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Outline: some questions and answers

 Unique robustness requirements for scientific machine 
learning (SciML)
 Q1: Accuracy
 Q2: Structure-preservation and stability

 Some motivating applications across the laboratories
 A1: Realizing exponential convergence with POU-Nets
 A2: A data-driven exterior calculus for structure preservation
 A3: Entropy compatible learning for shock hydrodynamics 
(time permitting)
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Requirements for scientific machine learning (SciML)

(Some) traditional ML Tasks
Classification

Image/video processing
Natural language processing

Optimal control

(Some) traditional ML Tools
convNets/uNets/GNN for spatial data
RNN/resnets/LSTM for transient

GANs for distributions
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Image credit: google images, Microsoft.com, … 

Broadly, much of ML is designed for qualitative comparisons and classification

Architectures and training strategies tailored toward a given task



Different requirements for SciML

Traditional mod+sim tasks
Constitutive modeling
PDE-based models
Dynamical systems

Inverse problems + UQ

Traditional tools for mod+sim
Approximation/FEM spaces

Variational principles
Geometric/algebraic structure
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Image credit: google images, techbriefs.com, forbes.com, sandia.gov 

SciML requirements:
Small data, accuracy, stability, and uncertainty quantification

Can we embed these tools into off-the-shelf ML tools to obtain new guarantees?

Complex geometries, physics-based interactions

?

Labor intensive, expensive + small data

?



Practical requirement for using SciML in engineering
Extreme/high-risk scenarios require prediction guarantees!
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DDM1: Rapid radiation-hardened semiconductor design
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Decade to develop empirical circuit models 
for a given semiconductor device!

Generalizing to new materials requires 
O(1 month) turnaround vs years

DDM idea: Use high-fidelity drift-diffusion 
PDE model to train a cheap Xyce/DAE 
circuit model, while guaranteeing stability 
+ accuracy 

time
Gaussian dose rate pulse 
in semiconductor,
peak at 200 ns

Top: PDE simulation of BJT device
Bottom: Empirical compact/circuit model
Left: Modeling challenge: impact of 
radiation on nominal device behavior

Credits: PIRAMID LDRD, accepted for publication in IEEE SISPAD



DDM2: Shock magnetohydro experiments on Z-machine
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A pulsed power fusion facility for generating extreme environments for short times



DDM2: Shock magnetohydro experiments on Z-machine
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Discovery of material EOS:
How to extract EOS under extreme conditions 

from shock response?

DDM to augment and accelerate intensive 
model calibration

No direct measurements of EOS are 
available!

 

Credits: ASC, Philms project funding
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Flyer plate Material under test

Impact drives shock to study response

Magnetic field from Z pushes flier

Synthetic data: MD simulations of 
shocked material



What needs to be done to augment traditional ML to obtain 
trustworthy AI for SciML problems?

i.e. how to guarantee accuracy, stability, and physical 
realizability
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Toward structure preserving SciML
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Objective: 
Efficient machine learned surrogates that provide same accuracy, stability and 
physical realizability guarantees as traditional forward models in small data 
limits

”Black-box” ML
No physics + big 

data

Physics-informed ML
Weak physics alleviate 

data requirements

Structure preserving ML
Exact physics treatment 

independent of data

No domain expertise                                                                                       Strong physical priors

KEY IDEA: use tools from mimetic PDE discretization 
to design network architectures that naturally impose 

physics, rather than relying on “big data “



What does a deep network actually do?
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Much of folklore surrounding DNN accuracy related to 
universal approximation theorem giving 

convergence in infinite limits

To understand actual convergence rates lots of recent 
work provides existence proofs linking to FEM

• Algebraic convergence w.r.t. width (Opschoor19)
• ReLU networks as piecewise linear FEM (He18)

• Convergence w.r.t. depth (Telgarsky15,Yarotsky17)

Cyr, E.C., Gulian, M.A., Patel, R.G., Perego, M. and Trask, N.A., 2020, August. Robust 
training and initialization of deep neural networks: An adaptive basis viewpoint. 

In Mathematical and Scientific Machine Learning (pp. 512-536). PMLR.



