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Abstract

Civil unrest can range from peaceful protest to violent furor, and researchers are working to monitor,

forecast, and assess such events to better allocate resources. Twitter has become a real-time data

source for forecasting civil unrest because the platform is used by millions of users as a social outlet.

Daily word counts are used as model features and predictive terms contextualize the reasons for

protest. In order to forecast civil unrest and also infer the reasons for the protest, we consider the

problem of Bayesian variable selection for the dynamic logistic regression model and propose using

penalized credible regions to select parameters of the updated state vector. This method avoids the

need for shrinkage priors, is scalable to high-dimensional dynamic data, and allows the importance

of variables to vary in time as new information becomes available. A substantial improvement in

both precision and F1-score using this approach is demonstrated by means of simulation. Finally, we

apply the proposed model fitting and variable selection methodology to the problem of forecasting

civil unrest in Latin America. Our dynamic logistic regression approach shows improved accuracy

compared to the static approach currently used in both event prediction and feature selection.

Keywords: Civil Unrest, Dynamic Logistic Regression, Forecasting, Pólya-Gamma Latent

Variable, Penalized Credible Regions

1. Introduction

In recent years open source data has become a powerful tool for predicting real-world events.

The widespread adoption of the social networking site Twitter has resulted in massive repositories

of free information. Researchers mine user-generated content and use daily word counts to forecast

diverse outcomes. For example, terms like “flu” and “fever” are leading indicators of influenza5

like illness rates reported by the Centers for Disease Control and Prevention in the United States

Achrekar et al. (2012); Li and Cardie (2013); Culotta (2010). Similarly, Twitter has been used to

predict stock price movement for financial markets (Bollen et al., 2011; Nisar and Yeung, 2018),
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box office revenue for the film industry (Asur and Huberman, 2010), inner city crime rates for law

enforcement (Gerber, 2014), and food supply chains (Singh et al., 2018).10

One emerging application for open source data is civil unrest. A nation’s citizens may protest

for a myriad of reasons, from local economic conditions to national government oppression, and

seemingly nonviolent civil unrest can escalate into deadly protests. Both social scientists and

government officials have used Twitter to monitor active civil unrest and learn from the events post-

unrest. For example, Twitter was leveraged to gain insights on the London riots (Panagiotopoulos15

et al., 2012), occupy Wall Street (Conover et al., 2013), and the Arab Spring (Eltantawy and Wiest,

2011; Lotan et al., 2011). Twitter is an advantageous data source because the platform allows people

to voice their displeasure and discuss their individual motives for engaging in protest. Therefore,

it effectively aggregates protest related information and researchers use daily word counts, such as

“protest”, “racism”, and “police”, to forecast civil unrest.20

To better allocate resources during times of protest, researchers are actively developing models

to forecast civil unrest. Qiao and Chen (2016) use Hidden Markov Models to predict the future

sequence of anti-government protests in Thailand; Bahrami et al. (2018) compare Naive Bayes,

Logistic Regression and Support Vector Machines to predict political protests against the president-

elect in 2016; Ertugrul et al. (2019) use a long short-term memory neural network to predict followup25

protests to the Charlottesville rally in 2017; and Ramakrishnan et al. (2014) use an ensemble

method to forecast civil unrest in Latin America. The current performance baseline of forecasting

civil unrest at the country level produces F1 scores in the range of 68% to 95% (Korkmaz et al.,

2016). Korkmaz et al. (2016) use logistic regression to forecast the probability of civil unrest in six

different Latin American countries.30

While the primary goal of forecasting civil unrest is prediction accuracy, an emerging secondary

goal is variable selection. In the context of civil unrest, variable selection is used to contextualize

the reasons for protest and find which social media features must be actively monitored as leading

indicators of civil unrest. That is, if the term “police” is predictive of civil unrest, this may require

a different allocation of resources than if the term “unemployed” is predictive. Most existing35

approaches do not consider feature selection for civil unrest forecasting. However, Korkmaz et al.

(2016) and Ertugrul et al. (2019) use LASSO and Group LASSO respectively. The regularization

allows the researchers to find predictive features in the high dimensional modeling scenario pp ą nq

and infer the reasons for protest.
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In this paper, we propose to model civil unrest using a dynamic framework. Dynamic models40

are used to forecast complex non-stationary time series. The time-varying parameters of these

state space regression models allow for greater flexibility in short-term forecasting, and the intrin-

sic Bayesian framework allows for sequential and efficient updating of model parameters as new

information becomes available. Given the inherent dynamic structure of civil unrest data, a dy-

namic model allows for better short-term forecasting accuracy in comparison to the static logistic45

regression model baseline. Furthermore, the time-varying structure of dynamic models allows for

parameters to evolve along with structural changes in the system over time. We propose using

penalized credible regions to choose the nonzero elements of the dynamic parameters each time the

model is updated in order to maintain a dynamic variable selection framework. Unlike existing dy-

namic models, this method is scalable, and we show improved performance over a LASSO baseline,50

resulting in better inference regarding the reasons for protest.

This paper is organized as follows. In Section 2.1, we discuss fitting dynamic linear and dy-

namic generalized linear models. In Section 2.2, we review dynamic variable selection methods.

In Section 2.3, we propose a dynamic logistic regression model and variable selection technique

and review its performance alongside the logistic regression with the LASSO regularization model55

in Section 3. Finally, we apply the model to the application of forecasting civil unrest in Latin

America in Section 4 and conclude with a discussion in Section 5.

2. Methods

2.1. Dynamic Model Fitting

Fitting a dynamic linear model (DLM) is relatively straightforward. The Bayesian paradigm60

allows for sequential updating of states via the Kalman filter (Ferreira and Gamerman, 2000).

Fitting more complex models relies on an extension of the Kalman filter and a Markov chain Monte

Carlo (MCMC) Gibbs algorithm (Petris et al., 2009) framework. We first discuss fitting the DLM

and later show how the methodology can be extended to fit a dynamic generalized linear model

(DGLM).65

Consider the univariate DLM specified by the observation equation (Equation 1a) and state

equation (Equation 1b) for t ě 1,

Yt “Xtβt ` vt vt „ Np0, σ2q (1a)
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βt “ Gtβt´1 `wt wt „ Np0,W q (1b)

where Yt is the observed scalar at time t, βt is the p-dimensional parameter vector (also called the

state vector), Xt is a p-dimensional vector of known covariates, and Gt is a known pˆ p transition

matrix governing the system disturbances, or the changes in the true underlying model. In addition,70

vt and wt are two independent sequences of independent Gaussian errors with mean zero and known

variance components.

To compute the posterior distribution, πpβ0:T , σ
2,W |y1:T q, we must sample from the full con-

ditional densities of πpσ2|β0:T ,W ,y1:T q, πpW |β0:T , σ
2,y1:T q, and πpβ0:T |σ

2,W ,y1:T q. Sampling

from the full conditionals for the variance components is problem specific. To sample from the75

unobservable states however, Carter and Kohn (1994) developed the FFBS algorithm to draw from

the distribution of all states β0:T . The FFBS algorithm proceeds by running the Kalman filter

and then recursively drawing realizations from β0:T . By coupling FFBS and the Gibbs sampler,

samples from the joint posterior distribution, πpβ0:T , σ
2,W |y1:T q, can be drawn.

