

Sandia
National
Laboratories

SAND2021-2327C

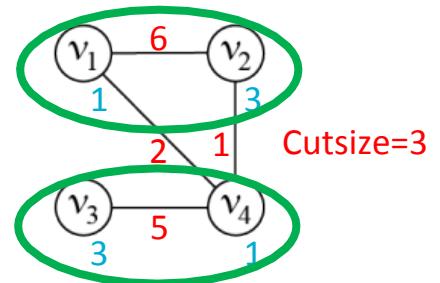
Sphynx: a parallel multi-GPU graph partitioner for distributed-memory systems

Seher Acer
Erik Boman
Christian Glusa
Sivasankaran Rajamanickam

March 4, 2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sphynx – Highlights



- **Sphynx**: Spectral Partitioning for HYbrid aNd aXelerator-based systems
- **Sphynx** uses several Trilinos packages using Kokkos for performance portability
- **Sphynx** is the first multi-GPU partitioner for distributed-memory systems
- Compared to ParMETIS, **Sphynx** is faster on irregular graphs and obtains similar quality partitions on regular graphs

Sphynx – Problem Statement

- Graph $G = (V, E)$: set of vertices V , set of edges E
- For the graph partitioning problem
 - each vertex is assigned a **weight** value
 - each edge is assigned a **cost** value
- A K -way **partition** Π of G
 - is **balanced** if there is a **balance on part weights**
 - has a **cutsize** defined as the sum of the **cut-edge costs**
- **Graph partitioning problem** is to find a **balanced K -way partition** of G with minimum **cutsize**

Sphynx – Motivation

- Why is this problem important?
 - Used for optimizing parallel performance of scientific applications on distributed-memory systems
 - graph \leftrightarrow sparse matrix, mesh, circuit networks, social networks, ...
 - vertices \leftrightarrow computational tasks
 - edges \leftrightarrow dependencies of tasks
 - parts \leftrightarrow processors
 - balancing part **weights** \leftrightarrow balancing processor **loads**
 - minimizing **cutsize** \leftrightarrow minimizing **communication volume**

