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Abstract

The concept of soil health has evolved over the past several decades, recognizing
that dynamic soil property response to management and land use is highly depen-
dent on site-specific factors that must be considered when interpreting soil health
measurements. Initially, the Soil Management Assessment Framework (SMAF) and
Comprehensive Assessment of Soil Health (CASH) were developed and used glob-
ally for scoring soil health indicators. However, both SMAF and CASH frameworks
were developed using a relatively small dataset and their interpretation curves were
not validated at the nationwide scale. Expanding upon these concepts, we propose
the Soil Health Assessment Protocol and Evaluation (SHAPE) tool. The SHAPE was
developed using 14,680 soil organic C (SOC) observations from across the United
States, and accounts for edaphic and climate factors at the continental scale. Data
were compiled from the literature, the Cornell Soil Health Laboratory, and the Kel-
logg Soil Survey Laboratory. In this approach, scoring curves are Bayesian model-
based estimates of the conditional cumulative distribution function (CDF) for defined
soil peer groups reflecting five soil texture and five soil suborder classes adjusted for
mean annual temperature and precipitation. Specifically, SHAPE produces scores
between 0 and 1 (0-100%) for measured SOC values that reflect the quantile or posi-
tion within the conditional CDF along with measures of uncertainty. Herein, we focus
on development of the SHAPE scoring curve for SOC with our case studies. SHAPE
is a flexible, quantitative tool that provides a regionally relevant interpretation of this
key soil health indicator.

1 | INTRODUCTION

Abbreviations: Al, de Martone aridity index; AS, aggregate stability;

CASH, Comprehensive Assessment of Soil Health; CDF, cumulative
distribution function; LOI, loss on ignition; MAP, mean annual
precipitation; MAT, mean annual temperature; PET, potential
evapotranspiration; SHAPE, Soil Health Assessment Protocol and
Evaluation; SOC, soil organic carbon; SOM, soil organic matter content;
SMAF, Soil Management Assessment Framework; WI, wetness index.

Soil health refers to the ability of a specific soil to perform
multiple functions that include cycling of nutrients, sustain-
ing productivity, maintaining biodiversity, regulating water
dynamics, and moderating climate (Karlen et al., 1997). Cur-
rent interest in soil health is mostly driven by the recognition
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that anthropogenic influences are increasingly superimposed
on natural soil quality. Ecosystem services are the direct and
indirect contributions of ecosystems to human well-being and
are inherently difficult to measure directly due to high cost
and spatial and temporal variability; however, a wide range of
soil health indicators, including chemical, physical, and bio-
logical soil properties (e.g., Doran and Parkin, 1996; Stott,
2019) have been identified as proxy measurements. Among
them, soil organic C (SOC) is a keystone indicator, reflecting
multiple soil functions and ecosystem services. Although it is
widely recognized that climatic and edaphic factors are deter-
minants of soil C content (Bardgett, 2011; Post et al., 2004),
land use and management practices have a significant impact
on soil C dynamics.

The interactions among inherent and dynamic soil bio-
logical, physical, and chemical properties and processes are
complex and must be quantified when assessing management
effects on soil health. To facilitate such quantifications across
land use and management practices, an interpretive frame-
work that provides a wide range of regionally relevant indi-
cator options is needed (Wander et al, 2019), such as a multi-
indicator soil health index. This index must also (a) account
for inherent site-specific factors, (b) be sensitive to anthro-
pogenic activities, and (c) facilitate broad-scale monitoring to
ensure sustainable land management (Doran, 2002).

Many indices have been developed for soil health assess-
ment (e.g., Andrews et al., 2004; De Paul Obade & Lal,
2016; Haney et al., 2018; Idowu et al., 2009; Rinot et al.,
2019), but none are universally accepted (Biinemann et al.,
2018). One example is the Soil Management Assessment
Framework (SMAF), which integrates multiple biological,
chemical, and physical soil health indicators by transforming
measured values into unitless (0O—1) scores (Andrews et al.,
2004). The SMAF algorithms were built to be sensitive to
several site-specific factors (i.e., soil taxonomy, climate,
crop type, topography, sampling season) that influence a
soil’s potential to support critical functions. The SMAF has
been used globally, although the conceptual framework for
indicator interpretation was derived using a relatively small
dataset representing four U.S. states: Georgia, California,
Wisconsin, and Iowa. The Comprehensive Assessment of
Soil Health (CASH) is another tool that scores multiple soil
health measurements using cumulative normal distributions
of a regional dataset from the northeastern United States
(Idowu et al.,, 2009). Recently, CASH algorithms were
expanded to include soils from other U.S. regions, including
the Midwest and Mid-Atlantic (Fine et al., 2017), but the
spatial extent is still limited and the curves do not reflect the
national or global distribution of soils.

To further advance science-based soil health assessments,
it is essential to develop indexing tools that handle multi-
ple soil attributes and describe relevant soil health status for
multiple types of soil (Biinemann et al., 2018). Develop-
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Core Ideas

* Response of soil health (SH) indicators to land use
and management is site-specific.

* Soil Health Assessment Protocol and Evaluation
(SHAPE) is proposed as a flexible tool.

* The SHAPE builds upon conceptual frameworks
established by the SMAF and CASH protocols.

» The SHAPE provides SH interpretation for soil
peer groups based on edaphic and climatic factors.

* This tool provides knowledge about the status of
soils in response to agronomic practices.

ment of a new assessment framework can be based on sta-
tistical approaches (e.g., minimum dataset, principal compo-
nent analysis, decision trees, and ANOVA), expert opinion, or
expert-based frameworks (Andrews et al., 2004; Fine et al.,
2017; Ritz et al., 2009). To be useful and interpretable for
producers and landowners, the selected soil health indicators
must: (a) represent chemical, biological, and physical soil pro-
cesses; (b) detect variations in soil functions due to manage-
ment and land-use decisions; (c) be assessable and cost effec-
tive; and (d) reflect the connection between soil functions and
management targets (i.e., agricultural productivity, ecosystem
services).