For this paper, we focus solely on the dynamic generalized linear model (DGLM) with a Bernoulli80

response. For dynamic logistic regression, the observation equation is defined as

yt|βt „ Bernoullipπtq, πt “
eXtβt

1` eXtβt
t “ 1, . . . , T , (2)

and the state equation is the same as in the DLM scenario,

βt “ Gtβt´1 `wt wt „ Np0,W q. (3)

In this case, the response yt P t1, 0u represents a “success” or “failure,” respectively, at time t and

the probability of success at time t is linked to the p-dimensional state vector βt and known vector

of covariates Xt. The matrices Gt and W maintain the same purpose and interpretation as before.85

In the case of DLM’s, the one-step-ahead predictive distribution of βt|y1:t´1, the one-step-ahead

predictive distribution of Yt|y1:t´1, and the filtering distribution of βt|y1:t are all calculated online

because their Gaussian parameters are completely and sequentially determined by the Kalman

filter. The same technique is, of course, not possible in the DGLM framework.

However, a variety of techniques have been proposed to sequentially update the state vector βt.90
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For example, West et al. (1985) describe an approach using Linear Bayes estimation. Other methods

to sequentially update the state vector generally rely on linearly approximating the observation

equation to allow for the assumption of normality. The state vector can then be sequentially

updated using the Kalman filter (Ferreira and Gamerman, 2000). More modern DGLM fitting

techniques rely on MCMC and can be applied in a similar fashion as the DLM. Sampling from the95

full conditional densities for the evolution matrix πpW |β0:T ,y1:T q is problem specific. Sampling

from the states πpβ0:T |W ,y1:T q is accomplished via the Metropolis-Hastings algorithm within the

Gibbs sampler using a pseudo FFBS algorithm (Gamerman, 1998). One drawback of the MCMC

approach is that convergence can be slow (Carter and Kohn, 1994). Sampling each element of the

state vector for each time period is burdensome, as the number of states grows linearly with time.100

A novel approach to efficiently update the state vector in the DGLM scenario is described below.

In the static logistic regression scenario, Polson et al. (2013) proposed a data augmentation

technique for fully Bayesian inference when considering binomial likelihoods. The authors introduce

the Pólya-Gamma random variable to be used as a latent variable. The random variable X has a

Pólya-Gamma distribution, denoted X „ PGpb, cq, if105

X “
1

2π2

8
ÿ

k“1

gk
pk ´ 1{2q2 ` c2{4π2

, (4)

where b ą 0, c P R, gk „ Gammapb, 1q are independent Gamma random variables. The main result

from Polson et al. (2013) is that likelihoods from binomial response data can be represented as

mixtures of Gaussians according to the Pólya-Gamma distribution. This provides for an efficient

Gibbs sampler where the full conditional for β is multivariate normal and the full conditional for

the latent variable is a Pólya-Gamma distribution.110

Windle et al. (2013) extend the Pólya-Gamma data augmentation approach to dynamic logistic

regression. Starting with the likelihood of observed data y1:T and distribution of hidden states

β1:T ,

πpβ1:T |y1:T q “

„ T
ź

t“1

exppXtβtq
yt

1` exppXtβtq



πpβ1:T q , (5)

they introduce the Pólya-Gamma latent variable, ωt „ PGp1, ψtq, for t “ 1, . . . , T to construct the
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joint distribution,115

πpβ1:T ,ω1:T |y1:T q “

„ T
ź

t“1

exppXtβtq
yt

1` exppXtβtq
πpωt|Xtβtq



πpβ1:T q . (6)

Using properties of the Pólya-Gamma distribution, the joint posterior can be rewritten as

πpβ1:T ,ω1:T |y1:T q 9

„ T
ź

t“1

exp

ˆ

´
ωt
2

ˆ

kt
ωt
´Xtβt

˙2˙

πpβ1:T q , (7)

where kt “ yt ´ 1{2. The addition of the latent variable provides pseudo data zt “ kt{ωt where

zt „ NpXtβt, 1{ωtq. If we specify πpβ1:T q such that the states vary according to a random walk,

then sampling from the conditional distribution for β1:T is equivalent to sampling from the DLM

observation equation and state equation120

zt “Xtβt ` vt vt „ Np0, 1{ωtq (8a)

βt “ Gtβt´1 `wt wt „ Np0,W q (8b)

As a result, the posterior simulation can now be implemented using the FFBS algorithm to sample

state vectors. The combination of the Pólya-Gamma latent variable augmentation approach and

FFBS is highly advantageous and more computationally efficient than other DGLM fitting methods

because it avoids analytic approximations, numerical integration, and use of the Metropolis-Hastings

algorithm. For these reasons we use the Pólya-Gamma latent variable augmentation approach to fit125

the dynamic logistic regression model. The full posterior simulation for dynamic logistic regression

is detailed in Appendix 6.1.

2.2. Dynamic Variable Selection Methods

Since fitting dynamic models has become somewhat straightforward with modern computing

power and MCMC techniques, more recent work has focused on effect selection, or determining130

which elements of βt are nonzero at each successive time point t. With applications in finance,

such as equity premium and inflation forecasting (Kalli and Griffin, 2014), it is common to have a

high-dimensional state vector where many elements are unrelated to the target. Erroneous effects
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may reduce prediction accuracy and hinder model inference. This has spurred efforts to intelligently

remove irrelevant predictors from hypothesized models.135

The variable selection methods for dynamic models are predominantly extensions of techniques

from the static model literature and focus almost exclusively on linear models. Given the intrinsic

Bayesian framework of dynamic models, the approaches are consequently extensions of Bayesian

Model Averaging (Hoeting et al., 1999), latent variable augmentation (Dellaportas et al., 2002;

George and McCulloch, 1993), and shrinkage priors (Park and Casella, 2008; Griffin et al., 2010).140

However, variable selection for dynamic models is necessary over time, effectively allowing the

importance of features to change as new information becomes available.

Extending the concept of BMA to the dynamic setting, Raftery et al. (2010) propose dynamic

model averaging (DMA) and Koop and Korobilis (2012) apply the methodology to forecast inflation.

