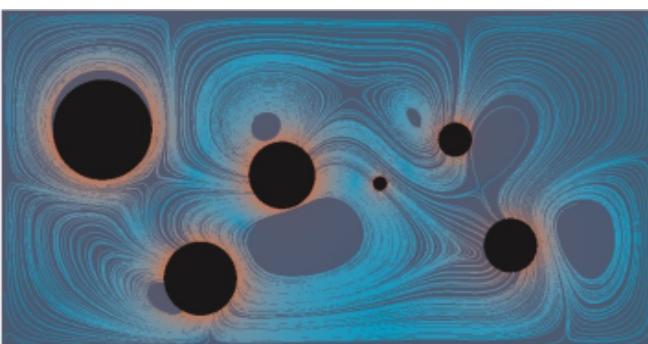
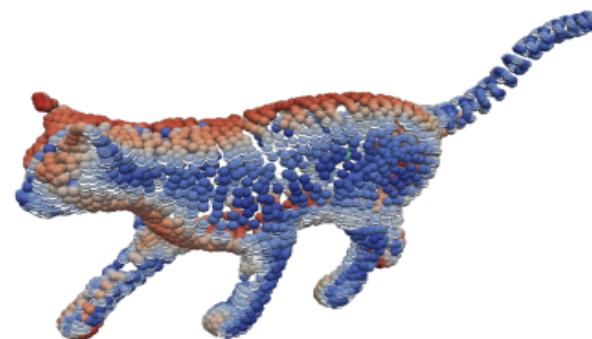
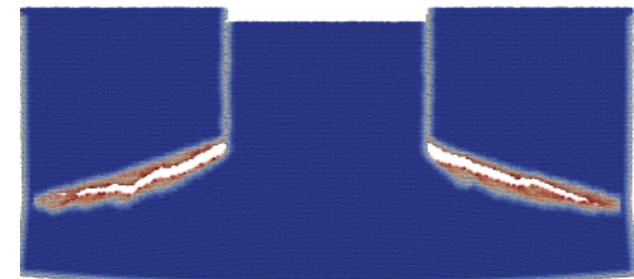


Exceptional service in the national interest



Designing convergent and structure preserving architectures for SciML

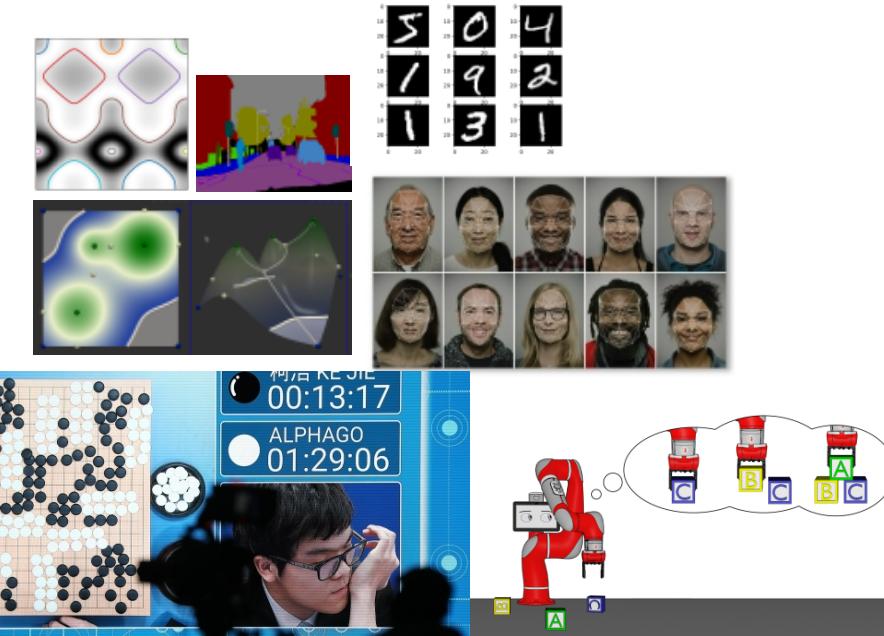
Nat Trask
Center for Computing Research
Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline: some questions and answers

- Unique robustness requirements for scientific machine learning (SciML)
 - Q1: Accuracy
 - Q2: Structure-preservation and stability
- Some motivating applications across the laboratories
- A1: Realizing exponential convergence with POU-Nets
- A2: A data-driven exterior calculus for structure preservation
- A3: Entropy compatible learning for shock hydrodynamics (time permitting)

Requirements for scientific machine learning (SciML)



(Some) traditional ML Tasks

Classification

Image/video processing

Natural language processing

Optimal control

(Some) traditional ML Tools

convNets/uNets/GNN for spatial data

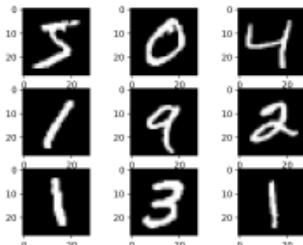
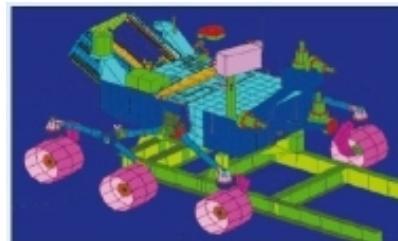
RNN/resnets/LSTM for transient

GANs for distributions

Broadly, much of ML is designed for qualitative comparisons and classification

Architectures and training strategies tailored toward a given task

Different requirements for SciML



Complex geometries, physics-based interactions

Labor intensive, expensive + **small** data

Traditional mod+sim tasks

- Constitutive modeling
- PDE-based models
- Dynamical systems
- Inverse problems + UQ

Traditional tools for mod+sim

- Approximation/FEM spaces
- Variational principles
- Geometric/algebraic structure

SciML requirements:

Small data, accuracy, stability, and uncertainty quantification

Can we embed these tools into off-the-shelf ML tools to obtain new guarantees?

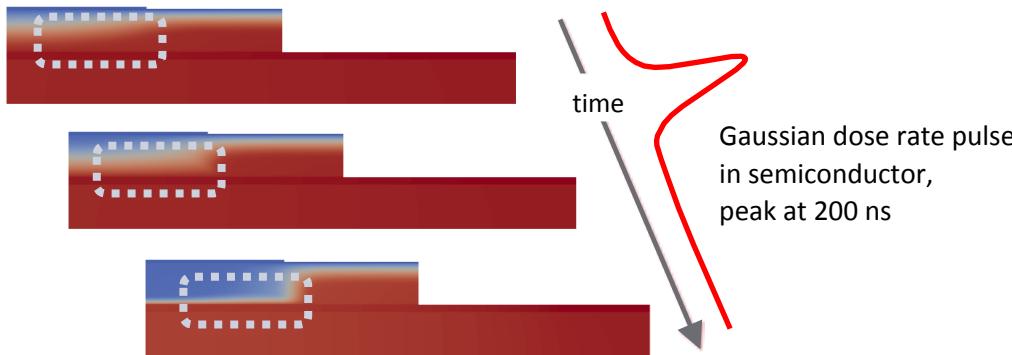
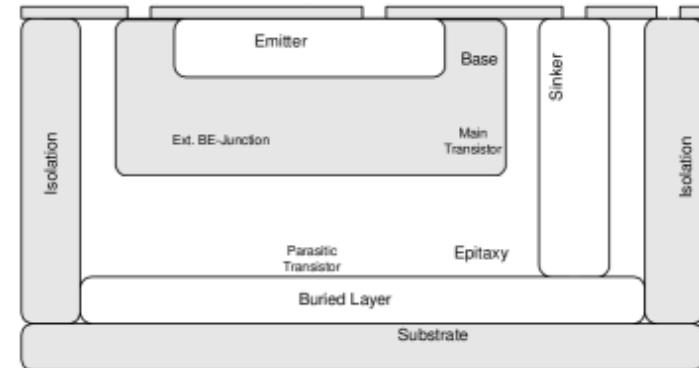
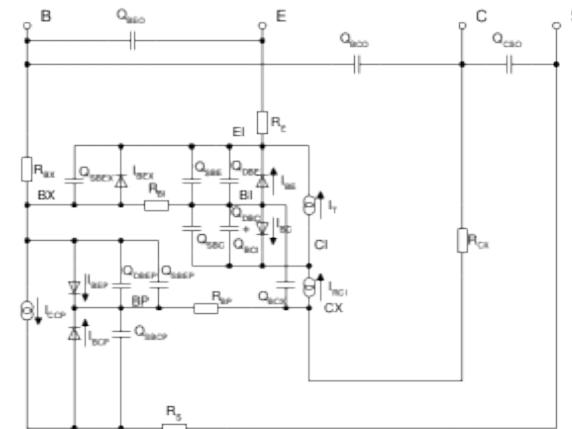
Practical requirement for using SciML in engineering
Extreme/high-risk scenarios require prediction guarantees!

DDM1: Rapid radiation-hardened semiconductor design

Decade to develop empirical circuit models for a given semiconductor device!

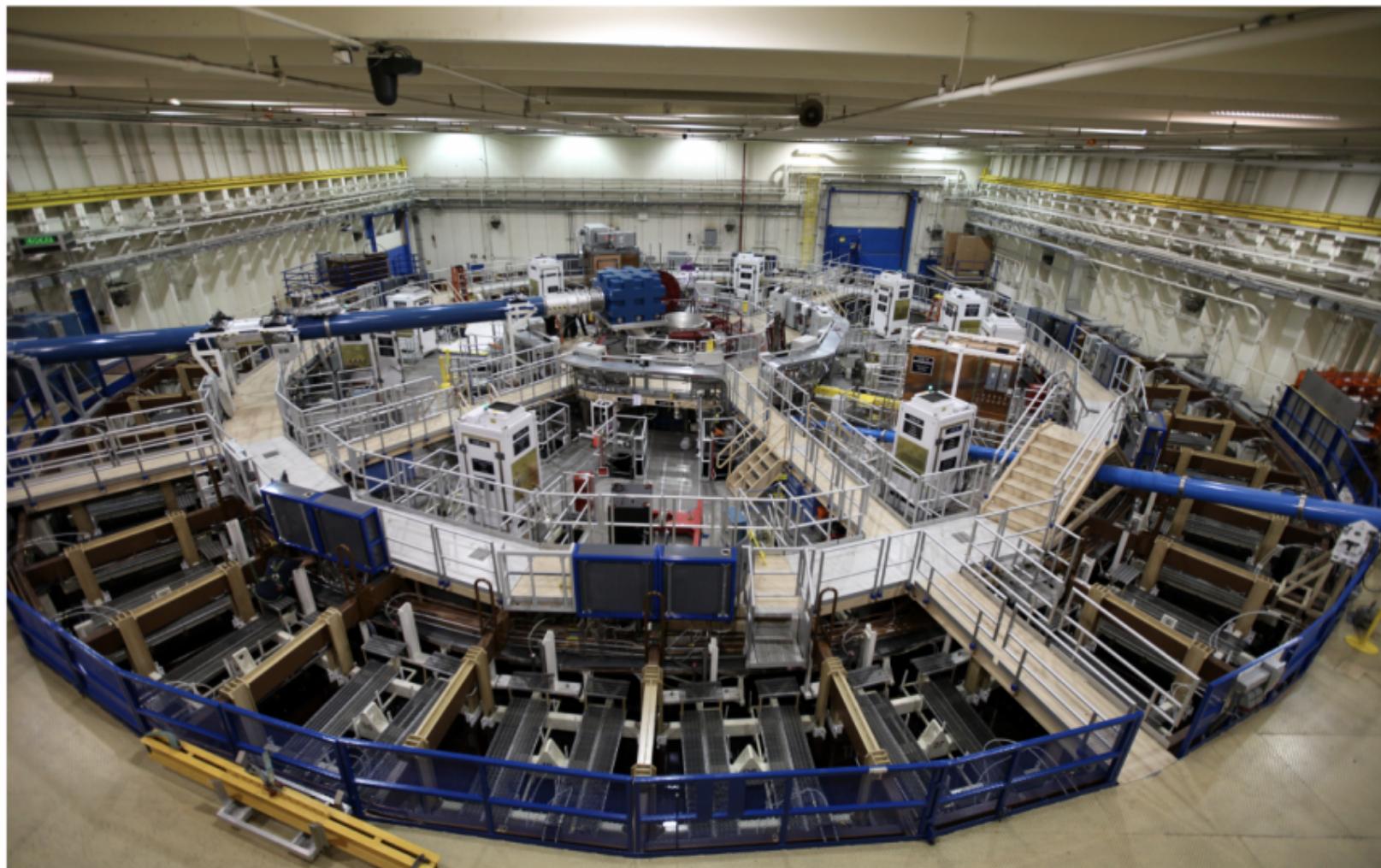
Generalizing to new materials requires O(1 month) turnaround vs years

DDM idea: Use high-fidelity drift-diffusion PDE model to train a cheap Xyce/DAE circuit model, **while guaranteeing stability + accuracy**



Top: PDE simulation of BJT device
Bottom: Empirical compact/circuit model
Left: Modeling challenge: impact of radiation on nominal device behavior

