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Abstract

This report examines the localization of high frequency electromagnetic fields in general three-
dimensional convex walled cavities along periodic paths between opposing sides of the cavity. The report
examines the three-dimensional case where the mirrors at the end of the orbit have two different radii of
curvature. The cases where these orbits lead to unstable localized modes are known as scars.
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Figure 1: This figure, taken from Vaynshteyn, illustrates a bouncing ball mode beetween concave refbcting
surfaces.

1 INTRODUCTION

Field behavior in high quality factor cavities typically takes on a stochastic character at high frequencies
[1], particularly for geometries not supporting stable periodic ray orbits. Even in these classically unstable
geometries, regions of higher modal intensity along these periodic ray orbits, known as scars [2], can exist.
This report is directed at understanding the high frequency behavior of modal fields in three-dimensional
cavities and the localization of the eigenfunctions about unstable periodic orbits, known as scarring, is
investigated in convex walled geometry.

The random phase approach used by Antonsen [3], on convex mirror geometries in two dimensions, has
been generalized [4], [5], [6], [7], [8], [9] by introducing the curved ray path formalism, used previously by
Vaynshteyn [10] on stable orbits, see Figure 1. This combined approach was used recently to investigate the
scars in three-dimensional axisymmetric geometry [6], [11], [12], and a previous report and journal articles
detail both scalar and vector problems for convex and concave walls in three-dimensional axisymmetric
geometry [13], [14], [15].

The present report explores bouncing ball modes forming scars in three-dimensional cavities with convex
walls. We compare Fourier projections along the scar with projections of random plane wave representations,
to illustrate how the scars modify the purely random representations.
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Figure 2: This figure, taken from Moon and Spencer, illustrates the types of coordinate surfaces involved in
ellipsoidal coordinates.

2 CONVEX MIRRORS AND 3D BOWTIE

Vaynshteyn [10] has treatments for stable modes between concave mirrors. Here we wish to consider the
generalization to unstable modes between convex mirrors. Vaynshteyn uses WKB analysis of the Lame
function for the full 3D case. For three dimensions the scalar problem will be treated in ellipsoidal coordinates.
Note that the vector problem is not separable in this system, but for high frequencies we will rely on the
approximate correspondence between scalar and vector problems we observed in the axisymmetric case [13],
[14], [15].

Another issue is stability; in the convex case both mirror axes will be unstable and the foci are located
exterior to the cavity. Note in a follow-on report treating concave mirrors, although we will again be focussed
on the unstable case with interior foci, it is also possible to have stability in one transverse direction and
instability in the other direction (an interesting mixed case, which could relate back to 2D); alternatively,
we could also have a convex mirror in one direction and a concave mirror in the other direction.

2.1 Ellipsoidal Coordinates
The ellipsoid is defined by

1’2 y2 2,2

where a, b, and c are the principal semi-axes of the ellipsoid. We order the dimensions as

a>b>c>0 (2)

The system of ellipsoidal coordinates (£,7,¢) shown in Figure 2 [16]corresponding to the ellipsoid is
defned by the relation with Cartesian coordinates [10]

@ (@) (@)

¥ —a) (@ —a)

2 (P8 (2 —m) (=)
NG OICEED

3)




2 (=9 (@-n) (@ -0
N oIy ®)

where
—c0 < &< c? (6)
A <n<t? (7)
b < ¢ < a? (8)

Note that in Moon and Spencer [16] ellipsoidal coordinates (n,6,\) are defned as

uw=n,F<n?<oo (9)
=0, <0< (10)

w =X, 0< A <b? (11)

> >0 (12)

z? = <77b92>2 (13)
L [Gaa [UELe (19
o (P (@) () "

(2 —b?)

A comparison of the two systems implies that we do not need one of the three constants a, b, ¢ in Vaynshteyns
system, or that we can set one to a fixed constant. We can take c? = 0, for example.
For fixed £ = ¢,

=) (@),

@ty v =@ - =d-am+ )+t (16)
CQ* 2 (127 2
( (ll;)—(go) d )92 =0 —n) (0* =) =b" =0 (n+ Q) +n¢ (17)
a2 — ) (b2 — 2
D @) (@ = 0+ o9

or

(¢?=a®) 5, (Z=V) ,
@—g&)" ")’

(a®>+0%) +n+¢ (19)
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z° + z :—(a2+c2)+77+§ (20)
or subtracting these two

T Y z

(a? — &) - (b =€) - (2 —¢&o) =1 2D

defining the family of ellipsoids for —oo < &, < ¢?. For large negative £, these become large spheres. Note
that the = direction has the largest semimajor axis (since the denominator is the largest), followed by the y
direction, and finally the z direction has the smallest. For £, — ¢? these become elliptic discs with z = 0
and contained within the curve

.Z‘Q y2

@-) -

Note that the outer tip of these z = 0 disc regions is at 2% = a
Alternatively for fixed n = n,

=) (@),

=1 (22)

2 — ¢? the outer focal points.

@y L =@ =d -t (23)
2 _12) (a2 — b2
( (22)_(%) Dp - 12— =1 -1+ O + ¢ (24)
a2 — ) (b2 — 2
WD @@= -0 )
(c—a®) , (=17 2 _ 2, 52
@) Ty T e (29
(0*-a?) , (*-¢) 2 (2,2
R CEN AL @)

or subtracting these two

+ — =1 28
@) W) o) %)
defining the family of hyperboloids of one sheet for ¢? < n, < b%.
The limit 1, — ¢ defines the disc region outside the elliptic discs defined by z = 0 and the same elliptic
curve
22 2
LY
@=) " @)

The limit n, — b2 defines a fht hyperbolic disc region with y = 0 and lying within (in z) the curves satisfying

=1 (29)

z? 22

@-8) -

=1 (30)
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Alternatively for fixed ¢ = ¢,

=) (=)

-y = (a® =€) (a® —n) =a' —a® (E+n) +&n (31)
212 (a2 — b2
( (;MCO) P (7€) (2 ) = b ) (32)
a2 — ) (b2 — 2
WD e g @ n = erm e @
or
T g T e o
s~ I
or subtracting these two
22 y? 52

— - =1 36

@) G P G 0
defining a family of hyperboloids of two sheets for b% < (, < a?. Note that these elliptic hyperboloids of
two sheets have a larger z dimension than a y dimension due to the fact that ¢, — b* < {; — ¢?. The limit
(o — b* defines fht disc regions with y = 0 and outside (in z) the same hyperbolas

z? 22

@=P) #-)

Note that the inner tip of these y = 0 disc regions is at 22 = a? —b? the inner focal points. The limit ¢, — a
defines planar regions with x = 0.

Vaynshteyn$ description of the ellipsoidal system discusses the one-to-one mapping of the preceding
transformations for a single octant of the space; to index the other octants we would have to use analytic
continuation about the transformation branch points, for example

z = (=& n—c)(C—¢) _ ew/z\/g(n— c?) (¢ —¢?) 2 Fei
\/ (a2 — ¢2) (b2 — 2) (a2 — 2) (b2 — 2) £=¢ (38)

—1 (37)

2

or

_ =@ —m) (b)) _ iy |[(P-ONC82) o iy
y_\/ =)@ -1 \/(b2c2)(a2b2) b= =i (39)

e T e e
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2.1.1 Unit Vectors in Ellipsoidal Coordinates

The ellipsoidal coordinate transformations [10]

e “

2 (P9 (0" —m) (C-1?)

= 42
Yy 02 — ) (a2 — 0?) (42)
2 _ _ 2 _ 2
22:(0 § (n—c) (¢—¢) (43)
@ - ) (& - )
have metric coeffi cients [10]
1 (=8 (=%
he = - 44
f 2¢<a2—5>(b2—5><c2—5> e
1 C€=n =%
h, = = 45
" 2\/((12—77)(62—77)(77—62) 45
1 €=8(C=n)
hr = = 46
¢ 2\/<a2—<>(<—b2><<—c2> 46)
The position vector in Cartesian coordinates is
r=uze, +ye, + ze, (47)
and the derivatives can be used to defme the unit vectors and metric coeffi cients [17]
Jor Oz dy 0z
= — = — - - 4
o _de, oy 0
hye, = 877 = 877% + angy + angz (49)
or Ox dy 0z
heee o€ agggﬁr 6§Qy+ afgz (50)
The unit vectors can be found by differentiation [17]
@ —@—%e —I—@e +%e = hce
aC| T ac T act T act T acs T M
[ @egwow [ w1 @—9u-a)
2\ @=0@- @@ - 2\ @A 2| @A) B )
(51)
or —@—a—xe —l—@e +%e = hye
| "o an= T anSv T anS T b
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:_1¢ (@ &) (a> —Q) 6_1¢ (2 —©) (1) e+1¢ (-9~
2

2\ @@ - - 2| @m0 - 2| @ - - )
(52)
@ — @ — % + @ + % =h
9| T D T o T g T gete T e
_ 1 (@-n@-¢ 1 ©*-m(c-t) 1 m—c)(C—c) |
T @g@ W@ -t | oo @ - 2| @@ - @R - A
(53)
Of course in this orthonormal system (&, 7, ()
e =€ e=¢,€ =1 (54)
e ee=ece,=¢€ € =0 (55)
Qf X Qn = QC (56)
e, X €c = ec (57)
e X e =€, (58)

2.2 Convex Mirrors With Orbit Along ( (At Mirror)

In this present case we will take the two radii of curvature to represent convex mirrors in both tangential
surface directions at the terminus of the z axis orbit. The mirrors then have fixed values of ¢ = ¢, (hy-
perboloid of two sheets). The orbit center (in the transverse direction) consists of the x axis between the
symmetry point 0 and the mirror center at = y/a? — (,; if the desired orbit length is

L=20=2/a®-¢, (59)

then we have a constraint on a? — (. The orbit is the limit n = % and ¢ = ¢ with {, < { < a? or

0<a®=(a®—¢) <a®—( (60)

yP=0=2" (61)
The preceding relation on the mirror surface ¢ = {, can be rewritten as

.'1:2 _ y2 22
@) TG T G- (62

2

from which we see that z? increases as either y? or z? increases showing that the mirror surface is convex
in both tangential directions. Note that we cannot take the orbit along the y or z axes because there is no

14



solution to the equation with the other two dimensions equal to zero for a® > ¢, > b%. We would have to
consider annular orbits in these cases.

With the z direction along the orbit let us expand these relations near the point ¢ = (,, where v? < (, <
a?,and n — b® or n = b*> — A2, and & — ¢ or £ = ¢ — AZ. These expansions give

o (@A) (@A) (@ =C) o, IS
- (b2 _ a2) (02 _ a2) ( <0) L+ a2 — b2 + a2 — ¢2 (63)
9 b2—02+AZ A?! bQ—C g—bQ
P e o
, AZ(F-V+A2) (¢ (o — 2
= ( (@ — &) (bz)( ) ) Eaz _ czg A (65)

Notice that near the orbit the coordinate i determines local variations in the y direction, while the coordinate
¢ determines local variations in the z direction; positions = along the orbit are controlled by the coordinate
(. Notice that at the orbit center ¢ = a? and 22 = 0 with

o (P9 (¥ —n)

e (Y (66)
2 —&)(n—c?
o C=0li-e) o
Now if ¢ = ¢? and 22 = 0 we find
yQ:(bzfn),02<77<b2 (68)

To determine the radii of curvature we set either y or z equal to zero and examine the resulting equation
compared to that of a circle

(z — z0)* +y* = R? (69)

or

2/2
r—xg=+Ry\/1-y?>/R:~ R, (1_yR/2 ) (70)

Yy
For z = 0, in the above equation the circle center is located at

.’I,‘OZRy—F\/a?—CO:Ry-FE (71)

and then

T—x9==

2
\/m< 1—|—C0y_b2—1>—Ry

~FR, (1 C o V)2 ) (72)

R, (-1

Comparing with the previous expression for the circle we identify

15



or

with quadratic solution

Co—b® G-t

VG

R, =

G- (20 —R2) ¢y — (a®R2—b*) =0

Co=t2+ (R2/2) [\/1+4(a2—12) /R2 — 1]

or from the preceding second equality, setting ¢, — b* = ¢R, in this quadratic solution

or

[(1 +L/R,)? — 1] R2/4 = (a®> - 1?)

L(2R,+ L) /A=((R,+ () = (a® — V)

Similarly with y = 0 for the other direction

or

with center at

yielding

and

with quadratic solution

(z —x0)° + 22 = R?

2
w— w9 =+R,\/1— 22/R2 ~ £R, <1 - ZR/f)

z

JEOZRZ‘F\/CLZ*CO:RZ‘FK

r—x9==%

m( 1+C02262—1>—Rz

~ TR, (1_ QQ_CO 22/2>

Rz CO - C2

Co —c? _ Co —c?

G

R, =

o=+ (R%/2) [\/1 T 4(a2— ) /RZ - 1}

and using the second equality

1+ L/R.)? = 1] (R2/4) = (a® — ¢2)
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or

[(RZ v L)% - R‘j‘} JA=L(2R.+L)/4=((R.+0) = (a® — ) (85)

For a consistent value of (, from the preceding two expressions

(v* — ) + (R2/2) [\/1 +4(a2—b2) /R2 — 1} = (R2)2) [\/1 t4(a2— ) /R - 1} (86)
(b = *) = €(R. — R,) = (R. — R,) /2 (87)

which because of our desired ordering of coordinates requires R, > R,,. In summary, to set the coordinate
axes we take

(R, +0) =a* — b (88)
(R, +0) =a® - c? (89)
Co=b*+1IR, =c*+ (R, (90)
P+ ¢y =a (91)
((R,—R,))=b"—-¢* (92)

This final expression represents the range y? < (b2 — 02) = ((R, — R,). Note that the variation with
c? <m < b? when a® > ¢ > (, and £ = ¢, is

o (a®=m)(a®=¢) (a®=¢?)(a® = (o) _ R.+/

I ) i o L (58)
b2 — —b? b2 — c? — 2 . — Ry 9 9 9
0<y’*= ( (ag)—(;) ) < ( @ )_(52) ) = ((RRy +R£)) (C—b°) <(R.—Ry)L=1"—c (94)

where the larger result varies over

ER.U 2_(R27Ry) 2
(Be = By) iy <V =g (V) <L — Ry (95)

22 =0 (96)

For large and nearly equal radii of curvature this implies a variation of 0 < y < /(R, — R,){. Note
that there are four unknowns a, b, ¢, {, and three independent conditions. However, we also note that these
hyperboloid surfaces of two sheets are defned by

1'2 y2 2:2
@) G G o7)
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2

and thus the actual unknowns a? — ¢, ¢, — b%,{, — ¢? are only three in number. If we write the preceding

equations in terms of these unknowns

a? — (o =1 (98)
Co—b* =R, (99)
Co—c*=IR, (100)
and the equation of the hyperboloid surfaces is
72 Y2 22
g =1 101
2 (R, (R, (101)

In this convex mirror case we will take the radii of curvature to be large in order to achieve stability
exponents approaching unity from the unstable region. This argument indicates that we want to have

(R, > (R, >> (? 102
Y

or

Co—C>C—b?>>a®—(, (103)

Obviously if ¢, approaches a? this can hold. Also, if (; >> b2 > ¢2, but a >> b > ¢ > 0 with (, — d?, it
can also hold.
In the inside region (¢ — c?)

2 _
2o g e <cet 01
2 _ K2
I (az)_(iz)b)’02<n<b2<c<a2 (105)
_ 2 —c2) - -
22— (n—¢c*) (¢ 0)575202_§—>0,c2<77<b2<C<a2 (106)

(=) (17 =)

We note that in this region n — b2 collapses the observation point near the scar center and is therefore an
important location.
In summary for this case the orbit along = (controlled by ¢) has convex mirrors and two exterior foci.

2.2.1 Connection To Spheroidal Coordinates

Note that the limit to spheroidal coordinates is b = ¢ with geometry shown in Figure 3.

Here we expect to have unknowns ay, b,, &y, but only two conditions: radius of curvature R and orbital
half length £.

The prolate spheroidal coordinates (C p Pps fp) are related to the cylindrical system (7, ¢, z) by means of
10]

p0>

r = dsinh (, cos§, (107)

18



zZ=-1z,

Figure 3: Spheroidal coordinate system and convex mirrors for case where the two radii of curvature are
equal. The mirrors are located at & = £, having locations z = %/ for a radius » = 0. The foci at z = =d

are outside the cavity region.

z = dcosh(,sing, (108)
bp =¥ (109)
where
0<(, <@ (110)
—m/2<E,<7/2,0< ¢, <2m (111)
On the mirror we can write
¢ =dsing,, (112)
Also about this point we can expand the coordinate relation
. 2 . 1"2 sin pr
z =dcosh(,sing,, ~d (1+ CP/Z) sin,g ~ £+ 24 o2 3
r? sing r? singpg
~l+R+ — = —R= — = R 113
T 2d cos? £ %0+ 2d cos? £ (113)
7~ dC,cos g (114)

where R is the radius of curvature on the mirror and the center of the circle is at zg = £ + R. For a circle of

radius R and center position r = 0, z = 2

24+ (z—2)* = R?