Breaking the optimization error barrier - POUnets

These analyses provide a best possible accuracy for a network – but can that 
be realized in practice when training with SGD?
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Our new 
architectures 
demonstrate 

algebraic 
convergence 

rates

Traditional MLPs 
stagnate as 

width/depth is 
increased due to 
optimization 
error barrier

References from our group:
1. Cyr, Eric C., et al. "Robust training and initialization of deep neural networks: An adaptive basis viewpoint." Mathematical and Scientific 

Machine Learning. PMLR, (2020).
2. Patel, Ravi G., et al. "A block coordinate descent optimizer for classification problems exploiting convexity." arXiv preprint 

arXiv:2006.10123 (2020). Accepted to AAAI-MLPS
3. Lee, Kookjin, et al. "Partition of unity networks: deep hp-approximation." arXiv preprint arXiv:2101.11256 (2021) accepted to 

AAAI-MLPS



Partition of unity
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POU corresponding to Cartesian mesh, and another with non-disjoint supports 



DNNs may emulate traditional approximation spaces
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Opschoor, J.A., Petersen, P.C. and Schwab, C., 2020. Deep ReLU networks and high-order finite element 
methods. Analysis and Applications, 18(05), pp.715-770.

Emulation of 
piecewise 

polynomial space

Emulation 
of monomials

Opschoor et al have established that DNNs may emulate a broad class of 
approximations: nodal FEM, free-knot splines, spectral approximation, RBFs 



POU-Net
Main idea: rather than emulate POU + monomials, build them 
directly into architecture
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Hidden layer
(MLP/RBFnet)
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Trainable parameters

Globally optimal Globally optimal 
polynomial coefficientspolynomial coefficients

Training:
1. Solve weighted least squares for globally optimal coefficients
2. Apply gradient update to adjust partition

Arbitrary Arbitrary 
Banach spaceBanach space



An aspirational error estimate
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• If reconstructing with polynomials, and 
POU with compact support is found, 
we realize hp-convergence for smooth 
functions

• Prompts questions for how to promote 
sparsity in POU parameterization + 
training (see paper)

Lee, Kookjin, et al. "Partition of unity networks: deep hp-
approximation." arXiv preprint arXiv:2101.11256 (2021) 
accepted to AAAI-MLPS



A “meshfree” generation of a traditional hp-FEM space
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Using ResNets for POUs allow 
discontinuities in partitions

Top left: Evolution of partitions on unit interval
Top right: Optimal reconstruction (blue) of 
piecewise quadratic space (red)
Bottom right: Convergence vs ResNet
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What needs to be done to augment traditional ML to obtain 
trustworthy AI for SciML problems?

Part 1: How to build networks with convergence properties

Part 2: How to preserve structure related to physics-
compatibility, stability, and well-posedness



What are physics compatible discretizations for PDEs?

Methods for solving PDEs which:
Use generalized Stokes theorems to 
approximate differential operators

Preserve topological structure in 
governing equations

Mimic properties of continuum operators 
(thus sometimes called mimetic 

discretizations)
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Arnold, D. N., Bochev, P. B., 
Lehoucq, R. B., Nicolaides, R. A., 

& Shashkov, M. (Eds.). (2007). 
Compatible spatial discretizations 

(Vol. 142). Springer Science & 
Business Media.



Two key ingredients:

1: A topological structure
In PDE discretization this is a 

mesh, with boundary 
operators linking cells, faces, 

edges, and nodes
We will use a graph as an 

inexpensive low-dimensional 
mesh surrogate

2: Metric information
Measures associated with 
mesh entities, ensuring 

discrete exterior derivatives 
converge to div/grad/curl

Graphs are purely topological 
with no natural metric, we 
will use ML to extract metric 

information from data
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The ingredients to the discrete exterior calculus

21

- +

+-

-+

Chain complex

Cochain complex

Codifferentials

Compatible PDE

K+1-simplices as chains
Stokes theorem give cochains
L2-adjoints give codifferentials

Combinatorial Hodge

K-cliques as chains
Graph div/grad/curl give cochains

Use data to obtain codifferentials



What does all this give you?
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Theorems…
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Using DDEC to discover structure preserving surrogates
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High-fidelity PDE
solution