DDM2: Shock magnetohydro experiments on Z-machine



A pulsed power fusion facility for generating extreme environments for short times

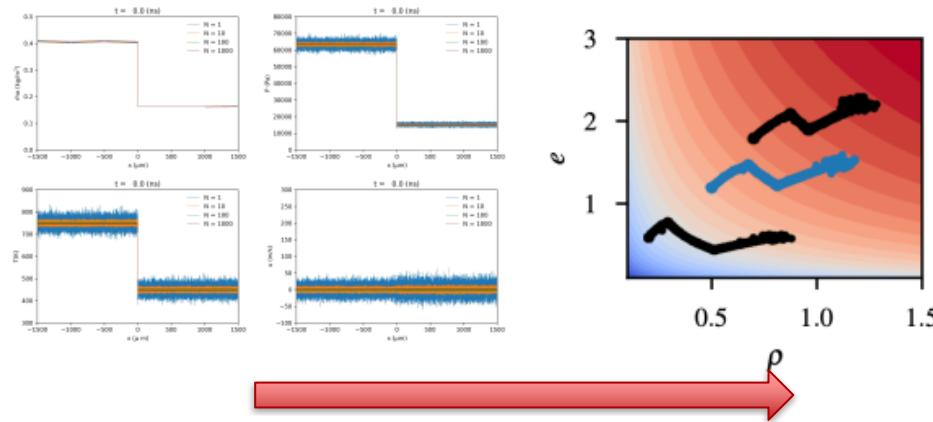
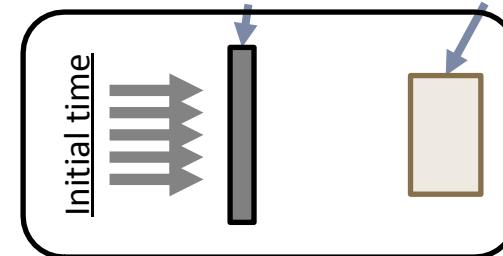
DDM2: Shock magnetohydro experiments on Z-machine

Discovery of material EOS:

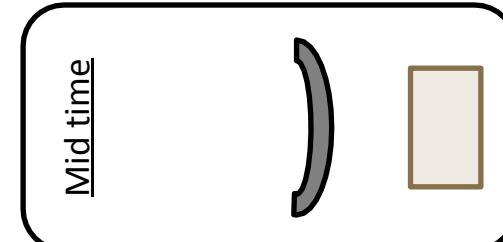
How to extract EOS under extreme conditions
from shock response?

DDM to augment and accelerate intensive model calibration

No direct measurements of EOS are
available!



Magnetic field from Z pushes flier



Impact drives shock to study response

Synthetic data: MD simulations of
shocked material

What needs to be done to augment traditional ML to obtain trustworthy AI for SciML problems?

i.e. how to guarantee accuracy, stability, and physical realizability

Toward structure preserving SciML

$$\underset{\xi}{\operatorname{argmin}} \|\mathcal{N}\mathcal{N} - \mathbf{u}_{\text{data}}\|^2$$

”Black-box” ML
No physics + big
data

$$\underset{\xi}{\operatorname{argmin}} \|\mathcal{N}\mathcal{N} - \mathbf{u}_{\text{data}}\|^2 + \epsilon \|\mathbf{L}[\mathcal{N}\mathcal{N}; \xi] - \mathbf{f}\|^2$$

Physics-informed ML

Weak physics alleviate data requirements

$$\underset{\xi}{\operatorname{argmin}} \|\mathcal{N}\mathcal{N} - \mathbf{u}_{\text{data}}\|^2$$

such that $\mathbf{L}[\mathcal{N}\mathcal{N}; \xi] = \mathbf{f}$

Structure preserving ML

No domain expertise

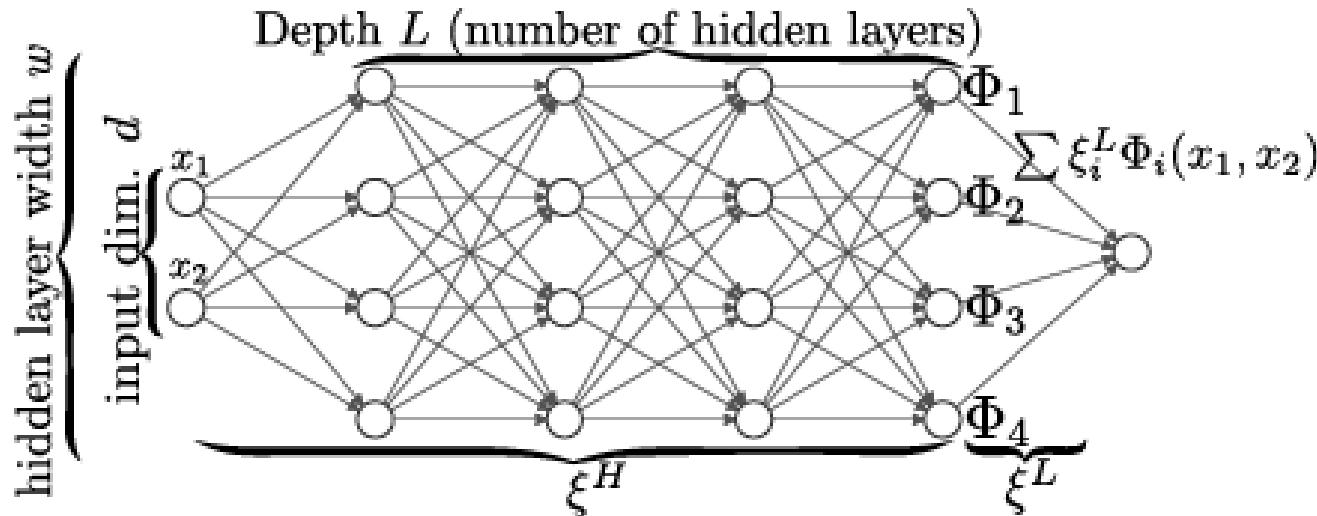
Strong physical priors

Objective:

Efficient machine learned surrogates that provide same **accuracy, stability** and **physical realizability** guarantees as traditional forward models in **small data limits**

KEY IDEA: use tools from mimetic PDE discretization to design network architectures that naturally impose physics, rather than relying on “big data”

What does a deep network actually do?

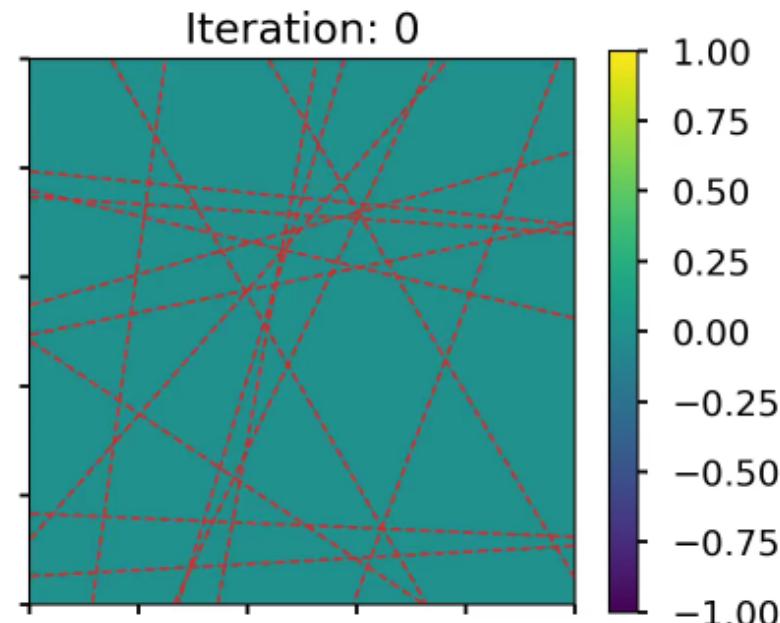


Much of folklore surrounding DNN accuracy related to
universal approximation theorem giving
 convergence in infinite limits

To understand actual **convergence rates** lots of recent
 work provides existence proofs linking to FEM

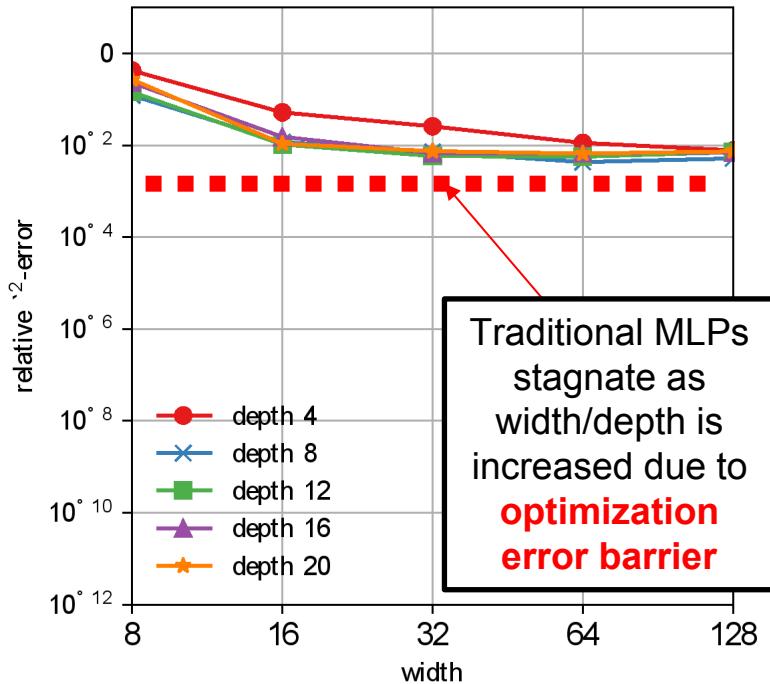
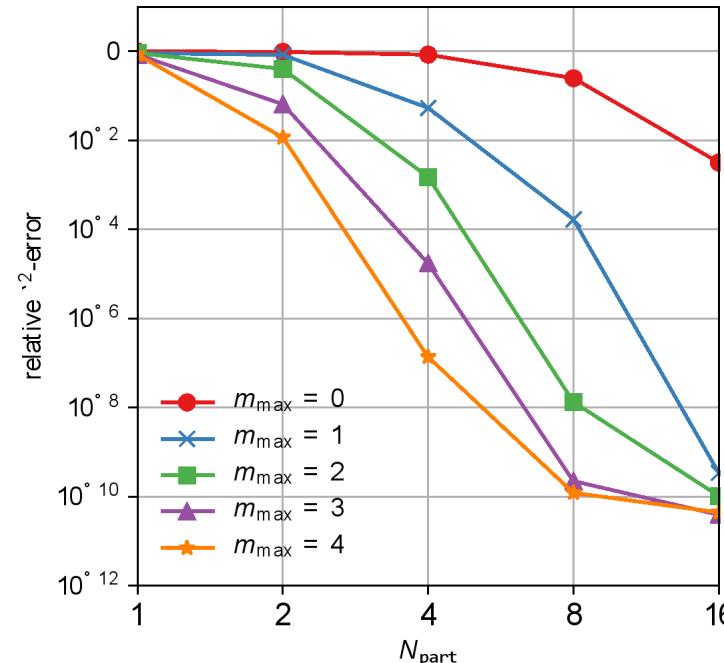
- Algebraic convergence w.r.t. width (Opschoor19)
- ReLU networks as piecewise linear FEM (He18)
- Convergence w.r.t. depth (Telgarsky15, Yarotsky17)

Cyr, E.C., Gulian, M.A., Patel, R.G., Perego, M. and Trask, N.A., 2020, August. Robust training and initialization of deep neural networks: An adaptive basis viewpoint. In *Mathematical and Scientific Machine Learning* (pp. 512-536). PMLR.



Breaking the optimization error barrier - POUnets

These analyses provide a best possible accuracy for a network – but can that be realized in practice when training with SGD?