19
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or

- 2R2

Choosing the minus sign and comparing with the preceding gives

2
z:zoi\/RQ—TQNzoiR<1 T) (116)

r2 r2 sin fpo

= 117
2R 2dcos? &, (117)
or
R=dcos®&,/siné, =d(1—sin’,) /siné,, (118)
Using the length constraint (adding the length and then replacing the inverse sine by d/f)
R+(=d*/t (119)

The focal distance d is chosen in terms of the mirror radius of curvature R and the half orbit length ¢ by

means of
d=0/1+R/M (120)

The orbit extends over the range —§, < §, <, with (, = 0 (or = < z </ and r = 0) and
¢ =dsin¢, (121)

L=20 (122)

or

sin€, =1/v/1+ R/¢ (123)

Using the identity

cos? &+ sin? £, =1 (124)
we obtain the elliptical relation
22 2
-+ =5=1 125
2 (125)
where
bp = dsinh(, (126)
ap = dcosh(, (127)
a2 —b=d*>=0({+R (128)
»

Now in the ellipsoidal system the analog of the z axis would be along the ¢ or z axis on the strip { =0
in the z — y plane.
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3 HELMHOLTZ EQUATION IN ELLIPSOIDAL COORDINATES

The metric coeffi cients in ellipsoidal coordinates are [10]

1L E=-nE-9
he =5 e (129)
1= Mm=9
hy = 5 IO (130)
1 =9 —n)
he =5 0 (131)
where
D(0) = (a* - 0) (b° —0) (* —0) (132)
Note that
D (&) >0 for —oo<¢<c? (133)
D(n) <0forc® <n<b? (134)
D (¢) > 0 for b* < ¢ < a? (135)
The scalar wave equation
(A+k) o= (VP+E*) D=0 (136)
then takes the form
1 & [ hyhe 8 & [ hehe 0 & [ hehy 0 B
i (72 (e ) t s Ui ) + e (it )+ =0 (37
or
) B) b B
10~ VD@5 VD@5 | 46~ VDl V=Dl |
B 0P )
H(E- VD Qg VD@ ge |+ (€~ m(E- -2 =0 (138)
Let us introduce the variables [10]
~ ¢ de
= /O NG (139)
" de
= / 2,/—D () (140)

(141)

~ ¢ de
C/b’é’Qy/D(G)
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and

9 1
9% 2D (e
a1
2,/~D(n)
a1
% 2D

which allow the scalar wave equation
0 0P 0 0P
(1= 02/ D@5 [2V/DEO 5 | - (€~ 92/ Dy [2/ Dl

He-m 2D [ND <<)f;§] ) (E- =D =0
to be written as

02 02 02
T2 ol e e nE-0m-0d=0
o€ on aC

We want to solve this equation with boundary condition on the ellipsoid surface

(n—2¢)

® =0 for ( =(,
or

0P

a—C—OforC—CO

Now separating variables

=X ()Y (n)Z(C)

1= O VD@ g | VD@5 | +166 -9 VDTl 5 | VD |
H(E- VDO 5 VD5 | + R (€- ) (=0 (1- 0 =0

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)

Noting that the first term aside from the (n — () factor is a function of £ only, the second term aside from
the (¢ — &) factor is a function of 1 only, and the third term, aside from the (£ —n) factor is a function of ¢

only, we can write this as

—M=QKpE) - C-kpm)—(E-—mEpQ+EE-—n(E-OMn-¢=0

where each of these functions is a quadratic (with separation constants « and f3)

p(B) =60>+ab+p
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ing§, n,or(¢
I ox1 .,
2/D )5 5 |2V/D O g | = K9 (©
] .
2y/D Yan _2\/D(n)877_ =—k*p(n)

] 021
2\/728(,‘ _2 D(OETC_ =—kp(C)

The quadratic terms cancel because we can write the k2 term as

E-mME-Qm-=m-)+n* (& +¢(E—n)
We can also show that the remaining terms cancel

=0 (@ +8)+ (=& (an+p)+(§—n) ({+5) =0

Note that these equations have the form

2\/D @ae [ 2y/D (9)%?] = —k?p(0)

or

9?60 1D ()00 1.,p®) .
20 "2 p@wan 1" p@° "

We can rewrite these as

ED¢
TEQ—FI{QP(&)X:O
2y

EVA
d—Z2+k2p(C)Z=0

where p (0) stands for the second order polynomial

p(0)=60>+ab+p

(153)

(154)

(155)

(156)

(157)

(158)

(159)

(160)

(161)

(162)

(163)

and « and [ are separation constants. How do we determine the separation constants « and 8 (or ; and
02)?7 In the axisymmetric problem the separation constants were related to the azimuthal number m and

the wavenumber separation s. The boundary conditions on the mirror determined k,.

It would be nice if

we could choose a simple solution in the direction Y (analog of cos (m¢) and sin (my), where we often took

m = 0). We can also write this as

p(0) = (0 —01)(0—0)

(164)

(165)



These differential equations are the Lame wave equations. The functions X, Y, Z are the Lame wave functions
[10].

The function ® determines the modes inside a closed perfectly conducting surface, and therefore, apart
from a constant factor, it must be real, as are the functions X, Y, and Z. From this it follows that the
polynomial p (6) must be real; the roots #; and 5 are either real (8 < (a/2)2) or are complex conjugates
(8> (a/2)?). We will start with this same assumption because our total cavity is enclosed, but the scarred
orbit interacts with the outer chaotic region in our case and is not enclosed by caustics. If 6; and 05 are
complex conjugates, the polynomial p (6) does not change sign, and at least one of the separation equations
has a monotonic solution.

In the case of modes confned by caustic surfaces sign changes in p (#) are desired to create the caustic
boundaries [10]. However in our case with the convex mirrors we expect propagation not only in the x (or
¢) direction along the orbit, but also in the y (or ) and z (or &) directions as well. Hence either real or
the solutions with complex conjugate values of 8, and 6, are likely to be the ones of interest. If we desired
to generate modes with very little variation along the n direction (analog of m in the axisymmetric case)
could we choose the separation constants appropriately to give this behavior? We might be tempted to have
these modes (instead of generating a constant in 7)) generate the metric coeffi cient behavior as the orbit is
approached ¢ — ¢?

_ L a=Om-9 1 C-—mm-o 1] (-n
hn?\/TQ\/(a2—n)(bQ—n)(n—cz) 2\/(@2—77)(192—77) (166)

since we might expect some form of generic variation over the ellipsoid (similar to cylindrical h, = 1/p =
constant in ¢)? Do we expect normal chaotic behavior in this transverse direction excited by its coupling
to the outer region? This is related to the question about how one would use our previous 2D solutions as
approximations in a 3D cavity. If the dimensions are stretched so that there are many wavelengths in one of
the transverse dimensions k2 (62 — 02) >> 1 then we might expect chaotic behavior excited from the edges
of the cross-sectional disc region. Alternatively, if k2 (b2 — 02) = O (1) then the two transverse directions of
the scarred orbit are similar in dimension, and we might expect the scar to be similar in character to the
axisymmetric structure. Thus we could study the transitional behavior of the scar around this limit.

3.1 General Separation Equation And Choices Of Separation Constants

The preceding ordinary differential separation equations, with dependent variables ® = X Y, Z and inde-
pendent coordinate variables 8 = £, 7, ( can be written as

e 1 1 1 1 e 1 , (01 —0) (62— 0)
— — = — 4+ - 0=0 167
T 2(&2—9+b2—9+c2—9) W01 @0 —0)(2—0) (167)
where again the coordinate parameters are ordered as
a>b>c>0 (168)
and the coordinates are restricted to the ranges
—00 < €< P (169)
< n<b? (170)
(p<(<a’ (171)
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62
Figure 4: Elliptical system coordinate ranges and separation constant turning points, with regions of prop-
agation illustrated by jagged lines.

We plan to order the separation constants, which are turning points, so that 65 > 6. Figure 4 illustrates the
turning points and the regions of propagation (jagged lines) for the system coordinates. We also can see that
for 6; < ¢® we will see exponential behavior in &, whereas for §; > ¢? (or 5 < b?) we will see exponential
behavior in 7. Because the range of ( is restricted to be ¢ > {, we do not expect exponential behavior in (.

Because we expect the separation constant and turning point at #; to be in the neighborhood of the
singular point at c?, and the separation constant and turning point at 65 to be in the neighborhood of the
singular point at b2, we will need to eventually examine the solution with combined turning and singular
points for the functions X (£) and Y (7), whereas only the singular point limit near a? for Z (¢).

3.2 General Separation Equation & Asymptotic Solutions

We discuss asymptotic formulas for the potential in each region using the combined critical point forms.
Again the transformations between coordinates are

2o (@8 (@ —n)(a®=¢) (a?=¢)(a® —n) (> =)
- 02 — a?) (2 — a?) = (@ — 0 (a2 — ) (172)

o =@ -m) =@ _ (?=¢) (*—n) ((=?)
vy = (e — b2) (a2 — b2) = 02 — ) (a® — b2) (173)

5 2 —¢) (- 2 - 2 —¢ — ) (¢-¢?
z = ( (a2)—(02) (bz)_( ) ) = ( (aQ)—(Z2)(b2)—( 2) ) (174)
where

—0 < &< (175)
& <n<b? (176)
(o <(<a® (177)
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We note that R, > R, > { to make a? > b > c%. The coordinate system parameters can be found as (note
that we can arbitrarily take ¢? = 0 if desired)

v —c? =((R, - R,) (178)
a> - =((l+R,) (179)
a>—b*=0({+R,) (180)
The general separation equation with © = XY, Z and 0 = &, n,( is
Ccl;e? - % <a2 - R - ot - 9) % i e E9;)_(1)9‘1‘)£9;)_(c§)— 7° =0 (181)

We will not make a specific choice of boundary conditions in this subsection but simply list the two asymptotic
solutions. The Liouville [18] (also known as WKB) asymptotic solutions are

O~ - ;0(9) exp iig /ej Md&’] or \4/% { (S;)I; [’; /0: \/Mdé’] } (182)
where
p(0) = (0 —01) (0 —02) (183)
P(0)=p(9)/D(®) (184)
D(0) = (a* = 0) (b° —0) (* - 0) (185)

The separation constants §; and 6, are turning points of the equation. The points a?, b2, ¢? = 0 are singular
points of the equation. The turning point locations in the convex walled bowtie configuration follow Figure 4.
The limits of the equation at these various critical points will be given next (see also the following subsection).
After that they will be used to construct the asymptotic solutions in the three coordinates along the periodic
orbit. Matching along the orbit and in the outward direction will be carried out to connect the various
regions and determine the complete mode behavior.

Near the critical points 8 — b2, 05 we take

ke =k (a2 (b;2)—(§21) 2) (186)
with 6 = 6 — b and
s = ke (b* — 02) (187)
or with 6 = b” — § and
s = ke (02 — b?) (188)

and similarly near the critical points § — ¢2, 8, we take
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k2 =k’ 189
e (a2 —c2) (b2 — &2 (189)
with § = ¢2 — 0 and
s=ke (01— c?) (190)
or with 6 = 0 — ¢ and
s =ke (*—6,) (191)
we approximate the separation equation as
d’60 1do 1 ke
~2+~~+(k§+8~>@_0 (192)
deo 20 d) 4 0
Changing variables
~—1/4
o=0 v (193)
we obtain a form of the Whittaker (conflient hypergeometric) equation
d?v 1 ke 3
~2+<k3+5~+~2)\1/=0 (194)
a4 0 40
where the solutions can be taken as the Whittaker (conflient hypergeometric) function forms [19], [20]
=W, (s, 1/4, keé) (195)

having asymptotic forms [19]
W, <s, 1/4, ke'é) = Wia/a/4 (fikefé) _ k02 (4@5)3/4 I (3/4 —is/4,3/2, fike'é) - iked/2 (71‘143@5) is/4
(196)

1/4 —is/4,1/2, —ik;é) M (3/4 —is/4,3/2, —z’k;é)

U (3/4—is/4,3/2,~ik.0) = (—ikeé)_l/g T [M(

TGA—isA) 0 T/
(197)
Wy (s,1/4,k8) / (fz'k:;é)l/‘l ~ 2 {r(3/41— 5T (1/42_ i (4@5)”2 +0 (k'é)} , k.;é(?gz)
W (5,14, k8) = W (—,1/4,—kB) ~ 072 (i08) k- 0 (199)
W (s.1/4 k) / (ik8) " ~ w2 [F (3/41 T (1/41 oy (ie.0)" +0 (k;e')} kD 72000)
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We will also need derivatives with respect to 0. Noting that

W (s 1/4, k;é) - d(li@)W/ (s, 1/4,k65) — W (—s, 1/4, —k;é) (201)
we find
(;% {W+ (s, 1/4, keé) / (—ik65)1/4] ~ ml/? {—M/E_ZSM) (—ike)? + 0 (kﬁ)} kO —0 (202)
and
d\d/i {W_ (s 1/4,k€5) / (z'ke“é)l/q ~ w12 [—M (ike)? + 0 (kﬁ)] kO —0  (203)

3.3 Combined Critical (Turning & Singular) Point Limit

The actual limit of interest is when the turning point transitions through the singular point region. To
accommodate this case we need to start from the original equation

2o 1 1 1 1 e 1, (0, —0) (02— 0) B
a0? <a2—9+b2—9+02—9) +Zk (a? ©=0 (204)

a2 2 do —0) (b2 —0) (2 —0)
but take the limit § — b2, 65
?e 1 1 1 1 \do 1., (61—b%)(02—0)
o 1 e 1 _ )
a0° 2 <a2—b2+b2—0 2 b2) A PR Y e (205)

and letting 6 — b% = 0

—+ =
a2

Z-r i e—a) Gt (a2 —b2) 0 (b2 — ¢2) (206)
There is a question here about whether we take § — b% or § — 6, in the slowly varying factors; we have
decided to use the former point, which could have some effect on the following results for k. and s; also, we
will need to follow this lead on the limits taken for the Liouville (WKB) solutions when we match. Dropping
the two constant coeffi cient terms in the first derivative term gives

20 1 1 (B —0)) (B> —0:+0
@ T@+—k2 (~ >@=0 (207)
4o 20 d) 4 (a2 —b2) 6 (b2 — 2)

If we had chosen to evaluate the slowly varying factors at 6 — 62

20 1( 111 )d@ 1, (6 —61) (2 =02 +7)

fo (11, 1y Lo (o)) o
d9> 2\ a?—02 g Oa—c2) d0 A (a2—0,)0(0—c2)

Dropping the two constant coeffi cient terms in the first derivative term factor gives
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d2@ 1 dO 1 (92—91) b2—92 +Aé
46 140 1. (v Jo—s (209)
do 20 df 4 (a2 — 62) 6 (65 — )

Now transforming

o=0""v (210)
P 2 2 2 2 ri 72 n
a0 4 (@=)V*—c) 4 (@2-)0B> -2 16

For the other approach (evaluating the slowly varying factors at 0 — 65)

d*v 1 0y — 0 1., (02—01) (V-6 3
I % 2(2 1) i 15 (02 1)~( 2)+ ~21\1;:0 (212)
do 47 (a®=02) (02— c*) 4 (a2 —02)0(02— %) 160
This is a Whittaker equation [19]
d*w 1k  1/4—p?

A solution can be taken as the Whittaker function [19]

W= Wy, (2) = e 222200 (1/2 4 p— k5, 1+ 2p,2) ~ e /225 | 2 = 00, |arg (2)| < 37/2 (214)

My, (2) = e #2227 T00M (1/2 + o — Ky 14 20, 2) (215)
N M(/24 5= 1 +205) oy M(1/2— = 1= 22)
U2+ p=r 14 20.2) = 20 [F(l/Q—u—m)F(l—FQu) F TA/2+p—mT -2

™ sin (7 (1 + 2p))

1 i(l/Q—i—u—ﬁ)nzn_ 1 272Mi(1/2—u—m)nz’L
L(1/2=p—r)T(1+2p) = (142p),n! I'(1/24p—k)T(1-2u) = (1-2p),n!
(216)
Noting the asymptotic forms [19]
M (a,b,c) erimaz—e N e*2270 —r/2 < arg (z) < 3mw/2 (217)
I (b) r'®b—a) ['(a) = —3m/2<arg(z) < —m/2
Ula,b,z)~2"%, —3r/2 < arg(z) < 3m/2 (218)
we can write
?EZ))M (a,b,c) — F(I;)(i)a)eimU (a,b,2) ~e*2°7% | —31/2 < arg(z) < —7/2 (219)
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D(A/2+p—k) DA/2+p—K) _in(1/24pu—n)
T (1+2p) Mypi (2) T(1/2+putnr) Wen (2)

— o#/2,1/24n '(1/2+p— k) L(1/2+p— k) o—im(1/2+u—r) ]

M(1/2+,U/—:‘<671+2[1,,2)_

T (1+ 2p) T(1/2+p+r)
~e2h L 3n)2 < arg (2) < —7/2 (220)
The series [19]
M (a,b, 2) > ‘Z Z, (221)
and [19]
ab o) T M (a,b, z) _Zl_bM(1+a—b,2—b,z)
Ula.b:2) = 20 [F(H—a—b)F(b) F(a)T(2—b) ]
™ 1 = (a), 2" - (1+a-0),
= Sin (70) F(1+a—b)F(b);(b)nn! T (a)T 2—b bz PEDR ] (222)
give

- _ 1/2—|—,u—/-€
_—z/2 1/2+ _ — o—2/2,1/2+
Mg, (z)=e /2 /"TPM (1/24+p—k,14+2p,2)=e NZ 5o, (223)
— o—2/2,1/240]] (1/9 k149 _ —2/2 1/24p 77
Wepu(z) =€z U2+ p—rK,142p,2) =€ 2 Sn (7 (L5 2))
1 i 1/2+u—f<& 1 72“2 (1/2—p—k),
F(1/2—p—r)T(1+2p) o (1+2p), T2+ p—rk)D(1—2p) oy (1-2u),
(224)
and
/24 up—k) F(1/24+p—rk) _; _
DA+ p=r) )y DAY B=F) inqjoru—nyy,
T (1+2p) G = 2w W (2)
_ e_z/221/2+uf‘(1/2+u— K) i (1/24 p—r), 2" Py 1 re—im(1/2+p—k)
L(1+2p) = (1+2p),n! I'(1/24 p+ k) sinm (14 2p)
(1/2—1—#—& i (124 p—r),2" 1 i (1/2 — p— k), 2"~ 20
F(1/2—p—r)T (14 2u) o 1—|—2,u r'(1-2u) o (1 —2p), n!
_ efz/2zl/2+,u 1 e~ im(1/24p—k) T i (1/2 — - H)n Ln=2p

D(1/24 p+ k) sinm (1+2p) |T(1-2p) = (1—2p),n
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oo

(1/2+,u+/<c)I‘(1/2+u—/<;)Z(1/2+,Lt—/€)nz"

, r
+ {e”(l/”“*“) sinm (14 2u) —sinw (1/2+ p+ /1)}

I'(1+2p) —=  (1+2p),n!
(225)
It is convenient to take the solution W
d*W. 1 ke 3
2 4 e 2
df 0 40
where
-~ - i 5/2 o\ 3/4 ) o~ ik 5/2 o\ is/4 ~

W, (s, 1/4, k69> = Wis/a1/4 (fzkeﬂ) = e'e (72k69> U (3/4 —1is/4,3/2, fzk69> ~ e'e (fzkeﬂ) , ko — o0

(227)

Note that we can transform these conflient hypergeometric functions to the parabolic cylinder function
D, (z) [19]

U (3 /4 —is/4,3/2, fik;é) = 93/4is/te=ikeB2D, ) <\/ i2ke'§> / \/ —i2k.0 (228)

W, (3 1/4, keﬁ) = Wia/a1 /s (—z’k;é) _ g—is/4 (_121%5)1/4 D1 join)s <\/ —izke§> (229)

Note in the axisymmetric case [13] we were using function W, (7,m,5) = Wiy 2, m/2 (*’L'TZ/Q). The analytic
continuation of the solution is

Wy (5,1/4, 2e5) = Wiy g1 /4 (—ize™T) = e #2/2eF87/4 ()34 U (3/4 — is/4,3/2, —ize™™)  (230)

where [19]

U (a,b, ﬂ-zeim) _ m iz [ M (b—a,b, —iz) _ eiiW(lfb)fiw(lfb)/QzlfbM (1-a,2-0

—iz)
sin (7b) [T (1+a—0b)T (b) ['(a)T'(2-10) } (231)

As a second solution we can take

I (3/4—is/4) T (3/4 —is/4)

e AW (s 1/4, keb') —

Mis/a1)4 (_ikeg) - e_iﬂ(3/4_is/4)Wis/4,1/4 (_ike§>

I (3/2) T (3/4+ is/4)
=T (3/4 — is/d) eiked/2 (—ike§>3/4 [F(;mM (3/4 —is/4,3/2, —z‘keb') - mU (3/4 —is/4,3/2, —ikﬁ)}
o —iked/2 (_ikj) e . ke — 00 (232)

which is asymptotic to W} when k. and s are real. However, we note from the invariance of the ODE when
we replace k. — —k. and s — —s, it is easier to take as a second solution
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W (s, 1/4, keé) — W, (—s, 1/4, —k:eb') = W_is/ai1/a (mb’)

- - 3/4 ~ o~ N\ —is/4 ~
= eI (i 0) U (3/4+is/4,3/2,ik.0) ~ e U2 (i 0) T k- o0 (233)
72\ a4 1/2 1 \1/4 T'(3/4+is/4) ., =\1/2 ~ ~
- 1/4, ke ~ T(2/4 L ic/4) € 1-2—777——= e e y Rel —
W (0. 1/4.88) [0~ P s ) (Ao () +0 (k)| kb —0
(234)

Note also when s =0

~ ~ o  3/4 ~ 1 , N 1/2 ~
W (0, 1/4,k69) = Woi/a (zke) = oike0/2 (zke) U (3/4,3/2,2'1%9) = /2o (zke) HE), (k69/2)
(235)
The ODE parameters are
b2 —6,)
k2 _ k2 ( 2)
e (a2 — b2) (B2 — c2) (236)
2 2
— 2(b _91) (b _92) — 1.2 (p2
ske =k CEDICE I k2 (b* — 02) (237)
s = ke (0> — 65) (238)
and the original variable is
o=0"w. (s 1/4, keb') (239)
The turning point of the equation
2 1 .
dz++<k§+5’f+i)w+=o (240)
a4 0 46
is at
~ ~ 3
(k:eﬂ + s) RO+ =0 (241)

Note that for s < 0 there is a turning point for 0> 0, which for k0 >> 1 (or if we ignore the 3/4 term) is
at 0 = 0y — l)z, but the asymptotic form of the local focal solution here assumes we are outside the turning
point, with 8 greater than this location; it should therefore be fine for matching to the global solution outside
this turning point.

