

Sandia
National
Laboratories

SAND2021-2315C

A Physics-Informed Operator Regression Framework for Extracting Data-Driven Continuum Models

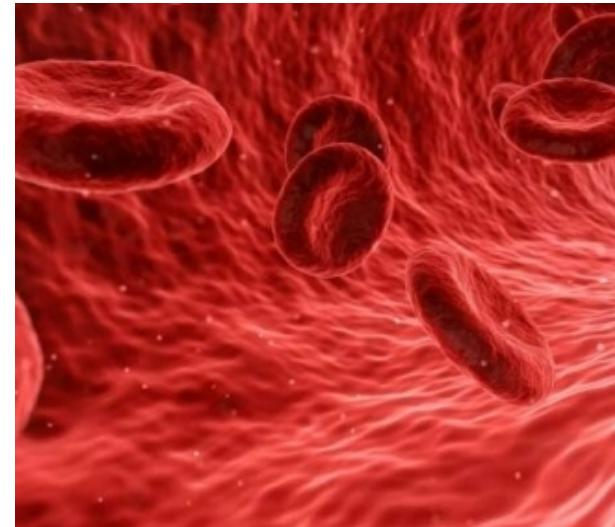
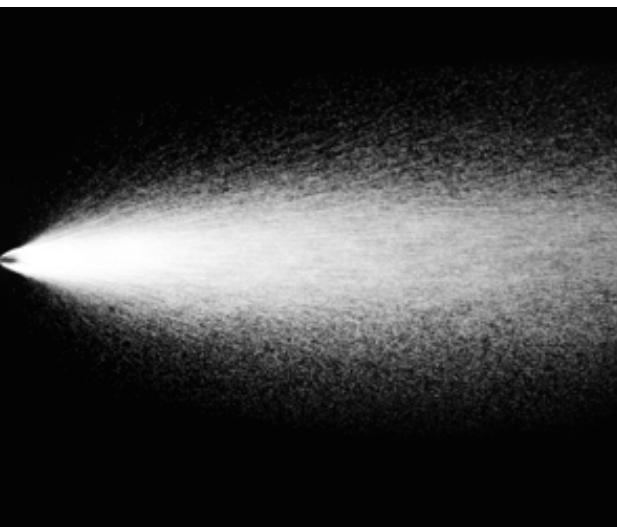
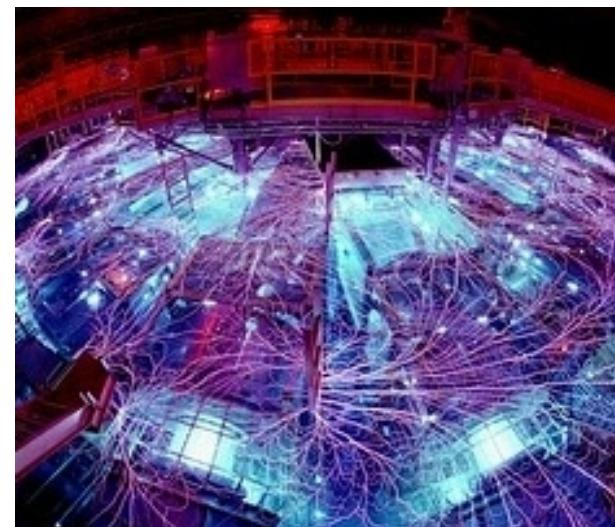
SIAM CSE21

MS134: Machine Learning for Surrogate Model and Operator Discovery

Ravi G. Patel, Nathaniel Trask, Mitchell Wood, Eric C. Cyr
Center for Computing Research

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
SAND No: 1

Finding models for multi-scale, multi-physics systems



Given experimental/high fidelity simulation data from a system,

Find a mathematical model that describes the system

Experiments/simulations generate **noisy, biased, sparse** data

3 Model power tradeoff

$$\mathcal{F}(u, \dot{u}, x, t) = 0$$

$$\partial_t u + u \cdot \nabla u = -\nabla p + \nu \nabla^2 u$$

Black-box ML

Physics constrained ML

Parameter estimation

Prone to overfitting

Strong assumptions

Case study: inductive bias in image classification

Translation, scaling, and rotation shouldn't affect an image's class

$$\mathcal{M}\left[\begin{matrix} 3 \end{matrix}\right] = \mathcal{M}\left[\begin{matrix} 3 \end{matrix}\right] = \mathcal{M}\left[\begin{matrix} 3 \end{matrix}\right] = \mathcal{M}\left[\begin{matrix} 3 \end{matrix}\right]$$