The SMAF has scoring curves for four biological (SOC,
microbial biomass C, potentially mineralizable N, and beta-
glucosidase [B-G]); four physical (bulk density, aggregate sta-
bility [AS], available water capacity, and water-filled pore
space); and five chemical soil properties (pH, electrical con-
ductivity, sodium adsorption ratio, and extractable P and
K) (Andrews et al., 2004). The CASH was designed for
broader use with lower cost and includes physical (AS, avail-
able water capacity, and penetration resistance); biological
(organic matter content [SOM], autoclaved citrate-extractable
protein, respiration, and active-C); and chemical (pH and
nutrient concentration) soil properties (Moebius-Clune et al.,
2016). Within CASH and SMAF, biological indicators reflect
the amount and quality of SOM, the size and activity of the
microbial community, nutrient cycling and storage, soil struc-
ture, and provision of food for edaphic organisms, among
other soil functions and processes (Lal, 2016; McDaniel et al.,
2014; Tiemann et al., 2015). Soil physical properties relate
to plant growth, water dynamics, erosion resistance, nutri-
ent retention, rhizosphere processes, resilience to drought or
temperature fluctuations, mitigation of nonpoint source pol-
lutants, and agronomic productivity (Lal, 2016; Nunes et al.,
2019). The soil chemical indicators reflect acidity and nutrient
availability as a guide to soil fertility management and envi-
ronmental protection.
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Following selection, measurement, and interpretation of
measured soil health indicators, the unitless values can be
used to develop one or more indices (Biinemann et al., 2018)
depending on what the assessment is being used for. Typically,
the values represent the status of a specific indicator relative
to (a) threshold or reference values, (b) one or more specific
soil functions, or (c) a dataset of measured soil health indi-
cator values. These relationships are established using non-
linear curves that can be defined and calibrated in several
ways. For example, SMAF thresholds were primarily based
either on expert opinion or taken from published literature
(Andrews etal., 2004), whereas CASH thresholds were empir-
ically derived based on data distributions for each soil health
indicator within a regional dataset (Fine et al., 2017). In con-
trast to the SMAF and CASH approach, some indices (e.g.,
the Haney test; Haney et al., 2018) use raw measured values or
projections from a model-specific outcome, such as biomass
production (e.g., De Paul Obade and Lal, 2016) or relative
crop yield (Biswas et al., 2017; Lopes et al., 2013) to estab-
lish threshold values.

Rinot et al. (2019) stressed that linking soil health indicator
values with ecosystem services is a laudable goal that would
supply rich and meaningful information from an ecological
perspective, but quantitative data to assess those complex
relationships is lacking at several spatial and temporal scales.
For example, water quality or greenhouse gas emission data
are costly and difficult to obtain at scales needed to develop
interpretations for those important soil health functions.
Also, indicator scores and interpretations can be inconsistent
or easily manipulated when based on expert opinion or
inappropriate statistical methods (Biinemann et al., 2018).
Furthermore, optimal threshold values will often vary or
present trade-offs among soil functions or ecosystem services
(i.e., crop productivity vs. environmental protection) and are
dependent on scale (Simpson, 2016). This can cause signifi-
cant factors to be overlooked at the continental scale if indices
are only developed using regional or site-specific datasets.

Karlen et al. (2019) documented how the soil health con-
cept evolved over the past several decades and emphasized the
need to scientifically advance monitoring and assessment pro-
tocols by (a) improving indicator scoring tools, (b) develop-
ing national monitoring protocols, and (c) identifying new soil
biological, chemical, and physical indicators of soil health.
They also stressed that producer interest in soil health mon-
itoring and regionally relevant interpretation remains strong.
To meet those needs, the USDA-NRCS and USDA—-ARS ini-
tiated a meta-analysis project focused on indicator interpreta-
tion and tool development.

A national database was compiled using soil health data
from 456 published studies. Meta-analysis techniques were
applied to assess effects of anthropogenic activities on soil
health indicators and examine potential interactions among
management practices and inherent soil conditions (i.e., soil
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type, climate condition, soil texture, soil depth, cropping sys-
tem, duration of the experiment among other factors [Nunes,
Karlen, & Moorman, 2020; Nunes, Karlen, Moorman, &
Cambardella, 2020; Nunes, Karlen, Veum, Moorman, &
Cambardella, 2020]). Results confirmed that the soil health
indicators used in SMAF and CASH were sensitive to changes
induced by anthropogenic factors, but anomalies emerged at
the continental scale, emphasizing the need to review and
improve indicator scoring curves (Karlen et al., 2019). The
comprehensive database thus provided the foundation for our
first step toward development of an improved soil health eval-
vation (i.e., Soil Health Assessment Protocol and Evaluation
[SHAPE]).

The soil genesis concepts outlined by Jenny (1941) illus-
trate the five dominant soil forming factors (i.e., time, par-
ent material, vegetation, climate, and topography) that inter-
act to determine inherent conditions. These factors influence
soil properties and processes and are incorporated into the soil
taxonomy (Soil Survey Staff, 1999). For example, in addition
to dynamic factors, the SOC content is determined by climate
variables, such as moisture and temperature, that are key fac-
tors controlling plant growth, decomposition of organic mate-
rials, and ultimately SOC content (Jobbagy & Jackson, 2000;
Post et al., 2004; Trumbore, 1997). Thus, as with SMAF and
CASH, SHAPE development was motivated by the knowl-
edge that the response of dynamic soil properties to manage-
ment was highly dependent on inherent, site-specific factors
(Karlen et al., 1997). Those conclusions were also consistent
with recommendations from other meta-analyses (i.e., Baker
etal.,2007; Bowles et al., 2016; Graaff et al., 2019; Haddaway
et al., 2017; Luo et al., 2010; McDaniel et al., 2014).

Although SMAF and CASH were designed to account
for inherent site characteristics, both used relatively small
and geographically limited datasets. Furthermore, multiple
assessments identified potential scoring curve problems at the
regional scale, including both overestimation and underesti-
mation of SOC, B-G, and AS scores (Mbuthia et al., 2015;
Nunes, Karlen, Veum, & Moorman, 2020; Stott et al., 2013;
Veum et al., 2015; Zobeck et al., 2015) that likely reflected
dataset limitations and a need to improve how edaphic and cli-
mate information is used to modify the scoring curves. Thus,
compared with SMAF and CASH, SHAPE was based on a
substantially larger and more representative dataset.

