we will take the two radii of curvature to represent convex mirrors in both tangential
surface directions at the terminus of the x axis orbit. The mirrors then have �xed values of � = �0 (hy-
perboloid of two sheets). The orbit center (in the transverse direction) consists of the x axis between the
symmetry point 0 and the mirror center at x =

p
a2 � �0; if the desired orbit length is

L = 2` = 2
p
a2 � �0 (59)

then we have a constraint on a2 � �0. The orbit is the limit � = b2 and � = c2 with �0 < � < a2 or

0 < x2 =
�
a2 � �

�
< a2 � �0 (60)

y2 = 0 = z2 (61)

The preceding relation on the mirror surface � = �0 can be rewritten as

x2

(a2 � �0)
= 1 +

y2

(�0 � b2)
+

z2

(�0 � c2)
(62)

from which we see that x2 increases as either y2 or z2 increases showing that the mirror surface is convex
in both tangential directions. Note that we cannot take the orbit along the y or z axes because there is no
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solution to the equation with the other two dimensions equal to zero for a2 > �0 > b2. We would have to
consider annular orbits in these cases.
With the x direction along the orbit let us expand these relations near the point � = �0, where b

2 < �0 <
a2, and � ! b2 or � = b2 ��2y, and � ! c2 or � = c2 ��2z. These expansions give

x2 =

�
a2 � c2 +�2z

� �
a2 � b2 +�2y

� �
a2 � �0

�
(b2 � a2) (c2 � a2) �

�
a2 � �0

� "
1 +

�2y
a2 � b2 +

�2z
a2 � c2

#
(63)

y2 =

�
b2 � c2 +�2z

�
�2y
�
b2 � �0

�
(c2 � b2) (a2 � b2) �

�
�0 � b2

�
(a2 � b2)�

2
y (64)

z2 =
�2z
�
c2 � b2 +�2y

� �
c2 � �0

�
(a2 � c2) (b2 � c2) �

�
�0 � c2

�
(a2 � c2)�

2
z (65)

Notice that near the orbit the coordinate � determines local variations in the y direction, while the coordinate
� determines local variations in the z direction; positions x along the orbit are controlled by the coordinate
�. Notice that at the orbit center � = a2 and x2 = 0 with

y2 =

�
b2 � �

� �
b2 � �

�
(b2 � c2) (66)

z2 =

�
c2 � �

� �
� � c2

�
(b2 � c2) (67)

Now if � = c2 and z2 = 0 we �nd

y2 =
�
b2 � �

�
; c2 < � < b2 (68)

To determine the radii of curvature we set either y or z equal to zero and examine the resulting equation
compared to that of a circle

(x� x0)2 + y2 = R2y (69)

or

x� x0 = �Ry
q
1� y2=R2y � �Ry

�
1� y2=2

R2y

�
(70)

For z = 0, in the above equation the circle center is located at

x0 = Ry +
p
a2 � �0 = Ry + ` (71)

and then

x� x0 = �
"p

a2 � �0

 s
1 +

y2

�0 � b2
� 1
!
�Ry

#

� �Ry

 
1�

p
a2 � �0
Ry

y2=2

�0 � b2

!
(72)

Comparing with the previous expression for the circle we identify

15



Ry =
�0 � b2p
a2 � �0

=
�0 � b2

`
(73)

or

�20 �
�
2b2 �R2y

�
�0 �

�
a2R2y � b4

�
= 0 (74)

with quadratic solution

�0 = b2 +
�
R2y=2

� hq
1 + 4 (a2 � b2) =R2y � 1

i
(75)

or from the preceding second equality, setting �0 � b2 = `Ry in this quadratic solutionh
(1 + L=Ry)

2 � 1
i
R2y=4 =

�
a2 � b2

�
(76)

or

L (2Ry + L) =4 = ` (Ry + `) =
�
a2 � b2

�
(77)

Similarly with y = 0 for the other direction

(x� x0)2 + z2 = R2z (78)

or

x� x0 = �Rz
p
1� z2=R2z � �Rz

�
1� z2=2

R2z

�
(79)

with center at

x0 = Rz +
p
a2 � �0 = Rz + ` (80)

yielding

x� x0 = �
"p

a2 � �0

 s
1 +

z2

�0 � c2
� 1
!
�Rz

#

� �Rz

 
1�

p
a2 � �0
Rz

z2=2

�0 � c2

!
(81)

and

Rz =
�0 � c2p
a2 � �0

=
�0 � c2

`
(82)

with quadratic solution

�0 = c2 +
�
R2z=2

� hp
1 + 4 (a2 � c2) =R2z � 1

i
(83)

and using the second equality h
(1 + L=Rz)

2 � 1
i �
R2z=4

�
=
�
a2 � c2

�
(84)
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or h
(Rz + L)

2 �R2z
i
=4 = L (2Rz + L) =4 = ` (Rz + `) =

�
a2 � c2

�
(85)

For a consistent value of �0 from the preceding two expressions�
b2 � c2

�
+
�
R2y=2

� hq
1 + 4 (a2 � b2) =R2y � 1

i
=
�
R2z=2

� hp
1 + 4 (a2 � c2) =R2z � 1

i
(86)

or �
b2 � c2

�
= ` (Rz �Ry) = (Rz �Ry)L=2 (87)

which because of our desired ordering of coordinates requires Rz � Ry. In summary, to set the coordinate
axes we take

` (Ry + `) = a2 � b2 (88)

` (Rz + `) = a2 � c2 (89)

�0 = b2 + `Ry = c2 + `Rz (90)

`2 + �0 = a2 (91)

` (Rz �Ry) = b2 � c2 (92)

This �nal expression represents the range y2 �
�
b2 � c2

�
= ` (Rz �Ry). Note that the variation with

c2 < � < b2 when a2 > � > �0 and � = c2, is

0 < x2 =

�
a2 � �

� �
a2 � �

�
(a2 � b2) <

�
a2 � c2

� �
a2 � �0

�
(a2 � b2) =

Rz + `

Ry + `
`2 � `2 ; Rz � Ry (93)

0 < y2 =

�
b2 � �

� �
� � b2

�
(a2 � b2) <

�
b2 � c2

� �
� � b2

�
(a2 � b2) =

(Rz �Ry)
(Ry + `)

�
� � b2

�
� (Rz �Ry) ` = b2 � c2 (94)

where the larger result varies over

(Rz �Ry)
`Ry

(Ry + `)
< y2 =

(Rz �Ry)
(Ry + `)

�
� � b2

�
< ` (Rz �Ry) (95)

z2 = 0 (96)

For large and nearly equal radii of curvature this implies a variation of 0 < y <
p
(Rz �Ry) `. Note

that there are four unknowns a; b; c; �0 and three independent conditions. However, we also note that these
hyperboloid surfaces of two sheets are de�ned by

x2

(a2 � �0)
� y2

(�0 � b2)
� z2

(�0 � c2)
= 1 (97)
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and thus the actual unknowns a2 � �0; �0 � b2; �0 � c2 are only three in number. If we write the preceding
equations in terms of these unknowns

a2 � �0 = `2 (98)

�0 � b2 = `Ry (99)

�0 � c2 = `Rz (100)

and the equation of the hyperboloid surfaces is

x2

`2
� y2

`Ry
� z2

`Rz
= 1 (101)

In this convex mirror case we will take the radii of curvature to be large in order to achieve stability
exponents approaching unity from the unstable region. This argument indicates that we want to have

`Rz > `Ry >> `2 (102)

or

�0 � c2 > �0 � b2 >> a2 � �0 (103)

Obviously if �0 approaches a
2 this can hold. Also, if �0 >> b2 > c2, but a >> b > c > 0 with �0 ! a2, it

can also hold.
In the inside region (� ! c2)

x2 =

�
a2 � �

�
(a2 � b2)

�
a2 � �

�
; c2 < � < b2 < � < a2 (104)

y2 =

�
b2 � �

� �
� � b2

�
(a2 � b2) ; c2 < � < b2 < � < a2 (105)

z2 =

�
� � c2

� �
� � c2

�
(a2 � c2) (b2 � c2)

e� ; e� = c2 � � ! 0 ; c2 < � < b2 < � < a2 (106)

We note that in this region � ! b2 collapses the observation point near the scar center and is therefore an
important location.
In summary for this case the orbit along x (controlled by �) has convex mirrors and two exterior foci.

2.2.1 Connection To Spheroidal Coordinates

Note that the limit to spheroidal coordinates is b = c with geometry shown in Figure 3.
Here we expect to have unknowns ap; bp; �p0, but only two conditions: radius of curvature R and orbital

half length `.
The prolate spheroidal coordinates

�
�p; 'p; �p

�
are related to the cylindrical system (r; '; z) by means of

[10]

r = d sinh �p cos �p (107)
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r

z

x = x0
x = -x0

z = z0

z = -z0

d-d
R

l-l

Figure 3: Spheroidal coordinate system and convex mirrors for case where the two radii of curvature are
equal. The mirrors are located at � = ��0 having locations z = �` for a radius r = 0. The foci at z = �d
are outside the cavity region.

z = d cosh �p sin �p (108)

'p = ' (109)

where

0 < �p <1 (110)

��=2 < �p < �=2 ; 0 < 'p < 2� (111)

On the mirror we can write

` = d sin �p0 (112)

Also about this point we can expand the coordinate relation

z = d cosh �p sin �p0 � d
�
1 + �2p=2

�
sin �p0 � `+

r2

2d

sin �p0
cos2 �p0

� `+R+
r2

2d

sin �p0
cos2 �p0

�R = z0 +
r2

2d

sin �p0
cos2 �p0

�R (113)

r � d�p cos �p0 (114)

where R is the radius of curvature on the mirror and the center of the circle is at z0 = `+R. For a circle of
radius R and center position r = 0, z = z0

r2 + (z � z0)2 = R2 (115)
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or

z = z0 �
p
R2 � r2 � z0 �R

�
1� r2

2R2

�
(116)

Choosing the minus sign and comparing with the preceding gives

r2

2R
=
r2

2d

sin �p0
cos2 �p0

(117)

or

R = d cos2 �p0= sin �p0 = d
�
1� sin2 �p0

�
= sin �p0 (118)

Using the length constraint (adding the length and then replacing the inverse sine by d=`)

R+ ` = d2=` (119)

The focal distance d is chosen in terms of the mirror radius of curvature R and the half orbit length ` by
means of

d = `
p
1 +R=` (120)

The orbit extends over the range ��0 < �p < �0 with �p ! 0 (or �` < z < ` and r = 0) and

` = d sin �0 (121)

L = 2` (122)

or

sin �0 = 1=
p
1 +R=` (123)

Using the identity

cos2 �p + sin
2 �p = 1 (124)

we obtain the elliptical relation

z2

a2p
+
r2

b2p
= 1 (125)

where

bp = d sinh �p (126)

ap = d cosh �p (127)

a2p � b2p = d2 = ` (`+R) (128)

Now in the ellipsoidal system the analog of the z axis would be along the � or x axis on the strip � = 0
in the x� y plane.
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3 HELMHOLTZ EQUATION IN ELLIPSOIDALCOORDINATES

The metric coe¢ cients in ellipsoidal coordinates are [10]

h� =
1

2

s
(� � �) (� � �)

D (�)
(129)

h� =
1

2

s
(� � �) (� � �)

D (�)
(130)

h� =
1

2

s
(� � �) (� � �)

D (�)
(131)

where

D (�) =
�
a2 � �

� �
b2 � �

� �
c2 � �

�
(132)

Note that

D (�) > 0 for �1 < � < c2 (133)

D (�) < 0 for c2 < � < b2 (134)

D (�) > 0 for b2 < � < a2 (135)

The scalar wave equation �
�+ k2

�
� =

�
r2 + k2

�
� = 0 (136)

then takes the form

1

h�h�h�

�
@

@�

�
h�h�
h�

@�

@�

�
+

@

@�

�
h�h�
h�

@�

@�

�
+

@

@�

�
h�h�
h�

@�

@�

��
+ k2� = 0 (137)

or

4 (� � �)
p
D (�)

@

@�

�p
D (�)

@�

@�

�
� 4 (� � �)

p
�D (�) @

@�

�p
�D (�)@�

@�

�

+4 (� � �)
p
D (�)

@

@�

�p
D (�)

@�

@�

�
+ k2 (� � �) (� � �) (� � �)� = 0 (138)

Let us introduce the variables [10]

e� = Z �

0

d�

2
p
D (�)

(139)

e� = Z �

c2

d�

2
p
�D (�)

(140)

e� = Z �

b2

d�

2
p
D (�)

(141)
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and

@e�
@�
=

1

2
p
D (�)

(142)

@e�
@�

=
1

2
p
�D (�)

(143)

@e�
@�
=

1

2
p
D (�)

(144)

which allow the scalar wave equation

(� � �) 2
p
D (�)

@

@�

�
2
p
D (�)

@�

@�

�
� (� � �) 2

p
�D (�) @

@�

�
2
p
�D (�)@�

@�

�

+(� � �) 2
p
D (�)

@

@�

�
2
p
D (�)

@�

@�

�
+ k2 (� � �) (� � �) (� � �) � = 0 (145)

to be written as

(� � �) @
2�

@e�2 � (� � �) @
2�

@e�2 + (� � �) @2�@e�2 + k2 (� � �) (� � �) (� � �) � = 0 (146)

We want to solve this equation with boundary condition on the ellipsoid surface

� = 0 for � = �0 (147)

or

@�

@�
= 0 for � = �0 (148)

Now separating variables

� = X (�)Y (�)Z (�) (149)

4 (� � �)
p
D (�)

1

X

@

@�

�p
D (�)

@X

@�

�
+ 4 (� � �)

p
D (�)

1

Y

@

@�

�p
D (�)

@Y

@�

�

+4 (� � �)
p
D (�)

1

Z

@

@�

�p
D (�)

@Z

@�

�
+ k2 (� � �) (� � �) (� � �) = 0 (150)

Noting that the �rst term aside from the (� � �) factor is a function of � only, the second term aside from
the (� � �) factor is a function of � only, and the third term, aside from the (� � �) factor is a function of �
only, we can write this as

� (� � �) k2p (�)� (� � �) k2p (�)� (� � �) k2p (�) + k2 (� � �) (� � �) (� � �) = 0 (151)

where each of these functions is a quadratic (with separation constants � and �)

p (�) = �2 + �� + � (152)
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in �, �, or �

2
p
D (�)

1

X

@

@�

�
2
p
D (�)

@X

@�

�
= �k2p (�) (153)

2
p
D (�)

1

Y

@

@�

�
2
p
D (�)

@Y

@�

�
= �k2p (�) (154)

2
p
D (�)

1

Z

@

@�

�
2
p
D (�)

@Z

@�

�
= �k2p (�) (155)

The quadratic terms cancel because we can write the k2 term as

(� � �) (� � �) (� � �) = �2 (� � �) + �2 (� � �) + �2 (� � �) (156)

We can also show that the remaining terms cancel

(� � �) (�� + �) + (� � �) (�� + �) + (� � �) (�� + �) = 0 (157)

