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Outline: some questions and answers ) feo

= Unique robustness requirements for scientific machine
learning (SciML)
= Q1: Accuracy
= (Q2: Structure-preservation and stability

= Some motivating applications across the laboratories
= Al: Realizing exponential convergence with POU-Nets
= A2: A data-driven exterior calculus for structure preservation

= A3: Entropy compatible learning for shock hydrodynamics
(time permitting)
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Requirements for scientific machine learning (SciML) ) e

(Some) traditional ML Tasks
Classification
Image/video processing
Natural language processing
Optimal control

(Some) traditional ML Tools
convNets/uNets/GNN for spatial data
RNN/resnets/LSTM for transient
GANs for distributions

N ®0i2506

Broadly, much of ML is designed for qualitative comparisons and classification

Architectures and training strategies tailored toward a given task
3
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Different requirements for SciML i) fore_

Traditional mod+sim tasks
Constitutive modeling
PDE-based models
Dynamical systems
Inverse problems + UQ

Traditional tools for mod+sim
_ _ " Approximation/FEM spaces
Labor intensive, expensive + small data o o
Variational principles

Geometric/algebraic structure

SciML requirements:
Small data, accuracy, stability, and uncertainty quantification

Can we embed these tools into off-the-shelf ML tools to obtain new guarantees?

4
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Practical requirement for using SciML in engineering

Extreme/high-risk scenarios require prediction guarantees!
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DDM1: Rapid radiation-hardened semiconductor design ) e

Decade to develop empirical circuit models — o - | L
for a given semiconductor device! = |2
. . . . 5 Exi. BE-Jurciian Tearssisior g
Generalizing to new materials requires . :
O(1 month) turnaround vs years e Epitany
Buried Layer
DDM idea: Use high-fidelity drift-diffusion [ )
PDE model to train a cheap Xyce/DAE S 5 o o 7
circuit model, while guaranteeing stability | "
+ accuracy =
S O
EX P Bl TI"
S &t
- Bufonlt] | iy
Wt | \ L -
i TR
time
Gaussian dose rate pulse .

in semiconductor,
peak at 200 ns

e
Top: PDE simulation of BJT device
E Bottom: Empirical compact/circuit model
Left: Modeling challenge: impact of
radiation on nominal device behavior
Credits: PIRAMID LDRD, accepted for publication in IEEE SISPAD 6
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DDM2: Shock magnetohydro experiments on Z-machine @P'a"‘t}ﬁ';?éﬁes

A pulsed power fusion facility for generating extreme environments for short times




DDM2: Shock magnetohydro experiments on Z-machine rh) e

Flyer plate  Material under test

5] (]

Magnetic field from Z pushes flier

~

Discovery of material EOS:
How to extract EOS under extreme conditions
from shock response?

Initial time

DDM to augment and accelerate intensive

model calibration e ~
(]
E
No direct measurements of EOS are °
) S
availablel! L Py
- S = B 3 Impact drives shock to study response
S — . e - 7
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Synthetic data: MD simulations of

Credits: ASC, Philms project funding shocked material 3
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What needs to be done to augment traditional ML to obtain
trustworthy Al for SciML problems?

i.e. how to guarantee accuracy, stability, and physical
realizability
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Toward structure preserving SciML

N 2 .
argmin INN — ugatal| argmin ||N'N — Udatal|?
. 9 3
argmin |[NN — ugata||
3 +¢||[LINN; €] — £||? such that LINAN;E] = f
”Black-box” ML Physics-informed ML Structure preserving ML
No physics + big Weak physics alleviate Exact physics treatment
data data requirements independent of data

Strong physical priors

No domain expertise

Objective:

Efficient machine learned surrogates that provide same accuracy, stability and
physical realizability guarantees as traditional forward models in small data
limits

KEY IDEA: use tools from mimetic PDE discretization

to design network architectures that naturally impose
physics, rather than relying on “big data “

10
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What does a deep network actually do? ) e