Our new
architectures
demonstrate
algebraic
convergence
rates

References from our group:

1. Cyr, Eric C., et al. "Robust training and initialization of deep neural networks: An adaptive basis viewpoint." *Mathematical and Scientific Machine Learning*. PMLR, (2020).
2. Patel, Ravi G., et al. "A block coordinate descent optimizer for classification problems exploiting convexity." *arXiv preprint arXiv:2006.10123* (2020). Accepted to AAAI-MLPS
3. Lee, Kookjin, et al. "Partition of unity networks: deep hp-approximation." *arXiv preprint arXiv:2101.11256* (2021) accepted to AAAI-MLPS

Partition of unity

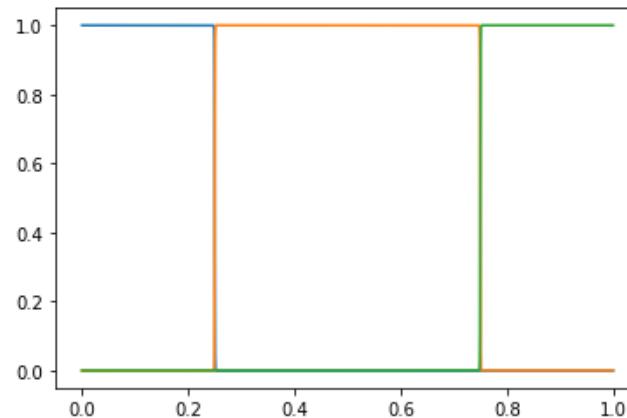
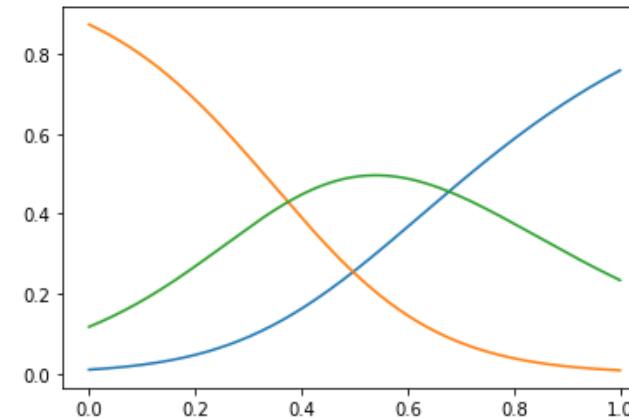
Definition: *Partition of unity (POU)*

A collection of functions $\{\phi_i\}_{i=1,\dots,N}$ satisfying

- $\phi_i > 0$
- $\sum_i \phi_i = 1$

Example:

Consider a partition of $\Omega \subset \mathbb{R}^d$ into disjoint cells $\Omega = \bigcup_i C_i$. Then the indicator functions $\phi_i(x) = \mathbb{1}_{C_i}(x)$ form a POU.



POU corresponding to Cartesian mesh, and another with non-disjoint supports

DNNs may emulate traditional approximation spaces

Opschoor et al have established that DNNs may emulate a broad class of approximations: nodal FEM, free-knot splines, spectral approximation, RBFs

Proposition 4.2. For each $n \in \mathbb{N}_0$ and each polynomial $v \in \mathbb{P}_n([-1, 1])$, such that $v(x) = \sum_{\ell=0}^n \bar{v}_\ell x^\ell$, for all $x \in [-1, 1]$ with $C_0 := \sum_{\ell=2}^n |\bar{v}_\ell|$, there exist NNs $\{\Phi_\beta^v\}_{\beta \in (0, 1)}$ with input dimension one and output dimension one which satisfy

$$\|v - R(\Phi_\beta^v)\|_{W^{1,\infty}(I)} \leq \beta,$$

$$R(\Phi_\beta^v)(0) = v(0),$$

$$L(\Phi_\beta^v) \leq C_L(1 + \log_2(n)) \log_2(C_0/\beta) + \frac{1}{3} C_L (\log_2(n))^3 + C(1 + \log_2(n))^2,$$

$$M(\Phi_\beta^v) \leq 4C_M n \log_2(C_0/\beta) + 8C_M n \log_2(n) + 4C_L(1 + \log_2(n))^2 \log_2(C_0/\beta) + C(1 + n),$$

$$M_{\text{fl}}(\Phi_\beta^v) \leq 4 \log_2(n) + 4,$$

$$M_{\text{la}}(\Phi_\beta^v) \leq 4n + 2$$

if $C_0 > \beta$. If $C_0 \leq \beta$ the same estimates hold, but with C_0 replaced by 2β .

Proposition 5.1. For all $\mathbf{p} = (p_i)_{i \in \{1, \dots, N\}} \subset \mathbb{N}$, all partitions \mathcal{T} of $I = (0, 1)$ into N open, disjoint, connected subintervals and for all $v \in S_{\mathbf{p}}(I, \mathcal{T})$, for $0 < \varepsilon < 1$ exist NNs $\{\Phi_\varepsilon^{v, \mathcal{T}, \mathbf{p}}\}_{\varepsilon \in (0, 1)}$ such that for all $1 \leq q' \leq \infty$ holds

$$\|v - R(\Phi_\varepsilon^{v, \mathcal{T}, \mathbf{p}})\|_{W^{1,q'}(I)} \leq \varepsilon \|v\|_{W^{1,q'}(I)},$$

$$L(\Phi_\varepsilon^{v, \mathcal{T}, \mathbf{p}}) \leq C_L(1 + \log_2(p_{\max})) (2p_{\max} + \log_2(1/\varepsilon)) + C_L \log_2(1/\varepsilon) + C(1 + \log_2^3(p_{\max})),$$

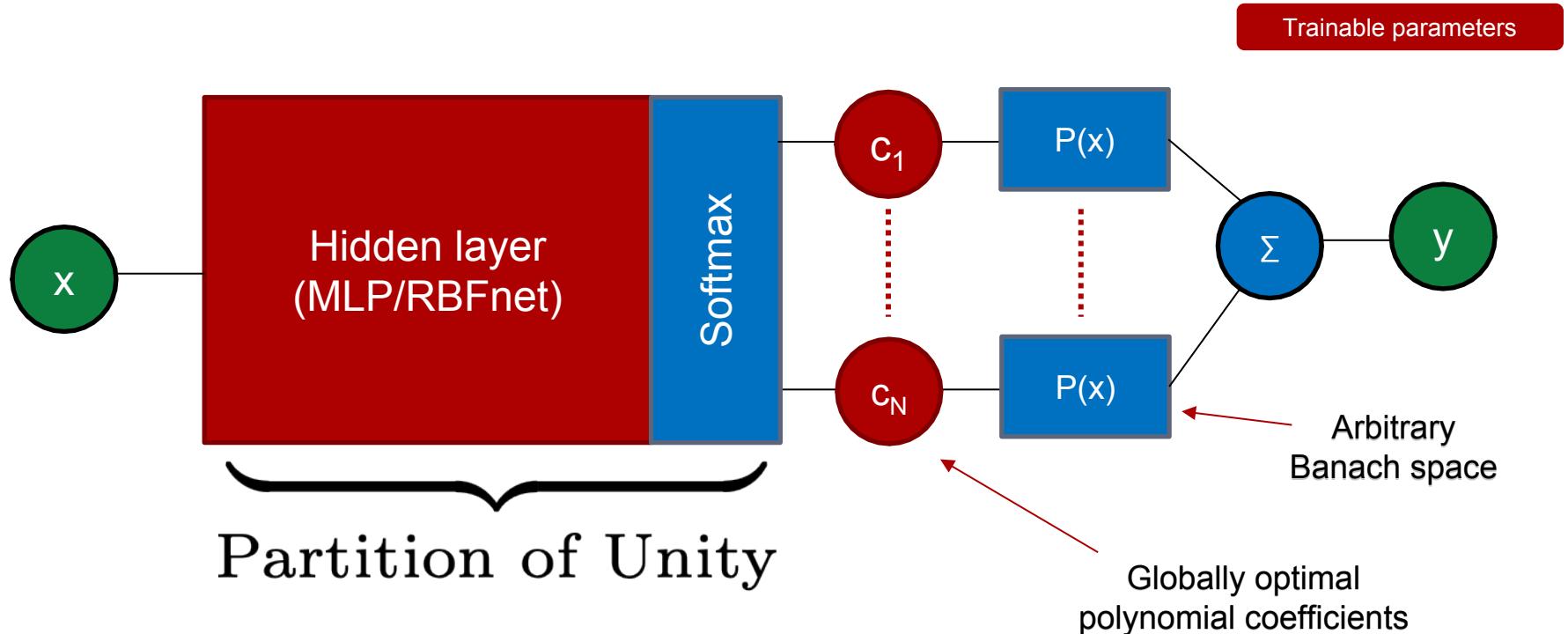
$$\begin{aligned} M(\Phi_\varepsilon^{v, \mathcal{T}, \mathbf{p}}) &\leq 8C_M \sum_{i=1}^N p_i^2 + 4C_M \log_2(1/\varepsilon) \sum_{i=1}^N p_i + \log_2(1/\varepsilon) C \left(1 + \sum_{i=1}^N \log_2^2(p_i) \right) \\ &\quad + C \left(1 + \sum_{i=1}^N p_i \log_2^2(p_i) \right) \\ &\quad + 2N (C_L(1 + \log_2(p_{\max})) (2p_{\max} + \log_2(1/\varepsilon)) + C(1 + \log_2^3(p_{\max}))), \end{aligned}$$

$$M_{\text{fl}}(\Phi_\varepsilon^{v, \mathcal{T}, \mathbf{p}}) \leq 6N,$$

$$M_{\text{la}}(\Phi_\varepsilon^{v, \mathcal{T}, \mathbf{p}}) \leq 2N + 2.$$

In addition, it holds that $R(\Phi_\varepsilon^{v, \mathcal{T}, \mathbf{p}})(x_j) = v(x_j)$ for all $j \in \{0, \dots, N\}$, where $\{x_j\}_{j=0}^N$ are the nodes of \mathcal{T} .

Main idea: rather than emulate POU + monomials, build them directly into architecture



Training:

1. Solve weighted least squares for **globally optimal** coefficients
2. Apply gradient update to adjust partition

An aspirational error estimate

Theorem 1. Consider an approximant y_{POU} of the form (1) with $V = \pi_m(\mathbb{R}^d)$. If $y(\cdot) \in C^{m+1}(\Omega)$ and ξ^*, c^* solve (3) to yield the approximant y_{POU}^* , then

$$\|y_{POU}^* - y\|_{\ell_2(\mathcal{D})}^2 \leq C_{m,y} \max_{\alpha} \text{diam}(\text{supp}(\phi_{\alpha}^{\xi}))^{m+1} \quad (4)$$

where $\|y_{POU}^* - y\|_{\ell_2(\mathcal{D})}$ denotes the root-mean-square norm over the training data pairs in \mathcal{D} ,

$$\|y_{POU}^* - y\|_{\ell_2(\mathcal{D})} = \sqrt{\frac{1}{N_{data}} \sum_{(\mathbf{x}, y) \in \mathcal{D}} (y_{POU}^*(\mathbf{x}) - y(\mathbf{x}))^2},$$

and

$$C_{m,y} = \|y\|_{C^{m+1}(\Omega)}.$$

- If reconstructing with polynomials, and **POU with compact support** is found, we realize hp-convergence for smooth functions
- Prompts questions for how to promote sparsity in POU parameterization + training (see paper)

Proof. For each α , take $q_{\alpha} \in \pi_m(\mathbb{R}^d)$ to be the m th order Taylor polynomial of $y(\cdot)$ centered at any point of $\text{supp}(\phi_{\alpha}^{\xi})$. Then for all $\mathbf{x} \in \text{supp}(\phi_{\alpha}^{\xi})$,

$$|q_{\alpha}(\mathbf{x}) - y(\mathbf{x})| \leq C_{m,y} \text{diam}(\text{supp}(\phi_{\alpha}^{\xi}))^{m+1}. \quad (5)$$

Define the approximant $\tilde{y}_{POU} = \sum_{\alpha=1}^{N_{part}} \phi_{\alpha}^{\xi}(\mathbf{x}) q_{\alpha}(\mathbf{x})$, which is of the form (1) and represented by feasible (ξ, c) . Then by definition of y_{POU}^* and (3), we have