Note that these equations have the form

2
p
D (�)

1

�

@

@�

�
2
p
D (�)

@�

@�

�
= �k2p (�) (158)

or

@2�

@�2
+
1

2

D0 (�)

D (�)

@�

@�
+
1

4
k2
p (�)

D (�)
� = 0 (159)

We can rewrite these as

d2X

de�2 + k2p (�)X = 0 (160)

d2Y

de�2 � k2p (�)Y = 0 (161)

d2Z

de�2 + k2p (�)Z = 0 (162)

where p (�) stands for the second order polynomial

p (�) = �2 + �� + � (163)

and � and � are separation constants. How do we determine the separation constants � and � (or �1 and
�2)? In the axisymmetric problem the separation constants were related to the azimuthal number m and
the wavenumber separation s. The boundary conditions on the mirror determined kp. It would be nice if
we could choose a simple solution in the direction Y (analog of cos (m') and sin (m'), where we often took
m = 0). We can also write this as

p (�) = (� � �1) (� � �2) (164)

�j = �
�

2
�
r��

2

�2
� � (165)
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These di¤erential equations are the Lame wave equations. The functions X;Y; Z are the Lame wave functions
[10].
The function � determines the modes inside a closed perfectly conducting surface, and therefore, apart

from a constant factor, it must be real, as are the functions X, Y , and Z. From this it follows that the
polynomial p (�) must be real; the roots �1 and �2 are either real (� < (�=2)

2) or are complex conjugates
(� > (�=2)2). We will start with this same assumption because our total cavity is enclosed, but the scarred
orbit interacts with the outer chaotic region in our case and is not enclosed by caustics. If �1 and �2 are
complex conjugates, the polynomial p (�) does not change sign, and at least one of the separation equations
has a monotonic solution.
In the case of modes con�ned by caustic surfaces sign changes in p (�) are desired to create the caustic

boundaries [10]. However in our case with the convex mirrors we expect propagation not only in the x (or
�) direction along the orbit, but also in the y (or �) and z (or �) directions as well. Hence either real or
the solutions with complex conjugate values of �1 and �2 are likely to be the ones of interest. If we desired
to generate modes with very little variation along the � direction (analog of m in the axisymmetric case)
could we choose the separation constants appropriately to give this behavior? We might be tempted to have
these modes (instead of generating a constant in �) generate the metric coe¢ cient behavior as the orbit is
approached � ! c2

h� =
1

2

s
(� � �) (� � �)

D (�)
=
1

2

s
(� � �) (� � �)

(a2 � �) (b2 � �) (� � c2) �
1

2

s
(� � �)

(a2 � �) (b2 � �) (166)

since we might expect some form of generic variation over the ellipsoid (similar to cylindrical h' = 1=� =
constant in ')? Do we expect normal chaotic behavior in this transverse direction excited by its coupling
to the outer region? This is related to the question about how one would use our previous 2D solutions as
approximations in a 3D cavity. If the dimensions are stretched so that there are many wavelengths in one of
the transverse dimensions k2

�
b2 � c2

�
>> 1 then we might expect chaotic behavior excited from the edges

of the cross-sectional disc region. Alternatively, if k2
�
b2 � c2

�
= O (1) then the two transverse directions of

the scarred orbit are similar in dimension, and we might expect the scar to be similar in character to the
axisymmetric structure. Thus we could study the transitional behavior of the scar around this limit.

3.1 General Separation Equation And Choices Of Separation Constants

The preceding ordinary di¤erential separation equations, with dependent variables � = X;Y; Z and inde-
pendent coordinate variables � = �; �; � can be written as

d2�

d�2
� 1
2

�
1

a2 � � +
1

b2 � � +
1

c2 � �

�
d�

d�
+
1

4
k2

(�1 � �) (�2 � �)
(a2 � �) (b2 � �) (c2 � �)� = 0 (167)

where again the coordinate parameters are ordered as

a > b > c > 0 (168)

and the coordinates are restricted to the ranges

�1 < � < c2 (169)

c2 < � < b2 (170)

�0 < � < a2 (171)
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Figure 4: Elliptical system coordinate ranges and separation constant turning points, with regions of prop-
agation illustrated by jagged lines.

We plan to order the separation constants, which are turning points, so that �2 > �1. Figure 4 illustrates the
turning points and the regions of propagation (jagged lines) for the system coordinates. We also can see that
for �1 < c2 we will see exponential behavior in �, whereas for �1 > c2 (or �2 < b2) we will see exponential
behavior in �. Because the range of � is restricted to be � > �0 we do not expect exponential behavior in �.
Because we expect the separation constant and turning point at �1 to be in the neighborhood of the

singular point at c2, and the separation constant and turning point at �2 to be in the neighborhood of the
singular point at b2, we will need to eventually examine the solution with combined turning and singular
points for the functions X (�) and Y (�), whereas only the singular point limit near a2 for Z (�).

3.2 General Separation Equation & Asymptotic Solutions

We discuss asymptotic formulas for the potential in each region using the combined critical point forms.
Again the transformations between coordinates are

x2 =

�
a2 � �

� �
a2 � �

� �
a2 � �

�
(b2 � a2) (c2 � a2) =

�
a2 � �

� �
a2 � �

� �
a2 � �

�
(a2 � b2) (a2 � c2) (172)

y2 =

�
b2 � �

� �
b2 � �

� �
b2 � �

�
(c2 � b2) (a2 � b2) =

�
b2 � �

� �
b2 � �

� �
� � b2

�
(b2 � c2) (a2 � b2) (173)

z2 =

�
c2 � �

� �
c2 � �

� �
c2 � �

�
(a2 � c2) (b2 � c2) =

�
c2 � �

� �
� � c2

� �
� � c2

�
(a2 � c2) (b2 � c2) (174)

where

�1 < � < c2 (175)

c2 < � < b2 (176)

�0 < � < a2 (177)
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We note that Rz > Ry > ` to make a2 > b2 > c2. The coordinate system parameters can be found as (note
that we can arbitrarily take c2 = 0 if desired)

b2 � c2 = ` (Rz �Ry) (178)

a2 � c2 = ` (`+Rz) (179)

a2 � b2 = ` (`+Ry) (180)

The general separation equation with � = X;Y; Z and � = �; �; � is

d2�

d�2
� 1
2

�
1

a2 � � +
1

b2 � � +
1

c2 � �

�
d�

d�
+
1

4
k2

(�1 � �) (�2 � �)
(a2 � �) (b2 � �) (c2 � �)� = 0 (181)

We will not make a speci�c choice of boundary conditions in this subsection but simply list the two asymptotic
solutions. The Liouville [18] (also known as WKB) asymptotic solutions are

� � c0
4
p
p (�)

exp

"
�ik
2

Z �

�0

q
P
�
�0
�
d�0

#
or

c0
4
p
p (�)

(
sin
cos

"
k

2

Z �

�0

q
P
�
�0
�
d�0

#)
(182)

where

p (�) = (� � �1) (� � �2) (183)

P (�) = p (�) =D (�) (184)

D (�) =
�
a2 � �

� �
b2 � �

� �
c2 � �

�
(185)

The separation constants �1 and �2 are turning points of the equation. The points a2; b2; c2 = 0 are singular
points of the equation. The turning point locations in the convex walled bowtie con�guration follow Figure 4.
The limits of the equation at these various critical points will be given next (see also the following subsection).
After that they will be used to construct the asymptotic solutions in the three coordinates along the periodic
orbit. Matching along the orbit and in the outward direction will be carried out to connect the various
regions and determine the complete mode behavior.
Near the critical points � ! b2; �2 we take

k2e = k2
�
b2 � �1

�
(a2 � b2) (b2 � c2) (186)

with e� = � � b2 and

s = ke
�
b2 � �2

�
(187)

or with e� = b2 � � and

s = ke
�
�2 � b2

�
(188)

and similarly near the critical points � ! c2; �1 we take
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k2e = k2
�
�2 � c2

�
(a2 � c2) (b2 � c2) (189)

with e� = c2 � � and

s = ke
�
�1 � c2

�
(190)

or with e� = � � c2 and

s = ke
�
c2 � �1

�
(191)

we approximate the separation equation as

d2�

de�2 + 1

2e� d�de� + 14
�
k2e +

skee�
�
� = 0 (192)

Changing variables

� = e��1=4	 (193)

we obtain a form of the Whittaker (con�uent hypergeometric) equation

d2	

de�2 + 14
�
k2e +

skee� +
3

4e�2
�
	 = 0 (194)

where the solutions can be taken as the Whittaker (con�uent hypergeometric) function forms [19], [20]

	 =W�

�
s; 1=4; kee�� (195)

having asymptotic forms [19]

W+

�
s; 1=4; kee�� =Wis=4;1=4

�
�ikee�� = eike

e�=2 ��ikee��3=4 U �3=4� is=4; 3=2;�ikee�� � eike
e�=2 ��ikee��is=4 ; kee� !1

(196)

U
�
3=4� is=4; 3=2;�ikee�� = ��ikee���1=2p�

24M
�
1=4� is=4; 1=2;�ikee��
� (3=4� is=4) � 2

M
�
3=4� is=4; 3=2;�ikee��
� (1=4� is=4)

�
�ikee��1=2

35
(197)

W+

�
s; 1=4; kee�� =��ikee��1=4 � �1=2

�
1

� (3=4� is=4) �
2

� (1=4� is=4)

�
�ikee��1=2 +O �kee��� ; kee� ! 0

(198)

W�

�
s; 1=4; kee�� =W+

�
�s; 1=4;�kee�� � e�ike

e�=2 �ikee���is=4 ; kee� !1 (199)

W�

�
s; 1=4; kee�� =�ikee��1=4 � �1=2

�
1

� (3=4 + is=4)
� 2

� (1=4 + is=4)

�
ikee��1=2 +O �kee��� ; kee� ! 0

(200)
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We will also need derivatives with respect to e�. Noting that
W 0
�

�
s; 1=4; kee�� = d

d
�
kee��W 0

�

�
s; 1=4; kee�� = �W 0

+

�
�s; 1=4;�kee�� (201)

we �nd

d

d
pe�

�
W+

�
s; 1=4; kee�� =��ikee��1=4� � �1=2

�
� 2

� (1=4� is=4) (�ike)
1=2
+O

�
ke

pe��� ; kee� ! 0 (202)

and

d

d
pe�

�
W�

�
s; 1=4; kee�� =�ikee��1=4� � �1=2

�
� 2

� (1=4 + is=4)
(ike)

1=2
+O

�
ke

pe��� ; kee� ! 0 (203)

3.3 Combined Critical (Turning & Singular) Point Limit

The actual limit of interest is when the turning point transitions through the singular point region. To
accommodate this case we need to start from the original equation

d2�

d�2
� 1
2

�
1

a2 � � +
1

b2 � � +
1

c2 � �

�
d�

d�
+
1

4
k2

(�1 � �) (�2 � �)
(a2 � �) (b2 � �) (c2 � �)� = 0 (204)

but take the limit � ! b2; �2

d2�

d�2
� 1
2

�
1

a2 � b2 +
1

b2 � � +
1

c2 � b2

�
d�

d�
+
1

4
k2

�
�1 � b2

�
(�2 � �)

(a2 � b2) (b2 � �) (c2 � b2)� = 0 (205)

and letting � � b2 = e�
d2�

de�2 + 12
�
� 1

a2 � b2 +
1e� + 1

b2 � c2

�
d�

de� + 14k2
�
b2 � �1

� �
b2 � �2 + e��

(a2 � b2)e� (b2 � c2) � = 0 (206)

There is a question here about whether we take � ! b2 or � ! �2 in the slowly varying factors; we have
decided to use the former point, which could have some e¤ect on the following results for ke and s; also, we
will need to follow this lead on the limits taken for the Liouville (WKB) solutions when we match. Dropping
the two constant coe¢ cient terms in the �rst derivative term gives

d2�

de�2 + 1

2e� d�de� + 14k2
�
b2 � �1

� �
b2 � �2 + e��

(a2 � b2)e� (b2 � c2) � = 0 (207)

If we had chosen to evaluate the slowly varying factors at � ! �2

d2�

d�2
+
1

2

�
� 1

a2 � �2
+
1e� + 1

�2 � c2

�
d�

d�
+
1

4
k2
(�2 � �1)

�
b2 � �2 + e��

(a2 � �2)e� (�2 � c2) � = 0 (208)

Dropping the two constant coe¢ cient terms in the �rst derivative term factor gives
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d2�

d�2
+
1

2e� d�d� + 14k2
(�2 � �1)

�
b2 � �2 + e��

(a2 � �2)e� (�2 � c2) � = 0 (209)

Now transforming

� = e��1=4	 (210)

d2	

de�2 +
"
1

4
k2

�
b2 � �1

�
(a2 � b2) (b2 � c2) +

1

4
k2
�
b2 � �1

� �
b2 � �2

�
(a2 � b2)e� (b2 � c2) + 3

16e�2
#
	 = 0 (211)

For the other approach (evaluating the slowly varying factors at � ! �2)

d2	

de�2 +
"
1

4
k2

(�2 � �1)
(a2 � �2) (�2 � c2)

+
1

4
k2
(�2 � �1)

�
b2 � �2

�
(a2 � �2)e� (�2 � c2) + 3

16e�2
#
	 = 0 (212)

This is a Whittaker equation [19]

d2w

dz2
+

�
�1
4
+
�

z
+
1=4� �2

z2

�
w = 0 (213)

A solution can be taken as the Whittaker function [19]

w =W�;� (z) = e�z=2z1=2+�U (1=2 + �� �; 1 + 2�; z) � e�z=2z� ; z !1 ; jarg (z)j < 3�=2 (214)

M�;� (z) = e�z=2z1=2+�M (1=2 + �� �; 1 + 2�; z) (215)

U (1=2 + �� �; 1 + 2�; z) = �

sin (� (1 + 2�))

�
M (1=2 + �� �; 1 + 2�; z)
� (1=2� �� �) � (1 + 2�) � z

�2�M (1=2� �� �; 1� 2�; z)
� (1=2 + �� �) � (1� 2�)

�

=
�

sin (� (1 + 2�))

"
1

� (1=2� �� �) � (1 + 2�)

1X
n=0

(1=2 + �� �)n zn
(1 + 2�)n n!

� 1

� (1=2 + �� �) � (1� 2�)z
�2�

1X
n=0

(1=2� �� �)n zn
(1� 2�)n n!

