

Multi-fidelity ML/UQ and Bayesian Optimization for Materials Design: Application to Ternary Random Alloys

Anh Tran², Julien Tranchida², Aidan P. Thompson, Tim Wildey

Center for Computing Research, Sandia National Laboratories, Albuquerque, NM

² These two authors contributed equally to this work.

Main idea

This research uses multi-fidelity Gaussian process and Bayesian optimization to solve a multi-scale materials design inverse problem targeting composition-property relationship [TTWT20].

- Low-fidelity (LF): MD with machine learning potential.
- High-fidelity (HF): DFT.
- Input: chemical composition; output: bulk modulus.
- The global optimum is found at HF after 31 LF + 4 HF.

ML-IAP for MD: SNAP in LAMMPS [TST⁺15]

- A ML interatomic potential (ML-IAP) targeting energies, forces, and stress tensors.
- Describe local environment of each atom by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in 4D.
- ML-IAP implemented in LAMMPS.
- Trained using DFT & FitSnap.py wrapping DAKOTA [DEG⁺20].

DFT: Quantum ESPRESSO [GAB⁺17]

- Perdew–Burke–Ernzerhof (PBE) exchange-correlation energy.
- interaction between electrons and ions by projector augmented wave (PAW) pseudopotentials.
- Brillouin zone sampled using $2 \times 2 \times 2$ k-point grid.
- N atoms and E elements: $\binom{N}{E} = \binom{N+E-1}{E-1}$ possibilities.
- Equation of State (EOS) computed through eight points, interpolated with a Birch–Murnaghan equation using a 3rd order polynomial.