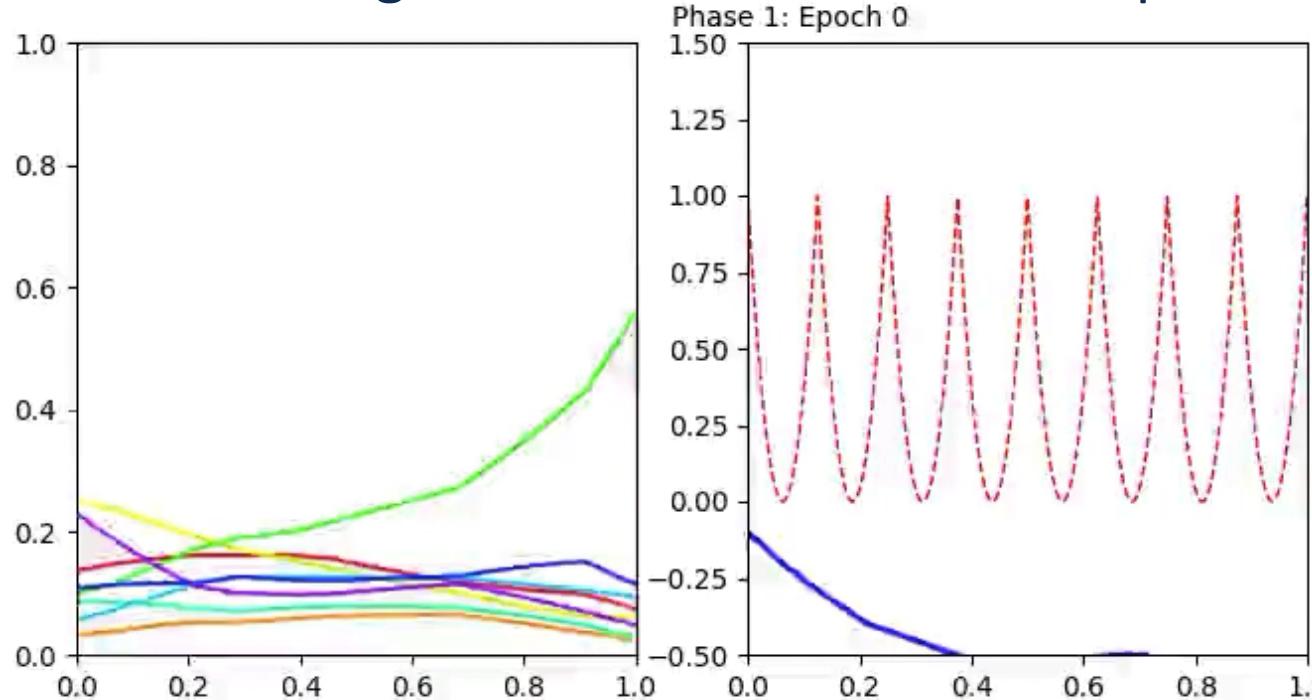
$$\begin{aligned} \|y_{POU}^*(\mathbf{x}) - y(\mathbf{x})\|_{\ell_2(\mathcal{D})}^2 &\leq \|\tilde{y}_{POU}(\mathbf{x}) - y(\mathbf{x})\|_{\ell_2(\mathcal{D})}^2 \\ &= \left\| \sum_{\alpha=1}^{N_{part}} \phi_{\alpha}^{\xi}(\mathbf{x}) q_{\alpha}(\mathbf{x}) - y(\mathbf{x}) \sum_{\alpha=1}^{N_{part}} \phi_{\alpha}^{\xi}(\mathbf{x}) \right\|_{\ell_2(\mathcal{D})}^2 \\ &= \left\| \sum_{\alpha=1}^{N_{part}} \phi_{\alpha}^{\xi}(\mathbf{x}) (q_{\alpha}(\mathbf{x}) - y(\mathbf{x})) \right\|_{\ell_2(\mathcal{D})}^2. \end{aligned}$$

For each $\mathbf{x} = \mathbf{x}_i \in \mathcal{D}$, if $\mathbf{x} \in \text{supp}(\mathcal{D})$, then we apply (5); otherwise, the summand $\phi_{\alpha}^{\xi}(\mathbf{x}) (q_{\alpha}(\mathbf{x}) - y(\mathbf{x}))$ vanishes. So

$$\begin{aligned} \|y_{POU}^*(\mathbf{x}) - y(\mathbf{x})\|_{\ell_2(\mathcal{D})}^2 &\leq \left\| \sum_{\alpha=1}^{N_{part}} C_{m,y} \text{diam}(\text{supp}(\phi_{\alpha}^{\xi}))^{m+1} \phi_{\alpha}^{\xi}(\mathbf{x}) \right\|_{\ell_2(\mathcal{D})}^2 \\ &\leq C_{m,y} \max_{\alpha} \text{diam}(\text{supp}(\phi_{\alpha}^{\xi}))^{m+1} \left\| \sum_{\alpha=1}^{N_{part}} \phi_{\alpha}^{\xi}(\mathbf{x}) \right\|_{\ell_2(\mathcal{D})}^2 \\ &\leq C_{m,y} \max_{\alpha} \text{diam}(\text{supp}(\phi_{\alpha}^{\xi}))^{m+1}. \end{aligned}$$

Lee, Kookjin, et al. "Partition of unity networks: deep hp-approximation." *arXiv preprint arXiv:2101.11256* (2021) accepted to AAAI-MLPS

A “meshfree” generation of a traditional hp-FEM space

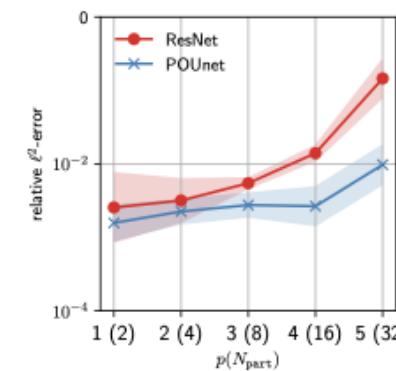


Using ResNets for POUs allow discontinuities in partitions

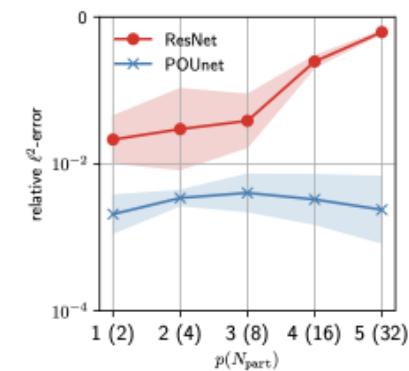
Top left: Evolution of partitions on unit interval

Top right: Optimal reconstruction (blue) of piecewise quadratic space (red)

Bottom right: Convergence vs ResNet



(a) Triangular waves



(b) Quadratic waves

What needs to be done to augment traditional ML to obtain trustworthy AI for SciML problems?

Part 1: How to build networks with convergence properties

Part 2: How to preserve structure related to physics-compatibility, stability, and well-posedness

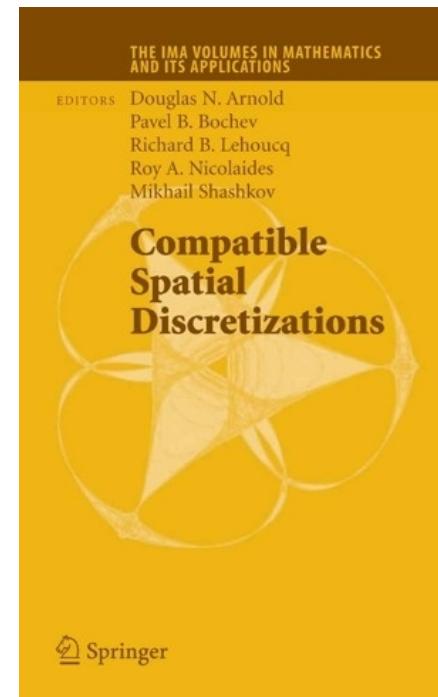
What are physics compatible discretizations for PDEs?

Methods for solving PDEs which:

Use generalized Stokes theorems to approximate differential operators

Preserve topological structure in governing equations

Mimic properties of continuum operators
(thus sometimes called **mimetic discretizations**)



Arnold, D. N., Bochev, P. B.,
Lehoucq, R. B., Nicolaides, R. A.,
& Shashkov, M. (Eds.). (2007).
Compatible spatial discretizations
(Vol. 142). Springer Science &
Business Media.

Two key ingredients:

1: A topological structure

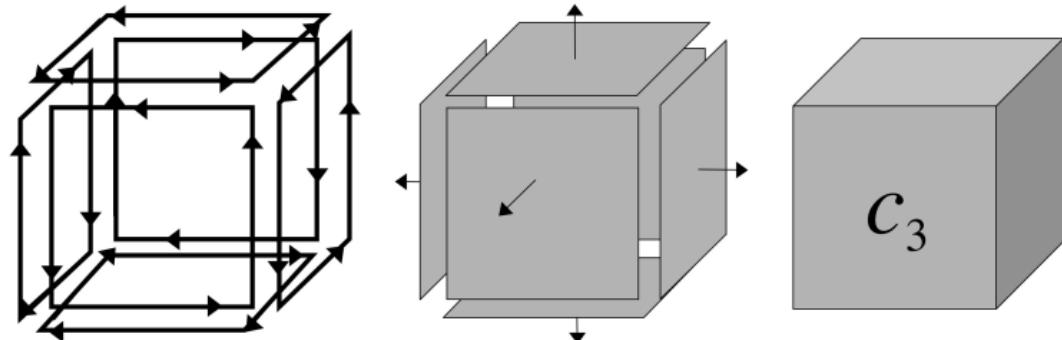
In PDE discretization this is a mesh, with boundary operators linking cells, faces, edges, and nodes

We will use a graph as an inexpensive low-dimensional mesh surrogate

2: Metric information

Measures associated with mesh entities, ensuring discrete exterior derivatives converge to div/grad/curl

Graphs are purely topological with no natural metric, we will use ML to extract metric information from data



$$0 \leftarrow \partial \partial c_3 \leftarrow^{\partial} \partial c_3 \leftarrow^{\partial} c_3$$

$$\nabla \cdot \mathbf{u} = \frac{1}{\mu(C)} \sum_{f \in \partial C} \int_f \mathbf{u} \cdot d\mathbf{A}$$

The ingredients to the discrete exterior calculus

Chain complex

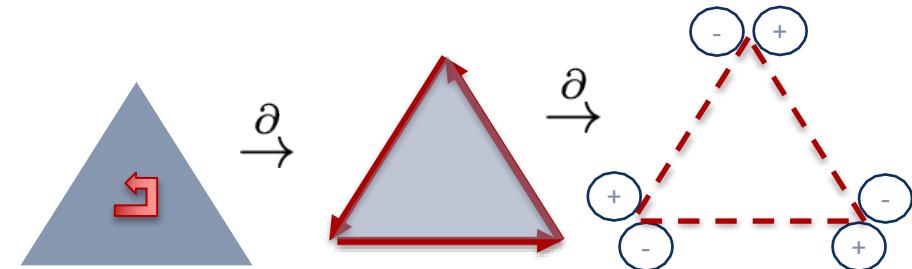
$$C_0 \xleftarrow{\partial_0} C_1 \xleftarrow{\partial_1} C_2 \xleftarrow{\partial_2} C_3$$

Cochain complex

$$C^0 \xrightarrow{d_0} C^1 \xrightarrow{d_1} C^2 \xrightarrow{d_2} C^3$$

Codifferentials

$$C^0 \xrightarrow[d_0^*]{d_0} C^1 \xrightarrow[d_1^*]{d_1} C^2 \xrightarrow[d_2^*]{d_2} C^3$$



$$\int_{\omega} du = \int_{\partial\omega} u$$

$$(v, d_k^* u)_k = (d_k v, u)_{k+1}$$

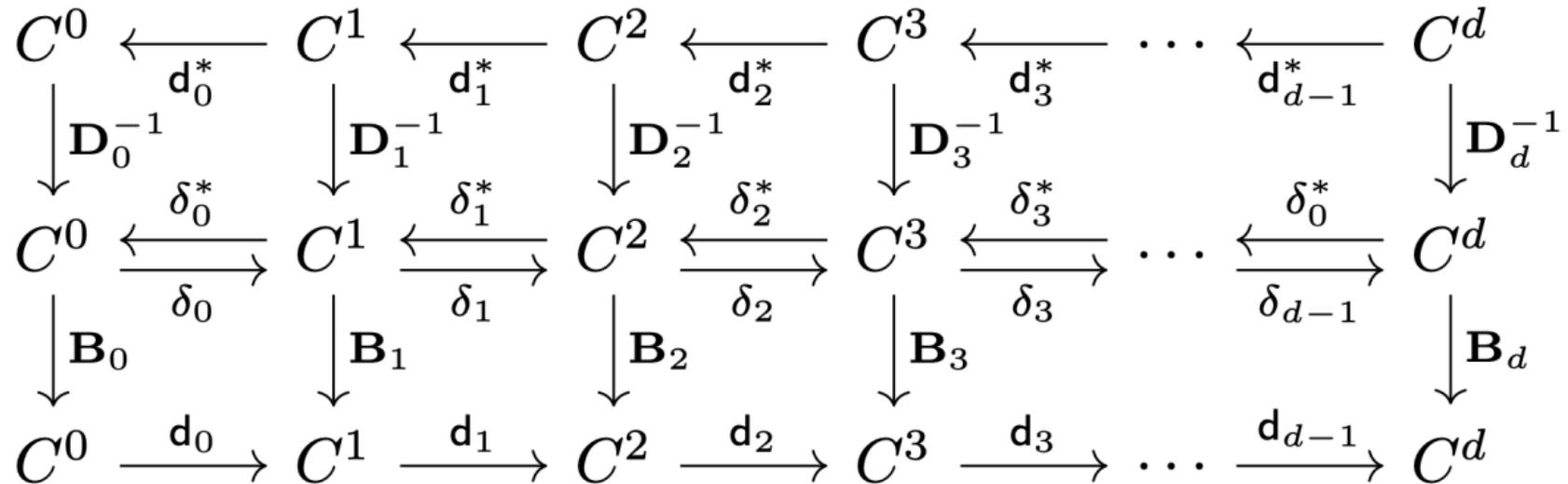
Compatible PDE

K+1-simplices as chains
 Stokes theorem give cochains
 L2-adjoints give codifferentials

Combinatorial Hodge

K-cliques as chains
 Graph div/grad/curl give cochains
Use data to obtain codifferentials

What does all this give you?



- Differential operators which locally and globally conserve fluxes, circulations, potentials
- Invertible Hodge Laplacians $\Delta_k = d_{k+1}^* d_{k+1} + d_k d_{k+1}^*$
- Exact sequence properties $d_{k+1} d_k = d_k^* d_{k+1}^* = 0$
- Hodge decomposition $u = d^* \alpha + d \beta + \gamma$
- Corollary: treatment of nontrivial null-spaces in electromagnetism

Theorems...