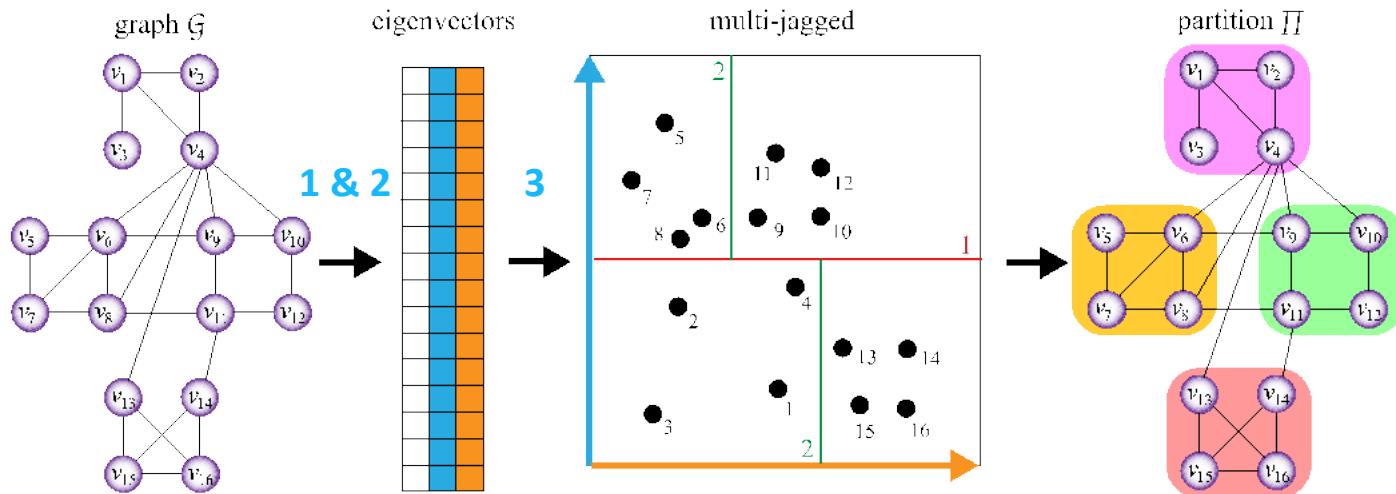
Sphynx – Motivation

- We are revisiting graph partitioning problem, because:
 - Applications are moving to **accelerators**
 - DoE facilities have announced **different accelerators**
 - AMD, Intel, NVIDIA GPUs
 - No accelerator-enabled graph partitioning tool exists
 - We provide Sphynx to fill this gap
 - Distributed-memory parallel, **accelerator-enabled**, and **portable**
- Sphynx is based on a **spectral** approach, because:
 - Spectral methods use linear-algebra kernels, which are **more amenable to parallelization** on **accelerators**
 - Popular combinatorial partitioning methods are **inherently sequential**

Sphynx – Spectral partitioning

- Eigenvalue problems: **combinatorial**, **generalized**, and **normalized**
- Adjacency matrix $A = (a)_{ij} = \begin{cases} 1 & \text{if } e_{i,j} \in E \\ 0 & \text{otherwise} \end{cases}$
- Degree matrix $D = (d)_{ij} = \begin{cases} \deg(v_i) & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$
- Form a Laplacian matrix:
 - **Combinatorial** Laplacian $L_C = D - A$
 - **Normalized** Laplacian $L_N = I - D^{-1/2}AD^{-1/2}$
- Find eigenvectors x corresponding to smallest nontrivial eigenvalues λ s.t.
 - $L_C x = \lambda x$, for **combinatorial** eigenvalue problem
 - $L_C x = D\lambda x$, for **generalized** eigenvalue problem
 - $L_N x = \lambda x$, for **normalized** eigenvalue problem

Sphynx – Spectral partitioning


- Traditional spectral methods [1] use recursive bipartitioning. At each bipartitioning step, they
 - compute one eigenvector (Fiedler vector) on the current graph
 - sort the vertices w.r.t. the entries of the eigenvector
 - bipartition the vertices according to the sorted order
- Sphynx computes **($\log K + 1$) eigenvectors** on the Laplacian, **all at once**
- Computing all eigenvectors at once avoids
 - forming subgraphs and/or corresponding Laplacians
 - moving subgraphs across different processes
 - calling eigensolver multiple times

[1] A. Pothen, H. Simon, and K. Liou, “Partitioning sparse matrices with eigenvectors of graphs,” SIAM J. Matrix Anal., vol. 11, pp. 430–452, July 1990.