For the other approach these become

g 12 (62 — 01) L2 (02— 61) (b — 6) + 2 lw=o0 (242)
i |4 @=0)0:=) 1 (@000 - ) 160
22 (02—01) (243)

¢ (CL2 — 92) (92 — 62)
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(65— 61) (b2 — 6,)
(a2 — 03) (02 — c2)

ske = k? = k2 (0> — 05) (244)

s = ke (0> — 05) (245)

and there is thus a slight change in the value of k2; this does not seem to be significant. It is also useful in
the limit 6 — b2, 6,

4?2
tolet b2 — 60 =0

2 01 — b2) (0 — 0
d*e 1( 1 1 1 )d@ ikg (61 —b*) (62— 0) o0 (246)

E BT e ) a (a2 = b2) (b2 — 6) (¢ — b?)

(0 01) (62— 0 +0)

e 1 1 1 1 de 1
g 2\a®=0b* g 0P=ct)dp 4 (a2-12)0 (b —c?)
Dropping the two constant terms in the first derivative
2o 140 1,076 (62-07+7)
@6 1do 1 i 0=0 (248)
4o 20 d) 4 (a2 —b2) 6 (b2 — 2)
or
d? 1d 1 ke
N(;)+~(?+(k3+s~‘>@_ (249)
do 20 d§ 4 0
2
2 2 (b — 91)
— 250
e (a® — b2) (b2 — ) (250)
2
2 (b — 91) 2
= — 251
ske =k @ =0 (2 — ) (62—b ) (251)
s = ke (02 — b?) (252)
Now transforming
o=0 vy (253)
o1 e
d~2+<k§+35 i)\pzo (254)
4 0
de 46
which is again the Whittaker equation
d*w 1 Kk 1/4—p?
it S e A = 2
d22+( 4Jrz+ 22 >w 0 (255)
with solutions
o=0 "w. (s:1/4,k.8) (256)

This case is another example of the invariance of the ODE, in this case under the sign reversals of 0 and s.
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3.3.1 Evaluation Of Whittaker Function

Near the origin we use the identities

W, (s 1/4, keb') = Wisa/4 (—z‘k;é) — (ike0/2 (—ikeb')m U (3/4 ~is/4,3/2, —ik{é) — _pl/2ike0/2

N N\ n—1/2
s/ o (3/4—is/4), (—ikeD o (1/4—is/4), (—ikeD
(~ik0) 1"(1/42—2'3/4) : (3/2)71&! ) N F(3/41—is/4) 7;) (1/2)(n nl )
s ik oy YA ) o (1/4 —is/4), (—z‘keé)" 2(—2‘1%5)1/2 o (3/4— is/4), (—z'k:;é)"
e (_”“69) T (3/4—is/4) =, (1/2), n! T T(1/4—is/a) &= (3/2), n!
(257)

to find

W (s 1k (-ikd) " [1 ()2 2o (k) <(k:e§)2>] gy

T (3/4 —is/4) T (1/4—is/4)
(258)
_ Y Lo Y _ _
W (S’ 1/4, ke‘g) / ("k59> e [r(3/41_ is/d) r(1/42_ is/4) (_Zkee)l 4o (H)} ’ kee(_’ 0)
259

Note also when s =0

Wi (0.1/4.58) = Woya (—ikeB) = /% (_ikeg)m U (8/4,3/2,~ik0) = o'/ (—ik65)1/2 1) (k6/2)
The asymptotic form is [19] (260)

Ula,b,z)=2"° [Z @, Ata=by _yn g (|ZR)] , —31/2 < arg(2) < 37/2 (261)

)

(262)

R—-1

S G i, U Zis/ ) (5 (

k.0

n!

Wis/a1/a (_ike"é) _ oike0/2 (—ike§>is/4 [

n=0

An integral representation is [19]

F(“)U(avbvz):/ e (1 4+ 0" dt
0
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e'"/?R 0
:/ e (1+t)”‘“‘1dt+/ e (1 + 1) i Rdy (263)
0

/2
_ R o . ‘
I'(a)U (a,3/2, —iz) Ne”/4/ et (¢ — 4)1/2 e dt+iR1/2/ ele T E R/ 2 (264)
0 w/2
/2 i /2 . . . . e 1 .
/ ez(e ZR+<P/2)CZQ0 _ / 6(7 sin p+1 cos Lp)zR«H(p/Qd(p ~ ezzR/ eftszdw _ 7ezzR (265)
0 0 0 zR
, R i ,
T (a)U (a,3/2, —iz) = e'™/* / e #o L (4 — ) /2 gy — ZRV/2¢ieR (266)
0 z
. o0
T (a) U (a,3/2, —iz) = ei/4 / el (4 )1/ gy (267)
0

which is the analytic continuation for this phase of argument. Near the lower limit with a = 3/4 —is/4
6”/4/ e o (b — i) P dt ~ em/“‘/ (L—zt+-- )t P (14it(1/2—a)+---)dt
0 0

~ (ig)" [14_1'(1/2_“)_%4_..}

268
a a+1 ( )

Near the upper limit

eiﬂ'/4/ e—2ty—1/2 (1- Z-/t)l/?—a dt ~ eiﬂ/4/ e~ #—1/2 (1—i(1/2—a)/t+---)dt
R R

. 1 1 [ __,_ — 1 _ 3/2 [ ., &

~ T4 zR / 2ty —3/2 :| imw/4 . |: zR / zty—5/2 :|

e e e “'t dt| +e 1/2—a e e “'t dt| +
[ZVR 2z Jr W/ ) zRVR z Jr

- 1 1/2 : 1 3/2 [
~ 6177/4 |: €7ZR / —zR T :| + efz7r/4 (1/2 _ a) |: 672R _ L/ eztt5/2dt:| N

VR T L2R3/2 ¢ 2RVR 2 Jr
4 1/(22)+i(1/2—a)}
iw/4—zR _
~— e 1 . 269
R | R 269
~ o  3/4 -
Wisjai/a (fiketQ) — ike0/2 (fikee) U (3/4 —is/4,3/2, fikeﬂ) (270)
Note for the other function
wW_ (s 1/4, k;é) - W, (—s, 1/4, —k;é) (271)

and the integral representation is analytically continued in the other direction

F(“)U(a,b&):/ e (140" dt
0
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e”'"/2R 0
= / e (14 4) a4+ / e (1 + 1) i Rdyp (272)
0 —m/2

R 0 ) .
T'(a)U (a,3/2,iz) ~ e "™/ / e F e (t 4 0) 2 dt + iRV? / i “ R ei0/2
0 —7/2

/2 ) /2 oo
/ e—i(e*1¢zR+Lp/2)d(p — / e(—sin @—1cos Lp)zR—igo/Zd(p ~ e—z’zR/ 6_¢ZRd¢ — ie—izR (273)
0 0 0

zR
, R i .
T (a) U (a,3/2,iz) = e*”/‘*/ e #0 (t44) /2t 4 RV 2emiER (274)
0 z
T (a) U (a,3/2,iz) = e~/ / et (¢4 )12 gy (275)
0

which is the analytic continuation for this phase of argument. Near the lower limit with a = 3/4 + is/4

£ £
e—“/‘*/ e—tha—l(t+i)1/2—adt~e—m/2/ (1= 2t )t (1 — it (1/2— a) +- - ) dt
0 0

~ e [2 e U022 ] (276)

Near the upper limit

e—i”/‘*/ e—ztt—1/2(1+i/t)1/2‘“dtNe—i”/‘*/ e P V2(14i(1/2—a) Jt+---)dt
R R

1 oo

i 1
~e im/4 |: e zR
z

L A 1 3/2 [ .-
- — e *'t S/th} +e™(1/2—a { ZRf—/ e " 5/2dt] +oe
VR 22 Jr 0/ )

e
2RVR z2 Jr

- 1 1/2 : 1 3/2 [
~ t9/17\'/4 |: €7ZR / —zR 4. :l + eZﬂ'/4 (1/2 _ Cl) |: 67ZR _ L/ eztt5/2dt:| 4.
z

N e :RVR = Jn
1 1/(22)—i(1/2—a)}
iw/4—zR 7
~ e 1 4o 277
Vi { R 17)
~ ~ o N\ 3/4 ~
W (5, 1/4, kee) = Wi /4 <zk6’) = emike0/2 (me) U (3/4 +is/4, 3/2,1'1%0) (278)
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3.4 Singular Point Limit

2

The isolated singular point at ( — a? (corresponding to the obit center z? = 0) leads to

2z 1/ 1 1 1 \dZ 1., (a®—061)(a®—0,) _ 2
i mr e i ge e et 0o e

We can transform out the constant

Z = exp E (a2 i =T ic2> (a® —g)} O (280)

a2

20 1/ 1 \do
C2_2<a2—<>dc

L L (a2 — 91) (a2 - 92) 1 1 n 1 2 1 1 i 1
4" (a2 =) (a®=b?)(a®—c?) 16 \a?—b%2 a?—c? 8(a2—¢) \a?—b* a%2—¢2
Instead in the spirit of simplicity let us drop these and approximate as

2z 1 1 az 1 , (a2_91) (a2_92) - )
P <a2_C)d<+4k’ (az_C)(ag_b2)(a2_Cz)Z—0, (—a (282)

to find

0=0,¢—ad?

(281)

ac> 2

or

2z  1dz 1 ~
St —=—=+—=kZ=0,(=a*—(—0 (283)
d¢ 2C¢d¢  A¢

k2, = k2 284
el (ag_bg)(ag_cg) ( )
Using the canonical equation
U 1dU X\
LU= 285
du? + 2u du + 4u (285)
with solutions
U =uTurpp (W) 4Ys s (Aa2) ulAH), (3l 2) s ut A (t/?) (286)

we can write

2={ 3 ()= { X Covr)) (5
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Figure 5: This figure, taken from Moon and Spencer, illustrates the types of coordinate surfaces involved
in ellipsoidal coordinates. One candidate for the enclosing surface is made up of sections of the ellipse and
hyperbola (orbit end cavity boundary surface) shown in red may be taken as the scar enclosing region.

4 CONSTRUCTION OF ASYMPTOTIC FIELD

We now assemble the complete asymptotic solution along the orbit of Figure 5. With the convex walls we
are considering the region inside the focal points.

4.1 Radial-Like Variable

As we proceed toward the orbit (note that £ — ¢
€ — 01,2 =0, we set £ = c? — ¢ and we use the random phase refkction coefli cient R, = e
radial-like separation function as

2 corresponds to z?2 — 0), but near the critical points

i®ox o write the

X ~Re [C+IW+ (sz7 1/4, kexa +e_W_ (Sz, 1/4, kexg)] /\4f5v

~ con Re [e—i%zﬂm (s 1/4, kmg) + €02y (sm 1/4, ké)} /§‘/§ (288)
where
e, =c_, =P/ 2¢, (289)
W, (Sa:; 1/4, kezg) ~ gikest/2 (—ikezg)ismﬂl , ez — 00 (290)
W_ (sx, 1/4, kewg) ~ g thent/2 (lk’exg) e , ke€ — 00 (291)
k2, = k? (: — &) (292)

(@~ @) (12 — )
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Sz = key (61 — ¢*) (293)
X (&) ~ €™+/3¢0, Re [eike$2/2+i(s$/4) (ke ) —iPos /2 + €i¢0xe—ikew2/2—i(sm/4) lll(kgmg)+i<1>0w/2:| / 4 g’ kexg oo

~ 207 S c08 [keaf /2 + (50 /) (o) — @0r/2] /{2 L b = o0 (204)

We note that the direction £ — —oo, or growing E, is in a direction away from the scarred orbit, so the
placement here of the phase refection coeffi cient is correct. From the preceding expressions

~ SV eV ~ ~
W (oot /ack) /(i) e~ wgaay (ed) 40 (k)| (2;5) o
and
~ Y DSV ~ -
W (50174 k) / () [r W T (el O (kezg)] | k(wg 7 :
296

we find near the degenerate elliptical strip (at 22 = 0)

X (€) ~ cogk/* Re [eiw/sei%mw i (sz 1/4, kexf) JA] —ikeaf + €™/3ei P02y (sm, 1/4, kexE) /A iken€

1 ~ i, [2-in/8 | 1

~ 1/21.1/4 - -
CoaTr “hiey Re HF(3/4¢SI/4)€ T (3/4 + isy/4)

€¢q>01/2+m/s}

1 Lo\ —i®gy /2—im/8 1 S 7\ 2 i®oy /24im/8 3
v () e g (F) ¢ +0 {kst)

(297)
Now noting that ( ) ( ) (C ) ( ) (C )
2 _ =€) (n—c - B n—c? — ) ~
7= (a® — ) (0% — 2) T (@=) (- 02)5 (298)

we see that a derivative with respect to \/2 is proportional to a derivative with respect to the distance

variable z, as E — 0. Now if we choose to have evenness with respect to z as z — 0 we can choose to make
this derivative vanish. In the former axisymmetric problem we set the normal derivative of the potential
(times the radius) equal to zero as we approached the scar center. What is the underlying reason for imposing
this condition? It does represent an even type condition, but its significance is also the fact that the power
fow must vanish at the scar center? In the two-dimensional problem we could argue the same thing. If this
is the case, we do not necessarily have to impose this condition on Y at all, but only on X in this region;
note by analogy that we did not impose a particular cos ¢ or sin ¢ choice in the axisymmetric problem. Note
that in the inside region we can write
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o rex, e [ C-—m-e) 50X
§1Ln32/02 ——hydn = /(a2 —¢2) (b —c)/C2 \/(aQ—n)(b2— ey c? fagdn—O (299)

he O¢ n) (n

(= 77 ) (¢ —§)

\/ \/ —O(2-9) (300)
(n— C n §) (n—29)

\/ \/ =) (301)

he— 1y /=90 (302)

D(0) = (a*> —0) (b* —0) (* - 0) (303)

OX (o ay_ . OVEox [a\/ £ 0X .m[ 1 ax ] [ 1
PN A EENCE PN B ga\f
(304)

(In a follow-on report on concave walled cavities with interior foci, we can impose this condition on Z in the
region outside the foci and in the region between foci we can impose it on both X and Z.) However, if we
wish to impose evenness in y? for convenience we should be able to do so (like choosing cos ¢ or sin ¢ in the
former axisymmetric problem).

We note from

B

[W+ (sz 1/4, kexf) / (—ikex2)1/4] ~ /2 {—M (—ikex)* + 0O (km\/gﬂ , kea€ — 0
(305)

=

d ~ N 1/4 ) 2 ~ ~
e . ~ 20 4 1/2 N
N [W (s001/4,ea€) / (ikea) ] ™ [ S )P40 (k\/g)} ke =0
dy\/§
(306)
that
d X (€) ~ 20126340, Re 1 o i®0s/2-37/8 | 1 givos/2+isn/s Lo (=
d\f er T [ (1/4 —is,/4) U (1/4 +is;/4) e’”
3
(307)
and if this must vanish as \/2 — 0 then
in L (1/4 + s, /4) _ (iPoa+im/4 (308)

T (1/4—is,/4)
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or

U(1/4+is:/4)  ywenn
A D = ¢i(Poz—7/4) (309)

in which case

X (&) ~ cozk!/* Re {ei“/gei¢°”/2W+ (sw, 1/4,k:el.g) /A —ikenl + €T/8e o 2 (sm 1/4, kea{) /] ikeaf ]
~ co,;k:égé4 Re e_i”/4e_i(%m_”/4)/2W+ (sz, 1/4,](159;%) / y —ikewz—l— eim/4ei( oz —m/4) 2y (sgg, 1/4, kemf) /A ikez€ }

T (1/4 +is,/4)

| insa [T (/4 —is, /)
T (1/4—is,/4)

- 1/4
Cockies” Re e T (1/4+is,/4)

We (800 1/4 ko€ ) /) =ik + €7/ W (50 1/4 ks ) /4 zkm]

(310)
Using the small argument forms of W

X (&) ~ coam/ k!  Re |e

Cimpa VL (/A s /)T (/4 —isa/4) | irya /T (/A —ise /AT (1/4 + is0/4) -
/ T (1/4 sy /)T (3/4 —is,/4) € / e L +O(km§)]

~ Copm 2R T (1/4 — s, /4))|

—im /4 1 i /4 1 i
Re [e / T (1/4 +is, /)T (3/4 —isg/d) € / T (3/4 + isy/4) T (1/4 — isy/4) +O(k”5)]

~ Copm~Y2EY4 T (1/4 — is, /4)| Re [e*”/‘* sin (1/4 + isg/4) + e™ 4 sinm (1/4 — is, /4) + O (k£)]

~ cop (2m) TP RYAD (1/4 — s, /4)]
Re [67”/4 {cosh (s, /4) + isinh (w5, /4)} + ™/* {cosh (s, /4) — isinh (75, /4)} + O (kmg)]

~ cop (2) V2 BYA T (1/4 — is, /4)| Re [2 cos (1 /4) cosh (s, /4) + 2sin (r/4) sinh (s, /4) + O (kmg)]

~ copm V2EYA D (1/4 — s, /4)| Re [cosh (155/4) + sinh (s, /4) + O (kgﬂ
~ coum PR T (1/4 = s, 4)] €74 4 O (Keaf ) (311)
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where we used the refection formula T'(2)T (1 — 2z) = wesc (mwz) [19]. We have thus made the connection of
the random phase @, with the derived (connected primarily with 6;) separation constant s,. We note from
Stirlings formula [19] we can write

T (1/4 _ ZSx/4) ~ /27T€_1/4+is’”/4 (1/4 o Z'Sz/4)71/4fisz/4 ~ /27Tej:i7r/8+isz/4 (|Sz| /4)71/471‘51/4 e:FT{'Sz/g , Sy — £00
(312)

T (1/4 — sy /4)] ~ V27 (|sg] /4) /e mlol/8 s, — doo (313)