Theorem 3.1. *The discrete derivatives \mathbf{d}_k in (11) form an exact sequence if the simplicial complex is exact, and in particular $\mathbf{d}_{k+1} \circ \mathbf{d}_k = 0$. In \mathbb{R}^3 , we have $\text{CURL}_h \circ \text{GRAD}_h = \text{DIV}_h \circ \text{CURL}_h = 0$.*

Theorem 3.2. *The discrete derivatives \mathbf{d}_k^* in (11) form an exact sequence of the simplicial complex is exact, and in particular $\mathbf{d}_k^* \circ \mathbf{d}_{k+1}^* = 0$. In \mathbb{R}^3 , $\text{DIV}_h^* \circ \text{CURL}_h^* = \text{CURL}_h^* \circ \text{GRAD}_h^* = 0$.*

Theorem 3.3 (Hodge Decomposition). *For C^k , the following decomposition holds*

$$C^k = \text{im}(\mathbf{d}_{k-1}) \bigoplus_k \ker(\Delta_k) \bigoplus_k \text{im}(\mathbf{d}_k^*), \quad (17)$$

where \bigoplus_k means the orthogonality with respect to the $(\cdot, \cdot)_{\mathbf{D}_k \mathbf{B}_k^{-1}}$ -inner product.

Theorem 3.4 (Poincaré inequality). *For each k , there exists a constant $c_{P,k}$ such that*

$$\|\mathbf{z}_k\|_{\mathbf{D}_k \mathbf{B}_k^{-1}} \leq c_{P,k} \|\mathbf{d}_k \mathbf{z}_k\|_{\mathbf{D}_{k+1} \mathbf{B}_{k-1}^{-1}}, \quad \mathbf{z}_k \in \text{im}(\mathbf{d}_k^*),$$

and another constant $c_{P,k}^*$ such that

$$\|\mathbf{z}_k\|_{\mathbf{D}_k \mathbf{B}_k^{-1}} \leq c_{P,k}^* \|\mathbf{d}_{k-1}^* \mathbf{z}_k\|_{\mathbf{D}_{k-1} \mathbf{B}_{k-1}^{-1}}, \quad \mathbf{z}_k \in \text{im}(\mathbf{d}_{k-1}).$$

Thus, for $\mathbf{u}_k \in C^k$, we have

$$\inf_{\mathbf{h}_k \in \ker(\Delta_k)} \|\mathbf{u}_k - \mathbf{h}_k\|_{\mathbf{D}_k \mathbf{B}_k^{-1}} \leq C \left(\|\mathbf{d}_k \mathbf{u}_k\|_{\mathbf{D}_{k+1} \mathbf{B}_{k+1}^{-1}} + \|\mathbf{d}_{k-1}^* \mathbf{u}_k\|_{\mathbf{D}_{k-1} \mathbf{B}_{k-1}^{-1}} \right),$$

where constant $C > 0$ only depends on $c_{P,k}$ and $c_{P,k}^*$.

Theorem 3.5 (Invertibility of Hodge Laplacian). *The k^{th} -order Hodge Laplacian Δ_k is positive-semidefinite, with the dimension of its null-space equal to the dimension of the corresponding homology $H^k = \ker(\mathbf{d}_k) / \text{im}(\mathbf{d}_{k-1})$.*

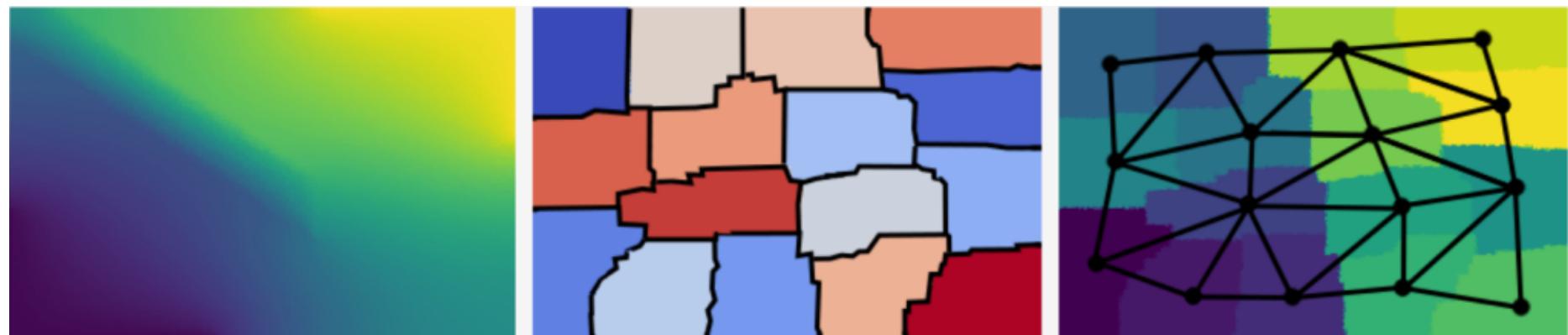
Using DDEC to discover structure preserving surrogates

$$\nabla \cdot \mathbf{F} = f$$
$$\mathbf{F} + \kappa \nabla \phi = 0$$

Structure preserving
trainable exterior
derivatives

$$d_0^\star \mathbf{F} = f$$
$$\mathbf{F} + \xi d_0 \phi + \mathcal{N}_\eta(\phi) = 0$$

Black box NN flux



High-fidelity PDE
solution

Apply graph-cut to
coarse-grain
chain complex

Average over
partitions to obtain
training data

General optimization problem

Fluxes:

$$\mathbf{w}_{k+1} = \mathbf{d}_k \mathbf{u}_k + \epsilon \mathcal{N} \mathcal{N}(\mathbf{d}_k \mathbf{u}_k; \xi),$$

Conservation:

$$\mathbf{d}_{k-1}^* \mathbf{d}_{k-1} \mathbf{u}_k + \mathbf{d}_k^* \mathbf{w}_{k+1} = \mathbf{f}_k.$$

→ $a(\mathbf{v}, \mathbf{u}; \mathbf{B}, \mathbf{D}) + N_{\mathbf{v}}[\mathbf{u}; \xi] = b(\mathbf{v})$

Invertible bilinear
form

Nonlinear
perturbation

If we can fit the model to data while
imposing equality constraint, then
during training we restrict to manifold
of solvable models preserving physics

$$\underset{\mathbf{B}, \mathbf{D}, \xi}{\operatorname{argmin}}, \|\mathbf{w} - \mathbf{w}_{\text{data}}\|^2$$

such that $\mathcal{L}[\mathbf{w}, \mathbf{u}; \mathbf{B}, \mathbf{D}, \xi] = 0$

Is PDE constraint well posed?

$$a(\mathbf{v}, \mathbf{u}; \mathbf{B}, \mathbf{D}) + N_{\mathbf{v}}[\mathbf{u}; \xi] = b(\mathbf{v})$$

Theorem 3.6. *The equation (24) has at least one solution $\mathbf{u}_k \in \mathbb{V}$ satisfies*

$$\|\mathbf{u}_k\| \leq \frac{\|\mathbf{f}\|}{(C_p - C_N)}. \quad (26)$$

Theorem 3.7. *If $\frac{C_{\nabla N} \|\mathbf{f}\|}{C_p(C_p - C_N)} < 1$, then the equation (24) has at most one solution in \mathbb{V} .*

A unique solution exists if the Hodge-Laplacian is sufficiently large relative to the nonlinear part, following standard elliptic PDE arguments

- Poincare constant easily estimated from matrix eigenvalues
- Lipschitz constant on nonlinearity straightforward for DNNs

Solvability constraint could be enforced during training if desired

“PDE”-constrained optimization

$$\mathbf{L}_{\mathbf{u}, \lambda, \mathbf{B}, \mathbf{D}, \xi} = \|\mathbf{w} - \mathbf{w}_{\text{data}}\|^2 + \lambda^T \mathcal{L}[\mathbf{w}, \mathbf{u}; \mathbf{B}, \mathbf{D}, \xi]$$

$$\mathcal{L}[\mathbf{w}, \mathbf{u}; \mathbf{B}, \mathbf{D}, \xi] = 0$$

- Solve forward problem with current model parameters

An iterative algorithm
guaranteeing exact
enforcement of physics
at each iteration:

$$\mathbf{w}, \mathbf{u} \leftarrow \nabla_{\lambda} \mathbf{L}_{\mathbf{u}, \lambda, \mathbf{B}, \mathbf{D}, \xi} = 0$$

- Solve adjoint problem with current forward solution

$$\lambda \leftarrow \nabla_{\mathbf{u}} \mathbf{L}_{\mathbf{u}, \lambda, \mathbf{B}, \mathbf{D}, \xi} = 0$$

- Apply gradient descent to update model

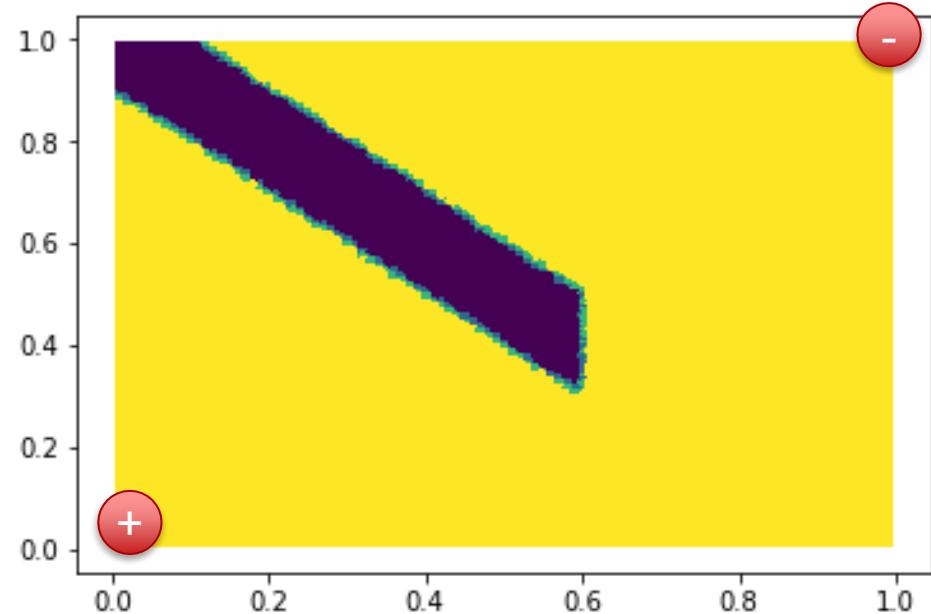
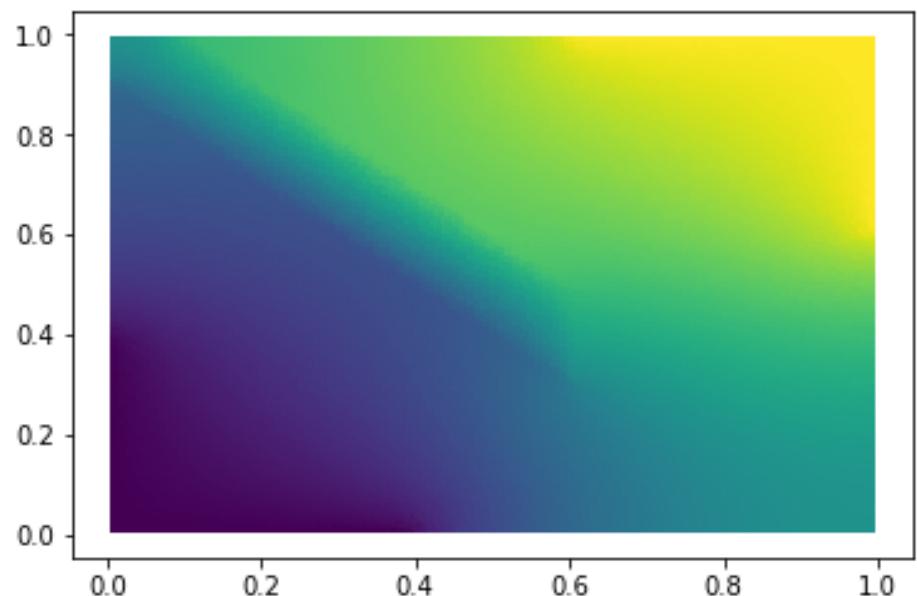
$$\mathbf{B}, \mathbf{D}, \xi \leftarrow \nabla_{\mathbf{B}, \mathbf{D}, \xi} \mathbf{L}_{\mathbf{u}, \lambda, \mathbf{B}, \mathbf{D}, \xi} = 0$$

$$\nabla \cdot \mathbf{F} = f$$

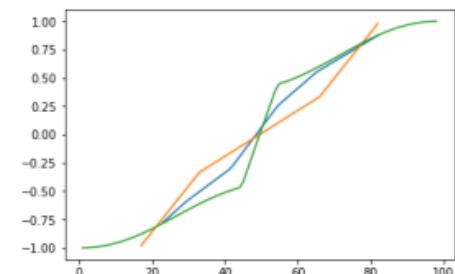
$$d_0^* \mathbf{F} = f$$

$$\mathbf{F} + \kappa \nabla \phi = 0$$

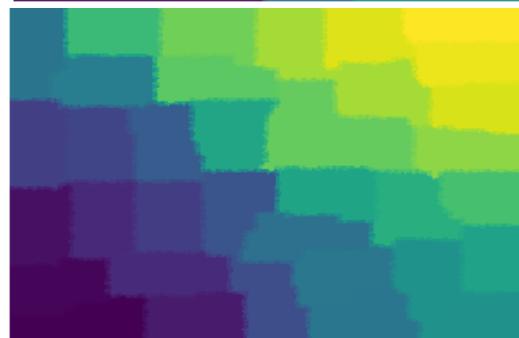
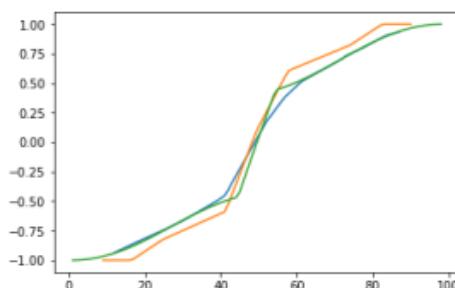
$$\mathbf{F} + \xi d_0 \phi + \mathcal{N}_\eta(\phi) = 0$$