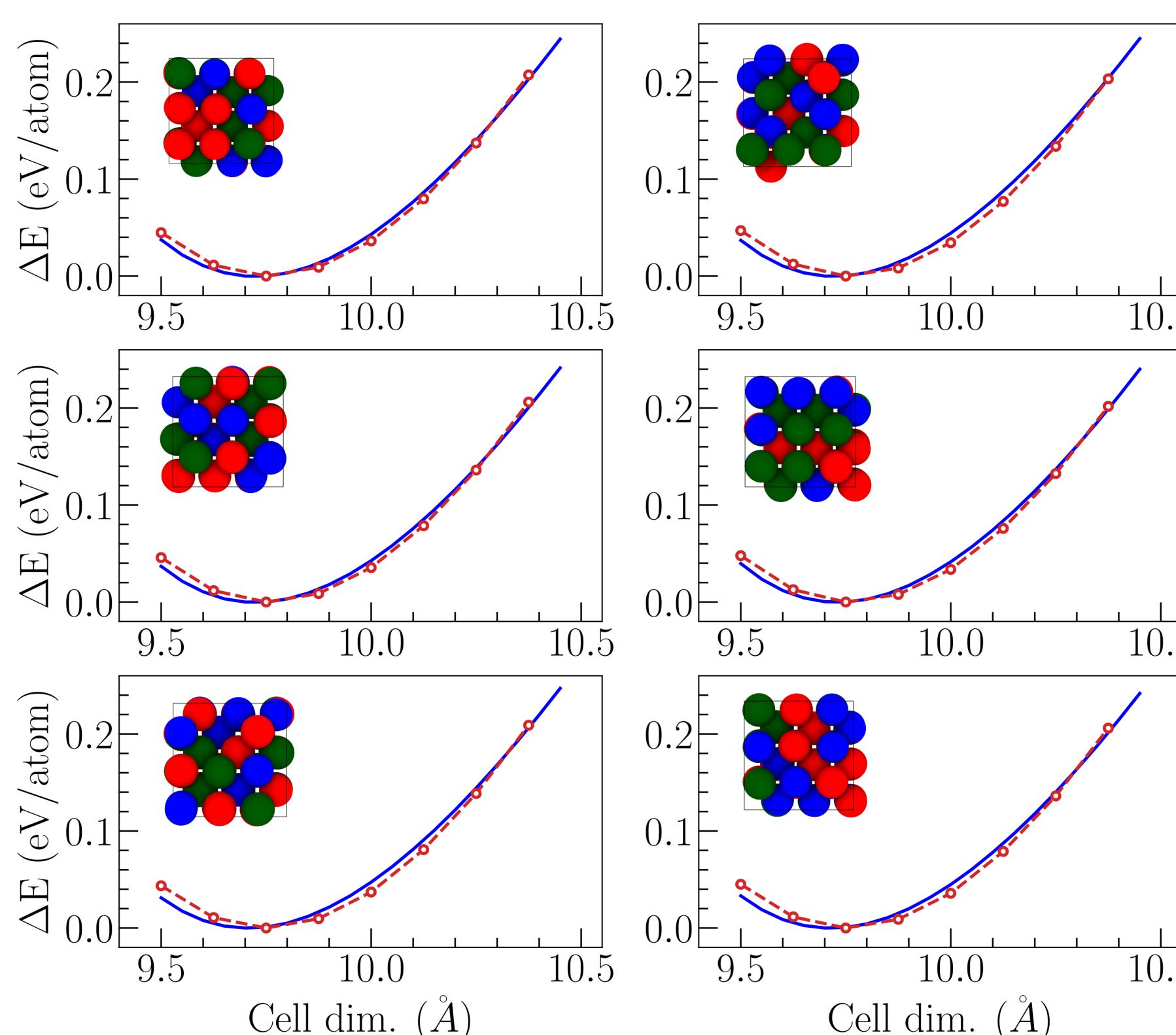


Figure: Equation of state calculations for six configurations. The red circles and blue lines display the high-fidelity DFT and low-fidelity SNAP results, respectively.

Multi-Fidelity Bayesian Optimization Theory [TWM20]

We assume auto-regressive model $f_H(\mathbf{x}) = \rho f_L(\mathbf{x}) + \delta(\mathbf{x})$. The posterior mean and posterior variance are given by

$$\mu(\mathbf{x}) = \mu_0(\mathbf{x}) + \tilde{\mathbf{k}}(\mathbf{x})^T (\tilde{\mathbf{K}} + \sigma^2 \mathbf{I})^{-1} (\tilde{\mathbf{y}} - \tilde{\mathbf{m}}),$$

and

$$\sigma^2(\mathbf{x}) = \rho^2 \sigma_L^2(\mathbf{x}) + \sigma_d^2(\mathbf{x}) - \tilde{\mathbf{k}}(\mathbf{x}) (\tilde{\mathbf{K}} + \sigma^2 \mathbf{I})^{-1} \tilde{\mathbf{k}}(\mathbf{x}),$$

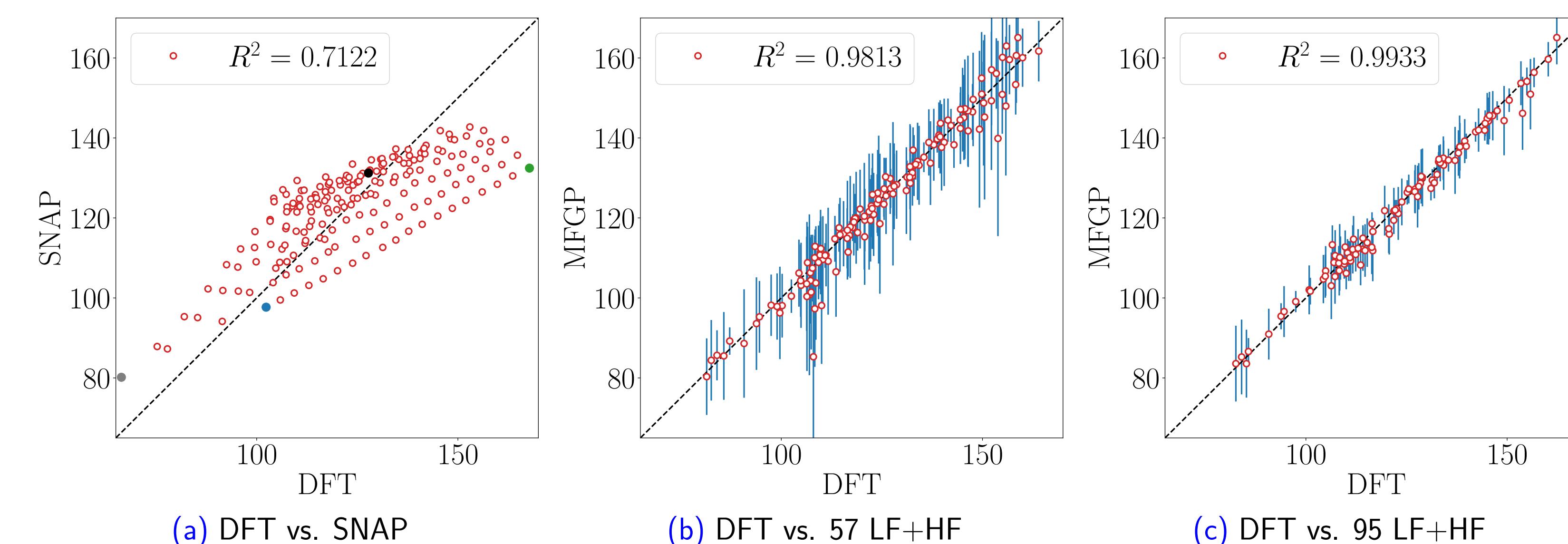
respectively, where the covariance matrix $\tilde{\mathbf{K}}$ is