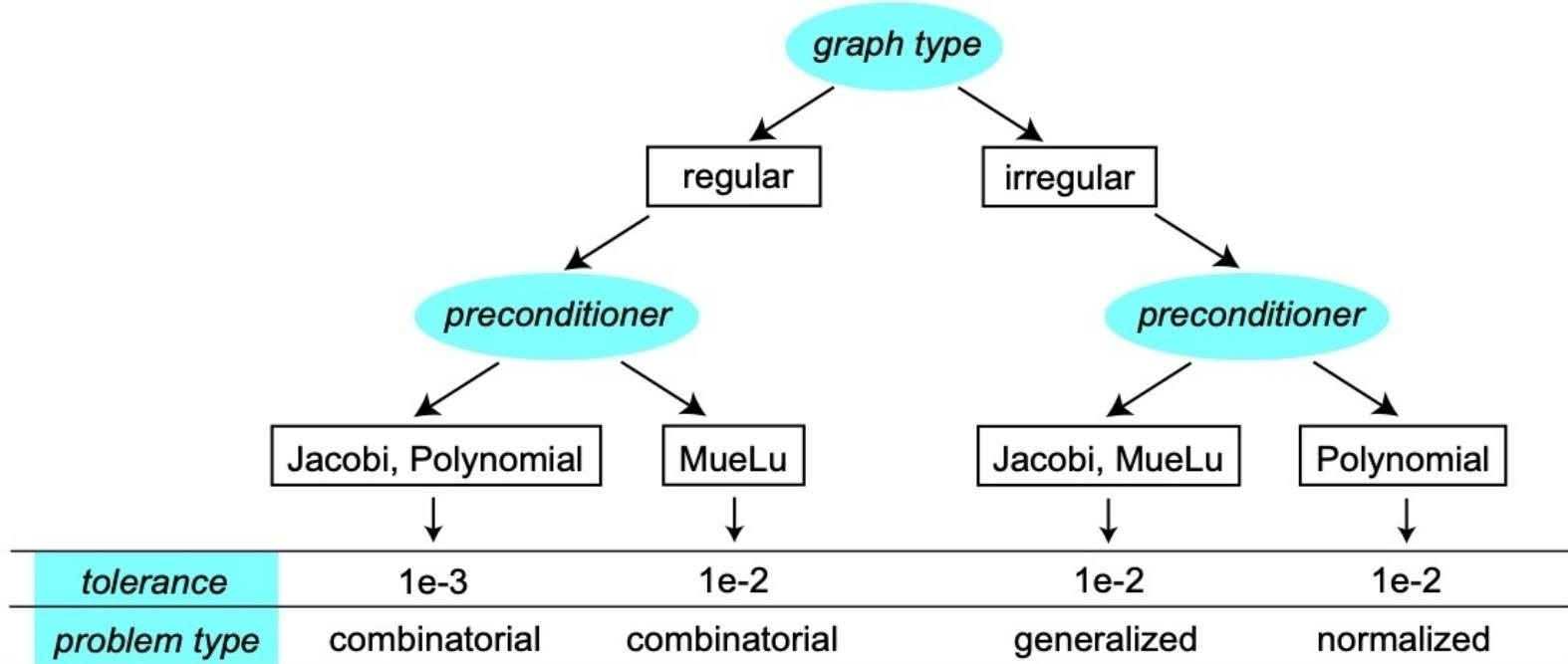
Sphynx – Trilinos framework

1. Create Laplacian L for G – **Tpetra CrsMatrix, Kokkos parallel_for**
2. Compute $(\log K + 1)$ eigenvectors of L using **LOBPCG [1]** – **Anasazi**
 - First eigenvector: trivial, not used
 - Remaining vectors: coordinates to embed G into $\log K$ -dimensional space
3. Compute a K -way partition on coordinates using **multi-jagged [2]** – **Zoltan2**

[1] A. V. Knyazev, “Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method,” *SIAM Journal on Scientific Computing*, vol. 23, no. 2, pp. 517–541, 2001.

[2] M. Deveci, S. Rajamanickam, K. D. Devine, and U. V. Catalyurek, “Multi-jagged: A scalable parallel spatial partitioning algorithm,” *IEEE Transactions on Parallel and Distributed Systems*, vol. 27, pp. 803–817, March 2016.

Sphynx – Preconditioning



- Number of iterations in LOBPCG is a bottleneck
- LOBPCG allows using a **preconditioner**
- Sphynx uses three preconditioners
 1. Jacobi: $M = \text{diag}(A)^{-1}$ (**Ifpack2**)
 - scaling each row by the inverse of the diagonal, easy to parallelize
 2. Polynomial: $M = p_k(A)$ (**Belos**)
 - SpMV to apply, highly parallel
 - based on GMRES polynomial
 3. (Algebraic) Multigrid: $A_{\ell+1} = RA_\ell P$ (**MueLu**)
 - **multilevel**, captures more global information
 - **costlier** setup