4.1.1 Outward Extension

The X (&) solution of the inside region can be extended outward in validity by matching to Liouville solutions
[18]

X (€~ { oin [’; gxﬁP(ﬂ)dG]} 27 s — s [’“ / ) dekéo]
€o 3

V(&) | ¢ V(&) 2
(314)
p(0) = (0—61)(0—02) (315)
P(0)=p(0)/D(0) (316)
D (0) = (a® - 0) (b* — 0) (c2 — 0) (317)

which are in turn matched to outward solutions with a random phase refbction coeffi cient. If we evaluate
this global solution in the limit as ¢ — £ = ¢ small but large compared to 6; — 2

TS /8 / ) Inin(CQ,Gl) _ _
X (&) ~ 2e (B2 — *)eos cos E/ 5 (0 92) (0 Z) df + kdg (318)
V0 -90:-9 2 (= 0) (b = 0) (> = 0)
TSy /8 4/ — 2 min(czﬂl) _ _
X (&) ~ 2e (0> — oo cos ﬁ/ 5 (01 92) (6> Z) df + kdg
VO =+ =€) (0, - 3) 2 Je (a®> —0) (b*> —0) (c> — 0)
2e™5 /8¢ o [min(e®01) (01 — 2+ c2—0) (02 — c2)
~ i/ cos lz/g (@2 =) (2 =) (2 —g) 0 TR
750 /8 _ 2 3 01 —c2+0) _
i Ly - (922 82) . / 7( - >d9+k60
</§ 2 (a’ —C ) (b —-c ) ¢?—min(c2,01) 0
Qeﬂ'sm/Scow k (92 _ 02) /g (91 — 2 +§) ~
~ ———c0s | = -2 df+ kb 319
(L/g 2 \/(a2 =) (12 =€) Jomax(0.c2—01) 0 0 (319)
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Noting

- o Jp-e
€ (91 —c? +5) _ (00,1) du
/ %d9:|91—02| _V1+u— , where £ —>sgn(€1—c2)
max(0,c2—01) 0 [01—c2|/¢& u
\/1:E|091—62| (o0,1)
= |91 /
— e eEn/TEu
\1£1(6 — 2| /€ \1£]6, — 2 /E+1
y— ol L, o ‘/f (321)
|01 — 2| /¢ 2 /11\91—62\/5—
where we used
/ u \/lﬁ:u—l‘ (322)
uvl:l:u Vitu+1
Expanding for <02 — 91) << E
E (01 — 62 + 0) 1 1 4'5
N A~ (- + = (0 — A In | 323
/max(0,02—6‘1) 0 g 2 ( ' ) 2 ( ! ) (01 - 62) ( )
2™+ /3¢y, |k (62 — c2) -1 o 1 ) A€
X(g)wf/g COS[Q\/(GZ—CQ)(bZ—CQ) §+§(0170)+§(0170)ln 7(91—02) + kdg
2e™5+ /8¢, 1, ~ 1 1 Eex
~ 20 s [kexé 4+ -8, + =8z 1n € + kdg (324)
4/7 2 4 4 T
3
2
2 2 (92 —¢ )
= 2
k&L k (CL2 _ 02) (bZ _ 02) (3 5)
Sz = keg (01 — ¢7) (326)
Matching to the local solution
X (5) ~ 26#81/8601 COos kezg/2 + (sm/4) In (kezg) - (I)Uz/2} / \ g y kemg — 0 (327)
gives
kdo = (8z/4) In |85 /4] — Po,/2 (328)
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4.2 Azimuth-Like Variable

For the azimuth-like coordinate separation function we use the Liouville representation [18] as the global
solution

Y (n) ~ — ){ sin E/n \/mdaﬂz%cos l’;/n P (0)d0 + kbeo (329)

p(n) L cos Vb (1) max(c2,01)
where
p(0) =(0—061)(02—0) (330)
P(0)=p(0)/D(0) (331)
D (0) = (a® - 0) (> - 0) (0 — ¢*) (332)

and the shift §.g, which is presently unknown, will become apparent later when matching to the local solutions
at the critical points. Note that the choice of cosine in the azimuth-like solution is not essential because the
phase shift kd.y can change this to sine. The local solutions below that match to this global solution are
chosen to be consistent with this cosine choice, but the phases e’®1ev and e’®1*v would likely change with the
sine choice.

4.2.1 Inner Critical Points

Near the critical points n — ¢2,0; with n — ¢ = 7 the local solution is

Y ~Re [c-i-cyW-&- (Syv 1/4, keyﬁ) + ey Wo (Syv 1/4, keyﬁ)] /%

~ Re [C+cyW+ (_Szv 1/4, kemﬁ) + C*CyW* (_Sza 1/4, kemﬁ)] /% (333)
where (here we also give the association with the prior subsection radial-like parameters)
2
2 12 (62 — ) _ 12
k2, =k = k2, (334)

@ -
Sy = key (02 - 01) = ke (02 - 91) = —5, (335)

Note here that 77 = — ¢ — oo corresponds to 1 moving away from c? toward b2. Because /1 — ¢ = \fﬁ,
or /b2 —n= \/ﬁ, represents a linear spatial coordinate with limit, 22 = 0, or y2 =0,

2 b — - b 9 b — —b?) _
y :(5)2—02((52—b2)) (b _n):(gz_cgg((sz_bg))n (336)
P9 L @9k-) -

(@ =) (7 =)

and if we want to enforce, say, even boundary conditions, we would take
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ay
( =n—c— 0) =0or—=
df d\/7
In this region for b < (, < ¢ < a? we can only drive y?> — 0 toward the symmetry plane by taking n — b%.
Thus in this inside region, for even boundary conditions, it seems appropriate to impose the symmetry
condition on this limit. (In a follow-on report on concave walled cavities with interior foci, in the outside
region it seems appropriate to impose the symmetry condition on the limit 7 — c2. In the region between

foci we do not need to impose this symmetry condition since in that region it is already imposed on X and
Z.) Then using

=b"-n—0)=0 (338)

Y ~ k;f Re [e_m/strcyWJr (8ys 1/4, keyn) | N/ —ikeyn + em/Scfcny (8y, /4, keyn) /v Zkeyﬁ} (339)

[W+ (54,1/4, keyT) | (—ike n)l/‘*] ~ /2 {_M( ikey) 1/2+0( yf)}  Feyil — 0
(340)

4
dy/7

[ (s, 1/4, keyn)/(ikeyﬁ)“‘*] ~ /2 [—M(zkey 1/2+0( y\/)] eyl — 0 (341)

d\f

. 1 ) 1
~ —2 1/2k3/4 . —i37/8 e i37/8 _ 49
7 017 ) =2 R R e e e g <0 ()
Setting (where co.y is taken as real)
ei¢>1cyC+Cy =Cocy = ei@lcy/2600y (343)
we see that
dY . . 1 ) ) 1
~ Coey R —i®1cy/2 ,—137W/8 i®1cy /2 ,137/8 =0 344
a/i (1= ¢%) ~ coey Re e ¢ T(1/4—is,/4) € ©  T{/4+is,/4) (344)
gives
€i<1>1cy+i37r/4 F (1/4 + lsy/4) (345)
I'(1/4 —1is,/4)
ot(®rey—7/4) _ I(1/4+1sy/4) T (1/4 —isz/4) — ¢ i(®oa—7/4) (346)
I'(1/4 —is,/4) T (1/4+is,/4)
Doy = —Pop +7/2 (347)
Then

Y ~Re [c-i-cyW-&- (Syv 1/4, keyﬁ) + ey Wo (Syv 1/4, keyﬁ)] /%
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~ Cocy Re [€_i¢lcy/2w+ (sy>1/4, keyn) + e'Piev/ 2 (sy,1/4, keyﬁ)} /7 (348)

and using
Wy (Sya 1/47 keyﬁ) ~ eikeyﬁ/Q (_ikeyﬁ)isy/4 ) keyﬁ — 0 (349)
1 2
W 1/4, key7)) [ (—ikeyi)/* ~ 71/2 - —ikiey?) ' + O (keyi) | , keyi] — 0
(350)
W_ (5, 1/4, keyTl) = W (—sy, 1/4, —keyil) ~ e *es/2 (iky i) "0/* | koyii — 00 (351)
1 2
W_ (8, 1/4, keyi) / (ikey)/* ~ 7/2 - ikey )2+ O (keyil) | + keyli — 0
(352)

the asymptotic forms are

Y ~ coey Re [e_wlcy/zeikeyﬁ/z (_ikeyﬁ)isy/4 + ¢i®rey/2p—ikeyii/2 (ikeyﬁ)ﬂsy/zx} S, Feeyil — 00

~ €7rsy/8C0cy Re |:€ikeyn/2+i(s?l/4) 1n(kﬁyn)7i¢’1€y/2 + efikeyn/27i(sy/4) ln(kem)H‘I’uy/?} /{1/75 , keyﬁ — 00

~ 2675300, €08 [y T1/2 4 (/) I (e ) — ®10y /2] /37, byl — 00 (353)

and

Y ~ kéé4I{e[egjﬁ/sc+cyLVQ—(Sy»1/4akeyﬁ)/ 4‘*ikeyﬁ‘+’eiﬂ/86—cypvl-(Sya1/4akeyﬁ)/ @ikkyﬁ]
~ Corykll* Re [e—i‘i’lcy/ 2= /8N, (3,14, keyT]) | &/ —ikagh) + €010/ 2T (5. 174, keyil) /é/ikeyﬂ

~ eyl Re [e‘“%"’/‘”/ 2L (5, 1/4, Keyi]) [ 3/ =ikeyi] + e PrenTTDRPRTIYY (5 1 /4, ke i) /</z'keyﬁ}

- ra/4—is,/4 1 2 ~
NCOCyﬂ_l/QkééélRe 6—171'/4 ( / 7’Sy/ ){F( _ (_ikeyn)l/2}

T (1/4 +is,/4) \T (3/4—is,/4) T (1/4—is,/4)

T (1/4+ is,/4)

i 1 2 . ~\1/2 ~
e o) TG o)~ Ty () }w(’fey”)]
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~ cocyﬂl/zkif Re [e

—im /4 VI (1/4 —isy [4)T (1/4 + is, /4) _ 2 (—ik '5)1/2
T(3/4—is,/DT (I/d+is,/4)  \/T(/A—isy/OT (/AT isy/D)

i/ VI (1/4—is, /AT (1/4 +is,/4) 2
I (3/4+is,/4)T (1/4 —is,/4) VI (1/4 —isy /A)T (1/4 +is,/4)

(ikey )" } +0 (keym]

Qe im/2
~1/27.1/4 ;
~ Coeym Tk, (1/4 —isy/4)| Re

e~/ sing (1/4 +is,/4) — 5 (keyi)'?

27Tei7r/2

T (1/4 —isy/4)|

+e™*sinT (1/4 —is,/4) — 2 (keyﬁ)l/Q + 0 (keyﬁ)]

~ COoey T —is ele ™/ *sing + s, + ™ tsin —is + eyl
ym 2EYA T (1/4 — sy /4)| Re |e /4 1/4 +is, /4 /4 1/4 —isy/4) 4+ O (key

~ oy (27) 2 REYHID (1/4 = sy /4)
Re [e_”/4 {cosh (ms,/4) + isinh (s, /4)} + ¢™/* {cosh (s, /4) — isinh (15, /4)} + O (key7)

~ Coey (21) VP KUY (1/4 — s, /4)| Re [2 cos (m/4) {cosh (ms, /4) + sinh (s, /4)} + O (keyT])]

~ cocym V2K |T (1/4 — isy/4)| [cosh (s, /4) + sinh (75, /4) + O (Keyi])]

~ oy V2RI ID (174 = iy [4)] [€759/1 O ()| Fiey] — 0 (354)

Now to match to the global form

~ COy co ﬁ n (9—91)(92—9)
YO)~ = [2 /mx(cz,m \/ @ —0) (12— 0) (0 — &)™ T Fo

we let 77 =7 — c?

Coy k (92 — 02) /ﬁ 02 — 01 ~
Y ~ cos | = 14+ ————df + kb,
(77) \4/(?]/ + 02 - 91) (02 - 02) lQ \/(aQ - 02) (b2 - 02) max(0,01—c?) 0 0

_ 2 gl 2 -
IV VRPN oy B Tk 2/ 1+ C 200 4 ks
Y 7](92 - 02) 2 ((L —c )(b —cC ) max (0,01 —c?) 0
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where we have assumed that 77 >> ¢? — 0. Letting

0]
L=

— 357
5 (357)
~ -0
df = udu (358)
u?
7 — 0, (o0,1)
/ 1—|— d9—‘c —91| V1 Z 7Where + —>sgn(c —91)
max(0,01—c?) 9 [e2—01|/71
T£]e2—6,|/7 1 [V d
oy [VEE ﬂ/u/ o
e — 01| /7 26,5 w1 Eu
|~ 0| 1:|:|c \/1j:\02 01l /n+1
2
! 91|/77 VIt -0, /-1
14 (c2—61) /n+ 1( 61) In (359)
2 —
VT ' +(02—91)/77—1
where we used
/ U \/liul‘ (360)
u\/liu Vitu+1
Expanding for (02 — 91) <<
g 01 ~ 1 47
/ 1+ 52 1d9~n+7(02701)+7(0 —61)In 277 (361)
(079170 ) 2 ce — 91
Using
2
2 _ 12 (62— ¢*) _ 1.2
kZ, =k CEOICEEE kZ, (362)
—8g = keg (c2 — 91) = key (02 — 91) = sy (363)
gives
cOy key~ 1 2 4ﬁ
Y ()~ ——=—u ke —0 —ke —01)1 ke
(n) 4ﬁ(02_62)cos[2 + Jhey (€% = 01) + Jhey (c 1)11027014— 0
Coy 7y
o= [eyiif2 + 2+ 22 n Ay i/ 5, + koo (364)
Comparing to the local solution
Y~ 2670 By 08 [keyiT/2 + (/4) In (keyl) = @1y /2] /371 5 byl — 00 (365)

gives
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= 2e7 ™%/ 8¢, (366)

%y In|de/sy| + kdeg — nem = —B10y /2 = —ff In |4e/sy| + k6o — nem = oy /2 — /4 (367)

4.2.2 Outer Critical Points

Similarly, the local solution near the critical points n — b2, 05, with b2 —n =7, is

Y ~ Re [C+byW+ (Sya 1/4, keyﬁ) +copy Wo (Sllv 1/4, keyﬁ)] /%

~ Re [C+byW+ (=52, 1/4,kezm) + c_pyW- (=52, 1/4,ke.n)] /% (368)

where

2 2 (b2 - 91) 2
frd = k
key k (a2 — b2) (b2 — ¢2) ez (369)

Sy = key (02 — b%) = ke (02 — V) = —s. (370)

This connection to the axial-like coordinate parameters k2, and s, will become clear in a follow-on report
when we deal with the inner focus, but we will nevertheless use these notations for these quantities here in
the convex walled case. Note here that 7 — 0o corresponds to 1 moving from b? toward c¢?. Then using

Y ~ ké?& Re [eim/80+byw—&- (8ys 1/4, keyn) [/ —ikey + em/sc—byW— (8y> /4, keyn) / v Zkeyﬂ (371)

17 W o V) i 2 | e () 4.0 (k)| =0
(372)

[ (34, 1/4, keyn)/(mey'ﬁ)l/‘*] ~ /2 [—M(zkey 1/2+0( y\/)] kel — 0 (373)

d\f

) 1 y 1
b2 _9 1/2k3/4R —i37/8 B i3m/8 =0 374
d\/ (= b%) ~ =202k Re |eqpye T(1/4—is,/4) % T(1/d71is,/4) (874)
Setting (where cop, is taken as real)
ei<I>11;1;C+by — C—by — ei®1b7//260by (375)
. . 1 , ) 1
b2 —9 1/2k3/4 —i®1py/2—137/8 i®1py /2+437/8 =0
d\[ (= 0%) ~ —2m ke Teony Re e T(1/4—is,/4)  ° T (1/4+ is,/4)

(376)
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gives (where in the next subsection we define ®1,)

, , I'(1/4+1is,/4)
i®rpy+idw/4 _ jim = \Z/F T Oy =)
¢ T (1/4—is,/4) (377)
i@uy—r/a) _ L (1/4+isy/4) T (1/4—is:/4) i@y —n/a)
e = - - =e (378)
[ (1/4—is,/4) T (1/4+is,/4)
cI)lby = —CIle + 7'('/2 (379)

This connection to the axial-like coordinate phase ®,, will become clear in a follow-on report when we deal

with the inner focus, but we will nevertheless use this notation for the phase here in the convex wall case.
Then

Y ~ Refeqny Wa (5y, 1/4, keyil) + c—by W— (s, 1/4, keyi)] /7
~ Re [y {We (54, 1/4, keyl) + P00 W_ (5,,1/4, keyil) Y] / /7
~ Copy Re [e—i‘l’wmw+ (59, 1/4, keyl) + € ®100/2W_ (s,,1/4, keyﬁ)} /7
~ Re (e Wi (=52, 1/4, keaT]) + copy Wo (=52, 1/4,ke)] /7
~Re [y (Wi (=52, 1/4, k) + € P W_ (—s,,1/4, ki) }] / /71

~ copy Re [e7 02V (<5, 14, Reail) + €V PW (2 1/4 k)| /37

~ copy Re [eiq’lzﬂ—”/‘*mq (=85, 1/4, keoT]) + e~ ®1=/24im/4y7 (L5 /4, kezﬁ)} G (380)
and using
Wi (54, 1/4, key i) ~ €%ev/2 (—iko i)/ | keyif — o0 (381)
1 2
Wi (5, 1/4, eyi) | (—ikeyi)'/* ~ /2 - —ikey)"* + O (key)| + keyl
+(sy> /7 y’?)/( ? yn) ™ F(3/4—Z8y/4) F(1/4—zsy/4)( ? yn) +O( y77) 9 y77—’0
(382)
W (85, 1/4, kiey) = Wi (=8, 1/4, —hkiey7) ~ e~ ®er/2 (il i) ~0/* | kopiy — 00 (383)
1 2

W (8, 1/4, key i) / (ikeyit) /" ~ /2 [ (

B 172 ~ ~
T (3/4+is,/4) T (1/4+is,/4) (they ) +O(key”)} > Keyll = 0

(384)
the asymptotic forms are

Y ~ Recqny Wy (sy, 1/4, keyn) + cpy W— (8y, 1/4, key)] /%
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~ copy Re [e_itblby/zVVJr (8y, 1/4, keyn) + ey /2y (sy,1/4, keyﬁ)} /{‘/ﬁ

~ Copye™v/® Re [e—ifbwy/2eikey71/2ei(sy/4) W(key) | oi®roy/2 = ikeyT1/2—i(5y/4) ln(keym] 135

~ 2000y €8 €08 [key /2 + (8y/4) I (keyT) — @1y /2] / /71, Koyl — 00
~ copy Re {ei@zm—m/%z‘kez‘ﬁ/z (_ikezﬁ)—is2/4 1 i1 /24w /4 —ikesT]/2 (ikezﬁ)isz/4:| /% i — o0

~ e_Trsz/SCOby Re |:€iq>12/2_1'71—/46“682’77/26_14(32/4) ln(kezﬁ) + e_iq)lz/2+iﬂ/4e_ikezﬁ/2€i(sz/4) ln(k:ezﬁ)i| /% s kez'h' — 00

~ 277 B gy 08 [keaT/2 — (52/4) I (Kea]) + P12/2 = /4] /7], Feal] — 00 (385)

and
Y ~ Re[cpy Wy (sy, 1/4, keyn) + cpy W- (8y, 1/4, key)] /%

~ cony Re [ P02V (5,1 /4, Keyl) + €T W (5,1 /4 ke l)| /37

~ CObyk;f Re {e_i(plby/Q_iﬂ/8W+ (sy> 1/4, keyn) [/ —ikeyn + e (sy,1/4, keyn) / v Zkeyﬁ}

) ) 1 2
~ 1/2k1/2R —i(Prpy—m/4)/2—im /4 _ —ik ~\1/2
o e [ {r<3/4isy/4> T (1A= isy/0) )

. } 1 )
W(Proy—m/4)/2+4im /4 B . /2 Lo 7
" J {F(3/4+i3y/4) I'(1/441is,/4) (ikey) } + O (keyn)

~ C()byﬂ'l/Qk‘;éQ Re

—inja [T (1/4 —isy/4) 1 B 2 ik ) Y/2
e 1ﬂ(1/4+isy/4){1“(3/4z‘sy/4) r(1/4,z~5y/4)( Key) }

peim/d ['(1/4 +is,/4) { 1 2

. ~ 1/ ~
T (/4= i5,/0) \TG/A+i5,/4) T4+ isy/d) ) o (k““‘”)]

~ Cobyﬂl/2k;?§2 Re

o—im/4 \/F (1/4*isy/4)r(1/4+1.5y/4) _ 2 (—ik 5)1/2
U (3/4—is,/4) T (1/4 +isy/4) /T (1/4—is, /AT (1[4 +is,/4) "

pein/t § VO /4 —is, /YT (/4 +145y/9) 2
I (3/4+is,/4)T (1/4 —is,/4) VI (1/4 —isy /A)T (1/4 +is,/4)

(ikey) " } +0 (key'ﬁ)]
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~ copym /2K T (1/4 + is,/4)| Re

677,'71'/4 1 B 2 ; 12
{F(3/4_iSy/4)F(1/4+iSy/4) |F(1/4+isy/4)|2( keyn) }

eiﬂ'/4 1 B ) . /2 N
" {F(3/4+i5y/4)r(1/4—isy/4) D (1/4 + is, /4))? (ikeyn) }—FO(key??)]