The key difference between BMA and DMA is that DMA allows the true model to vary over time.145

The model observation equation and state equation are specified as

yt “X
pkq
t β

pkq
t ` v

pkq
t v

pkq
t „ Np0, σ2pkqq , (9a)

β
pkq
t “ G

pkq
t β

pkq
t´1 `w

pkq
t w

pkq
t „ Np0,W pkqq , (9b)

where k denotes the model index. DMA requires calculating the probability of each model being

the true model at time t and averaging forecasts using posterior model probabilities,

Erŷt|y1:t´1s “

K
ÿ

k“1

ŷt
pkqπpMk|y1:t´1q . (10)

Similar to the static model literature, considering all possible 2p models is not feasible, and as

a result, both BMA and DMA typically consider only a small set of candidate models. However,150

extensions of DMA have been developed to be more computationally efficient. Onorante and Raftery

(2016) propose a dynamic form of Occams window to consider larger model spaces which they call

the FEAR (Forecast, Expand, Asses Reduce) algorithm. In four iterative steps, the authors initialize

a subset of all possible models at the outset to obtain a forecast distribution, expand the number

of models to a larger population by considering models similar to the current population, assess155

the models by computing weights once a new observation is available, and then finally reduce the
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number of models to those that are in Occams window. The computational advantage of this

method is that only a subset of models are considered and models are allowed to evolve slowly

over time. Risse and Ohl (2017) go one step further with the Dynamic Occam’s Window (DOW)

method and do not assume the models chosen in successive iterations are similar. In this scenario160

the parameters are less stable but mimic DMA more closely for a large number of features. Another

novel approach to scaling DMA is the technique of using Google probabilities (Koop and Onorante,

2019). This approach uses Google web queries to determine inclusion probabilities of model features.

The realized volume of proxy terms for model features effectively acts as a dynamic model selection

tool. An overview of DMA techniques is discussed in Nonejad (2021) and R code for fitting DMA165

with DOW is available in the fDMA pacakge (Drachal, 2020).

Other recent and efficient Bayesian approaches rely on fitting the model with all parameters and

shrinking elements of βt toward zero in accordance with the data. Motivated by the “spike-and-

slab” approach, Nakajima and West (2013) propose shrinking parameters to zero if their absolute

value falls below a threshold at any point in time t. This latent threshold modeling (LTM) approach170

introduces a matrix of latent variables, It “ diagpI1t, . . . , Iptq, into the observation equation,

yt “XtpItβtq ` vt vt „ Np0, σ2q , (11)

where Ijt “ Ip|βjt| ě djq and dj ě 0 for all p. The degree of sparseness is controlled by tuning the

elements of d “ pd1, . . . , dpq.

A few adaptive shrinkage priors have been discussed in the DLM literature as well. These

prior distributions shrink elements of βt toward zero if supported by the data and avoid shrinkage175

otherwise. The priors are adaptive in the sense that regularization adheres to data-driven evidence

and the degree of regularization can be tuned by altering prior distribution parameters, a concept

similar to altering the threshold parameter λ in non-Bayesian regularization. For example, Caron

et al. (2012) place the following multivariate hierarchical prior on βt,

βt|τ „ Npµ, τΣq τ „ GiGausspν, δ, γq , (12)

where µ P Rp, Σ is a p ˆ p covariance matrix, and GiGaussp¨q is the generalized inverse Gaus-180

sian distribution (Barndorff-Nielsen and Shephard, 2001). Letting βj “ pβj1 . . . , βjT q denote the

evolution of the jth parameter, then βj P RT follows the multivariate generalized hyperbolic distri-
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bution that simplifies to static model adaptive shrinkage priors under specific parameterizations.

For example, if δ “ 0 and ν “ 1 the prior reduces to the Laplace prior of Park and Casella (2008).

Likewise, if δ “ 0, ν ‰ 1, and ν ą 0 the prior reduces to the Normal-Gamma prior of Griffin et al.185

(2010).

Another adaptive shrinkage prior in the DLM literature is referred to as the Normal-Gamma

Autoregressive (NGAR) process (Kalli and Griffin, 2014). As its name implies, this prior is mo-

tivated by the Normal-Gamma prior of Griffin et al. (2010) with an extension to the DLM. The

process is written βj „ NGARpλj , µj , ϕj , ρjq. The authors show, similar to the static model with190

Normal-Gamma prior, the parameter λj controls the degree of sparseness. Small values of λj place

more prior mass at zero and cause heavier shrinkage for the jth coefficient. The autocorrelation

parameters ρj and ϕj control the dependence between state parameters. Thus, ρj and ϕj control

the ability for the importance of parameters to vary in time.

Although a powerful and flexible modeling tool for non-Gaussian time series data, DGLMs have195

received far less attention in the literature than their predecessor, the DLM. Currently, the only

DGLM variable selection method reported in the literature uses a variation of Bayesian model

averaging (BMA) techniques, which does not scale efficiently as the number of predictors grows.

McCormick et al. (2012) extend the DMA approach of Raftery et al. (2010) to the dynamic logistic

regression model. Given a set of K candidate models, pM1, . . . ,MKq, and letting Lt be the model200

indicator at time t, the observation equation becomes

yt|Lt “Mk „ Bernoullipp
pkq
t q, and logitpp

pkq
t q “X

pkq
t β

pkq
t . (13)

The forecasts from each of the K models are then averaged using πpLt “ Mk|y1:t´1q as weights.

A key contribution lies in the sequential updating of model parameters in the dynamic logistic

regression model.

2.3. Scalable Variable Selection in Dynamic Logistic Regression205

An ideal variable selection method for dynamic models is one that can scale to models with

many predictors and can efficiently conduct variable selection each time the model is updated.

Here we describe a method originally developed for Bayesian linear models and show that it can be

extended to dynamic models.
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Bondell and Reich (2012) proposed Bayesian variable selection via penalized credible regions210

for the traditional, static linear model. This approach separates the model fitting and variable

selection process by constructing credible regions from the posterior distribution of β and Σ. Given

a p1 ´ αq ˆ 100% credible region, any point within the region is a feasible estimate of β. The

authors suggest selecting the sparsest solution to accomplish variable selection. Thus, the proposed

estimate is215

β̃ “ argmin
β

‖β‖0 subject to β P Cα (14)

where ‖β‖0 is the L0 norm of the vector β, i.e. the number of nonzero elements, and Cα is the

p1´αq ˆ 100% credible region. The selected model excludes predictors where βj “ 0 is included in

the credible region.

As the coverage increases, the credible region expands leading to a sparser model. The authors

suggest creating a sequence of credible sets that correspond to creating a sequence of selected models.220

The sequence of p models are the only p possible models to be considered. The best model, given

the solution path, can then be chosen by a goodness-of-fit metric such as the Akaike information

criterion or the Bayesian information criterion. This is a drastic reduction in the comparisons

required for all possible 2p models.