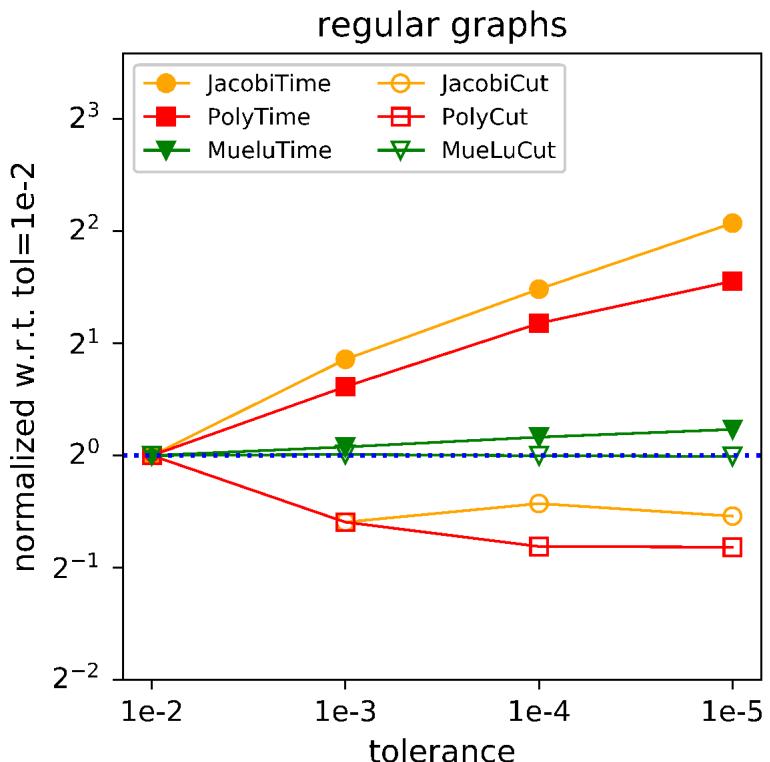
Sphynx – Parameters

Default values for different graph types and preconditioners:

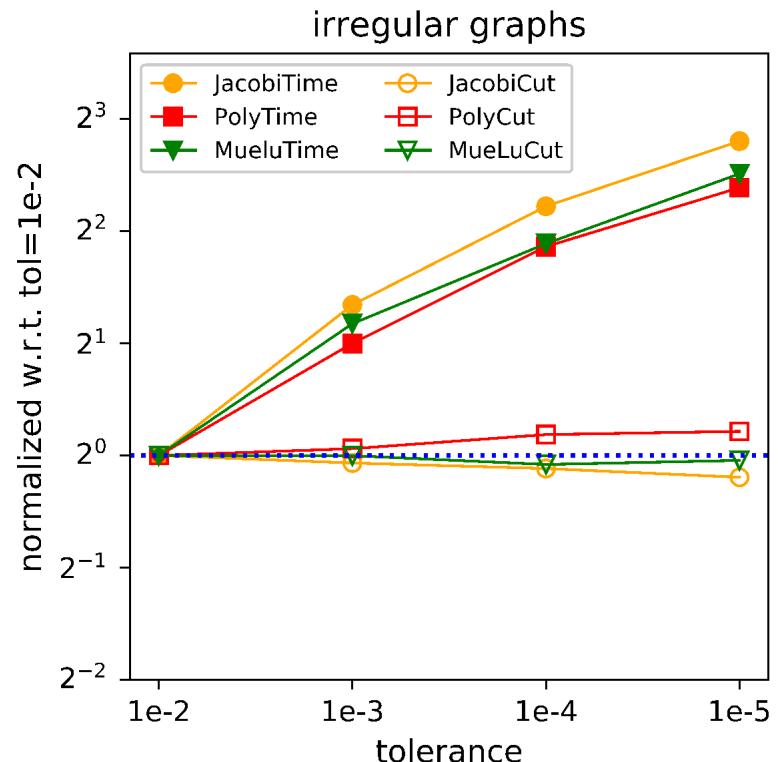
Sphynx – Experiments

- The GPU focus: MPI+Cuda
- Performed on Summit and used 24 GPUs
 - Desired number of parts = $K = 24$
- Each GPU is exclusively used by one MPI rank (default)
- Device allocations in the Unified Virtual Memory (default)
- Initial distribution of the test graphs: 1D block
 - This is the default distribution with Tpetra CrsMatrix
- Parameter sensitivity and comparison against the state of the art
 - Performance metrics: cutsize and runtime