#
(216)

Noting the asymptotic forms [19]

M (a; b; c)

� (b)
� e�i�az�a

� (b� a) +
ezza�b

� (a)
;

��=2 < arg (z) � 3�=2
�3�=2 < arg (z) � ��=2 (217)

U (a; b; z) � z�a ; � 3�=2 < arg (z) < 3�=2 (218)

we can write

� (a)

� (b)
M (a; b; c)� � (a)

� (b� a)e
�i�aU (a; b; z) � ezza�b ; � 3�=2 < arg (z) � ��=2 (219)
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� (1=2 + �� �)
� (1 + 2�)

M�;� (z)�
� (1=2 + �� �)
� (1=2 + �+ �)

e�i�(1=2+���)W�;� (z)

= e�z=2z1=2+�
�
� (1=2 + �� �)
� (1 + 2�)

M (1=2 + �� �; 1 + 2�; z)� � (1=2 + �� �)
� (1=2 + �+ �)

e�i�(1=2+���)U (1=2 + �� �; 1 + 2�; z)
�

� ez=2z�� ; � 3�=2 < arg (z) � ��=2 (220)

The series [19]

M (a; b; z) =
1X
n=0

(a)n z
n

(b)n n!
(221)

and [19]

U (a; b; z) =
�

sin (�b)

�
M (a; b; z)

� (1 + a� b) � (b) � z
1�bM (1 + a� b; 2� b; z)

� (a) � (2� b)

�

=
�

sin (�b)

"
1

� (1 + a� b) � (b)

1X
n=0

(a)n z
n

(b)n n!
� 1

� (a) � (2� b)z
1�b

1X
n=0

(1 + a� b)n zn
(2� b)n n!

#
(222)

give

M�;� (z) = e�z=2z1=2+�M (1=2 + �� �; 1 + 2�; z) = e�z=2z1=2+�
1X
n=0

(1=2 + �� �)n zn
(1 + 2�)n n!

(223)

W�;� (z) = e�z=2z1=2+�U (1=2 + �� �; 1 + 2�; z) = e�z=2z1=2+�
�

sin (� (1 + 2�))

"
1

� (1=2� �� �) � (1 + 2�)

1X
n=0

(1=2 + �� �)n zn
(1 + 2�)n n!

� 1

� (1=2 + �� �) � (1� 2�)z
�2�

1X
n=0

(1=2� �� �)n zn
(1� 2�)n n!

#
(224)

and

� (1=2 + �� �)
� (1 + 2�)

M�;� (z)�
� (1=2 + �� �)
� (1=2 + �+ �)

e�i�(1=2+���)W�;� (z)

= e�z=2z1=2+�
� (1=2 + �� �)
� (1 + 2�)

1X
n=0

(1=2 + �� �)n zn
(1 + 2�)n n!

� e�z=2z1=2+� 1

� (1=2 + �+ �)

�e�i�(1=2+���)

sin� (1 + 2�)"
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� (1=2� �� �) � (1 + 2�)

1X
n=0

(1=2 + �� �)n zn
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� 1

� (1� 2�)

1X
n=0

(1=2� �� �)n zn�2�
(1� 2�)n n!

#
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1
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e�i�(1=2+���)

sin� (1 + 2�)

"
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� (1� 2�)

1X
n=0

(1=2� �� �)n zn�2�
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+
n
ei�(1=2+���) sin� (1 + 2�)� sin� (1=2 + �+ �)

o � (1=2 + �+ �) � (1=2 + �� �)
� (1 + 2�)

1X
n=0

(1=2 + �� �)n zn
(1 + 2�)n n!

#
(225)

It is convenient to take the solution W+

d2W+

de�2 +
1

4

�
k2e +

skee� +
3

4e�2
�
W+ = 0 (226)

where

W+

�
s; 1=4; kee�� =Wis=4;1=4

�
�ikee�� = eike

e�=2 ��ikee��3=4 U �3=4� is=4; 3=2;�ikee�� � eike
e�=2 ��ikee��is=4 ; kee� !1

(227)
Note that we can transform these con�uent hypergeometric functions to the parabolic cylinder function
D� (z) [19]

U
�
3=4� is=4; 3=2;�ikee�� = 23=4�is=4e�ikee�=2D1=2+is=2

�q
�i2kee�� =q�i2kee� (228)

W+

�
s; 1=4; kee�� =Wis=4;1=4

�
�ikee�� = 2�is=4 ��i2kee��1=4D1=2+is=2

�q
�i2kee�� (229)

Note in the axisymmetric case [13] we were using function W+ (� ;m; s) =Wis=2;m=2

�
�i�2=2

�
. The analytic

continuation of the solution is

W+

�
s; 1=4; ze�i�

�
=Wis=4;1=4

�
�ize�i�

�
= e�iz=2e�i3�=4 (�iz)3=4 U

�
3=4� is=4; 3=2;�ize�i�

�
(230)

where [19]

U
�
a; b;�ize�i�

�
=

�

sin (�b)
eiz
�
M (b� a; b;�iz)
� (1 + a� b) � (b) � e

�i�(1�b)�i�(1�b)=2z1�b
M (1� a; 2� b;�iz)
� (a) � (2� b)

�
(231)

As a second solution we can take

e��s=4W�

�
s; 1=4; kee�� = � (3=4� is=4)

� (3=2)
Mis=4;1=4

�
�ikee��� � (3=4� is=4)

� (3=4 + is=4)
e�i�(3=4�is=4)Wis=4;1=4

�
�ikee��

= � (3=4� is=4) eikee�=2 ��ikee��3=4 � 1

� (3=2)
M
�
3=4� is=4; 3=2;�ikee��� e�i�(3=4�is=4)

� (3=4 + is=4)
U
�
3=4� is=4; 3=2;�ikee���

� e�ike
e�=2 ��ikee���is=4 ; kee� !1 (232)

which is asymptotic to W �
+ when ke and s are real. However, we note from the invariance of the ODE when

we replace ke ! �ke and s! �s, it is easier to take as a second solution
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W�

�
s; 1=4; kee�� =W+

�
�s; 1=4;�kee�� =W�is=4;1=4

�
ikee��

= e�ike
e�=2 �ikee��3=4 U �3=4 + is=4; 3=2; ikee�� � e�ike

e�=2 �ikee���is=4 ; kee� !1 (233)

W�

�
s; 1=4; kee�� =e�1=4 � �1=2

1

� (3=4 + is=4)
(ike)

1=4

�
1� 2� (3=4 + is=4)

� (1=4 + is=4)

�
ikee��1=2 +O �kee��� ; kee� ! 0

(234)
Note also when s = 0

W�

�
0; 1=4; kee�� =W0;1=4

�
ikee�� = e�ike

e�=2 �ikee��3=4 U �3=4; 3=2; ikee�� = 1

2
�1=2e�i5�=8

�
ikee��1=2H(2)

1=4

�
kee�=2�

(235)
The ODE parameters are

k2e = k2
�
b2 � �1

�
(a2 � b2) (b2 � c2) (236)

ske = k2
�
b2 � �1

� �
b2 � �2

�
(a2 � b2) (b2 � c2) = k2e

�
b2 � �2

�
(237)

s = ke
�
b2 � �2

�
(238)

and the original variable is

� = e��1=4W�

�
s; 1=4; kee�� (239)

The turning point of the equation

d2W+

de�2 +
1

4

�
k2e +

skee� +
3

4e�2
�
W+ = 0 (240)

is at �
kee� + s� kee� + 3

4
= 0 (241)

Note that for s < 0 there is a turning point for e� > 0, which for kee� >> 1 (or if we ignore the 3=4 term) is
at e� = �2 � b2, but the asymptotic form of the local focal solution here assumes we are outside the turning
point, with e� greater than this location; it should therefore be �ne for matching to the global solution outside
this turning point.
For the other approach these become

d2	

de�2 +
"
1

4
k2

(�2 � �1)
(a2 � �2) (�2 � c2)

+
1

4
k2
(�2 � �1)

�
b2 � �2

�
(a2 � �2)e� (�2 � c2) + 3

16e�2
#
	 = 0 (242)

k2e = k2
(�2 � �1)

(a2 � �2) (�2 � c2)
(243)
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ske = k2
(�2 � �1)

�
b2 � �2

�
(a2 � �2) (�2 � c2)

= k2e
�
b2 � �2

�
(244)

s = ke
�
b2 � �2

�
(245)

and there is thus a slight change in the value of k2e ; this does not seem to be signi�cant. It is also useful in
the limit � ! b2; �2

d2�

d�2
� 1
2

�
1

a2 � b2 +
1

b2 � � +
1

c2 � b2

�
d�

d�
+
1

4
k2

�
�1 � b2

�
(�2 � �)

(a2 � b2) (b2 � �) (c2 � b2)� = 0 (246)

to let b2 � � = e�
d2�

de�2 + 12
�

1

a2 � b2 +
1e� � 1

b2 � c2

�
d�

de� + 14k2
�
b2 � �1

� �
�2 � b2 + e��

(a2 � b2)e� (b2 � c2) � = 0 (247)

Dropping the two constant terms in the �rst derivative

d2�

de�2 + 1

2e� d�de� + 14k2
�
b2 � �1

� �
�2 � b2 + e��

(a2 � b2)e� (b2 � c2) � = 0 (248)

or

d2�

de�2 + 1

2e� d�de� + 14
�
k2e +

skee�
�
� = 0 (249)

k2e = k2
�
b2 � �1

�
(a2 � b2) (b2 � c2) (250)

ske = k2
�
b2 � �1

�
(a2 � b2) (b2 � c2)

�
�2 � b2

�
(251)

s = ke
�
�2 � b2

�
(252)

Now transforming

� = e��1=4	 (253)

d2	

de�2 + 14
�
k2e +

skee� +
3

4e�2
�
	 = 0 (254)

which is again the Whittaker equation

d2w

dz2
+

�
�1
4
+
�

z
+
1=4� �2

z2

�
w = 0 (255)

with solutions

� = e��1=4W�

�
s; 1=4; kee�� (256)

This case is another example of the invariance of the ODE, in this case under the sign reversals of e� and s.
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3.3.1 Evaluation Of Whittaker Function

Near the origin we use the identities
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�
s; 1=4; kee�� =Wis=4;1=4

�
�ikee�� = eike

e�=2 ��ikee��3=4 U �3=4� is=4; 3=2;�ikee�� = ��1=2eikee�=2

�
�ikee��3=4

264 2
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(3=2)n n!
� 1

� (3=4� is=4)

1X
n=0

(1=4� is=4)n
�
�ikee��n�1=2

(1=2)n n!

375

= �1=2eike
e�=2 ��ikee��1=4

264 1
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(257)

to �nd
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W+

�
s; 1=4; kee�� =��ikee��1=4 � �1=2
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(259)
Note also when s = 0
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�
0; 1=4; kee�� =W0;1=4

�
�ikee�� = eike

e�=2 ��ikee��3=4 U �3=4; 3=2;�ikee�� = 1

2
�1=2ei5�=8

�
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1=4

�
kee�=2�

(260)
The asymptotic form is [19]

U (a; b; z) = z�a

"
R�1X
n=0

(a)n (1 + a� b)n
n!

(�z)�n +O
�
jzj�R

�#
; � 3�=2 < arg (z) < 3�=2 (261)

Wis=4;1=4

�
�ikee�� = eike

e�=2 ��ikee��is=4 "R�1X
n=0

(3=4� is=4)n (1=4� is=4)n
n!

�
ikee���n +O����kee�����R�#

(262)
An integral representation is [19]

� (a)U (a; b; z) =

Z 1

0

e�ztta�1 (1 + t)
b�a�1

dt
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=

Z ei�=2R

0

e�ztta�1 (1 + t)
b�a�1

dt+

Z 0

�=2

e�ztta�1 (1 + t)
b�a�1

iei'Rd' (263)

� (a)U (a; 3=2;�iz) � ei�=4
Z R

0

e�ztta�1 (t� i)1=2�a dt+ iR1=2
Z 0
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eie
i'zRei'=2d' (264)
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Z �=2

0
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� (a)U (a; 3=2;�iz) = ei�=4
Z R
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R�1=2eizR (266)

� (a)U (a; 3=2;�iz) = ei�=4
Z 1
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e�ztta�1 (t� i)1=2�a dt (267)

which is the analytic continuation for this phase of argument. Near the lower limit with a = 3=4� is=4
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Near the upper limit
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Wis=4;1=4
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Note for the other function

W�

�
s; 1=4; kee�� =W+

�
�s; 1=4;�kee�� (271)

and the integral representation is analytically continued in the other direction

� (a)U (a; b; z) =
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Z 1
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1=2�a

dt (275)

which is the analytic continuation for this phase of argument. Near the lower limit with a = 3=4 + is=4
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Near the upper limit
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W�
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s; 1=4; kee�� =W�is=4;1=4

�
ikee�� = e�ike

e�=2 �ikee��3=4 U �3=4 + is=4; 3=2; ikee�� (278)
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3.4 Singular Point Limit

The isolated singular point at � ! a2 (corresponding to the obit center x2 = 0) leads to

d2Z
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� 1
2
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(a2 � �) (a2 � b2) (a2 � c2)Z = 0 ; � ! a2 (279)

We can transform out the constant
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Instead in the spirit of simplicity let us drop these and approximate as
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or
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Using the canonical equation
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with solutions
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we can write

Z =
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�
ke0

qe��� = � sin
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�
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(287)
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Figure 5: This �gure, taken from Moon and Spencer, illustrates the types of coordinate surfaces involved
in ellipsoidal coordinates. One candidate for the enclosing surface is made up of sections of the ellipse and
hyperbola (orbit end cavity boundary surface) shown in red may be taken as the scar enclosing region.

4 CONSTRUCTION OF ASYMPTOTIC FIELD

We now assemble the complete asymptotic solution along the orbit of Figure 5. With the convex walls we
are considering the region inside the focal points.