Figure 1 demonstrates the joint credible region approach to variable selection for a linear model225

with only two parameters, β1 and β2. Starting from the largest ellipse, referring to the 95% credible

region, the sparsest solution would be the null model as β1 “ β2 “ 0 is a feasible solution, marked

by the ˆ̂̂. Next, the 90% credible region indicates only β2 “ 0, marked by a thick line along the

x-axis. Finally, the sparsest solution within the smallest credible region includes both parameters

in the model as nonzero coefficients. Therefore, the solution path in this example is tβ1, β2u.230

In some cases, the posterior of β is elliptical with density of the form Hrpβ ´ β̂qT Σ̂´1pβ ´ β̂qs

where H is a monotone decreasing function. Therefore, the highest density region is of the form

tpβ´ β̂qT Σ̂´1pβ´ β̂q “ Kαu for some Kα. In general, the posterior distribution does not maintain

elliptical contours but credible sets still can be created. In addition, the solution to Equation (14)

is not unique and requires searching over a possibly high dimensional region. To overcome these235

challenges, Bondell and Reich (2012) apply several alterations to Equation (14). First, the authors

replace the L0 norm by a smooth combination of L0 and L1 (Lv and Fan, 2009) which leads to
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Figure 1: Example of the joint credible region variable selection approach for a linear model with two parameters.
Here the solution path is tβ1.β2u.

a non-convex optimization problem. Next, it is converted to a convex optimization problem by

applying a local linear approximation which is equivalent to the Lagrangian optimization problem

β̃ “ argmin
β

«

pβ ´ β̂qT Σ̂´1pβ ´ β̂q ` λ
p
ÿ

j“1

|βj |
|β̂j |2

ff

, (15)

where λ is the tuning parameter and has one-to-one correspondence to α. Therefore, the proposed240

sequence of selected models is given by the solution to Equation 15 as a function of λ. For a given λ,

regressing Y ˚ “ Σ̂´1{2β̂ on X˚ “ Σ̂´1{2D with an L1 penalization, where D “ diagpβ̂1
2
, . . . , β̂p

2
q,

returns the solution β˚. The solution to Equation (15) is then calculated as β̃ “ Dβ˚. One can

readily find the entire solution path using the Least Angle Regression algorithm (Efron et al., 2004).

The joint credible region variable selection approach can be extended to the dynamic logistic245

regression model by altering the inputs to the optimization problem in Equation (15). In order to

create the solution path for a linear model detailed above, the technique only requires posterior

distribution estimates of the parameter vector β̂ and model covariance Σ̂. To extend this approach

to dynamic logistic regression we can replace these inputs with posterior estimates of the state
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vector β̂t and its covariance Ŵ . Thus, the optimization problem becomes250

β̃t “ argmin
βt

«

pβt ´ β̂tq
TŴ´1pβt ´ β̂tq ` λ

p
ÿ

j“1

|βjt|
|β̂jt|2

ff

. (16)

There are two advantages of the joint credible region variable selection approach. First, the

method is scalable because we are able to include all p predictors into the model fitting process

unlike the DMA approach in McCormick et al. (2012). Second, the method allows for dynamic

variable selection, meaning, we are able to construct joint credible regions and conduct variable

selection at every time point for every state vector β̂t. As new information becomes available and255

the underlying process generating the model changes, the dynamic joint credible region approach

can determine nonzero elements of the state vector sequentially in time.

3. Simulation

In this section, we evaluate the performance of the dynamic logistic regression and variable

selection approach described in Section 2.3 against dynamic model averaging and the static logistic260

regression with the LASSO regularization model. The latter approach is used in the motivating

example of predicting civil unrest in South America (Korkmaz et al., 2016). We compare both the

prediction and variable selection results for the three models.

3.1. Setup

In each case of the simulation, data sets are generated from the dynamic logistic regression265

observation equation

yt|βt „ Bernoullipπtq, πt “
eXtβt

1` eXtβt
t “ 1, . . . , T (17)

and state equation

βt “ Gtβt´1 `wt wt „ Np0,W q (18)

The number of observations for each time series is varied in T P t50, 100u and the covariates are

standard normal. We let the parameters freely vary according to a random walk by setting both

the transition matrix and the state equation covariance matrix to the identity, Gt “ W “ Ip.270
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The number of candidate predictors is varied in p P t5, 10, 15, 25, 50, 100u and the true number of

predictors used to generate y1:T is approximately 10% of p, p˚ P t2, 2, 2, 3, 5, 10u. For each data set,

p˚ indices are randomly chosen as the nonzero locations of the state vectors βt to avoid a potential

ordering bias.

To simulate the nonzero elements of the state vectors, we consider two scenarios for generating275

dynamic coefficients: 1) structural break parameters and 2) completely dynamic parameters. First,

completely dynamic parameters are simulated as seen in the state equation above. That is, the

nonzero parameters vary according to a random walk by adding white noise to those parameters

at every single time point. Structural break parameters are a relaxed version of the completely

dynamic scenario. In this case, parameters are assumed static for t ą 1 until the model experiences280

a shift. For this simulation, we shock the true p˚ parameters every 10 time points by simply adding

white noise to the parameters. For structural break parameters the state equation is written

βt “ Gtβt´1 `wt1
`

0 ” t mod 10
˘

wt „ Np0,W q (19)

Figure 2 shows how a single parameter may evolve over time under the two scenarios. Clearly,

it should be easier for the model to track structural break parameters as there are periods of

stationarity and the parameters lack extreme movement during the shock. The completely dynamic285

parameters add an increased layer of complexity. For example, Figure 2 shows that the completely

dynamic parameter is negative at first and then increases to a relatively large positive coefficient

until it moves back to zero at the end of the graph. The goal is to see if adding complexity to the

model reduces performance given that is more difficult to track completely dynamic parameters.

3.2. Metrics290

For each time series length T P t50, 100u, we fit the model on the first 50% of the observations,

t25, 50u, and then forecast one time period ahead and five time periods ahead. For the LASSO reg-

ularization of the static model, the regularization parameter is chosen via five-fold cross-validation.

For dynamic model averaging we forecast using the ensemble of fit models (2p) and choose the best

model according to posterior probabilities for variable selection. For the dynamic logistic regression295

variable selection, we apply the penalized credible region approach described in Section 2.3 on the

terminal state vector. We then move one unit of time ahead, make a forecast, and conduct variable

13



0 10 20 30 40 50

−
1

0
−

5
0

5
1

0

Time

β
 j
 t

Structural Break

Completely Dynamic

Figure 2: Example of a single structural break and completely dynamic parameter.

selection again. The process is repeated until the end of the times series. At each forecast and

variable selection period, we measure the accuracy of predictions with the described metrics.

Prediction performance is measured by the standard confusion matrix for a binary response.300

Let true positives (TP) be a correctly predicted event, true negatives (TN) a correctly predicted

nonevent, false positives (FP) an incorrectly predicted event, and false negatives (FN) an incor-

rectly predicted nonevent. Overall model accuracy can be measured as the proportion of correct

predictions, TP`TN
TP`TN`FP`FN . For each of the four prediction performance possibilities, we use a

cutoff rate of 0.50.305

We also examine the trade-off between power and the false discovery rate by measuring both

the recall and precision for each model. Recall, also known as the TP rate, is the ratio of TPs to

the total number of events, TP
TP`FN . Hence, it measures the model’s ability to correctly predict an

event when there is in fact an event. Precision, on the other hand, is the ratio of TPs to the total

number of predicted events, TP
TP`FP . These two metrics must be measured in combination because,310

for example, recall could be inflated by allowing the model to simply predict events in all cases. To
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aggregate precision and recall, we report the F1 scores, or the harmonic average of precision and

recall, for each case in the simulation.