2me=im/2

—1/27.1/2 .
~ CopyT k.7 |T'(1/4+1s,/4)| Re .
Y Y I/ v/ T (1/4 4 is,/4)]

e~/ sing (1/4 +is,/4) — 5 (key)'/?

27T6i7r/2

U (1/4 + s, /4)|°

+e™*sinT (1/4 —is,/4) — (keyﬁ)l/2 + O (keyﬁ)]

~ Copym™ 2EM2 D (1/4 +is, /4)| Re |e /A sin g (1/4 4 is, /4) + €™/ A sinm (1/4 — is, /4) + O (key 7))
Yy ey Yy Yy Yy Y

~ coby (2m) P EY2|D (1/4 + is, /4)]

Re [e_”/4 {cosh (ms, /4) + isinh (s, /4)} + €™/* {cosh (75, /4) — isinh (15,/4)} + O (key7)
~ Coby (27r)_1/2 kéf T (1/4 4+ isy,/4)| [2 cos (m/4) {cosh (s, /4) + sinh (75, /4)} + O (key7)]
~ CObyﬂil/Qkiéz T (1/4 + 7“Sy/4)| |:67r5y/4 +0 (k(’yﬁ)]

~ conym V2RI |0 (1/4 = i /4)| [e77 /0 4+ O (key )] (386)

Now we match this to the limit of the global solution

Y (1) ~ - j@gn) cos [’; /m :X(Ml) VP (0)d8 + ko (387)
where
p(0) =(0—61)(02—0) (388)
P(6) =p(0)/D(0) (389)
D(0) = (a®—0) (b>—0) (6 — ¢*) (390)

Expanding this Liouville WKB solution near the upper integration point with b2 —n =7
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k min(b2,02) k n
Y () ~ COSL/ P<9>d9+§/ gy VO + Koo
min(b2,02

P (n) max(c2,01)

k Inin(b2,92) n
~ - Coy cos [2/ \/P(Q)d@ + g/

(77 - 01) (92 - 77) nax(c2,01) min(b2,02) ( 2

—0) (2= 0)(0—¢)

C()y

V(2 =01 =) (02 — 02 +7))

k min(bz,eg) n b2 — 61 — 6 2 — b2 + 9
cos | = \/P(H)de—f/ ( d6+k600 0?0 =10
2 max(c2,01) max(0,b2—03) (a2 — b2 — 9) b2 — 62 — 9
min b2,92) 2 9 — b2 + 9
Coy k / ( \/7 k (b - 01) 2 2
~ s | T P6)do— = \ d9+kéc L b20=0
Y (b2 — 91) n 2 max(c2,01) 2 (a2 —b ) (b2 —c? max(O b2—-05) ’

~

Bl

[\

min b2,92) n 92 — b2 +§)
Coy k / ( \/7 key / ( 7
~ ————1C0S | = P(0)do — — 2 dfl+ kb 391
v (b2 — 91) Ui 2 max(c2,01) 2 max(0,b2—63) ( )
where we have assumed that 7 >> b% — 0. Letting
0y — b? ~ 0y — b2
0 U

7 (6‘2 - b2+ 9) (00,1)
/ 7d9—|92—b2| V1 o where £ — sgn (6, — b?)
(0,b2—05) 0 |02—b|/7

NG 7,1 b
— o, 2| | YLE b/ if/ _
|02 — b%[ /7 0,025 UV 1t u
lj:|t92 1E|02 =02 /m+1
=165 — b* 393
62 =¥ |92—b2|/n | V10— 0271 (393)
where we again used
Vitu—1
/77“6:111 v_Etu—-2 (394)
uv1Eu vitu+1
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Expanding for (b2 — 92) <<

7 (02 -0 +8) 1 1 47
A LA ~T = (0~ 6) = (B — ) In | 395
/max<o,b292> 0 Ty ) g ) (395
Using
2
2 _ 2 (b — 91) _ 1.2
kz, =k @) (2= @) kZ, (396)
Sy = key (02 — V%) = ke (02 — V) = —s, (397)
gives
Y (n) ~ ——2 cos k /min(bQ’az) VP (0)d — keyij2 — 2L — 21 ’W + ké (398)
K v (b2 — Ol)ﬁ 2 max(c?,071) vl 4 4 Sy <
Comparing to the local solution
Y~ 2CObyemy/8 cos [keyn/2 + (sy/4) In (keyn) — P1py /2] /% s eyl — 00 (399)
gives
Coy (_1)7“) TSy /8 —7s2/8
— = = 2cqpye" V' = 2copye” "°* 400
4 (b2 — 91) 0by 0by ( )
and
min(b?,05) 4
k VP (0)d0 — 210 | =S| 4 kbeg — mpm = D1y /2 = — (D1, — 7/2) /2
2 max(c2,01) 4 Sy )
min(bz,eg) 4
_ E/ VPO + | 2| ks — nyr (401)
2 max(c2,01) 4 Sz
Note that in the aligned limit
k/bQN/P(e)dazk/bz d6 :k(\/a2—c2—\/a2—b2) (402)
2 2 2 2 V a?—0

4.3 Axial-Like Variable

For the axial-like coordinate, taking odd or even symmetry at the orbit center x = 0 the Liouville global
solution is [18]

Co» sin |k o?
Z(¢)~ ;(C){ oo [2/4 \/P(G)dG]} (403)
p(0) =(0—01)(0—02) (404)
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P(0)=p(0)/D(0) (405)

D(0) = (a*> - 0) (6 —b%) (6 — ¢?) (406)

4.3.1 Center Singular Point

Near # = 0 we have ¢ — a? which has the singular point asymptotic solution (the multiplicative coeffi cient
of this local singular form has been chosen so it will match to the Liouville global solution)

Coz sin ~ =<
z~ o (haV0)} T=e (407)

V/(a? —01) (a® — 05)

where

(4~ 61) (a2~ 02)
@ =) (@ =)

Note that the preceding Liouville phase in this limit becomes

ko keo /a2 do
— v/ P (0)do ~ ———— = ke a% — 409
2/< () 2 Jo Va2-0 ova ¢ (409)

k2, = K (408)

and thus

Z(Q) ~ 2 { . (keo g c)} (410)
matches to the local singular solution.

4.3.2 Cavity Boundary Condition

As we proceed outward from the symmetry point at the ray path center toward the inner focus in the bowtie
cavity we encounter the conductive wall with the required vanishing of the potential

0=27(¢,) = —22 {Sm [’; ’ \/P(e)dou (411)

VP (o) | 08 ¢o

which requires

el = { . _Plﬂ/z)ﬁ } _ ’;/: P (0)do (412)

0
Note in the aligned case #; = b% and 0; = ¢? this phase condition simplifies to

2

koY do
— —_— 2 _— =
5 / T kn/a? — (o = ke (413)
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4.4 Summary Of Solutions And Matching Conditions

From the preceding subsections the solutions and matching results are now listed

(&) =X(Y ) 2(Q)

In the convex walled cavity the region of interest is inside the foci where we summarize

X(€) ~ cow Re [ 00/ 2W, (5, 1/, ko) + €™ PW (s, 1/ kea) | //E =2 E

(82~ )

2 1.2
b = @ = =)

Sy = key (91 - 02)

DO/A+i50/4) _ icwon—n/a)
T (1/4—is,/4)

v'p (1)

p () =(0—61)(02—90)

max(c2,01) max(c?,07)

Y (n) ~ Cocy Re [67i¢1c?]/2W+ (=52, 1/4, kean) + e Prev/ 2y (=52, 1/4, kexﬁ)] /% y M — = n

~ cocy Re {ei%w/%”/‘*ﬂQ (=82, 1/4, keply) + et P0e /20047y (_g 1/4, k‘ez'ﬁ)} JVn . = =7

Y (n) ~ 26Trs!'/gCOcy CoS [keyﬁ/Q + (Sy/4) In (keyﬁ) - (I)lcy/m /% ; keyn — o0

(02 - )

k2 = k>
ey (a2 _ C2) (b2 _ C2)

_ 1.2
_kez

8y = Key (02 - 91) = Kkes (02 - 91) = —5;

i (®rey—m/4) _ I (1/4 +isy/4) _ I'(1/4 —is./4) — o~ i(®oa—/4)

T (1/4—is,/4) T (1/4+is,/4)

o7

/ ! /P (9)d91}: U o [’; / ’ P (0)d0 + koo

(414)

(415)

(416)

(417)

(418)

(419)

(420)
(421)

(422)

(423)

(424)

(425)

(426)

(427)



—1)"
COy ( ) — 2€Trsy/SCOCy — 2677I'Sm/8000y (428)
V(02— c?)
%y In|de/sy| + kdeo — nem = —D1ey/2 = —% In|de/sy| + kdeo — nem = oy /2 — /4 (429)

Y (n) ~ Coby Re [€7i¢.1by/2w+ (_Sza 1/4a kezﬁ) + eicblby/ZW— (_527 1/47 kezﬁ):l /\4/% ’ b2 -n= ﬁ

~ coby Re [ei%z/?—iﬂ/‘*m (=55, 1/4, keo]) + e~ 1%0=/2Him/A7 (g 174, kezﬁ)} JYE L =7 (430)

Y (n) ~ 260bye”y/8 08 [key/2 + (5y/4) In (keyn) — P1py /2] /\4/'1% , keynp — 00 (431)
2 _ 12 (b2 — 91) _ 12
kz, =k (@@= 0 (1% — &) =k, (432)
8y = Key (92 — b2) = ke, (92 — b2) = —5, (433)
i@, —n/ty _ L (/A +iasy/4)  T(A/4—is:/4) i@y —n/a) (434)
I'(1/4—1is,/4) T (1/4+1is./4)

Coy (_1)nb TSy /8 —ms; /8
——— = 2cqpye" V' = 2cqpye "* 435
2 (b2 — 91) 0by 0by ( )

min(bz,eg)
E/ \/P(H)dG — slln % + k‘(sc() — Npm = q)lby/2 = — (q)u — 7T/2) /2
2 max(c?,07) 4 Sy
k min(b2,02) S5
- / VP (O)d0 + 2 Infdes.] + .o — iy (436)
max(c?,01)
Coz sin |k o*
Z(¢) ~ k / P (0)d0 (437)
VP (¢) { cos [2 ¢

p(0)=(0—01)(0—02) (438)
P(0)=p(0)/D(9) (439)
D(0) = (a* = 0) (6 —b%) (6 — ¢?) (440)

Z(¢) ~ co- ){ 22 </€0\/E)} ,C=a’—¢ (441)

kzo — k2 (a — 01) (0;2 — 92) (442)




0=2(Cy) = —= {Sm [’; ’ \/Pw)de]} (443)

. pm _k
kyl = { (p—1/2)7 } =3 VP (0)do (444)

4.4.1 Phase Matching Condition

Eliminating kd.¢ in the phase conditions

%y In|de/sy| + kdeo — nem = —D1ey/2 = —% In|de/sy| + kdeo — nem = oy /2 — w/4 (445)
and
If min(b2,02) 4
v / VP (0)d0 — 22 1n || 4 koo — nypm = D1y /2 (446)
2 2 4 S
max(c?,01) Y
k min(b2,02) S
— (@1, —7/2) /2 = 5/ VP (0)do + Zzln|4e/sz|+k§co—nb7r (447)
max(c2,01)
gives
k min(bQ,Og) Sy s,
(np —ne)m = 5/ VP (0)do + (Poy + D1, —7/2) /2 + vy In |[4e/s,| + 1 In|de/s,| —m/4 (448)
max(c?,071)
where

T (1/4+isy/4)

argl' (1/4+4s;/4) =1n T(1/4—is,/4)

= (Por —7/4) /2 (449)

I'(1/4+1s./4)

argl' (1/4+is,/4) =In T(1/4—is./4)

= (01, —7/4) /2 (450)

We can then write this phase matching condition as

k min(b2,02) ; .
=z / /P (0)df+argT (1/4 + z'sz/4)+sZ In |de/s.|+arg T (1/4 + is$/4)+% In [de/s,| = (np — ne) T+ /4

2 max(c2,01)
(451)

This condition arises because of matching of Y (1) and hence we would anticipate that these conditions arise
from quantization around the orbit. The first term of this equation contains the total phase shift over half
the interval; the two evanescent intervals are missing but these do not have a phase advance. This phase
condition thus restricts choices of the connection between s, and s, (and 6; and 63) to a discrete set of
solutions for various choices of the integer n;, — n.. For higher frequencies the increase in the value of the
wavenumber k in the first term indicates that this discrete set becomes more dense.

Note in the aligned limit s, = 0 = s, (§; = 2, 0y = b2) and k& = k, this phase matching condition
becomes
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5| T = (V=@ - V=) = oyt (452)

Alternatively, if we approximate the integral here for large a2

]f min(b2,92) k- min(bzﬂg) (9 — 9 ) (9 — 9)
5/} VP (0)df ~ : / \/M(;Cz)de (453)

max(c?,01) 2v/a* — (b2 + Cz) /2 max(c?,01)

For large shifts we may need to retain the exact forms of k., and k., but otherwise

g fmin(b.02) k min(.02) (9 — ,) (62 — 0)
5/1 VP (0)d0 ~ / \/2_9)(92_02)6”

nax(c2,01) 2\/a* — (b2 + 02) / max(c?,07)
k min(b2—02,92—b2+b2—62) (5"‘ c— 91) (92 — b2+ b2 — 2 — 5) J
~ / __ 46, 6=6—¢
2v/a? — (bQ + 02) /2 max(0,07—c?) (b2 —c? - 0) 0

~

_5)

]41 min(b27c2,7sz%m+b2fc2) (5 — Sm%m) (—SZ%\/CW—F b2 — 62
V2y/(a2 = b2) + (a% — ) /max(o,sm;m) (b2 —c2— 5) 0

(454)
Suppose instead of trying to identify the different values of s, and s, in the model, we suppress these
values and focus on only the difference £ — k,. In other words we make a plot as a function of only this
parameter. The procedure we have in mind is to scan over the s, and s, separation constants (each analytic
construction being individually normalized) determining the k — k, constant for each, and plot the mean
of an observable for each of the k — k, values. We carry out this procedure with success, but there are
several questions to keep in mind if there are any issues: 1) Are the separation constants real?, 2) Is the
two-dimensional space of these separation constants of limited extent for a limit on k& — &, because of the
resonance condition connection (we hope this is true or the normalization weight might become very small)?,
3) Do we need to select regions of s, s, space with some criterion (equal areas?) to then develop the statistics
for the observable versus k — k,, or can we base the statistics on the observable with the values of k — k,
alone (averaging the observable over the values falling within a &k — k, bin) and not worry about how the
underlying s, s, values were chosen?

4.4.2 Resonant Condition Phase Integral

The quantization condition along the orbit is

[ e (0—0,)(0— o)
kpg_{( Py } Naor - /\/ 762)(0702)% (455)

We can write the phase integral along the path approximately as

9 9 9 92 —C2+02—91)(9—b2+b2—92)
VEO® =3 /4\/ e /4\/ R I e E—
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ﬁ @*~Co [(a2 — 2 — 0" +c—061) (a®>— 02— 0" + b — /“_CO —9—|—02 91)(d§—9/+b2—92)d9’
2 0 (a2=c2=0)0" (a®>—b2—0) —0")0 (d2 - 0')

_ 2 02 01 _ 0 2 b2792
ﬁ 0~ ¢, 9/d ) (1-0/a+ 25 da, = 0/d2—sz/ ko)) {1 = 0/3 + 5./ (kdy)}
2 ) "y /d2) 0 (16 /d2) —0'/d2) 0" (1-0'/dy)
(456)
0 =a*—-0 (457)
If we assume that
a2_C0:£2<<a2—b2:d§<a2—02:d§ (458)

02 /
N da~{1+ L) () - ;sz/acdz)} 0 j‘i—ke{ sz/<kdy>—§sm/<kdz>} (459)

2 Je,

and then
1 1
kpl =kt {1 + 552/ (kdy) — QS”’/ (kdz)} (460)
where
— pr
kpl = { (p—1/2)7 } (461)
and
a? — * = d? (462)
a® - b =d; (463)
d.>d, (464)
2 2 2
2 2 (62— ?) k k
= 4
Few = I (a2—c2)(b?—c?) a?—c* d? (465)
b? — 6y) k2 k2
]C2 —_ k2 ( -~ _ M 4
ez (a? =0?) (b —c?)  a?—-0b> d2 (466)
= Fios (b2 — 02) ~ dﬁ (b2 — 0,) (467)
Yy
2 k 2
sx—kex(ﬁl—c)wd—(ﬁl—c) (468)



This result implies that

kl =

N~

(sz/\/ a?—c%—s,/vVa?— b2) + kyl (469)
2 (k — kp) € = £ (s0/ds — 5./dy) (470)

which corresponds to lines of constant frequency separation k& — k, on a two-dimensional plot with s, and
S, axes.