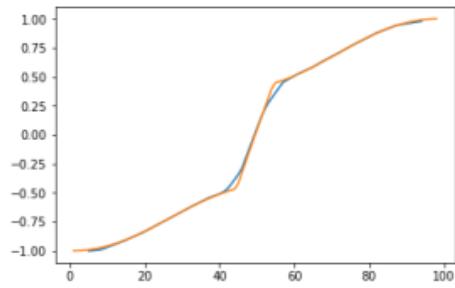
$N = 2^2$



$N = 5^2$



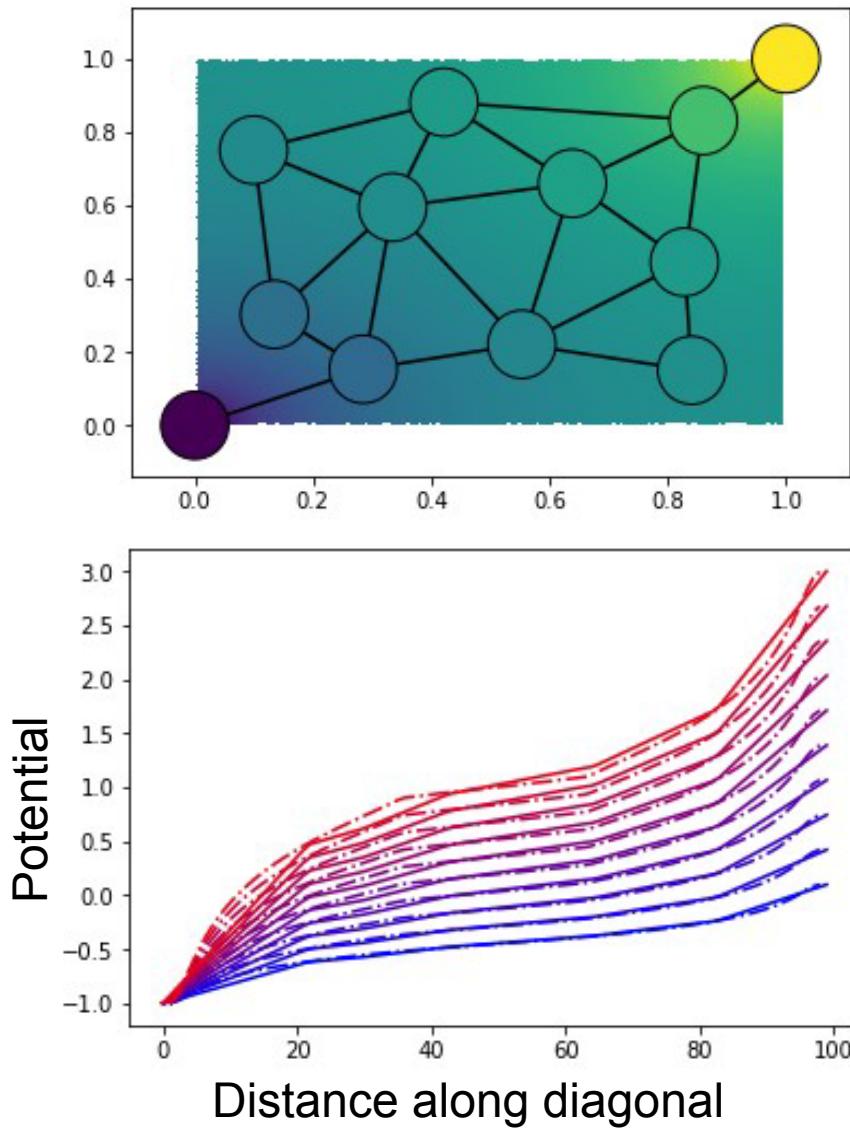
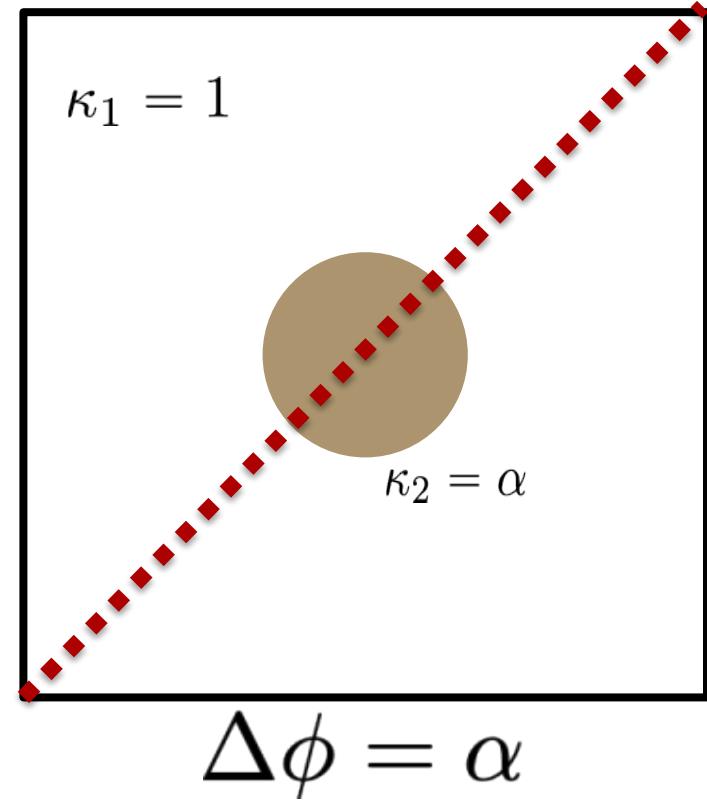
$N = 10^2$



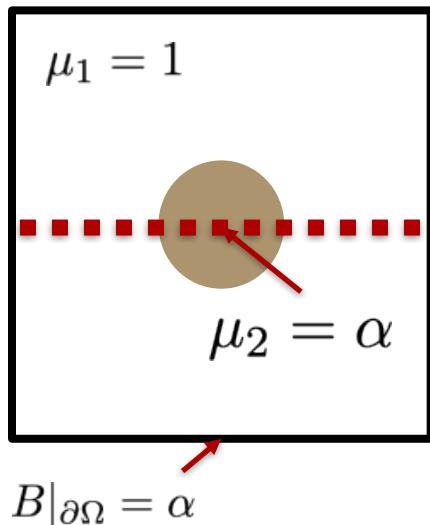
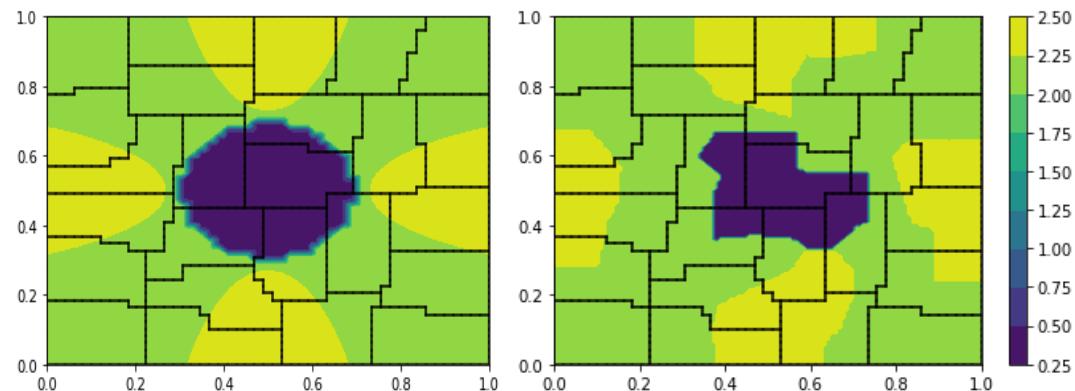
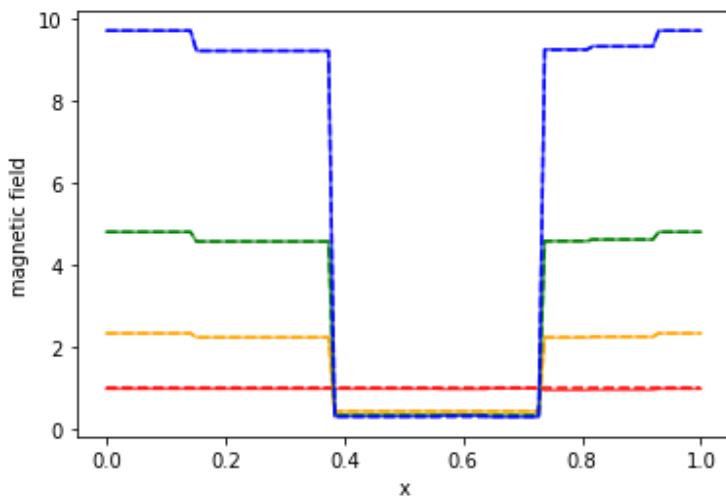
Comparison of pressure for same # DOF for FVM (left) and DDEC (center)

Right: profile along diagonal shows better fit to solution (green) by DDEC (blue) vs FVM (orange)

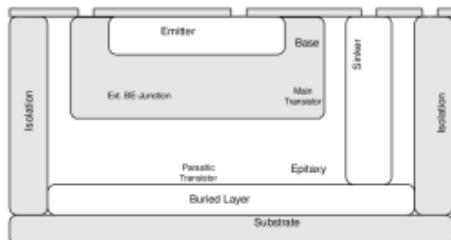
Nonlinear Darcy: potential profile across diagonal



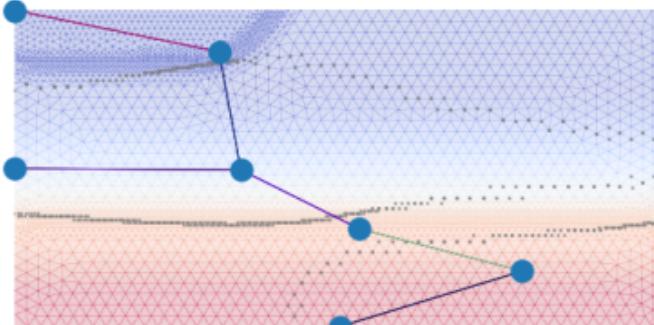
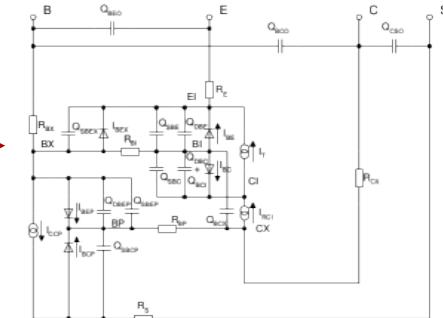
The rest of the de Rham complex - magnetostatics



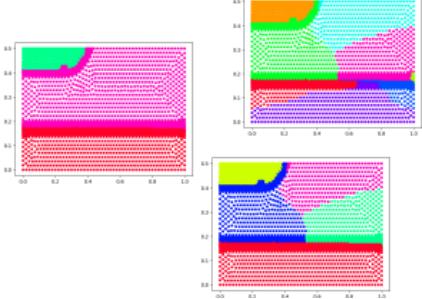
Extracted surrogate:
Is exactly div free
Provides sharp interfaces
Conserves circulation
Guaranteed solvable
Generalizes to other BCs



High-fidelity drift-diffusion
PDE-based simulation



Result: robust surrogate
embedded in production circuit
simulator



Partitioning into physics-
informed subdomains

- High-fidelity finite element models describe relevant physics but expensive – 1M+ component systems inaccessible
- Algebraic compact models cheap, but must be developed empirically (10+ years just for nominal behavior!)
- Don't have years to develop new models for either new materials or departures from nominal operating conditions
- **Impact: new workflow incorporates foundational aspects of ASCR work to automate this timeline, developing models in weeks rather than years**

