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Main idea

This research uses multi-fidelity Gaussian process and Bayesian
optimization to solve a multi-scale materials design inverse problem
targeting composition-property relationship [TTWT20].
I Low-fidelity (LF): MD with machine learning potential.
I High-fidelity (HF): DFT.
I Input: chemical composition; output: bulk modulus.
I The global optimum is found at HF after 31 LF + 4 HF.

ML-IAP for MD: SNAP in LAMMPS [TST+15]

I A ML interatomic potential (ML-IAP) targeting energies, forces,
and stress tensors.

I Describe local environment of each atom by a set of bispectrum
components of the local neighbor density projected onto a basis
of hyperspherical harmonics in 4D.

I ML-IAP implemented in LAMMPS.
I Trained using DFT & FitSnap.py wrapping DAKOTA [DEG+20].

DFT: Quantum ESPRESSO [GAB+17]

I Perdew–Burke-Ernzerhof (PBE) exchange-correlation energy.
I interaction between electrons and ions by projector augmented

wave (PAW) pseudopotentials.
I Brillouin zone sampled using 2×2×2 k-point grid.
I N atoms and E elements:

  ( N
E )

  =
 N + E − 1

E − 1

 possibilities.
I Equation of State (EOS) computed through eight points,

interpolated with a Birch-Murnaghan equation using a 3rd order
polynomial.

Figure: Equation of state calculations for six configurations. The red circles and
blue lines display the high-fidelity DFT and low-fidelity SNAP results, respectively.

Multi-Fidelity Bayesian Optimization Theory [TWM20]

We assume auto-regressive model fH(x) = ρfL(x) + δ(x). The posterior mean and posterior variance are given by
µ(x) = µ0(x) + k̃(x)T (K̃ + σ2I)−1(ỹ− m̃),

and
σ2(x) = ρ2σ2

L(x) + σ2
d(x)− k̃(x)(K̃ + σ2I)−1k̃(x),

respectively, where the covariance matrix K̃ is

K̃ =
 
σ2
LKL(xL,xL) ρσ2

LKL(xL,xH)
ρσ2

LKL(xH,xL) ρ2σ2
LKL(xH,xH) + σ2

dKD(xH,xH)

  .

The hyper-parameters in θ̃ = (θL, θH) in kL(·, ·) and kD(·, ·) can be obtained by maximizing the log marginal
likelihood as

log p(ỹ|x1:nL,x1:nH, θ̃) = −1
2
(ỹ− m̃)T (K̃θ̃ + σ2I)−1(ỹ− m̃)− 1

2
log |K̃θ̃ + σ2I| − nH + nL

2
log (2π).

Multi-Fidelity Gaussian Process predictions
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(b) DFT vs. 57 LF+HF
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(c) DFT vs. 95 LF+HF

We compare the accuracy between MFGP predictions and DFT predictions. R2(19LF +HF ) = 0.72, R2(38LF +
HF ) = 0.72, R2(57LF +HF ) = 0.98.

Multi-Fidelity Bayesian Optimization
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(a) Iteration 4: 2 LF + 2 HF.
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(b) Iteration 35: 31 LF + 4 HF.
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(c) Iteration 130: 116 LF + 14 HF.

We use upper-confidence bound (UCB) aUCB(x; {xi, yi}ni=1, θ) = µ(x; {xi, yi}ni=1, θ) + κσ(x; {xi, yi}ni=1, θ), where
κ is tuned adaptively. Level t∗ of fidelity is chosen as [TWM20] t∗ = argmint (Ct +X σ2(x)dx) , where Ct is the
computational cost at level t. The optimal chemical composition for bulk modulus is found and verified at high-fidelity
level after 31 LF + 4 HF iterations.

Speedup

I high-fidelity DFT: ∼ 1.44 · 102 core-hour. Reference.
I low-fidelity SNAP MD: 6.4 · 10−1 core-hour. 2.25E2× faster.
I MFGP: 1.03 · 10−3 core-hour. 1.4E5× faster.

Discussion/Conclusion

I Multi-fidelity is the right tool for multi-scale problems.
I Accuracy-speed trade-off is well interpreted in terms of fidelity:
. high speed, low accuracy: low-fidelity
→ MD with ML-IAP: LAMMPS with SNAP

. low speed, high accuracy: high-fidelity
→ DFT: Quantum ESPRESSO

I MFGP/MFBO is very accurate and efficient, with UQ naturally
enabled.

I Extensible to high-entropy alloys.
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