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2 | Talk Outline

Overview of DOE programs impacting Land Ice modeling

Brief motivation and introduction to ice sheet models

lce sheet initialization

Improvements enabled by FASTMath institute:
« Performance speed-up in assembly phase
* Novel preconditioner for thermo-mechanical problem

* Newton-Krylov approaches for PDE-constrained optimization



3 ‘ DOE Land lce Modeling Efforts
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‘ Brief Motivation an basic physics

* Modeling ice sheets (Greenland and Antarctica) dynamics 1s essential to provide estimates for

sea-level rise in next decades to centuries.

* Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) driven by gravity.

* Several unknown or poorly known parameters (e.g. basal friction, bed topography)

and processes (calving laws, basal hydrology)

Perito Moreno glacier front

Bedrock




‘ Model: Ice velocity equations

Stokes equations:

{ —V -0 = pg

V-u=0 gravit. acceleration

™~

ice velocity

Stress tensofr:

1
o=2uD —pl, Djj(u)= 5 (

633’3' (9.CBZ

Ice viscosity (dependent on temperature):

1 1
= EA(T) D(u)|=~", n>1, (tipically n ~ 3)

In this work we use a simplification of Stokes equations, called First Order equations, obtained
by scaling arguments given the shallow nature of the ice sheets and using hydrostatic pressure.




‘ Model: Ice velocity equations

Stokes equations:

_V.O':pg
V-u=0

Sliding boundary condition at ice bed:

{ u-n =0, (impenetrablity)
(011)” — ,811

Free slip: 5 =0
Noslip: =00

bed



7 I Model: Temperature equation

Heat equation (for cold ice):

peOT +V - (IVT) + peu- VT = 4u|D(u)|?

/ dissipation
conductivity heat capacity heating

frictional

Boundary condition at the ice bed heating
(includes melting and refreezing): m =G + Slu|® —kVT -n
/ 8\ temperature

melting geothermal flux
rate heat flux

In this work we use a enthalpy formulation that accounts for temperate ice as well. I




s I lce sheet initialization

Goal: Find the initial/present-day thermo-mechanical state of the ice sheet and estimate the
unknown/pootly known model parameters, by matching observations

Approach: PDE-constrained optimization

Find basal friction coefficient £ that minimizes the
mismatch with surface velocity:

_ 2
min](5) = [ 5+ R(B)

0-2

Subject to the coupled velocity/temperature problem

unknown sliding

_ parameter g3
Software Requirements

* Large Scale optimization library (ROL), featuring gradient-based methods (ROL)
* Computation of gradients of the PDE residual and the loss functional w.r.t. the solution and
the parameters. Automatic Differentiation is crucial for complex physics m

* Faster, more robust methods available using Hessian (second derivatives)

RAPID OPTIMIZATION LIBRARY



Software: MPAS-Albany Land Ice model (MALI)

ALGORITHM SOFTWARE TOOLS

Linear Finite Elements on tets/prisms Albany Land Ice

Optimization ROL =g
Nonlinear solver (Newton method) NOX _2_
Krylov linear solvers/Prec Belos/Muelu, Belos/FROSch =
Automatic differentiation Sacado I‘

MPAS (Model for Prediction Across Scales): Fortran, finite volumes library, conservative
Lagrangian schemes for advecting tracers (evolution of ice thickness)

Albany Land Ice: C++ finite element library built on top of Trilinos achieving performance
portability through Kokkos programming model. Provides large scale PDE constrained
optimization capabilities

References:

Hoffman, et al. GMD, 2018 M P AS
Tuminaro, Perego, Tezaur, Salinger, Price, SISC, 2016.