Data augmentation: train with transformed versions of training data

- How thoroughly should transformations be sampled?
- Increased cost of training

Choose model form to have desired invariance/equivariance

- E.g. ConvNets for approximate translational invariance¹

¹ Lawrence et al. *IEEE Transactions on Neural Networks*, 1997

Other examples of inductive bias

Rotation invariant model for galaxy classification

- Dieleman et al. *Monthly Notices of the Royal Astronomical Society*, 2015

Warp invariant model

- Wong et al. *DICTA*, 2016

Permutation invariant model

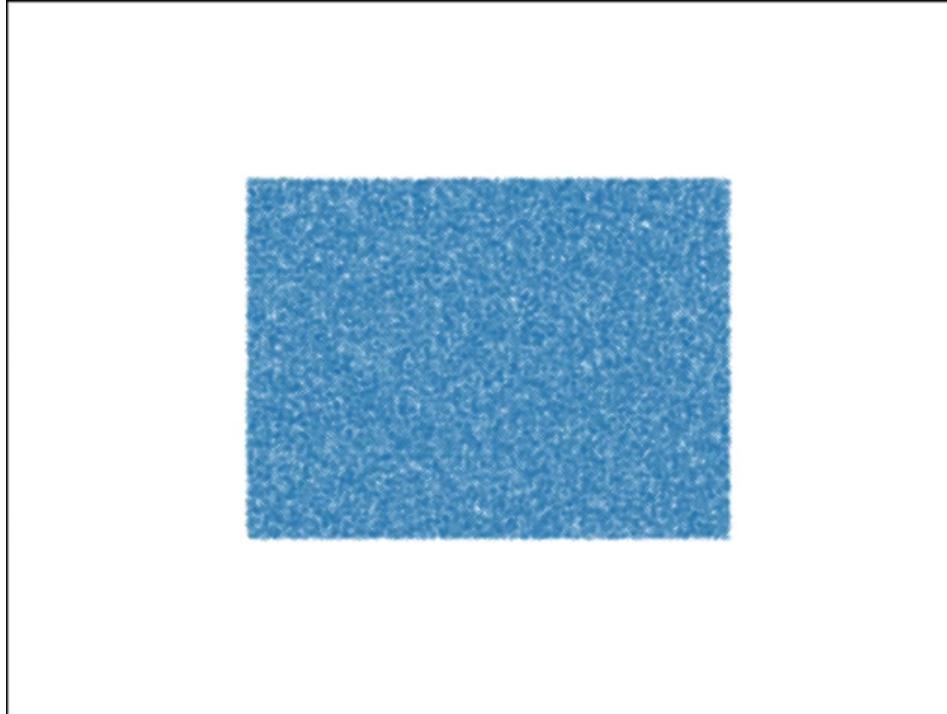
- Meltzer et al. *arXiv:1905.03046*

Rotation and translation equivariant model for 3d point cloud data

- Thomas et al. *arXiv:1802.08219*

Extracting coarse grain models

Find coarse grained dynamics, e.g. evolution of particle density for,



It may be reasonable to assume,

- Conservation
- Translational equivariance
- Rotational equivariance

Problem statement

Assume system is described by 1st order in time, autonomous PDE,

$$\partial_t u = \mathcal{N} u$$

Discretize in time,

$$u^{n+1} = u^n + \Delta t \mathcal{N} u^n = (I + \Delta t \mathcal{N}) u^n$$

Given observations $\{v^n\}$, find,

$$\mathcal{N} = \operatorname{argmin}_{\hat{\mathcal{N}}} \sum_n \left\| v^{n+1} - (I + \Delta t \hat{\mathcal{N}}) v^n \right\|$$

More generally,

$$\mathcal{N} = \operatorname{argmin}_{\hat{\mathcal{N}}} \sum_n \left\| v^{n+p} - (I + \Delta t \hat{\mathcal{N}})^p v^n \right\|$$

For,

$$u^{n+1} = (I + \Delta t \mathcal{N})u^n$$

Choose,

$$\mathcal{N}u = \mathcal{F}^{-1}g(\kappa; \xi_g)\mathcal{F}h(u; \xi_h)$$

Where g and h are neural networks

Optimization problem becomes,

$$\underset{\hat{\xi}_g, \hat{\xi}_h}{\operatorname{argmin}} \sum_n \left\| v^{n+p} - (I + \Delta t \hat{\mathcal{N}})^p v^n \right\|$$

Other modal approaches

- Wu and Xiu, *JCP*, 2020
- Li et al. *arXiv:2010.08895*

9 MOR-Physics: motivation

For smooth functions in a periodic domain,

Physical space

$$f(x) = \sum_{\kappa} = \tilde{f}_{\kappa} e^{j\kappa x}$$

$$\begin{array}{c} \xrightarrow{\mathcal{F}} \\ \xleftarrow{\mathcal{F}^{-1}} \end{array}$$

Fourier space

$$\begin{aligned} f_{\kappa} &= \int f(x) e^{-j\kappa x} dx \\ (j\kappa)^{\gamma} \tilde{f}_{\kappa} \end{aligned}$$