Depth L [number g_ijhldden 1a,j,rers

. ; 1
h 4@.&%}& 1,22

~d " b
ST XL XL S

(X7 NZANT. Sy
AW AV

hidden layer width w

Iteration: O

Much of folklore surrounding DNN accuracy related to 1.00
universal approximation theorem giving 0.75
convergence in infinite limits
0.50
To understand actual convergence rates lots of recent 0.25
work provides existence proofs linking to FEM 0.00
* Algebraic convergence w.r.t. width (Opschoor19) —0.25
* RelLU networks as piecewise linear FEM (He18)
* Convergence w.r.t. depth (Telgarsky15,Yarotsky17) —0.50
Cyr, E.C., Gulian, M.A., Patel, R.G., Perego, M. and Trask, N.A., 2020, August. Robust —0.75
training and initialization of deep neural networks: An adaptive basis viewpoint. 1.00

In Mathematical and Scientific Machine Learnmg (pp. 512-536). PMLR.
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Breaking the optimization error barrier - POUnets i)t

These analyses provide a best possible accuracy for a network — but can that
be realized in practice when training with SGD?

0. 0
10" 2 1 1057
EEEEEEEER EEEEEEER
5 10" 4 - § 10° 4 - OUI’ new
k > architectures
S — ° 46| demonstrate
2 1004 Traditional MLPs | £ ™ i
= 5 algebraic
o stagnate as T e convergence
10°8 | —®— depth 4 width/depth is 0 rates
_.__"_ :::: ‘132 increased due to o0
R 10 ] - - - N
10 +— depth 16 optlmlzatl_on
—#— depth 20 error barrier ‘1
10" 12 . . . ’ ®
8 16 32 64 128

width

References from our group:

1. Cyr, Eric C., et al. "Robust training and initialization of deep neural networks: An adaptive basis viewpoint." Mathematical and Scientific
Machine Learning. PMLR, (2020).

2. Patel, Ravi G, et al. "A block coordinate descent optimizer for classification problems exploiting convexity." arXiv preprint
arXiv:2006.10123 (2020). Accepted to AAAI-MLPS

3. Lee, Kookjin, et al. "Partition of unity networks: deep hp-approximation." arXiv preprint arXiv:2101.11256 (2021) accepted to
AAAI-MLPS 12
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Partition of unity b

Definition: Partition of unity (POU)
A collection of functions {¢i},_,  y satisfying

e ;>0
o ) =1

Example:
Consider a partition of Q C R? into disjoint cells Q@ = |J; C;. Then the indicator
functions ¢;(z) = 1¢, (x) form a POU.

i=1,.

10 1

T T T T T T T T T T T T
0.0 0z 04 06 0 10 0o 0z 04 06 08 10

POU corresponding to Cartesian mesh, and another with non-disjoint supports
13
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DNNs may emulate traditional approximation spaces ) feo

Opschoor et al have established that DNNs may emulate a broad class of
approximations: nodal FEM, free-knot splines, spectral approximation, RBFs

Proposition 4.2, For each n € My and each polynomial v € P ([~1,1]), such that v(z) = 3§_ §z",
for all x € [—1,1] with Co := 377, |T4|, there exist NNs {5} ac0,1) with input dimension one and output
dimension one which satisfy

llo = R(LEN| sy <5
Emulation R(®5)(0) =v{0),
of monomials L{®3) < CL(1 + logy(n)) logs(Co/8) + § Crlloga(n))* + C(1 + logy(n))",
M{F5) <4Cunlog, (Co/ ) + 8Cum logy(n) + 40 (1 + log, (n)) log, (Co/ 8) + C{1 +n),
Mi(®5) < dlogg(n) +4,
M (B5) <dn + 2

if Cop = & IfCo = 3 the same estimaies hold, but with Cy replaced by 23,
Proposition 5.1. For all p = (pi)ieqn, vy C N, all partitions T of I = (0,1) inte N open, disjoint,

connected subintervals and for all v e Sp(I,T), for 0 < £ < 1 exist NNz {307 }.c01y such that for all
1< g <o holds

ﬂv —R (@:ITIP) |WJ.-.-'{f] Selblwie
L (7)) <Co(1 + 1083 (Ponee)) (2 + ot (1/)) + i logy (1/2) + C (1 + 1og3(pmar))
Emulation of M (3277) <80 i‘p? + 4C3 log, {1,'.-:}fjp‘- + log, (1/e) C (1 + ilogi(m})
piecewise O -
. C 510 i
polynomial space ! (1 2 mlosile ;')

+ 2N (CL(1 + 1o, (Prue) ) (2Pmax + log; (1/€)) + O (1 + logh (prax))) |
M; (@:-T-P) <EN,
M, (@2-"-?) <IN 4 2.