4.1 Radial-Like Variable

As we proceed toward the orbit (note that � ! c2 corresponds to z2 ! 0), but near the critical points
� ! �1; c

2 = 0, we set � = c2 � e� and we use the random phase re�ection coe¢ cientRx = ei�0x to write the
radial-like separation function as

X � Re
h
c+xW+

�
sx; 1=4; kexe��+ c�xW�
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qe�
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sx; 1=4; kexe��i = 4

qe� (288)

where

ei�0xc+x = c�x = ei�0x=2c0x (289)
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�
sx; 1=4; kexe�� � eikex

e�=2 ��ikexe��isx=4 ; kexe� !1 (290)

W�

�
sx; 1=4; kexe�� � e�ikex

e�=2 �ikexe���isx=4 ; kexe� !1 (291)

k2ex = k2
�
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�
(a2 � c2) (b2 � c2) (292)
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sx = kex
�
�1 � c2

�
(293)

X (�) � e�sx=8c0xRe
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� 2e�sx=8c0x cos
h
kexe�=2 + (sx=4) ln�kexe��� �0x=2i = 4

qe� ; kexe� !1 (294)

We note that the direction � ! �1, or growing e�, is in a direction away from the scarred orbit, so the
placement here of the phase re�ection coe¢ cient is correct. From the preceding expressions
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and
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we �nd near the degenerate elliptical strip (at z2 = 0)
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Now noting that
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e� (298)

we see that a derivative with respect to
qe� is proportional to a derivative with respect to the distance

variable z, as e� ! 0. Now if we choose to have evenness with respect to z as z ! 0 we can choose to make
this derivative vanish. In the former axisymmetric problem we set the normal derivative of the potential
(times the radius) equal to zero as we approached the scar center. What is the underlying reason for imposing
this condition? It does represent an even type condition, but its signi�cance is also the fact that the power
�ow must vanish at the scar center? In the two-dimensional problem we could argue the same thing. If this
is the case, we do not necessarily have to impose this condition on Y at all, but only on X in this region;
note by analogy that we did not impose a particular cos' or sin' choice in the axisymmetric problem. Note
that in the inside region we can write
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(304)
(In a follow-on report on concave walled cavities with interior foci, we can impose this condition on Z in the
region outside the foci and in the region between foci we can impose it on both X and Z.) However, if we
wish to impose evenness in y2 for convenience we should be able to do so (like choosing cos' or sin' in the
former axisymmetric problem).
We note from
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and if this must vanish as
qe� ! 0 then
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or
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in which case
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Using the small argument forms of W+
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where we used the re�ection formula � (z) � (1� z) = � csc (�z) [19]. We have thus made the connection of
the random phase �0x with the derived (connected primarily with �1) separation constant sx. We note from
Stirling�s formula [19] we can write
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p
2� (jsxj =4)�1=4 e��jsxj=8 ; sx ! �1 (313)

4.1.1 Outward Extension

The X (�) solution of the inside region can be extended outward in validity by matching to Liouville solutions
[18]

X (�) � 1
4
p
p (�)

(
sin
cos

"
k

2

Z �

�0

p
P (�)d�

#)
=
2e�sx=8

p
�2 � c2c0x

4
p
p (�)

cos

"
k

2

Z min(c2;�1)

�

p
P (�)d� + k�0

#
(314)

p (�) = (� � �1) (� � �2) (315)

P (�) = p (�) =D (�) (316)

D (�) =
�
a2 � �

� �
b2 � �

� �
c2 � �

�
(317)

which are in turn matched to outward solutions with a random phase re�ection coe¢ cient. If we evaluate
this global solution in the limit as c2 � � = e� small but large compared to �1 � c2

X (�) � 2e�sx=8
p
(�2 � c2)c0x

4
p
(�1 � �) (�2 � �)

cos

"
k

2

Z min(c2;�1)

�

s
(�1 � �) (�2 � �)

(a2 � �) (b2 � �) (c2 � �)d� + k�0

#
(318)

X (�) � 2e�sx=8 4
p
(�2 � c2)c0x

4
p
(�1 � c2 + c2 � �) (�2 � c2)

cos

"
k

2

Z min(c2;�1)

�

s
(�1 � �) (�2 � �)

(a2 � �) (b2 � �) (c2 � �)d� + k�0

#

� 2e�sx=8c0x
4

qe� cos

"
k

2

Z min(c2;�1)

�

s
(�1 � c2 + c2 � �) (�2 � c2)
(a2 � c2) (b2 � c2) (c2 � �) d� + k�0

#

� 2e�sx=8c0x
4

qe� cos

2664k2
s

(�2 � c2)
(a2 � c2) (b2 � c2)

Z e�
c2�min(c2;�1)

vuut��1 � c2 + e��e� de� + k�0
3775

� 2e�sx=8c0x
4

qe� cos

2664k2
s

(�2 � c2)
(a2 � c2) (b2 � c2)

Z e�
max(0;c2��1)

vuut��1 � c2 + e��e� de� + k�0
3775 (319)
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Noting

u =

���1 � c2��e� ! de� = � ���1 � c2��
u2

du (320)

Z e�
max(0;c2��1)

vuut��1 � c2 + e��e� de� = ���1 � c2�� Z (1;1)

j�1�c2j=e�
p
1� udu

u2
; where � ! sgn

�
�1 � c2

�

=
���1 � c2��

24
q
1� j�1 � c2j =e�
j�1 � c2j =e� � 1

2

Z (1;1)

j�1�c2j=e�
du

u
p
1� u

35

=
���1 � c2��

24
q
1� j�1 � c2j =e�
j�1 � c2j =e� � 1

2
ln

������
q
1� j�1 � c2j =e� + 1q
1� j�1 � c2j =e� � 1

������
35 (321)

where we used Z
du

u
p
1� u

= ln

����p1� u� 1p
1� u+ 1

���� (322)

Expanding for
�
c2 � �1

�
<< e�

Z e�
max(0;c2��1)

vuut��1 � c2 + e��e� de� � e� + 1
2

�
�1 � c2

�
+
1

2

�
�1 � c2

�
ln

����� 4e�
(�1 � c2)

����� (323)

X (�) � 2e�sx=8c0x
4

qe� cos

"
k

2

s
(�2 � c2)

(a2 � c2) (b2 � c2)

(e� + 1
2

�
�1 � c2

�
+
1

2

�
�1 � c2

�
ln

����� 4e�
(�1 � c2)

�����
)
+ k�0

#

� 2e�sx=8c0x
4

qe� cos

"
1

2
kexe� + 1

4
sx +

1

4
sx ln

�����4kexe�sx

�����+ k�0
#

(324)

k2ex = k2
�
�2 � c2

�
(a2 � c2) (b2 � c2) (325)

sx = kex
�
�1 � c2

�
(326)

Matching to the local solution

X (�) � 2e�sx=8c0x cos
h
kexe�=2 + (sx=4) ln�kexe��� �0x=2i = 4

qe� ; kexe� !1 (327)

gives

k�0 = (sx=4) ln jsx=4j � �0x=2 (328)
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4.2 Azimuth-Like Variable

For the azimuth-like coordinate separation function we use the Liouville representation [18] as the global
solution

Y (�) � 1
4
p
p (�)

�
sin
cos

�
k

2

Z �

c2

p
P (�)d�

��
=

c0y
4
p
p (�)

cos

"
k

2

Z �

max(c2;�1)

p
P (�)d� + k�c0

#
(329)

where

p (�) = (� � �1) (�2 � �) (330)

P (�) = p (�) =D (�) (331)

D (�) =
�
a2 � �

� �
b2 � �

� �
� � c2

�
(332)

and the shift �c0, which is presently unknown, will become apparent later when matching to the local solutions
at the critical points. Note that the choice of cosine in the azimuth-like solution is not essential because the
phase shift k�c0 can change this to sine. The local solutions below that match to this global solution are
chosen to be consistent with this cosine choice, but the phases ei�1cy and ei�1by would likely change with the
sine choice.

4.2.1 Inner Critical Points

Near the critical points � ! c2; �1 with � � c2 = e� the local solution is
Y � Re [c+cyW+ (sy; 1=4; keye�) + c�cyW� (sy; 1=4; keye�)] = 4

pe�
� Re [c+cyW+ (�sx; 1=4; kexe�) + c�cyW� (�sx; 1=4; kexe�)] = 4

pe� (333)

where (here we also give the association with the prior subsection radial-like parameters)

k2ey = k2
�
�2 � c2

�
(a2 � c2) (b2 � c2) = k2ex (334)

sy = key
�
c2 � �1

�
= kex

�
c2 � �1

�
= �sx (335)

Note here that e� = � � c2 !1 corresponds to � moving away from c2 toward b2. Because
p
� � c2 =

pe�,
or
p
b2 � � =

pe�, represents a linear spatial coordinate with limit, z2 = 0, or y2 = 0,
y2 =

�
b2 � �

� �
� � b2

�
(b2 � c2) (a2 � b2)

�
b2 � �

�
=

�
b2 � �

� �
� � b2

�
(b2 � c2) (a2 � b2)e� (336)

z2 =

�
c2 � �

� �
� � c2

�
(a2 � c2) (b2 � c2)

�
� � c2

�
=

�
c2 � �

� �
� � c2

�
(a2 � c2) (b2 � c2)e� (337)

and if we want to enforce, say, even boundary conditions, we would take
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dY

d
pe� �e� = � � c2 ! 0

�
= 0 or

dY

d
pe� �e� = b2 � � ! 0

�
= 0 (338)

In this region for b2 < �0 < � < a2 we can only drive y2 ! 0 toward the symmetry plane by taking � ! b2.
Thus in this inside region, for even boundary conditions, it seems appropriate to impose the symmetry
condition on this limit. (In a follow-on report on concave walled cavities with interior foci, in the outside
region it seems appropriate to impose the symmetry condition on the limit � ! c2. In the region between
foci we do not need to impose this symmetry condition since in that region it is already imposed on X and
Z.) Then using

Y � k1=4ey Re
h
e�i�=8c+cyW+ (sy; 1=4; keye�) = 4

p
�ikeye� + ei�=8c�cyW� (sy; 1=4; keye�) = 4

p
ikeye�i (339)

d

d
pe�

h
W+ (sy; 1=4; keye�) = (�ikeye�)1=4i � �1=2

�
� 2

� (1=4� isy=4)
(�ikey)1=2 +O

�
key
pe��� ; keye� ! 0

(340)

d

d
pe�

h
W� (sy; 1=4; keye�) = (ikeye�)1=4i � �1=2

�
� 2

� (1=4 + isy=4)
(ikey)

1=2
+O

�
key
pe��� ; keye� ! 0 (341)

dY

d
pe� �� ! c2

�
� �2�1=2k3=4ey Re

�
c+cye

�i3�=8 1

� (1=4� isy=4)
+ c�cye

i3�=8 1

� (1=4 + isy=4)

�
= 0 (342)

Setting (where c0cy is taken as real)

ei�1cyc+cy = c�cy = ei�1cy=2c0cy (343)

we see that

dY

d
pe� �� ! c2

�
� c0cy Re

�
e�i�1cy=2e�i3�=8

1

� (1=4� isy=4)
+ ei�1cy=2ei3�=8

1

� (1=4 + isy=4)

�
= 0 (344)

gives

ei�1cy+i3�=4 = ei�
� (1=4 + isy=4)

� (1=4� isy=4)
(345)

ei(�1cy��=4) =
� (1=4 + isy=4)

� (1=4� isy=4)
=
� (1=4� isx=4)
� (1=4 + isx=4)

= e�i(�0x��=4) (346)

�1cy = ��0x + �=2 (347)

Then

Y � Re [c+cyW+ (sy; 1=4; keye�) + c�cyW� (sy; 1=4; keye�)] = 4
pe�
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� c0cy Re
h
e�i�1cy=2W+ (sy; 1=4; keye�) + ei�1cy=2W� (sy; 1=4; keye�)i = 4

pe� (348)

and using

W+ (sy; 1=4; keye�) � eikeye�=2 (�ikeye�)isy=4 ; keye� !1 (349)

W+ (sy; 1=4; keye�) = (�ikeye�)1=4 � �1=2
�

1

� (3=4� isy=4)
� 2

� (1=4� isy=4)
(�ikeye�)1=2 +O (keye�)� ; keye� ! 0

(350)

W� (sy; 1=4; keye�) =W+ (�sy; 1=4;�keye�) � e�ikeye�=2 (ikeye�)�isy=4 ; keye� !1 (351)

W� (sy; 1=4; keye�) = (ikeye�)1=4 � �1=2
�

1

� (3=4 + isy=4)
� 2

� (1=4 + isy=4)
(ikeye�)1=2 +O (keye�)� ; keye� ! 0

(352)
the asymptotic forms are

Y � c0cy Re
h
e�i�1cy=2eikeye�=2 (�ikeye�)isy=4 + ei�1cy=2e�ikeye�=2 (ikeye�)�isy=4i = 4

pe� ; keye� !1

� e�sy=8c0cy Re
h
eikeye�=2+i(sy=4) ln(keye�)�i�1cy=2 + e�ikeye�=2�i(sy=4) ln(keye�)+i�1cy=2i = 4

pe� ; keye� !1

� 2e�sy=8c0cy cos [keye�=2 + (sy=4) ln (keye�)� �1cy=2] = 4
pe� ; keye� !1 (353)

and

Y � k1=4ey Re
h
e�i�=8c+cyW+ (sy; 1=4; keye�) = 4

p
�ikeye� + ei�=8c�cyW� (sy; 1=4; keye�) = 4

p
ikeye�i

� c0cyk
1=4
ey Re

h
e�i�1cy=2�i�=8W+ (sy; 1=4; keye�) = 4

p
�ikeye� + ei�1cy=2+i�=8W� (sy; 1=4; keye�) = 4

p
ikeye�i

� c0cyk
1=4
ey Re

h
e�i(�1cy��=4)=2�i�=4W+ (sy; 1=4; keye�) = 4

p
�ikeye� + ei(�1cy��=4)=2+i�=4W� (sy; 1=4; keye�) = 4

p
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� c0cy�
1=2k1=4ey Re
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s
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(ikeye�)1=2�+O (keye�)#
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� c0cy�
1=2k1=4ey Re

"
e�i�=4
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� (1=4� isy=4) � (1=4 + isy=4)
� (3=4� isy=4) � (1=4 + isy=4)

� 2p
� (1=4� isy=4) � (1=4 + isy=4)

(�ikeye�)1=2)

+ei�=4
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� 2p
� (1=4� isy=4) � (1=4 + isy=4)

(ikeye�)1=2)+O (keye�)#

� c0cy�
�1=2k1=4ey j� (1=4� isy=4)jRe

"
e�i�=4 sin� (1=4 + isy=4)�

2�e�i�=2

j� (1=4� isy=4)j2
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+ei�=4 sin� (1=4� isy=4)�
2�ei�=2

j� (1=4� isy=4)j2
(keye�)1=2 +O (keye�)#

� c0cy�
�1=2k1=4ey j� (1=4� isy=4)jRe

h
e�i�=4 sin� (1=4 + isy=4) + e

i�=4 sin� (1=4� isy=4) +O (keye�)i
� c0cy (2�)

�1=2
k1=4ey j� (1=4� isy=4)j

Re
h
e�i�=4 fcosh (�sy=4) + i sinh (�sy=4)g+ ei�=4 fcosh (�sy=4)� i sinh (�sy=4)g+O (keye�)i

� c0cy (2�)
�1=2

k1=4ey j� (1=4� isy=4)jRe [2 cos (�=4) fcosh (�sy=4) + sinh (�sy=4)g+O (keye�)]
� c0cy�

�1=2k1=4ey j� (1=4� isy=4)j [cosh (�sy=4) + sinh (�sy=4) +O (keye�)]
� c0cy�

�1=2k1=4ey j� (1=4� isy=4)j
h
e�sy=4 +O (keye�)i ; keye� ! 0 (354)

Now to match to the global form

Y (�) � c0y
4
p
(� � �1) (�2 � �)

cos

"
k

2

Z �

max(c2;�1)

s
(� � �1) (�2 � �)

(a2 � �) (b2 � �) (� � c2)d� + k�c0

#
(355)

we let e� = � � c2

Y (�) � c0y
4
p
(e� + c2 � �1) (�2 � c2) cos

"
k

2

s
(�2 � c2)
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Z e�
max(0;�1�c2)

s
1 +

c2 � �1e� de� + k�c0#

� c0y
4
pe� (�2 � c2) cos

"
k

2

s
(�2 � c2)

(a2 � c2) (b2 � c2)

Z e�
max(0;�1�c2)

s
1 +

c2 � �1e� de� + k�c0# (356)

48



where we have assumed that e� >> c2 � �1. Letting

u =

��c2 � �1��e� (357)

de� = � ��c2 � �1��
u2

du (358)