$$\tilde{\mathbf{K}} = \begin{pmatrix} \sigma_L^2 \mathbf{K}_L(\mathbf{x}_L, \mathbf{x}_L) & \rho \sigma_L^2 \mathbf{K}_L(\mathbf{x}_L, \mathbf{x}_H) \\ \rho \sigma_L^2 \mathbf{K}_L(\mathbf{x}_H, \mathbf{x}_L) & \rho^2 \sigma_L^2 \mathbf{K}_L(\mathbf{x}_H, \mathbf{x}_H) + \sigma_d^2 \mathbf{K}_D(\mathbf{x}_H, \mathbf{x}_H) \end{pmatrix}.$$

The hyper-parameters in $\tilde{\theta} = (\theta_L, \theta_H)$ in $k_L(\cdot, \cdot)$ and $k_D(\cdot, \cdot)$ can be obtained by maximizing the log marginal likelihood as

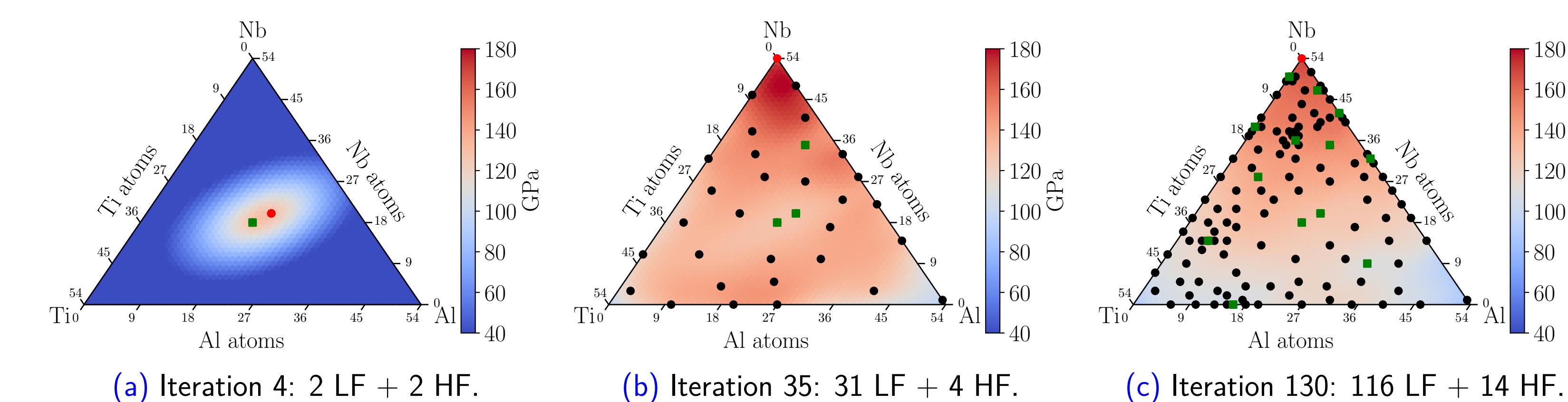
$$\log p(\tilde{\mathbf{y}} | \mathbf{x}_{1:n_L}, \mathbf{x}_{1:n_H}, \tilde{\theta}) = -\frac{1}{2} (\tilde{\mathbf{y}} - \tilde{\mathbf{m}})^T (\tilde{\mathbf{K}}^{\tilde{\theta}} + \sigma^2 \mathbf{I})^{-1} (\tilde{\mathbf{y}} - \tilde{\mathbf{m}}) - \frac{1}{2} \log |\tilde{\mathbf{K}}^{\tilde{\theta}} + \sigma^2 \mathbf{I}| - \frac{n_H + n_L}{2} \log (2\pi).$$