In addition, it holds that R (@07 7) (z,) = v(x;) for all § € {0,..., N}, where {x;}]2, are the nodes of
T.

Opschoor, J.A., Petersen, P.C. and Schwab, C., 2020. Deep ReLU networks and high-order finite element

methods. Analysis and Applications, 18(05), pp.715-770. 14
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POU-Net i) tators

Main idea: rather than emulate POU + monomials, build them
directly into architecture

Trainable parameters

Hidden layer
(MLP/RBFnet)

“——— Arbitrary

\ / v\ Banach space

Partition of Unity Globally optimal

polynomial coefficients

Training:
1. Solve weighted least squares for globally optimal coefficients

2. Apply gradient update to adjust partition
15




An aspirational error estimate

Theorem 1. Consider an approximant ypoy of the form (1)
with V = m, (RY). If y(-) € C™1(Q) and €*, c* solve (3)
to yield the approximant yp,;, then

C)

* . m+1
lyPou — y”im) <Chny max diam (supp(¢5,))

where ||ypo, — Ylle,(p) denotes the root-mean-square norm
over the training data pairs in D,

> Wrou(®) — y(x))%,

{x v)eD

lypov — y”-ﬂ'z{'ﬂ] = J

and
Crm,y = ||yl

C:rr|+1 {n}.

If reconstructing with polynomials, and
POU with compact support is found,
we realize hp-convergence for smooth
functions

Prompts questions for how to promote
sparsity in POU parameterization +
training (see paper)
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Proof. For each o, take g, € 7, (R?) to be the mth order
Taylor polynomial of y{-) centered at any point of supp(¢8 ).
Then for all x € supp(g ),

|6 (%) — y(x)| < Cpn, diam (supp(6£))™" . (5)

Define the approximant Jpoy = Ef:'l & (x)qq(x), which
is of the form (1) and represented by feasible (£, ). Then by
definition of i, and (3), we have

lupou Ex}—y{x}llégtm =< || Fpouix) - I;'[x}”'igw}

- ng.é (%)ga(x) — y(x) Zqﬁ‘(x}

=1

2

(D)

2

= Zci-‘ %) (ga(x) = w(x))

=1

£2(1)
Foreachx = x; € D,ifx £ supp[f)} then we apply (5);
atherwise, the summand ¢ (x) (g, (x) — y(x)) vanishes. So

[lypon (%) = ||z=(r-}
2

Npws
< |37 Couy diam (supp(s8))™" 65 (x)

=1

£2(T¥)

Zﬁﬁix

a=1

2
m.+1

= Cmy max diam | supp
£2{ D)

<L Cmy max diam (supp(¢$ }}m-l-l

Lee, Kookijin, et al. "Partition of unity networks: deep hp-
approximation." arXiv preprint arXiv:2101.11256 (2021)
accepted to AAAI-MLPS
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A “meshfree” generation of a traditional hp-FEM space () o=,

Phase 1: Epoch 0

1.0 1.50
1.25
0.8 4
1.00 1 ‘
2 B T T
i I I 1 i i i
0.6 - 0754 i o f'-. foBo
S U T A A S 4 SO & S
0504h i i oftort P ofb ofb
HMANSEINLY IR P
0.4 - - ! i Py 4ga Lk i 1|
A R (VR IEVATRTACRIRY
I 1
son A i 3O W A i YU
- _RESj\\\\hnmq—
-0.50 : : , .

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Using ResNets for POUs allow D P [ Poune
discontinuities in partitions 2

Top left: Evolution of partitions on unit interval * U I
Top right: Optimal reconstruction (blue) of S | N | o | N O O
piecewise quadratic space (red) 1R 2 5E) w0656 ) 2@ 36 09 56
Bottom right: Convergence vs ResNet (a) Triangular waves (b) Quadratic waves
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What needs to be done to augment traditional ML to obtain
trustworthy Al for SciML problems?