Our ultimate goal continues to be the development of a bet-
ter, comprehensive soil health index that accounts for con-
tinental variation in climate and inherent soil conditions,
while remaining sensitive to field-scale land use and man-
agement practices. Our broad objectives were to: (a) reeval-
uate the inherent factors and classes used in SMAF and
CASH to convert measured values into scores; (b) develop
new scoring curves for soil health indictors including SOC,
B-G, AS, autoclaved citrate-extractable protein, active-C, and
respiration, among others, based on the peer group approach
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FIGURE 1 Location of sites where soil organic C data for different agricultural production systems were compiled and compared within the

conterminous United States for the Soil Health Assessment Protocol Evaluation from the Comprehensive Assessment of Soil Health (CASH), the

NRCS Kellogg Soil Survey Lab (NRCS), and the published datasets

(aunique combination of soil suborder group and texture class
adjusted for temperature and precipitation); and (c) create a
new soil health tool that provides a quantitative and interpre-
tive score with associated measures of uncertainty. Specif-
ically, this manuscript discusses the initial development of
SHAPE, focusing on SOC, as the first in a series of indica-
tor scoring curves.

2 | MATERIALS AND METHODS

2.1 | Dataset

A dataset consisting of 14,680 SOC observations from across
the conterminous United States was compiled from three
sources: (a) published data for studies throughout the United
States, (b) CASH data samples analyzed by the Cornell Soil
Health Testing Laboratory between 2014 and 2018, and (c)
NRCS data from samples analyzed by the NRCS Kellogg Soil
Survey Laboratory in Lincoln, NE. A description of each data
source is provided below.

2.1.1 | Published data

This portion of the dataset was previously described by Nunes,
Karlen, Veum, Moorman and Cambardella (2020). Briefly,
the data were compiled using a literature search with key-
words () soil health or soil quality, plus (b) cropping system,
soil tillage, residue management, cover crop, crop rotation,
soil fertility or fertilizer. For inclusion in the dataset, publica-
tions had to (a) present soil health indicators from perennial
ecosystems or studies comparing multiple treatments such as
tillage intensity or cropping system diversification, (b) be con-
trolled (i.e., replicated) studies, (c) be written in English, and
(d) be conducted in the United States. Duplications, unpub-

lished studies, non—peer-reviewed papers, and studies present-
ing results only in graphs were excluded. Concentration val-
ues (i.e., g kg") rather than stocks (i.e., volumetric or areal
measurements such as Mg ha™! or kg m™ over fixed depth
or soil mass) were used unless BD values were reported that
could be used to convert stock values into concentration units.
Soil organic C values consisted of total organic C or total C
(where soils were shown to be free of carbonates). For data
presented as SOM, values were divided by 1.724 (van Bem-
melen factor) to convert them to SOC (Cambardella et al.,
2001). All values were from the topsoil layer (<15-cm). In
total, 4,129 SOC observations (456 articles) measured across
the United States (Figure 1) under several land use and agri-
cultural management practices (i.e., tillage intensity, cropping
system, residue management, and addition of amendments
[Supplemental Table S1]) were included in the dataset.

2.1.2 | Comprehensive Assessment of Soil
Health data

The CASH dataset considered all samples that contained GPS
information submitted for analysis to the Cornell Soil Health
Laboratory (Ithaca, NY) from 2014 to 2018 (n = 4,183).
Based on CASH sampling guidelines, it was assumed each
data point represented a composite sample collected from
the 0-to-15-cm depth (Moebius-Clune et al., 2016). Only
SOC and soil texture data were used for this study. Based
on CASH protocols, SOM content had been determined by
measuring loss on ignition (LOI) after 2 hr at 500 °C in a
muffle furnace. The %LOI was converted to %OM using
the equation (%OM = [% LOI x 0.7] — 0.23). Once again,
we converted SOM to SOC using the van Bemmelen factor
(Cambardella et al., 2001). In contrast with the published
data, which comprises primarily plot-scale experimental
results, most CASH data originated from commercial farms
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confidence intervals (horizontal bars) across the United States

and represent several tillage and agroecosystems across the
United States (Supplemental Table S1).

2.1.3 | Natural Resources Conservation
Service data

This dataset was derived from samples submitted for soil
characterization to the NRCS Kellogg Soil Survey Labora-
tory in Lincoln, NE (n = 6,368) and contain GPS location
information. Natural Resources Conservation Service records
were queried for surface and mineral A horizons using the
National Cooperative Soil Survey Characterization Database.
This database contains over 38,000 pedons with measured
chemical and physical properties representing geographically
diverse soils from across the conterminous United States,
Hawaii, and Alaska. Those samples were generally collected
by NRCS soil scientists and cooperating universities, usu-
ally for soil survey activities and landscape characterization.
Land use and management were not known for all locations,
but generally reflected the most common scenarios where the
samples were collected. Only SOC and soil texture data were
used for this study. The SOC content was determined by dif-
ference between the total C (dry combustion) and CaCO;—
C (electronic manometer method), and particle size is deter-
mined by the pipette method and sieving (Soil Survey Staff,
2014). Soil taxonomic classifications (i.e., soil suborder) from
the soil profile descriptions were also used and are defined in
Soil Survey Staff (1999).

2.1.4 | Combined SOC dataset

Data from the three sources (Figure 1) were combined to pro-
vide 14,680 SOC values ranging from 1 to 530 g kg™ (0.1—
53%) from across the United States (Figure 2a). Compared
with the original SMAF (Andrews et al., 2004) and CASH

(Fine et al., 2017) development protocols, scoring curves
derived from this comprehensive dataset provided a larger,
more geographically diverse representation of SOC values
from across the continental United States (Figure 1). Further-
more, SOC observations within the dataset also represented
a larger range of land uses (i.e., native grassland, forest soils,
and agricultural production) and practices reflecting variable
tillage intensity, crop residue management, and addition of
amendments.

2.2 | Inherent soil and climate variables

Soil and climate variables with potential to affect top-
soil SOC were linked to each SOC observation in the
dataset (Table 1). Soil variables included order, subor-
der, texture, and drainage class. Overall, the dataset repre-
sented 10 taxonomic orders, 57 suborders, 12 soil texture
classes, and eight soil drainage classes (Table 1; Supplemental
Table S2). Climate variables included mean annual precipita-
tion (MAP), mean annual temperature (MAT), potential evap-
otranspiration (PET), de Martone aridity index (AI; Equa-
tion 1), and the wetness index (WI; Equation 2).