Parameterization
contains,

- Laplacian

$$\partial_x^2 u \longrightarrow \mathcal{F}^{-1} [(-\kappa^2) \mathcal{F}[u]]$$

- Advection

$$\partial_x u^2 \longrightarrow \mathcal{F}^{-1} [(j\kappa) \mathcal{F}[u^2]]$$

MOR-Physics: introducing inductive biases

Translational equivariance:

$$\text{apply } h \text{ point-wise } (h \circ u)(x) = h(u(x))$$

Reflective symmetry: If u solves the PDE, so does

$$\text{let } h(u) = \text{sign}(u)\tilde{h}(|u|)$$

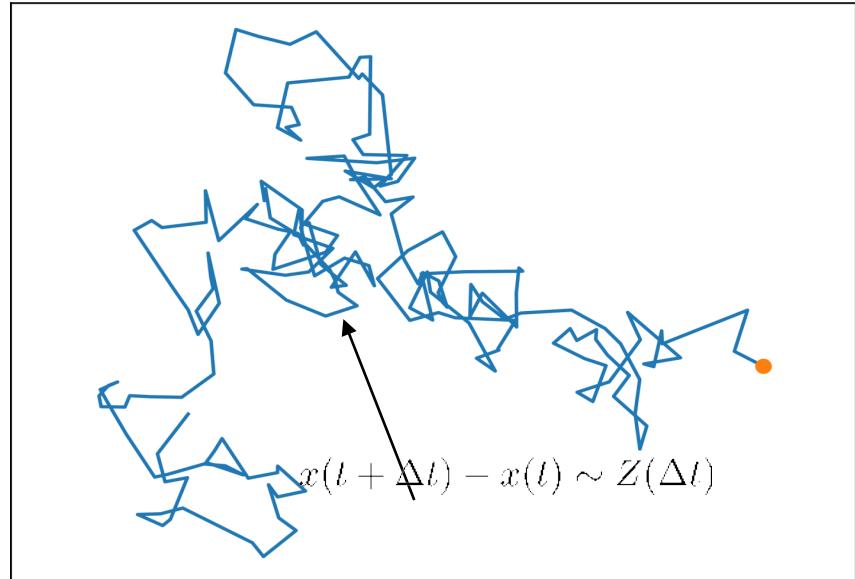
Isotropy:

$$\text{let } g(\kappa) = \tilde{g}(\|\kappa\|_2^2)$$

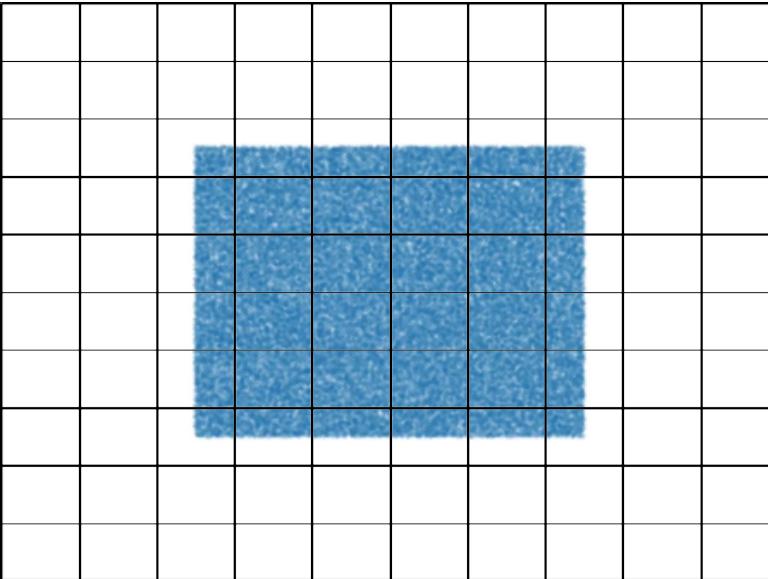
Global conservation:

$$\text{let } g(\kappa) = \tilde{g}(\kappa)(1 - \delta_{\kappa,0})$$

Coarse graining stochastic differential equations (SDEs)