In the section below on the Fourier projection along the ray path orbit, we will generate a two-dimensional
probability plot F(s.,s.) as a function of s, and s,. The preceding relation will then be used to integrate
out the dependence on s, and s, to end up with a simple plot as a function of k — &,

F (2Ak6) = / F(2Akld. /0 + s.d,/d,, s.) ds. (471)

4.4.3 Field Along Scar

Here we will use the limits of the Whittaker functions to write

W (S’ 1/4, keg) / (_ikeg)m o :1“(3/41— is/4) 1“(1/42— is/4) (_ik;é)w +0 (k;é)} ke =0
(472)

W (s.1/4.k8) / (“%5)1/4 o :r (3/41+ is/) T <1/42+ is/4) (“%5)1/2 +0 (’“egﬂ ke =0
(473)

and determine the limits of the separation functions. The radial-like function is then

X (€) ~ coz Re {e*i%wﬂmq (ST 1/4, kE) + ei®oe /2]y (ST 1/4, k,E)} /% JE=ct—¢

~ coskY/4 Re [ei%/?”/gm (sx 1/4, kexE) JA] —ikoo + eios/ZHin/Syy (sx 1/4, kexZ) /i zk{é]

_ _ 1 . . 1
~ xk1/4 1/2R —i®o, /2—im/8 iDog /2417 /8
Oalfen T RE € T(3/4—is,/4) T € T (3/4 + isy/4)

. | 1 | . 1
~ $]€1/4 1/2R —i(Poy—m/4)/2—in /4 i(Poy—m/4)/2+in /4
Oalfex T E € T(3/4—is,/4) T € T (3/4 + is4/4)

~ coek 412 Re [/ L(1/4—isa/4) | insa 1 ['(1/4 4 is./4)

T(/A—is, /N \ T /A+is,/4) " TEMA+is,/4)\ T/A—is,/4)

~ ok A1/2 Re -e,m/4\/F(1/4—isx/4)I‘(1/4+ism/4) 6m/4\/F(1/4+i3x/4)r(1/4—isw/4)
0z Rey I'(3/4 —isy /4) T (1/4 +is,/4) I'(3/4+is,/4)T (1/4 —is,/4) |

62



~ copk/A /2|0 (1/4 — is./4)| Re [e‘”“ sinm (1/4 4 isy/4) + ™ 4 sinm (1/4 — is, /4)

~ copkl/ (27r)71/2 IT'(1/4 —is./4)| Re [e_”/‘l {cosh (s, /4) + isinh (75, /4)} + ™4 {cosh (5, /4) — isinh (st/4)}]

~ coakt/4 (2m) Y2 T (1/4 — sy /4)| Re [2 cos (m/4) cosh (s, /4) + 2sin (r/4) sinh (s, /4)]
~ copk A2 D (1/4 — is,/4)| Re [cosh (75, /4) + sinh (75, /4)] (474)

X (& — ) ~ okt n™ V2T (1/4 — is, /4)| e™5=/* (475)

where we used the refbction formula

I'(2)T(1—2)=mncsc(nz) (476)

and
s e
k2 = k2 (02 — ) (478)

(@ =) B =)

Sy = Keg (91 — 02) (479)

Similarly the azimuth-like function is

Y (n) ~ cony Re €7 P02 W, (=52, 1/4, kes) + €200 W (=2, 1/4,kesil)| /47 5= 0% =1
~ CObyk¥4 Re |:e*i<1>1by/2*i7l'/8W+ (7827 1/4, kezﬁ) / 4 *ikez’ﬁ + eiq)lby/z‘i’iﬂ'/SW_ (*Sza 1/4’ kezﬁ) /‘4/ikezﬁ:|
S T o T L G VR ) DR B e A G VN 3 DAV

~ cong kLt Re [/ =m RN (s 1 /4, keai) [ =henty + e TR (s 14, kel77) /3 ke

. . 1 ) ) 1
~ 1/2]451/4R i(Pr,—m/4)/2—in /4 —i(P1,—7/4)/2+irm /4
ObyT " Fez 1E {e T (3/4+is./4)  © T (3/4—is, /4)}
_ 1 T (1/4+is./4) 1 T (1/4 —is, /4)
~ 1/2k1/4R imw/4 i /4
ConyT ez RO T R B s )\ T(1/4 —is./d) ¢ T(3/4 —is./4) \| T(1/4 1 is./4)
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~ c()byﬂ'l/zkéz/4 Re |e

Cinya VT (/4 +is. [4)T (1/4 — is. [4) +ein/d VI (1/4 +is,/4)T (1/4 - 152/4)]
T'(3/4+is. /)T (1/4 —is./4) T'(3/4—is./4)T (1/4 +is./4)

~ copym V2T (1/4 —is,/4)| Re {e‘i”/‘l sinm (1/4 —is./4) + ™/ *sinm (1/4 + isz/4)]
~ Copy (2m) 2 KM (1/4 — is,/4)| Re [e*”/‘* {cosh (s, /4) — isinh (7s./4)} + e™/* {cosh (75, /4) + isinh (s, /4)}
~ cony (27) 2 YA (1/4 — is. /4)| Re [2 cos (7 /4) cosh (ws. /4) — 2sin (7 /4) sinh (75, /4)]
~ copym Y2EYA T (1/4 — is. /4)| Re [cosh (ms, /4) — sinh (s, /4)] (480)

Y (n — %) ~ copym V2R T (1/4 — is./4) e/

~ 7r_1/2k¥460by T (1/4 + isy/4)| emev/4 (481)
where
i@, —n/ty _ L (/A +isy/4)  T(A/4—is:/4) i@y —n/a) (482)
I'(1/4—isy/4) T (1/4+1s,/4)
2
2 _ 12 (b — 91) _ 1.2
key =k (a® = b2) (b2 — %) ke (483)
Sy = key (02 — V%) = ke (02 — V) = —s, (484)
Coy (_1)nb TSy /8 —7s,/8
= 2cop e v = 2¢con. e z 485
" (b2 — 1) 0b 0by ( )
Then
1 coy (—1)™ . s
Y (0= 8) e gr PR s D (U iy )] €7
1 -1)"
~ 77T_1/2/€22/;4 Coy ( ) |1—\ (1/4 _ isz/4)| e—‘/rsz/S (486)
2 V(b2 — 01)

Noting from Stirling formula that

T (1/4 4 is,/4) ~ V2me VA7 i0/4 (14 + is, /) T4/ o \fameTin/8=isu/4 (|5 | Ja) T ATIS/4 gFrsu/8 g, G0
(487)
this becomes

—1)™ _
Y (n— %) ~27Y k/(b()e) (Jsy| /)71 " emsn/SFmeulS s, oo (488)
— U1
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where we see that there is exponential decay for s, << —1 but no exponential growth for s, >> 1. The
negative region s, < 0 occurs when f, < b? intruding on the interval occupied by n. It thus appears like
there can be exponential decay behavior from the end regions of the integration range in 7 (note that the
interior global region in 7 has scale ¢y, without exponential decay or growth). There is no exponential decay
in ¢ for the bowtie since b << (; < ¢ < a®. Thus we can observe exponentially small values at the scar
center in 7 — b? or y — 0 (on the strip center for sy = —s, << —1). At the strip edges

Y (n) ~ ooy Re [P0 2W (=50, 1/, ko) + € W (=50, 1/ keail)| /3 m = ¢ =7
~ Cooyk/* Re [e—“’w/ 27T /SYY, (=5, 1/4, keoT]) | &/ —ihend) + €010/ 2F /YW _ (L g 174, keu]) /#/ikwﬂ
A e T L G W e W o B el U C I VW S V|

~ COcykig& Re [ei(q>0xf7f/4)/27i7r/4w+ (751’ 1/4’ kemﬁ) / 4 *ikemﬁ + efi(<I>ozf7r/4)/2+i7T/4W_ (*Sm, 1/47 kem’ﬁ) /,4/Z‘]§em’ﬁ}

, . 1 . . 1
~ 1/2k1/4 R i(Pog—m/4)/2—im /4 —i(Poy—7m/4)/2+in /4
CocyT " Feg 11 {e T(3/d 1 isy/4) ¢ T (3/4— isx/4)]
[ 1 D (/44 i50/4)  insa 1 T (1/4 —isy/4) ]

~ oo /2014
Coey™ hea Re e e T\ T (/A —isa/a) T T(3/2—isa/d) \| T(1/2 1 isy/4)

o i g | gina VI QA G50 /T (A= i50/4) | irya /T (/A4 i, /DT (14— i52/4)
Ocy e U (3/4+is,/4) T (1/4 — is,/4) L (3/4—ise /)T (1/4+is./4) |

~ Coeym V2R T (1/4 — is,/4)| Re [e_i”/‘l sinm (1/4 — isy/4) + ™ *sinm (1/4 + is, /4)

~ Coey (20) 2 EMA T (1/4 — is,/4)| Re [e*iﬂ/‘* {cosh (s, /4) — isinh (75, /4)} + €™/ {cosh (s, /4) + isinh (75, /4)}
~ Coey (2) 2 KLY D (1/4 — s, /4)| Re[2 cos (m/4) cosh (s, /4) — 2sin (r/4) sinh (15, /4)]
~ Coey™ 2T (1/4 — is,/4)| Re [cosh (s, /4) — sinh (75, /4)] (489)
Y (n — 02) ~ cocyﬂ'_l/Qki;4 T (1/4 —is, /4)| e~ ™5=/4

~ V2 A, [T (1/4 + s, /4)] €7/ (490)

where
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i(®rey—m/4) _ I(1/4+isy/4) T (1/4—1is./4) _ o—il®0s—/4) (491)
1/4—131//4) T'(1/4 +is./4)
2 _ 2 (92 —¢ ) 12

K2, =k = k2, (492)

@) - @)
Sy = key (02 — 91) =keo (02 — 91) = —s, (493)

coy (—1)"° — 9™/, = 2e T/

Coc 494
4 (6‘2 — 02) Ocy ( )

Then

1)
Y(nﬂé)w 5 TRE] s T at oy (= ) \r (1/4 +is,/4)| e™v/®

V(02 —

Nec
o Lpvzpara o CUT G pg g g sy a8 (495)

2 S0 -2

From Stirling$ formula

T (1/4 +is,/4) ~ V2me V/A7i50/4 (1/4 4 isy/4)_1/4+13y/4 ~ V2T /Bis /4 (| | /4)_1/44_181‘/4 eFme/8 s, — doo
(496)

1 _ coy (=1)"° “1/4 s, /8Fn
Y (n—c)~om ”%fmmusy\/@ [emsu/BFmeu/s g 4o (497)

and therefore we can also observe exponential decay at the edges versus the interior global region (for
5y = —8; << —1).
Using the axial-like function

€0 (0—061)(0—69)
e = =y 92{ [/ \/a?—@ —b2)<9—c2)d9” (498)

in the inside region, the global solution along the scar ray path at the orbit center is

— o
B0 = X ()Y () 200) = S TR (44— e I 18 )]
™ 1

! 0 —6,)(0— 62)
(C 01) (¢ — 92{ [ / \/ —bz)(G—CQ)dH]} (499)
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5 ENERGY THEOREM NORMALIZATION

The overall normalizing constant co = co.coyco- must be determined for the preceding scar asymptotic forms

near the orbit. This is done using an energy theorem [21], [22].

5.1 Acoustic Energy Normalization

A physical scalar wave problem of interest is acoustics. The equations of motion are [23]

0
~u=-VP
P \Y
0
Hc’)t V-u

where wu is the particle velocity, P is the pressure, x is the compressibility, and p is the density.

eliminating the velocity gives the scalar wave equation

0 0 9
— (k=P | =V"P
ot (" ot >
Let us suppress time harmonic dependence e™**
wpy = VP
wkP =V -u

and eliminating the velocity (with P taking the place of the scalar quantity)

V2P +w?kpP = (VP +k*) P =0

Now examine the quantity

1
=i(pu-u* +KP*P)=1i (2 VPP + & |P|2)
w?p

or

[ () ()] )
w w

ow \w ow

1
= — (VPP +#21PP)
where the wavenumber is

k2 = w?pk
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(501)

Thus

(502)

(503)

(504)

(505)

(506)

(507)

(508)



Now using

VP> =VP.-VP*=V.(P*VP) - P*V?P =V - (P*VP) + k?|P| (509)

for either the soft outer boundary with P = 0, or the hard outer boundary with dP/dn = 0, gives the
relation between the volume integral over the cavity and the surface integral over the scar

2
j{ or lvp* fp*i lvp .ﬂdS:Qk—/ \P|*dV
ow \w ow \w w? Jy

oP (1 0P L0 [(10P
- 4 [aw <w an)‘P m(m)]ds (510)

scar

where here n points into the scar region. Now if the pressure is taken to be real

oP [10P 0 1 0P
f [aw (wan)‘f’aw (m)]ds

scar

—2]“2/ \P|*dv (511)
=25 |
In addition if we take
or _ 0, onsS (512)
8n - ) scar
then
2P 2
- 7{ i 2]i/ |P|*dV (513)
Owdn w Jy

scar

where here again n points into the scar region.
Changing from the preceding acoustic case with scalar P to scalar u the normalization condition is taken

J o (oe) 2 (100Y] g
Ow \w On u(’?w w on

as

Ssear
2
_ 2’%/ luf? 4V (514)
weJv
or for a real function
ou (1 0u 0 (10u k2 9
Z (=), (2 =9 515
7{ [aw (w 8n> Y ow (w an)} d5 w? /VM v (515)
Sscar
If we set
g% =0 , on Sscar (516)
we have
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k2 2 5 0 (Ou 0%u

scar

5.1.1 Electromagnetic Energy Theorem Normalization

The electromagnetic energy theorem [21] has been used to normalize the scar constructions [4], [13]. If we
take the result in the two-dimensional problem [4] derived from the electromagnetic energy theorem [21],
[22] (with either u = 0 or u/On = 0 on the outer boundary, this gives the relation between the volume
integral over the cavity and the surface integral over the scar), and change the line integral to a surface and
the surface integral to a volume as an approximation we obtain

du * * 0 ou ou* " 82u k2 5
/SSW- [&UVU —u &UVU] -ndS = /SSW. {&u o —u awan} dS = 2;/‘/ |u|” dV (518)

which is the same as the acoustic case above. In the electromagnetic case we can take © = ® = E; where Ej
is a transverse component along the ray path orbit.

5.2 Scalar Normalization

We begin here by taking the solution to be a scalar and consider the normalization as in the acoustic case
(with either w =0 or du/0n = 0 on the outer boundary). The normalization condition is thus taken as

f o (roey o (100)
Ow \w On u@w w on

scar

k2 )
=25 V|u\ av (519)

or for a real function (where n points into the scarred region)

ou [ 10u 0 (10u k2 9

scar

If we set
0
(972 =0, on Sscar (521)
and take the normalization in the three dimensional problem to be
/ lul>dV =1 (522)
v
we find
k2 d (0Ou 0%u
2— = — 2 —/u)dS=— ——dS 523
w /Sscm % B0 (an /u> /S,mr Yowon (523)

We will focus on the case where R, R, >> ¢ and a is very much larger than b or c¢. Furthermore, we will
assume that b is near but not equal to c¢ in the ellipsoidal coordinate system. In this case the scar orbit will
be taken to be centered on the region where £ — ¢? inside the foci.
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In the inside region we are integrating over the limit of an ellipse approaching a strip area as shown in
Figure 5; the normal limit to the strip is € — ¢2. This strip integration is the three-dimensional generalization
of the two-dimensional normalization [4], Where unit width strip integrations were in-effect used; these also
degenerate to line integrals when the two foci degenerate into a single focus, as in the three-dimensional
axisymmetric case [13]. Let us apply the energy theorem over the orbit shown in the figure with

u=e®=X()Y(n)Z(C) (524)

The normal derivative dn with respect to a direction into the scarred region is proportional to Z, arising

from he0¢; for the inside region E = c? — ¢, and thus On has the same sign as 9¢ but the opposite sign as
8%, (also the reason for concentrating the w derivative on the factor involved in the normal derivative of X,
is that this normal derivative vanishes without the w derivative due to symmetry-power conditions). If the
normal derivative does not vanish (for example, if we are off the strip symmetry location) we must revert
back to the original form.

Because we are using symmetry we only carry out one quarter of the azimuthal-like integrations and
multiply the result by 4; in the axial direction we multiply by 2 since we are only carrying this out for the
positive half of the orbit

k2 9%u a® b? 0%u
2~ f (o) a5~ 2 0 [4/02 (Msaf)g%zh"dn] uhedt (525)

SSCGT
or using
9%u 92X
(awhfas>gmz“’y(”)Z(C)(awhfas>gmz (520
we can write
2 a’ e, 92X

The ellipsoidal metric coeffi cients are given by [10]
) (€ =¢)

(£ - n 1
he = V 2¢ —9(@ -9
hy = \/ (n = C n &) _ \/ NG _7777) (f’)_CQ) (529)
¢ c

(528)

(= f C n) § 1)
= v T (550
— (- 6) (1 - Hc_e) (531)
The normal metric coeffi cient can then be written as
1 [(=—A (=) L
hgw2¢w2—@MW—meE’g_§_f (52
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with the scar normal

= = LG 53)

giving

5% 92 (a2 — c2) (b2 —c?) 0’°X
(W>g%2 ~Y (n)Z(¢) (awhfc%)g%z ~ —Y(n)Z(C)\/ T (awa\[)
e

~ \/(?2 : zz) (bz__cf) ( o ) (534)
" (%J(“)\/

The energy theorem can then be written as

k2 0%u

(12 1
~ 4 hydn | uhed 535
wy/ (a2 — ) (b? - ?) /co [ / (n—c*)(C—c?) (awaﬁ) ot n] e (353

or

k> N/“2 /b2 0*u (C n) dn dg
N@=AT=A oo [l \Couarfe) T = | V-0 m G2

(536)
k2 ~ / - / g 0°X Y2 (1) (¢ —n)dn Z2(0)d¢
w\/(aQ_c2) (bQ_CQ) o 2 ao‘)8\/7 ) _77) (’17—62) \/(CLQ _C) (C_bQ) (C_C2)
(537)
Noting for high frequencies that the global solutions
Coy o E K (0—01) (02 —0)
Y (n) 01— 01) (02 —1) [2 /mmx(@ 01)\/((129) 2 — 0) (0702)d9+k(550 (538)

Coz 9 91 9 92
N A=) 0)402{ [/\/ IRk

are rapidly varying we can average over these to find

} (539)

(540)

71



c%y/Q
(n—01) (02 —n)

where if 67 or 6, intrude into the region ¢ < 1 < b2, the solution can exhibit exponential decay near the
end points 0 < n < b? or ¢? < 1 < 01, and in these local regions the averages may not apply; hence, we use
the local solutions in these regions. The energy theorem can then be written as

(Y2 (n)) ~ . min (b%,65) > n > max (¢, 6;) (541)

k2 x 0°X
w\/(a2 —c?) (b? = ¢?) 7
au')a\/g E—c?

e s _(Caomien _wesaes d,
: )

/c nax(e2,01) V(@2 =n) 2 —n)(n—c2) V(@@= B> —n) (> —c?) (a® =) (B — ) (n—c?