Al= _ MAP (1)
(MAT + 10)
MAP
WI= 2 2
PAT @

The combined dataset represented a wide range of MAT
(from —5.6 to 25.3 °C), MAP (from 42 to 3,671 mm), PET
(from 845 t0 2,539 mm yr~!), Al (from 1.64 to 305.5), and WI
(from 0.03 to 4.16) (Table 1). Several additional rainfall and
vegetation variables (e.g., growing degree days) were consid-
ered but not selected for evaluation.
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TABLE 1 Description of the inherent covariates evaluated for use in the Soil Health Assessment Protocol Evaluation SOC scoring curves

Inherent covariates Unit Source Type Range N

Climate -
Mean annual precipitation mm USGS quantitative 42-3,671 -
Mean annual temperature °C USGS quantitative -5.6-25.3 -
Potential evapotranspiration mm yr~! UMNTSG quantitative 845-2,539 -
Wetness index - calculated quantitative 0.03-4.16 -
de Martone aridity index - calculated quantitative 1.64-305.5 -

Soil
Order - gSSURGO categorical - 10
Suborder - ¢SSURGO categorical - 57
Texture class - gSSURGO categorical - 12
Drainage class - ¢SSURGO categorical - 8

Note. USGS, United States Geological Survey; UMNTSG, University of Montana Numerical Terradynamic Simulation Group; gSSURGO, Gridded Soil Survey Geo-

graphic Database.

The site-specific variables were obtained using the
location (latitude and longitude) from a complement of
environmental coverages. Soil variables were assigned using
Gridded Soil Survey Geographic Database. Climate vari-
ables were from USGS or were supplied directly from arti-
cles (specifically for the published dataset) or by calculation
(AI and WI). Soil survey information was extracted for the
dominant map unit at each given location. In summary, the
final database (all three datasets combined) was composed of
nine inherent variables (five quantitative and four categorical)
with SOC as the target response variable (Table 1), totaling
14,680 topsoil SOC observations from across the continental
United States (Figure 1). The number of observations by soil
order, suborder, texture, and drainage classes is presented in
Supplemental Table S2.

2.3 | Data analyses

All statistical analyses were performed using R software ver-
sion (R Core Team, 2020). Multiple exploratory analyses were
conducted to assess distributional properties of the dataset,
including the number of SOC observations within each level
(class) of categorical variables (Table 1; Supplemental Table
S2), and for each land use and agricultural management prac-
tice in the published and CASH datasets (Supplemental Table
S1). Linear regression, correlation analysis, exploratory data
analysis, and subsequent modeling as described below were
pursued.

2.3.1 | Evaluation of edaphic and climate
variables

Sensitivity of SOC to inherent factors used in SMAF (five tex-
ture classes, four suborder classes, and four climate classes,

as presented in Table 2 [Andrews et al., 2004]) and CASH
(three soil texture classes as presented in Supplemental
Table S3 [Fine et al., 2017]) were initially evaluated by fitting
various linear regression models. Mean SOC values for each
class were plotted with the 95% confidence interval assuming
normality.

The first linear model (Equation 1) included two categorical
soil variables (texture [Table 2], suborder [Table 3]) and five
continuous climate variables [Table 1]). Soil suborder class
S1 was predominantly represented by the Histosols, which
form in organic rather than mineral materials and have unique
characteristics including SOC concentrations exceeding 95 g
kg™! (9.5%). Since there were only 175 S1 samples out of
14,680 observations, they were removed from the dataset for
a separate modeling effort. Thus, for mineral soils the final
dataset contained 14,505 observations.

SOC; = By, + MAT,;p, + MAP,B, + PET;p; + ALp,
T

+WIBs + Y I (Texture, = 1) fy,
1=

s
+ Y I(Suborder; = s) By +¢

s=1

Equation 1 contained several correlated climate variables
that likely represented similar variation in SOC. Therefore, we
explored multiple techniques to select the best climate vari-
ables for scoring tool development. Initial variable selection
for inclusion in the model was done using a combination of
exploratory data analysis. A best subset regression with the R
package “leaps” (Lumly, 2020) was used to identify the best
climate prediction variables for which only five were consid-
ered as SOC predictors within the full model. The “leaps”
approach considers all possible subsets of covariates before
selecting the model that minimizes some criteria, for which
we considered adjusted R? and Schwarz information criterion.
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TABLE 2

the Soil Management Assessment Framework (Andrews et al., 2004)

NUNES ET AL.

Inherent soil and climate factor groups used to determine the soil organic C (SOC) indicator index value, as originally presented in

Class Soil texture

Class T1 sand, loamy sand, sandy loam (with <8% clay)

Class T2 sandy loam (with clay >8%), sandy clay loam, loam

Class T3 silt loam, silt

Class T4 sandy clay, clay loam, silty clay loam, silty clay, clay (<60%)
Class TS clay (>60%)

Suborder class soil taxonomy suborder

Class S1
Class S2
Aquults, Humults, Aquerts, Xererts
Class S3
Cryerts
Class S4

Aquands, Histels, Turbels, Fibrists, Folists, Hemists, Saprists, Aquoxs, Aquods
Udands, Ustands, Aquepts, Albolls, Aquolls, Borolls, Cryolls, Rendolls, Udolls, Ustolls, Xerolls, Udoxs, Humods,

Aqualfs, Boralfs, Cryalfs, Udalfs, Ustalfs, Xeralfs, Cryands, Vitrands, Aquents, Orthels, Andepts, Anthrepts, Cryods,

Torrands, Xerands, Argids, Calcids, Cambids, Cryids, Durids, Gypsids, Orthids, Salids, Arents, Fluvents, Orthents,

Psamments, Xerents, Cryepts, Ochrepts, Tropepts, Udepts, Umbrepts, Ustepts, Xerepts, Orthoxs, Peroxs, Torroxs,
Ustoxs, Orthods, Udults, Ustults, Xerults, Torrerts, Usterts, Uderts

Climate class Degree days
“F("C)
Class C1 >170 (76.7)
Class C2 >170 (76.7)
Class C3 <170 (76.7)
Class C4 <170 (76.7)

Precipitation
mm

>550

<550

>550

<550

Note. Soil texture class 1 represents the texture groups that have the lowest intrinsic potential for sequestering SOC, while class 5 has the highest (Quisenberry et al.,
1993). Soil suborder class 1 represents the suborders that are expected to have the highest potential for sequestering SOC, while class 4 has the lowest. Climate class 1
represents the climate class that has the lowest intrinsic SOC, while class 4 has the highest.