Variable selection performance is measured using the same metrics as prediction. For each

prediction, we count the number predictors correctly included in the model (TP), correctly excluded315

from the model (TN), incorrectly included (FP), and incorrectly excluded (FN). In addition, the

precision, recall, and F1 scores for variable selection are also measured for the same reasons above.

3.3. Simulation Results

Table 1: Forecast results for completely dynamic parameters, T “ 50, and p ă 25.

Model Forecast Predictors TP TN FP FN Precision Recall F1

LASSO 1 5 50.83 3.12 45.83 0.21 52.59 99.59 68.83

5 5 50.53 2.93 46.25 0.29 52.21 99.43 68.47

DMA 1 5 44.38 42.71 6.04 6.88 88.02 86.59 87.30

5 5 39.09 38.08 10.91 11.92 78.17 76.63 77.39

DGLM 1 5 49.58 47.50 1.46 1.46 97.14 97.14 97.14

5 5 47.26 46.15 3.03 3.56 93.98 93.00 93.49

LASSO 1 10 46.67 4.79 48.33 0.21 49.12 99.56 65.79

5 10 47.31 4.28 48.41 0.00 49.42 100.00 66.15

DMA 1 10 51.04 42.29 3.12 3.54 94.23 93.51 93.87

5 10 40.48 34.42 10.67 14.42 79.14 73.73 76.34

DGLM 1 10 46.67 52.92 0.21 0.21 99.56 99.56 99.56

5 10 46.78 51.92 0.77 0.53 98.38 98.88 98.63

LASSO 1 15 47.50 4.17 48.12 0.21 49.67 99.56 66.28

5 15 47.36 3.99 48.46 0.19 49.42 99.60 66.06

DMA 1 15 42.92 48.12 4.38 4.58 90.75 90.35 90.55

5 15 29.47 33.75 18.65 18.12 61.24 61.92 61.58

DGLM 1 15 47.29 52.29 0.00 0.42 100.00 99.13 99.56

5 15 45.82 50.91 1.54 1.73 96.75 96.36 96.56

For each combination of time series length T P t50, 100u, candidate predictors p P t5, 10, 15, 25, 50, 100u,

and dynamic parameter scenario, we average the metrics across 100 data sets. For each data set we320

use 5000 MCMC iterations to approximate the posterior distribution after a 500 iteration burn-in

period. Note, results for the completely dynamic parameters and the structural break parameters
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are markedly similar. For this reason we primarily refer to the completely dynamic parameter results

presented in Tables 1-5. The structural break parameter results are displayed in Appendix 6.2. Also

note, dynamic model averaging was only considered for a small number of predictors, p P t5, 10, 15u.325

As described in Section 2.2, DMA for binary outcomes is currently not scalable for even a moderate

number of predictors, p P t25, 50, 100u.

For the prediction results, perhaps the first thing to notice is the accuracy of the dynamic logistic

regression model is higher than the DMA model and much higher than the LASSO model. That

is, the TP and TN rates for the DGLM are almost 50% each, and therefore, false predictions are330

extremely low. For the LASSO model, it appears that a majority of the predictions are events as

the TP and FP rates are near 50% each. As a result, the LASSO model rarely makes the correct

prediction of a nonevent. The TN rates for the DMA are better than that of the LASSO model

but slightly worse than for the DGLM model.

Due to the high FP rate for the LASSO model, the precision is kept low, ranging between 50%335

and 53%. On the other hand, recall is high in the upper 90% range for the LASSO model because

the FN rate is low. The low precision and high recall again indicate that the LASSO model over

predicts the rate of events in each data set. Averaging out the low precision and high recall for the

LASSO model gives F1 scores in the 67% ´ 69% range. For DMA, the false prediction rates are

similar for each forecast scenario, resulting in higher precision than the LASSO model and lower340

recall. Averaging out these effects, DMA outperforms the LASSO model with F1 scores in the

61%´ 94% range. Because of the high accuracy of the DGLM model the precision, recall, and F1

scores are all in the range of 95% to 100%.

Moving from a times series length of T “ 50 in Table 2 to T “ 100 in Table 3 for the LASSO and

DGLM, it does not seem to impact the prediction results when forecasting either one time period345

ahead or five periods ahead. F1 scores remain high in either case. The same is true when T is held

constant and the number of candidate predictors varies in p P t25, 50, 100u. F1 scores remain high

even moving into the p ą T scenario. For p P t5, 10, 15u in Table 1, the DMA performs considerably

better forecasting one time period ahead than five periods ahead causing the difference in F1 scores

for DMA to increase as p increases.350

The variable selection results (Table 4 and Table 5) also show that the DGLM outperforms the

other two models. In all cases except for p “ 5, the TP and TN rates for the DGLM are higher

and the FP and FN rates are lower than both LASSO and DMA. As a result, the precision, recall,
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Table 2: Forecast results for completely dynamic parameters, T “ 50, and p ě 25.

Model Forecast Predictors TP TN FP FN Precision Recall F1

LASSO 1 25 50.13 2.83 46.60 0.43 51.82 99.14 68.07

5 25 50.31 2.98 46.15 0.56 52.16 98.89 68.29

DGLM 1 25 50.46 49.33 0.10 0.10 99.80 99.80 99.80

5 25 49.65 48.16 0.90 1.21 98.22 97.62 97.92

LASSO 1 50 49.23 1.93 48.23 0.60 50.51 98.79 66.84

5 50 49.29 2.26 47.85 0.59 50.74 98.82 67.05

DGLM 1 50 49.73 50.07 0.10 0.10 99.79 99.79 99.79

5 50 49.38 49.64 0.48 0.50 99.03 98.99 99.02

LASSO 1 100 50.20 1.30 47.83 0.67 51.21 98.68 67.43

5 100 50.23 1.57 47.46 0.74 51.41 98.54 67.58

DGLM 1 100 50.87 49.13 0.00 0.00 100.00 100.00 100.00

5 100 50.83 48.91 0.12 0.14 99.76 99.73 99.74

and F1 scores are all higher for the DGLM, except for p “ 5 where DMA has the largest TN rate.

On average the DGLM is better able to pick out the true predictors and reject the noise variables.355

Furthermore, for both the DGLM and LASSO models, the TP rate and F1 scores increase as the

number of observations increase from T=50 to T “ 100, holding p constant. Intuitively this makes

sense; the more data each model has, the better they are equipped to pick the correct variables. Note

that the variable selection performance values in Table 5 are much lower than the prediction results

in Tables 2 and 3. This illustrates that although identifying the active predictors is a challenging360

problem, the prediction results are fairly robust against model misspecification.