Tezaur, Perego, Salinger, Tuminaro, Price, Hoffman, GMD, 2015 Model for Prediction Across Scales
Perego, Price, Stadler, JGR, 2014




0 | Performance improvements on CPUs
(Greenland glacier, velocity solver)

Improvements to initialization Combined improvements due to memoization and

problem due to memoization: improved storage of FE matrix (T'petra FE Crs Matrix)

3 a
HE Local Assembly

25
1001 Global Assembly
5 2.6X
15 w
<)
1 E
0.5 . | . % 60-
=
[
0 % b
Full simulation Assembly-onl 40
S SS y y = L]
MW Base ™ Memoization
20 1

. . . . . . . 1'4“ 1 * lx
AIS initialization 10 iterations

i
(HSW,, 128 nodes, 4096 procs) 0- Haswell KNL POWERY V100 |

256MPI 512MPI 320MPI 32GPU

Work/Simulations by J. Watkins (see MS235 on Thursday, 10:25am) and L. Bertagna
Support: CMDV-SM/FASTMath/ProSPect




11 I Assembly speed up on GPUs

(Thwaites glacier, velocity solver)

Haswell Node: 32 CPU cores/node Up to 11x speedup for assembly on GPUS.
V100 Node: 4 GPUs/node Time to work on linear solvers!
Finite Element Assembly Strong Scaling Total Solve Time (s)
Wall-clock time (s) vs. Nodes 35
100 30
25
10 20 i
1 10
4 8 16 5
—e—Haswell CPUs 87.2051 43.6626 22.0101
——-V100 GPUs 7.89909 4.41412 2.8328 0
Speedup 11.03989194  9.891575218  7.769733126 Haswell CPUs V100 GPUs
DoFs/GPU 87230 43615 21807 m Assembly ®Linear Solve

Work/Simulations by J. Watkins (see MS235 on Thursday, 10:25am) and M.Carlson
Support: CMDV-SM/FASTMath/ProSPect

zzz J\lbany |




Two-level Schwarz preconditioner (FROSch)
(Greenland Ice sheet, coupled velocity/temperature problem)

Challenge: our “workhorse” multigrid preconditioner does not work out of the box for the coupled problem.
Solution: FROSch (Fast and Robust Overlapping Schwarz)

Single-level Schwarz preconditioner vs Two-levels Schwarz preconditioner

48.7 45.0 11.3s 10.53s 541 s 5.36s
1024 61.9 54.3 5.29s 4.59s 4.75s 4.31s
2048 89.9 59.1 2.52s 2.32s 5.70s 3.99
4096 116.1 78.7 1.17s 1.37s 3.68 3.30

* The two-level preconditioner does better in terms of number of iterations but
it is almost equivalent in term of CPU time to the one-level one.
* Time is dominated by direct solves of the sub-problems and the coarse solve.

Simulations by A. Heinlein

Support: CMDV-SM/FASTMath/ProSPect

Resources: Cori (NERSC)

Reference: Heinlein, Perego, Rajamanickam, arXiv, 2021



13 | lce sheet initialization
Hessian computation using automatic differentiation (using Sacado package)

Capabilities required for Newton-Krylov optimization methods:

Hessian of residual f dotted with the Ouu (A" f(u,p)) v, Oup A fwp)v,
ILacranoe multiplier A in the direction v:
ghange Mt Opu AT P) v, 3, (ATf(u, ) v

Hessian of loss functional ] in the Oyu J(u,p) v, Oup J(W,p) v,
direction v: apu J(u,p) v, app J(u,p) v,

Computed w/ automatic differentiation, based on the formula: 6,,,, Ji (p) v =0, (ap ] (p +r 17))

r=0

We also provide the full matrix 0y, J, that can be used to initialize reduced-space optimization
methods like BEGS, and the reduced Hessian-vector product.

Work by K. Liégeois See T. Hartland talk on Thursday, MS270 at 2:55pm
Support: FASTMath /ProSPect for different application of the reduced Hessian



Thermo-mechanical initialization of Greenland ice sheet

speed (m/yrn)
20e-02 0.2 2 20 200  2.0e+03 bGSOl friction (kPa Vr/ml temperature (K)

| | 4.4e-03 1 2.3e+02 248.0 255 260 265 270 273.1
— | — ﬁ ' _ _——— C—

observed - modeled - modeled i o modeled
ice speed ice speed 77 | basal friction *# basal temperaturé¥

300K parameters, 14M unknowns. Initialization: ~10 hours on 8k nodes on NERSC Cori (Hasweﬂj
Support: FASTMath/E3SM/ProSPect
MS270 on Thursday targets ice sheet modeling