TABLE 3 New soil taxonomy suborder classes selected for the Soil Health Assessment Protocol Evaluation soil organic C (SOC) curve

Class Soil taxonomy suborder

S1 Fribists, Folists, Hemists, Histels, Saprists, Wassists

S2 Aquands, Aquents, Aquepts, Aquods, Aquoxs, Cryods, Humods, Orthels, Peroxs, Torrands, Tropepts, Turbels, Udands, Udoxs,
Ustands

S3 Albolls, Andepts, Aquolls, Aquults, Cryands, Cryepts, Cryolls, Gelepts, Gelolls, Humults, Rendolls, Umbrepts, Ustoxs,
Vitrands, Wassents, Xerands

S4 Aqualfs, Aquerts, Boralfs, Borolls, Cryalfs, Ochrepts, Orthods, Orthoxs, Udalfs, Udepts, Uderts, Udolls, Usterts, Ustolls,
Xeralfs, Xerepts, Xerolls, Xerults

S5 Arents, Argids, Calcids, Cambids, Cryerts, Cryids, Durids, Fluvents, Gypsids, Orthents, Orthids, Psamments, Salids, Torrerts,

Torroxs, Udults, Ustalfs, Ustepts, Ustults, Xererts

Note. Class S1 represents suborders that are expected to have the highest potential for sequestering SOC, while Class S5 has the lowest.

We also used random forest modeling and stepwise regression
to identify variable importance. Both techniques yielded sim-
ilar results. The final selection of variables was incorporated
into SHAPE, where goodness-of-fit is more formally eval-
uated. Summarily, exploratory data analysis in conjunction
with subject matter expertise was used only for initial stages
of model development.

3 | RESULTS AND DISCUSSION

3.1 | Response of SOC to SMAF climate and
soil suborder classes

The SMAF-SOC scoring curve approach assumed inher-
ent SOC content increased from coarse (T1) to fine (T5)
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Soil Management Assessment Framework (Table 2), and three soil texture classes as used in Comprehensive Assessment of Soil Health ([d];
Supplemental Table S1). Horizontal bars represent the 95% confidence interval (based on normality)

textural classes. Similarly, CASH assumed SOM increases
from texture class T1 to T3 (Supplemental Table S3).
Those overall trends were confirmed in the new, combined
dataset (Figure 3a,d); thus, the five original SMAF tex-
tural classes were used for SHAPE-SOC scoring curve
development. Similarly, the original SMAF soil taxonomy
suborder factor was used, which consisted of four classes
(Table 2) based on expert opinion regarding the potential
for an individual suborder to sequester C (Andrews et al.,
2004). The SMAF procedures presumed that inherent SOC
concentration increased from soil suborder class S4 to S1.
This assumption was partially supported by the combined
dataset, which showed SOC values followed the order S4
= S3 < S2 < S1 (Figure 3b). This likely contributed to the
underestimation or overestimation of SOC scores observed
by several SMAF assessments (e.g., Mbuthia et al., 2015;
Nunes, Karlen, Veum, & Moorman, 2020; Stott et al.,
2013; Zobeck et al., 2015). To improve SHAPE, suborder

groupings were reassigned into five classes (Table 3).
They now show inherent topsoil SOC values increasing
from S5 to S1, as confirmed by the comprehensive dataset
(Figure 4).

For climate, SMAF combined MAT and MAP into four
broad classes (Table 2) that were parameterized assuming
that as temperature and precipitation increased, SOC would
decrease due to greater decomposition rates (Andrews et al.,
2004). Therefore, it was expected that SOC content would
increase from climate class C1 to C4, but again this expecta-
tion was not confirmed by the combined dataset (Figure 3c).
A significant reason for this discrepancy was a positive rela-
tionship between MAP and SOC (Supplemental Figure S1a)
in contrast to the negative relationship assumed by Andrews
et al. (2004). Indeed, climate is known to be one of the con-
trolling factors for SOC content, but the role varies on a global
scale (Bardgett, 2011; Xiong et al, 2014). Thus, the climate
factors used in SMAF to score SOC content were reevaluated.
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Protocol Evaluation SOC curve. Horizontal bars represent the 95%

confidence interval (based on normality)

3.2 | Final edaphic and climate variables

The exploratory analysis confirmed that the nine inherent fac-
tors presented in Table 1 were likely good predictors of top-
soil SOC content (Supplemental Figures S1-S4). For exam-
ple, topsoil SOC tended to increase with MAP, Al, and WI,
and decrease with MAT and PET (Supplemental Figure S1),
but due to redundancy it is neither efficient nor desirable to
simultaneously include all climate factors. Thus, to simplify
the soil health interpretation, a subset of inherent variables
was selected using results of exploratory statistical methods.

Regarding edaphic variables, the original five soil texture
classes used in the SMAF (Table 2) provided adequate infor-
mation on soil characteristic trends, and given the size of our
dataset, a sufficient number of observations could be main-
tained in each class (Figure 3a). Also, the size of our dataset
enabled us to use the five soil suborder classes presented in
Table 3 and Figure 4. Use of soil suborders provided more spe-
cific taxonomic and soil property information than soil order
(Soil Survey Staff, 2014).