The dynamic logistic regression model outperforms the DMA and LASSO models in both pre-

diction and variable selection as measured by precision, recall, and the F1 score. For prediction,

the LASSO model consistently over classifies predictions as events, DMA had better precision than

LASSO due to fewer false positives, and the DGLM was consistently accurate with F1 scores in365

the high 90% range. Regarding variable selection, the DGLM overall outperformed the other two

models in all four categories of the confusion matrix (TP,TN,FP,FN) and as a result, the precision,

recall, and F1 scores were all consistently higher as well. The DGLM model was better able to track

the underlying distribution, leading to better rates of inclusion of true predictors and exclusion of

noise variables.370
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Table 3: Forecast results for completely dynamic parameters, T “ 100, and p ě 25.

Model Forecast Predictors TP TN FP FN Precision Recall F1

LASSO 1 25 50.54 2.34 47.02 0.10 51.80 99.80 68.21

5 25 50.48 2.29 47.10 0.13 51.73 99.74 68.13

DGLM 1 25 50.62 49.28 0.08 0.02 99.84 99.96 99.90

5 25 50.01 48.68 0.71 0.51 98.60 98.99 98.79

LASSO 1 50 48.64 2.90 48.36 0.10 50.14 99.79 66.75

5 50 48.65 2.80 48.37 0.17 50.14 99.65 66.72

DGLM 1 50 48.72 51.26 0.00 0.02 100.00 99.96 99.97

5 50 48.64 50.99 0.19 0.18 99.61 99.63 99.62

LASSO 1 100 49.40 2.02 48.36 0.22 50.53 99.56 67.04

5 100 49.53 2.01 48.27 0.19 50.64 99.62 67.15

DGLM 1 100 49.62 50.38 0.00 0.00 100.00 100.00 100.00

5 100 49.72 50.22 0.06 0.04 99.88 99.92 99.89

Table 4: Variable selection results for completely dynamic parameters, T “ 50, and p ă 25.

Model Predictors TP TN FP FN Precision Recall F1

LASSO 5 44.75 21.79 18.21 15.25 71.08 74.58 72.79

DMA 5 42.25 25.83 14.17 17.75 74.89 70.42 72.58

DGLM 5 52.29 22.04 17.96 7.71 74.44 87.15 80.29

LASSO 10 21.38 40.90 29.10 8.62 42.34 71.25 53.12

DMA 10 20.08 39.40 30.60 9.92 39.62 66.94 49.78

DGLM 10 26.62 54.71 15.29 3.38 63.52 88.75 74.04

LASSO 15 13.42 54.96 25.04 6.58 34.89 67.08 45.90

DMA 15 11.39 36.82 43.18 8.61 20.87 56.94 30.55

DGLM 15 17.38 66.01 13.99 2.62 55.40 86.88 67.66
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Table 5: Variable selection results for completely dynamic parameters and p ě 25.

Model Predictors T TP TN FP FN Precision Recall F1

LASSO 25 50 7.16 67.97 20.03 4.84 26.33 59.67 36.54

DGLM 25 50 9.12 75.77 12.23 2.88 42.72 76.00 54.69

LASSO 25 100 8.65 68.91 19.09 3.35 31.18 72.08 43.53

DGLM 25 100 11.29 69.64 18.36 0.70 38.08 94.16 54.23

LASSO 50 50 4.06 76.83 13.17 5.94 23.56 40.60 29.82

DGLM 50 50 5.77 79.95 10.05 4.22 36.47 57.76 44.71

LASSO 50 100 6.66 72.85 17.14 3.33 27.98 66.67 39.42

DGLM 50 100 8.26 76.30 13.69 1.73 37.63 82.68 51.72

LASSO 100 50 2.18 82.08 7.92 7.82 21.58 21.80 21.69

DGLM 100 50 3.07 83.71 6.29 6.92 32.79 30.73 31.73

LASSO 100 100 4.63 77.99 12.00 5.37 27.84 46.30 34.77

DGLM 100 100 5.86 79.04 10.96 4.14 34.84 58.60 43.69

4. Application

We now compare the logistic regression with LASSO regularization baseline method to the

dynamic logistic regression and variable selection approach applied to civil unrest in South America.

Dynamic model averaging does not scale to a data set of this magnitude. We model civil unrest375

in Argentina, Brazil, Colombia, Mexico, Paraguay, and Venezuela from Novermber 2012 to August

2014, using data collected by Korkmaz et al. (2016).

Ground truth of the binary outcome, daily civil unrest, is produced by social scientists within

the region and is reported in the Gold Standard Report. For model features we include only Twitter

terms. A 10% sample of all generated tweets were collected during the period in Latin America from380

Datasift, equating to approximately 500 million tweets. The tweets were filtered using a dictionary

of p “ 962 protest-related Twitter terms for each country. The dictionary was created by subject

matter experts in Latin America and contains words such as “revolution,” phrases such as “walk for

peace,” and political individuals such as “Henrique Capriles,” who is the leader of the Venezuelan

opposition party.385

The number of protests in each country over the two year period is displayed in Figure 3. On the
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Figure 3: The number of protest and non-protest days for Argentina, Brazil, Colombia, Mexico, Paraguay, and
Venezuela from November 2012 to August 2014 according the the Gold Standard Report.

per-country level, Argentina, Brazil, Colombia, Mexico, Paraguay, and Venezuela all experienced

civil unrest at least 40% of the days throughout the 2-year period. Furthermore, in Brazil and

Mexico, protests occurred on more than 500 days of the approximately 600-day period.

For more efficient implementation via parallelization, we model the first 600 observations in 50390

day increments. In each 50 day period, p1´ 50, 51´ 100, . . . , 551´ 600q, we fit each model on the

first 25 observations and then forecast one day and five days ahead. We then move one day ahead

in time, fit the model to the past data, and forecast again. The process is repeated until the last

day is reached. For each of the six countries, we use 1000 MCMC iterations to approximate the

posterior distribution after a 100 iteration burn-in period. Forecast results are shown in Table 6395

and the top five most commonly selected variables are provided in Table 7.
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The recall of each model is markedly similar to the simulation results discussed in Section 3.3,

with ranges of 97% to 100% for each model and country. Both the static and dynamic models

rarely forecasted no civil unrest when there was in fact a future protest looming. The precision for

the dynamic model also is high for each country with ranges of 98% to 100% indicating few false400

prediction of future protest. For the LASSO model, however, the precision varies widely among

countries. For example, the precision for Brazil and Mexico are both in the lower to mid 80% range

and the Precision for Argentina is in the mid 50% range. As discussed in the simulation results

of Section 3.3, the LASSO model tends to over forecast the probability of an event; therefore, the

inconsistency of the precision for the civil unrest application can best be explained by Figure 3.405

Brazil and Mexico have the highest proportion of protests at 0.78 and 0.85 respectively. Countries

where the proportion of protests is closer to 0.50, such as Argentina and Colombia, the precision

for the LASSO model is closer to 50%.

Averaging the precision and recall results for the dynamic model, the F1 scores remain in the

97% to 100% range, providing evidence of a highly accurate civil unrest forecasting model. In both410

Argentina and Venezuela, the one day head forecasts were perfect over the entire 600 day period.