Spacetime Integral Form Hyperbolic PDE

We consider a class of conservation laws of the form:

Given:

Space-time domain $\Omega \in \mathcal{R}^d \times [0, T]$

Conserved quantity $\mathbf{u} \in \mathcal{R}^P$

$$\partial_t \mathbf{u} + \nabla \cdot \mathbf{F}(\mathbf{u}) = 0 \quad x, t \in \Omega, \text{ for all } i$$

$$\mathbf{u} = \mathbf{u}_0 \quad t = 0$$

$$\mathbf{F}(\mathbf{u}) \cdot \hat{\mathbf{n}} = g \quad x \in \Gamma_-$$

Define “extended-flux”:

$$\hat{\mathbf{F}} := \langle \mathbf{u}^\top, \mathbf{F} \rangle \in \mathbb{R}^{d+1 \times P}$$

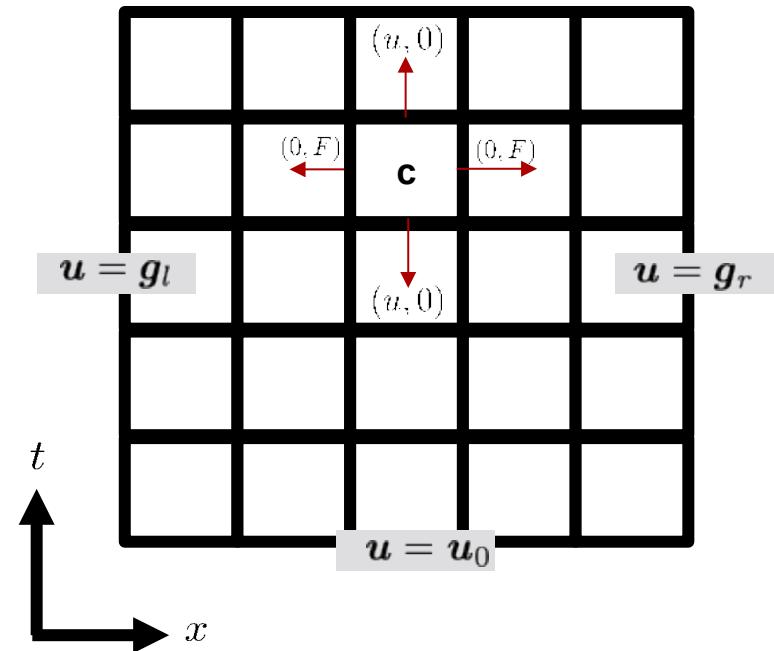
Let

$$\text{div} = \langle \partial_t, \partial_{x_1}, \dots, \partial_{x_d} \rangle$$

Rewrite in terms of spacetime div

$$\text{div}(\hat{\mathbf{F}}) = 0$$

$$\int_{\partial\omega} \hat{\mathbf{F}} \cdot d\mathbf{A} = 0$$



Control volume PINNs (cvPINNs)

Let the solution be defined by a neural network,

$$u = u(x, t; \xi)$$

Choose mesh in space-time

Apply divergence theorem to each cell in the mesh

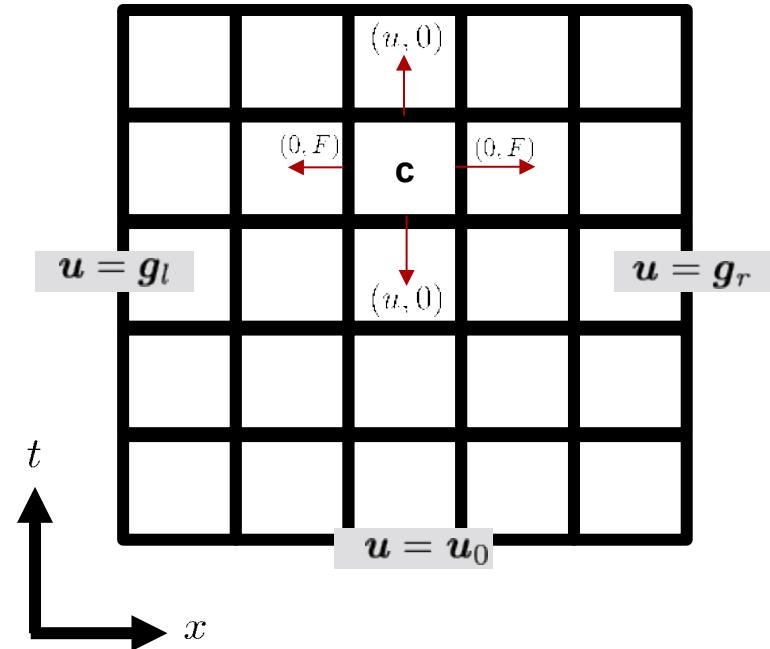
$$R_c = \int_{A_c} \operatorname{div}(\tilde{\mathbf{F}}) \cdot dA_c = \int_{l_c} \hat{\mathbf{F}} \cdot dl_c$$

where

$$\tilde{\mathbf{F}} = \begin{cases} \hat{\mathbf{F}}(\mathcal{NN}), & \text{if } \mathbf{x} \in \Omega \\ g\hat{n}, & \text{if } \mathbf{x} \in \Gamma_- \end{cases}$$

Minimize residuals

$$\xi = \operatorname{argmin}_{\hat{\xi}} \sum_c R_c^2$$



Entropy regularization – Bias Towards Entropy Solution

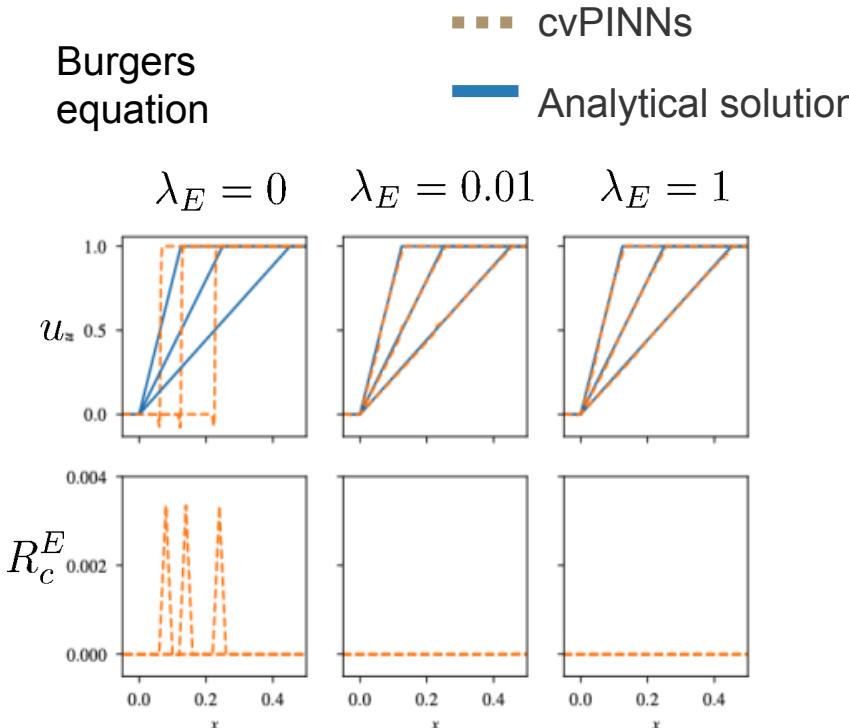
- Given entropy pair, (q, η) , the entropy solution obeys:

$$\partial_t q(u) + \partial_x \eta(u) \leq 0$$

$$R_c^E = \int_{\partial_c} \partial_t q(u) + \partial_x \eta(u) \cdot dA$$

Add the entropy penalty, R_c^E for each cell c to the loss:

$$L = \sum_c R_c^2 + \lambda_E \sum_c \max(0, R_c^E)^2$$



Penalty weighting is independent of mesh

TVD regularization- Prevent Oscillations Near Shocks

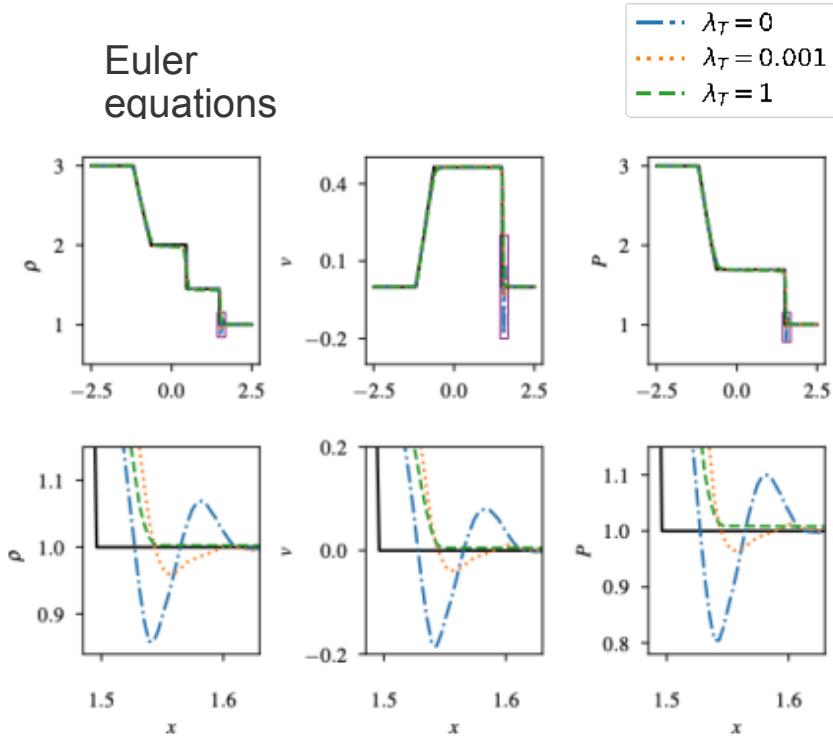
$$TV(u^n) = \sum_i |u_{i+1}^n - u_i^n|$$

- For $u(x, t)$ at grid $u_i^n = u(x_i, t_n)$ values

$$TV(u^{n+1}) - TV(u^n) \leq 0$$

Define a regular grid on top of the mesh and add another term to the loss:

$$L = \sum_c R_c^2 + \lambda_E \sum_c \max(0, R_c^E)^2 + \lambda_T \sum_n \max(0, TV(u^{n+t}) - TV(u^n))^2$$



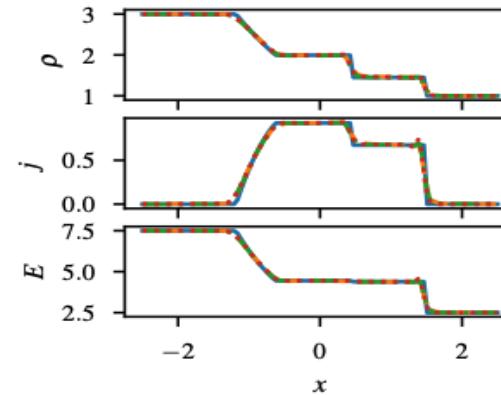
Penalty weighting is independent of mesh

How to use these?