Z e�
max(0;�1�c2)

s
1 +

c2 � �1e� de� = ��c2 � �1�� Z (1;1)

jc2��1j=e�
p
1� udu

u2
; where � ! sgn

�
c2 � �1

�
=
��c2 � �1�� "p1� jc2 � �1j =e�jc2 � �1j =e� � 1

2

Z (1;1)

jc2��1j=e�
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u
p
1� u

#

=
��c2 � �1�� "p1� jc2 � �1j =e�jc2 � �1j =e� � 1

2
ln

�����
p
1� jc2 � �1j =e� + 1p
1� jc2 � �1j =e� � 1

�����
#

= e�p1 + (c2 � �1) =e� + 1
2

�
c2 � �1

�
ln

�����
p
1 + (c2 � �1) =e� + 1p
1 + (c2 � �1) =e� � 1

����� (359)

where we used Z
du

u
p
1� u

= ln

����p1� u� 1p
1� u+ 1

���� (360)

Expanding for
�
c2 � �1

�
<< e�Z e�

max(0;�1�c2)

s
1 +

c2 � �1e� de� � e� + 1
2

�
c2 � �1

�
+
1

2

�
c2 � �1

�
ln

���� 4e�
c2 � �1

���� (361)

Using

k2ex = k2
�
�2 � c2

�
(a2 � c2) (b2 � c2) = k2ey (362)

�sx = kex
�
c2 � �1

�
= key

�
c2 � �1

�
= sy (363)

gives

Y (�) � c0y
4
pe� (�2 � c2) cos

�
key
2
e� + 1

4
key
�
c2 � �1

�
+
1

4
key
�
c2 � �1

�
ln

���� 4e�
c2 � �1

����+ k�c0�
� c0y

4
pe� (�2 � c2) cos

h
keye�=2 + sy

4
+
sy
4
ln j4keye�=syj+ k�c0i (364)

Comparing to the local solution

Y � 2e�sy=8c0cy cos [keye�=2 + (sy=4) ln (keye�)� �1cy=2] = 4
pe� ; keye� !1 (365)

gives
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c0y (�1)nc
4
p
(�2 � c2)

= 2e�sy=8c0cy = 2e
��sx=8c0cy (366)

sy
4
ln j4e=syj+ k�c0 � nc� = ��1cy=2 = �

sx
4
ln j4e=sxj+ k�c0 � nc� = �0x=2� �=4 (367)

4.2.2 Outer Critical Points

Similarly, the local solution near the critical points � ! b2; �2, with b2 � � = e�, is
Y � Re [c+byW+ (sy; 1=4; keye�) + c�byW� (sy; 1=4; keye�)] = 4

pe�
� Re [c+byW+ (�sz; 1=4; keze�) + c�byW� (�sz; 1=4; keze�)] = 4

pe� (368)

where

k2ey = k2
�
b2 � �1

�
(a2 � b2) (b2 � c2) = k2ez (369)

sy = key
�
�2 � b2

�
= kez

�
�2 � b2

�
= �sz (370)

This connection to the axial-like coordinate parameters k2ez and sz will become clear in a follow-on report
when we deal with the inner focus, but we will nevertheless use these notations for these quantities here in
the convex walled case. Note here that e� !1 corresponds to � moving from b2 toward c2. Then using

Y � k1=4ey Re
h
e�i�=8c+byW+ (sy; 1=4; keye�) = 4

p
�ikeye� + ei�=8c�byW� (sy; 1=4; keye�) = 4

p
ikeye�i (371)

d

d
pe�

h
W+ (sy; 1=4; keye�) = (�ikeye�)1=4i � �1=2

�
� 2

� (1=4� isy=4)
(�ikey)1=2 +O

�
key
pe��� ; keye� ! 0

(372)

d

d
pe�

h
W� (sy; 1=4; keye�) = (ikeye�)1=4i � �1=2

�
� 2

� (1=4 + isy=4)
(ikey)

1=2
+O

�
key
pe��� ; keye� ! 0 (373)

dY

d
pe� �� ! b2

�
� �2�1=2k3=4ey Re

�
c+bye

�i3�=8 1

� (1=4� isy=4)
+ c�bye

i3�=8 1

� (1=4 + isy=4)

�
= 0 (374)

Setting (where c0by is taken as real)

ei�1byc+by = c�by = ei�1by=2c0by (375)

dY

d
pe� �� ! b2

�
� �2�1=2k3=4ey c0by Re

�
e�i�1by=2�i3�=8

1

� (1=4� isy=4)
+ ei�1by=2+i3�=8

1

� (1=4 + isy=4)

�
= 0

(376)
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gives (where in the next subsection we de�ne �1z)

ei�1by+i3�=4 = ei�
� (1=4 + isy=4)

� (1=4� isy=4)
(377)

ei(�1by��=4) =
� (1=4 + isy=4)

� (1=4� isy=4)
=
� (1=4� isz=4)
� (1=4 + isz=4)

= e�i(�1z��=4) (378)

�1by = ��1z + �=2 (379)

This connection to the axial-like coordinate phase �1z will become clear in a follow-on report when we deal
with the inner focus, but we will nevertheless use this notation for the phase here in the convex wall case.
Then

Y � Re [c+byW+ (sy; 1=4; keye�) + c�byW� (sy; 1=4; keye�)] = 4
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� c0by Re

h
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pe�
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�
c+by

�
W+ (�sz; 1=4; keze�) + ei�1byW� (�sz; 1=4; keze�)	� = 4

pe�
� c0by Re

h
e�i�1by=2W+ (�sz; 1=4; keze�) + ei�1by=2W� (�sz; 1=4; keze�)i = 4

pe�
� c0by Re

h
ei�1z=2�i�=4W+ (�sz; 1=4; keze�) + e�i�1z=2+i�=4W� (�sz; 1=4; keze�)i = 4

pe� (380)

and using

W+ (sy; 1=4; keye�) � eikeye�=2 (�ikeye�)isy=4 ; keye� !1 (381)

W+ (sy; 1=4; keye�) = (�ikeye�)1=4 � �1=2
�

1

� (3=4� isy=4)
� 2

� (1=4� isy=4)
(�ikeye�)1=2 +O (keye�)� ; keye� ! 0

(382)

W� (sy; 1=4; keye�) =W+ (�sy; 1=4;�keye�) � e�ikeye�=2 (ikeye�)�isy=4 ; keye� !1 (383)

W� (sy; 1=4; keye�) = (ikeye�)1=4 � �1=2
�

1

� (3=4 + isy=4)
� 2

� (1=4 + isy=4)
(ikeye�)1=2 +O (keye�)� ; keye� ! 0

(384)
the asymptotic forms are

Y � Re [c+byW+ (sy; 1=4; keye�) + c�byW� (sy; 1=4; keye�)] = 4
pe�
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� c0by Re
h
e�i�1by=2W+ (sy; 1=4; keye�) + ei�1by=2W� (sy; 1=4; keye�)i = 4

pe�
� c0bye

�sy=8Re
h
e�i�1by=2eikeye�=2ei(sy=4) ln(keye�) + ei�1by=2e�ikeye�=2e�i(sy=4) ln(keye�)i = 4

pe�
� 2c0bye�sy=8 cos [keye�=2 + (sy=4) ln (keye�)� �1by=2] = 4

pe� ; keye� !1

� c0by Re
h
ei�1z=2�i�=4eikeze�=2 (�ikeze�)�isz=4 + e�i�1z=2+i�=4e�ikeze�=2 (ikeze�)isz=4i = 4

pe� ; keze� !1

� e��sz=8c0by Re
h
ei�1z=2�i�=4eikeze�=2e�i(sz=4) ln(keze�) + e�i�1z=2+i�=4e�ikeze�=2ei(sz=4) ln(keze�)i = 4

pe� ; keze� !1

� 2e��sz=8c0by cos [keze�=2� (sz=4) ln (keze�) + �1z=2� �=4] = 4
pe� ; keze� !1 (385)

and

Y � Re [c+byW+ (sy; 1=4; keye�) + c�byW� (sy; 1=4; keye�)] = 4
pe�

� c0by Re
h
e�i�1by=2W+ (sy; 1=4; keye�) + ei�1by=2W� (sy; 1=4; keye�)i = 4

pe�
� c0byk

1=2
ey Re

h
e�i�1by=2�i�=8W+ (sy; 1=4; keye�) = 4

p
�ikeye� + ei�1by=2+i�=8W� (sy; 1=4; keye�) = 4

p
ikeye�i

� c0by�
1=2k1=2ey Re

�
e�i(�1by��=4)=2�i�=4

�
1

� (3=4� isy=4)
� 2

� (1=4� isy=4)
(�ikeye�)1=2�

+ei(�1by��=4)=2+i�=4
�

1

� (3=4 + isy=4)
� 2

� (1=4 + isy=4)
(ikeye�)1=2�+O (keye�)�

� c0by�
1=2k1=2ey Re

"
e�i�=4

s
� (1=4� isy=4)
� (1=4 + isy=4)

�
1

� (3=4� isy=4)
� 2

� (1=4� isy=4)
(�ikeye�)1=2�

+ei�=4

s
� (1=4 + isy=4)

� (1=4� isy=4)

�
1

� (3=4 + isy=4)
� 2

� (1=4 + isy=4)
(ikeye�)1=2�+O (keye�)#

� c0by�
1=2k1=2ey Re

"
e�i�=4

(p
� (1=4� isy=4) � (1=4 + isy=4)
� (3=4� isy=4) � (1=4 + isy=4)

� 2p
� (1=4� isy=4) � (1=4 + isy=4)

(�ikeye�)1=2)

+ei�=4

(p
� (1=4� isy=4) � (1=4 + isy=4)
� (3=4 + isy=4) � (1=4� isy=4)

� 2p
� (1=4� isy=4) � (1=4 + isy=4)

(ikeye�)1=2)+O (keye�)#
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� c0by�
1=2k1=2ey j� (1=4 + isy=4)jRe

"
e�i�=4

(
1

� (3=4� isy=4) � (1=4 + isy=4)
� 2

j� (1=4 + isy=4)j2
(�ikeye�)1=2)

+ei�=4

(
1

� (3=4 + isy=4) � (1=4� isy=4)
� 2

j� (1=4 + isy=4)j2
(ikeye�)1=2)+O (keye�)#

� c0by�
�1=2k1=2ey j� (1=4 + isy=4)jRe

"
e�i�=4 sin� (1=4 + isy=4)�

2�e�i�=2

j� (1=4 + isy=4)j2
(keye�)1=2

+ei�=4 sin� (1=4� isy=4)�
2�ei�=2

j� (1=4 + isy=4)j2
(keye�)1=2 +O (keye�)#

� c0by�
�1=2k1=2ey j� (1=4 + isy=4)jRe

h
e�i�=4 sin� (1=4 + isy=4) + e

i�=4 sin� (1=4� isy=4) +O (keye�)i
� c0by (2�)

�1=2
k1=2ey j� (1=4 + isy=4)j

Re
h
e�i�=4 fcosh (�sy=4) + i sinh (�sy=4)g+ ei�=4 fcosh (�sy=4)� i sinh (�sy=4)g+O (keye�)i

� c0by (2�)
�1=2

k1=2ey j� (1=4 + isy=4)j [2 cos (�=4) fcosh (�sy=4) + sinh (�sy=4)g+O (keye�)]
� c0by�

�1=2k1=2ey j� (1=4 + isy=4)j
h
e�sy=4 +O (keye�)i

� c0by�
�1=2k1=2ez j� (1=4� isz=4)j

h
e��sz=4 +O (keye�)i (386)

Now we match this to the limit of the global solution

Y (�) � c0y
4
p
p (�)

cos

"
k

2

Z �

max(c2;�1)

p
P (�)d� + k�c0

#
(387)

where

p (�) = (� � �1) (�2 � �) (388)

P (�) = p (�) =D (�) (389)

D (�) =
�
a2 � �

� �
b2 � �

� �
� � c2

�
(390)

Expanding this Liouville WKB solution near the upper integration point with b2 � � = e�

53



Y (�) � c0y
4
p
p (�)

cos

"
k

2

Z min(b2;�2)

max(c2;�1)

p
P (�)d� +

k

2

Z �

min(b2;�2)

p
P (�)d� + k�c0

#

� c0y
4
p
(� � �1) (�2 � �)

cos

"
k

2

Z min(b2;�2)

max(c2;�1)

p
P (�)d� +

k

2

Z �

min(b2;�2)

s
(� � �1) (�2 � �)

(a2 � �) (b2 � �) (� � c2)d� + k�c0

#

� c0y
4
p
(b2 � �1 � e�) (�2 � b2 + e�)

cos

2664k2
Z min(b2;�2)

max(c2;�1)

p
P (�)d� � k

2

Z e�
max(0;b2��2)

vuuut
�
b2 � �1 � e���

a2 � b2 � e���b2 � c2 � e��
vuut��2 � b2 + e��e� de� + k�c0

3775 ; b2�� = e�

� c0y
4
p
(b2 � �1)e� cos

2664k2
Z min(b2;�2)

max(c2;�1)

p
P (�)d� � k

2

s
(b2 � �1)

(a2 � b2) (b2 � c2)

Z e�
max(0;b2��2)

vuut��2 � b2 + e��e� de� + k�c0
3775 ; b2�� = e�

� c0y
4
p
(b2 � �1)e� cos

2664k2
Z min(b2;�2)

max(c2;�1)

p
P (�)d� � key

2

Z e�
max(0;b2��2)

vuut��2 � b2 + e��e� de� + k�c0
3775 (391)

where we have assumed that e� >> b2 � �2. Letting

u =

���2 � b2��e� ! de� = � ���2 � b2��
u2

du (392)

Z e�
max(0;b2��2)

vuut��2 � b2 + e��e� de� = ���2 � b2�� Z (1;1)

j�2�b2j=e�
p
1� udu

u2
; where � ! sgn

�
�2 � b2

�

=
���2 � b2�� "p1� j�2 � b2j =e�j�2 � b2j =e� � 1

2

Z (1;1)

j�2�b2j=e�
du

u
p
1� u

#

=
���2 � b2�� "p1� j�2 � b2j =e�j�2 � b2j =e� � 1

2
ln

�����
p
1� j�2 � b2j =e� + 1p
1� j�2 � b2j =e� � 1

�����
#

(393)

where we again used Z
du

u
p
1� u

= ln

����p1� u� 1p
1� u+ 1

���� (394)
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Expanding for
�
b2 � �2

�
<< e�

Z e�
max(0;b2��2)

vuut��2 � b2 + e��e� de� � e� + 1
2

�
�2 � b2

�
+
1

2

�
�2 � b2

�
ln

���� 4e�
(�2 � b2)

���� (395)

Using

k2ey = k2
�
b2 � �1

�
(a2 � b2) (b2 � c2) = k2ez (396)

sy = key
�
�2 � b2

�
= kez

�
�2 � b2

�
= �sz (397)

gives

Y (�) � c0y
4
p
(b2 � �1)e� cos

"
k

2

Z min(b2;�2)

max(c2;�1)

p
P (�)d� � keye�=2� sy

4
� sy
4
ln

����4keye�sy

����+ k�c0
#

(398)