In all cases, moving from a one day ahead to five days ahead forecast reduced the forecast accuracy

as expected, indicating there is in fact a dynamic component to the unknown forces generating civil

unrest. For the LASSO model, the F1 scores mimic the behavior of the precision, as the recall is

invariably high. The F1 scores for Brazil and Mexico, the two countries most likely to experience415

civil unrest, are in the 89% to 91% range. F1 scores for the other four countries are in the 60%

to 81% range. Overall the dynamic model outperforms the static model in forecasting civil unrest.

The F1 scores for each country and forecast period are all higher for the dynamic logistic regression

model than that of the baseline model.

Understanding the reasons people protest and civil unrest inference in general is achieved via420

variable selection. Table 7 reports the most common terms selected by each model over the two year

forecasting period. For example, the most predictive terms for civil unrest in Colombia according to

the dynamic model are reform (reforma), judgment (sentencia), traditional (tradicional), environ-

ment (ambiental), and wages (salarial). In addition, the dynamic model selected these variables for

model inclusion 25%, 23%, 23%, 19%, and 18% of the time respectively. Thus, for approximately425

6 months of the 2-year time period, Colombians were presumably protesting reform of traditional

values, environmental impact, and low wages. In fact, in 2013 the Colombian government deployed
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Table 6: Civil unrest forecast results for each country, model, and forecast period.

Country Model Forecast Days Precision Recall F1 Score

Argentina LASSO 1 54.06 98.16 69.72

5 55.18 97.85 70.56

DGLM 1 100 100 100

5 98.64 98.26 98.45

Brazil LASSO 1 80.33 100 89.09

5 80.43 99.70 89.04

DGLM 1 99.17 99.59 99.38

5 99.32 99.51 99.41

Colombia LASSO 1 43.10 100 60.24

5 43.04 99.44 60.08

DGLM 1 100 98.43 99.21

5 99.78 97.77 98.77

Mexico LASSO 1 83.85 99.59 91.04

5 84.29 99.15 91.11

DGLM 1 99.46 99.94 99.70

5 98.99 99.90 99.45

Paraguay LASSO 1 53.69 98.76 69.56

5 52.17 98.64 68.24

DGLM 1 99.72 99.65 99.69

5 98.31 98.24 98.27

Venezuela LASSO 1 67.33 100 80.47

5 64.76 99.63 78.49

DGLM 1 100 100 100

5 98.27 97.42 97.85
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50, 000 troops to stymie the violent protests rooted in its citizens demanding reform of Colombian

agricultural business and unfair trade agreements that were forcing farmers out of business (CNN,

2013). The protests resumed in 2014 when the Colombian government failed to keep promises that430

quelled the riots of 2013 (BBC, 2014).

Most of the predictive terms reported in Table 7 provide some degree of inference regarding

the reason for protest. For example, in Mexico, which is a highly traditional and religious country,

the term homophobia (homophobia) is the third most commonly selected term according to the

dynamic model, which indicates groups protesting for and against gay rights. On the other hand, in435

Argentina, the dynamic model finds terms such as warning (advertencia) and assembly (asamblea)

to be predictive of civil unrest. These terms do not necessarily provide context to the protest,

rather they are simply words that must be monitored within the Twitter feed to forecast the

likelihood of future protests. Furthermore, Figure 4 displays the dynamic parameters for the three

most predictive terms in Argentina. The graphic not only shows the periods which the terms440

are predictive but also how critical the terms are for prediction long term. For example, the

term “advertencia” appears to be predictive in the first 150 days and the term “asamblea” is

only predictive around the 200 day mark. The term “salud” shows periods where its associated

parameter is relatively large in magnitude for more than half the entire period. The term “salud”

is a more consistent predictor of civil unrest in Argentina and the other two terms represent the445

need for a dynamic model as the reasons for protest are fluid.

As expected, the most predictive terms between countries are different given a specific model.

Civil unrest occurs for a multitude of reasons, and one nation’s predictive terms or motives for

protest do not necessarily correlate or influence another. The variable selection results also show the

most frequently selected terms are completely different for each model within a given country. This450

is counterintuitive given the variable selection simulation results discussed in Section 3.3. Under

controlled conditions, the two models performed relatively similar in terms of the TP and TN rates.

For the civil unrest application, the five most commonly selected variables for the dynamic model

are selected between 16% and 25% of the time and for the LASSO model the range is reduced to

only 6% to 14%. In this setting, the LASSO model appears to select different terms for each 50455

observation period. Conversely, the dynamic model identifies terms that are predictive over several

months. Although we expect the active features to change over time (hence the use of a dynamic

generalized linear model), it is also reasonable to expect a certain set of words to repeat as highly
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Table 7: Top five most commonly selected variables for each country and model.

Country Model Twitter Features (% of Time Selected)

Argentina LASSO Seguridad(9) Iniciativa(8) Efectivo(7) Proyecto(7) Legalizacia(6)

DGLM Salud(22) Advertencia(21) Asamblea(19) Prohibir(18) Resultados(17)

Brazil LASSO Atrocidad(14) Incremento(8) Laa(8) Legalizacia(7) Damnificado(7)

DGLM Accidente(18) Arara(17) Ministro(16) Masacre(16) Convenios(15)

Colombia LASSO Effectivo(10) Electricidad(9) Justificacia(8) Directivos(8) Universitarios(7)

DGLM Reforma(25) Sentencia(23) Tradicional(23) Ambiental(19) Salarial(18)

Mexico LASSO Rumores(9) Humillar(8) Plantear(7) Dictadura(7) Rancheros(7)

DGLM Excesos(17) Marcha(17) Homofobia(16) Caro(16) Agua(16)

Paraguay LASSO Contaminar(8) Procesados(8) Derechos(7) Afectados(7) Corrupcia(7)

DGLM Embargo(25) Encontrar(25) Huelga(23) Destrozar(22) Compromiso(20)

Venezuela LASSO Prejuicios(10) Aumento(9) Violar(8) Perseguir(7) Transportistas(7)

DGLM Realizar(25) Hidroela(21) Derivar(17) Recuerdos(17) Lucha Armada(16)

predictive features within a country. We believe this suggests that the dynamic logistic regression

model is not only more predictive of civil unrest, but also more accurately identifies the issues that460

drive its occurrence.

5. Conclusion

In this paper we present a combined model fitting and Bayesian variable selection methodology

for dynamic logistic regression. We include the Pólya-Gamma latent variable into the joint posterior

distribution to more efficiently sample draws of state vectors using the FFBS algorithm. After model465

fitting, we use the estimated state vector at time t and its covariance to create penalized credible

regions for variable selection. This method provides an entire solution path for the modeler to select

the best of only p possible models. Furthermore, one can do variable selection dynamically using

joint credible regions, or simply, at each time point a new observation becomes available and the

state vector is updated.470

Through simulation, we show that this approach significantly improves the precision of predict-

ing an event and, thus, the F1-score as well, consistently reaching over 95% and often over 99%.