SDE for particle trajectory

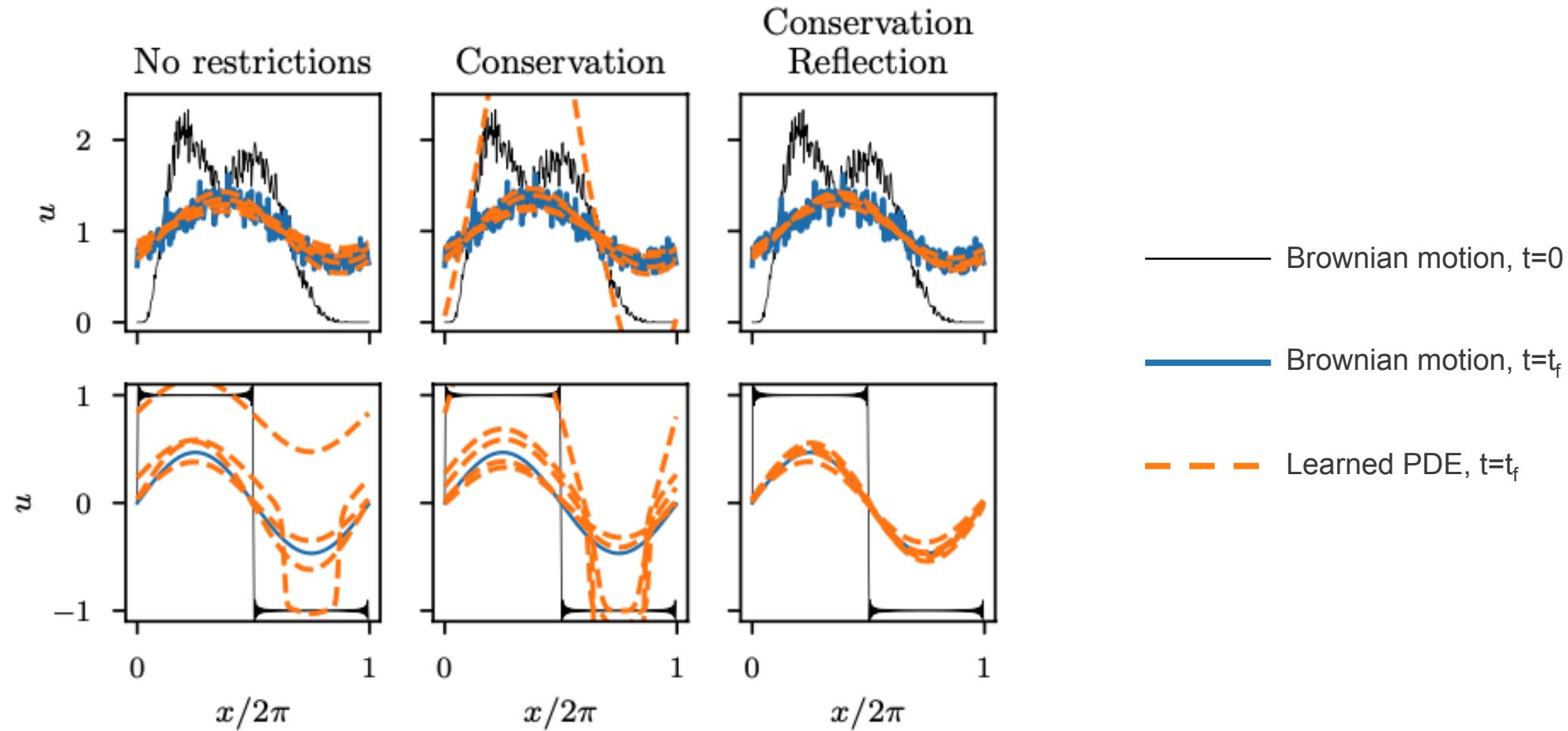


PDE for particle density

1. Compute evolution of binned density from SDE trajectories
2. Fit PDE for evolution of binned density
3. Compare to analytical result

SDEs: Conservation and reflective symmetry inductive biases improves generalization

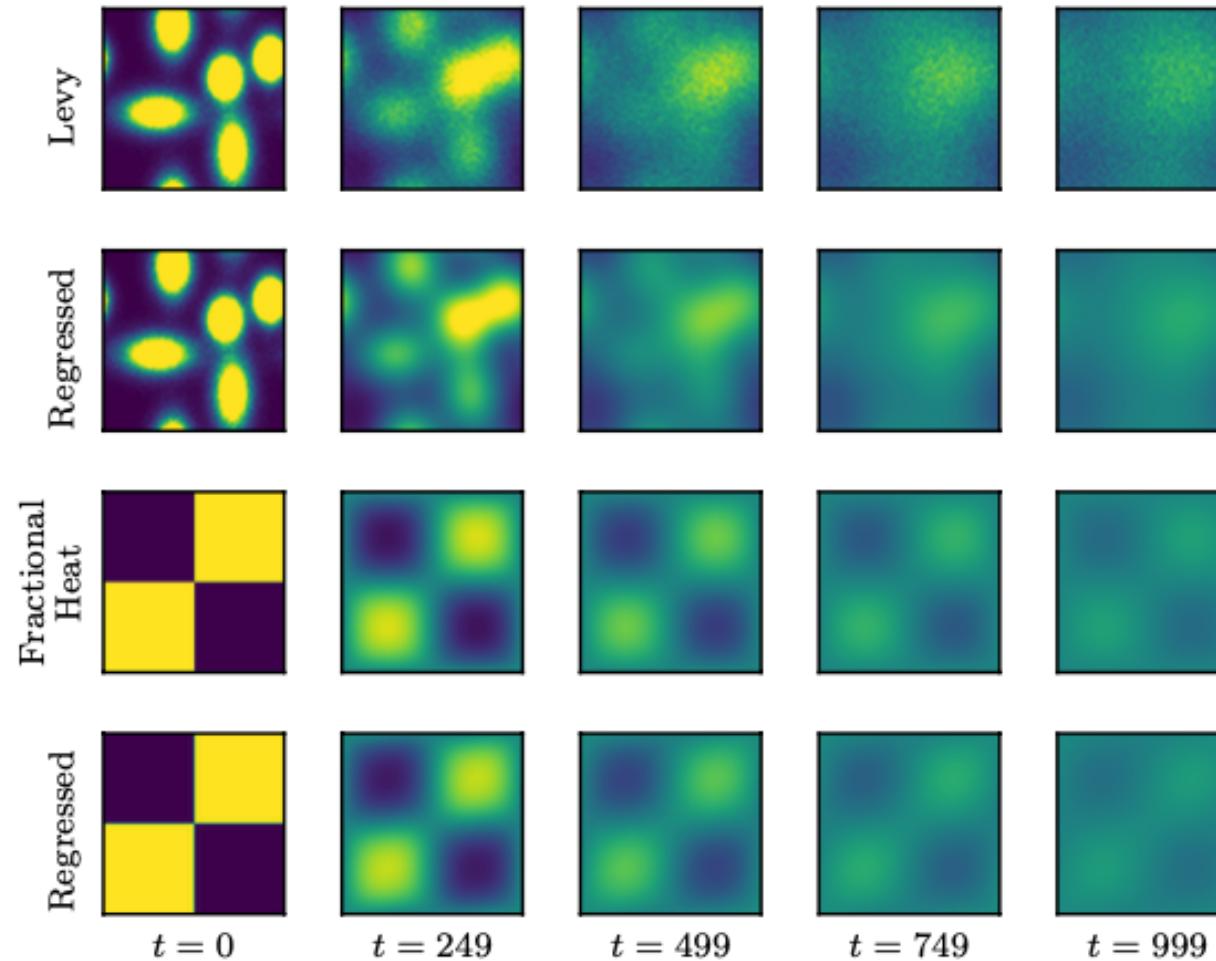
Density of Brownian data follows heat equation $\frac{\partial u}{\partial t}(t, x) + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}(t, x) = 0$ for $x(t) + \Delta t) - x(t) \sim N(0, 2\Delta t) \rightarrow \frac{\partial u}{\partial t} = -\frac{1}{2} \frac{\partial^2 u}{\partial x^2}$