Sphynx – Dataset


regular

graph	#vertices	#edges	degree	
			max	avg
ecology1	1,000,000	4,996,000	5	5
dielFilterV2real	1,157,456	48,538,952	110	42
thermal2	1,227,087	8,579,355	11	7
Bump_2911	2,852,430	127,670,910	195	45
Queen_4147	4,147,110	329,499,284	81	79
100^3	1,000,000	26,463,592	27	26
200^3	8,000,000	213,847,192	27	27
400^3	64,000,000	1,719,374,392	27	27
hollywood-2009	1,069,126	113,682,432	11,468	106
com-Orkut	3,072,441	237,442,607	33,314	77
wikipedia-20070206	3,512,462	88,261,228	187,672	25
cit-Patents	3,764,117	36,787,597	794	10
com-LiveJournal	3,997,962	73,360,340	14,816	18
wb-edu	8,863,287	97,233,789	25,782	11
uk-2005	39,252,879	1,602,132,663	1,776,859	41
it-2004	41,290,577	2,096,240,367	1,326,745	51
twitter7	41,652,230	2,446,678,322	2,997,488	59
com-Friendster	65,608,366	3,677,742,636	5,215	56
FullChip	2,986,914	26,621,906	2,312,481	9
circuit5M	5,555,791	59,519,031	1,290,501	11


Sphynx – Results

LOBPCG Convergence Tolerance:

Default: 1e-2 for MueLu
1e-3 for others

Default: 1e-2 for all

Sphynx – Results

Eigenvalue Problem:

Average results normalized w.r.t combinatorial					
	preconditioner	generalized		normalized	
		runtime	cutsize	runtime	cutsize
regular	Jacobi	0.81	1.15	0.43	2.26
	Polynomial	0.73	1.21	0.54	2.45
	MueLu	0.99	1.12	0.95	2.20
irregular	Jacobi	0.75	0.83	0.26	1.36
	Polynomial	0.36	0.84	0.02	0.83
	MueLu	0.71	0.90	0.31	1.68

Default: combinatorial for regular graphs,
 generalized for irregular graphs with Jacobi and MueLu, and
 normalized for irregular graphs with Polynomial.

Sphynx – Results

Preconditioner:

Average results normalized w.r.t. Jacobi				
	Polynomial		MueLu	
	runtime	cutsize	runtime	cutsize
regular	0.46	1.03	0.42	0.91
irregular	0.62	1.71	1.91	0.94

Suggested: MueLu for regular graphs,
Polynomial for irregular graphs.

Sphynx – Results

- Comparison against ParMETIS [1] and XtraPuLP [2]
 - ParMETIS and XtraPuLP **do not run** on GPUs
- Application-friendly comparison on 24 MPI ranks
 - Sphynx uses 6 MPI ranks per node and 1 GPU per rank
 - ParMETIS uses 6 MPI ranks per node
 - XtraPuLP uses 6 MPI ranks per node and 7 OpenMP threads per rank

Average results normalized w.r.t Sphynx				
	ParMETIS		XtraPuLP	
	runtime	cutsize	runtime	cutsize
regular	0.33	0.81	0.31	6.36
irregular	23.95	0.30	1.24	0.45

- ParMETIS execution **did not finish** in 2 hours on 4 graphs
 - Largest irregular graphs: uk-2005, it-2004, twitter7, com-Friendster

[1] G. Karypis, V. Kumar, Parmetis: Parallel graph partitioning and sparse matrix ordering library, Tech. rep., Dept. Computer Science, University of Minnesota, 1997.

[2] G. M. Slota, S. Rajamanickam, K. Devine, K. Madduri, Partitioning trillion-edge graphs in minutes, IPDPS, 2017.

Sphynx – Results

- Comparison against nvGRAPH's spectral partitioner [1]
 - runs on a single GPU
 - minimizes a ratio cut metric, does not enforce strict balancing
- Sphynx: on a single MPI rank (i.e., on a single GPU)
- Number of parts: 24

Average results of Sphynx normalized w.r.t. nvGRAPH			
	runtime	cutsize	max part weight
regular	0.45	0.94	0.54

- nvGRAPH did not run on large graphs (most irregular graphs)

Sphynx – Conclusion

- First multi-GPU partitioner on distributed-memory systems
 - Many knobs to tune the performance: preconditioners, problem type, etc.
- Built on top of other Trilinos packages, intelligent code reuse
 - Improvements in Anasazi, MueLu, Tpetra, etc. will improve Sphynx
- Released as a subpackage of Zoltan2 in Trilinos:

<https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2/sphynx>