24



Figure 4: Normalized coefficients for the three most commonly selected variables in Argentina.

We also show that the active features were correctly identified more frequently with this approach,

particularly when the parameters change in a completely dynamic fashion. However, even in a

situation where the parameter values periodically shift, the dynamic logistic regression with the475

variable selection approach still outperforms the static LASSO.

The proposed methodology is applied to the problem of civil unrest in Latin America. We

forecast the probability of future protest one day ahead and five days ahead in Argentina, Brazil,

Colombia, Mexico, Paraguay, and Venezuela. Using only protest-related terms as model features

extracted from Twitter, we show improved accuracy compared to the baseline static logistic regres-480

sion using the LASSO regularization model. The F1 scores improved from a range of 60% to 92%

for the baseline model to 97% to 100% for the dynamic logistic regression model. The dynamic

model is able to forecast using the most recent information and account for dependencies between
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successive observations. Furthermore, the flexibility of the model captures the inherent dynamic na-

ture of Twitter and allows protest predictive terms to vary in time. The proposed variable selection485

technique dynamically selects predictors and captures the fluid reasons for civil unrest.

6. Appendix

6.1. Dynamic Logistic Regression Posterior Simulation

The joint posterior density for the general exponential family dynamic model here is written to

include the latent variable,490

πpy1:T ,β0:T ,W ,ω1:T q “ πpβ0q ˆ πpW q ˆ

T
ź

t“1

πpyt|βtq ˆ
T
ź

t“1

πpβt|βt´1,W q

T
ź

t“1

πpωt|βt´1q (20)

For dynamic logistic regression, specify πpyt|βtq as the Bernoulli observation equation,

πpβt|βt´1,W q as the normally distributed state equation, and πpωt|βt´1q as the Pólya-Gamma

distributed latent variable. Let πpβ0q be the normally distributed prior for the initial state vec-

tor, which is now a conjugate prior due to the latent variable, and let πpW q be the prior for

the state equation covariance. For computational purposes, assume the covariance structure is495

W “ diag

ˆ

1
τ1
, . . . , 1

τp

˙

, where τi represents the ith inverse variance component. Therefore, the

prior can be written as a product due to its diagonal form,
śp
i“1 πpτiq. Let the inverse variance

components be gamma distributed, πpτiq „ gammapα, γq, to provide a conjugate prior. Given that

the posterior density is completely specified, now draw posterior samples of tβ1:T ,W ,ω1:T u from

the joint posterior distribution in the Equation above.500

1. Initialize the latent variable vector ω
p0q
1:T , the states β

p0q
1:T , and the state covariance W p0q.

2. For iterations k “ 1, . . . , N :

(a) Sample β
pkq
1:T using the FFBS algorithm using pseudo Gaussian data from Equation 8a.

(b) Sample the components of W pkq individually from the updated Gamma distribution,

π
`

τ
pkq
i | ¨

˘

„ Gamma

ˆ

α`
T

2
, γ `

T
ÿ

t“1

pβ
pkq
ti ´ β

pkq
pt´1qiq

2

˙

for i “ 1, . . . , p.
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Table 8: Forecast results for structural break parameters and T “ 50.

Model Forecast Predictors TP TN FP FN Precision Recall F1

LASSO 1 25 49.73 1.60 47.97 0.70 50.90 98.61 67.14

5 25 49.45 1.85 47.98 0.73 50.75 98.54 67.00

DGLM 1 25 50.13 49.10 0.47 0.30 99.07 99.41 99.24

5 25 48.38 47.60 2.22 1.79 95.61 96.43 96.02

LASSO 1 50 50.43 1.93 46.53 1.10 52.01 97.87 67.92

5 50 50.60 1.90 46.51 0.98 52.11 98.10 68.06

DGLM 1 50 51.40 48.40 0.06 0.13 99.88 99.74 99.82

5 50 50.70 47.51 0.90 0.88 98.26 98.29 98.27

LASSO 1 100 50.73 1.33 47.33 0.60 51.73 98.83 67.92

5 100 50.71 1.04 47.72 0.53 51.51 98.96 67.76

DGLM 1 100 51.23 48.43 0.23 0.10 99.55 99.81 99.68

5 100 50.61 48.04 0.72 0.63 98.59 98.77 98.68

(c) Sample each element of the latent variable vector ω
pkq
t , from the Pólya-Gamma distribu-505

tion conditioned on the states, PGp1,Xtβ
pkq
t q, for t “ 1, . . . , T .

Note, R code to fit the dynamic logistic regression model and conduct variable selection using

penalized credible regions is located at https://github.com/jordanbakerman/Dynamic.

6.2. Structural Break Parameters Simulation Results
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Table 9: Forecast results for structural break parameters and T “ 100.

Model Forecast Predictors TP TN FP FN Precision Recall F1

LASSO 1 25 51.98 0.62 47.16 0.24 52.43 99.54 68.68

5 25 51.91 0.63 47.21 0.24 52.37 99.54 68.63

DGLM 1 25 51.60 47.28 0.50 0.62 99.04 98.81 98.92

5 25 49.60 45.25 2.59 2.56 95.04 95.09 95.06

LASSO 1 50 50.40 0.96 48.24 0.40 51.09 99.21 67.45

5 50 50.47 1.03 48.16 0.34 51.17 99.33 67.54

DGLM 1 50 50.74 49.16 0.04 0.06 99.92 99.88 99.90

5 50 49.95 48.50 0.69 0.85 98.64 98.33 98.48

LASSO 1 100 51.60 0.68 47.32 0.40 52.16 99.23 68.38

5 100 51.67 0.70 47.26 0.37 52.22 99.29 68.45

DGLM 1 100 51.96 48.00 0.02 0.02 99.96 99.96 99.96

5 100 51.86 47.61 0.35 0.18 99.32 99.65 99.49

Table 10: Variable selection results for structural break parameters.

Model Predictors T TP TN FP FN Precision Recall F1

LASSO 25 50 6.02 68.07 19.93 5.98 23.19 50.17 31.73

DGLM 25 50 7.81 67.36 20.64 4.19 27.45 65.08 38.62

LASSO 25 100 8.70 69.22 18.78 3.29 31.66 72.56 44.08

DGLM 25 100 10.62 68.42 19.58 1.37 35.17 88.57 50.34

LASSO 50 50 3.65 77.69 12.31 6.35 22.87 36.50 28.12

DGLM 50 50 4.79 78.68 11.32 5.21 29.73 47.90 36.69

LASSO 50 100 5.95 73.99 16.00 4.05 27.12 59.50 37.24

DGLM 50 100 7.92 72.21 17.79 2.07 30.81 79.28 44.37

LASSO 100 50 1.87 82.91 7.09 8.13 20.87 18.70 19.73

DGLM 100 50 2.48 82.22 7.78 7.52 24.17 24.80 24.48

LASSO 100 100 3.61 80.28 9.71 6.39 27.10 36.10 30.96

DGLM 100 100 5.39 80.05 9.95 4.61 35.14 53.90 42.54
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