SDEs: Isotropy inductive bias improves generalization

Density of Levy flight data follows fractional heat equation¹,

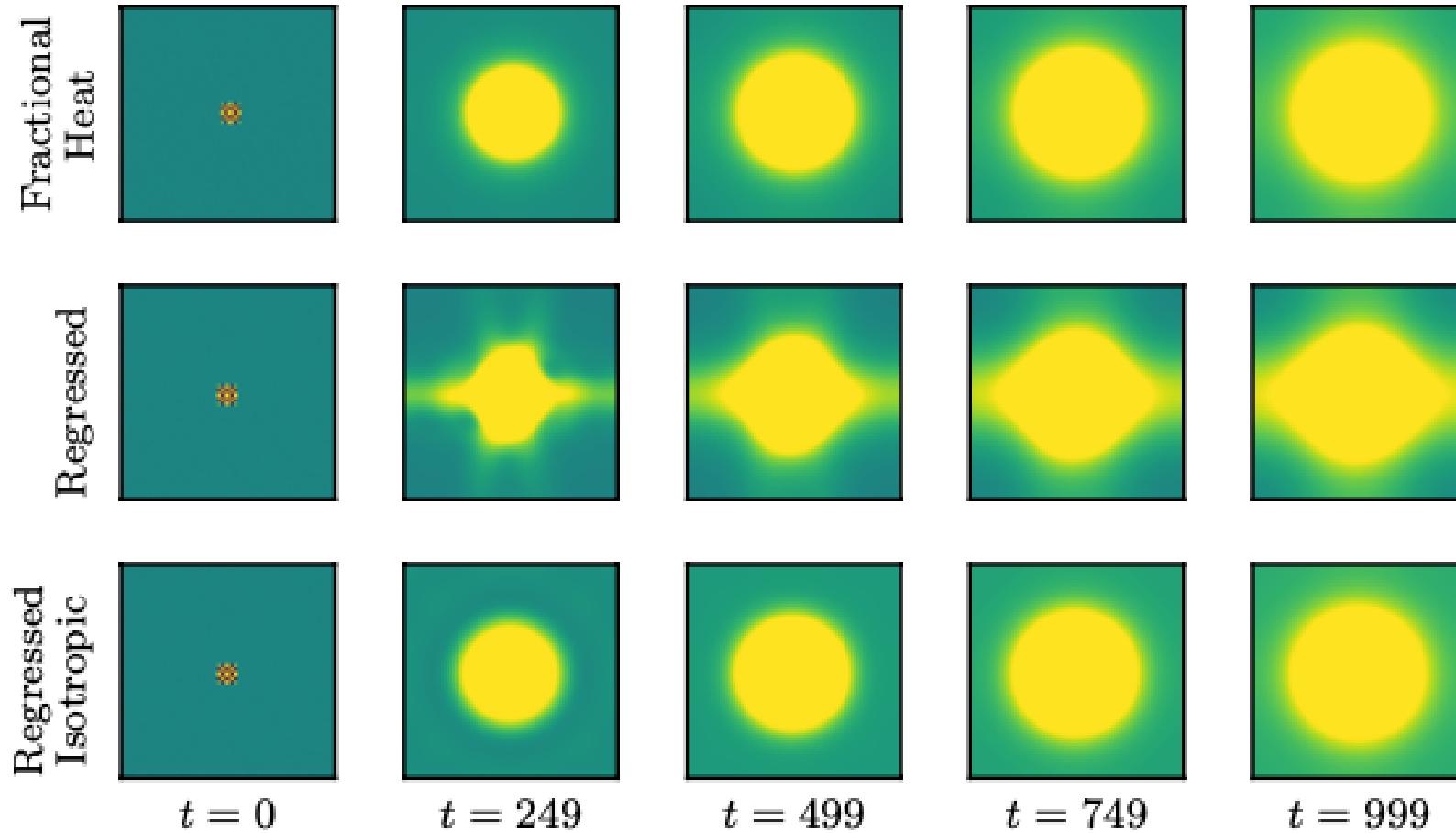
$$x(t + \Delta t) - x(t) \sim L(\alpha, 0, \Delta t^{1/\alpha}, 0) \rightarrow \partial_t u = \Delta^{\alpha/2} u$$



