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Shape Memory Effect

e Martensitic Phase Transformation
between low temperature
martensite phase B19’ and high
temperature austenite phase B2
enables desirable adaptive material
properties included in:

— Medical Devices
— Solid state actuators

— Smart alloys
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Effects of phase transformation
on various properties that exhibit
a discontinuity at the
transformation temperatures

Duerig, Pelton 1994

Stress O

Strain
Characteristic Stress Strain Curve of NiTi:
A-B elastic deformation of the parent M
phase
B-C Martensitic transformation beginning at
oM
C-D elastic deformation of the martensitic
phase
C’ If stress is relieved at or before this point:
C’-F elastic unloading of martensite
F-G reverse transformation to austenite
G-h Elastic recovery of the parent phase

Gil, Plannell 1998
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Defect Engineering of NiTi

e NiTi SMAs can be engineered to control the hysteretic nature
of the martensitic transformation and attain desirable
material properties. Common methods include:

e Composition

Precipitation

Thermal Cycling
 Mechanical Cycling

e QOur goal is to engineer a strain glass NiTi system that has
predictable linearized forward and reverse transformation.
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Hysteresis of the stress strain curve in 27%
cold rolled Nis g Tisg , OVer 30 cycles of tensile
testing at room temperature

Lang, Wang et al. 2017
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lon Implantation

Depth vs. Y-Axis

e |rradiation can create a range of defect damage
from point defects and dislocation loops to
amorphization and voids.

— Two primary types of ion damage:

— Electronic Stopping — inelastic collisions between the
electron clouds of the ion transferring energy

— Nuclear Stopping — direct elastic collisions between
an ion and lattice atoms, creates a chain reaction of
lattice displacements or a collision cascade

Plot of ion/recoil distributions using the

— lIrradiation damage is quantified by Displacements Stopping Range of lons in Matter software
per Atom (DPA) package
Ziegler 1981
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lon Implantation of Nickel-Titanium

e Priorirradiation and ion implantation have i,

(110)

induced amorphization of the NiTi Crystal
structure in thin films shutting down the
martensitic transformation

— Brimbhall, Kissinger et al. 1985 (2.5 MeV Ni+)

— Moine, Riveiere et al. 1985 (390 keV Ni+)

— Lagrange, Schaubin, et al. 2006 (350 MeV Au+)

* NiTi fully amorphizes at 0.1 DPA and above, shutting down the Brightfield imaging of ion tracks left by Au ion
martensitic phase transformation bombardment showing formation amorphous

* Deposited energy density determines degree of amorphization, fluence  region surrounding the track, Ti,Ni precipitates,
influences amount of amorphous regions and residual austenite in parent martensite

* Irradiation can induce residual amorphized, R, Ti,Ni, and austenite material

phase regions
Lagrange, Schaubin, et al. 2006
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Experiment: lon Implantation

e Using 30 MeV Ni+ ions, chose 2 fluences
to probe the 0-0.01 DPA range of
interest. .

Ni* Ni* ™ Ni*

e Material supplied by Fort Wayne Metals |||[1]] , Ppsne
— 50.5at% Ni 49.5at% Ti
— <111> Textured extruded wire

P

— 8 um grain size

1-Dist (um)

e Irradiation Dosage

— 30 MeV Ni+ ions DPA prediction calculated from
SRIM results
— Fluences: F1 5x1013 cm-2 and F2 1x1014 cm-
2

DPA damage gradient

— Performed by Khalid Hattar at CINT over a ~6um depth
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Nanoindentation

A
: . . U S P e ,
e Nanoindentation can probe the mechanical properties 5
of small volumes of ion implanted material. loading
(ol ‘
— DSC unable to analyze small masses of homogenously ) §
implanted material (<3mg) 3 unloading o
“dh
e |n Situ Nanoindentation i
— 200 nm Indent lma"
>

— Berkovich Indenter tip
— Performed by Nan Li at CINT

Displacement, h

Characteristic load versus
displacement curve. Extended
initial unloading slope is typical
of a purely elastic response

a8 Live =1 pm—

0.20nA 20000x 1 FS-18-13 Oliver Pharr 2003
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Preliminary Modeling

e Correlate Experimentation and

Modeling via Load Displacement
Curves to determine material
properties

— Model: Auricchio, Taylor 1996

2500
FE Model

—— Experimental

Displacement (nm)
N

Indent trace from the FE model indentation
by a Berkovich tip
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Conclusions

* lon implantation increases hardness in the near surface region without destroying
the shape memory effect
* Likely caused by distributed nano scale defect structures and formation of non parent phase
regions
* lon implantation at moderate doses creates a gradient of damage that, unlike
prior literature, does not completely amorphize the material and destroy the
shape memory effect

* Nanoindentation can be used in a variety of ways to evaluate small volumes of
materials and correlate with FE modeling
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Future Work

1Y)

) Berkovich Tip
* Investigate F2 fluence and compare

effects of implantation
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* Forward modeling of p
nanoindentation to determine Hemispherical Tip < ,,
material properties of ion
implanted regions "
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 Collaborations for characterization

: . Pfetzing-Micklich, Wagner 2009
and phase field modeling g g
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Project Collaborations

e
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* FE modelling of Nanoindentation . Nanoindentation to determine

Nanoindentation to determine and FE implanted regions with unique
stress fields Mechanical Properties

» Phase field modelling of defect * Microscopy to characterize
structures and its interaction region with altered response
with NiTi

Effect of single nano void on MT

Phase Fied &
Microscopy

MOdelmg « Microscopy to identify defect
microstructures

* Phase Field modeling to
predict micrographs based on
microstructures

Modeling

Brightfield Image of Implanted NiTi
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March 17, 10:10AM; Defect and Phase Transformation Pathway

Engineering for Desired Microstructures:

Interaction between Martensite Transformation and Ion-
induced Damage in Shape Memory Alloys

Diffuse
amorphous ring
around the
(110) spacing.

Streaking along
the <112>in
some areas.

Strongest
amorphous ring
seen in the
deepest portion
of the foil,
~3.5um below
the
implantation
band.

Yellow arrows
point to the
diffuse ring;
Aqua arrows
show streaking.
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