Part 1: How to build networks with convergence properties

Part 2: How to preserve structure related to physics-
compatibility, stability, and well-posedness
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What are physics compatible discretizations for PDEs?

THE IMA VOLUMES IN MATHEMATICS
AND ITS APPLICATIONS

eoitors  Douglas N. Arnold

Richard B, Leho
[ [ . . l“:q

Methods for solving PDEs which: i
Use generalized Stokes theorems to g;:t‘il;?ﬁble
approximate differential operators Discretizations

Preserve topological structure in

governing equations
Mimic properties of continuum operators
(thus sometimes called mimetic o

discretizations)

Arnold, D. N., Bochev, P. B.,
Lehoucq, R. B., Nicolaides, R. A,,
& Shashkov, M. (Eds.). (2007).
Compatible spatial discretizations
(Vol. 142). Springer Science &
Business Media.

19
-~ ...



Two key ingredients:

1: A topological structure

In PDE discretization this is a
mesh, with boundary
operators linking cells, faces,
edges, and nodes

We will use a graph as an
inexpensive low-dimensional
mesh surrogate

2: Metric information

Measures associated with
mesh entities, ensuring
discrete exterior derivatives
converge to div/grad/curl

Graphs are purely topological
with no natural metric, we
will use ML to extract metric
information from data

Sandia
m National

Laboratories
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The ingredients to the discrete exterior calculus i) b

Chain complex
OU Cl 02 03 Z ; O_ _———

Cochain complex

CU do Cl dq 02 do 03 J;} du = Lw U
Codifferentials
*
cl 2 X Cl 02 C3 (v, dpu)k = (dkv, u)k 11
d* d* d*
Compatible PDE Combinatorial Hodge
K+1-simplices as chains K-cliqgues as chains
Stokes theorem give cochains Graph div/grad/curl give cochains
L2-adjoints give codifferentials Use data to obtain codifferentials

21
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What does all this give you? ) e

dg dj d; d3 dj_1
o o o e T
0 53 1 5;‘ 2 5; 3 6;; 63 d
CO 2= Ol = 2 e 0B ...

8o 51 02 3 dda—1
R [

00 _do 1 _d 2 b2 a3 ds 0 ddm1 g

e Differential operators which locally and globally conserve fluxes, circula-
tions, potentials

e Invertible Hodge Laplacians Ay = dj, dg+1 + didj 4
e Exact sequence properties dyy1dx = dpdp,, =0
e Hodge decomposition u = d*a + dff +

e Corollary: treatment of nontrivial null-spaces in electromagnetism
22




Theoremes...

Theorem 3.1. The discrete derivatives di in form an exact sequence if
the simplicial complex is exact, and in particular diyy odi = 0. In R3, we
have CURL;, o GRAD;, = DIV;, o CURL;, = 0.

Theorem 3.2. The discrete derivatives dj, in form an exact sequence of
the simplicial complex is exact, and in particular dy ody,, = 0. In R3, DIV o
CURL}; = CURL} o GRAD} = 0.

Theorem 3.3 (Hodge Decomposition). For C*, the following decomposition

holds
ck = im(dk71)®k ker(Ak)®k im(dy), (17

where @, means the orthogonality with respect to the (-, ~)DAB71 -inner product.
Rk
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Theorem 3.4 (Poincaré inequality). For each k, there exists a constant cpy
such that

HZkHDkB;' < (:Psk‘|dkzk“Dk+1B,:_ll’ Z € h’n(d;;),

and another constant Cl*",k: such that
Iztllp, 5,1 < cpildiizrlp, B 1> 2Zx € im(di_1).
Thus, for u, € C*, we have

inf

it e = belp, g = € ([l g, = 140wl ;)

where constant C' > 0 only depends on cpy and cp, .

