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This research uses multi-fidelity Gaussian process and Bayesian We assume auto-regressive model fz(x) = pfr(x) + d(x). The posterior mean and posterior variance are given by » high-fidelity DFT: ~ 1.44 - 10* core-hour. Reference.
optimization to solve a multi-scale materials design inverse problem . ) > low-fidelity SNAP MD: 6.4 - 10! core-hour. 2.25E2x faster.
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_ow-fidelity (LF): MD with machine learning potential. and o T |

High-fidelity (HF): DFT. o2(x) = p202 (x) + 02(x) — k(x)(K + o21) "'k (x), Discussion /Conclusion

nput: chemical composition; output: bulk modulus.

respectively, where the covariance matrix K is
» The global optimum is found at HF after 31 LF + 4 HF.
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» Describe local environment of each atom by a set of bispectrum > MFEPC{MFBO s very accurate and efficient, with UQ naturally
components of the local neighbor density projected onto a basis Multi-Fidelity Gaussian Process predictions eEna = .I o |
of hyperspherical harmonics in 4D. > Extensible to high-entropy alloys.
» ML-IAP implemented in LAMMPS. / / / References
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