Comparing to the local solution

Y � 2c0bye�sy=8 cos [keye�=2 + (sy=4) ln (keye�)� �1by=2] = 4
pe� ; keye� !1 (399)

gives

c0y (�1)nb
4
p
(b2 � �1)

= 2c0bye
�sy=8 = 2c0bye

��sz=8 (400)

and

k

2

Z min(b2;�2)

max(c2;�1)

p
P (�)d� � sy

4
ln

����4esy
����+ k�c0 � nb� = �1by=2 = � (�1z � �=2) =2

=
k

2

Z min(b2;�2)

max(c2;�1)

p
P (�)d� +

sz
4
ln

���� 4e�sz
����+ k�c0 � nb� (401)

Note that in the aligned limit

k

2

Z b2

c2

p
P (�)d� =

k

2

Z b2

c2

d�p
a2 � �

= k
�p

a2 � c2 �
p
a2 � b2

�
(402)

4.3 Axial-Like Variable

For the axial-like coordinate, taking odd or even symmetry at the orbit center x = 0 the Liouville global
solution is [18]

Z (�) � c0z
4
p
p (�)

(
sin
cos

"
k

2

Z a2

�

p
P (�)d�

#)
(403)

p (�) = (� � �1) (� � �2) (404)
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P (�) = p (�) =D (�) (405)

D (�) =
�
a2 � �

� �
� � b2

� �
� � c2

�
(406)

4.3.1 Center Singular Point

Near x = 0 we have � ! a2 which has the singular point asymptotic solution (the multiplicative coe¢ cient
of this local singular form has been chosen so it will match to the Liouville global solution)

Z � c0z
4
p
(a2 � �1) (a2 � �2)

�
sin
cos

�
ke0

qe��� ; e� = a2 � � (407)

where

k2e0 = k2
�
a2 � �1

� �
a2 � �2

�
(a2 � b2) (a2 � c2) (408)

Note that the preceding Liouville phase in this limit becomes

k

2

Z a2

�

p
P (�)d� � ke0

2

Z a2

�

d�p
a2 � �

= ke0
p
a2 � � (409)

and thus

Z (�) � c0z
4
p
p (a2)

�
sin
cos

�
ke0
p
a2 � �

��
(410)

matches to the local singular solution.

4.3.2 Cavity Boundary Condition

As we proceed outward from the symmetry point at the ray path center toward the inner focus in the bowtie
cavity we encounter the conductive wall with the required vanishing of the potential

0 = Z (�0) =
c0z

4
p
p (�0)

(
sin
cos

"
k

2

Z a2

�0

p
P (�)d�

#)
(411)

which requires

kp` =

�
p�

(p� 1=2)�

�
=
k

2

Z a2

�0

p
P (�)d� (412)

Note in the aligned case �2 = b2 and �1 = c2 this phase condition simpli�es to

k

2

Z a2

�0

d�p
a2 � �

= k
p
a2 � �0 = k` (413)
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4.4 Summary Of Solutions And Matching Conditions

From the preceding subsections the solutions and matching results are now listed

� (�; �; �) = X (�)Y (�)Z (�) (414)

In the convex walled cavity the region of interest is inside the foci where we summarize

X (�) � c0xRe
h
e�i�0x=2W+

�
sx; 1=4; kexe��+ ei�0x=2W�

�
sx; 1=4; kexe��i = 4

qe� ; � = c2 � e� (415)

k2ex = k2
�
�2 � c2

�
(a2 � c2) (b2 � c2) (416)

sx = kex
�
�1 � c2

�
(417)

� (1=4 + isx=4)

� (1=4� isx=4)
= ei(�0x��=4) (418)

Y (�) � 1
4
p
p (�)

(
sin
cos

"
k

2

Z �

max(c2;�1)

p
P (�)d�

#)
=

c0y
4
p
p (�)

cos

"
k

2

Z �

max(c2;�1)

p
P (�)d� + k�c0

#
(419)

p (�) = (� � �1) (�2 � �) (420)

P (�) = p (�) =D (�) (421)

D (�) =
�
a2 � �

� �
b2 � �

� �
� � c2

�
(422)

Y (�) � c0cy Re
h
e�i�1cy=2W+ (�sx; 1=4; kexe�) + ei�1cy=2W� (�sx; 1=4; kexe�)i = 4

pe� ; � � c2 = e�
� c0cy Re

h
ei�0x=2�i�=4W+ (�sx; 1=4; kexe�) + e�i�0x=2+i�=4W� (�sx; 1=4; kexe�)i = 4

pe� ; � � c2 = e� (423)

Y (�) � 2e�sy=8c0cy cos [keye�=2 + (sy=4) ln (keye�)� �1cy=2] = 4
pe� ; keye� !1 (424)

k2ey = k2
�
�2 � c2

�
(a2 � c2) (b2 � c2) = k2ex (425)

sy = key
�
c2 � �1

�
= kex

�
c2 � �1

�
= �sx (426)

ei(�1cy��=4) =
� (1=4 + isy=4)

� (1=4� isy=4)
=
� (1=4� isx=4)
� (1=4 + isx=4)

= e�i(�0x��=4) (427)
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c0y (�1)nc
4
p
(�2 � c2)

= 2e�sy=8c0cy = 2e
��sx=8c0cy (428)

sy
4
ln j4e=syj+ k�c0 � nc� = ��1cy=2 = �

sx
4
ln j4e=sxj+ k�c0 � nc� = �0x=2� �=4 (429)

Y (�) � c0by Re
h
e�i�1by=2W+ (�sz; 1=4; keze�) + ei�1by=2W� (�sz; 1=4; keze�)i = 4

pe� ; b2 � � = e�
� c0by Re

h
ei�0z=2�i�=4W+ (�sz; 1=4; keze�) + e�i�0z=2+i�=4W� (�sz; 1=4; keze�)i = 4

pe� ; b2 � � = e� (430)

Y (�) � 2c0bye�sy=8 cos [keye�=2 + (sy=4) ln (keye�)� �1by=2] = 4
pe� ; keye� !1 (431)

k2ey = k2
�
b2 � �1

�
(a2 � b2) (b2 � c2) = k2ez (432)

sy = key
�
�2 � b2

�
= kez

�
�2 � b2

�
= �sz (433)

ei(�1by��=4) =
� (1=4 + isy=4)

� (1=4� isy=4)
=
� (1=4� isz=4)
� (1=4 + isz=4)

= e�i(�1z��=4) (434)

c0y (�1)nb
4
p
(b2 � �1)

= 2c0bye
�sy=8 = 2c0bye

��sz=8 (435)

k

2

Z min(b2;�2)

max(c2;�1)

p
P (�)d� � sy

4
ln

����4esy
����+ k�c0 � nb� = �1by=2 = � (�1z � �=2) =2

=
k

2

Z min(b2;�2)

max(c2;�1)

p
P (�)d� +

sz
4
ln j4e=szj+ k�c0 � nb� (436)

Z (�) � c0z
4
p
p (�)

(
sin
cos

"
k

2

Z a2

�

p
P (�)d�

#)
(437)

p (�) = (� � �1) (� � �2) (438)

P (�) = p (�) =D (�) (439)

D (�) =
�
a2 � �

� �
� � b2

� �
� � c2

�
(440)

Z (�) � c0z
4
p
(a2 � �1) (a2 � �2)

�
sin
cos

�
ke0

qe��� ; e� = a2 � � (441)

k2e0 = k2
�
a2 � �1

� �
a2 � �2

�
(a2 � b2) (a2 � c2) (442)
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0 = Z (�0) =
c0z

4
p
p (�0)

(
sin
cos

"
k

2

Z a2

�0

p
P (�)d�

#)
(443)

kp` =

�
p�

(p� 1=2)�

�
=
k

2

Z a2

�0

p
P (�)d� (444)

4.4.1 Phase Matching Condition

Eliminating k�c0 in the phase conditions

sy
4
ln j4e=syj+ k�c0 � nc� = ��1cy=2 = �

sx
4
ln j4e=sxj+ k�c0 � nc� = �0x=2� �=4 (445)

and

k

2

Z min(b2;�2)

max(c2;�1)

p
P (�)d� � sy

4
ln

����4esy
����+ k�c0 � nb� = �1by=2 (446)

� (�1z � �=2) =2 =
k

2

Z min(b2;�2)

max(c2;�1)

p
P (�)d� +

sz
4
ln j4e=szj+ k�c0 � nb� (447)

gives

(nb � nc)� =
k

2

Z min(b2;�2)

max(c2;�1)

p
P (�)d� + (�0x +�1z � �=2) =2 +

sx
4
ln j4e=sxj+

sz
4
ln j4e=szj � �=4 (448)

where

arg � (1=4 + isx=4) = ln

s
� (1=4 + isx=4)

� (1=4� isx=4)
= (�0x � �=4) =2 (449)

arg � (1=4 + isz=4) = ln

s
� (1=4 + isz=4)

� (1=4� isz=4)
= (�1z � �=4) =2 (450)

We can then write this phase matching condition as

k

2

Z min(b2;�2)

max(c2;�1)

p
P (�)d�+arg � (1=4 + isz=4)+

sz
4
ln j4e=szj+arg � (1=4 + isx=4)+

sx
4
ln j4e=sxj = (nb � nc)�+�=4

(451)
This condition arises because of matching of Y (�) and hence we would anticipate that these conditions arise
from quantization around the orbit. The �rst term of this equation contains the total phase shift over half
the interval; the two evanescent intervals are missing but these do not have a phase advance. This phase
condition thus restricts choices of the connection between sx and sz (and �1 and �2) to a discrete set of
solutions for various choices of the integer nb � nc. For higher frequencies the increase in the value of the
wavenumber k in the �rst term indicates that this discrete set becomes more dense.
Note in the aligned limit sx = 0 = sz (�1 = c2, �2 = b2) and k = kp this phase matching condition

becomes
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k

2

Z b2

c2

d�p
a2 � �

= kp

�p
a2 � c2 �

p
a2 � b2

�
= (nb � nc)� + �=4 (452)

Alternatively, if we approximate the integral here for large a2
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For large shifts we may need to retain the exact forms of kez and kex, but otherwise

k

2

Z min(b2;�2)

max(c2;�1)

p
P (�)d� � k

2
p
a2 � (b2 + c2) =2

Z min(b2;�2)

max(c2;�1)

s
(� � �1) (�2 � �)
(b2 � �) (� � c2) d�

� k

2
p
a2 � (b2 + c2) =2

Z min(b2�c2;�2�b2+b2�c2)

max(0;�1�c2)

vuuut
�e� + c2 � �1���2 � b2 + b2 � c2 � e���

b2 � c2 � e��e� de� ; e� = � � c2

� kp
2
p
(a2 � b2) + (a2 � c2)

Z min(b2�c2;�sz 1k
p
a2�b2+b2�c2)

max(0;sx 1
k

p
a2�c2)

vuuut
�e� � sx 1kpa2 � c2���sz 1kpa2 � b2 + b2 � c2 � e���

b2 � c2 � e��e� de�
(454)

Suppose instead of trying to identify the di¤erent values of sx and sz in the model, we suppress these
values and focus on only the di¤erence k � kp. In other words we make a plot as a function of only this
parameter. The procedure we have in mind is to scan over the sx and sz separation constants (each analytic
construction being individually normalized) determining the k � kp constant for each, and plot the mean
of an observable for each of the k � kp values. We carry out this procedure with success, but there are
several questions to keep in mind if there are any issues: 1) Are the separation constants real?, 2) Is the
two-dimensional space of these separation constants of limited extent for a limit on k � kp because of the
resonance condition connection (we hope this is true or the normalization weight might become very small)?,
3) Do we need to select regions of sx; sz space with some criterion (equal areas?) to then develop the statistics
for the observable versus k � kp, or can we base the statistics on the observable with the values of k � kp
alone (averaging the observable over the values falling within a k � kp bin) and not worry about how the
underlying sx; sz values were chosen?

4.4.2 Resonant Condition Phase Integral

The quantization condition along the orbit is
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We can write the phase integral along the path approximately as
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�0 = a2 � � (457)

If we assume that

a2 � �0 = `2 << a2 � b2 = d2y < a2 � c2 = d2z (458)
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and then
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where
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and
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This result implies that
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`

2

�
sx=
p
a2 � c2 � sz=

p
a2 � b2

�
+ kp` (469)

or

2 (k � kp) ` = ` (sx=dz � sz=dy) (470)

which corresponds to lines of constant frequency separation k � kp on a two-dimensional plot with sx and
sz axes.
In the section below on the Fourier projection along the ray path orbit, we will generate a two-dimensional

probability plot F (sx; sz) as a function of sx and sz. The preceding relation will then be used to integrate
out the dependence on sx and sz to end up with a simple plot as a function of k � kp
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4.4.3 Field Along Scar

Here we will use the limits of the Whittaker functions to write
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and determine the limits of the separation functions. The radial-like function is then
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where we used the re�ection formula
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Similarly the azimuth-like function is
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where we see that there is exponential decay for sy << �1 but no exponential growth for sy >> 1. The
negative region sy < 0 occurs when �2 < b2 intruding on the interval occupied by �. It thus appears like
there can be exponential decay behavior from the end regions of the integration range in � (note that the
interior global region in � has scale c0y without exponential decay or growth). There is no exponential decay
in � for the bowtie since b2 << �0 < � < a2. Thus we can observe exponentially small values at the scar
center in � ! b2 or y ! 0 (on the strip center for sy = �sz << �1). At the strip edges
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and therefore we can also observe exponential decay at the edges versus the interior global region (for
sy = �sx << �1).
Using the axial-like function
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in the inside region, the global solution along the scar ray path at the orbit center is
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5 ENERGY THEOREM NORMALIZATION

The overall normalizing constant c0 = c0xc0yc0z must be determined for the preceding scar asymptotic forms
near the orbit. This is done using an energy theorem [21], [22].

5.1 Acoustic Energy Normalization

A physical scalar wave problem of interest is acoustics. The equations of motion are [23]
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where u is the particle velocity, P is the pressure, � is the compressibility, and � is the density. Thus
eliminating the velocity gives the scalar wave equation
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Let us suppress time harmonic dependence e�i!t
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where the wavenumber is

k2 = !2�� (508)
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Now using

jrP j2 = rP � rP � = r � (P �rP )� P �r2P = r � (P �rP ) + k2 jP j2 (509)

for either the soft outer boundary with P = 0, or the hard outer boundary with @P=@n = 0, gives the
relation between the volume integral over the cavity and the surface integral over the scarI
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where here n points into the scar region. Now if the pressure is taken to be realI
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In addition if we take
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then
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where here again n points into the scar region.
Changing from the preceding acoustic case with scalar P to scalar u the normalization condition is taken
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or for a real function I
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If we set

@u

@n
= 0 ; on Sscar (516)

we have
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5.1.1 Electromagnetic Energy Theorem Normalization

The electromagnetic energy theorem [21] has been used to normalize the scar constructions [4], [13]. If we
take the result in the two-dimensional problem [4] derived from the electromagnetic energy theorem [21],
[22] (with either u = 0 or @u=@n = 0 on the outer boundary, this gives the relation between the volume
integral over the cavity and the surface integral over the scar), and change the line integral to a surface and
the surface integral to a volume as an approximation we obtainZ
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which is the same as the acoustic case above. In the electromagnetic case we can take u = � = Ej where Ej
is a transverse component along the ray path orbit.

