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My path to where | am now
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A few projects I've worked on...

At University of Michigan:
Organic scintillator characterization for fast-neutron detection
Fast-neutron multiplicity counting for safeguards applications

Time-interval analysis of subcritical systems

At Los Alamos National Laboratory:

Smart mobile sensor platform for radiation contamination
Neutron spectroscopy for nuclear emergency response
High-fidelity atmospheric radiation transport

Data fusion algorithm development for Space Nuclear Detonation Detection (SNDD)
Edge intelligence for homeland security applications

Search for water content on planetary bodies
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In 2014, | got my Bachelor’s Degree... what now?

Get a job? Graduate School?
| choose graduate school (obviously) because | really enjoyed conducting research
However, there are many options outside of graduate school at LANL!

Think about what you really want to do
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InteIIing-rce and Space Research

Los Alamos National Laboratory
From Space, In the Air, On the Ground

3/2/22



ISR Division

Space Science Space Data Space Instrument
& Applications Science & Systems Realization

Space & Remote Space Electronics
Sensing & Signal Processing



Los Alamos National Laboratory

How does a lab that does this?

Get involved in this?
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50+ Years of Treaty Verification

Limited Test Ban Treaty

Nuclear Nonproliferation Treaty 1968

Outer Space Treaty
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Nuclear engineering applies to space science!

Radiation is everywhere in space!

We leverage our expertise in:

1. Radiation detection (neutron, gamma ray, charged particles, plasma, x-ray)
2. Modeling and simulations (MCNP and Geant)

3. Data analysis (statistical analysis, anomaly detection, performance assurance)

Allows us to apply nuclear science to solve unique problems
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The search for water on planetary bodies

Water is essential to the formation of
all known life, and is a primary driver
for exploration of the solar system

LANL has a rich history of developing
radiation detection systems for Mars
exploration missions (Odyssey,
Curiosity, and Perseverance)

OPTICAL TELESCOPE
Collects images of other planets' largest geological features

ORBITING TELESCOPE
Collects high resolution images of the planet's
geological features

EARTH ORBITING TELESCOPE
Collects data with cameras, spectrographs,
and other sensors

ROVER
Explores the planet's surface, collects samples,

LANDER and makes measurements with an array of sensors

Can make measurements and analyze
samples in the viscinity of its landing site

https://sitn.hms.harvard.edu/flash/2019/water-beyond-earth-the-search-for-the-life-sustaining-liquid/



How do we measure water content?

Neutrons can be used to quantitatively
characterize absorbed water and hydrated
materials

The Dynamic Albedo of Neutron (DAN)
instrument is an example of a system that
leverages neutrons for this purpose

Consists of a DT pulsed neutron generator, and
a a pair of 3He proportional counters

https://mars.nasa.gov/msl/spacecraft/instruments/dan/for-scientists/
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Basics of neutron physics: looking at neutron cross section on
hydrogen

Neutron cross section on Hudrogen

10-10 10-5 1 10 Primarily elastic scattering with some
T T T T T T T T T T T T T
——— ENDF/B-UIII.0: H-1(H,EL)H-1-LO contribution from radiative capture,

r = ENDF/B-UIII.0: H-1(H,G)H-2 R .
particularly at lower neutron energies

1 \ 11 What happens when a neutron

interacts with hydrogen?
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/

Cross Section (bharns)

10 -5 1 1 1 1 L 1 1 1 1 L 1
i0-10 10-5 1

Incident Energy (MeV)

(>



Neutron elastic scatters on hydrogen

Neutrons have the same mass as hydrogen

v

. A
(i.e., a proton)
|_|_|Q-
o =
é‘ 0 =90°
E
©
S
Therefore, a neutron can deposit up to ALL of a
its initial energy in a single elastic scatter on a
proton
Hydrogen is great at “slowing down” neutrons Proton Energy E,

due to this behavior
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Neutron radiative capture on hydrogen

Neutron is completely absorbed by a nucleus
'H(n,y)*H Q=22MeV E,=2.2 MeV

A 2.2 MeV gamma ray is emitted for neutron captures on hydrogen

Typically occurs only at lower neutron energies (thermal range)
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From physics to implementation: DAN instrument
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Surface of Mars

Pulsed neutron generator (PNG) produces 14.1
MeV neutrons

Neutrons interact with sub-surface hydrogen

We can analyze the time behavior of interacted
neutrons relative to the PNG start signal

Time behavior should be directly tied to
hydrogen content



From physics to implementation: DAN instrument
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Future systems: Dragonfly Mission

Mid 2030’s launch date to Saturn’s
Titan
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Future systems: DragGNS instrument

Dragonfly Gamma-ray and Neutron Spectrometer (DraGNS) instrument currently under
development, and will include:

1. Pulse neutron generator
2. Two high-purity Ge (HPGe) gamma-ray detector
3. Two 3He neutron detectors (thermal and epithermal)
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Future systems: DragGNS instrument

A major challenge: depending on the orbital positioning of Titan, there can be significant
latency (70-90 mins) with direct line of sight and no means of communications (eight

Earth days) without direct line of sight

Can we introduce autonomous rover controls to mitigate lost time, providing a more
fruitful mission outcome?

What advantages come from having more than one rover?
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Data interpretation, how do we correlate what we see to water
content?
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Data interpretation, how do we correlate what we see to water
content?
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Data interpretation, how do we correlate what we see to water

content?
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Data interpretation, how do we correlate what we see to water

content?

Calculate ratio of
short and total
integral to provide
metric relating shape
and water content

Normlized Counts [per integral]

-t
S
(]

—
2
H

—
S
[4,]

-t
e
(=]

Short integral

.............. | e

simulations

0.5

1 1.5 2
Time after PNG pulse [s]

0% water
1% water
2% water
3% water
4% water
5% water
6% water
7% water
8% water
9% water
— 10% water
—— 11% water
——12% water
—— 13% water
— 14% water
—— 15% water
20% water
—— 25% water
—— 30% water
——— 35% water
—— 40% water
—— 45% water
——50% water

3/2/22

27



Data interpretation, how do we correlate what we see to water
content?
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Previously developed algorithm for optimizing trajectories of
mobile sensor networks

0.025
In previous work, we have developed

i 400
a fully autonomous mobile sensor
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Applying algorithm to search for water content

Rather than using radiation detection count rates to characterize contamination, we
implement the PNG-detector data to characterize water content

Allows us to map the water content in an area with no human-in-the-loop controls

Repeat until map converges

Neutron Extract neutron Characterize Move rovers to
detection time behavior water content optimal location

A




Putting everything together:
An example with a two- and three-rover survey
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What’s next?
From proof-of-concept to demonstration

We are currently implementing detectors onto three ground rovers for field
demonstrations

July 2022: Experiment in the Artic to measure perma-frost using PNG-CLYC system

2022 and beyond: Implement space-grade hardware and develop highly optimized
software for real-time data analysis
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Conclusions

Nuclear engineering incredible relevant for space science applications!

We demonstrated that neutron science can be used to characterize water content in
current and future space missions

ISR-1’s involvement in space missions will continue for the years to come
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Student Research Opportunities

We are always seeking opportunities for summer intern and post-bac positions

If you are interested, please come talk to me!

We have interests in space applications, computer science, nuclear security, and many more!
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