Apply graph-cut to 
coarse-grain

chain complex

Average over 
partitions to obtain 

training data

Black box NN flux

Structure preserving 
trainable exterior 

derivatives



General optimization problem
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Invertible bilinear 
form

Nonlinear 
perturbation

If we can fit the model to data while 
imposing equality constraint, then 

during training we restrict to manifold 
of solvable models preserving physics

Fluxes:

Conservation:



Is PDE constraint well posed?
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A unique solution exists if the Hodge-Laplacian is sufficiently large relative to the 
nonlinear part, following standard elliptic PDE arguments

• Poincare constant easily estimated from matrix eigenvalues
• Lipschitz constant on nonlinearity straightforward for DNNs

Solvability constraint could be enforced during training if desired



“PDE”-constrained optimization
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An iterative algorithm 
guaranteeing exact 

enforcement of physics 
at each iteration:



Back to Darcy…
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Comparison to traditional covolume: improved accuracy at low resolution
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Comparison of pressure for same # DOF for FVM (left) and DDEC (center)
Right: profile along diagonal shows better fit to solution (green) by DDEC (blue) vs FVM (orange)

N = 22

N = 52

N = 102



Nonlinear Darcy: potential profile across diagonal

30

Po
te

nt
ia

l

Distance along diagonal



The rest of the de Rham complex - magnetostatics
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Extracted surrogate:
Is exactly div free

Provides sharp interfaces
Conserves circulation
Guaranteed solvable

Generalizes to other BCs



Enabling scientific discovery: data-driven radiation-hardened semiconductors
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High-fidelity drift-diffusion High-fidelity drift-diffusion 
PDE-based simulationPDE-based simulation

Partitioning into physics-Partitioning into physics-
informed subdomainsinformed subdomains

Learning data-driven graphical Learning data-driven graphical 
model for voltage-current model for voltage-current 

relationrelation

Result: Result: robust surrogate robust surrogate 
embedded in production circuit embedded in production circuit 

simulatorsimulator

•  High-fidelity finite element models describe relevant physics but 
expensive – 1M+ component systems inaccessible

•  Algebraic compact models cheap, but must be developed 
empirically (10+ years just for nominal behavior!)

•  Don’t have years to develop new models for either new materials 
or departures from nominal operating conditions

•  Impact: new workflow incorporates foundational aspects of ASCR 
work to automate this timeline, developing models in weeks 
rather than years



Spacetime Integral Form Hyperbolic PDE
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Given:

We consider a class of conservation laws of the form:

Define “extended-flux”:

Let

Rewrite in terms of spacetime div

c



Control volume PINNs (cvPINNs)
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  Choose mesh in space-time

  Let the solution be defined by a neural network,

  Apply divergence theorem to each cell in the mesh

  Minimize residuals

c

  where



Entropy regularization – Bias Towards Entropy Solution
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 Given entropy pair,         , the 
entropy solution obeys:

Add the entropy penalty,       
for each cell c to the loss:

  cvPINNs 

  Analytical solution
Burgers 
equation

Penalty weighting is independent of mesh 
spacing.



TVD regularization- Prevent Oscillations Near Shocks
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 For              at grid 
values 

  Define a regular grid on top of the 
mesh and add another term to the 
loss:

  Euler 
equations

Penalty weighting is independent of mesh 
spacing.



How to use these?
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  2.   Equation of state discovery with cvPINNs (Inverse 
problem)

1. A fast surrogate solution of forward problem



Neural network with thermodynamic regularization
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  Elliptic regions
  Training data

  Test data

Black-Box NN 

Thermodynamically 
Regularized NN

Parameter 
Estimation



Comparison of EOS Parameterizations 
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  DSMC

 1 Sample 
fit
2 Sample 
fit
4 Sample 
fit

No stability guarantees                            Strong assumptions

Requres no a priori knowledge              Higher data efficiency



Discovering unknown EOS for shocked copper
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  LAMMPS

  1 Sample fit

  4 Sample fit

  16 Sample fit

Perform LAMMPS1 simulations of a copper bar in a reverse-ballistic impact experiment
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