5.2 Scalar Normalization

We begin here by taking the solution to be a scalar and consider the normalization as in the acoustic case
(with either u = 0 or @u=@n = 0 on the outer boundary). The normalization condition is thus taken asI
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or for a real function (where n points into the scarred region)I
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If we set
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= 0 ; on Sscar (521)

and take the normalization in the three dimensional problem to beZ
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we �nd
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We will focus on the case where Ry; Rz >> ` and a is very much larger than b or c. Furthermore, we will
assume that b is near but not equal to c in the ellipsoidal coordinate system. In this case the scar orbit will
be taken to be centered on the region where � ! c2 inside the foci.
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In the inside region we are integrating over the limit of an ellipse approaching a strip area as shown in
Figure 5; the normal limit to the strip is � ! c2. This strip integration is the three-dimensional generalization
of the two-dimensional normalization [4], where unit width strip integrations were in-e¤ect used; these also
degenerate to line integrals when the two foci degenerate into a single focus, as in the three-dimensional
axisymmetric case [13]. Let us apply the energy theorem over the orbit shown in the �gure with

u = � = X (�)Y (�)Z (�) (524)

The normal derivative @n with respect to a direction into the scarred region is proportional to @
qe�, arising

from h�@�; for the inside region e� = c2 � �, and thus @n has the same sign as @� but the opposite sign as
@e�, (also the reason for concentrating the ! derivative on the factor involved in the normal derivative of X,
is that this normal derivative vanishes without the ! derivative due to symmetry-power conditions). If the
normal derivative does not vanish (for example, if we are o¤ the strip symmetry location) we must revert
back to the original form.
Because we are using symmetry we only carry out one quarter of the azimuthal-like integrations and

multiply the result by 4; in the axial direction we multiply by 2 since we are only carrying this out for the
positive half of the orbit
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we can write
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The ellipsoidal metric coe¢ cients are given by [10]
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The normal metric coe¢ cient can then be written as
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with the scar normal

@n � h�@� � �

s
(� � c2) (� � c2)
(a2 � c2) (b2 � c2)@

qe� (533)

giving

�
@2u

@!h�@�

�
�!c2

� Y (�)Z (�)

�
@2X

@!h�@�

�
�!c2

� �Y (�)Z (�)

s
(a2 � c2) (b2 � c2)
(� � c2) (� � c2)

0@ @2X

@!@

qe�
1A
�!c2

� �

s
(a2 � c2) (b2 � c2)
(� � c2) (� � c2)

0@ @2u

@!@

qe�
1A
�!c2

(534)

The energy theorem can then be written as
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Noting for high frequencies that the global solutions
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are rapidly varying we can average over these to �nd
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where if �1 or �2 intrude into the region c2 < � < b2, the solution can exhibit exponential decay near the
end points �2 < � < b2 or c2 < � < �1, and in these local regions the averages may not apply; hence, we use
the local solutions in these regions. The energy theorem can then be written as
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where in the subtracted terms representing the average global solutions near the end points, with
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tors which are not varying near b2, and near c2, respectively. These subtracted average solutions result in
improved convergence near the integration end points, but are approximately cancelled away from the in-
tegration end points by the local integrations on the next line, where the local solutions are being denoted
as
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Using the derivatives of the Whittaker functions

d

d
pe�

�
W+

�
s; 1=4; kee�� =��ikee��1=4� � �1=2

�
� 2

� (1=4� is=4) (�ike)
1=2
+O

�
ke

pe��� ; kee� ! 0 (548)

d

d
pe�

�
W�

�
s; 1=4; kee�� =�ikee��1=4� � �1=2

�
� 2

� (1=4 + is=4)
(ike)

1=2
+O

�
ke

pe��� ; kee� ! 0 (549)

the function

X (�) � c0xRe
h
e�i�0x=2W+

�
sx; 1=4; kexe��+ ei�0x=2W�

�
sx; 1=4; kexe��i = 4

qe� ; � = c2 � e� (550)

then has frequency-normal derivatives0@ @2X

@!@

qe�
1A
�!c2

� 1

2
k1=4ex c0x

@�0x
@!

Re

24�ie�i�0x=2�i�=8 d

d

qe�
�
W+

�
sx; 1=4; kexe�� = 4

q
�ikexe��+ iei�0x=2+i�=8 d

d

qe�
�
W�

�
sx; 1=4; kexe�� = 4

q
ikexe��

35������e�!0

73



�
p
�k3=4ex c0x

@�0x
@!

�
ie�i�0x=2�i3�=8

1

� (1=4� isx=4)
� iei�0x=2+i3�=8 1

� (1=4 + isx=4)

�

�
p
�k3=4ex c0x

@�0x
@!

�
e�i�0x=2+i�=8

1

� (1=4� isx=4)
+ ei�0x=2�i�=8

1

� (1=4 + isx=4)

�

�
p
�k3=4ex c0x

@�0x
@!

�
e�i(�0x��=4)=2

1

� (1=4� isx=4)
+ ei(�0x��=4)=2

1

� (1=4 + isx=4)

�

�
p
�k3=4ex c0x

@�0x
@!

(
1

� (1=4� isx=4)

s
� (1=4� isx=4)
� (1=4 + isx=4)

+
1

� (1=4 + isx=4)

s
� (1=4 + isx=4)

� (1=4� isx=4)

)

� 2
p
�k

3=4
ex c0x

j� (1=4� isx=4)j
@�0x
@!

(551)

where we assumed that the frequency derivative is dominated by the derivative of the re�ection phase [3],
and we previously have shown that
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To simplify the energy result we take the limit of alignment �2 ! b2 and �1 ! c2 (except in this normal
derivative function)
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From our previous identities for the Whittaker functions we can write the aligned limit as

Re

�
e�i�=4W+

�
0; 1=4; kee�� = 4

q
�ikee� + ei�=4W�

�
0; 1=4; kee�� = 4

q
ikee��

=
�1=2

2
Re

�
e�i�=8+i�=2H

(1)
1=4

�
kee�=2� 4

q
�ikee� + ei�=8�i�=2H(2)

1=4

�
kee�=2� 4

q
ikee��

=
�1=2

2
Re
h
ei�=4H

(1)
1=4

�
kee�=2�+ e�i�=4H(2)

1=4

�
kee�=2�i 4

q
kee�

=
�1=2

2
Re
h
ei�=4

n
J1=4

�
kee�=2�+ iY1=4 �kee�=2�o+ e�i�=4 nJ1=4 �kee�=2�� iY1=4 �kee�=2�oi 4

q
kee�

= �1=2
h
cos (�=4)J1=4

�
kee�=2�� sin (�=4)Y1=4 �kee�=2�i 4

q
kee�

= �1=2J�1=4

�
kee�=2� 4

q
kee� (557)

where J� (z) is the Bessel function of order �. Note that we will not retain the exponentials in the coe¢ cients
in the following, because these exponentials cancel an exponential arising from the misaligned form of the
Whittaker functions for large argument (see preceding summary of solutions), so the interior part of the �
interval does not exhibit the decay possible at the end points. Therefore we use the aligned limits of Y (�)
at the end points to facilitate convergence of the integral in the energy theorem
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! k
1=4
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2 4
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h
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p
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p
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4
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(b2 � c2)

J�1=4 (kexe�=2) 4
p
kexe� ; � � c2 = e� ; sx ! 0 (559)

Inserting these aligned forms then gives the energy theorem
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(560)
where we note that
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To carry these out analytically, suppose we consider the integral [24], [19]Z 1
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where � (z) is the gamma function and  (z) is the digamma function [19], so thatZ 1

0

�
�J2�1=4 (u)�

1p
u2 + 1

�
du = 
0 + 3 ln 2 + �=2 (563)
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where we note that  (1) = �
0,  (1=2) = �
0 � 2 ln 2, Euler�s constant 
0 � 0:577215664 and

 (1=2) =
1

2
 (1=4) +

1

2
 (3=4) + ln 2 (564)

where from the re�ection formula

 (3=4) =  (1=4) + � cot (�=4) =  (1=4) + � (565)

 (1=4) = �
0 � 3 ln 2� �=2 (566)

and from the duplication formula

� (�) =
1

2
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�nally giving
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We also note from the integral representation of the beta function B (p; q) [19]Z 1
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(569)

From these we can write
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where we used
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and the order symbol represents the leading correction � cos (2R+ �=4) = (2R). The inde�nite integralZ ( �
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then yields
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Using these the normalization condition becomes
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Noting that
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�nally gives
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Note in the bowtie geometry we have ` < Ry < Rz and often for near stable situations ` << Ry < Rz
and then a2 > �0 >> b2 > c2. Inserting the ray orbit half length ` and the radii of curvature

b2 � c2 = ` (Rz �Ry) (578)
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a2 � b2 = ` (Ry + `) (580)
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we then obtain
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or inserting the normal derivative factor
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5.3 Phase Derivative & Normalization

The frequency derivative of the phase can be written as
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(584)

In a three-dimensional cavity of volume V the scalar �eld mean modal spacing is [25], [13], [14]
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If we impose three axes of symmetry
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where f (vx) is a unit variance normally distributed density function of the random variable vx. Then the
energy theorem becomes
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(588)

We see from the dimensional relations that an approach to a two-dimensional situation results if Rz >>
Ry >> ` and then a2 > �0 > b2 >> c2. For this limit with Rz >> Ry >> ` we see that the y dimension
has a very large range. The variation of the y coordinate is governed largely by the variation in �. In past
treatments of the two-dimensional case, where we chose to have no variation in the long dimension this can
thus be simulated by taking Y 2 (�) as a constant.

5.3.1 Vector Case

The vector mean modal spacing in a three-dimensional cavity of volume V is half of the scalar case [25], [13],
[14]
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�
! �k2 = 2k�k � 2�2= (kV ) (589)

If we impose three axes of symmetry

�k2 ! 8�k2 � 16�2= (kV ) (590)

Then using a phase change ��0x = 2� between modes we can write the inverse phase derivative as
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This implies that the normalization condition
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leads to half the scalar level (for the squared amplitude).
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6 PROJECTION ALONG SCAR

We now examine the trigonometric projection along the scarred orbit [3], [4]
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Our previous scalar �eld along the scar center was
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b2 � c2 = ` (Rz �Ry) (602)
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a2 � �0 = `2 (603)

a2 � b2 = ` (Ry + `) (604)

a2 � c2 = ` (Rz + `) (605)

For the case where a2 > � > �0 >> b2 > c2 following from Rz > Ry >> `, or a2 � � = x2 < a2 � �0 = ` <<
a2 � b2 = ` (Ry + `) < a2 � c2 = ` (Rz + `), we can approximate the �nal integral as
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Then we can write
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� k2

(a2 � b2) (609)

Inserting the radii and ray path length

u (x) = �
�
c2; b2; �

�
� (�1)nb

2�

p
kc0xc0yc0z

4

q
` (Rz �Ry) ` (Rz + `) ` (Ry + `)

p
` (Rz + `) ` (Ry + `)
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j� (1=4� isx=4)j j� (1=4� isz=4)j e�sx=4��sz=8
�
sin (kx)
cos (kx)

�
(610)

and scalar normalization

c20xc
2
0yc

2
0ze

�sx=4 � v2x
16�`

k2V

q
` (Ry + `) (Rz �Ry) (Rz + `)"

ln

�����32kq` (Ry + `)e
0+�=2
p
Rz + `�

p
Ry + `p

Rz + `+
p
Ry + `

����� ln
�����
p
Rz + `+

p
`

p
Rz + `�

p
`

�����
+ ln

�����32kp` (Rz + `)e
0+�=2
p
Rz + `�

p
Ry + `p

Rz + `+
p
Ry + `

����� ln
�����
p
Ry + `+

p
`p

Ry + `�
p
`

�����
#�1

(611)

to give

u (x) = �
�
c2; b2; �

�
=

A0
4
p
` (Rz + `) ` (Ry + `)

�
sin (kx)
cos (kx)

�
(612)

with

A0 �
(�1)nb
2�

p
kc0xc0yc0z

4

q
` (Rz �Ry)

p
` (Rz + `) ` (Ry + `)

j� (1=4� isx=4)j j� (1=4� isz=4)j e�sx=4��sz=8

� vx
2 (�1)nbp
�kV

4

r
`
q
(Rz + `) (Ry + `) j� (1=4� isx=4)j j� (1=4� isz=4)j e�sx=8��sz=8"

ln

�����32kq` (Ry + `)e
0+�=2
p
Rz + `�

p
Ry + `p

Rz + `+
p
Ry + `

����� ln
�����
p
Rz + `+

p
`

p
Rz + `�

p
`

�����
+ ln

�����32kp` (Rz + `)e
0+�=2
p
Rz + `�

p
Ry + `p

Rz + `+
p
Ry + `

����� ln
�����
p
Ry + `+

p
`p

Ry + `�
p
`

�����
#�1=2

(613)

Then

Vp = 2

Z `

0

u (x)

�
sin (kpx)
cos (kpx)

�
dx = 2A0

Z `

0

�
sin (kx)
cos (kx)

��
sin (kpx)
cos (kpx)

�
dx (614)

or

Vp =
A0

4
p
` (Rz + `) ` (Ry + `)

Z `

0

[cos ((k � kp)x)� cos ((k + kp)x)] dx

=
A0

4
p
` (Rz + `) ` (Ry + `)

�
sin ((k � kp) `)
(k � kp)

� sin ((k + kp) `)
(k + kp)

�
� A0`

4
p
` (Rz + `) ` (Ry + `)

sin ((k � kp) `)
(k � kp) `

(615)
where at high frequencies we neglect the sum term. Then squaring this and taking the mean

85





V 2p
�
=

*
A20`p

(Rz + `) (Ry + `)

+�
sin ((k � kp) `)
(k � kp) `

�2
(616)

where we used


v2x
�
= 1. Then de�ning G1 (sx; sz) by means of [3], [4], [13]


kLV 2p
�
� L2G1 (sx; sz) =V (617)

gives

G1 (sx; sz) =
2=�qp

(Ry + `) (Rz + `)=`
j� (1=4� isz=4)j2 j� (1=4� isx=4)j2 e�sx=4��sz=4

�
sin ((k � kp) `)
(k � kp) `

�2
"
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�����32kq` (Ry + `)e
0+�=2
p
Rz + `�

p
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Rz + `+
p
Ry + `

����� ln
�����
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Rz + `+

p
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p
`

�����
+ ln

�����32kp` (Rz + `)e
0+�=2
p
Rz + `�

p
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p
Ry + `

����� ln
�����
p
Ry + `+

p
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Ry + `�
p
`

�����
#�1

(618)