Theorem 3.5 (Invertibility of Hodge Laplacian). The k" -order Hodge Lapla-
cian Ay is positive-semidefinite, with the dimension of its null-space equal to
the dimension of the corresponding homology H* = ker(dy,)/ im(dx—1).
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Using DDEC to discover structure preserving surrogates ) e

v » F —_— Structure preserving d*F —
trainable exterior / O

derivatives

F +kVeop=0 F+§d0gb+N(¢5)

Black box NN flux

'A“h

High-fidelity PDE Apply graph-cut to Average over
) coarse-grain partitions to obtain
solution : ..
chain complex training data

24
-~ ...



General optimization problem h

Fluxes: WEi1 = dek + ENN(dkuka 5)?
Conservation: dk—l d;;—luk —|— dZWkJrl == fk

m) o(v,u; B, D)+ Ny[u;£] = b(v)

Invertible bilinear Nonlinear
form perturbation
If we can fit the model to data while argmin, ||W — Wdata.| |2
imposing equality constraint, then B,D¢

during training we restrict to manifold

Sandia
National
Laboratories

of solvable models preserving physics ~ such that Ljw,u;B,D,£| =0

25
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Is PDE constraint well posed? ) e

a(v,u; B, D) + Ny[u; ] = b(v)

Theorem 3.6. The equation (24)) has at least one solution ug € V satisfies

1]

upl| < ——mM@M@MM—.
el < =

(26)

Theorem 3.7. If _Conlfl - 1, then the equation (24f) has at most one
Cp(cp_CN)

solution in V.

A unique solution exists if the Hodge-Laplacian is sufficiently large relative to the
nonlinear part, following standard elliptic PDE arguments

* Poincare constant easily estimated from matrix eigenvalues
* Lipschitz constant on nonlinearity straightforward for DNNs

Solvability constraint could be enforced during training if desired

26
-~ ...
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“PDE”-constrained optimization

LuB,D,¢ = ||W — Waata||* + ATL[w, u; B, D, ¢]
Liw,u;B,D, & =0

e Solve forward problem with current model parameters

An iterative algorithm w,u< VyLyaBpe=0
guaranteeing exact
enforcement of physics e Solve adjoint problem with current forward solution
at each iteration:

A VyLuaBpe =0

e Apply gradient descent to update model

B,D,{ <+ VBp¢LuarBDe =0

27




Back to Darcy... ) feo

V-F=f d5F = f

F+rVo=0 F+E&dop+Ny(9)=0
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Comparison to traditional covolume: improved accuracy at low resolution 7 Sandia

100
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050
0:25
000
=025
=050

-0.75

=100

100
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050
025
000
=0.25
-0.50
—0.75
-100

100
075
050
i F

— 2 000
N=10 o
-050

-0.75

-1.00

Z
I
(O]

N

Comparison of pressure for same # DOF for FVM (left) and DDEC (center)
Right: profile along diagonal shows better fit to solution (green) by DDEC (blue) vs FVM (orange)
29
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Nonlinear Darcy: potential profile across diagonal i)t
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The rest of the de Rham complex - magnetostatics ) e

250

225

200

175

150

125

100

0.75

050

0.25

I W — Extracted surrogate:

5 1 Is exactly div free
Provides sharp interfaces
Conserves circulation

41 Guaranteed solvable
| Generalizes to other BCs

magnetic field
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Enabling scientific discovery: data-driven radiation-hardened semiconductors A sandia

[ - = |3 S . a
| = i 0

s oty , » B Lo Y =°’"=5:sn.Jnn

e Ul b
o —— e
High-fidelity drift-diffusion Ao

PDE-based simulation

Result: robust surrogate
embedded in production circuit
simulator

Learning data-driven graphical
model for voltage-current
relation

High-fidelity finite element models describe relevant physics but
expensive — 1M+ component systems inaccessible
Algebraic compact models cheap, but must be developed
empirically (10+ years just for nominal behavior!)
Partitioning into physics- , : .
informed subdomains *  Don’t have years to develop new models for either new materials
or departures from nominal operating conditions
* Impact: new workflow incorporates foundational aspects of ASCR

work to automate this timeline, developing models in weeks
rather than years

32



Spacetime Integral Form Hyperbolic PDE ) e

We consider a class of conservation laws of the form:

Given: du+ V- -F(u)=0 z,t €, for all 4
Space-time domain Q € R? x [0, 7] u=u, t=0
Conserved quantity u € R” Flu)-n=g9g zel_

Define “extended-flux”:
F .= (uT,F) € RIF1XP

Let
d'ﬁ‘) = {ata a:l’:l IERRS axd}

Rewrite in terms of spacetime div

div(F) = 0

f F-dA =0
P
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Control volume PINNs (cvPINNS) rh) e

Let the solution be defined by a neural network,
u=u(z, ;&)

Choose mesh in space-time

Apply divergence theorem to each cell in the mesh

Rc=f div[ﬁ'}-dAc=fﬁ'-dEC
A, le

where
P FNN), ifzeQ
R ifeel_

Minimize residuals

¢ = argmin Z R?
3 c
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Entropy regularization — Bias Towards Entropy Solution ) e

= Given entropy pair, (@7, the
entropy solution obeys:

=== CcVPINNs
Burgers
0uq(u) + Opm(u) <0 equation === Analytical solutior
Rl = fa Orq(u) + Ozn(u) - dA Ae=0 Mg=001 Xg=1
Add the entropy penalty, r”
for each cell c to the loss:
L= ; R+ Mg gmam(ﬂ, RE)? pE | .’!? .

Penalty weighting is independent of mesh




TVD regularization- Prevent Oscillations Near Shocks
TV (") = 3 fufly v
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)l]r:o
" For u(x, t) at g”d ui = u(@i, tn) Euler e Ar=0.001
equations - A=l
values
3] 0.4 4 3]
TV (") = TV (u™) <0 a ).
=Y = 0l 4 -8
Define a regular grid on top of the o R B =2 I R L
mesh and add another term to the 25 00 25 25 00 25 25 00 25
loss: ) o i, 02 T "
— 1 G e
L= Z Rc + /\E Z ma,x(O, Rr_: ) 11 i].L'Q - l"‘i{ N L1 '1"11; Jr__.r‘ \'\
¢ ¢ o 10 [N R, A ] o107 + ".f.;."‘“
+Ar Y max(0, TV(u"+) — TV(u"))? \ Wi oof i/
n 0.9 ,” 'If ll-,r'
. o2 A / . 0.8
1.5 1.6 1.5 1.6

1.5
x

1.6
Penalty weighting is independent of mesh
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1. A fast surrogate solution of forward problem

s = log(e'/ =Y /p) ; —1/=;?\ '
. 283 as ﬂ i 2[5] — - -
P=a/ . "l

2. Equation of state discovery with cvPINNs (Inverse

—) 5 1= S(p, e)
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Neural network with thermodynamic regularization

® Training data
Thermodynamically o _
Regularized NN % Elliptic regions
e Test data

True

1 sample

-"\—-

2 samples 4 samples — T

2 samples

1.0 L5 ™

Parameter
Estimation




Comparison of EOS Parameterizations

< No stability guarantees Strong assumptions >
NN NN - Regularized Ideal gas
1.0 - \\ -
Q —
0.5 - . e - = DSMC
0.4 -1 Sample
o | fit
s - 2 Sample
0.0 . fit
- 4 Sample
fit
1.5 H =
& 1.0 1 ! N
05 _I 1 I_-I_-; _I 1 I 1 I 1
=2 0 2 -2 0 2 -2 0 2
<Requres no a priori knowledge Higher data efficiency>

Sandia
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Discovering unknown EOS for shocked copper ) e

Perform LAMMPS' simulations of a copper bar in a reverse-ballistic impact experiment

] . v
02,0 0%0 ¢%% o_o°

$5%0%0%00050005¢%0%%0% Sese te
....'.....'. ........'....'...l
:-:-:.:-:-:-:-:o't:-":':':“:" o 12
L ]
O 1.0 -
el
Shock Front 0.0 ~
= 02 -
— LAMMPS
04 -
---- 1 Sample fit
—— 4 Sample fit %% ]
------- 16 Sample fit 030 7
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Open source software
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*  MOR-Physics: Modal Operator Regression for physics discovery
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