Among climate variables, MAT and MAP were selected
over PET, Al, and WI. Soil drainage class, which refers
to the frequency and duration of wet periods in soils dur-
ing their formation (Soil Survey Staff, 2014), was consid-
ered but not selected due to its relationship with soil texture,
which was already included in the model. Our Random For-
estexploratory analyses supported those selections as soil tex-
ture class emerged as the best predictor followed by MAT and
soil suborder class (Supplemental Figure S5). Collectively,
those results confirmed that soil type (i.e., suborder and tex-
ture) definitely affect topsoil SOC and should be considered
in the interpretation of results. A similar conclusion emerged

NUNES ET AL.

when stepwise regression was used to rank the importance
of model variables (Supplemental Figure S6). It showed that
using both MAT and MAP provided the best prediction of
SOC based on the Schwarz information criterion. Therefore,
the new SHAPE scoring curves for interpreting topsoil SOC
include inherent soil factors, including soil texture (Table 2),
suborder class (Table 3), and continuous MAT and MAP
values.

3.3 | Bayesian regression model
A Bayesian linear regression model, implemented with
standalone code using the R statistical software program,
was used to develop the new SHAPE-SOC scoring curves
based on the final composite dataset (n = 14,505). It provided
an estimated conditional cumulative distribution function
(CDF) representing each sample’s “peer group” as defined
by a unique combination of categorical factors (suborder
[Table 3] and texture [Table 2]) in combination with con-
tinuous MAT and MAP data. This approach assumes the
dataset is representative both in range and distribution of
SOC for each peer group across the climatic conditions.
This assumption is more accurate for some peer groups than
others, and further model validation will likely identify soil
peer groups where more SOC data are needed. The SHAPE
is a significant step forward toward a more precise and
accurate assessment of potential SOC and, by association,
soil health assessment. Furthermore, model assumptions such
as normality of residuals and heteroscedasticity were evalu-
ated, whereby we confirmed differences in variation among
soil peer groups, thus confirming the need to account for
heteroscedasticity.

A likelihood function accounting for differences in varia-
tion among these groups is:

ind

~ ! 2 P
Vits N(X insh 6,’3_), i=1, .., N

where N(-,-) represents a normal distribution. The response
value (SOC) is represented by y;,,,, for soil sample i with tex-
ture category ¢ and suborder s. As stated previously, soil peer
groups are comprised of unique combinations of texture and
suborder classes, where the response variance differs for each
group. The p-dimensional vector of covariates, X;,,,,, contains
T = 5 texture category indicators, S — 1 = 3 suborder cat-
egory indicators, as well as continuous values of MAT and
MAP. Note that one level of soil suborder is dropped from the
linear model for identifiability purposes.

Fitting a model as described above provides an estimate
of the mean and variance associated with each conditional
peer group CDF while accounting for the continuous cli-
mate covariates. Thus, for a given combination of inherent
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FIGURE 5 Selected SHAPE-SOC scoring curves representing four suborders (Table 3) and three MAT (mean annual temperature) and MAP

(mean annual precipitation) combinations for soil texture class T1 (Table 3). Vertical bars represent a hypothetical SOC of 2%, and the horizontal

bars represent scores for those SOC concentrations within each peer group. Note that the red line corresponds to the posterior mean and the green

envelopes correspond to the pointwise 95% credible intervals

factors, the resulting conditional CDF is evaluated to provide
the quantile of a new SOC value within that specific peer
group distribution. This is then referred to as the soil health
indicator score. In short, the model provides a unitless score
representing the probability of being less than or equal to the
observed value. The soil health score for a new SOC value of
Vi 18 calculated as the conditional probability of observing
SOC values less than or equal to y;,,,, within the given peer
group. This may be written as:

’
Vits — X i,t,sﬁ)
Gt,s

where @®() is the CDF of a standard normal distribution.
In summary, our primary objective is to identify a condi-

Fyi,r,s (yi,t,s) =0 (

tional CDF of y; , ., given x’
parameters themselves.

If the model parameters were known, it would be simple to
generate a CDF using the above equation, but in practice, the
parameters must be estimated. Doing so is possible by using a
weighted least squares approach to maximize the likelihood.
While this approach also enables the user to quantify uncer-
tainty associated with the estimated CDF, it is cumbersome
and requires a bootstrap procedure. For each iteration of the
bootstrap, an estimate of the model parameters is made, and a
corresponding conditional CDF is generated.

Alternatively, uncertainty can be quantified as a byprod-
uct of a Bayesian model fitting procedure after placing prior
distributions on the model parameters. As this alleviates the
need for bootstrap techniques, we propose using this method,

and not necessarily the model

it,s°
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FIGURE 6 Selected SHAPE-SOC scoring curves representing four suborders (Table 3) and three MAT (mean annual temperature) and MAP

(mean annual precipitation) combinations for soil texture class T2 (Table 3). Vertical bars represent a hypothetical SOC of 2%, and the horizontal

bars represent scores for those SOC concentrations within each peer group. Note that the red line corresponds to the posterior mean and the green

envelopes correspond to the pointwise 95% credible intervals

for which the Bayesian scoring model is:

ind , 5 )
Yits ™~ N<X 1.5 6,,s>, i=1,...,N
ﬁ~N(0, 6%1)
) ind
o;,~1G(a, b), t=1, ...

8

T, s=1, ..., S

where IG( ), represents an Inverse Gamma distribution. Each
element of the p-dimensional vector of coefficients, p, fol-
lows a normal prior distribution with mean zero and variance

cé. This approach also provides independent Inverse Gamma

priors for each peer group variance term, cis. Finally, we
use a vague prior distribution by setting 6> = 1,000 and a
= b = 0.1 which allows the data to dominate the parameter
estimates rather than the prior distribution and, thus, imparts
little impact on the resulting analysis. For all accompany-
ing analyses, the Bayesian scoring model was fit via Gibbs

sampling with 1,000 iterations, discarding the first 500 as
burn-in. Convergence was assessed visually through the use
of trace plots of the sample chains, where no lack of conver-
gence was detected.

Model fit was assessed through two methods. The first
was a Bayesian posterior predictive p-value based on the
discriminant (-2*loglikelihood), where values near zero or
one indicate a lack of fit. For this assessment, no lack of fit
was detected. Normal QQ plots of the standardized residuals
were used to assess model fit visually, in terms of the under-
lying distributional assumptions. In this case, slight depar-
tures from normality were detected when treating SOC as the
response.

