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2 I Finding models for multi-scale, multi-physics systems

Given experimental/high
fidelity simulation data from a
system,

Find a mathematical model
that describes the system

Experiments/simulations
generate noisy, biased,
sparse data




Model power tradeoff
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4 ‘ Case study: inductive bias in image classification

Translation, scaling, and rotation shouldn’t affect an image’s class

M| ]

Data augmentation: train with transformed versions of training data
> How thoroughly should transformations be sampled?

o Increased cost of training

Choose model form to have desired invariance/equivariance
> E.g. ConvNets for approximate translational invariance’

' Lawrence et al. IEEE Transactions on Neural Networks, 1997




s 1 Other examples of inductive bias

Rotation invariant model for galaxy classification

> Dieleman et al. Monthly Notices of the Royal Astronomical Society,
2015

Warp invariant model
- Wong et al. DICTA, 2016

Permutation invariant model
o Meltzer et al. arXiv:1905.03046

Rotation and translation equivariant model for 3d point cloud data
o Thomas et al. arXiv:1802.08219



s | Extracting coarse grain models

Find coarse grained dynamics, e.g. evolution of particle density for,

It may be reasonable to assume,
o Conservation

o Translational equivariance
o Rotational equivariance



Problem statement

Assume system is described by 15t order in time, autonomous PDE,

81;’LL:NU

Discretize in time,

un—|—1 _ ufn, i AtNun _ (I 1 AtN)uTb
Given observation&y”} | find,

o™ — (I + AtN )"

More generally,




s I Modal operator regression for physics (MOR-Physics)

For,

"t = (I + AtN)u”

Choose,
Nu=F tg(k; &) Fh(u; &)

Wher§ afd are neural networks

Optimization problem becomes,

o™ — (I + AtN)PO"

Other modal approaches
> Wu and Xiu, JCP, 2020

o Lietal. arXiv:2010.08895



MOR-Physics: motivation

For smooth functions in a periodic domain,

Physical space Fourier space
> .
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0 I MOR-Physics: introducing inductive biases

Translational equivariance:

applyh  point-wisgh o u)(z) = h(u(x))

Reflective symmetry:¥#  solves the PDE, so doks
et h{u) = sign(u)h(|ul)

|sotropy:
et 9(w) = g(I[xl]3)

Global conservation:

et 9() = g(K)(1 — b 0)



1 I Coarse graining stochastic differential equations (SDESs)

SDE for particle trajectory > PDE for particle density

1. Compute evolution of binned density from SDE trajectories
2. Fit PDE for evolution of binned density

3. Compare to analytical result



2 I SDEs: Conservation and reflective symmetry inductive
biases improves generalization

Density of Brownian data follows heat equatidh} At) — z(t) ~ N(0,2A%) — d,u = Au

Conservation
No restrictions Conservation Reflection
2 -
E !
Brownian motion, t=0
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SDEs: Isotropy inductive bias improves generalization

Density of Levy flight data follows fractional heat equation’,
r(t + At) — 2(t) ~ L{e, 0, AtY*,0) = du = A%y
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1Lischke et al., arXiv:1801.09767



4 | SDESs: Isotropy inductive bias improves generalization

Density of Levy flight data follows fractional heat equation’,
r(t + At) — 2(t) ~ L{e, 0, AtY*,0) = du = A%y
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Regressed

Regressed
[sotropic

1Lischke et al., arXiv:1801.09767



15 1 Isotropy inductive bias counteracts biased data

Vary anisotropy bias in data by setting

initial condition,

B =0 5=1

Compare effect of isotropy inductive
bias for vafious

loginp RMS Error
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16 ‘ Application: coarse graining colloidal Poiseuille flow

Perform molecular dynamics simulations with
varying concentration (c), colloid particle size (d)

> Get time evolution of 1d profiles of

u = (un,up) = ([p", p°], [p" p"],))

Fit continuum model assuming conservation of
MEByuy = ) C gk (k. ¢, A)Chy (u, ¢, d)
k

dyup = S gt (k,c,d)Shi(u,c,d)
k k
k

where S and C are the sine and cosine
transform

Find time evolution for new c, d



17 ‘ Application: coarse graining colloidal Poiseuille flow
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18 I Future work

Limited to simple geometries and PDEs with smooth solutions

o Alternative basis
o Generalized moving least squares: Trask et al., NeurlPS, 2019

Bayesian version

Noisy data for more general problems
o Error-in-variables models

Applications

Comparisons to other operator regression methods
> Wu and Xiu, JCP, 2020
o Lietal arXiv:2010.08895
o Graph Neural operator: Li et al., NeurIPS, 2020
o DeepONets: arXiv:1910.03193
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20 ‘ Conclusion

Black-box ML Phy§ ICs Par.ame.ter
constrained ML estimation

|

<Prone to overfitting Strong assumptions>

ML with physics informed inductive biases
o More powerful than parameter estimation
o Better generalization and extrapolation than black-box ML

Paper and code:
o Patel and Desjardins, arXiv:1810.08552

o Patel et al. CMAME, 2021 (arXiv:2009.11992)
o https://github.com/rgp62/MOR-Physics