0

() g V2 dn () min(%9:) V2 dn]
VE @ e) /mx@a,el) R e = e | / =)

(2% (¢))d¢
V(@2 =) (=) ((~e?)
where in the subtracted terms representing the average global solutions near the end points, with (Y2 (5 — %)) —
(cB,/2) /(02 —n) (b7 — 01) and (Y2 (n — ¢*)) — (c3,/2) /v/ (02 — ¢2) (n — 01), we have taken limits of fac-
tors which are not varying near b%, and near c?, respectively. These subtracted average solutions result in
improved convergence near the integration end points, but are approximately cancelled away from the in-

tegration end points by the local integrations on the next line, where the local solutions are being denoted
as

(542)

k1/400y (_1)%
~ ez TS, /8
Y2 (1) Y n G e

Re [/(®1= /N2 (s, 1/4, keaT)) [N —iheat] + e (O TR (s, 1/4, k.7) /\/ﬂ}

Coy (_l)nb

- /(0 = 6y)

cos [P1,/2 — /4 + ke11/2 — (5, /4) In (keoW)] , ke >> 1 (543)

L(1/4+1d5:/4)  j@y.—n/a
T (1/4—is./4) i Pre=r/B (544)

~ k‘ié400y <_1)nu TSy /8

20/ —2)

Yez (1)

Re |:ei(‘i’0m—7r/4)/2—i7r/4W+ (_S:m ]_/4:7 kexﬁ)/ 4 _ikem’ﬁ + e_i(¢0m_ﬂ/4)/2+iﬂ—/4W, (_Sza 1/4’ kexﬁ) /}/ikez’ﬁ}
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COy( 1)7'
{L/;\/ 02702

o8 [Poy /2 — /4 + kexn)/2 — (82/2) In (keaW)] 5 Keal] >> 1 (545)

D (1/4+is0/4) _ i(@o,—n/4
T (1/d—is,/d)  © (Foe (546)

Substituting the global solutions

k’2

1
SN CETDICETN ( 000\/E) )

/@2 [/min(bz,ez) { (4‘ _ 77)
¢ |Jmaxezon) | V(@ —n) (62 =) (02 —n) (n — ¢*) (n — 01)

() ()

d
V@ =P @ =) 02 =) (7 = &) (7 = 01) ¢<a2—c2><b2—c?)(ez—c%(n—c?)(n—el)}”

(C — b2) 2/0(2)?; g Y2 dn (C — 02) Q/ng min(t,02) Y2 dn ]
Ve @ o) /max<cz o O T e - ) / =)

dg
V(@2 =¢) (¢ =2 (C—02) (¢ — ) (C — 1) (547)

Using the derivatives of the Whittaker functions

{W+ (s:1/4,k.8) / (—ik65)1/4] ~ /2 {_M (—ik)Y? + 0 (kﬁ)} k0 — 0 (548)

d\f

d\/ {W (s 1/4,k 9) / (ike'é)lﬂ ~ /2 [_M (ik) 2 + 0 (kﬁ)] kO — 0 (549)

the function

X (€) ~ cor Re [e7 0 2W, (50,1/4, K ) + €W 2W (s5,,1/4 ke )| WE e=-E ()

then has frequency-normal derivatives

,k1/4 9%,
awa\[ - 2 ow

—jgT1®0s/2=im/ 8% {W+ (sz,1/4,ke£) /A —ikexf} + jei®oa/24im/8 _—_ d {W_ (sm,1/4 kwﬁ)/ ikea }]

o o

Re

£—0
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ex Cox—(F —

~ \/>k3/4 a¢01 {ieiq>()z/2i3ﬂ'/8 1 _ iei@nw/2+i3ﬂ'/8 1 }
Ow

T (1/4 — is,/4) T (1/4 + is,/4)
L WU A vre=rwr )
~ Ve 8§£z {ei(%zmwr (1/4 i isa/d) ei(%fﬂm/zr (1/4 Jlr isy /4)}
e, 0o { | L (1/4—iso/4) L L (1/4 + s, /4) }
@ 09w T (1/4—isy/H)\| T (1/4+is,/4) " T (1/4+is./4)\| T (1/4—is,/4)

Q\Fk'ear Coz 8¢'0w
T (1/4 —is,/4)| Ow

(551)

where we assumed that the frequency derivative is dominated by the derivative of the refection phase [3],
and we previously have shown that

X (§0) ~ ok *n V2T (1/4 — s, /)] e/ € = ¢ — € (552)
Then
( X ) ~ QCgmkme”z/‘*@ (553)
owE) 0
where
k2 = k2 (0: = ) (554)

(@ =) B =)

8z = keg (61 — ¢°) (555)

To simplify the energy result we take the limit of alignment 6 — b? and 6; — ¢? (except in this normal
derivative function)

k2 1, X
\/ 5 3 (2 > 4COyC()z
wy/(a? = c?) (b% — ¢?) &u@\/ﬁ

(¢ —v%) 2/, b2 o dn (C—c?) 2/, b2 ,
+\/(a2 —02) (2 — @) { PG ) \/fg}~ o + { LYo (n)
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dc
V@ =0 -2 (¢ —)?

From our previous identities for the Whittaker functions we can write the aligned limit as

Re [e—”/‘*wq (o, 1/4,1%5) I —iked + ™AW (0, 1/4, keb') /(/@']

1/2 oy _ = _ =
= - Re [em/ srim2p ) (k0/2) =ik + /52 HE (k8)2) ikl

1/2

= "5 Re |41 () (k0/2) + e 0, (k0/2)] k.0

(556)

= %/2 Re [eiw/4 {J1/4 (k95/2> +1iY1/4 (kj/g)} 4 ein/4 {J1/4 <k65/2) i, (k(,bv/Q) }] e s

4 ~

Ep— [cos (m/4) Jy 14 (ke'é/z) — sin (1/4) Vi 4 (ke'é/2)] ked

=201, (k65/2) \/ﬁ (557)

where J,, (z) is the Bessel function of order v. Note that we will not retain the exponentials in the coeffi cients
in the following, because these exponentials cancel an exponential arising from the misaligned form of the

Whittaker functions for large argument (see preceding summary of solutions), so the interior part of the 7

interval does not exhibit the decay possible at the end points. Therefore we use the aligned limits of Y (n)

at the end points to facilitate convergence of the integral in the energy theorem

1/4 n
kel'coy (=1™ o s

Vi)~ =3 GEn;

T (1/4 + is./4) T (1/4 — is,/4)

_~ 0 =r 7 —7;71'/4 _ ~ LY pol L/ —s,/4) 7;7‘—/4 B B r _
Re 1“(1/4_2-52/4)6 Wy (=52, 1/4, keo) [N/ —ikezn) + T (/AT /0" W_ (=82, 1/4, ke:T) / ¥/ ike=1]

k1/4 _1 ngy . _ _ ) _ _ _
_, Kercoy (FD)™ B [e—”/‘*mq (0,1/4, keoT)) /| &/ —ikoss) + €™/ AW_ (0, 1/4, koo7]) /é/ikezn} B =17, 5. — 0

2/(b? — ¢?)
T CD L () Y = s (559
Y () ~ kiz&cOy (=" RINE
2{/(02 — c2)
T (1/4 + is,/4) T (1/4 — is,/4)

Re

S\ ET 0w/ ) —in/4 o ~ ja/ — I'(1/4 —isz/4) in/a B S _
T (1/4 —is,/4)° Wi (=50, 1/4, keaT)) [ N/ —ikeaT) + T (A s /D) W_ (=80, 1/4, keal)) | ikient)
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/A 1) A B _ _ = -
. C((Z;(_cg) Re (€7 Wy (0,14, keai) //=ihea + €™/ W (0.1/4, ki) //ikical| » n=c2 =77, 52 = 0

71'1/2]66446 . ¢ /2 ~ = ~
~ (ng( )) / J71/4 (kean/2) VkeaT] , m— = n, Sz —0 (559)

Inserting these aligned forms then gives the energy theorem

k> (b2—02) 1 2 2

; ((12762) Oy OZ( &ua\/»)
E—c?

[ l/{ C-¥im (%) | (C-d-m () }dﬁ
. Lo V=2 +n) 2= J@--n) @@= )0

e I PP (s N L TR du] dc
b R = e N
)
where we note that
’/TJ31/4 (u) ~ % [cos (u—7/8) + O (ufl) sin (u — 7r/8)]2 ,u>>1 (561)
To carry these out analytically, suppose we consider the integral [24], [19]
0o ) B 1 N B 00 ) N 71 0 ,Uf)\/271/2 ”
/0 |:7TJ_1/4 (u) u2—|—1] u duf/0 TS24 (W) u " du 2/0 NCEwT d
MO (42 rearas-a)
T oar? (i)p(l/z%x) 2T (1/2)
T2 (1/2- A/2) T (152) B
2T (1/2) F(1/2—)\/2)F(/\/2+1/2)F(1/QT“)
D(14+X/2)T(1/2=X/2) [T(1/4-)/2)
AT (1/2) [r(1/4+x/2) cos (TA/2) = 1}
~ =y (/) 1 +{¢ (1) + ¢ (1/2)} (A/2)] — = (1/4) (562)
where T' (2) is the gamma function and ¢ (z) is the digamma function [19], so that
> 2 1 /
/0 [wm () = < | du =7 +3In2 4 72 (563)
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where we note that ¢ (1) = —7/, ¥ (1/2) = —y' — 21n 2, Euler$ constant +' &~ 0.577215664 and

Y (1/2) = S0 (/4) + 50 (3/4) +n2 (564)

where from the refbction formula
Wb (3/4) =1 (1/4) + meot (r/4) = ¢ (1/4) + 7 (565)
Y (1/4) = - —3In2 —7/2 (566)

and from the duplication formula

12T (\/2)T (A/2+1/2)

I =3 1) (567)
finally giving
o I ()T (71/22”)
/ T2 (x) e e = < 1/2> Re(X) >0 (568)
0 212 (25T (422)
We also note from the integral representation of the beta function B (p, q) [19]
p=A212 T'(A/2)T (1/2 — A/2)
———dv=B(1/2—-)/2,\/2) = 569
o Vurl (1/2=2/2,A/2) T (1/2) (569)

From these we can write

[ atntwan [ [152 a0 ] dur [ B r0 () = +amaenzrareinh

~ 432+ 7/2+In (R+ I+ R2) ~ o +7/2+1In (I6R) (570)
where we used
Arcsinh (R) = In (R +V/1+ R2) In (R + R+ 1/32) ~1n(2R) + 1/ (2R)? (571)

and the order symbol represents the leading correction — cos (2R + 7/4) / (2R). The indefmite integral

/{ (-p+7) V), (e (-2 }%
V@-+n J@-») J@-e-n Ja-e)

7

C-¥) , | V@ - v )
= =g N G F s +2¢/(a® —b \/7@)1 ()
(=) | |[VTTT 2| e €8

Jr\/a2 |\/ 2—2+n) +Va? -2 2 a2—02)1 ) (572

then yields
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/Obz‘cz{ (C— b2 +7) (-0 , (C--n) () }dﬁ

V@=wr) @-w)  J@-d-n J@-a)f 7
_ (C—bz) \/(a2—62)—\/a2—b2 e (C—bQ) g
_\/“2_b21 V(a2 =)+ Va® —b? 2V ) ((12—1)2)1 ® )
(C_CQ) \/(QQ*bQ)f\/QchQ 5 - (4_62) e
e e wve—e| Ve e )
e i) 2@
+%1n|4(a202)|2m
_ (C—b2)1 4\/(a2—02)—\/a2—b2 (a? = b?)
TVE—R @@+ VaE - ()
() . V(a2 =) — Va2 — 2 (a® — ¢?)
+ a2—021 4\/(a2—b2)+\/a2—c2 ) (573)

Using these the normalization condition becomes

k02 =c?) 1, 2 92X
T\ @)~ 1
80.)8\/ fct

397 +7/2 Va2 — ¢ — Va2 — b
Va2 — ¢ +Va? - 1?2

2

/ H(C—@)la2—b2+<<—b2>1¢m}m

In (kez (a2 — b2>> In (kw (a2 _ 02)) ] dc
+(C_c2) (a2—b2) + (C_b2) \/(CLQ—CQ) \/(CLZ—C) (574)

Noting that

a
\/ 22 —u)—+aZ—c?

2—? —u)+ Va2 -2

/a ° o du 1
o C=AV@=0 Joer wl@—E—u) = Ja—an

0 CO_CQ
B 1 \/@2 2 4 \/
Va2 - 62 Ve —e - vV (a? Co) (579)
/az dC a?—b2 du 1 \/ 52 _ u \/a2 — 2 a2 —b2
Co (Cbe)m Co—t? uy/(a? —b% —u) \/CLQ*bZ a? —b? —u) +\/a2beC762
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B 1 Vaz — b2 + /(a2 —
= N/ In ‘ o \/(a2 ) (576)
finally gives
%2 (a2 —b2) (12 — 2) ~ iCOyCOZ ( 92X )
awa\/ 2
Va2 —c2 — /a2 — b2 Va2 =+ /(a2 — ()
2 12\ Y +7w/2 0
In |32k.. (a” —b%) e Va2 — 2 +Va2 — b2 |\/a2 — /(a2 = ¢p)
\/@2 —c2 = \/a2 _ b2 VaZz = + \/( <0)
N +7/2
+1n 32k, (a® — ¢*) e Ny | L v iy 1 (577)

Note in the bowtie geometry we have ¢ < R, < R, and often for near stable situations ¢ << R, < R,
and then a? > (, >> b? > 2. Inserting the ray orbit half length ¢ and the radii of curvature

b’ —c* =((R, - Ry) (578)
a? — ¢y =0 (579)

a? —b* =L (R, + () (580)

a? - =1(R,+ 1) (581)

we then obtain

1
f\/ R R) 4COy00z( &ua\/’)& )

rpp VB L= By +1| | VR F T
In |32k+/C (R, + 0)e +7/2 Y
(By +0) \/Rz+£+\/Ry+£ \/R SN
, VR, +0— /R +£ R, +/
+1n [32k\/ (R, + £)e¥ +™/2 Y 582
( ) \/RZ+€+\/Ry+£ \/W—\/ (582)
or inserting the normal derivative factor
1 P
\/e )(R. — Ry) (R, +{) ~ 4c0mcgy%zemm/48 s
VR A0- VR + 1] VR 11
In |32k+ /0 (R, + £ e /2 Y
By +0) VR. +1+ /R, =" MR Fi- Vi
rinp VR 0= \/R, + 1 R, +1
+1n [32k\/C (R, + 0)e¥ +™/2 Y |n | Y 583
( ) VR. ¥ 0+ /R, +1C| | /R, +{—i (583)
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5.3 Phase Derivative & Normalization
The frequency derivative of the phase can be written as

8(1301 aq)OT

V HoEo 6127. 2k V Ho€o—575 8k2 (584)

In a three-dimensional cavity of volume V the scalar field mean modal spacing is [25], [13], [14]

Ak ~271%/ (K*V) = AK® = 2kAk ~ 47° ) (V) (585)
If we impose three axes of symmetry

Ak? — 8AK? ~ 3217/ (kV) (586)

Then using a phase change A®q, = 27 between modes we can write the inverse phase derivative as [3], [13],
[14]

0%y, \ " 167 .2 R BTN
< ok? ) =Gyt S )= e (587)

where f (v,) is a unit variance normally distributed density function of the random variable v,. Then the
energy theorem becomes
U l2y

rimp VR H L= /R e
In |32ky\/€ (R, + €)e T7/2 Y
[n (By +Oe \/Rz+€+\/Ry+é

32k\/m67/+“/2\/R2+€_\/Ry+€ N +f
: VR. ¥1+/R,+{| | /R, +7

We see from the dimensional relations that an approach to a two-dimensional situation results if R, >>
R, >> ( and then a® > (, > b? >> ¢*. For this limit with R, >> R, >> ¢ we see that the y dimension
has a very large range. The variation of the y coordinate is governed largely by the variation in 7. In past
treatments of the two-dimensional case, where we chose to have no variation in the long dimension this can
thus be simulated by taking Y2 (1) as a constant.

5 1674
cgwcgycgze“m/‘l i \/E R, +{)(R,—Ry) (R, +Y)

R, +/
\/R Ry T

+In (588)

5.3.1 Vector Case

The vector mean modal spacing in a three-dimensional cavity of volume V is half of the scalar case [25], [13],
[14]

Ak ~ 7] (K*V) — Ak? = 2kAk ~ 27/ (kV)) (589)

If we impose three axes of symmetry

Ak? — 8AK? ~ 1672/ (kV) (590)

Then using a phase change A®(, = 27 between modes we can write the inverse phase derivative as
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Ok?

This implies that the normalization condition

—1
(8‘b0:v) _ 8i'U2 f(’Um) — %e—’ui/Q

) KLy
C(Q)JEcgyc(Q)ze’”'“”/‘1 ik;TV\/e (Ry+{)(R. — Ry) (R. + 1)

ronsa VR L= /Ry + €| | VR, + L+ Vi
In [32k+/0 (R, + £)eY T™/2 Y |In|¥Y=2
[n (Ry + O)e N o Y T
rinp VR + 0= /R, +7 R, +1
+1n [32k\/€ (R, + £)e¥ +7/? Y |In Y
( ) VR. +{+ /R, +1| |\ /R, +1{-

leads to half the scalar level (for the squared amplitude).
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6 PROJECTION ALONG SCAR

We now examine the trigonometric projection along the scarred orbit [3], [4]

o= [ { i Yo [ { 22 o

_ pm _
kpﬁ—{ (p—1/2)7 } ,p=1,2,...