SDEs: Isotropy inductive bias improves generalization

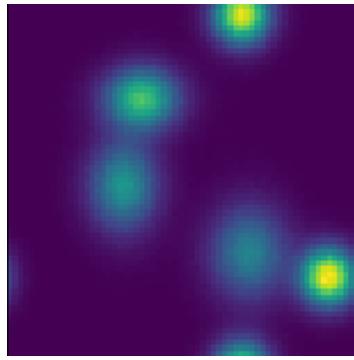
Density of Levy flight data follows fractional heat equation¹,

$$x(t + \Delta t) - x(t) \sim L(\alpha, 0, \Delta t^{1/\alpha}, 0) \rightarrow \partial_t u = \Delta^{\alpha/2} u$$

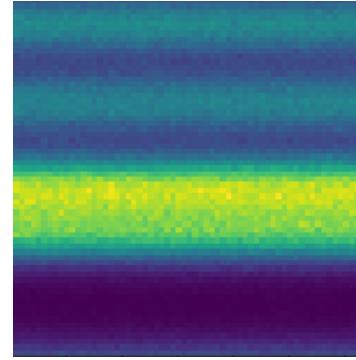


Isotropy inductive bias counteracts biased data

Vary anisotropy bias in data by setting initial condition,

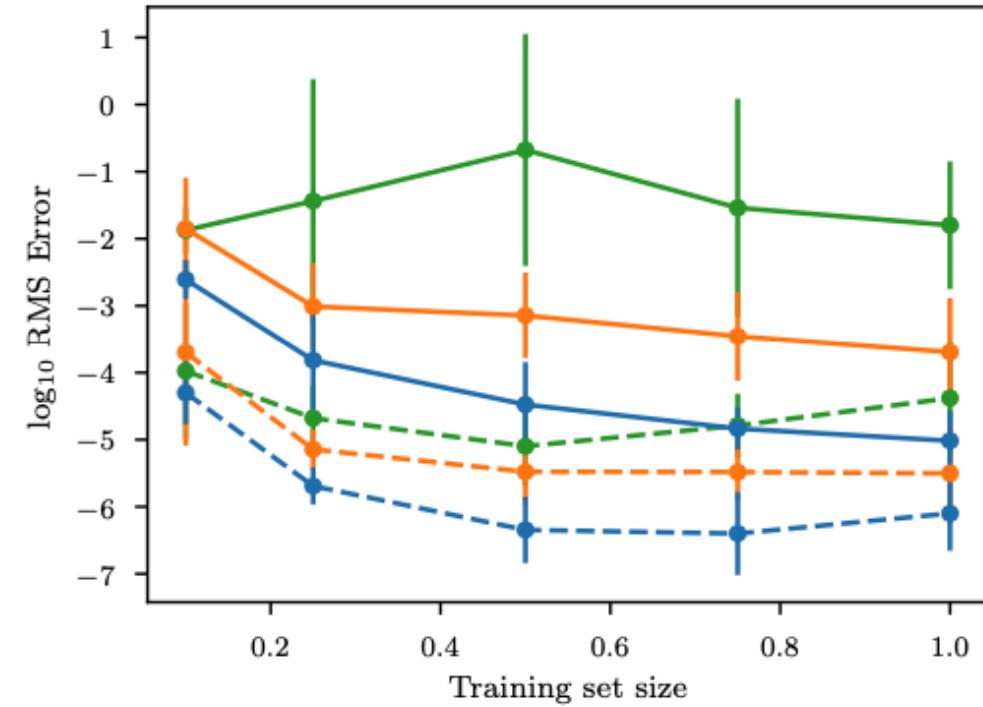


$\beta = 0$



$\beta = 1$

Compare effect of isotropy inductive bias for various



Anisotropic model

$\beta = 0$

$\beta = 0.1$

$\beta = 1$