In previous work [7], [14] we have often approximated the sin (kx) or cos (kx) factor as the Fourier series
terms sin (kpx) or cos (kpx) as the radii of curvature become large, denoted byVpp. This is certainly also true
of the transition region, corresponding to the larger values of G1 (sx; sz) near k ! kp which corresponds to
taking the factor sin ((k � kp) `) = ((k � kp) `)! 1


kLV 2pp
�
�


kLV 2p

�
� L2G1 (sx; sz) =V (619)

where

G1 (sx; sz) =
G1 (0; 0)

�4 (1=4)
j� (1=4� isz=4)j2 j� (1=4� isx=4)j2 e�sx=4��sz=4 (620)

and

G1 (0; 0) =
2=�qp

(Ry + `) (Rz + `)=`
�4 (1=4)

"
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�����32kq` (Ry + `)e
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p
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�����
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(621)

We note that this result has taken symmetry in all three directions so we expect a factor of eight enhancement
over a general scalar case.
We can also use the gamma function re�ection formula to write

� (1=4� isx=4) � (3=4 + isx=4) = �= sin� (1=4� isx=4) = �
p
2= [cosh (�sx=4)� i sinh (�sx=4)] (622)
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j� (1=4� isx=4) � (3=4 + isx=4)j2 = 2�2=
�
cosh2 (�sx=4) + sinh

2 (�sx=4)
�
= 4�2=

�
e�sx=2 + e��sx=2

�
(623)

� (1=4) � (3=4) = �= sin (�=4) = �
p
2 (624)

�2 (1=4) �2 (3=4) = 2�2 (625)

and

G1 (sx; sz) =

�
�2 (3=4)

�2 (1=4)
G1 (0; 0)

�
=
j� (1=4� isz=4)j2

j� (3=4� isx=4)j2
2e�sx=4��sz=4

e�sx=2 + e��sx=2
(626)

where

�2 (3=4)

�2 (1=4)
G1 (0; 0) =

4�qp
(Ry + `) (Rz + `)=`"

ln

�����32kq` (Ry + `)e
0+�=2
p
Rz + `�

p
Ry + `p

Rz + `+
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Ry + `

����� ln
�����
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Rz + `+

p
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Rz + `�

p
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�����
+ ln

�����32kp` (Rz + `)e
0+�=2
p
Rz + `�

p
Ry + `p

Rz + `+
p
Ry + `

����� ln
�����
p
Ry + `+

p
`p

Ry + `�
p
`

�����
#�1

(627)

Figure 6 shows an example of the behavior of this function on a contour plot for parameters L = 2` = 2
m, Ry = 10 m, Rz = 12 m, kL = 67:367, where �0 = 12 m2, a2 = 13 m2, b2 = 2 m2, c2 = 0 m2,
dz=dy � 1:0871146, dz=` = a=` � 3:60555. Figure 7 shows a cut for sz = 0.

b2 � c2 = ` (Rz �Ry) (628)

a2 � �0 = `2 (629)

a2 � b2 = ` (Ry + `) = d2y (630)

a2 � c2 = ` (Rz + `) = d2z (631)

The value chosen for kL was chosen to compare to a numerical simulation run with these dimensions over
the frequency range 1� 2 GHz. Using the asymptotic formula for the scalar �eld mean spacing

�k � 2�2=
�
k2V

�
(632)

the number of modes over the wave number range k1 < k < k2 is

N =

Z k2

k1

dN

dk
dk =

Z k2

k1

(1=�k) dk =
V

2�2

Z k2

k1

k2dk =
V

6�2
�
k32 � k31

�
(633)

and therefore the mean wavenumber over this same range is
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Figure 6: Contour plot of G1 (sx; sz) for example where Rz = 12 m, Ry = 10 m, L = 2` = 2 m, and
kL = 67:367.

hki = 1

N

Z k2

k1
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k32 � k31

=
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4

(k2 + k1)
�
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2
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�
(k22 + k2k1 + k

2
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(634)

We can also write (using k1` � 20:958622 at 1 GHz)

hk`i = 3

4

(k2 + k1)
�
k22 + k

2
1

�
(k22 + k2k1 + k

2
1)

` � 3

4

(2 + 1) (4 + 1)

4 + 2 + 1
(20:958622) � 45

28
(20:958622)! 33:6835 (f = 1:60714 GHz)

(635)
where the �nal result corresponds to an average hki being at f = 1:60714 GHz. We can then write

hkLi = 3

4

(k2 + k1)
�
k22 + k

2
1

�
(k22 + k2k1 + k

2
1)

L � 45

14
(20:958622) � 67:367 (636)

Note that this average choice will not change for the vector spacing �k � �2=
�
k2V

�
or including symmetries.

From the prior result in the section on the �Resonant Condition phase integral�
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Figure 7: Cut of function G1 (sx; sz) for sz = 0, for example where Rz = 12 m, Ry = 10 m, L = 2` = 2 m,
and kL = 67:367.
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2 (k � kp) ` = ` (sx=dz � sz=dy) (637)

we can eliminate the separation constants and determine a result dependent on k � kp. To do this we need
to integrate out the probability along these constant lines of frequency separation to end up with a single
plot as a function of k � kp

F (2�k`) =

Z 1

�1
F (2�k`dz=`+ szdz=dy; sz) dsz (638)

Note that the key point here in this integration is that we have already selected the eigenvalue spacing based
on the three-dimensional asymptotic scalar eigenvalue density (using eight-fold symmetry). This introduces
a scaling in the eigenfunction amplitude accounting for the three-dimensional spacing (not representing the
density for �xed sx or sz, as in the �xed m for the axisymmetric problem) and thus we do not have to
introduce another density function in this averaging. Thus with

u = 2 (k � kp) ` (dz=`) (639)

we can write

G1 (u) =

Z 1

�1
G1 (u+ szdz=dy; sz) dsz (640)

and

G1 (u) =

�
�2 (3=4)

�2 (1=4)
G1 (0; 0)

�
= 2

Z 1

�1

j� (1=4� isz=4)j2

j� (3=4� i (u+ szdz=dy) =4)j2
e�(u+szdz=dy)=4��sz=4

e�(u+szdz=dy)=2 + e��(u+szdz=dy)=2
dsz

(641)
where

j� (3=4� isx=4)j2 � 2� (jsxj =4)1=2 e��jsxj=4 ; sx ! �1 (642)

j� (1=4� isz=4)j2 � 2� (jszj =4)�1=2 e��jszj=4 ; sz ! �1 (643)

j� (1=4� isz=4)j2

j� (3=4� i (u+ szdz=dy) =4)j2
e�(u+szdz=dy)=4��sz=4

e�(u+szdz=dy)=2 + e��sx=2
� e��(jszj+sz)=4p

ju+ szdz=dyj jszj
e�(u+szdz=dy�ju+szdz=dyj)=4

(644)
The convergence is thus exponential in both directions: e��sz=2 ; sz ! +1 and e�sz(dz=dy)=2 ; sz ! �1.
We could plot this result as a function of

� = 2 (k � kp)L = u= (dz=L) (645)

but instead from former work in two-dimensional and three-dimensional axisymmetric cases we have chosen
to plot the result as a function of s instead of u or �, where

s = (k � kp) `= ln
r
a+ `

a� ` = (k � kp) `= ln

sp
` (Rz + `) + `p
` (Rz + `)� `

= (k � kp)L= ln
�
dz + `

dz � `

�
(646)
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a2 � c2 = a2 = ` (Rz + `) = d2z (647)

and we have arbitrarily decided to use the larger radius of curvature Rz instead of Ry (in previous work
there was only a single radius of curvature). This can be written as

s = 2 (k � kp) `= ln
�
a+ `

a� `

�
= 2 (k � kp) `= ln

 p
` (Rz + `) + `p
` (Rz + `)� `

!
= (k � kp)L= ln

 p
Rz=`+ 1 + 1p
Rz=`+ 1� 1

!
(648)

and related to u = 2 (k � kp) ` (dz=`) by means of

s = u=

"
(dz=`) ln

 p
Rz=`+ 1 + 1p
Rz=`+ 1� 1

!#
� u (`=dz) 1:175556 � u0:4869 (649)

where the �nal two results use this example geometry. The stability exponent with respect to this radius
can be written as [26]

�+ =

�
dz + `

dz � `

�2
� 3:124 (650)

and then s becomes

s = 2 (k � kp)L= ln (�+) = �= ln (�+) = u= [(dz=L) ln (�+)] (651)

Figure 8 shows this scalar scar theory result G1 (s) =8 as the solid curve and the dashed curve in this
�gure shows the scalar random plane wave result G (�), discussed in the next subsection, for comparison.
Figure 9 shows the surface mesh used to model one eighth of the three-dimensional convex surface lantern

(bowtie) geometry and Figure 10 shows an example of the electric �eld. Figure 11 shows a histogram from
the vector electromagnetic simulation (using the method of moments code EIGER) for G1 (s) =4 (for the
vector problem this quantity corresponds to G1 (s) =8 in the scalar problem) versus s = 2 (k � kp)L= ln (�+),
�+ =

�
dz+`
dz�`

�2
[27]. The transition near s = 0 is quite similar to the scar result (solid curve) in Figure 8

and is quite di¤erent from the random plane wave result (dashed curve).
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Figure 8: Function G1 (s) =8 compared to random plane wave result G (�) = Gs (�) =8, for example where
Rz = 12 m, Ry = 10 m, L = 2` = 2 m, and kL = 67:367.
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Figure 9: One eighth of lantern cavity structure, where Ry = 10 m, Rz = 12 m, and L = 2` = 2 m.
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Figure 10: An example of electric �eld in three-dimensional geometry.
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Figure 11: Histogram from numerical simulation of convex lantern (bowtie) geometry for G1 (s) =4 in the
vector case. This simulation used one eighth geometry with symmetry planes PECjPMCjPEC. In the simu-
lation the ray path is along z with the radii of curvature noted in the x and y directions; the axes must be
permuted to correspond to our Ry = 10 m, Rz = 12 m, orbit half length L=2 = 1 m in the x direction, and
the focal point dz = 3:6056 m.
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7 3D RANDOM PLANE WAVE PROJECTION

Let us take the random plane wave description in three-dimensions and consider the trigonometric projec-
tions.

7.1 Scalar Case

The axisymmetric report [13] gives the scalar 3D random plane wave representation

ur = lim
N!1

p
2= (V N)Re

24 NX
j=1

aje
i�j+ikj �r

35 (652)

where aj are real random numbers with


a2j
�
= 1,

��kj�� = k are random wave vectors uniformly distributed in
angles the sphere with 4� solid angle, and the random phases �j are uniformly distributed on a 2� interval.
This has been normalized so that mean square is


u2r
�
= 1=V (653)

The 3D trigonometric projection is

Vpr =

Z `

�`
cos (kpx)ur (0; x) dx (654)

We de�ne 

kLV 2p

�
r
= L2G (�) =V (655)

with

� = 2 (k � kp)L (656)

giving

G (�) =
�

4
� sin

2 (�=4)

�=2
+
1

2
Si (�=2) =

1

2

�
Si (�=2)� sin

2 (�=4)

�=4
+
�

2

�
(657)

The asymptotic limits are

G (�)! 0 ; �! �1 (658)

G (0) = �=4 (659)

G (1) = �=2 � 1:570796 (660)

and

s = 2 (k � kp)L= ln (�+) = �= ln (�+) (661)

with [26]

�+ =

�
dz + `

dz � `

�2
(662)
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If we were to impose symmetries in all three dimensions we could de�ne

Gs (�) = 8G (�) (663)

Then we would have

Gs (1) = 4� � 12:56637 (664)

The prior G1 (s!1) � 11:6 result (eight times the saturation level 1:45 in Figure 8), using the scalar
eigenvalue spacing, is reasonably close to this result for Gs (1).

7.2 Vector Case

The vector case has random plane wave representation [13]

Er = lim
N!1

p
2= (V N)Re

24 NX
j=1

aj
�
cos'pjej + sin'pje

0
j

�
ei�j+ikj �r

35 (665)

where the polarization angles 'pj are random numbers uniformly distributed over a 2� interval, and the unit
vector ej is perpendicular to kj with.

e0j =
�
kj � ej

�
=k (666)

The normalization gives

hEr � Eri = 1=V (667)

The 3D trigonometric projection is taken as

Vpr =

Z `

�`
cos (kpx)Ev (x; 0; 0) dx =

Z `

�`
cos (kpx) ev � Er (x; 0; 0) dx (668)

where the unit vector ev is taken to be perpendicular to x. Again de�ning

kLV 2p

�
r
= L2G (�) =V (669)

� = 2 (k � kp)L (670)

gives

G (�) =
1

4

�
� sin

2 (�=4)

�=4
+
�

2
+ Si (�=2)

�
(671)

which is exactly half of the scalar result. Therefore the asymptotic results in this case are

G (�)! 0 ; �! �1 (672)

G (0) = �=8 (673)

G (1) = �=4 � 0:785398 (674)
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Figure 12: Scalar function G1 (s) =8 or vector function G1 (s) =4 compared to scalar random plane wave
result G (�) = Gs (�) =8 or vector random plane wave result 2G (�) = Gs (�) =4, for example where Rz = 12
m, Ry = 10 m, L = 2` = 2 m, and kL = 67:367.

If we were to impose symmetries in all three dimensions we could again de�ne

Gs (�) = 8G (�) (675)

Then we would have

Gs (1) = 2� � 6:2831853 (676)

The prior scalar result would go to G1 (s!1) � 5:8 (four times the saturation level 1:45 in Figure 8
when using the vector eigenvalue spacing) is close to this result for Gs (1). Figure 12 again shows this scar
transition versus the random plane wave result. Figure 11 showed the histogram from the electromagnetic
simulation [27] and Figure 13 shows the histogram when the �rst two symmetry planes are permuted (which
rotates the polarization state) [27].
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Figure 13: Histogram from numerical simulation of convex lantern (bowtie) geometry for G1 (s) =4 in the
vector case. This simulation used one eighth geometry with symmetry planes PMCjPECjPEC. In the simu-
lation the ray path is along z with the radii of curvature noted in the x and y directions; the axes must be
permuted to correspond to our Ry = 10 m, Rz = 12 m, orbit half length L=2 = 1 m in the x direction, and
the focal point dz = 3:6056 m.
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8 CONCLUSIONS

This report constructed high frequency asymptotic �eld solutions along an unstable periodic ray orbit in a
three-dimensional cavity at high frequencies. In this case the mirrors in general have two distinct radii of
curvature, which in this report are assumed to be convex. The modal solutions are normalized by using the
energy theorem. Random plane wave chaotic �eld representations are also constructed. Fourier projections of
the �eld along the periodic ray orbit are taken and compared to the projection using the random plane wave
form of the �eld. These comparisons illustrate orbital �eld behavior transitions (in the Fourier projection)
when the eigenmode frequencies pass through values where phase variations along the orbit length align with
the required boundary conditions on the terminating mirrors. With the foci located exterior to the cavity
we do not observe signi�cant �eld enhancements at single locations along the orbit, as in the two-dimension
case [7].
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