1. A fast surrogate solution of forward problem

$$s = \log(e^{1/(\gamma-1)}/\rho)$$

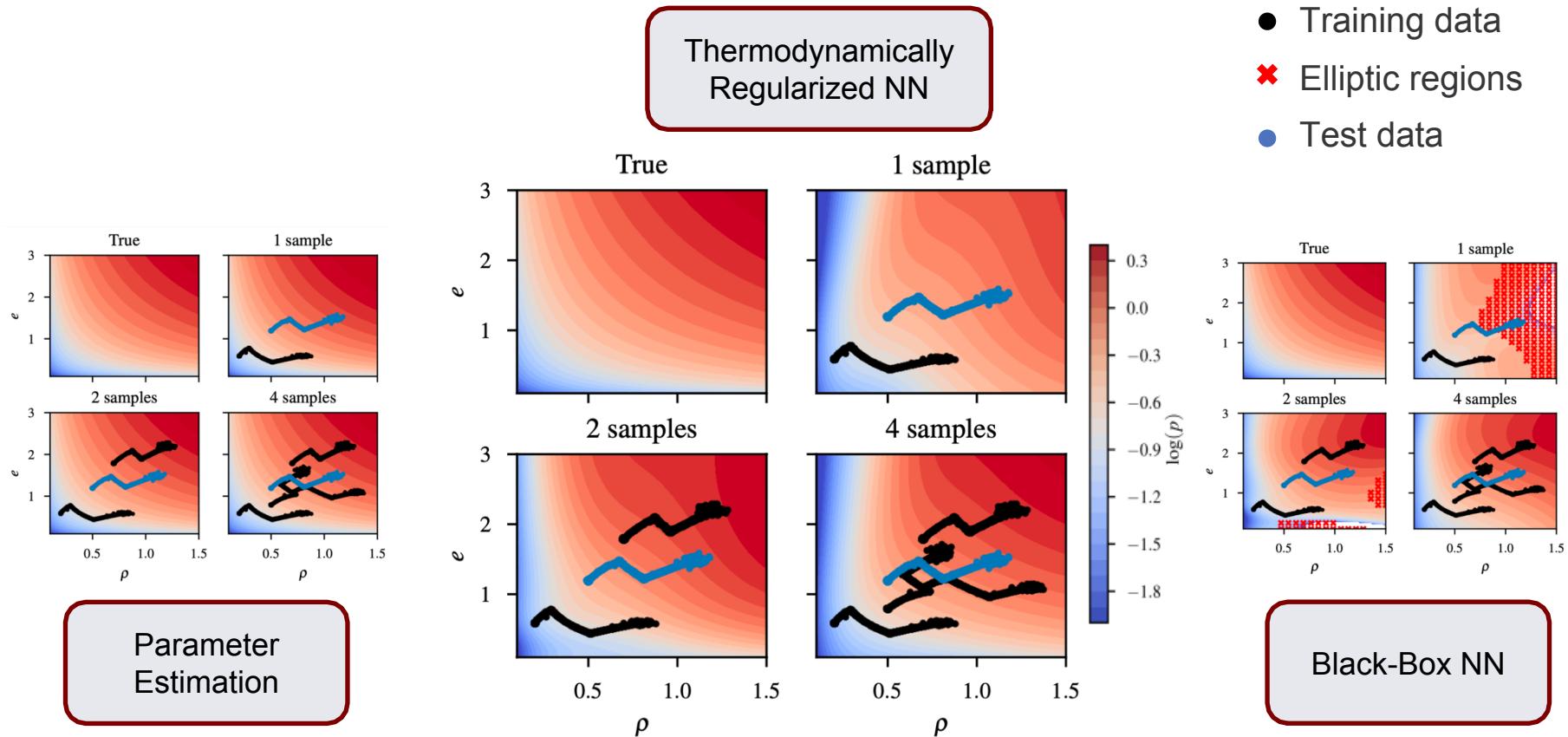
$$p = -\rho^2 \frac{\partial_s}{\partial_p} / \frac{\partial_s}{\partial_e}$$



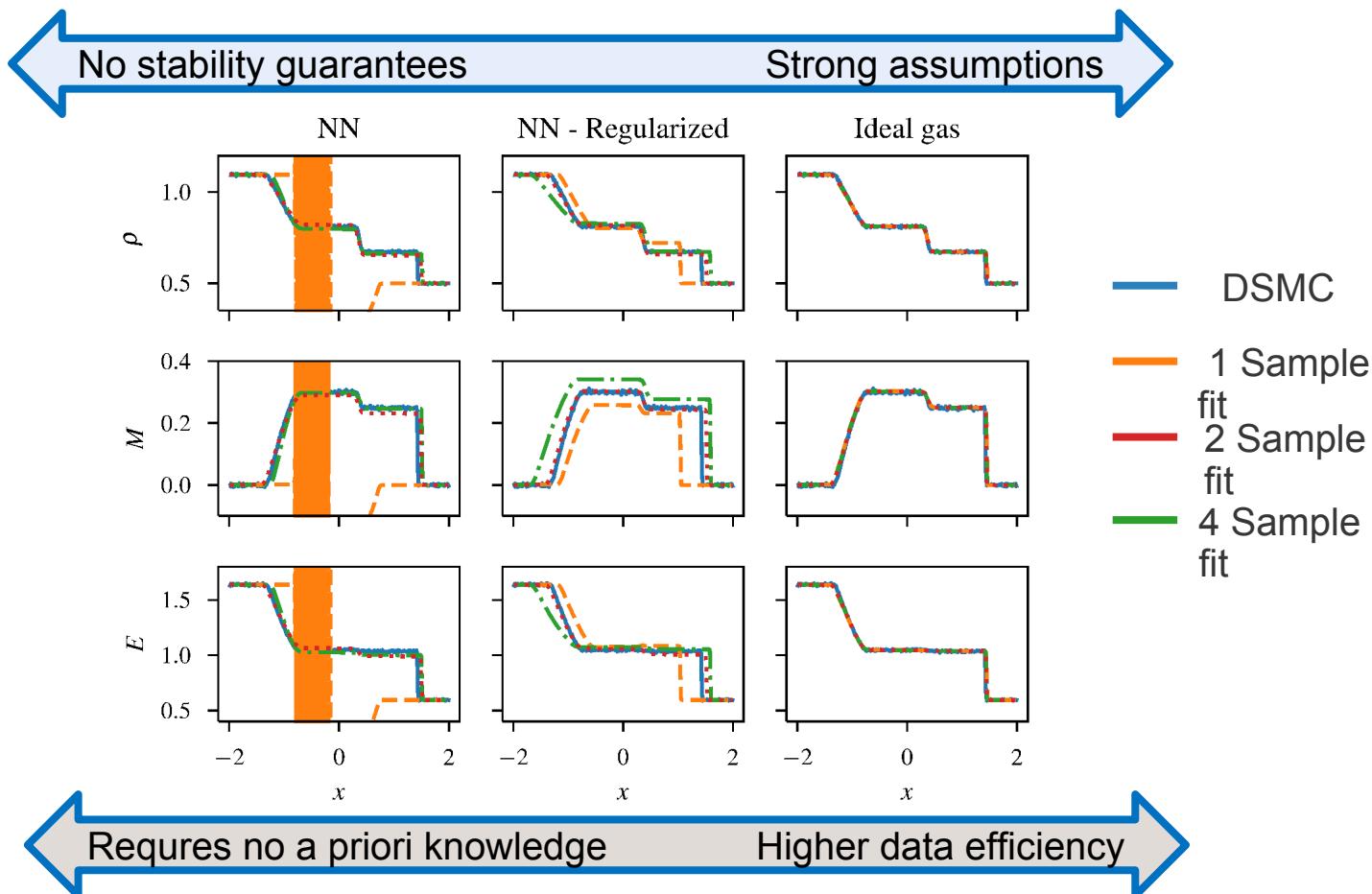
2. Equation of state discovery with cvPINNs (**Inverse problem**)

$$\longrightarrow s := s(\rho, e)$$

Neural network with thermodynamic regularization

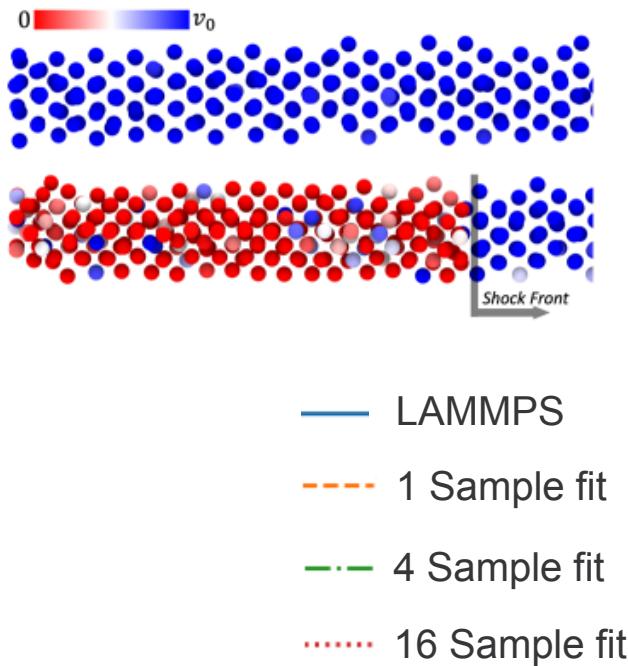
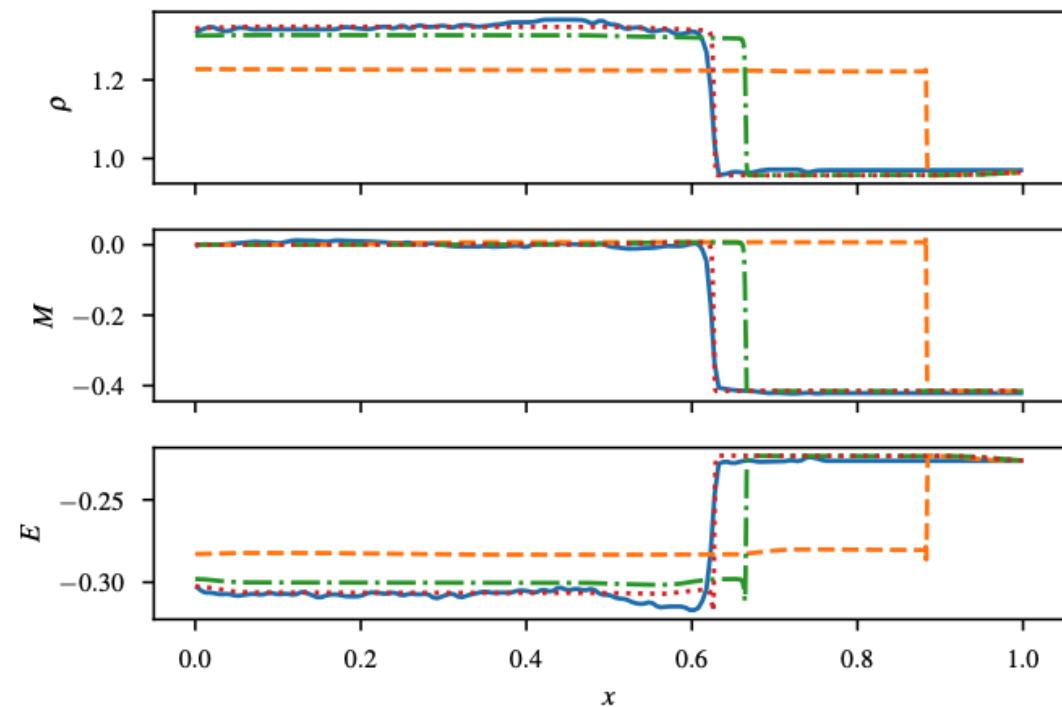


Comparison of EOS Parameterizations



Discovering unknown EOS for shocked copper

Perform LAMMPS¹ simulations of a copper bar in a reverse-ballistic impact experiment



Acknowledgements

Sandia Group:
R. Patel, M. Gulian, K. Lee, E. Cyr, M. Wood

Highlighted publications

1. You, Huaiqian, et al. "Data-driven learning of nonlocal physics from high-fidelity synthetic data." *Computer Methods in Applied Mechanics and Engineering, AI special issue* (2021)
2. Patel, Ravi G., et al. "A physics-informed operator regression framework for extracting data-driven continuum models." *Computer Methods in Applied Mechanics and Engineering, AI special issue* (2021)
3. Lee, Kookjin, et al. "Partition of unity networks: deep hp-approximation." *arXiv preprint arXiv:2101.11256* (2021).
4. Trask, Nathaniel, Andy Huang, and Xiaozhe Hu. "Enforcing exact physics in scientific machine learning: a data-driven exterior calculus on graphs." *arXiv preprint arXiv:2012.11799* (2020).
5. Patel, Ravi G., et al. "Thermodynamically consistent physics-informed neural networks for hyperbolic systems." *arXiv preprint arXiv:2012.05343* (2020).
6. Cyr, Eric C., et al. "Robust training and initialization of deep neural networks: An adaptive basis viewpoint." *Mathematical and Scientific Machine Learning*. PMLR, (2020).
7. Patel, Ravi G., et al. "A block coordinate descent optimizer for classification problems exploiting convexity." *arXiv preprint arXiv:2006.10123* (2020).
8. Gao, Xujiao, et al. "Physics-Informed Graph Neural Network for Circuit Compact Model Development." *2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)*. IEEE (2020)
9. Huang, Andy, et al. "Greedy Fiedler Spectral Partitioning for Data-driven Discrete Exterior Calculus." 2021 AAAI-MLPS Conferences (under review)
10. Trask, Nathaniel, et al. "GMLS-Nets: A framework for learning from unstructured data." NeurIPS proceedings (2019)

Open source software

- GMLS-nets: learning from unstructured data through meshfree approximation (<https://github.com/rgp62/gmls-net>)
- MOR-Physics: Modal Operator Regression for physics discovery (<https://github.com/rgp62/MOR-Physics>)

Acknowledgements

Funding sources:

- DOE early career
- Philms (ASCR MMICCs center)
- SNL LRD
- ASC
- John von Neumann postdoc

Collaborators:

- Graph exterior calculus
 - **Xiaozhe Hu (Tufts)**
- Semiconductor work in 1300
PIRAMID LRD
Huang, X. Gao, S. Reza
- Z-machine + shock physics
Kris Beckwith, Patrick Knapp
- Combustion Research Facility
Jackie Chen, MK Lee (8300)
- Subsurface fracture networks
Jeffrey Hyman (LANL)

Postdocs: Ravi Patel, Mamikon Gulian, Kookjin Lee

Staff: Eric Cyr, Mitch Wood

**Several new projects – please contact for
postdoc/collaboration opportunities
(natrask@sandia.gov)**