We also considered the case of transforming the data
before fitting the model. Specifically, when taking the logit
transformation of SOC as the response, the assumption of
normality seemed to hold better as assessed through the
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FIGURE 7 Selected SHAPE-SOC scoring curves representing four suborders (Table 3) and three MAT (mean annual temperature) and MAP

(mean annual precipitation) combinations for soil texture class T3 (Table 3). Vertical bars represent a hypothetical SOC of 2%, and the horizontal

bars represent scores for those SOC concentrations within each peer group. Note that the red line corresponds to the posterior mean and the green

envelopes correspond to the pointwise 95% credible intervals

QQ plot. The logit transformation is given by logit (x) =
log[x /(1 — x)] and has the property of mapping values that are
bounded between zero and one to the real line. Measurements
of SOC are a percentage, and thus are bounded in this way,
with many observed values lying close to zero. By fitting the
model on the logit transformed data, we ensure the conditional
CDF goes to zero as SOC goes to zero. This is in contrast to the
model fit on untransformed data, where positive probability of
SOC less than zero may be indicated. Thus, we advocate for
the use of logit transformed SOC when fitting the Bayesian
scoring model in order to establish appropriate bounds on
the CDF and to better satisfy the normality assumption. In
other words, we now assume that SOC follows a logit normal
distribution.

After fitting the model using logit transformed data, it is
still desirable to make an interpretation based on the original

scale of the data. Since input to the CDF is on the logit trans-
formed scale, a generated CDF curve consists of a collection
of points on the transformed scale as well as their correspond-
ing cumulative probabilities [x;’.‘, F (xj)], j=1, ..., J.The
results are then mapped back to the original data scale by
replacing x;f in the first coordinate with its inverse logit trans-
formed value, which is written as logit=' (x) = 1 /(1 + ™).
Thus, the conditional CDF evaluated on the original data scale
consists of the points [logit‘l(xj), F(xj)], j=1, ..., J.
Ultimately, we end up with an estimated conditional CDF
(using the pointwise posterior mean CDF), the posterior mean
probability of being less than or equal to the observed value, as
well as the entire posterior distribution of conditional CDFs.
The latter allows us to quantify uncertainty using the point-
wise 95% credible intervals obtained from the posterior dis-
tribution of the conditional CDF.
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FIGURE 8 Selected SHAPE-SOC scoring curves representing four suborders (Table 3) and three MAT (mean annual temperature) and MAP

(mean annual precipitation) combinations for soil texture class T4 (Table 3). Vertical bars represent a hypothetical SOC of 2%, and the horizontal

bars represent scores for those SOC concentrations within each peer group. Note that the red line corresponds to the posterior mean and the green

envelopes correspond to the pointwise 95% credible intervals

3.4 | Final SOC scoring curves

Figures 5-9 display 60 examples of the SHAPE-SOC scor-
ing curves representing five soil textures, four suborders,
and three combinations of MAT and MAP (i.e., 20 °*C—400
mm, 10 °C-900 mm, and 0 °C-900 mm). Scoring curves
are accompanied by 95% pointwise credible intervals to indi-
cate the level of uncertainty around these estimates. Vertical
bars within each graph represent a SOC concentration of 2%
to illustrate combined effects of soil suborder and climate.
The horizontal bars represent equivalent SOC scores based on
the model. Upon examination, it is evident that for the same
SOC concentration (2%), scores generally increase from fine-
textured soils (T5) to coarse-textured soils (T1), independent
of soil suborder, MAT, and MAP (Figures 5-9). This con-
firms that the new scoring curves are sensitive to soil tex-
ture, a dominant inherent factor affecting topsoil SOC content

(Supplemental Figure S5). Also, a comparison of scores
within the same texture and climate combination, but varying
across soil suborders, shows that for the same SOC concen-
tration value (2%), scores decrease from suborder S5 (lowest
inherent SOC concentration) to suborder S2 (highest inher-
ent SOC concentration). Those changes in scores reflect the
significant effect of soil taxonomy (suborder class) on top-
soil SOC content (Figure 4). Finally, a comparison of scores
within the same peer group (suborder and textural combi-
nation) demonstrates that scores for the same SOC value
decrease from higher to lower temperature and from lower to
higher precipitation. Again, those changes reflect the strong
influence of climate on inherent topsoil SOC content.

The SHAPE approach expands upon the cumulative nor-
mal distribution method used in CASH and provides Bayesian
model-based mean and variance estimates for peer groups to
produce a conditional CDF. The SHAPE thus gains strength
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FIGURE 9 Selected SHAPE-SOC scoring curves representing four suborders (Table 3) and three MAT (mean annual temperature) and MAP

(mean annual precipitation) combinations for soil texture class T5 (Table 3). Vertical bars represent a hypothetical SOC of 2%, and the horizontal

bars represent scores for those SOC concentrations within each peer group. Note that the red line corresponds to the posterior mean and the green

envelopes correspond to the pointwise 95% credible intervals

from relationships among all dataset variables, as opposed to
calculating a sample mean and SD directly from each peer
group subset. Specifically, this method “borrows strength”
from the fact that continuous (i.e., climate) variables are esti-
mated with the data points across all groups. Furthermore, the
SHAPE provides a natural framework for quantifying uncer-
tainty in the scoring curve and underlying model parame-
ters. The SHAPE also builds on the SMAF framework by
accounting for multiple inherent factors as well as continu-
ous climate variables known to influence soil properties. The
SMAF accounted for those factors using a series of logic state-
ments to create interpretation algorithms where “more is bet-
ter,” “less is better,” or “optimum value” curves were fit to
the data using somewhat arbitrary parameters (i.e., inductive
interpretations or expert opinion). In contrast to the SMAF,
SHAPE does not attempt to adjust scores based on thresh-
olds linked to soil functions or ecosystem services (e.g., the

concept of diminishing returns). That approach requires selec-
tion of specific ecosystem services, access to an associated
dataset with appropriate scope and scale, as well as definable,
quantifiable relationships with measured soil health indica-
tors. For example, the importance of SOC and overall soil
health for drought resilience is moderated by complex interac-
tions between weather patterns and crop genetics (Pareek et al,
2020). From its inception, users of the SMAF have acknowl-
edged that there are multiple benefits and complex tradeoffs
(e.g., provisioning and environmental protection) reflected by
changes in soil health indicator values. Ecosystems provide
multiple services, both tangible and intangible, and the value
of those services is complex and scale dependent (Simpson,
2016). Thus, SHAPE does not weight scores based on rela-
tionships with specific ecosystem services or the valuation of
those services at this time. Rather than adjust scores based
on thresholds linked to a single soil function such as crop
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TABLE 4
(NY) (Nunes et al., 2018) and Missouri (MO) (Veum et al., 2015)