Multi-Fidelity Gaussian Process predictions



We compare the accuracy between MFGP predictions and DFT predictions. $R^2(19LF + HF) = 0.72$, $R^2(38LF + HF) = 0.72$, $R^2(57LF + HF) = 0.98$.

Multi-Fidelity Bayesian Optimization



We use upper-confidence bound (UCB) $a_{UCB}(\mathbf{x}; \{\mathbf{x}_i, y_i\}_{i=1}^n, \theta) = \mu(\mathbf{x}; \{\mathbf{x}_i, y_i\}_{i=1}^n, \theta) + \kappa \sigma(\mathbf{x}; \{\mathbf{x}_i, y_i\}_{i=1}^n, \theta)$, where κ is tuned adaptively. Level t^* of fidelity is chosen as [TWM20] $t^* = \operatorname{argmin}_t (C_t \int_{\mathcal{X}} \sigma^2(\mathbf{x}) d\mathbf{x})$, where C_t is the computational cost at level t . The optimal chemical composition for bulk modulus is found and verified at high-fidelity level after 31 LF + 4 HF iterations.

Speedup

- high-fidelity DFT: $\sim 1.44 \cdot 10^2$ core-hour. Reference.
- low-fidelity SNAP MD: $6.4 \cdot 10^{-1}$ core-hour. $2.25E2 \times$ faster.
- MFGP: $1.03 \cdot 10^{-3}$ core-hour. $1.4E5 \times$ faster.

Discussion/Conclusion

- Multi-fidelity is the right tool for multi-scale problems.
- Accuracy-speed trade-off is well interpreted in terms of fidelity:
 - high speed, low accuracy: low-fidelity
→ MD with ML-IAP: LAMMPS with SNAP
 - low speed, high accuracy: high-fidelity
→ DFT: Quantum ESPRESSO
- MFGP/MFBO is very accurate and efficient, with UQ naturally enabled.
- Extensible to high-entropy alloys.

References

- [DEG⁺20] Keith Dalbey et al. DAKOTA A Multilevel Parallel Object-Oriented Framework for Design Optimization Parameter Estimation Uncertainty Quantification and Sensitivity Analysis. Technical report, Sandia National Lab, 2020.
- [GAB⁺17] Paolo Giannozzi et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. *Journal of Physics: Condensed Matter*, 29(46):465901, 2017.
- [TST⁺15] Aidan P Thompson et al. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. *Journal of Computational Physics*, 285:316–330, 2015.
- [TTWT20] Anh Tran, Julien Tranchida, Tim Wildey, and Aidan P Thompson. Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization for materials design: Application to ternary random alloys. *The Journal of Chemical Physics*, 153:074705, 2020.
- [TWM20] Anh Tran et al. sMF-BO-2CoGP: A sequential multi-fidelity constrained Bayesian optimization for design applications. *Journal of Computing and Information Science in Engineering*, 20(3):1–15, 2020.

Acknowledgment

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. The research was partially supported by the U.S. Department of Energy, Office of Science, Early Career Research Program, under award 17020246.