Our previous scalar field along the scar center was

where

u(@) = & (1.) = X () Y (1¥) 2(Q) = o Lm0 paripyap (114 i, pa) P (14 — s, )] 7o A7l

o7 M ex ez

1 sin |k o (0 —01) (0 —02)
1 (C—91)(C—92){ cos l2/C (a2 —0) (9—b2)(9—02)d9]}

(a* — ) (a* = %) (a® = ¢)

N R B
o (2= (2 —0?) ((—0?)
R (e TPy R
@A E-A -,

(@ =) =)

We transform to

1 sin [k [© (0 —61) (0 — 05)
4 (C*01) (C‘92){ (o)) [2/4“ \/(a2_9) (0—1)2) (0_02)d9‘|}

1 sin |k ¢ (a2—61—5) (a2_92_5) _
= \4/((1291:52)(@292352){ cos |:2/0 $§(a2b2§) (a2_c2_5 d@]}

1 sin | & z? (a2—91—5) (a2—92—5) _
- {‘/(a291x2)(a292x2){ cos {2/0 \J@(a2b25) (az—cz—a)de }

v —c* =(¢(R, - R,)

83

(593)

(594)

(595)

(596)

(597)

(598)

(599)

(600)

(601)

(602)



a’ = (o =1 (603)
a? —b* =L (R, + () (604)
a> = =1(R,+Y) (605)

For the case where a? > ¢ > (, >> b? > ¢? following from R, > R, >>{,ora®> — (=22 < a? — (, = <<
a? = b =L (R, + ) <a®—c*={(R, + (), we can approximate the final integral as

1 = 9 (6 — 6)
Y(C=01)(C—02) 92{ [/ \/ —bz)(ﬁ 2)‘4}

~ ! sin | k _ 1 sin (kz)
~ {1/((]12 —02) (a _b2) { CcOoS [2/0 \/’5] } - {1/(012 —62) (a2 —b2) { cos (kIIZ) } (606)

Then we can write

71 o x z . . _
U(l’) :q)(CQ,bQ’C) ~ ( 273- CO(bZOyCO )k1/4k1/4 |F(1/477/5‘/L‘/4)||F(1/477/SZ/4)‘67‘-SI/4 s, /8

Yla? = 021) (@2 — 82 { cos Y/za;)) }

~ Lo ot ek i i
T - @ - @) @ =) @)
(607)
where we used
2 _ 12 (62— ?)
R )
- 2(02—624-172—02) - 2(b2—02—sz/kez) B k2 B s k? N k2
e F w0 @) @G- @-a
2 _ 1.2 (b2 _91)
ARSI
W=+ —01) (0P = —sufkes) kP oy k2
=k (a2 = b2) (b2 — ¢2) k (@ =02 (02— %) (aZ2—12) (a2 — b2) key (b2 — c2) ~ @ -5 (609)

Inserting the radii and ray path length

w@) = (1,0) ~ CUT Vcoacoy co:
YO(R. — R O(R. 4 0) L (R, + ) /TR ¥ O 1R, + 1)
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(U = dsa /T (1/4 = s f]eree/ e £ R (610)

and scalar normalization

5 1674
BochycBe™ /v A (Ry + 0 (R — Ry) (R +0)

'yma VR + 0= /R +£ R, +(
n e +7/2 Y
[1 32k /0 (Ry +0) \/Rﬁ”\/RyM e Y
) \/Rz+£—\/Ry+é R, +
n eV /2
+1n |32k\/C (R, + 0) ) e N oy ’\/Rny (611)
to give
— B (22 0) = Ao sin (kx)
u(z) = ( ’b’g)Q‘/é(Rz—i-E)ﬁ(Ry—ké){COS(kx) } (612)
with
AO ~ (71)"11 \/ECOzCOyCOz |F (1/4 o ZST/4)‘ |F (1/4 B 152/4)| 671‘81/4771'52/8
t(R. ~R,) VTR T O IR, 70
2 nb TSy /8—Ts, /8
\/W \/\/ R. +0) (Ry + )T (1/4 — is,/4)| [T (1/4 — is. /4)| e
. \/Rz+£—\/Ry+é R, +7
n 7/ eV /2
[1 82k E(By +0) \/RZ+€+\/Ry+E \/R +0— /0
. VR. +{— /R, +1{ R,+ ¢
n eV +7/2 Y n Y
+1n|32k\/{ (R, + 0) VR T+ Ry Tl 1 R i (613)
Then
¢ . 0o .
_ sin (kpx) _ sin (kx) sin (kpx)
Vo = 2/0 u(a:){ cos (kpz) }dm_2AO/O { cos (kx) }{ cos (kpx) }dm (614)
¢
V, = T +‘2;)£(R +£)/o [cos ((k — kp) x) T cos ((k + k) z)] dz
_ Ao [Sin((kz —kp)0) - sin ((k + kp)g)} - Aol sin ((k — kp) £)
VR AR, +0) L (k—kp) (k + kp) VOR, ARy +0) (k—kp)t
(615)

where at high frequencies we neglect the sum term. Then squaring this and taking the mean
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2\ _ Akl sin ((k — k) €) 2
<%>_<\/(Rz+£)(Ry+e)>[ (k— k) L } (616)

where we used (v2) = 1. Then defining G (s,,s.) by means of [3], [4], [13]

(kLV,}) ~ L*G1 (54,52) |V (617)
gives
. E—Ek 2
G (s2,52) = 27 ID(1/4 — s, ) [T (1/4 — s, /4)|? e/ 4=ms=/4 {Smg . pzf)]
JVE T O® 10/t (h— Fy)
VB A= By 1) | VR T
In |32k /€ (R, + £)e) +7/? Y
. (Ry + 0 \/RZ+£+\/Ry+€ \/R Sy N
rima VR + 0= /R +12 R, +¢
+1n [32k/€ (R, 4 £)e” +™/? Y 618
( ) \/Rz+€+\/Ry+£ Ry T (618)

In previous work [7], [14] we have often approximated the sin (kz) or cos (kz) factor as the Fourier series
terms sin (kpx) or cos (kyz) as the radii of curvature become large, denoted byV,,,. This is certainly also true
of the transition region, corresponding to the larger values of Gy (s, s.) near k — k, which corresponds to
taking the factor sin ((k — k) £) / (k — kp) £) — 1

(kLV2) = (kLV}) ~ L*G1 (s4,5.) |V (619)
where
G1(0,0) : 2 ; 2 ms, /A—ms. /4
= —= 1/4 — 4 T(1/4 — 4 TSg TSz 9
G (s2,82) T (1/4) T (1/4 —is. /9|7 |T (1/4 —isy/4)[" e (620)
and
2
G1(0,0) = A T (1/4)
NN
In |32k+/€ (R, + £)e? T7/2 Y In | Y2
ln ( Yy Je \/Rz+€+\/Ry+€ n 7 -
rinp VR + 10— /R +7|, 1/R +7 +\f
+1n |32k\/C (R, + 0)e¥ t7/? Y 621
( ) \/Rz+€+\/Ry+é Y VR, + i (621)

We note that this result has taken symmetry in all three directions so we expect a factor of eight enhancement
over a general scalar case.
We can also use the gamma function refection formula to write

T (1/4 —is,/4) T (3/4 +is,/4) = n/sin7 (1/4 — is,/4) = 72/ [cosh (s, /4) — isinh (75, /4)] (622)
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T (1/4 — is,/4) T (3/4 + is,/4)* = 272/ [cosh? (w5, /4) + sinh? (ms,/4)] = 472/ (e”””/ 24 e*”zﬂ) (623)

[ (1/4)T (3/4) = 7/sin (7/4) = 7v/2 (624)
I'?(1/4)T?(3/4) = 272 (625)
and
2 (3/4) D (1/4 — s, /4)|P 2emse/dTee/A
G 52152 | (g 0.0)] = D (3/4— s, JA)ff T + e 7oel? (626)
where
T2 (3/4) B Amr
70 G1(0,0) =
1 a/4) JVE, O & 10/t
oo VR A~ /Ry + 8| | VR, ¥ 1+ Vi
n e /2 Y n
[1 82k\/ L (Ry + O™ N R il ’\/RZM—\/Z
+1n |32k+/¢ (RZM)eW'H/?j? Ii; \\;gyii In ﬁvgyiﬂﬁ (627)

Figure 6 shows an example of the behavior of this function on a contour plot for parameters L = 2¢ = 2
m, By = 10 m, R, = 12 m, kL = 67.367, where ¢, = 12 m?, a> = 13 m?, b = 2 m?, 2 = 0 m?,
d,/d, ~ 1.0871146, d, /¢ = a/l ~ 3.60555. Figure 7 shows a cut for s, = 0.

v —c* =((R, - R,) (628)
a?— ¢y =1 (629)

a’> =0 =l(Ry+0)=d, (630)
a’> - =((R,+ 1) =d? (631)

The value chosen for kL was chosen to compare to a numerical simulation run with these dimensions over
the frequency range 1 — 2 GHz. Using the asymptotic formula for the scalar field mean spacing

Ak ~27%/ (K*V) (632)

the number of modes over the wave number range k1 < k < ko is

v ke 1%

P dN
k*dk = —
o2 (

N=| Zdk= /kz (1/Ak) dk

= kS — k3 633
k1 dk k1 27'('2 k1 2 1) ( )

and therefore the mean wavenumber over this same range is
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<KLV 2>=1%Gy(s,s,)/ V
2 G,(s,8,)

Figure 6: Contour plot of Gi (sz,s,) for example where R, = 12 m, R, = 10 m, L = 2/ = 2 m, and
kL = 67.367.

1 [ 1% k2 1%
= - A = — 3 —
(k) v ), (k/Ak) dk Non? |, k3dk e

(ko + k1) (k3 + k)
(k% + koky + k‘%)

3k kP 3
= =2 4
: (634)

4 14\ _ 2 _
(ks = k1) 4k3 — k3

We can also write (using k1 ~ 20.958622 at 1 GHz)

3(ka+k) (k34K 3@2+1)(4+1) 45
== 0r 2T T ) (90.958622) & —o (20.958622) — 33.6835 (f = 1.60714 GH
B = Tl v ) 1 av21 | )~ 55 )= < 2)
(635)

where the final result corresponds to an average (k) being at f = 1.60714 GHz. We can then write

ko + k1) (k3 + k2
3 (k2 + k1) (K3 + 1)L ~ B (20.958622) ~ 67.367 (636)

kL) =
L) =7 (k2 + koky + K2) 14

Note that this average choice will not change for the vector spacing Ak ~ 72/ (kQV) or including symmetries.
From the prior result in the section on the “Resonant Condition phase integral”
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Figure 7: Cut of function Gy (s, s,) for s, = 0, for example where R, =12 m, R, =10 m, L = 2/ = 2 m,
and kL = 67.367.
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2 (k — ky) 0 = (s,/d. — 5. /d,) (637)

we can eliminate the separation constants and determine a result dependent on k£ — k,. To do this we need
to integrate out the probability along these constant lines of frequency separation to end up with a single
plot as a function of k — k,

F (20ke) = / F(20k(d, [0+ 5.d./d,, s.) ds. (638)

Note that the key point here in this integration is that we have already selected the eigenvalue spacing based
on the three-dimensional asymptotic scalar eigenvalue density (using eight-fold symmetry). This introduces
a scaling in the eigenfunction amplitude accounting for the three-dimensional spacing (not representing the
density for fixed s, or s., as in the fixed m for the axisymmetric problem) and thus we do not have to
introduce another density function in this averaging. Thus with

w=2(k—ky)l(d./0) (639)
we can write
Gy (u) = / G (u+ s.d. /dy, s.) ds. (640)
and
T2(3/4 o [(1/4—is,/4 2 w(uts.d,/dy)/4—7s, /4
Gl(“)/ 2(/)G1(0,0)]:2/ | (/ ZS/)| 2 ed d,)/2 : d./d 2d82
I'2(1/4) oo [0 (3/4 =i (u+ s.d./dy) /4)|” er(uts=d=/d)/2 4 e=mlutsadz/dy)/
(641)
where
T (3/4 — isg /4)|* ~ 27 (|sg] /4) /2 e Is=l/4 | 5, — 00 (642)
T (1/4 — s /4)|* ~ 27 (|s2] /4) "2 e mls=l/1 s, 00 (643)
. 2 mT(u+s.d, —TS, —7(|8z|+S2
T (1/4 — is./4)| o (utsds /dy)/4—ms. /4 o (=] +s2)/4 o fdy—ubond /g4

T (3/4 — i (u+ s.d. /dy) [4)|* emlrs=d=/ D2 femmeal2 0\ ffut s.d. [dy[[s:]
(644)
The convergence is thus exponential in both directions: e~™**/2 | s, — +o00 and e™=(d=/%)/2 5 _o0.
We could plot this result as a function of

AN=2(k—ky)L=u/(d./L) (645)

but instead from former work in two-dimensional and three-dimensional axisymmetric cases we have chosen
to plot the result as a function of s instead of u or A\, where

s = (k= k) 0/ iy [ 257 = (k—kp)f/ln,/\/im — (k= k) L/In (jfi) (646)
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a? - =a>=((R,+ 1) =d? (647)

and we have arbitrarily decided to use the larger radius of curvature R, instead of R, (in previous work
there was only a single radius of curvature). This can be written as

) O\ g (YIEED ) (VBT
s (k- )z/1n<a ﬂ)_Q(k ky) €)1 (Vi £>—(k k) L)1 <WW—1>

(648)
and related to u =2 (k — k,) £ (d./¢) by means of
VR.JI+1+1
s=u/ |(d./f)In VEELYLN (¢/d.) 1.175556 ~ 10.4869 (649)
VR +1-1

where the final two results use this example geometry. The stability exponent with respect to this radius
can be written as [26]

A= (szﬁ)ng.m (650)
and then s becomes
= 2(k— k) L/In (As) = A/ In (Ay) = u/ [(d2/L) In (A1) (651)

Figure 8 shows this scalar scar theory result G; (s) /8 as the solid curve and the dashed curve in this
figure shows the scalar random plane wave result G (A), discussed in the next subsection, for comparison.

Figure 9 shows the surface mesh used to model one eighth of the three-dimensional convex surface lantern
(bowtie) geometry and Figure 10 shows an example of the electric field. Figure 11 shows a histogram from
the vector electromagnetic simulation (using the method of moments code EIGER) for G; (s) /4 (for the
vector problem this quantity corresponds to G (s) /8 in the scalar problem) versus s = 2 (k — k) L/ In (A1),

2
Ay = (%) [27]. The transition near s = 0 is quite similar to the scar result (solid curve) in Figure 8

and is quite different from the random plane wave result (dashed curve).
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- 3D scar field projection
LRy | p— 3D random plane wave projection

G,(s)/8, G(1)=G(1)8

o
~
|

0.0

-4 -2 0 2 4
s = 2(k-kp)L/|n(L) =1/In(L)

Figure 8: Function G (s) /8 compared to random plane wave result G (\) = G5 (X)) /8, for example where
R.,=12m, R, =10m, L =2{ =2 m, and kL = 67.367.
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Figure 9: One eighth of lantern cavity structure, where R, =10 m, R, = 12m, and L =2{ =2 m.
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Figure 10: An example of electric field in three-dimensional geometry.
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Eighth Chinese Lantern With Prolate Spheroid Ends PEC|PMC|PEC,
Lx/2=1 m, Ly/2=1m, Lz/2=1m, Rx=10m, Ry=12m, focus=3.6056m

20 -

1.5 —

G1/4

1.0

0.5

0.0

Figure 11: Histogram from numerical simulation of convex lantern (bowtie) geometry for G; (s) /4 in the
vector case. This simulation used one eighth geometry with symmetry planes PEC|PMC|PEC. In the simu-
lation the ray path is along z with the radii of curvature noted in the x and y directions; the axes must be
permuted to correspond to our R, = 10 m, R, = 12 m, orbit half length L/2 =1 m in the « direction, and
the focal point d, = 3.6056 m.
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7 3D RANDOM PLANE WAVE PROJECTION

Let us take the random plane wave description in three-dimensions and consider the trigonometric projec-
tions.

7.1 Scalar Case

The axisymmetric report [13] gives the scalar 3D random plane wave representation

N
up = lim \/2/(VN)Re | Y a;e'®thT (652)
N—o0o =1
j:
where a; are real random numbers with <a§> =1, | Eﬂ = k are random wave vectors uniformly distributed in
angles the sphere with 47 solid angle, and the random phases o are uniformly distributed on a 27 interval.
This has been normalized so that mean square is

(uf) =1/V (653)
The 3D trigonometric projection is
¢
Vor = / cos (kpx) up (0, ) dz (654)
—t
We define
(RLV;)), = L*G(\) /V (655)
with
A=2(k—kp)L (656)
giving
x  sin?(\/4) 1, 1. sin? (\/4) 7
The asymptotic limits are
GAN)—0, A\— -0 (658)
G(0)=mn/4 (659)
G (00) = /2 = 1.570796 (660)
and
s=2(k—kp)L/In(Ay)=X/In(Ay) (661)
with [26]
d. +0\?
Ay = 2
= (FH) (662)
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If we were to impose symmetries in all three dimensions we could define

Gs (\) =8G (V) (663)

Then we would have

G, (00) = 4 ~ 12.56637 (664)

The prior G; (s — 00) = 11.6 result (eight times the saturation level 1.45 in Figure 8), using the scalar
eigenvalue spacing, is reasonably close to this result for G (00).

7.2 Vector Case

The vector case has random plane wave representation [13]

N

E, = A}gnoo V2/ (VN)Re z a; (cosp,e; +sing,;e;) e T (665)
j=1

where the polarization angles ¢,,; are random numbers uniformly distributed over a 27 interval, and the unit

vector e; is perpendicular to k; with.

€ = (k; x¢;) [k (666)
The normalization gives
(E,-E,)=1/V (667)
The 3D trigonometric projection is taken as
¢ ¢
Vpr = / cos (kpx) Ey (2,0,0) dz = / cos (kpx) e, - E, (x,0,0) dz (668)
) —4

where the unit vector e, is taken to be perpendicular to z. Again defming

(kLV;}) =L*G(\)/V (669)
A=2(k—ky)L (670)
gives
sin? s
GO\ = i —b/\(/z/@ + 5 +5i(3/2) (671)

which is exactly half of the scalar result. Therefore the asymptotic results in this case are

GAN)—0, A= - (672)
G(0)=n/8 (673)
G (00) = /4 ~ 0.785308 (674)
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- 3D scar trigonometric projection
------- 3D random plane wave projection

1.6

= G4 (vector)/ 4

G,(scalar)/ 8

-4 -2 0 2 4
s = 2(k-k )L/N(L) = 1/In(L)

Figure 12: Scalar function G; (s) /8 or vector function G; (s) /4 compared to scalar random plane wave
result G (A) = G () /8 or vector random plane wave result 2G (A) = G5 (A) /4, for example where R, = 12
m, Ry =10m, L =2¢{ =2 m, and kL = 67.367.

If we were to impose symmetries in all three dimensions we could again define

Gy (\) = 8G (\) (675)

Then we would have

G, (00) = 27 ~ 6.2831853 (676)

The prior scalar result would go to Gy (s — c0) ~ 5.8 (four times the saturation level 1.45 in Figure 8
when using the vector eigenvalue spacing) is close to this result for G (00). Figure 12 again shows this scar
transition versus the random plane wave result. Figure 11 showed the histogram from the electromagnetic
simulation [27] and Figure 13 shows the histogram when the first two symmetry planes are permuted (which
rotates the polarization state) [27].
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Eighth Chinese Lantern With Prolate Spheroid Ends PMC|PEC | PEC,
Lx/2=1 m, Ly/2=1m, Lz/2=1m, Rx=10m, Ry=12m, focus=3.6056m

20

1.5 -

G1/4

Figure 13: Histogram from numerical simulation of convex lantern (bowtie) geometry for G; (s) /4 in the
vector case. This simulation used one eighth geometry with symmetry planes PMC|PEC|PEC. In the simu-
lation the ray path is along z with the radii of curvature noted in the x and y directions; the axes must be
permuted to correspond to our R, = 10 m, R, = 12 m, orbit half length L/2 =1 m in the « direction, and
the focal point d, = 3.6056 m.
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8 CONCLUSIONS

This report constructed high frequency asymptotic field solutions along an unstable periodic ray orbit in a
three-dimensional cavity at high frequencies. In this case the mirrors in general have two distinct radii of
curvature, which in this report are assumed to be convex. The modal solutions are normalized by using the
energy theorem. Random plane wave chaotic field representations are also constructed. Fourier projections of
the field along the periodic ray orbit are taken and compared to the projection using the random plane wave
form of the field. These comparisons illustrate orbital field behavior transitions (in the Fourier projection)
when the eigenmode frequencies pass through values where phase variations along the orbit length align with
the required boundary conditions on the terminating mirrors. With the foci located exterior to the cavity
we do not observe significant field enhancements at single locations along the orbit, as in the two-dimension
case [7].
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