State and texture group Treatment SOC%

NY T4 (clay loam) PT 1.81a
NT 2.12a
ANOVA ns

NY T1 (sandy) PT 0.73b
NT 1.23a
ANOVA

NY T3 (silt loam) PT-NCC 1.49b
PT-CC 1.55b
NT-NCC 1.69ab
NT-CC 2.12a
ANOVA

MO T3 (silt loam) CSG 1.72a
HAY 1.60ab
WSG 1.44bc
NTCSW 1.39bc
NTCS 1.25cd
MTCS 1.22d
ANOVA

NUNES ET AL.

An overview of SHAPE, SMAF, and CASH ANOVA results from a reanalysis of previously published case studies from New York

SHAPE CASH SMAF
0.25b 0.21b 0.89b
0.37a 0.37a 0.96a
0.20b 0.19b 0.23b
0.39a 0.55a 0.61a
0.20b 0.32b 0.81b
0.22b 0.36b 0.84b
0.29ab 0.46ab 0.88ab
0.34a 0.54a 0.93a
0.47a 0.48a 0.88a
0.41ab 0.40ab 0.85ab
0.32bc 0.29abc 0.78abc
0.29bcd 0.26bc 0.75bc
0.21cd 0.19¢ 0.67cd
0.20d 0.16¢ 0.61d

Note. CC, cover crops; CSG, cool-season grass; Hay, mowed mixed grass; MTCS, mulch-till corn-soybean; NCC, no cover crop; NT, no-till; NTCS, no-till corn—soybean;

NTCSW, no-till corn (Zea mays L.)-soybean—wheat; PT, full width plow tillage; WSG, wheat (Triticum aestivum L.)-soybean [Glycine max (L.) Merr.]-season grass;
SOC concentrations and SHAPE, SMAF, and CASH scores followed by the same letter are not significantly different at o =.05 using Tukey’s HSD.

yield or water quality, SHAPE takes into consideration the
full range of SOC values for a specific soil group under a spe-
cific climate condition. A repository that can be used to batch
score soil SOC data using the approach described above (i.e.,
SHAPE method) is available at https://github.com/paparker/
SHAPE.

35 |
studies)

Sensitivity to management (case

It is widely recognized that inherent factors (i.e., climate, tex-
ture, and soil suborder) define a soil’s potential SOC content.
The SHAPE accounts for those dominant factors at the conti-
nental scale, but effective soil health indices must also be able
to discriminate among broad land use categories and specific,
field-scale soil and crop management practices to be useful to
policy makers, conservationists, landowners, and producers.
We evaluated the utility of SHAPE for meeting those needs
by reanalyzing four case studies where SOC data had been
scored using the SMAF (Table 4). The first three are from
long-term experiments (20+ yr) comparing continuous no-
tillage and plow-till management on several soil health indica-
tors and corn (Zea mays L.) yield in New York (Nunes et al.,

2018). Inherent conditions associated with the experimental
sites were: Site 1 = texture class T4, soil suborder class S4,
MAP of 760 mm, and MAT of 7.8 °C; Site 2 = texture class
T1, soil suborder class S2, MAP of 760 mm, and MAT of
7.8 °C; and Site 3 = texture class T3, soil suborder class S4,
MAP of 1,070 mm, and MAT of 7.9 °C. Within Site 3, tillage
effects were assessed with and without an interseeded cover
crop. The fourth case study represents an experimental site in
the Central Claypan Region of Missouri (Veum et al., 2015),
for which soil samples were collected in 2008 from the 0-to-
15-cm depth using a RCB design with three blocks. Tillage,
crop rotation, and the perennial nature of the cropping system
were variables at the Missouri site.

Collectively the results show the SHAPE, SMAF, and
CASH discriminated between annual and perennial systems
and were sensitive to management practices (Table 4). Over-
all, SHAPE and CASH scores were similar, while SMAF
generated substantially higher scores among the three tools,
independent of management (Table 4; Supplemental Figure
S7). As previously described, the soil suborder groupings and
reliance on a small dataset of primarily agricultural soils in
SMAF likely explains this discrepancy and the issues with
overestimation identified in other studies. For example, with
the exception of the NY T1 sandy case study, SMAF scores for
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SOC suggested soils under more than 20 yr of intensive tillage
and monoculture were high-functioning (scores >0.81). In
contrast, SHAPE indicates that, for the given set of inherent
conditions (soil taxonomy, soil texture, and MAT and MAP),
SOC concentration could be much higher. Therefore, based on
the SHAPE scores, we may conclude that SOC concentration
in those four studied soils could improve depending on land
use and management. These examples are provided simply to
illustrate the utility of the new SHAPE curves and to invite
future studies to evaluate the effects of land use and manage-
ment on SOC using this framework.

4 | CONCLUSION

A robust and principled Bayesian statistical foundation for
developing a new soil health assessment interpretation tool
(called SHAPE) was developed and illustrated using new
soil organic C (SOC) scoring curves. The curves were built
using a comprehensive, nationwide dataset with 14,505 SOC
observations. The SHAPE builds upon conceptual frame-
works established by the SMAF and CASH protocols. A suite
of edaphic and climate variables were evaluated to account
for the inherent factors that define a soil’s site-specific SOC
potential across the continental United States. The Bayesian
linear regression model provides a score based on estimated
conditional CDF of each soil’s peer group based on a
combination of categorical factors (soil suborder and texture
class) with adjustments for continuous climate variables.
Reanalysis of published case studies confirmed sensitivity
to land use and field-scale management. Future SHAPE
developments are anticipated in order to generate scoring
curves for multiple soil health indicators, especially as the
comprehensive dataset continues to grow. Full development
of the SHAPE will help meet the growing demand for an
accessible, interpretive, and quantitative scoring curve that
provides regionally relevant knowledge regarding the status
of soils in response to various agronomic and conservation
initiatives.
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