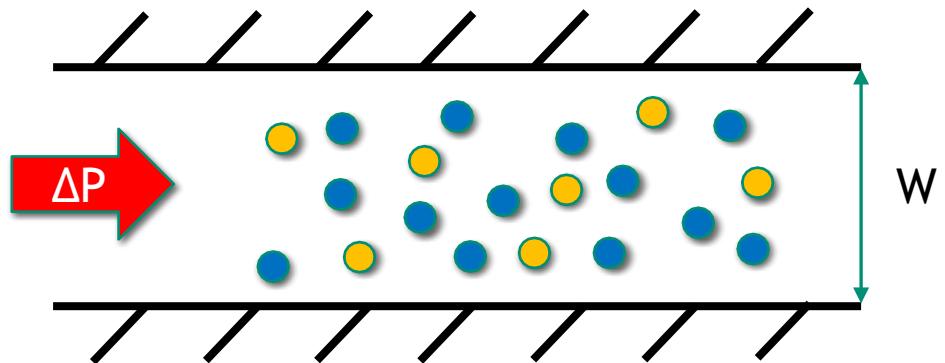
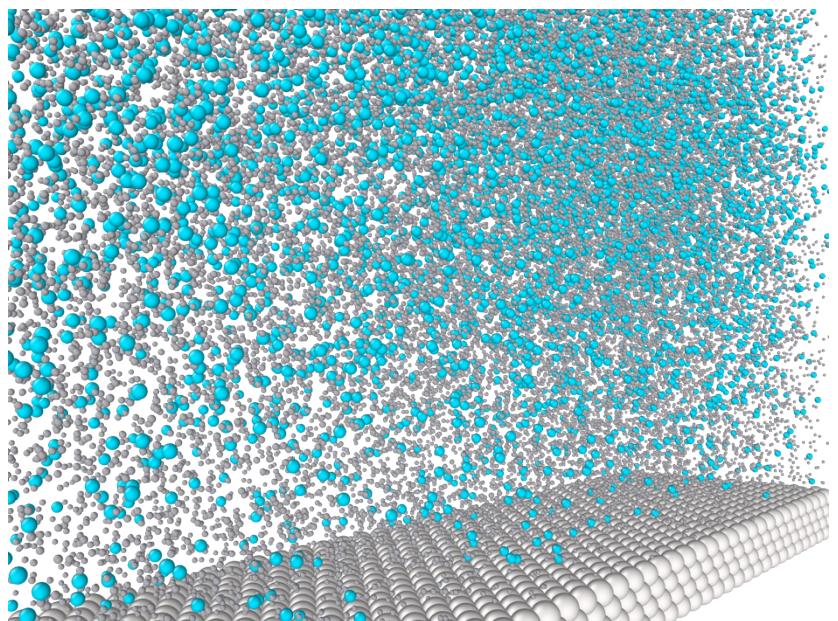
Isotropic model

$\beta = 0$

$\beta = 0.1$

$\beta = 1$

Application: coarse graining colloidal Poiseuille flow



Perform molecular dynamics simulations with varying concentration (c), colloid particle size (d)

- Get time evolution of 1d profiles of

$$\mathbf{u} = (\mathbf{u}_N, \mathbf{u}_D) = ([\rho^L, \rho^S], [p^L, p^S], \dots)$$

Fit continuum model assuming conservation of mass

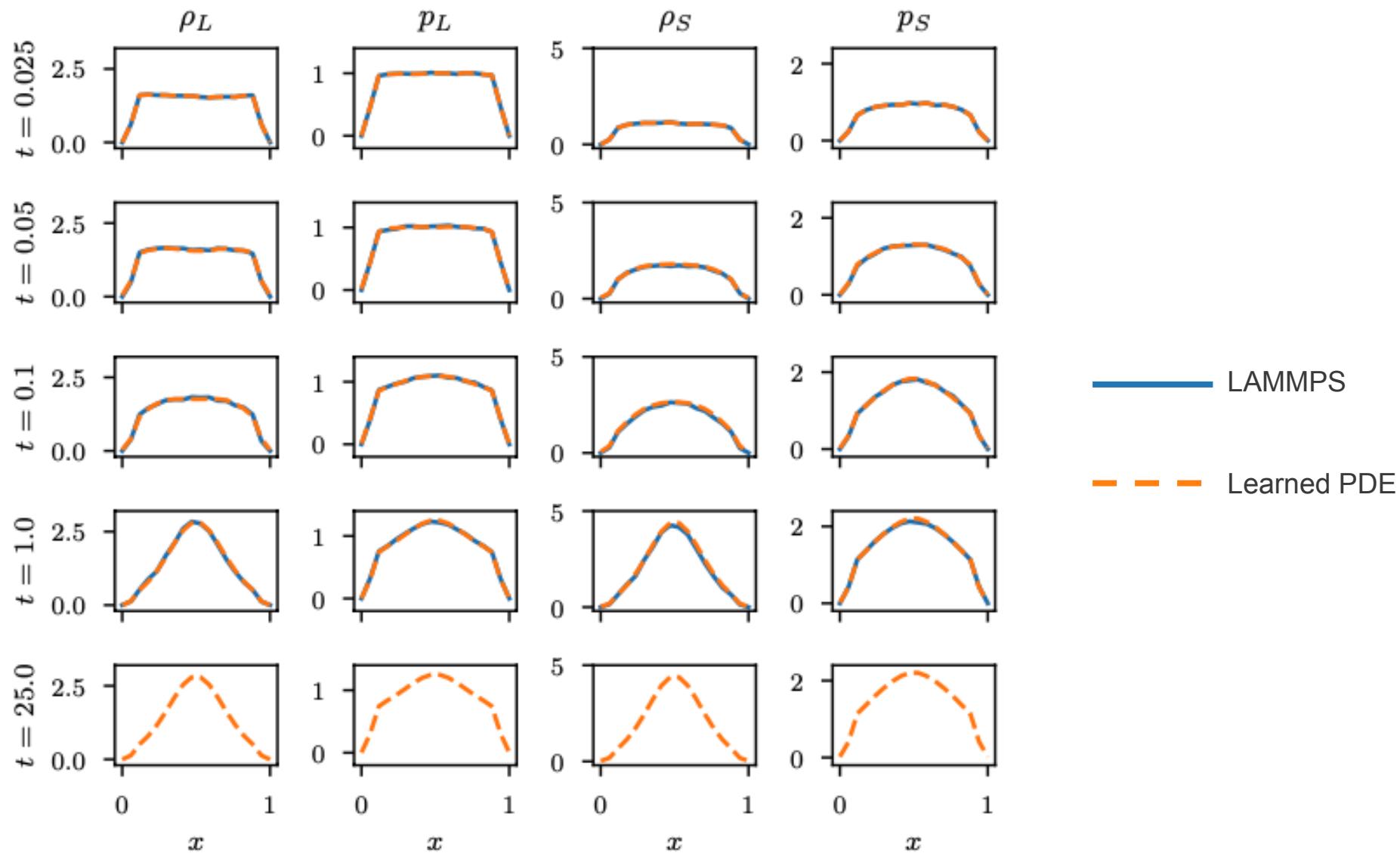
$$\partial_t u_N^i = \sum_k \mathcal{C}^{-1} g_k^i(\kappa, c, d) \mathcal{C} h_k^i(\mathbf{u}, c, d)$$

$$\partial_t u_D^i = \sum_k \mathcal{S}^{-1} g_k^i(\kappa, c, d) \mathcal{S} h_k^i(\mathbf{u}, c, d)$$

where \mathcal{S} and \mathcal{C} are the sine and cosine transform

Find time evolution for new c, d

Application: coarse graining colloidal Poiseuille flow



Future work

Limited to simple geometries and PDEs with smooth solutions

- Alternative basis
 - Generalized moving least squares: Trask et al., *NeurIPS*, 2019

Bayesian version

Noisy data for more general problems

- Error-in-variables models

Applications

Comparisons to other operator regression methods

- Wu and Xiu, *JCP*, 2020
- Li et al. *arXiv:2010.08895*
- Graph Neural operator: Li et al., *NeurIPS*, 2020
- DeepONets: *arXiv:1910.03193*

Acknowledgements

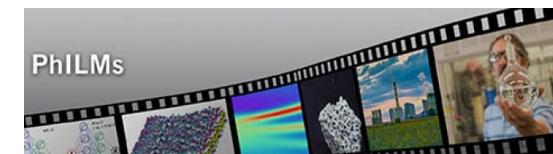
Eric C. Cyr

Nat Trask

Mitch Wood

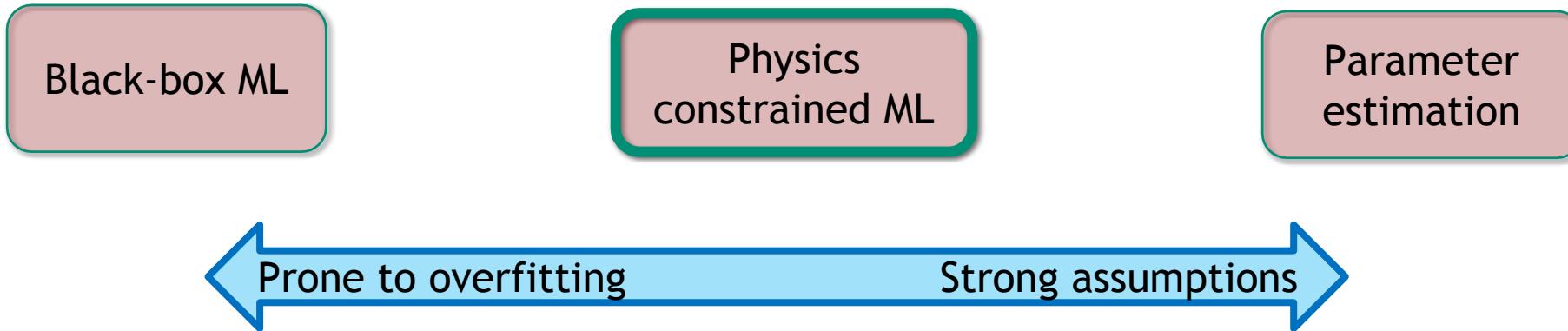
U.S. DEPARTMENT OF
ENERGY

Office of
Science



www.pnnl.gov/computing/philm

Conclusion



ML with physics informed inductive biases

- More powerful than parameter estimation
- Better generalization and extrapolation than black-box ML

Paper and code:

- Patel and Desjardins, arXiv:1810.08552
- Patel et al. *CMAME*, 2021 (arXiv:2009.11992)
- <https://github.com/rgp62/MOR-Physics>